Photoactivable antibody binding protein: site-selective and covalent coupling of antibody.
Jung, Yongwon; Lee, Jeong Min; Kim, Jung-won; Yoon, Jeongwon; Cho, Hyunmin; Chung, Bong Hyun
2009-02-01
Here we report new photoactivable antibody binding proteins, which site-selectively capture antibodies and form covalent conjugates with captured antibodies upon irradiation. The proteins allow the site-selective tagging and/or immobilization of antibodies with a highly preferred orientation and omit the need for prior antibody modifications. The minimal Fc-binding domain of protein G, a widely used antibody binding protein, was genetically and chemically engineered to contain a site-specific photo cross-linker, benzophenone. In addition, the domain was further mutated to have an enhanced Fc-targeting ability. This small engineered protein was successfully cross-linked only to the Fc region of the antibody without any nonspecific reactivity. SPR analysis indicated that antibodies can be site-selectively biotinylated through the present photoactivable protein. Furthermore, the system enabled light-induced covalent immobilization of antibodies directly on various solid surfaces, such as those of glass slides, gold chips, and small particles. Antibody coupling via photoactivable antibody binding proteins overcomes several limitations of conventional approaches, such as random chemical reactions or reversible protein binding, and offers a versatile tool for the field of immunosensors.
NASA Technical Reports Server (NTRS)
Barcellos-Hoff, M. H.; Ehrhart, E. J.; Kalia, M.; Jirtle, R.; Flanders, K.; Tsang, M. L.; Chatterjee, A. (Principal Investigator)
1995-01-01
The biological activity of transforming growth factor-beta 1 (TGF-beta) is governed by dissociation from its latent complex. Immunohistochemical discrimination of active and latent TGF-beta could provide insight into TGF-beta activation in physiological and pathological processes. However, evaluation of immunoreactivity specificity in situ has been hindered by the lack of tissue in which TGF-beta status is known. To provide in situ analysis of antibodies to differentiate between these functional forms, we used xenografts of human tumor cells modified by transfection to overexpress latent TGF-beta or constitutively active TGF-beta. This comparison revealed that, whereas most antibodies did not differentiate between TGF-beta activation status, the immunoreactivity of some antibodies was activation dependent. Two widely used peptide antibodies to the amino-terminus of TGF-beta, LC(1-30) and CC(1-30) showed marked preferential immunoreactivity with active TGF-beta versus latent TGF-beta in cryosections. However, in formalin-fixed, paraffin-embedded tissue, discrimination of active TGF-beta by CC(1-30) was lost and immunoreactivity was distinctly extracellular, as previously reported for this antibody. Similar processing-dependent extracellular localization was found with a neutralizing antibody raised to recombinant TGF-beta. Antigen retrieval recovered cell-associated immunoreactivity of both antibodies. Two antibodies to peptides 78-109 showed mild to moderate preferential immunoreactivity with active TGF-beta only in paraffin sections. LC(1-30) was the only antibody tested that discriminated active from latent TGF-beta in both frozen and paraffin-embedded tissue. Thus, in situ discrimination of active versus latent TGF-beta depends on both the antibody and tissue preparation. We propose that tissues engineered to express a specific form of a given protein provide a physiological setting in which to evaluate antibody reactivity with specific functional forms of a protein.
Recent Trends in Antibody-based Oncologic Imaging
Kaur, Sukhwinder; Venktaraman, Ganesh; Jain, Maneesh; Senapati, Shantibhusan; Garg, Pradeep K.; Batra, Surinder K.
2011-01-01
Antibodies, with their unmatched ability for selective binding to any target, are considered as potentially the most specific probes for imaging. Their clinical utility, however, has been limited chiefly due to their slow clearance from the circulation, longer retention in non-targeted tissues and the extensive optimization required for each antibody-tracer. The development of newer contrast agents, combined with improved conjugation strategies and novel engineered forms of antibodies (diabodies, minibodies, single chain variable fragments, and nanobodies), have triggered a new wave of antibody-based imaging approaches. Apart from their conventional use with nuclear imaging probes, antibodies and their modified forms are increasingly being employed with non-radioisotopic contrast agents (MRI and ultrasound) as well as newer imaging modalities, such as quantum dots, near infra red (NIR) probes, nanoshells and surface enhanced Raman spectroscopy (SERS). The review article provides new developments in the usage of antibodies and their modified forms in conjunction with probes of various imaging modalities such as nuclear imaging, optical imaging, ultrasound, MRI, SERS and nanoshells in preclinical and clinical studies on the diagnosis, prognosis and therapeutic responses of cancer. PMID:22104729
Coming-of-Age of Antibodies in Cancer Therapeutics.
Ayyar, B Vijayalakshmi; Arora, Sushrut; O'Kennedy, Richard
2016-12-01
Antibody-based therapies have garnered considerable success in recent years. This is due to the availability of strategies to successfully engineer antibodies into humanized forms, better understanding of the biological processes involved in cancer development, the availability of novel recombinant antibody formats, better antibody selection platforms, and improved antibody conjugation methodologies. Such achievements have led to an explosion in the generation of antibodies and antibody-associated constructs for the treatment of cancer and other diseases. In this review, we critically assess recent trends in the development and applications of bispecific antibodies (bsAbs), antibody-drug conjugates (ADCs), and immune checkpoint inhibitors (ICIs) as cancer therapeutics. We also highlight recent US FDA approvals and clinical trials of antibody-based cancer therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Li, Zhuang; Cheng, Yue; Jiang, Chunlai; Kong, Wei; Wu, Yongge
2017-06-01
Rabies is an acute zoonotic infectious disease with a high fatality rate but is preventable with vaccination and rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv), a small engineered antigen-binding protein derived from antibody variable heavy (V H ) and light (V L ) chains connected by a peptide linker, can potentially be used to replace RIG. Here, we produced two peptides V H -JUN-HIS and V L -FOS-HA separately in Escherichia coli and assembled them to form zipFv successfully in vitro. The new zipFv utilizes FOS and JUN leucine zippers to form an antibody structure similar to the IgG counterpart with two free N-terminal ends of V H and V L . The zipFv protein showed notable improvement in binding ability and affinity over its corresponding scFv. The zipFv also demonstrated greater stability in serum and the same protective rate as RIG against challenge with a standard rabies virus (CVS-24) in mice. Our results indicated zipFv as a novel and efficient antibody form with enhanced neutralizing potency. Copyright © 2017. Published by Elsevier B.V.
Tharakaraman, Kannan; Watanabe, Satoru; Chan, Kuan Rong; Huan, Jia; Subramanian, Vidya; Chionh, Yok Hian; Raguram, Aditya; Quinlan, Devin; McBee, Megan; Ong, Eugenia Z; Gan, Esther S; Tan, Hwee Cheng; Tyagi, Anu; Bhushan, Shashi; Lescar, Julien; Vasudevan, Subhash G; Ooi, Eng Eong; Sasisekharan, Ram
2018-05-09
Following the recent emergence of Zika virus (ZIKV), many murine and human neutralizing anti-ZIKV antibodies have been reported. Given the risk of virus escape mutants, engineering antibodies that target mutationally constrained epitopes with therapeutically relevant potencies can be valuable for combating future outbreaks. Here, we applied computational methods to engineer an antibody, ZAb_FLEP, that targets a highly networked and therefore mutationally constrained surface formed by the envelope protein dimer. ZAb_FLEP neutralized a breadth of ZIKV strains and protected mice in distinct in vivo models, including resolving vertical transmission and fetal mortality in infected pregnant mice. Serial passaging of ZIKV in the presence of ZAb_FLEP failed to generate viral escape mutants, suggesting that its epitope is indeed mutationally constrained. A single-particle cryo-EM reconstruction of the Fab-ZIKV complex validated the structural model and revealed insights into ZAb_FLEP's neutralization mechanism. ZAb_FLEP has potential as a therapeutic in future outbreaks. Copyright © 2018. Published by Elsevier Inc.
Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.
Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias
2017-09-01
In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.
Multifunctional PSCA Antibody Fragments for PET and Optical Prostate Cancer Imaging
2016-10-01
INVESTIGATOR: Robert E. Reiter, MD, MBA CONTRACTING ORGANIZATION: University of California, Los Angeles Los Angeles, CA 90095-1406 REPORT DATE ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES COVERED...expressed in prostate cancer. These engineered antibody fragments (cys-minibodies and cys-diabodies) can be labeled with radioisotopes for non- invasive
Fab is the most efficient format to express functional antibodies by yeast surface display.
Sivelle, Coline; Sierocki, Raphaël; Ferreira-Pinto, Kelly; Simon, Stéphanie; Maillere, Bernard; Nozach, Hervé
2018-04-30
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.
Yao, Yuan; Yu, Chuan-xin
2013-08-01
Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.
Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C.; Johnson, Jennifer L.; Entzminger, Kevin; Jain, Avni; Heaner, David P.; Morales, Ivan A.; Truskett, Thomas M.; Maynard, Jennifer A.; Lieberman, Raquel L.
2014-01-01
Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although non-complementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts. PMID:24615866
Antibody Engineering for Pursuing a Healthier Future
Saeed, Abdullah F. U. H.; Wang, Rongzhi; Ling, Sumei; Wang, Shihua
2017-01-01
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans. PMID:28400756
Grujic, Ognjen; Stevens, Jennitte; Chou, Robert Y-T; Weiszmann, Jennifer V; Sekirov, Laura; Thomson, Christy; Badh, Anita; Grauer, Stephanie; Chan, Brian; Graham, Kevin; Manchulenko, Kathy; Dillon, Thomas M; Li, Yang; Foltz, Ian N
2017-05-13
Agonism of cell surface receptors by monoclonal antibodies is dependent not only on its ability to bind the target, but also to deliver a biological signal through receptors to the cell. Immunoglobulin G2 antibodies (IgG2s) are made up of a mixture of distinct isoforms (IgG2-A, -B and A/B), which differ by the disulfide connectivity at the hinge region. When evaluating panels of agonistic antibodies against CD200 receptor (CD200R) or βklotho receptor (βklotho), we noticed striking activity differences of IgG1 or IgG2 antibodies with the same variable domains. For the CD200R antibody, the IgG2 antibody demonstrated higher activity than the IgG1 or IgG4 antibody. More significantly, for βklotho, agonist antibodies with higher biological activity as either IgG2 or IgG1 were identified. In both cases, ion exchange chromatography was able to isolate the bioactivity to the IgG2-B isoform from the IgG2 parental mixture. The subclass-related increase in agonist activity was not correlated with antibody aggregation or binding affinity, but was driven by enhanced avidity for the CD200R antibody. These results add to the growing body of evidence that show that conformational differences in the antibody hinge region can have a dramatic impact on the antibody activity and must be considered when screening and engineering therapeutic antibody candidates. The results also demonstrate that the IgG1 (IgG2-A like) or the IgG2-B form may provide the most active form of agonist antibodies for different antibodies and targets. Copyright © 2017 Elsevier Inc. All rights reserved.
Pauthner, Matthias; Yeung, Jenny; Ullman, Chris; Bakker, Joost; Wurch, Thierry; Reichert, Janice M.; Lund-Johansen, Fridtjof; Bradbury, Andrew R.M.; Carter, Paul J.; Melis, Joost P.M.
2016-01-01
ABSTRACT The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6–10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on “Antibodies to watch” in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. PMID:26909869
Pardridge, William M
2016-12-01
Therapeutic antibodies are large molecule drugs that do not cross the blood-brain barrier (BBB). Therefore, drug development of therapeutic antibodies for Alzheimer's disease (AD) requires that these molecules be re-engineered to enable BBB delivery. This is possible by joining the therapeutic antibody with a transporter antibody, resulting in the engineering of a BBB-penetrating bispecific antibody (BSA). Areas covered: The manuscript covers transporter antibodies that cross the BBB via receptor-mediated transport systems on the BBB, such as the insulin receptor or transferrin receptor. Furthermore, it highlights therapeutic antibodies for AD that target the Abeta amyloid peptide, beta secretase-1, or the metabotropic glutamate receptor-1. BSAs are comprised of both the transporter antibody and the therapeutic antibody, as well as IgG constant region, which can induce immune tolerance or trigger transport via Fc receptors. Expert opinion: Multiple types of BSA molecular designs have been used to engineer BBB-penetrating BSAs, which differ in valency and spatial orientation of the transporter and therapeutic domains of the BSA. The plasma pharmacokinetics and dosing regimens of BSAs differ from that of conventional therapeutic antibodies. BBB-penetrating BSAs may be engineered in the future as new treatments of AD, as well as other neural disorders.
Larrick, James W; Alfenito, Mark R; Scott, Jamie K; Parren, Paul W H I; Burton, Dennis R; Bradbury, Andrew R M; Lemere, Cynthia A; Messer, Anne; Huston, James S; Carter, Paul J; Veldman, Trudi; Chester, Kerry A; Schuurman, Janine; Adams, Gregory P; Reichert, Janice M
Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. "Antibodies to watch in 2017" and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.
Li, Hua; Zhang, Feng-Lan; Shi, Wen-Jie; Bai, Xue-Jia; Jia, Shu-Qin; Zhang, Chen-Guang; Ding, Wei
2015-01-01
The technology of virus-based genetic modification in tissue engineering has provided the opportunity to produce more flexible and versatile biomaterials for transplantation. Localizing the transgene expression with increased efficiency is critical for tissue engineering as well as a challenge for virus-based gene delivery. In this study, we tagged the VP2 protein of type 2 adeno-associated virus (AAV) with a 3×FLAG plasmid at the N-terminus and packaged a FLAG-tagged recombinant AAV2 chimeric mutant. The mutant AAVs were immobilized onto the tissue engineering scaffolds with crosslinked anti-FLAG antibodies by N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP). Cultured cells were seeded to scaffolds to form 3D transplants, and then tested for viral transduction both in vitro and in vivo. The results showed that our FLAG-tagged AAV2 exerted similar transduction efficiency compared with the wild type AAV2 when infected cultured cells. Following immobilization onto the scaffolds of PLGA or gelatin sponge with anti-FLAG antibodies, the viral mediated transgene expression was significantly improved and more localized. Our data demonstrated that the mutation of AAV capsid targeted for antibody-based immobilization could be a practical approach for more efficient and precise transgene delivery. It was also suggested that the immobilization of AAV might have attractive potentials in applications of tissue engineering involving the targeted gene manipulation in 3D tissue cultures.
Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering.
Yu, Xiaojie; Marshall, Michael J E; Cragg, Mark S; Crispin, Max
2017-06-01
Antibody-based therapeutics has emerged as a major tool in cancer treatment. Guided by the superb specificity of the antibody variable domain, it allows the precise targeting of tumour markers. Recently, eliciting cellular effector functions, mediated by the Fc domain, has gained traction as a means by which to generate more potent antibody therapeutics. Extensive mutagenesis studies of the Fc protein backbone has enabled the generation of Fc variants that more optimally engage the Fcγ receptors known to mediate cellular effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and cellular phagocytosis. In addition to the protein backbone, the homodimeric Fc domain contains two opposing N-linked glycans, which represent a further point of potential immunomodulation, independent of the Fc protein backbone. For example, a lack of core fucose usually attached to the IgG Fc glycan leads to enhanced ADCC activity, whereas a high level of terminal sialylation is associated with reduced inflammation. Significant growth in knowledge of Fc glycosylation over the last decade, combined with advancement in genetic engineering, has empowered glyco-engineering to fine-tune antibody therapeutics. This has culminated in the approval of two glyco-engineered antibodies for cancer therapy: the anti-CCR4 mogamulizumab approved in 2012 and the anti-CD20 obinutuzumab in 2013. We discuss here the technological platforms for antibody glyco-engineering and review the current clinical landscape of glyco-engineered antibodies.
Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A.; Proetzel, Gabriele; Yong, May; Begent, Richard H.J.; Reichert, Janice M
2013-01-01
The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3–6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3–5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4–5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society’s special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5–6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy. PMID:23575266
Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A; Proetzel, Gabriele; Yong, May; Begent, Richard H J; Reichert, Janice M
2013-01-01
The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3-6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3-5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4-5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society's special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5-6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy.
Owais, Mohammad; Kazmi, Shadab; Tufail, Saba; Zubair, Swaleha
2014-01-01
Bi-functional antibodies with the ability to bind two unrelated epitopes have remarkable potential in diagnostic and bio-sensing applications. In the present study, bispecific antibodies that recognize human red blood cell (RBC) and the food borne pathogen Listeria monocytogenes (L. monocytogenes) were engineered. The procedure involves initial reduction of a mixture of anti-RBC and anti-Listeria antibodies followed by gradual re-oxidation of the reduced disulphides. This facilitates association of the separated antibody chains and formation of hybrid immunoglobulins with affinity for the L. monocytogenes and human RBC. The bispecific antibodies caused the agglutination of the RBCs only in the presence of L. monocytogenes cells. The agglutination process necessitated the specific presence of L. monocytogenes and the red colored clumps formed were readily visible with naked eyes. The RBC agglutination assay described here provides a remarkably simple approach for the rapid and highly specific screening of various pathogens in their biological niches. PMID:24637674
Klement, Maximilian; Zheng, Jiyun; Liu, Chengcheng; Tan, Heng-Liang; Wong, Victor Vai Tak; Choo, Andre Boon-Hwa; Lee, Dong-Yup; Ow, Dave Siak-Wei
2017-02-10
Antibody fragments have shown targeted specificity to their antigens, but only modest tissue retention times in vivo and in vitro. Multimerization has been used as a protein engineering tool to increase the number of binding units and thereby enhance the efficacy and retention time of antibody fragments. In this work, we explored the effects of valency using a series of self-assembling polypeptides based on the GCN4 leucine zipper multimerization domain fused to a single-chain variable fragment via an antibody upper hinge sequence. Four engineered antibody fragments with a valency from one to four antigen-binding units of a cytotoxic monoclonal antibody 84 against human embryonic stem cells (hESC) were constructed. We hypothesized that higher cytotoxicity would be observed for fragments with increased valency. Flow cytometry analysis revealed that the trimeric and tetrameric engineered antibody fragments resulted in the highest degree of cytotoxicity to the undifferentiated hESC, while the engineered antibody fragments were observed to have improved tissue penetration into cell clusters. Thus, a trade off was made for the trimeric versus tetrameric fragment due to improved tissue penetration. These results have direct implications for antibody-mediated removal of undifferentiated hESC during regenerative medicine and cell therapy. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Pardridge, William M
2015-02-01
Biologic drugs are large molecules that do not cross the blood- brain barrier (BBB). Brain penetration is possible following the re-engineering of the biologic drug as an IgG fusion protein. The IgG domain is a MAb against an endogenous BBB receptor such as the transferrin receptor (TfR). The TfRMAb acts as a molecular Trojan horse to ferry the fused biologic drug into the brain via receptor-mediated transport on the endogenous BBB TfR. This review discusses TfR isoforms, models of BBB transport of transferrin and TfRMAbs, and the genetic engineering of TfRMAb fusion proteins, including BBB penetrating IgG-neurotrophins, IgG-decoy receptors, IgG-lysosomal enzyme therapeutics and IgG-avidin fusion proteins, as well as BBB transport of bispecific antibodies formed by fusion of a therapeutic antibody to a TfRMAb targeting antibody. Also discussed are quantitative aspects of the plasma pharmacokinetics and brain uptake of TfRMAb fusion proteins, as compared to the brain uptake of small molecules, and therapeutic applications of TfRMAb fusion proteins in mouse models of neural disease, including Parkinson's disease, stroke, Alzheimer's disease and lysosomal storage disorders. The review covers the engineering of TfRMAb-avidin fusion proteins for BBB targeted delivery of biotinylated peptide radiopharmaceuticals, low-affinity TfRMAb Trojan horses and the safety pharmacology of chronic administration of TfRMAb fusion proteins. The BBB delivery of biologic drugs is possible following re-engineering as a fusion protein with a molecular Trojan horse such as a TfRMAb. The efficacy of this technology will be determined by the outcome of future clinical trials.
Molecular engineering of antibodies for therapeutic and diagnostic purposes
Ducancel, Frédéric; Muller, Bruno H.
2012-01-01
During the past ten years, monoclonal antibodies (mAbs) have taken center stage in the field of targeted therapy and diagnosis. This increased interest in mAbs is due to their binding accuracy (affinity and specificity) together with the original molecular and structural rules that govern interactions with their cognate antigen. In addition, the effector properties of antibodies constitute a second major advantage associated with their clinical use. The development of molecular and structural engineering and more recently of in vitro evolution of antibodies has opened up new perspectives in the de novo design of antibodies more adapted to clinical and diagnostic use. Thus, efforts are regularly made by researchers to improve or modulate antibody recognition properties, to adapt their pharmacokinetics, engineer their stability, and control their immunogenicity. This review presents the latest molecular engineering results on mAbs with therapeutic and diagnostic applications. PMID:22684311
Aligning physics and physiology: Engineering antibodies for radionuclide delivery.
Tsai, Wen-Ting K; Wu, Anna M
2018-03-14
The exquisite specificity of antibodies and antibody fragments renders them excellent agents for targeted delivery of radionuclides. Radiolabeled antibodies and fragments have been successfully used for molecular imaging and radioimmunotherapy (RIT) of cell surface targets in oncology and immunology. Protein engineering has been used for antibody humanization essential for clinical applications, as well as optimization of important characteristics including pharmacokinetics, biodistribution, and clearance. Although intact antibodies have high potential as imaging and therapeutic agents, challenges include long circulation time in blood, which leads to later imaging time points post-injection and higher blood absorbed dose that may be disadvantageous for RIT. Using engineered fragments may address these challenges, as size reduction and removal of Fc function decreases serum half-life. Radiolabeled fragments and pretargeting strategies can result in high contrast images within hours to days, and a reduction of RIT toxicity in normal tissues. Additionally, fragments can be engineered to direct hepatic or renal clearance, which may be chosen based on the application and disease setting. This review discusses aligning the physical properties of radionuclides (positron, gamma, beta, alpha, and Auger emitters) with antibodies and fragments and highlights recent advances of engineered antibodies and fragments in preclinical and clinical development for imaging and therapy. Copyright © 2018 John Wiley & Sons, Ltd.
Akiba, Hiroki; Tsumoto, Kouhei
2015-07-01
Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Enhancing Antibody Fc Heterodimer Formation through Electrostatic Steering Effects
Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Garrett, Logan; Forte, Carla; Woodward, Anne; Ng, Soo Bin; Born, Teresa; Retter, Marc; Manchulenko, Kathy; Sweet, Heather; Foltz, Ian N.; Wittekind, Michael; Yan, Wei
2010-01-01
Naturally occurring IgG antibodies are bivalent and monospecific. Bispecific antibodies having binding specificities for two different antigens can be produced using recombinant technologies and are projected to have broad clinical applications. However, co-expression of multiple light and heavy chains often leads to contaminants and pose purification challenges. In this work, we have modified the CH3 domain interface of the antibody Fc region with selected mutations so that the engineered Fc proteins preferentially form heterodimers. These novel mutations create altered charge polarity across the Fc dimer interface such that coexpression of electrostatically matched Fc chains support favorable attractive interactions thereby promoting desired Fc heterodimer formation, whereas unfavorable repulsive charge interactions suppress unwanted Fc homodimer formation. This new Fc heterodimer format was used to produce bispecific single chain antibody fusions and monovalent IgGs with minimal homodimer contaminants. The strategy proposed here demonstrates the feasibility of robust production of novel Fc-based heterodimeric molecules and hence broadens the scope of bispecific molecules for therapeutic applications. PMID:20400508
Ha, Ji-Hee; Kim, Jung-Eun; Kim, Yong-Sung
2016-01-01
The monospecific and bivalent characteristics of naturally occurring immunoglobulin G (IgG) antibodies depend on homodimerization of the fragment crystallizable (Fc) regions of two identical heavy chains (HCs) and the subsequent assembly of two identical light chains (LCs) via disulfide linkages between each HC and LC. Immunoglobulin Fc heterodimers have been engineered through modifications to the CH3 domain interface, with different mutations on each domain such that the engineered Fc fragments, carrying the CH3 variant pair, preferentially form heterodimers rather than homodimers. Many research groups have adopted different strategies to generate Fc heterodimers, with the goal of high heterodimerization yield, while retaining biophysical and biological properties of the wild-type Fc. Based on their ability to enforce heterodimerization between the two different HCs, the established Fc heterodimers have been extensively exploited as a scaffold to generate bispecific antibodies (bsAbs) in full-length IgG and IgG-like formats. These have many of the favorable properties of natural IgG antibodies, such as high stability, long serum half-life, low immunogenicity, and immune effector functions. As of July 2016, more than seven heterodimeric Fc-based IgG-format bsAbs are being evaluated in clinical trials. In addition to bsAbs, heterodimeric Fc technology is very promising for the generation of Fc-fused proteins and peptides, as well as cytokines (immunocytokines), which can present the fusion partners in the natural monomeric or heterodimeric form rather than the artificial homodimeric form with wild-type Fc. Here, we present relevant concepts and strategies for the generation of heterodimeric Fc proteins, and their application in the development of bsAbs in diverse formats for optimal biological activity. In addition, we describe wild-type Fc-fused monomeric and heterodimeric proteins, along with the difficulties associated with their preparations, and discuss the use of heterodimeric Fc as an alternative scaffold of wild-type Fc for naturally monomeric or heterodimeric proteins, to create Fc-fusion proteins with novel therapeutic modality.
Antibody Engineering and Therapeutics
Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y
2014-01-01
The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717
Liu, Zhi; Leng, Esther C; Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Howard, Monique; Stoops, Janelle; Manchulenko, Kathy; Razinkov, Vladimir; Liu, Hua; Fanslow, William; Hu, Zhonghua; Sun, Nancy; Hasegawa, Haruki; Clark, Rutilio; Foltz, Ian N; Yan, Wei
2015-03-20
Producing pure and well behaved bispecific antibodies (bsAbs) on a large scale for preclinical and clinical testing is a challenging task. Here, we describe a new strategy for making monovalent bispecific heterodimeric IgG antibodies in mammalian cells. We applied an electrostatic steering mechanism to engineer antibody light chain-heavy chain (LC-HC) interface residues in such a way that each LC strongly favors its cognate HC when two different HCs and two different LCs are co-expressed in the same cell to assemble a functional bispecific antibody. We produced heterodimeric IgGs from transiently and stably transfected mammalian cells. The engineered heterodimeric IgG molecules maintain the overall IgG structure with correct LC-HC pairings, bind to two different antigens with comparable affinity when compared with their parental antibodies, and retain the functionality of parental antibodies in biological assays. In addition, the bispecific heterodimeric IgG derived from anti-HER2 and anti-EGF receptor (EGFR) antibody was shown to induce a higher level of receptor internalization than the combination of two parental antibodies. Mouse xenograft BxPC-3, Panc-1, and Calu-3 human tumor models showed that the heterodimeric IgGs strongly inhibited tumor growth. The described approach can be used to generate tools from two pre-existent antibodies and explore the potential of bispecific antibodies. The asymmetrically engineered Fc variants for antibody-dependent cellular cytotoxicity enhancement could be embedded in monovalent bispecific heterodimeric IgG to make best-in-class therapeutic antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Kokla, Anna; Blouchos, Petros; Livaniou, Evangelia; Zikos, Christos; Kakabakos, Sotiris E; Petrou, Panagiota S; Kintzios, Spyridon
2013-12-01
Membrane engineering is a generic methodology for increasing the selectivity of a cell biosensor against a target molecule, by electroinserting target-specific receptor-like molecules on the cell surface. Previous studies have elucidated the biochemical aspects of the interaction between various analytes (including viruses) and their homologous membrane-engineered cells. In the present study, purified anti-biotin antibodies from a rabbit antiserum along with in-house prepared biotinylated bovine serum albumin (BSA) were used as a model antibody-antigen pair of molecules for facilitating membrane engineering experiments. It was proven, with the aid of fluorescence microscopy, that (i) membrane-engineered cells incorporated the specific antibodies in the correct orientation and that (ii) the inserted antibodies are selectively interacting with the homologous target molecules. This is the first time the actual working concept of membrane engineering has been visualized, thus providing a final proof of the concept behind this innovative process. In addition, the fluorescence microscopy measurements were highly correlated with bioelectric measurements done with the aid of a bioelectric recognition assay. Copyright © 2013 John Wiley & Sons, Ltd.
Peters, Shirley J; Smales, C Mark; Henry, Alistair J; Stephens, Paul E; West, Shauna; Humphreys, David P
2012-07-13
The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.
T Cell Receptor Engineering and Analysis Using the Yeast Display Platform
Smith, Sheena N.; Harris, Daniel T.; Kranz, David M.
2017-01-01
The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g. a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g. T cell activation by as few as 1 to 3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with KD values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072
Modern Technologies for Creating Synthetic Antibodies for Clinical application
Lebedenko, E. N.
2009-01-01
The modular structure and versatility of antibodies enables one to modify natural immunoglobulins in different ways for various clinical applications. Rational design and molecular engineering make it possible to directionally modify the molecular size, affinity, specificity, and immunogenicity and effector functions of an antibody, as well as to combine them with other functional agents. This review focuses on up-to-date methods of antibody engineering for diagnosing and treating various diseases, particularly on new technologies meant to refine the effector functions of therapeutic antibodies. PMID:22649585
Introduction to current and future protein therapeutics: a protein engineering perspective.
Carter, Paul J
2011-05-15
Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies to address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies. Copyright © 2011 Elsevier Inc. All rights reserved.
Introduction to current and future protein therapeutics: A protein engineering perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Paul J., E-mail: pjc@gene.com
2011-05-15
Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies tomore » address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies.« less
Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.
Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge
2017-04-28
The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.
Use of Fc-Engineered Antibodies as Clearing Agents to Increase Contrast During PET
Swiercz, Rafal; Chiguru, Srinivas; Tahmasbi, Amir; Ramezani, Saleh M.; Hao, Guiyang; Challa, Dilip K.; Lewis, Matthew A.; Kulkarni, Padmakar V.; Sun, Xiankai; Ober, Raimund J.; Mason, Ralph P.; Ward, E. Sally
2015-01-01
Despite promise for the use of antibodies as molecular imaging agents in PET, their long in vivo half-lives result in poor contrast and radiation damage to normal tissue. This study describes an approach to overcome these limitations. Methods Mice bearing human epidermal growth factor receptor type 2 (HER2)–overexpressing tumors were injected with radiolabeled (124I, 125I) HER2-specific antibody (pertuzumab). Pertuzumab injection was followed 8 h later by the delivery of an engineered, antibody-based inhibitor of the receptor, FcRn. Biodistribution analyses and PET were performed at 24 and 48 h after pertuzumab injection. Results The delivery of the engineered, antibody-based FcRn inhibitor (or Abdeg, for antibody that enhances IgG degradation) results in improved tumor-to-blood ratios, reduced systemic exposure to radiolabel, and increased contrast during PET. Conclusion Abdegs have considerable potential as agents to stringently regulate antibody dynamics in vivo, resulting in increased contrast during molecular imaging with PET. PMID:24868106
Moore, Gregory L; Chen, Hsing; Karki, Sher
2010-01-01
Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complementenhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens. PMID:20150767
Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding
Sirois, Allison R.; Deny, Daniela A.; Baierl, Samantha R.; George, Katia S.
2018-01-01
Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics. PMID:29738555
Nelson, Bryce; Adams, Jarrett; Kuglstatter, Andreas; Li, Zhijian; Harris, Seth F; Liu, Yang; Bohini, Sandya; Ma, Han; Klumpp, Klaus; Gao, Junjun; Sidhu, Sachdev S
2018-07-06
Hepatitis C viral infection is the major cause of chronic hepatitis that affects as many as 71 million people worldwide. Rather than target the rapidly shifting viruses and their numerous serotypes, four independent antibodies were made to target the host antigen CD81 and were shown to block hepatitis C viral entry. The single-chain variable fragment of each antibody was crystallized in complex with the CD81 large extracellular loop in order to guide affinity maturation of two distinct antibodies by phage display. Affinity maturation of antibodies using phage display has proven to be critical to therapeutic antibody development and typically involves modification of the paratope for increased affinity, improved specificity, enhanced stability or a combination of these traits. One antibody was engineered for increased affinity for human CD81 large extracellular loop that equated to increased efficacy, while the second antibody was engineered for cross-reactivity with cynomolgus CD81 to facilitate animal model testing. The use of structures to guide affinity maturation library design demonstrates the utility of combining structural analysis with phage display technologies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rickert, Keith W; Grinberg, Luba; Woods, Robert M; Wilson, Susan; Bowen, Michael A; Baca, Manuel
2016-01-01
The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.
Rickert, Keith W.; Grinberg, Luba; Woods, Robert M.; Wilson, Susan; Bowen, Michael A.; Baca, Manuel
2016-01-01
ABSTRACT The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3–5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material. PMID:26852694
Azoitei, M.L.; Ban, Y.A.; Kalyuzhny, O.; Guenaga, J.; Schroeter, A.; Porter, J.; Wyatt, R.; Schief, W.R.
2015-01-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of pre-defined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of HIV-1 neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with sub-nanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. PMID:25043744
Zhang, Di; Whitaker, Brian; Derebe, Mehabaw G.; Chiu, Mark L.
2018-01-01
ABSTRACT Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities. PMID:29359992
Engineered proteins as specific binding reagents.
Binz, H Kaspar; Plückthun, Andreas
2005-08-01
Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.
Mallaney, Mary; Wang, Szu-Han; Sreedhara, Alavattam
2014-01-01
During a small-scale cell culture process producing a monoclonal antibody, a larger than expected difference was observed in the charge variants profile of the harvested cell culture fluid (HCCF) between the 2 L and larger scales (e.g., 400 L and 12 kL). Small-scale studies performed at the 2 L scale consistently showed an increase in acidic species when compared with the material made at larger scale. Since the 2 L bioreactors were made of clear transparent glass while the larger scale reactors are made of stainless steel, the effect of ambient laboratory light on cell culture process in 2 L bioreactors as well as handling the HCCF was carefully evaluated. Photoreactions in the 2 L glass bioreactors including light mediated increase in acidic variants in HCCF and formulation buffers were identified and carefully analyzed. While the acidic variants comprised of a mixture of sialylated, reduced disulfide, crosslinked (nonreducible), glycated, and deamidated forms, an increase in the nonreducible forms, deamidation and Met oxidation was predominantly observed under light stress. The monoclonal antibody produced in glass bioreactors that were protected from light behaved similar to the one produced in the larger scale. Our data clearly indicate that care should be taken when glass bioreactors are used in cell culture studies during monoclonal antibody production. © 2014 American Institute of Chemical Engineers.
Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.
van Houten, Nienke E; Henry, Kevin A; Smith, George P; Scott, Jamie K
2010-03-02
The filamentous bacteriophage are highly immunogenic particles that can be used as carrier proteins for peptides and presumably other haptens and antigens. Our previous work demonstrated that the antibody response was better focused against a synthetic peptide if it was conjugated to phage as compared to the classical carrier, ovalbumin. We speculated that this was due, in part, to the relatively low surface complexity of the phage. Here, we further investigate the phage as an immunogenic carrier, and the effect reducing its surface complexity has on the antibody response against peptides that are either displayed as recombinant fusions to the phage coat or are chemically conjugated to it. Immunodominant regions of the minor coat protein, pIII, were removed from the phage surface by excising its N1 and N2 domains (Delta3 phage variant), whereas immunodominant epitopes of the major coat protein, pVIII, were altered by reducing the charge of its surface-exposed N-terminal residues (Delta8 phage variant). Immunization of mice revealed that the Delta3 variant was less immunogenic than wild-type (WT) phage, whereas the Delta8 variant was more immunogenic. The immunogenicity of two different peptides was tested in the context of the WT and Delta3 phage in two different forms: (i) as recombinant peptides fused to pVIII, and (ii) as synthetic peptides conjugated to the phage surface. One peptide (MD10) in its recombinant form produced a stronger anti-peptide antibody response fused to the WT carrier compared to the Delta3 phage carrier, and did not elicit a detectable anti-peptide response in its synthetic form conjugated to either phage carrier. This trend was reversed for a different peptide (4E10(L)), which did not produce a detectable anti-peptide antibody response as a recombinant fusion; yet, as a chemical conjugate to Delta3 phage, but not WT phage, it elicited a highly focused anti-peptide antibody response that exceeded the anti-carrier response by approximately 65-fold. The results suggest that focusing of the antibody response against synthetic peptides can be improved by decreasing the antigenic complexity of the phage surface. Copyright 2010 Elsevier Ltd. All rights reserved.
Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.
Igawa, Tomoyuki
2017-01-01
Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.
Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L
2014-01-01
The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.
Azoitei, M L; Ban, Y A; Kalyuzhny, O; Guenaga, J; Schroeter, A; Porter, J; Wyatt, R; Schief, William R
2014-10-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV-1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with subnanomolar affinity (K(D) = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. © 2014 Wiley Periodicals, Inc.
Mahajan, Sai Pooja; Velez-Vega, Camilo; Escobedo, Fernando A
2013-01-10
Nanobodies are single-domain antibodies found in camelids. These are the smallest naturally occurring binding domains and derive functionality via three hypervariable loops (H1-H3) that form the binding surface. They are excellent candidates for antibody engineering because of their favorable characteristics like small size, high solubility, and stability. To rationally engineer antibodies with affinity for a specific target, the hypervariable loops can be tailored to obtain the desired binding surface. As a first step toward such a goal, we consider the design of loops with a desired conformation. In this study, we focus on the H1 loop of the anti-hCG llama nanobody that exhibits a noncanonical conformation. We aim to "tilt" the stability of the H1 loop structure from a noncanonical conformation to a (humanized) type 1 canonical conformation by studying the effect of selected mutations to the amino acid sequence of the H1, H2, and proximal residues. We use all-atomistic, explicit-solvent, biased molecular dynamic simulations to simulate the wild-type and mutant loops in a prefolded framework. We thus find mutants with increasing propensity to form a stable type 1 canonical conformation of the H1 loop. Free energy landscapes reveal the existence of conformational isomers of the canonical conformation that may play a role in binding different antigenic surfaces. We also elucidate the approximate mechanism and kinetics of transitions between such conformational isomers by using a Markovian model. We find that a particular three-point mutant has the strongest thermodynamic propensity to form the H1 type 1 canonical structure but also to exhibit transitions between conformational isomers, while a different, more rigid three-point mutant has the strongest propensity to be kinetically trapped in such a canonical structure.
Generalova, Alla N; Sizova, Svetlana V; Zdobnova, Tatiana A; Zarifullina, Margarita M; Artemyev, Michail V; Baranov, Alexander V; Oleinikov, Vladimir A; Zubov, Vitaly P; Deyev, Sergey M
2011-02-01
This study aimed to design a panel of uniform particulate biochemical reagents and to test them in specific bioassays. These reagents are polymer particles of different sizes doped with semiconductor nanocrystals and conjugated with either full-size antibodies or recombinant mini-antibodies (4D5 scFv fragment) designed by genetic engineering approaches. A panel of highly fluorescent polymer particles (150-800 nm) were formed by embedding CdSe/ZnS nanocrystals (quantum dots) into preformed polyacrolein and poly(acrolein-co-styrene) particles. Morphology, content and fluorescence characteristics of the prepared materials were studied by laser correlation spectroscopy, spectrophotometry, optical and fluorescent microscopy and fluorimetry. The obtained fluorescent particles sensitized by anti-Yersinia pestis antibodies were used for rapid agglutination glass test suitable for screening analysis of Y. pestis antigen and for microtiter particle agglutination, which, owing to its speed and simplicity, is very beneficial for diagnostic detection of Y. pestis antigen. Recombinant 4D5 scFv antibodies designed and conjugated with polymer particles containing quantum dots provide multipoint highly specific binding with cancer marker HER2/neu on the surface of SKOV-3 cell.
Agarwal, Paresh; Bertozzi, Carolyn R
2015-02-18
Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.
Use of Synthetic Antibodies Targeted to the Jak/Stat Pathway in Breast Cancer
2011-03-01
substance P ( SP ), a neuropeptide that is rapidly internalized upon interaction with the neurokinin-1 receptor ( NK1R ). Cargos in the form of...based on substance P ( SP ), an 11 amino acid neuropeptide that is rapidly internalized through specific interaction with the neurokinin-1 receptor...EM IS TR Y Results Engineering a Delivery Vehicle Based on Substance P . Substance P ( SP ) is an 11 amino acid neuropeptide that is
Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B
2014-01-01
Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.
Geng, Steven B.; Cheung, Jason K.; Narasimhan, Chakravarthy; Shameem, Mohammed; Tessier, Peter M.
2014-01-01
A limitation of using monoclonal antibodies as therapeutic molecules is their propensity to associate with themselves and/or with other molecules via non-affinity (colloidal) interactions. This can lead to a variety of problems ranging from low solubility and high viscosity to off-target binding and fast antibody clearance. Measuring such colloidal interactions is challenging given that they are weak and potentially involve diverse target molecules. Nevertheless, assessing these weak interactions – especially during early antibody discovery and lead candidate optimization – is critical to preventing problems that can arise later in the development process. Here we review advances in developing and implementing sensitive methods for measuring antibody colloidal interactions as well as using these measurements for guiding antibody selection and engineering. These systematic efforts to minimize non-affinity interactions are expected to yield more effective and stable monoclonal antibodies for diverse therapeutic applications. PMID:25209466
Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies
Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.
2015-01-01
The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980
Fluorogenic Cell-Based Biosensors for Monitoring Microbes
NASA Technical Reports Server (NTRS)
Curtis, Theresa; Salazar, Noe; Tabb, Joel; Chase, Chris
2010-01-01
Fluorogenic cell-based sensor systems for detecting microbes (especially pathogenic ones) and some toxins and allergens are undergoing development. These systems harness the natural signaltransduction and amplification cascades that occur in mast cells upon activation with antigens. These systems include (1) fluidic biochips for automated containment of samples, reagents, and wastes and (2) sensitive, compact fluorometers for monitoring the fluorescent responses of mast cells engineered to contain fluorescent dyes. It should be possible to observe responses within minutes of adding immune complexes. The systems have been shown to work when utilizing either immunoglobulin E (IgE) antibodies or traditionally generated rat antibodies - a promising result in that it indicates that the systems could be developed to detect many target microbes. Chimeric IgE antibodies and rat immunoglobulin G (IgG) antibodies could be genetically engineered for recognizing biological and chemical warfare agents and airborne and food-borne allergens. Genetic engineering efforts thus far have yielded (1) CD14 chimeric antibodies that recognize both Grampositive and Gram-negative bacteria and bind to the surfaces of mast cells, eliciting a degranulation response and (2) rat IgG2a antibodies that act similarly in response to low levels of canine parvovirus.
Asano, Ryutaro; Kawaguchi, Hiroko; Watanabe, Yasuhiro; Nakanishi, Takeshi; Umetsu, Mitsuo; Hayashi, Hiroki; Katayose, Yu; Unno, Michiaki; Kudo, Toshio; Kumagai, Izumi
2008-10-01
Recently, recombinant antibodies have been dissected into antigen-binding regions and rebuilt into multivalent high-avidity formats. These new structural designs are expected to improve in vivo pharmacokinetics and efficacy in clinical use. Here, we designed effective recombinant bispecific antibody (BsAb) formats based on hEx3, a humanized bispecific diabody with epidermal growth factor receptor and CD3 retargeting. The bispecific and bivalent IgG-like antibodies engineered from hEx3 (or its single-chain form, hEx3-scDb) and the human Fc region showed stronger binding to each target cell than did monovalent diabody formats, and their affinity was identical to that of the corresponding parent IgG. The bivalent effect of the constructed IgG-like BsAbs resulted in cell cytotoxicity 10 times that of monovalent diabodies, and further, the fusion of Fc portion contributed intense cytotoxicity in peripheral blood mononuclear cells by the induction of the antibody-dependent cellular cytotoxicity. The growth-inhibition effects of IgG-like BsAbs were superior to those of the approved therapeutic antibody cetuximab, which recognizes the same epidermal growth factor receptor antigen, even when peripheral blood mononuclear cells were used as effector cells. We thus demonstrated a critical improvement in the effect of hEx3 by the bottom-up construction of IgG-like BsAbs; in adoptive immunotherapy, monotherapy without supplemental molecules may be able to induce antibody-dependent cellular cytotoxicity.
Antibody-Mimetic Peptoid Nanosheet for Label-Free Serum-Based Diagnosis of Alzheimer's Disease.
Zhu, Ling; Zhao, Zijian; Cheng, Peng; He, Zhaohui; Cheng, Zhiqiang; Peng, Jiaxi; Wang, Huayi; Wang, Chen; Yang, Yanlian; Hu, Zhiyuan
2017-08-01
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive cognitive decline. Current diagnosis of AD is based on symptoms, neuropsychological tests, and neuroimaging, and is usually evident years after the pathological process. Early assessment at the preclinical or prodromal stage is in a great demand since treatment after the onset can hardly stop or reverse the disease progress. However, early diagnosis of AD is challenging due to the lack of reliable noninvasive approaches. Here, an antibody-mimetic self-assembling peptoid nanosheet containing surface-exposed Aβ42-recognizing loops is constructed, and a label-free sensor for the detection of AD serum is developed. The loop-displaying peptoid nanosheet is demonstrated to have high affinity to serum Aβ42, and to be able to identify AD sera with high sensitivity. The dense distribution of molecular recognition loops on the robust peptoid nanosheet scaffold not only mimics the architecture of antibodies, but also reduces the nonspecific binding in detecting multicomponent samples. This antibody-mimetic 2D material holds great potential toward the blood-based diagnosis of AD, and meanwhile provides novel insights into the antibody alternative engineering and the universal application in biological and chemical sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Faitschuk, E; Nagy, V; Hombach, A A; Abken, H
2016-10-01
Adoptive cell therapy with chimeric antigen receptor (CAR)-modified T cells showed remarkable therapeutic efficacy in the treatment of leukaemia/lymphoma. However, the application to a variety of cancer entities is often constricted by the non-availability of a single chain antibody (scFv), which is usually the targeting domain in a CAR, while antibodies in the natural format are often available. To overcome the limitation, we designed a CAR that uses an antibody in its natural configuration for binding. Such CAR consists of two chains, the immunoglobulin light and heavy chain with their constant regions, whereby the heavy chain is anchored to the membrane and linked to an intracellular signalling domain for T-cell activation. The two chains form a stable heterodimer, a so-called dual chain CAR (dcCAR), and bind with high affinity and in a specific manner to their cognate antigen. By specific binding, the dcCAR activates engineered T cells for the release of pro-inflammatory cytokines and for target cell lysis. We provide evidence by three examples that the dcCAR format is universally applicable and thereby broadens the CAR cell therapy towards a larger variety of targets for which an scFv antibody is not available.
He, Xianzhi; Zhang, Lei; Liu, Pengchong; Liu, Li; Deng, Hui; Huang, Jinhai
2015-03-01
Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus have increasingly given rise to human health and food safety. Genetically engineered small molecular antibody is a useful tool in immuno-detection and treatment for clinical illness caused by SEs. In this study, we constructed the V(L)-V(H) tail-parallel genetically engineered antibody against SEs by using the repertoire of rearranged germ-line immunoglobulin variable region genes. Total RNA were extracted from six hybridoma cell lines that stably express anti-SEs antibodies. The variable region genes of light chain (V(L)) and heavy chain (V(H)) were cloned by reverse transcription PCR, and their classical murine antibody structure and functional V(D)J gene rearrangement were analyzed. To construct the eukaryotic V(H)-V(L) tail-parallel co-expression vectors based on the "5'-V(H)-ivs-IRES-V(L)-3'" mode, the ivs-IRES fragment and V(L) genes were spliced by two-step overlap extension PCR, and then, the recombined gene fragment and V(H) genes were inserted into the pcDNA3.1(+) expression vector sequentially. And then the constructed eukaryotic expression clones termed as p2C2HILO and p5C12HILO were transfected into baby hamster kidney 21 cell line, respectively. Two clonal cell lines stably expressing V(L)-V(H) tail-parallel antibodies against SEs were obtained, and the antibodies that expressed intracytoplasma were evaluated by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry. SEs can stimulate the expression of some chemokines and chemokine receptors in porcine IPEC-J2 cells; mRNA transcription level of four chemokines and chemokine receptors can be blocked by the recombinant SE antibody prepared in this study. Our results showed that it is possible to get functional V(L)-V(H) tail-parallel genetically engineered antibodies in same vector using eukaryotic expression system.
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens
Loureiro, Liliana R.; Carrascal, Mylène A.; Barbas, Ana; Ramalho, José S.; Novo, Carlos; Delannoy, Philippe; Videira, Paula A.
2015-01-01
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment. PMID:26270678
Xie, Jingjing; Zhao, Rongli; Gu, Songen; Dong, Haiyan; Wang, Jichuang; Lu, Yusheng; Sinko, Patrick J; Yu, Ting; Xie, Fangwei; Wang, Lie; Shao, Jingwei; Jia, Lee
2014-01-01
Dissemination of circulating tumor cells (CTCs) in blood and their hetero-adhesion to vascular endothelial bed of distant metastatic secondary organs are the critical steps to initiate cancer metastasis. The rarity of CTCs made their in vivo capture technically challenging. Current techniques by virtue of nanostructured scaffolds monovalently conjugated with a single antibody and/or drug seem less efficient and specific in capturing CTCs. Here, we report a novel platform developed to re-engineer nanoscale dendrimers for capturing CTCs in blood and interfering their adhesion to vascular endothelial bed to form micrometastatic foci. The nanoscale dendrimers were spatiotemporally accommodated with dual antibodies to target two surface biomarkers of colorectal CTCs. Physiochemical characterization, including spectra, fluorescence, electron microscope, dynamic light scattering, electrophoresis, and chromatography analyses, was conducted to demonstrate the successful conjugation of dual antibodies to dendrimer surface. The dual antibody conjugates were able to specifically recognize and bind CTCs, moderately down-regulate the activity of the captured CTCs by arresting them in S phase. The related adhesion assay displayed that the dual antibody conjugates interfered the hetero-adhesion of CTCs to fibronectin (Fn)-coated substrates and human umbilical vein endothelial cells (HUVECs). The dual antibody conjugates also showed the enhanced specificity and efficiency in vitro and in vivo in restraining CTCs in comparison with their single antibody counterparts. The present study showed a novel means to effectively prevent cancer metastatic initiation by binding, restraining CTCs and inhibiting their hetero-adhesion to blood vessels, not by traditional cytotoxic-killing of cancer cells.
Braid, Lorena R.; Davies, John E.; Nagata, Les P.
2016-01-01
Mesenchymal stromal cells (MSCs) are being exploited as gene delivery vectors for various disease and injury therapies. We provide proof-of-concept that engineered MSCs can provide a useful, effective platform for protection against infectious disease. Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne pathogen affecting humans and equines and can be used in bio-warfare. No licensed vaccine or antiviral agent currently exists to combat VEEV infection in humans. Direct antibody administration (passive immunity) is an effective, but short-lived, method of providing immediate protection against a pathogen. We compared the protective efficacy of human umbilical cord perivascular cells (HUCPVCs; a rich source of MSCs), engineered with a transgene encoding a humanized VEEV-neutralizing antibody (anti-VEEV), to the purified antibody. In athymic mice, the anti-VEEV antibody had a half-life of 3.7 days, limiting protection to 2 or 3 days after administration. In contrast, engineered HUCPVCs generated protective anti-VEEV serum titers for 21–38 days after a single intramuscular injection. At 109 days after transplantation, 10% of the mice still had circulating anti-VEEV antibody. The mice were protected against exposure to a lethal dose of VEEV by an intramuscular pretreatment injection with engineered HUCPVCs 24 hours or 10 days before exposure, demonstrating both rapid and prolonged immune protection. The present study is the first to describe engineered MSCs as gene delivery vehicles for passive immunity and supports their utility as antibody delivery vehicles for improved, single-dose prophylaxis against endemic and intentionally disseminated pathogens. Significance Direct injection of monoclonal antibodies (mAbs) is an important strategy to immediately protect the recipient from a pathogen. This strategy is critical during natural outbreaks or after the intentional release of bio-weapons. Vaccines require weeks to become effective, which is not practical for first responders immediately deployed to an infected region. However, mAb recipients often require booster shots to maintain protection, which is expensive and impractical once the first responders have been deployed. The present study has shown, for the first time, that mesenchymal stromal cells are effective gene delivery vehicles that can significantly improve mAb-mediated immune protection in a single, intramuscular dose of engineered cells. Such a cell-based delivery system can provide extended life-saving protection in the event of exposure to biological threats using a more practical, single-dose regimen. PMID:27334491
Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong
2016-03-07
Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.
Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells
Kang, Jeffrey C; Poovassery, Jayakumar S; Bansal, Pankaj; You, Sungyong; Manjarres, Isabel M; Ober, Raimund J; Ward, E Sally
2014-01-01
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert. PMID:24492289
Chen, D; Wu, T; Yuan, Y
1996-11-01
To investigate the existence of the non-species specific antibody in plasma of the employees working in an automobile engine testing workshop, and to use it as a scanning marker of various hazards, the heat-stress protein antigen method and western blot technique were used. This study showed that employees working in the automoblile engine testing workshop were affected by various hazards, such as noise, toxic chemicals (carbon monoxide, lead fume, benzene, and so on), and there existed non-species specific antibodies against protein 103,900 and 54,200 of rat liver in their plasma, which were postulated as the specific products produced by exposure to occupational hazards, such as noise, carbon monoxide, et al.
NASA Astrophysics Data System (ADS)
Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang
2014-05-01
Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.
Optimizing antibody expression: The nuts and bolts.
Ayyar, B Vijayalakshmi; Arora, Sushrut; Ravi, Shiva Shankar
2017-03-01
Antibodies are extensively utilized entities in biomedical research, and in the development of diagnostics and therapeutics. Many of these applications require high amounts of antibodies. However, meeting this ever-increasing demand of antibodies in the global market is one of the outstanding challenges. The need to maintain a balance between demand and supply of antibodies has led the researchers to discover better means and methods for optimizing their expression. These strategies aim to increase the volumetric productivity of the antibodies along with the reduction of associated manufacturing costs. Recent years have witnessed major advances in recombinant protein technology, owing to the introduction of novel cloning strategies, gene manipulation techniques, and an array of cell and vector engineering techniques, together with the progress in fermentation technologies. These innovations were also highly beneficial for antibody expression. Antibody expression depends upon the complex interplay of multiple factors that may require fine tuning at diverse levels to achieve maximum yields. However, each antibody is unique and requires individual consideration and customization for optimizing the associated expression parameters. This review provides a comprehensive overview of several state-of-the-art approaches, such as host selection, strain engineering, codon optimization, gene optimization, vector modification and process optimization that are deemed suitable for enhancing antibody expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Geoghegan, James C.; Fleming, Ryan; Damschroder, Melissa; Bishop, Steven M.; Sathish, Hasige A.; Esfandiary, Reza
2016-01-01
ABSTRACT Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies. PMID:27050875
Recombinant antibodies and their use in biosensors.
Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray
2012-04-01
Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.
Hill, A S; Giersch, T M; Loh, C S; Skerritt, J H
1999-10-01
A single-chain fragment (scFv) was engineered from a monoclonal antibody to high molecular weight glutenin subunits (HMW-GS), wheat flour polypeptides that play a major role in determining the mixing- and extension strength-related properties of dough and its subsequent baking performance. The scFv was expressed in a thioredoxin mutant Escherichia coli strain that allows disulfide bond formation in the cytoplasm and incorporated into a diagnostic test for wheat quality. Although the scFv lacks the more highly conserved antibody constant regions usually involved with immobilization, it was able to be directly immobilized to a polystyrene microwell solid phase without chemical or covalent modification of the protein or solid phase and utilized as a capture antibody in a double-antibody (two-site) immunoassay. In the sandwich assay, increasing HMW-GS concentrations produced increasing assay color, and highly significant correlations were obtained between optical densities obtained in the ELISA using the scFv and the content of large glutenin polymers in flours as well as measures of dough strength as measured by resistance to dough extension in rheological testing. The assay using the scFv was able to be carried out at lower flour sample extract dilutions than that required for a similar assay utilizing a monoclonal capture antibody. This research shows that engineered antibody fragments can be utilized to provide superior assay performance in two-site ELISAs over monoclonal antibodies and is the first application of an engineered antibody to the analysis of food processing quality.
Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment.
Iezzi, María Elena; Policastro, Lucía; Werbajh, Santiago; Podhajcer, Osvaldo; Canziani, Gabriela Alicia
2018-01-01
Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs), in particular those engineered from the variable heavy-chain fragment (VHH gene) found in Camelidae heavy-chain antibodies (or IgG2 and IgG3), are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR) fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition "modules" to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo . Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.
Antibodies Against Three Forms of Urokinase
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.; Atassi, M. Zouhair
2007-01-01
Antibodies that bind to preselected regions of the urokinase molecule have been developed. These antibodies can be used to measure small quantities of each of three molecular forms of urokinase that could be contained in microsamples or conditioned media harvested from cultures of mammalian cells. Previously available antibodies and assay techniques do not yield both clear distinctions among, and measurements of, all three forms. Urokinase is a zymogen that is synthesized in a single-chain form, called ScuPA, which is composed of 411 amino acid residues (see figure). ScuPA has very little enzyme activity, but it can be activated in two ways: (1) by cleavage of the peptide bond lysine 158/isoleucine 159 and the loss of lysine 158 to obtain the high molecular-weight (HMW) form of the enzyme or (2) by cleavage of the bond lysine 135/lysine 136 to obtain the low-molecular-weight (LMW) form of the enzyme. The antibodies in question were produced in mice and rabbits by use of peptides as immunogens. The peptides were selected to obtain antibodies that bind to regions of ScuPA that include the lysine 158/isoleucine 159 and the lysine 135/lysine 136 bonds. The antibodies include monoclonal and polyclonal ones that yield indications as to whether either of these bonds is intact. The polyclonal antibodies include ones that preferentially bind to the HMW or LMW forms of the urokinase molecule. The monoclonal antibodies include ones that discriminate between the ScuPA and the HMW form. A combination of these molecular-specific antibodies will enable simultaneous assays of the ScuPA, HMW, and LMW forms in the same specimen of culture medium.
Phage display-derived human antibodies in clinical development and therapy
Frenzel, André; Schirrmann, Thomas; Hust, Michael
2016-01-01
ABSTRACT Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years. PMID:27416017
Phage display-derived human antibodies in clinical development and therapy.
Frenzel, André; Schirrmann, Thomas; Hust, Michael
2016-10-01
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of "fully" human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.
Bezabeh, Binyam; Fleming, Ryan; Fazenbaker, Christine; Zhong, Haihong; Coffman, Karen; Yu, Xiang-Qing; Leow, Ching Ching; Gibson, Nerea; Wilson, Susan; Stover, C Kendall; Wu, Herren; Gao, Changshou; Dimasi, Nazzareno
By simultaneous binding two disease mediators, bispecific antibodies offer the opportunity to broaden the utility of antibody-based therapies. Herein, we describe the design and characterization of Bs4Ab, an innovative and generic bispecific tetravalent antibody platform. The Bs4Ab format comprises a full-length IgG1 monoclonal antibody with a scFv inserted into the hinge domain. The Bs4Ab design demonstrates robust manufacturability as evidenced by MEDI3902, which is currently in clinical development. To further demonstrate the applicability of the Bs4Ab technology, we describe the molecular engineering, biochemical, biophysical, and in vivo characterization of a bispecific tetravalent Bs4Ab that, by simultaneously binding vascular endothelial growth factor and angiopoietin-2, inhibits their function. We also demonstrate that the Bs4Ab platform allows Fc-engineering similar to that achieved with IgG1 antibodies, such as mutations to extend half-life or modulate effector functions.
Novel immunotherapies for hematological malignancies
Nelson, Michelle H.; Paulos, Chrystal M.
2014-01-01
Summary The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise the state of the art in immunotherapy with a focus on strategies that exploit the patient’s immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematological malignancies, including (i) conventional monoclonal therapies like rituximab, (ii) engineered monoclonal antibodies called bispecific T cell engagers (BiTEs), (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4 and IDO), and (iv) adoptive cell transfer (ACT) therapy with T cells engineered to express chimeric antigen receptors (CARs) or T-cell receptors (TCRs). We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients. PMID:25510273
Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.
2002-01-17
This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use ofmore » such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.« less
Boado, Ruben J; Zhang, Yufeng; Zhang, Yun; Xia, Chun-Fang; Pardridge, William M
2007-01-01
Delivery of monoclonal antibody therapeutics across the blood-brain barrier is an obstacle to the diagnosis or therapy of CNS disease with antibody drugs. The immune therapy of Alzheimer's disease attempts to disaggregate the amyloid plaque of Alzheimer's disease with an anti-Abeta monoclonal antibody. The present work is based on a three-step model of immune therapy of Alzheimer's disease: (1) influx of the anti-Abeta monoclonal antibody across the blood-brain barrier in the blood to brain direction, (2) binding and disaggregation of Abeta fibrils in brain, and (3) efflux of the anti-Abeta monoclonal antibody across the blood-brain barrier in the brain to blood direction. This is accomplished with the genetic engineering of a trifunctional fusion antibody that binds (1) the human insulin receptor, which mediates the influx from blood to brain across the blood-brain barrier, (2) the Abeta fibril to disaggregate amyloid plaque, and (3) the Fc receptor, which mediates the efflux from brain to blood across the blood-brain barrier. This fusion protein is a new antibody-based therapeutic for Alzheimer's disease that is specifically engineered to cross the human blood-brain barrier in both directions.
Sioud, Mouldy; Westby, Phuong; Vasovic, Vlada; Fløisand, Yngvar; Peng, Qian
2018-04-16
mAbs have emerged as a promising strategy for the treatment of cancer. However, in several malignancies, no effective antitumor mAbs are yet available. Identifying therapeutic mAbs that recognize common tumor antigens could render the treatment widely applicable. Here, a human single-chain variable fragment (scFv) antibody library was sequentially affinity selected against a panel of human cancer cell lines and an antibody fragment (named MS5) that bound to solid and blood cancer cells was identified. The MS5 scFv was fused to the human IgG1 Fc domain to generate an antibody (MS5-Fc fusion) that induced antibody-dependent cellular cytotoxicity and phagocytosis of cancer cells by macrophages. In addition, the MS5-Fc antibody bound to primary leukemia cells and induced antibody-dependent cellular cytotoxicity. In the majority of analyzed cancer cells, the MS5-Fc antibody induced cell surface redistribution of the receptor complexes, but not internalization, thus maximizing the accessibility of the IgG1 Fc domain to immune effector cells. In vitro stability studies showed that the MS5-Fc antibody was stable after 6 d of incubation in human serum, retaining ∼60% of its initial intact form. After intravenous injections, the antibody localized into tumor tissues and inhibited the growth of 3 different human tumor xenografts (breast, lymphoma, and leukemia). These antitumor effects were associated with tumor infiltration by macrophages and NK cells. In the Ramos B-cell lymphoma xenograft model, the MS5-Fc antibody exhibited a comparable antitumor effect as rituximab, a chimeric anti-CD20 IgG1 mAb. These results indicate that human antibodies with pan-cancer abilities can be generated from phage display libraries, and that the engineered MS5-Fc antibody could be an attractive agent for further clinical investigation.-Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., Peng, Q. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies.
Therapeutic Recombinant Monoclonal Antibodies
ERIC Educational Resources Information Center
Bakhtiar, Ray
2012-01-01
During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…
Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay
Sorsa-Leslie, Tarja; Mason, Helen D; Harris, William J; Fowler, Paul A
2005-01-01
Background We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF). Methods A synthetic single-chain antibody (Tomlinson J) phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs) forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4–7). The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Results Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. Conclusion This study demonstrates that the combination of bioassay and phage display technologies is a powerful tool in the study of uncharacterised proteins that defy conventional approaches. In addition, we conclude that these data support suggestions that GnSAF may be structurally related to serum albumin or very tightly bound to serum albumin. PMID:16185358
Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay.
Sorsa-Leslie, Tarja; Mason, Helen D; Harris, William J; Fowler, Paul A
2005-09-26
We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF). A synthetic single-chain antibody (Tomlinson J) phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs) forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4-7). The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. This study demonstrates that the combination of bioassay and phage display technologies is a powerful tool in the study of uncharacterised proteins that defy conventional approaches. In addition, we conclude that these data support suggestions that GnSAF may be structurally related to serum albumin or very tightly bound to serum albumin.
A highly sensitive and selective diagnostic assay based on virus nanoparticles
NASA Astrophysics Data System (ADS)
Park, Jin-Seung; Cho, Moon Kyu; Lee, Eun Jung; Ahn, Keum-Young; Lee, Kyung Eun; Jung, Jae Hun; Cho, Yunjung; Han, Sung-Sik; Kim, Young Keun; Lee, Jeewon
2009-04-01
Early detection of the protein marker troponin I in patients with a higher risk of acute myocardial infarction can reduce the risk of death from heart attacks. Most troponin assays are currently based on the conventional enzyme linked immunosorbent assay and have detection limits in the nano- and picomolar range. Here, we show that by combining viral nanoparticles, which are engineered to have dual affinity for troponin antibodies and nickel, with three-dimensional nanostructures including nickel nanohairs, we can detect troponin levels in human serum samples that are six to seven orders of magnitude lower than those detectable using conventional enzyme linked immunosorbent assays. The viral nanoparticle helps to orient the antibodies for maximum capture of the troponin markers. High densities of antibodies on the surfaces of the nanoparticles and nanohairs lead to greater binding of the troponin markers, which significantly enhances detection sensitivities. The nickel nanohairs are re-useable and can reproducibly differentiate healthy serum from unhealthy ones. We expect other viral nanoparticles to form similar highly sensitive diagnostic assays for a variety of other protein markers.
Saxena, Abhishek; Wu, Donghui
2016-01-01
Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downstream signaling pathways that may lead to the inhibition of tumor growth, induction of tumor apoptosis, and differentiation. The Fc region can further improve mAbs’ efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cell-mediated phagocytosis. Moreover, Fc is the region interacting with the neonatal Fc receptor in a pH-dependent manner that can slow down IgG’s degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anticancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce the cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering-based mAbs under clinical trials. PMID:28018347
Orcutt, Kelly Davis; Slusarczyk, Adrian L; Cieslewicz, Maryelise; Ruiz-Yi, Benjamin; Bhushan, Kumar R; Frangioni, John V; Wittrup, K Dane
2014-01-01
Introduction In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to DOTA chelates for use in PRIT applications. Methods We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), reformatted as a single chain variable fragment (scFv). Results Modeling predicts that for high antigen density and saturating bsAb dose, a hapten binding affinity of 100 picomolar (pM) is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nanomolar (nM) to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2 ± 1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen (CEA), pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions We have engineered a versatile, high-affinity DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals. PMID:21315278
Schewe, Denis M; Alsadeq, Ameera; Sattler, Cornelia; Lenk, Lennart; Vogiatzi, Fotini; Cario, Gunnar; Vieth, Simon; Valerius, Thomas; Rosskopf, Sophia; Meyersieck, Fabian; Alten, Julia; Schrappe, Martin; Gramatzki, Martin; Peipp, Matthias; Kellner, Christian
2017-09-28
Antibody therapy constitutes a major advance in the treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). To evaluate the efficacy and the mechanisms of action of CD19 monoclonal antibody therapy in pediatric BCP-ALL, we tested an Fc-engineered CD19 antibody carrying the S239D/I332E mutation for improved effector cell recruitment (CD19-DE). Patient-derived xenografts (PDX) of pediatric mixed-lineage leukemia gene ( MLL )-rearranged ALL were established in NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ (NSG) mice. Antibody CD19-DE was efficient in prolonging the survival of NSG mice in a minimal residual disease (MRD) model. The majority of surviving mice remained polymerase chain reaction (PCR)-MRD negative after treatment. When antibody therapy was initiated in overt leukemia, antibody CD19-DE was still efficient in prolonging survival of xenografted mice in comparison with nontreated control animals, but the effects were less pronounced than in the MRD setting. Importantly, the combination of antibody CD19-DE and cytoreduction by chemotherapy (dexamethasone, vincristine, PEG-asparaginase) resulted in significantly improved survival rates in xenografted mice. Antibody CD19-DE treatment was also efficient in a randomized phase 2-like PDX trial using 13 MLL -rearranged BCP-ALL samples. Macrophage depletion by liposomal clodronate resulted in a reversal of the beneficial effects of CD19-DE, suggesting an important role for macrophages as effector cells. In support of this finding, CD19-DE was found to enhance phagocytosis of patient-derived ALL blasts by human macrophages in vitro. Thus, Fc-engineered CD19 antibodies may represent a promising treatment option for infants and children with MLL -rearranged BCP-ALL who have a poor outcome when treated with chemotherapy only. © 2017 by The American Society of Hematology.
Cytosolic delivery: Just passing through
NASA Astrophysics Data System (ADS)
Sánchez-Navarro, Macarena; Teixidó, Meritxell; Giralt, Ernest
2017-08-01
Intracellular protein delivery has been a major challenge in the field of cell biology for decades. Engineering such delivery is a key step in the development of protein- and antibody-based therapeutics. Now, two different approaches that enable the delivery of antibodies and antibody fragments into the cytosol have been developed.
Larrick, James W; Parren, Paul W H I; Huston, James S; Plückthun, Andreas; Bradbury, Andrew; Tomlinson, Ian M; Chester, Kerry A; Burton, Dennis R; Adams, Gregory P; Weiner, Louis M; Scott, Jamie K; Alfenito, Mark R; Veldman, Trudi; Reichert, Janice M
2014-01-01
The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7-11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years.
Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment
Iezzi, María Elena; Policastro, Lucía; Werbajh, Santiago; Podhajcer, Osvaldo; Canziani, Gabriela Alicia
2018-01-01
Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs), in particular those engineered from the variable heavy-chain fragment (VHH gene) found in Camelidae heavy-chain antibodies (or IgG2 and IgG3), are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR) fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads. PMID:29520274
Sadowsky, Jack D; Pillow, Thomas H; Chen, Jinhua; Fan, Fang; He, Changrong; Wang, Yanli; Yan, Gang; Yao, Hui; Xu, Zijin; Martin, Shanique; Zhang, Donglu; Chu, Phillip; Dela Cruz-Chuh, Josefa; O'Donohue, Aimee; Li, Guangmin; Del Rosario, Geoffrey; He, Jintang; Liu, Luna; Ng, Carl; Su, Dian; Lewis Phillips, Gail D; Kozak, Katherine R; Yu, Shang-Fan; Xu, Keyang; Leipold, Douglas; Wai, John
2017-08-16
Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.
CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer
NASA Astrophysics Data System (ADS)
Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming
2015-03-01
Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.
2015-01-01
Antibody–drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering. PMID:25494884
Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław
2013-01-01
Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.
NASA Astrophysics Data System (ADS)
Lerner, Mitchell; Dailey, Jennifer; Goldsmith, Brett; Robinson, Matthew; Johnson, A. T. Charlie
2011-03-01
We have developed a novel detection method for osteopontin (OPN) by attaching an engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube transistor. Osteopontin is a potential new biomarker for prostate cancer; its presence in humans is already associated with several forms of cancer, arthritis, osteoporosis and stress. Prostate cancer is the most commonly diagnosed cancer and second leading cause of cancer deaths among American men and as such represents a major public health issue. Detection of early-stage cancer often results in successful treatment, with long term disease-free survival in 60-90% of patients. Electronic transport measurements are used to detect the presence of OPN in solution at clinically relevant concentrations.
Bok, Sangho; Korampally, Venumadhav; Darr, Charles M; Folk, William R; Polo-Parada, Luis; Gangopadhyay, Keshab; Gangopadhyay, Shubhra
2013-03-15
We report a simple, robust fluorescence biosensor for the ultra-sensitive detection of Clostridium botulinum Neurotoxin Type A (BoNT/A) in complex, real-world media. High intrinsic signal amplification was achieved through the combined use of ultra-bright, photostable dye-doped nanoparticle (DOSNP) tags and high surface area nanoporous organosilicate (NPO) thin films. DOSNP with 22 nm diameter were synthesized with more than 200 times equivalent free dye fluorescence and conjugated to antibodies with average degree of substitution of 90 dyes per antibody, representing an order of magnitude increase compared with conventional dye-labeled antibodies. The NPO films were engineered to form constructive interference at the surface where fluorophores were located. In addition, DOSNP-labeled antibodies with NPO films increased surface roughness causing diffuse scattering resulting in 24% more scattering intensity than dye-labeled antibody with NPO films. These substrates were used for immobilization of capture antibodies against BoNT/A, which was further quantified by DOSNP-labeled signal antibodies. The combination of optical effects enhanced the fluorescence and, therefore, the signal-to-noise ratio significantly. BoNT/A was detected in PBS buffer down to 21.3 fg mL(-1) in 4 h. The assay was then extended to several complex media and the four-hour detection limit was found to be 145.8 fg mL(-1) in orange juice and 164.2 fg mL(-1) in tap water, respectively, demonstrating at least two orders of magnitude improvement comparing to the reported detection limit of other enzyme-linked immunosorbent assays (ELISA). This assay, therefore, demonstrates a novel method for rapid, ultra-low level detection of not only BoNT/A, but other analytes as well. Copyright © 2012 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...
An improved yeast transformation method for the generation of very large human antibody libraries.
Benatuil, Lorenzo; Perez, Jennifer M; Belk, Jonathan; Hsieh, Chung-Ming
2010-04-01
Antibody library selection by yeast display technology is an efficient and highly sensitive method to identify binders to target antigens. This powerful selection tool, however, is often hampered by the typically modest size of yeast libraries (approximately 10(7)) due to the limited yeast transformation efficiency, and the full potential of the yeast display technology for antibody discovery and engineering can only be realized if it can be coupled with a mean to generate very large yeast libraries. We describe here a yeast transformation method by electroporation that allows for the efficient generation of large antibody libraries up to 10(10) in size. Multiple components and conditions including CaCl(2), MgCl(2), sucrose, sorbitol, lithium acetate, dithiothreitol, electroporation voltage, DNA input and cell volume have been tested to identify the best combination. By applying this developed protocol, we have constructed a 1.4 x 10(10) human spleen antibody library essentially in 1 day with a transformation efficiency of 1-1.5 x 10(8) transformants/microg vector DNA. Taken together, we have developed a highly efficient yeast transformation method that enables the generation of very large and productive human antibody libraries for antibody discovery, and we are now routinely making 10(9) libraries in a day for antibody engineering purposes.
Huber, Michael; Le, Khoa M.; Doores, Katie J.; Fulton, Zara; Stanfield, Robyn L.; Wilson, Ian A.; Burton, Dennis R.
2010-01-01
2G12 is a broadly neutralizing anti-HIV-1 monoclonal human IgG1 antibody reactive with a high-mannose glycan cluster on the surface of glycoprotein gp120. A key feature of this very highly mutated antibody is domain exchange of the heavy-chain variable region (VH) with the VH of the adjacent Fab of the same immunoglobulin, which assembles a multivalent binding interface composed of two primary binding sites in close proximity. A non-germ line-encoded proline in the elbow between VH and CH1 and an extensive network of hydrophobic interactions in the VH/VH′ interface have been proposed to be crucial for domain exchange. To investigate the origins of domain exchange, a germ line version of 2G12 that behaves as a conventional antibody was engineered. Substitution of 5 to 7 residues for those of the wild type produced a significant fraction of domain-exchanged molecules, with no evidence of equilibrium between domain-exchanged and conventional forms. Two substitutions not previously implicated, AH14 and EH75, are the most crucial for domain exchange, together with IH19 at the VH/VH′ interface and PH113 in the elbow region. Structural modeling gave clues as to why these residues are essential for domain exchange. The demonstration that domain exchange can be initiated by a small number of substitutions in a germ line antibody suggests that the evolution of a domain-exchanged antibody response in vivo may be more readily achieved than considered to date. PMID:20702640
[Advances in the study of natural small molecular antibody].
Zhu, Lei; Zhang, Da-peng
2012-10-01
Small molecule antibodies are naturally existed and well functioned but not structurally related to the conventional antibodies. They are only composed of heavy protein chains or light chains, much smaller than common antibody. The first small molecule antibody, called Nanobody was engineered from heavy-chain antibodies found in camelids. Cartilaginous fishes also have heavy-chain antibodies (IgNAR, "immunoglobulin new antigen receptor"), from which single-domain antibodies called Vnar fragments can be obtained. In addition, free light chain (FLC) antibodies in human bodies are being developed as therapeutic and diagnostic agents. Comparing to intact antibodies, common advantages of small molecule antibodies are with better solubility, tissue penetration, stability towards heat and enzymes, and comparatively low production costs. This article reviews the structural characteristics and mechanism of action of the Nanobody, IgNAR and FLC.
Targeting CD157 in AML using a novel, Fc-engineered antibody construct
Krupka, Christina; Lichtenegger, Felix S.; Köhnke, Thomas; Bögeholz, Jan; Bücklein, Veit; Roiss, Michael; Altmann, Torben; Do, To Uyen; Dusek, Rachel; Wilson, Keith; Bisht, Arnima; Terrett, Jon; Aud, Dee; Pombo-Villar, Esteban; Rohlff, Christian; Hiddemann, Wolfgang; Subklewe, Marion
2017-01-01
Antibody-based immunotherapy represents a promising strategy to eliminate chemorefractory leukemic cells in acute myeloid leukemia (AML). In this study, we evaluated a novel Fc-engineered antibody against CD157 (MEN1112) for its suitability as immunotherapy in AML. CD157 was expressed in 97% of primary AML patient samples. A significant, albeit lower expression level of CD157 was observed within the compartment of leukemia-initiating cells, which are supposed to be the major source of relapse. In healthy donor bone marrow, CD157 was expressed on CD34+ cells. In ex vivo assays, MEN1112 triggered natural killer (NK) cell-mediated cytotoxicity against AML cell lines and primary AML cells. Compared to its parental analogue, the Fc-engineered antibody exhibited higher antibody dependent cellular cytotoxicity responses. Using NK cells from AML patients, we observed heterogeneous MEN1112-mediated cytotoxicity against AML cells, most likely due to well-documented defects in AML-NK cells and corresponding inter-patient variations in NK cell function. Cytotoxicity could not be correlated to the time after completion of chemotherapy. In summary, we could demonstrate that CD157 is strongly expressed in AML. MEN1112 is a promising antibody construct that showed high cytotoxicity against AML cells and warrants further clinical testing. Due to variability in NK-cell function of AML patients, the time of application during the course of the disease as well as combinatorial strategies might influence treatment results. PMID:28415689
Leferink, Anne M; Reis, Diogo Santos; van Blitterswijk, Clemens A; Moroni, Lorenzo
2018-04-11
When tissue engineering strategies rely on the combination of three-dimensional (3D) polymeric or ceramic scaffolds with cells to culture implantable tissue constructs in vitro, it is desirable to monitor tissue growth and cell fate to be able to more rationally predict the quality and success of the construct upon implantation. Such a 3D construct is often referred to as a 'black-box' since the properties of the scaffolds material limit the applicability of most imaging modalities to assess important construct parameters. These parameters include the number of cells, the amount and type of tissue formed and the distribution of cells and tissue throughout the construct. Immunolabeling enables the spatial and temporal identification of multiple tissue types within one scaffold without the need to sacrifice the construct. In this report, we concisely review the applicability of antibodies (Abs) and their conjugation chemistries in tissue engineered constructs. With some preliminary experiments, we show an efficient conjugation strategy to couple extracellular matrix Abs to fluorophores. The conjugated probes proved to be effective in determining the presence of collagen type I and type II on electrospun and additive manufactured 3D scaffolds seeded with adult human bone marrow derived mesenchymal stromal cells. The conjugation chemistry applied in our proof of concept study is expected to be applicable in the coupling of any other fluorophore or particle to the Abs. This could ultimately lead to a library of probes to permit high-contrast imaging by several imaging modalities.
Antibodies against viruses: passive and active immunization
Law, Mansun; Hangartner, Lars
2008-01-01
Summary of recent advances Antibodies, through passive or active immunization, play a central role in prophylaxis against many infectious agents. While neutralization is a primary function of antibodies in protection against most viruses, the relative contribution of Fc-dependent and complement-dependent antiviral activities of antibodies was found to vary between different viruses in recent studies. The multiple hit model explains how antibodies neutralize viruses and recent data on the stoichiometry of antibody neutralization suggest that the organization of viral surface proteins on viruses, in addition to virus size, influences the level of antibody occupancy required for neutralization. These new findings will improve our strategies in therapeutic antibody engineering and rational vaccine design. PMID:18577455
Ruwona, Tinashe B.; Giang, Erick; Nieusma, Travis
2014-01-01
ABSTRACT The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE Hepatitis C virus infects 2 to 3% of the world's population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design. PMID:24965471
Anti-Idiotypic Antibodies in Patients with Different Clinical Forms of Paracoccidioidomycosis
Souza, A. R.; Gesztesi, J.-L.; del Negro, G. M. B.; Benard, G.; Sato, J.; Santos, M. V. B.; Abrahão, T. B.; Lopes, J. D.
2000-01-01
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America. Patients with PCM show a wide spectrum of clinical and pathological manifestations depending on both host and pathogen factors. Two clinical forms of the disease are recognized: the acute or juvenile form and the chronic or adult form. The major antigenic component of the parasite is a glycoprotein of 43 kDa (gp43). All patient sera present antibodies against gp43 (anti-gp43) and, as demonstrated before by our group, spontaneous anti-idiotypic (anti-Id) antibodies (Ab2) can be detected in patient sera with high titers of anti-gp43. Since it has been postulated that anti-Id antibodies may have a modulating function, we decided to purify and characterize anti-Id antibodies in this system. The possible correlation of Ab2 titers with different clinical forms of disease was also verified. Results showed that purified human anti-Id antibodies (human Ab2) recognized specifically the idiotype of some murine monoclonal anti-gp43 (17c and 3e) but not others (40.d7, 27a, and 8a). Spontaneous anti-Id antibodies were found in all clinical forms of disease. The majority of patients (88%, n = 8) with the acute form of PCM had high titers of Ab2. However, among patients with the multifocal chronic form of the disease, only 29% (n = 14) had high titers of Ab2; 70% (n = 10) of patients with the unifocal chronic form had low titers of Ab2. A correlation between Ab2 titers and anti-gp43 titers was observed before and during antimycotic treatment. Our results suggest that titers of anti-Id antibodies correlate with the severity of PCM in humans. PMID:10702489
Peterson, Eric C; Gentry, W Brooks; Owens, S Michael
2014-01-01
Monoclonal antibody-based medications designed to bind (+)-methamphetamine (METH) with high affinity are among the newest approaches to the treatment of METH abuse and the associated medical complications. The potential clinical indications for these medications include treatment of overdose, reduction of drug dependence, and protection of vulnerable populations from METH-related complications. Research designed to discover and conduct preclinical and clinical testing of these antibodies suggests a scientific vision for how intact monoclonal antibody (mAb) (singular and plural) or small antigen-binding fragments of mAb could be engineered to optimize the proteins for specific therapeutic applications. In this review, we discuss keys to success in this development process including choosing predictors of specificity, efficacy, duration of action, and safety of the medications in disease models of acute and chronic drug abuse. We consider important aspects of METH-like hapten design and how hapten structural features influence specificity and affinity, with an example of a high-resolution X-ray crystal structure of a high-affinity antibody to demonstrate this structural relationship. Additionally, several prototype anti-METH mAb forms such as antigen-binding fragments and single-chain variable fragments are under development. Unique, customizable aspects of these fragments are presented with specific possible clinical indications. Finally, we discuss clinical trial progress of the first in kind anti-METH mAb, for which METH is the disease target instead of vulnerable central nervous system networks of receptors, binding sites, and neuronal connections. © 2014 Elsevier Inc. All rights reserved.
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-11-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-01-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis. Images PMID:1438192
Adoptive cell therapy in multiple Myeloma.
Vallet, Sonia; Pecherstorfer, Martin; Podar, Klaus
2017-12-01
Recent breakthrough advances in Multiple Myeloma (MM) immunotherapy have been achieved with the approval of the first two monoclonal antibodies, elotuzumab and daratumumab. Adoptive cell therapy (ACT) represents yet another, maybe the most powerful modality of immunotherapy, in which allogeneic or autologous effector cells are expanded and activated ex vivo followed by their re-infusion back into patients. Infused effector cells belong to two categories: naturally occurring, non-engineered cells (donor lymphocyte infusion, myeloma infiltrating lymphocytes, deltagamma T cells) or genetically- engineered antigen-specific cells (chimeric antigen receptor T or NK cells, TCR-engineered cells). Areas covered: This review article summarizes our up-to-date knowledge on ACT in MM, its promises, and upcoming strategies to both overcome its toxicity and to integrate it into future treatment paradigms. Expert opinion: Early results of clinical studies using CAR T cells or TCR- engineered T cells in relapsed and refractory MM are particularly exciting, indicating the potential of long-term disease control or even cure. Despite several caveats including toxicity, costs and restricted availability in particular, these forms of immunotherapy are likely to once more revolutionize MM therapy.
Monoclonal antibody form and function: manufacturing the right antibodies for treating drug abuse.
Peterson, Eric; Owens, S Michael; Henry, Ralph L
2006-05-26
Drug abuse continues to be a major national and worldwide problem, and effective treatment strategies are badly needed. Antibodies are promising therapies for the treatment of medical problems caused by drug abuse, with several candidates in preclinical and early clinical trials. Monoclonal antibodies can be designed that have customized affinity and specificity against drugs of abuse, and because antibodies can be designed in various forms, in vivo pharmacokinetic characteristics can be tailored to suit specific clinical applications (eg, long-acting for relapse prevention, or short-acting for overdose). Passive immunization with antibodies against drugs of abuse has several advantages over active immunization, but because large doses of monoclonal antibodies may be needed for each patient, efficient antibody production technology is essential. In this minireview we discuss some of the antibody forms that may be effective clinical treatments for drug abuse, as well as several current and emerging production systems that could bridge the gap from discovery to patient use.
DISTINCT ANTIBODY SPECIES: STRUCTURAL DIFFERENCES CREATING THERAPEUTIC OPPORTUNITIES
Muyldermans, Serge; Smider, Vaughn V.
2016-01-01
Antibodies have been a remarkably successful class of molecules for binding a large number of antigens in therapeutic, diagnostic, and research applications. Typical antibodies derived from mouse or human sources use the surface formed by complementarity determining regions (CDRs) on the variable regions of the heavy chain/light chain heterodimer, which typically forms a relatively flat binding surface. Alternative species, particularly camelids and bovines, provide a unique paradigm for antigen recognition through novel domains which form the antigen binding paratope. For camelids, heavy chain antibodies bind antigen with only a single heavy chain variable region, in the absence of light chains. In bovines, ultralong CDR-H3 regions form an independently folding minidomain, which protrudes from the surface of the antibody and is diverse in both its sequence and disulfide patterns. The atypical paratopes of camelids and bovines potentially provide the ability to interact with different epitopes, particularly recessed or concave surfaces, compared to traditional antibodies. PMID:26922135
Feng, Gai-feng; Wang, Jun-yang; Jin, Hui; Wang, Wei-xi; Qian, Yi-hua; Yang, Wei-na; Wang, Quan-ying; Yang, Guang-xiao
2011-11-01
To construct the recombinant prokaryotic expression plasmid pET/c-ABCSP-Aβ(15-c);, and evaluate the immunogenicity of the fusion protein expressed in E.coli. The gene fragment HBc88-144 was amplified by PCR and subcloned to pUC19. The APP beta cleavage site peptide(ABCSP) and Aβ(1-15); gene(ABCSP-Aβ(15);) was amplified by PCR and inserted downstream of HBc1-71 in pGEMEX/c1-71. After restriction enzyme digestion, c1-17-ABCSP-Aβ(15); were connected with HBc88-144, yielding the recombinant gene c-ABCSP-Aβ(15-c);. c-ABCSP-Aβ(15-c); gene was subcloned into pET-28a(+).The fusion protein expressed in transformed E.coli BL21 was induced with IPTG and analyzed by SDS-PAGE. The virus-like particles (VLP) formed by fusion protein was observed with Transmission Electron Microscope (TEM). 4 Kunming (KM) mice received intraperitoneal injection (i.p) of fusion protein VLP. The antibody was detected by indirect ELISA. The recombinant gene was confirmed by restriction enzyme digestion and DNA sequencing. After IPTG induction, fusion protein was expressed and mainly existed in the sediment of the bacterial lysate. The expression level was 40% of all the proteins in the sediment. The fusion protein could form VLP. After 5 times of immunization, the titer of anti-ABCSP and anti-Aβantibody in sera of KM mice reached up to 1:5 000 and 1:10 000 respectively, while the anti-HBc antibody was undetectable. Recombinant c-ABCSP-Aβ(15-c); gene can be expressed in E.coli. The expressed protein could form VLP and has a strong immunogenicity. This study lays the foundation for the study of AD genetic engineering vaccine.
Yamaguchi, Atsushi; Matsuda, Takayoshi; Ohtake, Kazumasa; Yanagisawa, Tatsuo; Yokoyama, Shigeyuki; Fujiwara, Yoshihisa; Watanabe, Takayoshi; Hohsaka, Takahiro; Sakamoto, Kensaku
2016-01-20
Z-Lysine (ZLys) is a lysine derivative with a benzyloxycarbonyl group linked to the ε-nitrogen. It has been genetically encoded with the UAG stop codon, using the pair of an engineered variant of pyrrolysyl-tRNA synthetase (PylRS) and tRNA(Pyl). In the present study, we designed a novel Z-lysine derivative (AmAzZLys), which is doubly functionalized with amino and azido substituents at the meta positions of the benzyl moiety, and demonstrated its applicability for creating protein conjugates. AmAzZLys was incorporated into proteins in Escherichia coli, by using the ZLys-specific PylRS variant. AmAzZLys was then site-specifically incorporated into a camelid single-domain antibody specific to the epidermal growth factor receptor (EGFR). A one-pot reaction demonstrated that the phenyl amine and azide were efficiently linked to the 5 kDa polyethylene glycol and a fluorescent probe, respectively, through specific bio-orthogonal chemistry. The antibody was then tested for the ability to form a photo-cross-link between its phenylazide moiety and the antigen, while the amino group on the same ring was used for chemical labeling. When incorporated at a selected position in the antibody and exposed to 365 nm light, AmAzZLys formed a covalent bond with the EGFR ectodomain, with the phenylamine moiety labeled fluorescently prior to the reaction. The present results illuminated the versatility of the ZLys scaffold, which can accommodate multiple reactive groups useful for protein conjugation.
Moi, Meng Ling; Ami, Yasushi; Shirai, Kenji; Lim, Chang-Kweng; Suzaki, Yuriko; Saito, Yuka; Kitaura, Kazutaka; Saijo, Masayuki; Suzuki, Ryuji; Kurane, Ichiro; Takasaki, Tomohiko
2015-02-01
Infection with a dengue virus (DENV) serotype induces cross-reactive, weakly neutralizing antibodies to different dengue serotypes. It has been postulated that cross-reactive antibodies form a virus-antibody immune complex and enhance DENV infection of Fc gamma receptor (FcγR)-bearing cells. We determined whether infectious DENV-antibody immune complex is formed in vivo in marmosets after passive transfer of DENV-specific monoclonal antibody (mAb) and DENV inoculation and whether infectious DENV-antibody immune complex is detectable using FcγR-expressing cells. Marmosets showed that DENV-antibody immune complex was exclusively infectious to FcγR-expressing cells on days 2, 4, and 7 after passive transfer of each of the mAbs (mAb 4G2 and mAb 6B6C) and DENV inoculation. Although DENV-antibody immune complex was detected, contribution of the passively transferred antibody to overall viremia levels was limited in this study. The results indicate that DENV cross-reactive antibodies form DENV-antibody immune complex in vivo, which is infectious to FcγR-bearing cells but not FcγR-negative cells. © The American Society of Tropical Medicine and Hygiene.
Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin-Xu; School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE 68583; Mellon, Michael
Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene frommore » Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture.« less
Green, Larry L
2014-03-01
Transgenic mice have yielded seven of the ten currently-approved human antibody drugs, making them the most successful platform for the discovery of fully human antibody therapeutics. The use of the in vivo immune system helps drive this success by taking advantage of the natural selection process that produces antibodies with desirable characteristics. Appropriately genetically-engineered mice act as robust engines for the generation of diverse repertoires of affinity- matured fully human variable regions with intrinsic properties necessary for successful antibody drug development including high potency, specificity, manufacturability, solubility and low risk of immunogenicity. A broad range of mAb drug targets are addressable in these mice, comprising both secreted and transmembrane targets, including membrane multi-spanning targets, as well as human target antigens that share high sequence identity with their mouse orthologue. Transgenic mice can routinely yield antibodies with sub-nanomolar binding affinity for their antigen, with lead candidate mAbs frequently possessing affinities for binding to their target of less than 100 picomolar, without requiring any ex vivo affinity optimization. While the originator transgenic mice platforms are no longer broadly available, a new generation of transgenic platforms is in development for discovery of the next wave of human therapeutic antibodies.
Leung, Shui-On; Gao, Kai; Wang, Guang Yu; Cheung, Benny Ka-Wa; Lee, Kwan-Yeung; Zhao, Qi; Cheung, Wing-Tai; Wang, Jun Zhi
2015-01-01
SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.
Zhang, Fan; Yang, Junlan; Li, Huafei; Liu, Moyan; Zhang, Jie; Zhao, Lichao; Wang, Lingxiong; LingHu, RuiXia; Feng, Fan; Gao, Xudong; Dong, Biqin; Liu, Xiaohan; Zi, Jian; Zhang, Weijing; Hu, Yi; Pan, Jingkun; Tian, Lei; Hu, Yazuo; Han, Zhitao; Zhang, Honghong; Wang, Xiaoning; Zhao, Lei
2016-01-01
ABSTRACT Despite the success of CD20 antibody rituximab in immunotherapy, acquired resistance is one of the prime obstacles for the successful treatment of B-cell malignancies. There is an urgent need to intensify efforts against resistance in cancer treatment. Growing evidence indicated that lysosomes may form an “Achilles heel” for cancer cells by sensitizing them to death pathways. Here, we uncover an important role of CD20 in initiation of ceramide/lysosomal membrane permeabilization (LMP)-mediated cell death, showing that colocalization of CD20-TNFR1 after type II CD20 antibody ligation can stimulate de novo ceramide synthesis by ceramide synthase and consequently induce remarkable lysosomal permeabilization (LMP) and lysosome-mediated cell death. Further studies show that the potent lysosome-mediated cell death induced by CD20 antibodies exhibits a profound killing effect against both rituximab-sensitive and -resistant (RR) lymphoma. Furthermore, engineering of rituximab by introducing a point mutation endows it with the ability to induce potent ceramide/LMP-mediated cell death in both RR lymphoma and primary B-cell malignancies from patients with rituximab-refractory, suggesting the potential clinical application to combat rituximab resistance. PMID:27467962
Molecular-specific urokinase antibodies
NASA Technical Reports Server (NTRS)
Atassi, M. Zouhair (Inventor); Morrison, Dennis R. (Inventor)
2009-01-01
Antibodies have been developed against the different molecular forms of urokinase using synthetic peptides as immunogens. The peptides were synthesized specifically to represent those regions of the urokinase molecules which are exposed in the three-dimensional configuration of the molecule and are uniquely homologous to urokinase. Antibodies are directed against the lysine 158-isoleucine 159 peptide bond which is cleaved during activation from the single-chain (ScuPA) form to the bioactive double chain (54 KDa and 33 KDa) forms of urokinase and against the lysine 135 lysine 136 bond that is cleaved in the process of removing the alpha-chain from the 54 KDa form to produce the 33 KDa form of urokinase. These antibodies enable the direct measurement of the different molecular forms of urokinase from small samples of conditioned medium harvested from cell cultures.
Engineered antibodies for monitoring of polynuclear aromatic hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karu, A.E.; Roberts, V.A.; Li, Q.X.
1998-06-01
'The long-term goal of this project is to develop antibodies and antibody-based methods for detection and recovery of polynuclear aromatic hydrocarbons (PAHs) and PAH adducts that are potential biomarkers in environmental and biological samples. The inherent cross-reactivity will be exploited by pattern recognition methods. Dr. Karu''s laboratory uses new haptens representing key PAHs to derive recombinant Fab (rFab) and single-chain Fv (scFv) antibodies from hybridoma lines and combinatorial phage display libraries. Computational models of the haptens and combining sites made by Dr. Roberts''s group are used to guide antibody engineering by mutagenesis. Dr. Li''s laboratory develops enzyme immunoassays (EIAs), sensors,more » and immunoaffinity methods that make use of the novel haptens and antibodies for practical analytical applications in support of DOE''s mission. This report summarizes work completed in one and one-half years of a 3-year project, with close collaboration between the three research groups. Dr. Alexander Karu''s laboratory: the authors proceeded with the two strategies described in the original proposal. Site-directed mutagenesis was used to correct differences in the rFab N-terminal amino acids that were introduced by the degenerate PCR primers used for gene amplification. The binding constants of the rFabs with the corrected sequences will be compared with those of the parent MAbs, and should be very similar. The 4D5 and 10C10 heavy and light chain sequences are being moved to the pCOMB3H phagemid vector to facilitate selection of new engineered mutants.'« less
Koenig, Patrick; Sanowar, Sarah; Lee, Chingwei V; Fuh, Germaine
Monoclonal antibodies developed for therapeutic or diagnostic purposes need to demonstrate highly defined binding specificity profiles. Engineering of an antibody to enhance or reduce binding to related antigens is often needed to achieve the desired biologic activity without safety concern. Here, we describe a deep sequencing-aided engineering strategy to fine-tune the specificity of an angiopoietin-2 (Ang2)/vascular endothelial growth factor (VEGF) dual action Fab, 5A12.1 for the treatment of age-related macular degeneration. This antibody utilizes overlapping complementarity-determining region (CDR) sites for dual Ang2/VEGF interaction with K D in the sub-nanomolar range. However, it also exhibits significant (K D of 4 nM) binding to angiopoietin-1, which has high sequence identity with Ang2. We generated a large phage-displayed library of 5A12.1 Fab variants with all possible single mutations in the 6 CDRs. By tracking the change of prevalence of each mutation during various selection conditions, we identified 35 mutations predicted to decrease the affinity for Ang1 while maintaining the affinity for Ang2 and VEGF. We confirmed the specificity profiles for 25 of these single mutations as Fab protein. Structural analysis showed that some of the Fab mutations cluster near a potential Ang1/2 epitope residue that differs in the 2 proteins, while others are up to 15 Å away from the antigen-binding site and likely influence the binding interaction remotely. The approach presented here provides a robust and efficient method for specificity engineering that does not require prior knowledge of the antigen antibody interaction and can be broadly applied to antibody specificity engineering projects.
T-vector and in vivo recombination as tools to construct a large antibody library of breast cancer.
Lv, Yong-Gang; Wang, Ting; Yuan, Shi-Fang; Li, Nan-Lin; Chen, Jiang-Hao; Zhao, Ai-Zhi; Ling, Rui; Wang, Ling
2010-06-01
The emergence of phage antibody libraries is an important advance in the field of antibody engineering. It provides a useful methodology to produce human antibodies and has the potential to replace traditional hybridoma technology. In our research, we used T-vector and in vivo recombination to construct a large antibody library from breast cancer patients. The use of T-vector considerably increased the cloning efficiency, and the diversity of the library could be increased easily using in vivo recombination. Taken together, a combination of these two techniques might be valuable in constructing a large antibody library.
Reyes-del Valle, Jorge; de la Fuente, Cynthia; Turner, Mallory A.; Springfeld, Christoph; Apte-Sengupta, Swapna; Frenzke, Marie E.; Forest, Amelie; Whidby, Jillian; Marcotrigiano, Joseph; Rice, Charles M.
2012-01-01
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination. PMID:22896607
An improved conjugate vaccine technology; induction of antibody responses to the tumor vasculature.
Huijbers, Elisabeth J M; van Beijnum, Judy R; Lê, Chung T; Langman, Sofya; Nowak-Sliwinska, Patrycja; Mayo, Kevin H; Griffioen, Arjan W
2018-05-17
The induction of an antibody response against self-antigens requires a conjugate vaccine technology, where the self-antigen is conjugated to a foreign protein sequence, and the co-application of a potent adjuvant. The choice of this foreign sequence is crucial as a very strong antibody response towards it may compromise the anti-self immune response. Here, we aimed to optimize the conjugate design for application of vaccination against the tumor vasculature, using two different approaches. First, the immunogenicity of the previously employed bacterial thioredoxin (TRX) was reduced by using a truncated from (TRXtr). Second, the Escherichia coli proteome was scrutinized to identify alternative proteins, based on immunogenicity and potency to increase solubility, suitable for use in a conjugate vaccine. This technology was used for vaccination against a marker of the tumor vasculature, the well-known extra domain B (EDB) of fibronectin. We demonstrate that engineering of the foreign sequence of a conjugate vaccine can significantly improve antibody production. The TRXtr construct outperformed the one containing full-length TRX, for the production of anti-self antibodies to EDB. In addition, efficient tumor growth inhibition was observed with the new TRXtr-EDB vaccine. Microvessel density was decreased and enhanced leukocyte infiltration was observed, indicative of an active immune response directed against the tumor vasculature. Summarizing, we have identified a truncated form of the foreign antigen TRX that can improve conjugate vaccine technology for induction of anti-self antibody titers. This technology was named Immuno-Boost (I-Boost). Our findings are important for the clinical development of cancer vaccines directed against self antigens, e.g. the ones selectively found in the tumor vasculature. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Syvänen, Stina; Hultqvist, Greta; Gustavsson, Tobias; Gumucio, Astrid; Laudon, Hanna; Söderberg, Linda; Ingelsson, Martin; Lannfelt, Lars; Sehlin, Dag
2018-05-24
Amyloid-β (Aβ) immunotherapy is one of the most promising disease-modifying strategies for Alzheimer's disease (AD). Despite recent progress targeting aggregated forms of Aβ, low antibody brain penetrance remains a challenge. In the present study, we used transferrin receptor (TfR)-mediated transcytosis to facilitate brain uptake of our previously developed Aβ protofibril-selective mAb158, with the aim of increasing the efficacy of immunotherapy directed toward soluble Aβ protofibrils. Aβ protein precursor (AβPP)-transgenic mice (tg-ArcSwe) were given a single dose of mAb158, modified for TfR-mediated transcytosis (RmAb158-scFv8D3), in comparison with an equimolar dose or a tenfold higher dose of unmodified recombinant mAb158 (RmAb158). Soluble Aβ protofibrils and total Aβ in the brain were measured by enzyme-linked immunosorbent assay (ELISA). Brain distribution of radiolabeled antibodies was visualized by positron emission tomography (PET) and ex vivo autoradiography. ELISA analysis of Tris-buffered saline brain extracts demonstrated a 40% reduction of soluble Aβ protofibrils in both RmAb158-scFv8D3- and high-dose RmAb158-treated mice, whereas there was no Aβ protofibril reduction in mice treated with a low dose of RmAb158. Further, ex vivo autoradiography and PET imaging revealed different brain distribution patterns of RmAb158-scFv8D3 and RmAb158, suggesting that these antibodies may affect Aβ levels by different mechanisms. With a combination of biochemical and imaging analyses, this study demonstrates that antibodies engineered to be transported across the blood-brain barrier can be used to increase the efficacy of Aβ immunotherapy. This strategy may allow for decreased antibody doses and thereby reduced side effects and treatment costs.
Pybus, Leon P; Dean, Greg; West, Nathan R; Smith, Andrew; Daramola, Olalekan; Field, Ray; Wilkinson, Stephen J; James, David C
2014-02-01
Despite improvements in volumetric titer for monoclonal antibody (MAb) production processes using Chinese hamster ovary (CHO) cells, some "difficult-to-express" (DTE) MAbs inexplicably reach much lower process titers. These DTE MAbs require intensive cell line and process development activity, rendering them more costly or even unsuitable to manufacture. To rapidly and rationally identify an optimal strategy to improve production of DTE MAbs, we have developed an engineering design platform combining high-yielding transient production, empirical modeling of MAb synthesis incorporating an unfolded protein response (UPR) regulatory loop with directed expression and cell engineering approaches. Utilizing a panel of eight IgG1 λ MAbs varying >4-fold in volumetric titer, we showed that MAb-specific limitations on folding and assembly rate functioned to induce a proportionate UPR in host CHO cells with a corresponding reduction in cell growth rate. Derived from comparative empirical modeling of cellular constraints on the production of each MAb we employed two strategies to increase production of DTE MAbs designed to avoid UPR induction through an improvement in the rate/cellular capacity for MAb folding and assembly reactions. Firstly, we altered the transfected LC:HC gene ratio and secondly, we co-expressed a variety of molecular chaperones, foldases or UPR transactivators (BiP, CypB, PDI, and active forms of ATF6 and XBP1) with recombinant MAbs. DTE MAb production was significantly improved by both strategies, although the mode of action was dependent upon the approach employed. Increased LC:HC ratio or CypB co-expression improved cell growth with no effect on qP. In contrast, BiP, ATF6c and XBP1s co-expression increased qP and reduced cell growth. This study demonstrates that expression-engineering strategies to improve production of DTE proteins in mammalian cells should be product specific, and based on rapid predictive tools to assess the relative impact of different engineering interventions. © 2013 Wiley Periodicals, Inc.
RECOMBINATION OF ANTIBODY POLYPEPTIDE CHAINS IN THE PRESENCE OF ANTIGEN
Metzger, Henry; Mannik, Mart
1964-01-01
Conditions were developed by which the separated H and L chains of gamma2 globulins recombined to form four-chained molecules in good yields. In the absence of antigen, anti-2,4-dinitrophenyl (anti-DNP) H chains randomly reassociated with a mixture of antibody and non-specific gamma2 globulin L chains. In the presence of a specific hapten, however, the antibody H chains preferentially interacted with the anti-DNP L chains. Antibody H chain-antibody L chain recombinants formed in the presence of hapten were more active than the corresponding recombinants formed in the absence of hapten. Speculations are made regarding the possible mechanisms and biological significance of these effects. PMID:14247718
Antibody profiling sensitivity through increased reporter antibody layering
Apel, William A.; Thompson, Vicki S.
2013-02-26
A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.
Antibody profiling sensitivity through increased reporter antibody layering
Apel, William A.; Thompson, Vicki S.
2017-03-28
A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.
Microbials for the production of monoclonal antibodies and antibody fragments.
Spadiut, Oliver; Capone, Simona; Krainer, Florian; Glieder, Anton; Herwig, Christoph
2014-01-01
Monoclonal antibodies (mAbs) and antibody fragments represent the most important biopharmaceutical products today. Because full length antibodies are glycosylated, mammalian cells, which allow human-like N-glycosylation, are currently used for their production. However, mammalian cells have several drawbacks when it comes to bioprocessing and scale-up, resulting in long processing times and elevated costs. By contrast, antibody fragments, that are not glycosylated but still exhibit antigen binding properties, can be produced in microbial organisms, which are easy to manipulate and cultivate. In this review, we summarize recent advances in the expression systems, strain engineering, and production processes for the three main microbials used in antibody and antibody fragment production, namely Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ntumngia, Francis B; Pires, Camilla V; Barnes, Samantha J; George, Miriam T; Thomson-Luque, Richard; Kano, Flora S; Alves, Jessica R S; Urusova, Darya; Pereira, Dhelio B; Tolia, Niraj H; King, Christopher L; Carvalho, Luzia H; Adams, John H
2017-10-23
Plasmodium vivax invasion into human reticulocytes is a complex process. The Duffy binding protein (DBP) dimerization with its cognate receptor is vital for junction formation in the invasion process. Due to its functional importance, DBP is considered a prime vaccine candidate, but variation in B-cell epitopes at the dimer interface of DBP leads to induction of strain-limited immunity. We believe that the polymorphic residues tend to divert immune responses away from functionally conserved epitopes important for receptor binding or DBP dimerization. As a proof of concept, we engineered the vaccine DEKnull to ablate the dominant Bc epitope to partially overcome strain-specific immune antibody responses. Additional surface engineering on the next generation immunogen, DEKnull-2, provides an immunogenicity breakthrough to conserved protective epitopes. DEKnull-2 elicits a stronger broadly neutralizing response and reactivity with long-term persistent antibody responses of acquired natural immunity. By using novel engineered DBP immunogens, we validate that the prime targets of protective immunity are conformational epitopes at the dimer interface. These successful results indicate a potential approach that can be used generally to improve efficacy of other malaria vaccine candidates.
... page: //medlineplus.gov/ency/article/003529.htm Antimitochondrial antibody To use the sharing features on this page, please enable JavaScript. Antimitochondrial antibodies (AMA) are substances ( antibodies ) that form against mitochondria. ...
Computational tool for the early screening of monoclonal antibodies for their viscosities
Agrawal, Neeraj J; Helk, Bernhard; Kumar, Sandeep; Mody, Neil; Sathish, Hasige A.; Samra, Hardeep S.; Buck, Patrick M; Li, Li; Trout, Bernhardt L
2016-01-01
Highly concentrated antibody solutions often exhibit high viscosities, which present a number of challenges for antibody-drug development, manufacturing and administration. The antibody sequence is a key determinant for high viscosity of highly concentrated solutions; therefore, a sequence- or structure-based tool that can identify highly viscous antibodies from their sequence would be effective in ensuring that only antibodies with low viscosity progress to the development phase. Here, we present a spatial charge map (SCM) tool that can accurately identify highly viscous antibodies from their sequence alone (using homology modeling to determine the 3-dimensional structures). The SCM tool has been extensively validated at 3 different organizations, and has proved successful in correctly identifying highly viscous antibodies. As a quantitative tool, SCM is amenable to high-throughput automated analysis, and can be effectively implemented during the antibody screening or engineering phase for the selection of low-viscosity antibodies. PMID:26399600
van Schie, Karin A; Wolbink, Gerrit-Jan; Rispens, Theo
2015-01-01
The potential for immunogenicity is an ever-present concern during the development of biopharmaceuticals. Therapeutic antibodies occasionally elicit an antibody response in patients, which can result in loss of response or adverse effects. However, antibodies that bind a drug are sometimes found in pre-treatment serum samples, with the amount depending on drug, assay, and patient population. This review summarizes published data on pre-existing antibodies to therapeutic antibodies, including rheumatoid factors, anti-allotype antibodies, anti-hinge antibodies, and anti-glycan antibodies. Unlike anti-idiotype antibodies elicited by the drug, pre-formed antibodies in general appear to have little consequences during treatment. In the few cases where (potential) clinical consequences were encountered, antibodies were characterized and found to bind a distinct, unusual epitope of the therapeutic. Immunogenicity testing strategies should therefore always include a proper level of antibody characterization, especially when pre-formed antibodies are present. This minimizes false-positives, particularly due to rheumatoid factors, and helps to judge the potential threat in case a genuine pre-dose antibody reactivity is identified. PMID:25962087
Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad
2016-01-01
The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Koenig, Patrick; Lee, Chingwei V.; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F.; Fuh, Germaine
2015-01-01
The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. PMID:26088137
2010-01-01
Trastuzumab (Herceptin®), a humanized IgG1 antibody raised against the human epidermal growth factor receptor 2 (HER2/neu), is the main antibody in clinical use against breast cancer. Pre-clinical evidence and clinical studies indicate that trastuzumab employs several anti-tumour mechanisms that most likely contribute to enhanced survival of patients with HER2/neu-positive breast carcinomas. New strategies are aimed at improving antibody-based therapeutics like trastuzumab, e.g. by enhancing antibody-mediated effector function mechanisms. Based on our previous findings that a chimaeric ovarian tumour antigen-specific IgE antibody showed greater efficacy in tumour cell killing, compared to the corresponding IgG1 antibody, we have produced an IgE homologue of trastuzumab. Trastuzumab IgE was engineered with the same light- and heavy-chain variable-regions as trastuzumab, but with an epsilon in place of the gamma-1 heavy-chain constant region. We describe the physical characterisation and ligand binding properties of the trastuzumab IgE and elucidate its potential anti-tumour activities in functional assays. Both trastuzumab and trastuzumab IgE can activate monocytic cells to kill tumour cells, but they operate by different mechanisms: trastuzumab functions in antibody-dependent cell-mediated phagocytosis (ADCP), whereas trastuzumab IgE functions in antibody-dependent cell-mediated cytotoxicity (ADCC). Trastuzumab IgE, incubated with mast cells and HER2/neu-expressing tumour cells, triggers mast cell degranulation, recruiting against cancer cells a potent immune response, characteristic of allergic reactions. Finally, in viability assays both antibodies mediate comparable levels of tumour cell growth arrest. These functional characteristics of trastuzumab IgE, some distinct from those of trastuzumab, indicate its potential to complement or improve upon the existing clinical benefits of trastuzumab. PMID:18941743
Antibody therapy for acute myeloid leukaemia.
Gasiorowski, Robin E; Clark, Georgina J; Bradstock, Kenneth; Hart, Derek N J
2014-02-01
Novel therapies with increased efficacy and decreased toxicity are desperately needed for the treatment of acute myeloid leukaemia (AML). The anti CD33 immunoconjugate, gemtuzumab ozogamicin (GO), was withdrawn with concerns over induction mortality and lack of efficacy. However a number of recent trials suggest that, particularly in AML with favourable cytogenetics, GO may improve overall survival. This data and the development of alternative novel monoclonal antibodies (mAb) have renewed interest in the area. Leukaemic stem cells (LSC) are identified as the subset of AML blasts that reproduces the leukaemic phenotype upon transplantation into immunosuppressed mice. AML relapse may be caused by chemoresistant LSC and this has refocused interest on identifying and targeting antigens specific for LSC. Several mAb have been developed that target LSC effectively in xenogeneic models but only a few have begun clinical evaluation. Antibody engineering may improve the activity of potential new therapeutics for AML. The encouraging results seen with bispecific T cell-engaging mAb-based molecules against CD19 in the treatment of B-cell acute lymphobalstic leukaemia, highlight the potential efficacy of engineered antibodies in the treatment of acute leukaemia. Potent engineered mAb, possibly targeting novel LSC antigens, offer hope for improving the current poor prognosis for AML. © 2013 John Wiley & Sons Ltd.
[Mechanisms of immune deposit formation in glomerulonephritis].
Bussolati, B; Camussi, G
1996-03-01
Recent experimental studies allowed the identification of several mechanisms of immune deposit formation, which are able to reproduce the morphological and clinical pattern of human glomerulonephritis. Moreover, it was shown that most of the lesions considered, in the past, as due to circulating immune complexes (IC), are instead caused by the "in situ" formation of IC. As a result of these studies, the following schematic classification was proposed: 1) immune deposits formed by glomerular localization of IC primarily formed in the circulation; 2) immune deposits formed "in situ" by reaction of circulating antibodies with fixed structural antigens; 3) immune deposits formed "in situ" by antibodies reactive with movable structural antigens; 4) immune deposits formed "in situ" by antibodies reactive with sequestered antigens leaking out of tissues; 5) IC formed "in situ" by antibodies reactive with exogenous or non-glomerular endogenous antigens planted in the glomeruli; 6) ANCA-associated glomerular disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do Kwon, Young; Pancera, Marie; Acharya, Priyamvada
As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. In this paper, we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer boundmore » by a single CD4 without the typical antigenic hallmarks of CD4 induction. Finally, antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.« less
Do Kwon, Young; Pancera, Marie; Acharya, Priyamvada; ...
2015-06-22
As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. In this paper, we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer boundmore » by a single CD4 without the typical antigenic hallmarks of CD4 induction. Finally, antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.« less
MoFvAb: Modeling the Fv region of antibodies
Bujotzek, Alexander; Fuchs, Angelika; Qu, Changtao; Benz, Jörg; Klostermann, Stefan; Antes, Iris; Georges, Guy
2015-01-01
Knowledge of the 3-dimensional structure of the antigen-binding region of antibodies enables numerous useful applications regarding the design and development of antibody-based drugs. We present a knowledge-based antibody structure prediction methodology that incorporates concepts that have arisen from an applied antibody engineering environment. The protocol exploits the rich and continuously growing supply of experimentally derived antibody structures available to predict CDR loop conformations and the packing of heavy and light chain quickly and without user intervention. The homology models are refined by a novel antibody-specific approach to adapt and rearrange sidechains based on their chemical environment. The method achieves very competitive all-atom root mean square deviation values in the order of 1.5 Å on different evaluation datasets consisting of both known and previously unpublished antibody crystal structures. PMID:26176812
Antibody profiling sensitivity through increased reporter antibody layering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apel, William A.; Thompson, Vicki S
A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immunemore » complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.« less
Carlring, Jennifer; De Leenheer, Evy; Heath, Andrew William
2011-01-01
We demonstrate here a rapid alternative method for the production of functional bi-specific antibodies using the mild reducing agent 2-mercaptoethanesulfonic acid sodium salt (MESNA). Following reduction of a mixture of two monoclonal antibodies with MESNA to break inter heavy chain bonds, this solution is dialysed under oxidising conditions and antibodies are allowed to reform. During this reaction a mixture of antibodies is formed, including parental antibodies and bi-specific antibody. Bi-specific antibodies are purified over two sequential affinity columns. Following purification, bi-specificity of antibodies is determined in enzyme-linked immunosorbent assays and by flow cytometry. Using this redox method we have been successful in producing hybrid and same-species bi-specific antibodies in a time frame of 6-10 working days, making this production method a time saving alternative to the time-consuming traditional heterohybridoma technology for the production of bi-specific antibodies for use in early pilot studies. The use of both rat and mouse IgG antibodies forming a rat/mouse bi-specific antibody as well as producing a pure mouse bi-specific antibody and a pure rat bi-specific antibody demonstrates the flexibility of this production method.
USDA-ARS?s Scientific Manuscript database
Background: Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surve...
Ford, Nicole R; Hecht, Karen A; Hu, DeHong; Orr, Galya; Xiong, Yijia; Squier, Thomas C; Rorrer, Gregory L; Roesijadi, Guritno
2016-03-18
The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins comprising either enhanced green fluorescent protein (EGFP) or single chain antibodies engineered with a tetracysteine tagging sequence. Of interest were the site-specific binding of (1) the fluorescent biarsenical probe AsCy3 and AsCy3e to the tetracysteine tagged fusion proteins and (2) high and low molecular mass antigens, the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT), to biosilica-immobilized single chain antibodies. Analysis of biarsenical probe binding using fluorescence and structured illumination microscopy indicated differential colocalization with EGFP in nascent and mature biosilica, supporting the use of either EGFP or bound AsCy3 and AsCy3e in studying biosilica maturation. Large increases in the lifetime of a fluorescent analogue of TNT upon binding single chain antibodies provided a robust signal capable of discriminating binding to immobilized antibodies in the transformed frustule from nonspecific binding to the biosilica matrix. In conclusion, our results demonstrate an ability to engineer diatoms to create antibody-functionalized mesoporous silica able to selectively bind chemical and biological agents for the development of sensing platforms.
Young, Patricia A; Morrison, Sherie L; Timmerman, John M
2014-10-01
The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. Copyright © 2014 Elsevier Inc. All rights reserved.
Peterson, Eric C.; Gentry, W. Brooks
2015-01-01
Monoclonal antibody-based medications designed to bind (+)-methamphetamine (METH) with high affinity are among the newest approaches to the treatment of METH abuse, and the associated medical complications. The potential clinical indications for these medications include treatment of overdose, reduction of drug dependence, and protection of vulnerable populations from METH-related complications. Research designed to discover and conduct preclinical and clinical testing of these antibodies suggest a scientific vision for how intact mAb (singular and plural) or small antigen binding fragments of mAb could be engineered to optimize the proteins for specific therapeutic applications. In this review we discuss keys to success in this development process including choosing predictors of specificity, efficacy, duration of action, and safety of the medications in disease models of acute and chronic drug abuse. We consider important aspects of METH-like hapten design and how hapten structural features influence specificity and affinity, with an example of a high-resolution x-ray crystal structure of a high affinity antibody to demonstrate this structural relationship. Additionally, several prototype anti-METH mAb forms such as antigen binding fragments (Fab) and single chain variable fragments (scFv) are under development. Unique, customizable aspects of these fragments are presented with specific possible clinical indications. Finally, we discuss clinical trial progress of the first in kind anti-METH mAb, for which the METH is the disease target instead of vulnerable central nervous system networks of receptors, binding sites and neuronal connections. PMID:24484976
Yusakul, Gorawit; Nuntawong, Poomraphie; Sakamoto, Seiichi; Ratnatilaka Na Bhuket, Pahweenvaj; Kohno, Toshitaka; Kikkawa, Nao; Rojsitthisak, Pornchai; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Morimoto, Satoshi
2017-01-01
Due to the highly specific binding between an antibody and its target, superior analytical performances was obtained by immunoassays for phytochemical analysis over conventional chromatographic techniques. Here, we describe a simple method for producing a functional single-chain variable fragment (scFv) antibody against ganoderic acid A (GAA), a pharmacologically active metabolite from Ganoderma lingzhi. The Escherichia coli BL21(DE3) strain produced a large amount of anti-GAA scFv. However, in vitro refolding steps, which partially recovered the reactivity of the scFv, were required. Interestingly, the functional scFv was expressed as a soluble and active form in the cytoplasm of an engineered E. coli SHuffle ® strain. Purified anti-GAA scFv, which yielded 2.56 mg from 1 L of culture medium, was obtained from simple and inexpensive procedures for expression and purification. The anti-GAA scFv-based indirect competitive enzyme-linked immunosorbent assay (icELISA) exhibited high sensitivity (linearity: 0.078-1.25 µg/mL) with precision (CV: ≤6.20%) and reliability (recovery: 100.1-101.8%) for GAA determination. In summary, the approach described here is an inexpensive, simple, and efficient expression system that extends the application of anti-GAA scFv-based immunoassays. In addition, when in vitro refolding steps can be skipped, the cost and complexity of scFv antibody production can be minimized.
How B-Cell Receptor Repertoire Sequencing Can Be Enriched with Structural Antibody Data
Kovaltsuk, Aleksandr; Krawczyk, Konrad; Galson, Jacob D.; Kelly, Dominic F.; Deane, Charlotte M.; Trück, Johannes
2017-01-01
Next-generation sequencing of immunoglobulin gene repertoires (Ig-seq) allows the investigation of large-scale antibody dynamics at a sequence level. However, structural information, a crucial descriptor of antibody binding capability, is not collected in Ig-seq protocols. Developing systematic relationships between the antibody sequence information gathered from Ig-seq and low-throughput techniques such as X-ray crystallography could radically improve our understanding of antibodies. The mapping of Ig-seq datasets to known antibody structures can indicate structurally, and perhaps functionally, uncharted areas. Furthermore, contrasting naïve and antigenically challenged datasets using structural antibody descriptors should provide insights into antibody maturation. As the number of antibody structures steadily increases and more and more Ig-seq datasets become available, the opportunities that arise from combining the two types of information increase as well. Here, we review how these data types enrich one another and show potential for advancing our knowledge of the immune system and improving antibody engineering. PMID:29276518
Viola-Villegas, Nerissa Therese; Sevak, Kuntal K; Carlin, Sean D; Doran, Michael G; Evans, Henry W; Bartlett, Derek W; Wu, Anna M; Lewis, Jason S
2014-11-03
Engineered antibody fragments offer faster delivery with retained tumor specificity and rapid clearance from nontumor tissues. Here, we demonstrate that positron emission tomography (PET) based detection of prostate specific membrane antigen (PSMA) in prostatic tumor models using engineered bivalent antibodies built on single chain fragments (scFv) derived from the intact antibody, huJ591, offers similar tumor delineating properties but with the advantage of rapid targeting and imaging. (89)Zr-radiolabeled huJ591 scFv (dimeric scFv-CH3; (89)Zr-Mb) and cysteine diabodies (dimeric scFv; (89)Zr-Cys-Db) demonstrated internalization and similar Kds (∼2 nM) compared to (89)Zr-huJ591 in PSMA(+) cells. Tissue distribution assays established the specificities of both (89)Zr-Mb and (89)Zr-Cys-Db for PSMA(+) xenografts (6.2 ± 2.5% ID/g and 10.2 ± 3.4% ID/g at 12 h p.i. respectively), while minimal accumulation in PSMA(-) tumors was observed. From the PET images, (89)Zr-Mb and (89)Zr-Cys-Db exhibited faster blood clearance than the parent huJ591 while tumor-to-muscle ratios for all probes show comparable values across all time points. Ex vivo autoradiography and histology assessed the distribution of the probes within the tumor. Imaging PSMA-expressing prostate tumors with smaller antibody fragments offers rapid tumor accumulation and accelerated clearance; hence, shortened wait periods between tracer administration and high-contrast tumor imaging and lower dose-related toxicity are potentially realized.
Enhancement of antibody functions through Fc multiplications
Wang, Qun; Cvitkovic, Romana; Bonnell, Jessica; Chang, Chien-Ying; Koksal, Adem C.; O'Connor, Ellen; Gao, Xizhe; Yu, Xiang-Qing; Wu, Herren; Stover, C. Kendall; Dall'Acqua, William F.; Xiao, Xiaodong
2017-01-01
ABSTRACT Antibodies carry out a plethora of functions through their crystallizable fragment (Fc) regions, which can be naturally tuned by the adoption of several isotypes and post-translational modifications. Protein engineering enables further Fc function modulations through modifications of the interactions between the Fc and its functional partners, including FcγR, FcRn, complement complex, and additions of auxiliary functional units. Due to the many functions embedded within the confinement of an Fc, a suitable balance must be maintained for a therapeutic antibody to be effective and safe. The outcome of any Fc engineering depends on the interplay among all the effector molecules involved. In this report, we assessed the effects of Fc multiplication (or tandem Fc) on antibody functions. Using IgG1 as a test case, we found that, depending on the specifically designed linker, Fc multiplication led to differentially folded, stable molecules with unique pharmacokinetic profiles. Interestingly, the variants with 3 copies of Fc improved in vitro opsonophagocytic killing activity and displayed significantly improved protective efficacies in a Klebsiella pneumoniae mouse therapeutic model despite faster clearance compared with its IgG1 counterpart. There was no adverse effect observed or pro-inflammatory cytokine release when the Fc variants were administered to animals. We further elucidated that enhanced binding to various effector molecules by IgG-3Fc created a “sink” leading to the rapid clearance of the 3Fc variants, and identified the increased FcRn binding as one strategy to facilitate “sink” escape. These findings reveal new opportunities for novel Fc engineering to further expand our abilities to manipulate and improve antibody therapeutics. PMID:28102754
Koenig, Patrick; Lee, Chingwei V; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F; Fuh, Germaine
2015-09-04
The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
The short-term culture of lymphoid tissue from immunized guinea-pigs
Dresser, Ann M.
1965-01-01
Lymph node tissue from guinea-pigs immunized against one of several antigens was cultured in different media in order to determine conditions under which maximal amounts of antibody are formed in vitro. The amounts of antibody formed were variable and bore no relation to the level of serum antibody in the tissue donor. Heterologous sera of several origins, when included in the culture medium, varied very markedly in their capacity to support antibody production in vitro. PMID:5847427
Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, JaeSeon; Nam, PilWon; Lee, YongChan
2009-04-24
Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G{sub 4}S) between the Fabmore » fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38]{sub 2}) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.« less
De novo isolation of antibodies with pH-dependent binding properties.
Bonvin, Pauline; Venet, Sophie; Fontaine, Gaëlle; Ravn, Ulla; Gueneau, Franck; Kosco-Vilbois, Marie; Proudfoot, Amanda Ei; Fischer, Nicolas
2015-01-01
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.
Chan, Kuan Rong; Tan, Hwee Cheng; Bestagno, Marco; Ooi, Eng Eong; Burrone, Oscar R.
2015-01-01
Dengue virus (DENV) infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII) of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE) in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well. PMID:26218926
Schröter, Christian; Günther, Ralf; Rhiel, Laura; Becker, Stefan; Toleikis, Lars; Doerner, Achim; Becker, Janine; Schönemann, Andreas; Nasu, Daichi; Neuteboom, Berend; Kolmar, Harald; Hock, Björn
2015-01-01
There is growing interest in the fast and robust engineering of protein pH-sensitivity that aims to reduce binding at acidic pH, compared to neutral pH. Here, we describe a novel strategy for the incorporation of pH-sensitive antigen binding functions into antibody variable domains using combinatorial histidine scanning libraries and yeast surface display. The strategy allows simultaneous screening for both, high affinity binding at pH 7.4 and pH-sensitivity, and excludes conventional negative selection steps. As proof of concept, we applied this strategy to incorporate pH-dependent antigen binding into the complementary-determining regions of adalimumab. After 3 consecutive rounds of separate heavy and light chain library screening, pH-sensitive variants could be isolated. Heavy and light chain mutations were combined, resulting in 3 full-length antibody variants that revealed sharp, reversible pH-dependent binding profiles. Dissociation rate constants at pH 6.0 increased 230- to 780-fold, while high affinity binding at pH 7.4 in the sub-nanomolar range was retained. Furthermore, binding to huFcRn and thermal stability were not affected by histidine substitutions. Overall, this study emphasizes a generalizable strategy for engineering pH-switch functions potentially applicable to a variety of antibodies and further proteins-based therapeutics.
Musset, F; Frobert, Y; Grassi, J; Vigny, M; Boulla, G; Bon, S; Massoulié, J
1987-02-01
We studied the reactivity of monoclonal antibodies (mAbs) raised against acetylcholinesterase (AChE) purified from Electrophorus and Torpedo electric organs. We obtained IgG antibodies (Elec-21, Elec-106, Tor-3E5, Tor-ME8, Tor-1A5), all of them directed against the catalytic subunit of the corresponding species, with no significant cross-reactivity. These antibodies do not inhibit the enzyme and recognize all molecular forms, globular (G) and asymmetric (A). Tor-ME8 reacts specifically with the denatured A and G subunits of Torpedo AChE, in immunoblots. Several hybridomas raised against Electrophorus AChE produced IgM antibodies (Elec-39, Elec-118, Elec-121). These antibodies react with the A forms of Electrophorus electric organs and also with a subset of dimers (G2) from Torpedo electric organ. In addition, they react with a number of non-AChE components, in immunoblots. In contrast, they do not recognize AChE from other Electrophorus tissues or A forms from Torpedo electric organs.
SAbPred: a structure-based antibody prediction server
Dunbar, James; Krawczyk, Konrad; Leem, Jinwoo; Marks, Claire; Nowak, Jaroslaw; Regep, Cristian; Georges, Guy; Kelm, Sebastian; Popovic, Bojana; Deane, Charlotte M.
2016-01-01
SAbPred is a server that makes predictions of the properties of antibodies focusing on their structures. Antibody informatics tools can help improve our understanding of immune responses to disease and aid in the design and engineering of therapeutic molecules. SAbPred is a single platform containing multiple applications which can: number and align sequences; automatically generate antibody variable fragment homology models; annotate such models with estimated accuracy alongside sequence and structural properties including potential developability issues; predict paratope residues; and predict epitope patches on protein antigens. The server is available at http://opig.stats.ox.ac.uk/webapps/sabpred. PMID:27131379
Structure-based non-canonical amino acid design to covalently crosslink an antibody–antigen complex
Xu, Jianqing; Tack, Drew; Hughes, Randall A.; Ellington, Andrew D.; Gray, Jeffrey J.
2014-01-01
Engineering antibodies to utilize non-canonical amino acids (NCAA) should greatly expand the utility of an already important biological reagent. In particular, introducing crosslinking reagents into antibody complementarity determining regions (CDRs) should provide a means to covalently crosslink residues at the antibody–antigen interface. Unfortunately, finding the optimum position for crosslinking two proteins is often a matter of iterative guessing, even when the interface is known in atomic detail. Computer-aided antibody design can potentially greatly restrict the number of variants that must be explored in order to identify successful crosslinking sites. We have therefore used Rosetta to guide the introduction of an oxidizable crosslinking NCAA, l-3,4-dihydroxyphenylalanine (l-DOPA), into the CDRs of the anti-protective antigen scFv antibody M18, and have measured crosslinking to its cognate antigen, domain 4 of the anthrax protective antigen. Computed crosslinking distance, solvent accessibility, and interface energetics were three factors considered that could impact the efficiency of l-DOPA-mediated crosslinking. In the end, 10 variants were synthesized, and crosslinking efficiencies were generally 10% or higher, with the best variant crosslinking to 52% of the available antigen. The results suggest that computational analysis can be used in a pipeline for engineering crosslinking antibodies. The rules learned from l-DOPA crosslinking of antibodies may also be generalizable to the formation of other crosslinked interfaces and complexes. PMID:23680795
Antibody Fab display and selection through fusion to the pIX coat protein of filamentous phage.
Tornetta, Mark; Baker, Scott; Whitaker, Brian; Lu, Jin; Chen, Qiang; Pisors, Eileen; Shi, Lei; Luo, Jinquan; Sweet, Raymond; Tsui, Ping
2010-08-31
Fab antibody display on filamentous phage is widely applied to de novo antibody discovery and engineering. Here we describe a phagemid system for the efficient display and affinity selection of Fabs through linkage to the minor coat protein pIX. Display was successful by fusion of either Fd or Lc through a short linker to the amino terminus of pIX and co-expression of the counter Lc or Fd as a secreted, soluble fragment. Assembly of functional Fab was confirmed by demonstration of antigen-specific binding using antibodies of known specificity. Phage displaying a Fab specific for RSV-F protein with Fd linked to pIX showed efficient, antigen-specific enrichment when mixed with phage displaying a different specificity. The functionality of this system for antibody engineering was evaluated in an optimization study. A RSV-F protein specific antibody with an affinity of about 2nM was randomized at 4 positions in light chain CDR1. Three rounds of selection with decreasing antigen concentration yielded Fabs with an affinity improvement up to 70-fold and showed a general correlation between enrichment frequency and affinity. We conclude that the pIX coat protein complements other display systems in filamentous phage as an efficient vehicle for low copy display and selection of Fab proteins. 2010 Elsevier B.V. All rights reserved.
Eliminating Xenoantigen Expression on Swine RBC.
Wang, Zheng-Yu; Martens, Gregory R; Blankenship, Ross L; Sidner, Richard A; Li, Ping; Estrada, Jose L; Tector, Matthew; Tector, A Joseph
2017-03-01
The rapidly improving tools of genetic engineering may make it possible to overcome the humoral immune barrier that prevents xenotransplantation. We hypothesize that levels of human antibody binding to donor tissues from swine must approximate the antibody binding occurring in allotransplantation. It is uncertain if this is an attainable goal. Here we perform an initial analysis of this issue by comparing human antibody binding to red blood cells (RBC) isolated from knockout swine and to allogeneic or autologous human RBC. Human sera were incubated with RBC isolated from various genetically engineered swine or from humans. The level of IgG and IgM binding to these cells were compared using either flow cytometry or a novel mass spectrometric assay. Mass spectroscopic quantitation of human antibody binding demonstrated that as few as 3 gene inactivations can reduce the levels human antibody binding to swine RBC that is as low as autologous human RBC. Flow cytometry showed that RBC from 2-gene knockout swine exhibited less human antibody binding than human blood group O allogeneic RBC in 22% of tested sera. Deletion of a third gene from pigs resulted in 30% of human samples having less IgG and IgM RBC xenoreactivity than alloreactivity. Xenoantigenicity of swine RBC can be eliminated via gene disruption. These results suggest that the gene knockout approach may be able reduce antigenicity in other pig tissues to levels that enable the xenotransplantation humoral barrier to be overcome.
Expression of Recombinant Antibodies
Frenzel, André; Hust, Michael; Schirrmann, Thomas
2013-01-01
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655
IgGs are made for walking on bacterial and viral surfaces
NASA Astrophysics Data System (ADS)
Preiner, Johannes; Kodera, Noriyuki; Tang, Jilin; Ebner, Andreas; Brameshuber, Mario; Blaas, Dieter; Gelbmann, Nicola; Gruber, Hermann J.; Ando, Toshio; Hinterdorfer, Peter
2014-07-01
Binding of antibodies to their cognate antigens is fundamental for adaptive immunity. Molecular engineering of antibodies for therapeutic and diagnostic purposes emerges to be one of the major technologies in combating many human diseases. Despite its importance, a detailed description of the nanomechanical process of antibody-antigen binding and dissociation on the molecular level is lacking. Here we utilize high-speed atomic force microscopy to examine the dynamics of antibody recognition and uncover a principle; antibodies do not remain stationary on surfaces of regularly spaced epitopes; they rather exhibit ‘bipedal’ stochastic walking. As monovalent Fab fragments do not move, steric strain is identified as the origin of short-lived bivalent binding. Walking antibodies gather in transient clusters that might serve as docking sites for the complement system and/or phagocytes. Our findings could inspire the rational design of antibodies and multivalent receptors to exploit/inhibit steric strain-induced dynamic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, C; Williams, L
Purpose: Animal biodistribution data are required prior to introducing a new radiopharmaceutical into clinical trials. Protein engineering, using recombinant DNA techniques can produce a large number of related (cognate) antibodies to a given molecular target. Thus, it is important that these constructs be numerically related to one another via a single criterion. In the following, we use the mean residence time (MRT) in murine blood as this criterion. Methods: Five cognate anti-CEA (Carcinoembryonic Antigen) antibodies were compared with regard to their MRT in whole blood of CEA-positive tumor-bearing (LS174T) mice. MRT was defined by blood AUC (area under the curve)more » divided by the initial blood uptake value; all in units of percent injected dose per gram (%ID/g). Cognates included single chain scFv (25 kDa), diabody (50 kDa), minibody (80 kDa), F(ab')2 (120 kDa), and intact (155 kDa) forms of the murine cT84.66 antibody against CEA. All were labeled with radioactive iodine. Results: The agents, in the sequence listed, exhibited MRT values of 1.16 +/- 0.01 h, 0.99 h, 5.06 +/- 0.70 h, 6.61 +/- 0.36 h, and 59.3 +/- 2.4 h respectively. Because of the monotonic nature of the sequence, a linear correlation analysis was performed between molecular weight (MW) and MRT or ln(MRT) of the 5 proteins. Probability of random correlation was 0.10 for MRT and 0.01 for ln(MRT). Conclusion: MRT values of cognate anti-CEA antibodies were found to be a monotonically increasing sequence with respect to MW. Cognate MW values correlated best to ln(MRT) of the protein species. Thus MRT was proportional to an exponential function of molecular weight. The extended intact antibody circulation time presumably reflected its relatively maximal MW. Presence of an intact FC segment on this native antibody may also have influenced these results.« less
Killing cancer cells by targeted drug-carrying phage nanomedicines
Bar, Hagit; Yacoby, Iftach; Benhar, Itai
2008-01-01
Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177
Deep sequencing in library selection projects: what insight does it bring?
Glanville, J; D'Angelo, S; Khan, T A; Reddy, S T; Naranjo, L; Ferrara, F; Bradbury, A R M
2015-08-01
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deep sequencing in library selection projects: what insight does it bring?
Glanville, J; D’Angelo, S; Khan, T.A.; Reddy, S. T.; Naranjo, L.; Ferrara, F.; Bradbury, A.R.M.
2015-01-01
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. PMID:26451649
Protein and Antibody Engineering by Phage Display
Frei, J.C.; Lai, J.R.
2017-01-01
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328
Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination.
Bailey, Lucas J; Sheehy, Kimberly M; Dominik, Pawel K; Liang, Wenguang G; Rui, Huan; Clark, Michael; Jaskolowski, Mateusz; Kim, Yejoon; Deneka, Dawid; Tang, Wei-Jen; Kossiakoff, Anthony A
2018-02-02
Antibody Fab fragments have been exploited with significant success to facilitate the structure determination of challenging macromolecules as crystallization chaperones and as molecular fiducial marks for single particle cryo-electron microscopy approaches. However, the inherent flexibility of the "elbow" regions, which link the constant and variable domains of the Fab, can introduce disorder and thus diminish their effectiveness. We have developed a phage display engineering strategy to generate synthetic Fab variants that significantly reduces elbow flexibility, while maintaining their high affinity and stability. This strategy was validated using previously recalcitrant Fab-antigen complexes where introduction of an engineered elbow region enhanced crystallization and diffraction resolution. Furthermore, incorporation of the mutations appears to be generally portable to other synthetic antibodies and may serve as a universal strategy to enhance the success rates of Fabs as structure determination chaperones. Copyright © 2017 Elsevier Ltd. All rights reserved.
Filamentous bacteriophage as a novel therapeutic tool for Alzheimer's disease treatment.
Solomon, Beka
2008-10-01
Antibodies towards the N-terminal region of the amyloid-beta peptide (AbetaP) bind to Abeta fibrils, leading to their disaggregation. We developed an immunization procedure using filamentous phages displaying the only four amino acids EFRH encompassing amino acids 3-6 of the 42 residues of AbetaP, found to be the main regulatory site for Abeta formation. Phages displaying EFRH epitope are effective in eliciting humoral response against AbetaP which, in turn, relieves amyloid burden in brains of amyloid-beta protein precursor transgenic mice, improving their ability to perform cognitive tasks. In order to overcome the low permeability of the blood brain barrier for targeting 'anti-aggregating' monoclonal antibodies (mAbs) to Abeta plaques in the brain, we applied antibody engineering methods to minimize the size of mAbs while maintaining their biological activity. Single-chain antibodies displayed on the surface of filamentous phage showed the ability to enter the central nervous system (CNS). The genetically engineered filamentous bacteriophage proved to be an efficient, nontoxic viral delivery vector to the brain, offering an obvious advantage over other mammalian vectors. The feasibility of these novel strategies for production and targeting of anti-aggregating antibodies against Abeta plaques to disease affected regions in the CNS may have clinical potential for treatment of Alzheimer's disease.
Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada
2017-01-01
A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant–microbe interactions in the future. PMID:28654662
Vu, Nguyen Xuan; Pruksametanan, Natcha; Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada; Yamabhai, Montarop
2017-01-01
A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.
Zafir-Lavie, Inbal; Miari, Reem; Sherbo, Shay; Krispel, Simi; Tal, Osnat; Liran, Atar; Shatil, Tamar; Badinter, Felix; Goltsman, Haim; Shapir, Nir; Benhar, Itai; Neil, Garry A; Panet, Amos
2017-08-01
Rheumatoid arthritis (RA) is a symmetric inflammatory polyarthritis associated with high concentrations of pro-inflammatory, cytokines including tumor necrosis factor (TNF)-α. Adalimumab is a monoclonal antibody (mAb) that binds TNF-α, and is widely used to treat RA. Despite its proven clinical efficacy, adalimumab and other therapeutic mAbs have disadvantages, including the requirement for repeated bolus injections and the appearance of treatment limiting anti-drug antibodies. To address these issues, we have developed an innovative ex vivo gene therapy approach, termed transduced autologous restorative gene therapy (TARGT), to produce and secrete adalimumab for the treatment of RA. Helper-dependent (HD) adenovirus vector containing adalimumab light and heavy chain coding sequences was used to transduce microdermal tissues and cells of human and mouse origin ex vivo, rendering sustained secretion of active adalimumab. The genetically engineered tissues were subsequently implanted in a mouse model of RA. Transduced human microdermal tissues implanted in SCID mice demonstrated 49 days of secretion of active adalimumab in the blood, at levels of tens of microgram per milliliter. In addition, transduced autologous dermal cells were implanted in the RA mouse model and demonstrated statistically significant amelioration in RA symptoms compared to naïve cell implantation and were similar to recombinant adalimumab bolus injections. The results of the present study report microdermal tissues engineered to secrete active adalimumab as a proof of concept for sustained secretion of antibody from the novel ex vivo gene therapy TARGT platform. This technology may now be applied to a range of antibodies for the therapy of other diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Colino, J; Outschoorn, I
1999-10-01
Escherichia coli K1 is a prevalent cause of Gram-negative neonatal bacteraemia and meningitis in humans. Its capsular polysaccharide K1 (CpsK1) has been identified as an important virulence factor. Nevertheless, the biological and pathogenic implications of its O-acetylated and non-O-acetylated forms are poorly understood. In an attempt to address this, we monitored the expression of both CpsK1 form variants in a neonatal mouse infection model. In the absence of anti-CpsK1 antibodies, no CpsK1 form variant selection was observed during the course of infection. The administration of monoclonal antibodies specific for CpsK1 provided a high level of protection. The monoclonal antibodies that recognized both CpsK1 forms (MGB12) provided protection from up to 850 LD(50). By contrast, the administration of the monoclonal antibodies (MGB15) specific for non-O-acetylated CpsK1 cleared only bacteria expressing this CpsK1 form; a few mouse pups remained bacteraemic, and the bacteria in the blood had O-acetylated CpsK1. In those pups, the infection progressed in a similar fashion to that in mice not treated with monoclonal antibody. Moreover, when the number of bacteria expressing the O-acetylated CpsK1 in the inoculated dose is considered independently, the LD(50)was similar to that for the original strain in pups that had not been treated with monoclonal antibodies (35 CFU). These results suggest that whereas variation in acetylation form per se does not reinforce virulence, it could enable E. coli to avoid immune defenses. This highlights the importance of using highly specific monoclonal antibodies in immunotherapeutic approaches to E. coli K1 neonatal meningitis. Copyright 1999 Academic Press.
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure.
Kwong, Peter D; Mascola, John R
2018-05-15
HIV-1 vaccine development has been stymied by an inability to induce broadly reactive neutralizing antibodies to the envelope (Env) trimer, the sole viral antigen on the virion surface. Antibodies isolated from HIV-1-infected donors, however, have been shown to recognize all major exposed regions of the prefusion-closed Env trimer, and an emerging understanding of the immunological and structural characteristics of these antibodies and the epitopes they recognize is enabling new approaches to vaccine design. Antibody lineage-based design creates immunogens that activate the naive ancestor-B cell of a target antibody lineage and that mature intermediate-B cells toward effective neutralization, with proof of principle achieved with select HIV-1-neutralizing antibody lineages in human-gene knock-in mouse models. Epitope-based vaccine design involves the engineering of sites of Env vulnerability as defined by the recognition of broadly neutralizing antibodies, with cross-reactive neutralizing antibodies elicited in animal models. Both epitope-based and antibody lineage-based HIV-1 vaccine approaches are being readied for human clinical trials. Published by Elsevier Inc.
Monnet, Céline; Jorieux, Sylvie; Souyris, Nathalie; Zaki, Ouafa; Jacquet, Alexandra; Fournier, Nathalie; Crozet, Fabien; de Romeuf, Christophe; Bouayadi, Khalil; Urbain, Rémi; Behrens, Christian K; Mondon, Philippe; Fontayne, Alexandre
2014-01-01
While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGen™) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling(®) platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.
Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential
Alvarenga, Larissa M.; Zahid, Muhammad; di Tommaso, Anne; Juste, Matthieu O.; Aubrey, Nicolas; Billiald, Philippe; Muzard, Julien
2014-01-01
Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety. PMID:25153256
Rusling, James
2016-01-01
Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay. PMID:27876681
Minimalist Antibodies and Mimetics: An Update and Recent Applications.
Bruce, Virginia J; Ta, Angeline N; McNaughton, Brian R
2016-10-17
The immune system utilizes antibodies to recognize foreign or disease-relevant receptors, initiating an immune response to destroy unwelcomed guests. Because researchers can evolve antibodies to bind virtually any target, it is perhaps unsurprising that these reagents, and their small-molecule conjugates, are used extensively in clinical and basic research environments. However, virtues of antibodies are countered by significant challenges. Foremost among these is the need for expression in mammalian cells (largely due to often necessary post-translational modifications). In response to these challenges, researchers have developed an array of minimalist antibodies and mimetics, which are smaller, more stable, simpler to express in Escherichia coli, and amendable to laboratory evolution and protein engineering. Here we describe these scaffolds and discuss recent applications of minimalist antibodies and mimetics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional human antibody CDR fusions as long-acting therapeutic endocrine agonists.
Liu, Tao; Zhang, Yong; Liu, Yan; Wang, Ying; Jia, Haiqun; Kang, Mingchao; Luo, Xiaozhou; Caballero, Dawna; Gonzalez, Jose; Sherwood, Lance; Nunez, Vanessa; Wang, Danling; Woods, Ashley; Schultz, Peter G; Wang, Feng
2015-02-03
On the basis of the 3D structure of a bovine antibody with a well-folded, ultralong complementarity-determining region (CDR), we have developed a versatile approach for generating human or humanized antibody agonists with excellent pharmacological properties. Using human growth hormone (hGH) and human leptin (hLeptin) as model proteins, we have demonstrated that functional human antibody CDR fusions can be efficiently engineered by grafting the native hormones into different CDRs of the humanized antibody Herceptin. The resulting Herceptin CDR fusion proteins were expressed in good yields in mammalian cells and retain comparable in vitro biological activity to the native hormones. Pharmacological studies in rodents indicated a 20- to 100-fold increase in plasma circulating half-life for these antibody agonists and significantly extended in vivo activities in the GH-deficient rat model and leptin-deficient obese mouse model for the hGH and hLeptin antibody fusions, respectively. These results illustrate the utility of antibody CDR fusions as a general and versatile strategy for generating long-acting protein therapeutics.
Capone, Simona; Ćorajević, Lejla; Bonifert, Günther; Murth, Patrick; Maresch, Daniel; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver
2015-01-01
Horseradish peroxidase (HRP), conjugated to antibodies and lectins, is widely used in medical diagnostics. Since recombinant production of the enzyme is difficult, HRP isolated from plant is used for these applications. Production in the yeast Pichia pastoris (P. pastoris), the most promising recombinant production platform to date, causes hyperglycosylation of HRP, which in turn complicates conjugation to antibodies and lectins. In this study we combined protein and strain engineering to obtain an active and stable HRP variant with reduced surface glycosylation. We combined four mutations, each being beneficial for either catalytic activity or thermal stability, and expressed this enzyme variant as well as the unmutated wildtype enzyme in both a P. pastoris benchmark strain and a strain where the native α-1,6-mannosyltransferase (OCH1) was knocked out. Considering productivity in the bioreactor as well as enzyme activity and thermal stability, the mutated HRP variant produced in the P. pastoris benchmark strain turned out to be interesting for medical diagnostics. This variant shows considerable catalytic activity and thermal stability and is less glycosylated, which might allow more controlled and efficient conjugation to antibodies and lectins. PMID:26404235
Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilinskaya, Anna N.; Dobrovolskaia, Marina A., E-ma
Nanoparticle immunogenicity and antigenicity have been under investigation for many years. During the past decade, significant progress has been made in understanding what makes a nanoparticle immunogenic, how immune cells respond to nanoparticles, what consequences of nanoparticle-specific antibody formation exist and how they challenge the application of nanoparticles for drug delivery. Moreover, it has been recognized that accidental contamination of therapeutic protein formulations with nanosized particulate materials may contribute to the immunogenicity of this type of biotechnology products. While the immunological properties of engineered nanomaterials and their application as vaccine carriers and adjuvants have been given substantial consideration in themore » current literature, little attention has been paid to nanoparticle immuno- and antigenicity. To fill in this gap, we herein provide an overview of this subject to highlight the current state of the field, review past and present research, and discuss future research directions. - Highlights: • Most engineered nanomaterials are not immunogenic per se. • Generation of nanoparticle-specific antibody can be T-cell dependent or independent. • Antibodies can be generated to particle core, terminal groups or surface coatings. • Engineered and accidental nanomaterials have distinct contribution to immunogenicity. • Tunable physicochemical properties make each nanoparticle unique.« less
Cazenave, P. -A.; Ternynck, T.; Avrameas, S.
1974-01-01
The occurrence of immunoglobulins with and without antibody specificity and with and without idiotypic specificity was studied, by use of enzyme-labeled antigen and antibodies, in lymph node cells of rabbits immunized with horse-radish peroxidase and hen ovalbumin. Some cells, containing immunoglobulins without detectable antibody function, were shown to contain idiotypes similar to those found in antibody-producing cells. PMID:4140504
Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library.
Liu, Jinny L; Anderson, George P; Delehanty, James B; Baumann, Richard; Hayhurst, Andrew; Goldman, Ellen R
2007-03-01
Shark immunoglobulin new antigen receptor (IgNAR, also referred to as NAR) variable domains (Vs) are single-domain antibody (sdAb) fragments containing only two hypervariable loop structures forming 3D topologies for a wide range of antigen recognition and binding. Their small size ( approximately 12kDa) and high solubility, thermostability and binding specificity make IgNARs an exceptional alternative source of engineered antibodies for sensor applications. Here, two new shark NAR V display libraries containing >10(7) unique clones from non-immunized (naïve) adult spiny dogfish (Squalus acanthias) and smooth dogfish (Mustelus canis) sharks were constructed. The most conserved consensus sequences derived from random clone sequence were compared with published nurse shark (Ginglymostoma cirratum) sequences. Cholera toxin (CT) was chosen for panning one of the naïve display libraries due to its severe pathogenicity and commercial availability. Three very similar CT binders were selected and purified soluble monomeric anti-CT sdAbs were characterized using Luminex(100) and traditional ELISA assays. These novel anti-CT sdAbs selected from our newly constructed shark NAR V sdAb library specifically bound to soluble antigen, without cross reacting with other irrelevant antigens. They also showed superior heat stability, exhibiting slow loss of activity over the course of one hour at high temperature (95 degrees C), while conventional antibodies lost all activity in the first 5-10min. The successful isolation of target specific sdAbs from one of our non-biased NAR libraries, demonstrate their ability to provide binders against an unacquainted antigen of interest.
Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.
2014-01-01
The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058
Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L
2015-01-01
Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904
Kellner, Christian; Bräutigam, Joachim; Staudinger, Matthias; Schub, Natalie; Peipp, Matthias; Gramatzki, Martin; Humpe, Andreas
2012-01-01
CD96, a cell surface antigen recently described to be preferentially expressed on acute myeloid leukemia (AML) leukemic stem cells (LSC) may represent an interesting target structure for the development of antibody-based therapeutic approaches. The v-regions from the CD96-specific hybridoma TH-111 were isolated and used to generate a CD96-specific single chain fragment of the variable regions (scFv). An affinity maturated variant resulting in 4-fold enhanced CD96-binding was generated by random mutagenesis and stringent selection using phage display. The affinity maturated scFv CD96-S32F was used to generate bivalent mini-antibodies by genetically fusing an IgG1 wild type Fc region or a variant with enhanced CD16a binding. Antibody dependent cell-mediated cytotoxicity (ADCC) experiments revealed that Fc engineering was essential to trigger significant effector cell-mediated lysis when the wild type scFv was used. The mini-antibody variant generated by fusing the affinity-maturated scFv with the optimized Fc variant demonstrated the highest ADCC activity (2.3-fold enhancement in efficacy). In conclusion, our data provide proof of concept that CD96 could serve as a target structure for effector cell-mediated lysis and demonstrate that both enhancing affinity for CD96 and for CD16a resulted in mini-antibodies with the highest cytolytic potential. PMID:22879978
Chimeric Antigen Receptor Therapy for Cancer
Barrett, David M.; Singh, Nathan; Porter, David L.; Grupp, Stephan A.; June, Carl H.
2014-01-01
Improved outcomes for patients with cancer hinge on the development of new targeted therapies with acceptable short-term and long-term toxicity. Progress in basic, preclinical, and clinical arenas spanning cellular immunology, synthetic biology, and cell-processing technologies has paved the way for clinical applications of chimeric antigen receptor– based therapies. This new form of targeted immunotherapy merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity and long-term persistence provided by cytotoxic T cells. Although this field is still in its infancy, clinical trials have already shown clinically significant antitumor activity in neuroblastoma, chronic lymphocytic leukemia, and B cell lymphoma, and trials targeting a variety of other adult and pediatric malignancies are under way. Ongoing work is focused on identifying optimal tumor targets and on elucidating and manipulating both cell- and host-associated factors to support expansion and persistence of the genetically engineered cells in vivo. The potential to target essentially any tumor-associated cell-surface antigen for which a monoclonal antibody can be made opens up an entirely new arena for targeted therapy of cancer. PMID:24274181
Mesón, O E; Valdez, J C; de Alderete, N G; Sirena, A; Perdigón, G
1992-01-01
An indirect immunofluorescence assay was carry out to determine the IgM and IgG antibody responses to yeast and mycelial forms of Candida albicans in mice injected with a 5 x 5(5) and 5 x 10(7) live cells suspensions. Prior adsorption of the serum samples with heat-killed blastospores enabled us to follow the specific antimycelial response which were detected considerably later than expected. Slow level of antibodies were obtained within an infection of 5 x 10(5) cell for both antibody classes and for yeast and mycelial forms. When a 5 x 10(7) cell dose was used for inoculation, maximum titers of antibodies to blastospores and mycelium in non-adsorbed sera appeared almost simultaneously (days 15 and 13, respectively). When serum samples from mice infected with the same dose were previously adsorbed with blastospores, the antimycelium antibodies for both types of Igs, were detected delayed during the infection course. In this case the higher titer for IgG appeared on day 33 and on day 23 for IgM. We suggest that the high titer obtained with the blastospore forms for the 5 x 10(7) cell dose may be due to a major immunogenicity of this forms, for to induce an immune response in the host, or that the delay in the antimycelium antibodies detection could be due to that a blastospore form is the predominant in the infection early stages. Implications of this fact for pathogenesis are discussed.
Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M
2001-08-24
An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.
Herrera, Cristina; Vance, David J; Eisele, Leslie E; Shoemaker, Charles B; Mantis, Nicholas J
2014-01-01
Ricin, a member of the A-B family of ribosome-inactivating proteins, is classified as a Select Toxin by the Centers for Disease Control and Prevention because of its potential use as a biothreat agent. In an effort to engineer therapeutics for ricin, we recently produced a collection of alpaca-derived, heavy-chain only antibody VH domains (VHH or "nanobody") specific for ricin's enzymatic (RTA) and binding (RTB) subunits. We reported that one particular RTB-specific VHH, RTB-B7, when covalently linked via a peptide spacer to different RTA-specific VHHs, resulted in heterodimers like VHH D10/B7 that were capable of passively protecting mice against a lethal dose challenge with ricin. However, RTB-B7 itself, when mixed with ricin at a 1 ∶ 10 toxin:antibody ratio did not afford any protection in vivo, even though it had demonstrable toxin-neutralizing activity in vitro. To better define the specific attributes of antibodies associated with ricin neutralization in vitro and in vivo, we undertook a more thorough characterization of RTB-B7. We report that RTB-B7, even at 100-fold molar excess (toxin:antibody) was unable to alter the toxicity of ricin in a mouse model. On the other hand, in two well-established cytotoxicity assays, RTB-B7 neutralized ricin with a 50% inhibitory concentration (IC50) that was equivalent to that of 24B11, a well-characterized and potent RTB-specific murine monoclonal antibody. In fact, RTB-B7 and 24B11 were virtually identical when compared across a series of in vitro assays, including adherence to and neutralization of ricin after the toxin was pre-bound to cell surface receptors. RTB-B7 differed from both 24B11 and VHH D10/B7 in that it was relatively less effective at blocking ricin attachment to receptors on host cells and was not able to form high molecular weight toxin:antibody complexes in solution. Whether either of these activities is important in ricin toxin neutralizing activity in vivo remains to be determined.
Herrera, Cristina; Vance, David J.; Eisele, Leslie E.; Shoemaker, Charles B.; Mantis, Nicholas J.
2014-01-01
Ricin, a member of the A-B family of ribosome-inactivating proteins, is classified as a Select Toxin by the Centers for Disease Control and Prevention because of its potential use as a biothreat agent. In an effort to engineer therapeutics for ricin, we recently produced a collection of alpaca-derived, heavy-chain only antibody VH domains (VHH or “nanobody”) specific for ricin’s enzymatic (RTA) and binding (RTB) subunits. We reported that one particular RTB-specific VHH, RTB-B7, when covalently linked via a peptide spacer to different RTA-specific VHHs, resulted in heterodimers like VHH D10/B7 that were capable of passively protecting mice against a lethal dose challenge with ricin. However, RTB-B7 itself, when mixed with ricin at a 1∶10 toxin:antibody ratio did not afford any protection in vivo, even though it had demonstrable toxin-neutralizing activity in vitro. To better define the specific attributes of antibodies associated with ricin neutralization in vitro and in vivo, we undertook a more thorough characterization of RTB-B7. We report that RTB-B7, even at 100-fold molar excess (toxin:antibody) was unable to alter the toxicity of ricin in a mouse model. On the other hand, in two well-established cytotoxicity assays, RTB-B7 neutralized ricin with a 50% inhibitory concentration (IC50) that was equivalent to that of 24B11, a well-characterized and potent RTB-specific murine monoclonal antibody. In fact, RTB-B7 and 24B11 were virtually identical when compared across a series of in vitro assays, including adherence to and neutralization of ricin after the toxin was pre-bound to cell surface receptors. RTB-B7 differed from both 24B11 and VHH D10/B7 in that it was relatively less effective at blocking ricin attachment to receptors on host cells and was not able to form high molecular weight toxin:antibody complexes in solution. Whether either of these activities is important in ricin toxin neutralizing activity in vivo remains to be determined. PMID:24918772
VHH antibodies: Emerging reagents for the analysis of environmental chemicals
Bever, Candace S.; Dong, Jie-Xian; Vasylieva, Natalia; Barnych, Bogdan; Cui, Yongliang; Xu, Zhen-Lin; Hammock, Bruce D.; Gee, Shirley J.
2016-01-01
A VHH antibody (or nanobody) is the antigen binding fragment of heavy chain only antibodies. Discovered nearly 25 years ago, they have been investigated for their use in clinical therapeutics and immunodiagnostics, and more recently for environmental monitoring applications. A new and valuable immunoreagent for the analysis of small molecular weight environmental chemicals, VHH will overcome many pitfalls encountered with conventional reagents. In the work so far, VHH antibodies often perform comparably to conventional antibodies for small molecule analysis, are amenable to numerous genetic engineering techniques, and show ease of adaption to other immunodiagnostic platforms for use in environmental monitoring. Recent reviews cover the structure and production of VHH antibodies as well as their use in clinical settings. However, no report focuses on the use of these VHH antibodies to small environmental chemicals (MW <1,500 Da). This review article summarizes the efforts made to produce VHHs to various environmental targets, compares the VHH-based assays with conventional antibody assays, and discusses the advantages and limitations in developing these new antibody reagents particularly to small molecule targets. PMID:27209591
Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis.
Yu, Xiaowen; Yang, Yu-Ping; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia
2017-06-12
The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.
Yoshihashi, Kazutaka; Takeda, Minako; Kitazawa, Takehisa; Soeda, Tetsuhiro; Igawa, Tomoyuki; Sampei, Zenjiro; Kuramochi, Taichi; Sakamoto, Akihisa; Haraya, Kenta; Adachi, Kenji; Kawabe, Yoshiki; Nogami, Keiji; Shima, Midori; Hattori, Kunihiro
2014-01-01
ACE910 is a humanized anti-factor IXa/X bispecific antibody mimicking the function of factor VIII (FVIII). We previously demonstrated in nonhuman primates that a single IV dose of ACE910 exerted hemostatic activity against hemophilic bleeds artificially induced in muscles and subcutis, and that a subcutaneous (SC) dose of ACE910 showed a 3-week half-life and nearly 100% bioavailability, offering support for effective prophylaxis for hemophilia A by user-friendly SC dosing. However, there was no direct evidence that such SC dosing of ACE910 would prevent spontaneous bleeds occurring in daily life. In this study, we newly established a long-term primate model of acquired hemophilia A by multiple IV injections of an anti-primate FVIII neutralizing antibody engineered in mouse-monkey chimeric form to reduce its antigenicity. The monkeys in the control group exhibited various spontaneous bleeding symptoms as well as continuous prolongation of activated partial thromboplastin time; notably, all exhibited joint bleeds, which are a hallmark of hemophilia. Weekly SC doses of ACE910 (initial 3.97 mg/kg followed by 1 mg/kg) significantly prevented these bleeding symptoms; notably, no joint bleeding symptoms were observed. ACE910 is expected to prevent spontaneous bleeds and joint damage in hemophilia A patients even with weekly SC dosing, although appropriate clinical investigation is required. PMID:25274508
Individual-specific antibody identification methods
Francoeur, Ann -Michele
1989-11-14
An identification method, applicable to the identification of animals or inanimate objects, is described. The method takes advantage of a hithertofore unknown set of individual-specific, or IS antibodies, that are part of the unique antibody repertoire present in animals, by reacting an effective amount of IS antibodies with a particular panel, or n-dimensional array (where n is typically one or two) consisting of an effective amount of many different antigens (typically greater than one thousand), to give antibody-antigen complexes. The profile or pattern formed by the antigen-antibody complexes, termed an antibody fingerprint, when revealed by an effective amount of an appropriate detector molecule, is uniquely representative of a particular individual. The method can similarly by used to distinguish genetically, or otherwise similar individuals, or their body parts containing IS antibodies. Identification of inanimate objects, particularly security documents, is similarly affected by associating with the documents, an effective amount of a particular individual's IS antibodies, or conversely, a particular panel of antigens, and forming antibody-antigen complexes with a particular panel of antigens, or a particular individual's IS antibodies, respectively. One embodiment of the instant identification method, termed the blocked fingerprint assay, has applications in the area of allergy testing, autoimmune diagnostics and therapeutics, and the detection of environmental antigens such as pathogens, chemicals, and toxins.
Ho, Chia Chi M.; Guo, Nan; Sockolosky, Jonathan T.; Ring, Aaron M.; Weiskopf, Kipp; Özkan, Engin; Mori, Yasuo; Weissman, Irving L.; Garcia, K. Christopher
2015-01-01
CD47 is a cell surface protein that transmits an anti-phagocytic signal, known as the “don't-eat-me” signal, to macrophages upon engaging its receptor signal regulatory protein α (SIRPα). Molecules that antagonize the CD47-SIRPα interaction by binding to CD47, such as anti-CD47 antibodies and the engineered SIRPα variant CV1, have been shown to facilitate macrophage-mediated anti-tumor responses. However, these strategies targeting CD47 are handicapped by large antigen sinks in vivo and indiscriminate cell binding due to ubiquitous expression of CD47. These factors reduce bioavailability and increase the risk of toxicity. Here, we present an alternative strategy to antagonize the CD47-SIRPα pathway by engineering high affinity CD47 variants that target SIRPα, which has restricted tissue expression. CD47 proved to be refractive to conventional affinity maturation techniques targeting its binding interface with SIRPα. Therefore, we developed a novel engineering approach, whereby we augmented the existing contact interface via N-terminal peptide extension, coined “Velcro” engineering. The high affinity variant (Velcro-CD47) bound to the two most prominent human SIRPα alleles with greatly increased affinity relative to wild-type CD47 and potently antagonized CD47 binding to SIRPα on human macrophages. Velcro-CD47 synergizes with tumor-specific monoclonal antibodies to enhance macrophage phagocytosis of tumor cells in vitro, with similar potency as CV1. Finally, Velcro-CD47 interacts specifically with a subset of myeloid-derived cells in human blood, whereas CV1 binds all myeloid, lymphoid, and erythroid populations interrogated. This is consistent with the restricted expression of SIRPα compared with CD47. Herein, we have demonstrated that “Velcro” engineering is a powerful protein-engineering tool with potential applications to other systems and that Velcro-CD47 could be an alternative adjuvant to CD47-targeting agents for cancer immunotherapy. PMID:25837251
James, Aaron W; Zhang, Xinli; Crisan, Mihaela; Hardy, Winters R; Liang, Pei; Meyers, Carolyn A; Lobo, Sonja; Lagishetty, Venu; Childers, Martin K; Asatrian, Greg; Ding, Catherine; Yen, Yu-Hsin; Zou, Erin; Ting, Kang; Peault, Bruno; Soo, Chia
2017-01-01
For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caivano, Antonella; Doria-Rose, Nicole A.; Dept. of Molecular and Cell Biology, University of Washington, Seattle, WA 98124-6108
2010-11-25
We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN{gamma}. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activitymore » and produce IFN{gamma}. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN{gamma}-producing CD4+ T cells.« less
Liu, Hongcheng; Nowak, Christine; Andrien, Bruce; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa
2017-09-01
Glycosylation of the conserved asparagine residue in the CH2 domain is the most common posttranslational modification of recombinant monoclonal antibodies. Ideally, a consistent oligosaccharide profile should be maintained from early clinical material to commercial material for the development of recombinant monoclonal therapeutics, though variation in the profile is a typical result of process changes. The risk of oligosaccharide variation posed to further development is required to be thoroughly evaluated based on its impact on antibody structure, stability, efficacy and safety. The variation should be controlled within a range so that there is no detrimental impact on safety and efficacy and thus allowing the use of early phase safety and efficacy data to support project advancement to later phase. This review article focuses on the current scientific understanding of the commonly observed oligosaccharides found in recombinant monoclonal antibodies and their impact on structure, stability and biological functions, which are the basis to evaluate safety and efficacy. It also provides a brief discussion on critical quality attribute (CQA) assessment with regard to oligosaccharides based on the mechanism of action (MOA). © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1173-1181, 2017. © 2017 American Institute of Chemical Engineers.
Bipolar disorder and antithyroid antibodies: review and case series.
Bocchetta, Alberto; Traccis, Francesco; Mosca, Enrica; Serra, Alessandra; Tamburini, Giorgio; Loviselli, Andrea
2016-12-01
Mood disorders and circulating thyroid antibodies are very prevalent in the population and their concomitant occurrence may be due to chance. However, thyroid antibodies have been repeatedly hypothesized to play a role in specific forms of mood disorders. Potentially related forms include treatment-refractory cases, severe or atypical depression, and depression at specific phases of a woman's life (early gestation, postpartum depression, perimenopausal). With regard to bipolar disorder, studies of specific subgroups (rapid cycling, mixed, or depressive bipolar) have reported associations with thyroid antibodies. Offspring of bipolar subjects were found more vulnerable to develop thyroid antibodies independently from the vulnerability to develop psychiatric disorders. A twin study suggested thyroid antibodies among possible endophenotypes for bipolar disorder. Severe encephalopathies have been reported in association with Hashimoto's thyroiditis. Cases with pure psychiatric presentation are being reported, the antithyroid antibodies being probably markers of some other autoimmune disorders affecting the brain. Vasculitis resulting in abnormalities in cortical perfusion is one of the possible mechanisms.
Challenges and opportunities for monoclonal antibody therapy in veterinary oncology.
Beirão, Breno C B; Raposo, Teresa; Jain, Saurabh; Hupp, Ted; Argyle, David J
2016-12-01
Monoclonal antibodies (mAbs) have come to dominate the biologics market in human cancer therapy. Nevertheless, in veterinary medicine, very few clinical trials have been initiated using this form of therapy. Some of the advantages of mAb therapeutics over conventional drugs are high specificity, precise mode of action and long half-life, which favour infrequent dosing of the antibody. Further advancement in the field of biomedical sciences has led to the production of different forms of antibodies, such as single chain antibody fragment, Fab, bi-specific antibodies and drug conjugates for use in diagnostic and therapeutic purposes. This review describes the potential for mAbs in veterinary oncology in supporting both diagnosis and therapy of cancer. The technical and financial hurdles to facilitate clinical acceptance of mAbs are explored and insights into novel technologies and targets that could support more rapid clinical development are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Targeted drug delivery using genetically engineered diatom biosilica.
Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H
2015-11-10
The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.
Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics.
Shah, Dhaval K
2015-10-01
Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized.
Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics
Shah, Dhaval K.
2015-01-01
Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized. PMID:26373957
Macrophages are critical effectors of antibody therapies for cancer.
Weiskopf, Kipp; Weissman, Irving L
2015-01-01
Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.
Antibody engineering--a valuable asset in preventing closed environment epidemics.
Fjallman, Ted; Hall, J Christopher
2005-01-01
Investigations of Mir, Space Shuttle, Skylab and Apollo missions report extensive colonisation of the spacecraft by bacteria and fungi, which can lead to degradative effects on spacecraft equipment and devastating effects on space-grown crops. More than 80% of terrestrial greenhouse epidemics are due to the fungal genera Phytophthora, Pythium and Fusarium, which have been found in life support system test-beds. The advent of recombinant antibody technologies, including ribosome display and phage display, has made it possible to develop antibodies against virtually any toxin or organism and allows for maturation of antibodies by in vitro molecular evolution. These antibodies may play an important role in an integrated pest management regime for life support systems. Efficacy of existing fungal countermeasures could be increased by chemical linkage to antibodies, which target the site of action of the biocide or trap the pathogen in a biofilter. Novel recombinant antibody-biocide fusions can be expressed in situ by plants or symbiotic microbes to create direct disease resistance. c2005 Elsevier Ltd. All rights reserved.
A semi high-throughput method for screening small bispecific antibodies with high cytotoxicity.
Sugiyama, Aruto; Umetsu, Mitsuo; Nakazawa, Hikaru; Niide, Teppei; Onodera, Tomoko; Hosokawa, Katsuhiro; Hattori, Shuhei; Asano, Ryutaro; Kumagai, Izumi
2017-06-06
Small bispecific antibodies that induce T-cell-mediated cytotoxicity have the potential to damage late-stage tumor masses to a clinically relevant degree, but their cytotoxicity is critically dependent on their structural and functional properties. Here, we constructed an optimized procedure for identifying highly cytotoxic antibodies from a variety of the T-cell-recruiting antibodies engineered from a series of antibodies against cancer antigens of epidermal growth factor receptor family and T-cell receptors. By developing and applying a set of rapid operations for expression vector construction and protein preparation, we screened the cytotoxicity of 104 small antibodies with diabody format and identified some with 10 3 -times higher cytotoxicity than that of previously reported active diabody. The results demonstrate that cytotoxicity is enhanced by synergistic effects between the target, epitope, binding affinity, and the order of heavy-chain and light-chain variable domains. We demonstrate the importance of screening to determine the critical rules for highly cytotoxic antibodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apel, William A; Thompson, Vicki S
A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immunemore » complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.« less
Rapid classification of biological components
Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.
2013-10-15
A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.
Rapid classification of biological components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.
A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine, methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immunemore » complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.« less
Phage displayed scFv: pIII scaffold may fine tune binding specificity.
Goswami, Pooja; Saini, Deepti; Sinha, Subrata
2009-10-01
The fine specificity of antibodies is important for their discriminating powers during diagnostics and in vivo therapy. We have attempted to isolate human scFv antibodies to the oncofetal antigen, the placental isozyme of alkaline phosphatase (PLAP) in which it is important to distinguish between the closely related intestinal alkaline phosphatase (IAP) and bone alkaline phosphatase (BAP) isozymes. As the antibodies are selected in the phage displayed form and might be finally used as different entities, including the soluble scFv form, it may be important to look at the influence of scaffolds in determining specificity. There have been earlier reports of the role of the constant region and other scaffolding proteins in determining specificity. In this paper, we report isolation of one such clone, E6, which showed specificity to PLAP in phage antibody form but lost the specificity when soluble scFv was tested for same, and showed partial cross reactivity to BAP. We suggest that the altered specificity of scFv might be the result of loss of phage pIII scaffold, which is present in phage-displayed antibody and may help the displayed antibody to assume specific conformational structure, which may govern binding characteristics of the same.
Protein and Antibody Engineering by Phage Display.
Frei, J C; Lai, J R
2016-01-01
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. © 2016 Elsevier Inc. All rights reserved.
Lee, Chang-Han; Romain, Gabrielle; Yan, Wupeng; Watanabe, Makiko; Charab, Wissam; Todorova, Biliana; Lee, Jiwon; Triplett, Kendra; Donkor, Moses; Lungu, Oana I; Lux, Anja; Marshall, Nicholas; Lindorfer, Margaret A; Goff, Odile Richard-Le; Balbino, Bianca; Kang, Tae Hyun; Tanno, Hidetaka; Delidakis, George; Alford, Corrine; Taylor, Ronald P; Nimmerjahn, Falk; Varadarajan, Navin; Bruhns, Pierre; Zhang, Yan Jessie; Georgiou, George
2017-08-01
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
Al-Aidaroos, Abdul Qader O.; Hong, Cheng William; Tan, Cheng Peow Bobby; Park, Jung Eun; Varghese, Leyon; Feng, Zhiwei; Zhou, Jianbiao; Chng, Wee Joo; Zeng, Qi
2012-01-01
Antibodies are considered as ‘magic bullets’ because of their high specificity. It is believed that antibodies are too large to routinely enter the cytosol, thus antibody therapeutic approach has been limited to extracellular or secreted proteins expressed by cancer cells. However, many oncogenic proteins are localized within the cell. To explore the possibility of antibody therapies against intracellular targets, we generated a chimeric antibody targeting the intracellular PRL-3 oncoprotein to assess its antitumor activities in mice. Remarkably, we observed that the PRL-3 chimeric antibody could efficiently and specifically reduce the formation of PRL-3 expressing metastatic tumors. We further found that natural killer (NK) cells were important in mediating the therapeutic effect, which was only observed in a nude mouse model (T-cell deficient), but not in a Severe Combined Immunodeficiency’ (scid) mouse model (B- and T-cell deficient), indicating the anticancer effect also depends on host B-cell activity. Our study involving 377 nude and scid mice suggests that antibodies targeting intracellular proteins can be developed to treat cancer. PMID:22374986
Geddie, Melissa L; O'Loughlin, Taryn L; Woods, Kristen K; Matsumura, Ichiro
2005-10-21
The dominant paradigm of protein engineering is structure-based site-directed mutagenesis. This rational approach is generally more effective for the engineering of local properties, such as substrate specificity, than global ones such as allostery. Previous workers have modified normally unregulated reporter enzymes, including beta-galactosidase, alkaline phosphatase, and beta-lactamase, so that the engineered versions are activated (up to 4-fold) by monoclonal antibodies. A reporter that could easily be "reprogrammed" for the facile detection of novel effectors (binding or modifying activities) would be useful in high throughput screens for directed evolution or drug discovery. Here we describe a straightforward and general solution to this potentially difficult design problem. The transcription factor p53 is normally regulated by a variety of post-translational modifications. The insertion of peptides into intrinsically unstructured domains of p53 generated variants that were activated up to 100-fold by novel effectors (proteases or antibodies). An engineered p53 was incorporated into an existing high throughput screen for the detection of human immunodeficiency virus protease, an arbitrarily chosen novel effector. These results suggest that the molecular recognition properties of intrinsically unstructured proteins are relatively easy to engineer and that the absence of crystal structures should not deter the rational engineering of this class of proteins.
Wen, L; Yue, S
1996-01-01
The effect of monoclonal antibody on the form and structure of Mutans Streptococci OMZ176 was studied. The result showed that a great number of Mutans Streptococci OMZ176 was agglutianated after treating with monoclonal antibody prepared by a cell wall protein antigen (molecular weight 220 kd) of Mutans Streptococci OMZ176. Bacterial cells were swollen obviously. The gap between cell wall and cytoplasmic was widened. The electronic density of cell plasm was greatly decreased.
Plantibodies in human and animal health: a review.
Oluwayelu, Daniel O; Adebiyi, Adebowale I
2016-06-01
Antibodies are essential part of vertebrates' adaptive immune system; they can now be produced by transforming plants with antibody-coding genes from mammals/humans. Although plants do not naturally make antibodies, the plant-derived antibodies (plantibodies) have been shown to function in the same way as mammalian antibodies. PubMed and Google search engines were used to download relevant publications on plantibodies in medical and veterinary fields; the papers were reviewed and findings qualitatively described. The process of bioproduction of plantibodies offers several advantages over the conventional method of antibody production in mammalian cells with the cost of antibody production in plants being substantially lesser. Contrary to what is possible with animal-derived antibodies, the process of making plantibodies almost exclusively precludes transfer of pathogens to the end product. Additionally, plants not only produce a relatively high yield of antibodies in a comparatively faster time, they also serve as cost-effective bioreactors to produce antibodies of diverse specificities. Plantibodies are safe, cost-effective and offer more advantages over animal-derived antibodies. Methods of producing them are described with a view to inspiring African scientists on the need to embrace and harness this rapidly evolving biotechnology in solving human and animal health challenges on the continent where the climate supports growth of diverse plants.
Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor
Chen, Zhaochun; Fischer, Elizabeth R.; Kouiavskaia, Diana; Hansen, Bryan T.; Ludtke, Steven J.; Bidzhieva, Bella; Makiya, Michelle; Agulto, Liane; Purcell, Robert H.; Chumakov, Konstantin
2013-01-01
Most structural information about poliovirus interaction with neutralizing antibodies was obtained in the 1980s in studies of mouse monoclonal antibodies. Recently we have isolated a number of human/chimpanzee anti-poliovirus antibodies and demonstrated that one of them, MAb A12, could neutralize polioviruses of both serotypes 1 and 2. This communication presents data on isolation of an additional cross-neutralizing antibody (F12) and identification of a previously unknown epitope on the surface of poliovirus virions. Epitope mapping was performed by sequencing of antibody-resistant mutants and by cryo-EM of complexes of virions with Fab fragments. The results have demonstrated that both cross-neutralizing antibodies bind the site located at the bottom of the canyon surrounding the fivefold axis of symmetry that was previously shown to interact with cellular poliovirus receptor CD155. However, the same antibody binds to serotypes 1 and 2 through different specific interactions. It was also shown to interact with type 3 poliovirus, albeit with about 10-fold lower affinity, insufficient for effective neutralization. Antibody interaction with the binding site of the cellular receptor may explain its broad reactivity and suggest that further screening or antibody engineering could lead to a universal antibody capable of neutralizing all three serotypes of poliovirus. PMID:24277851
A multi-landing pad DNA integration platform for mammalian cell engineering
Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron
2018-01-01
Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873
Li, Dezhi; Gong, Rui; Zheng, Jun; Chen, Xihai; Dimitrov, Dimiter S; Zhao, Qi
2017-04-01
Smaller recombinant antibody fragments are now emerging as alternatives of conventional antibodies. Especially, immunoglobulin (Ig) constant CH2 domain and engineered CH2 with improved stability are promising as scaffolds for selection of specific binders to various antigens. We constructed a yeast display library based on an engineered human IgG1 CH2 scaffold with diversified loop regions. A group of CH2 binders were isolated from this yeast display library by panning against nucleolin, which is a tumor-associated antigen involved in cell proliferation, tumor cell growth and angiogenesis. Out of 20 mutants, we selected 3 clones exhibiting relatively high affinities to nucleolin on yeasts. However, recombinant CH2 mutants aggregated when they were expressed. To find the mechanism of the aggregation, we employed computational prediction approaches through structural homology models of CH2 binders. The analysis of potential aggregation prone regions (APRs) and solvent accessible surface areas (ASAs) indicated two hydrophobic residues, Val 264 and Leu 309 , in the β-sheet, in which replacement of both charged residues led to significant decrease of the protein aggregation. The newly identified CH2 binders could be improved to use as candidate therapeutics or research reagents in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Morales, Javier F; Yu, Bin; Perez, Gerardo; Mesa, Kathryn A; Alexander, David L; Berman, Phillip W
2016-09-01
The V1/V2 domain of the HIV-1 envelope protein gp120 possesses two important epitopes: a glycan-dependent epitope recognized by the prototypic broadly neutralizing monoclonal antibody (bN-mAb), PG9, as well as an epitope recognized by non-neutralizing antibodies that has been associated with protection from HIV infection in the RV144 HIV vaccine trial. Because both of these epitopes are poorly immunogenic in the context of full length envelope proteins, immunization with properly folded and glycosylated fragments (scaffolds) represents a potential way to enhance the immune response to these specific epitopes. Previous studies showed that V1/V2 domain scaffolds could be produced from a few selected isolates, but not from many of the isolates that would be advantageous in a multivalent vaccine. In this paper, we used a protein engineering approach to improve the conformational stability and antibody binding activity of V1/V2 domain scaffolds from multiple diverse isolates, including several that were initially unable to bind the prototypic PG9 bN-mAb. Significantly, this effort required replicating both the correct glycan structure as well as the β-sheet structure required for PG9 binding. Although scaffolds incorporating the glycans required for PG9 binding (e.g., mannose-5) can be produced using glycosylation inhibitors (e.g., swainsonine), or mutant cell lines (e.g. GnTI(-) 293 HEK), these are not practical for biopharmaceutical production of proteins intended for clinical trials. In this report, we describe engineered glycopeptide scaffolds from three different clades of HIV-1 that bind PG9 with high affinity when expressed in a wildtype cell line suitable for biopharmaceutical production. The mutations that improved PG9 binding to scaffolds produced in normal cells included amino acid positions outside of the antibody contact region designed to stabilize the β-sheet and turn structures. The scaffolds produced address three major problems in HIV vaccine development: (1) improving antibody responses to poorly immunogenic epitopes in the V1/V2 domain; (2) eliminating antibody responses to highly immunogenic (decoy) epitopes outside the V1/V2 domain; and (3) enabling the production of V1/V2 scaffolds in a cell line suitable for biopharmaceutical production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells
Velmurugan, Ramraj; Challa, Dilip K.; Ram, Sripad; Ober, Raimund J.; Ward, E. Sally
2016-01-01
Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is pro-tumorigenic. In the current study we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. PMID:27226489
De novo sequencing and resurrection of a human astrovirus-neutralizing antibody
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanoff, Walter A.; Morgenstern, David; Bern, Marshall
Monoclonal antibody (mAb) therapeutics targeting cancer, autoimmune diseases, inflammatory diseases, and infectious diseases are growing exponentially. Although numerous panels of mAbs targeting infectious disease agents have been developed, their progression into clinically useful mAbs is often hindered by the lack of sequence information and/or loss of hybridoma cells that produce them. Here we combine the power of crystallography and mass spectrometry to determine the amino acid sequence and glycosylation modification of the Fab fragment of a potent human astrovirus-neutralizing mAb. We used this information to engineer a recombinant antibody single-chain variable fragment that has the same specificity as the parentmore » monoclonal antibody to bind to the astrovirus capsid protein. Furthermore, this antibody can now potentially be developed as a therapeutic and diagnostic agent.« less
De novo sequencing and resurrection of a human astrovirus-neutralizing antibody
Bogdanoff, Walter A.; Morgenstern, David; Bern, Marshall; ...
2016-03-14
Monoclonal antibody (mAb) therapeutics targeting cancer, autoimmune diseases, inflammatory diseases, and infectious diseases are growing exponentially. Although numerous panels of mAbs targeting infectious disease agents have been developed, their progression into clinically useful mAbs is often hindered by the lack of sequence information and/or loss of hybridoma cells that produce them. Here we combine the power of crystallography and mass spectrometry to determine the amino acid sequence and glycosylation modification of the Fab fragment of a potent human astrovirus-neutralizing mAb. We used this information to engineer a recombinant antibody single-chain variable fragment that has the same specificity as the parentmore » monoclonal antibody to bind to the astrovirus capsid protein. Furthermore, this antibody can now potentially be developed as a therapeutic and diagnostic agent.« less
Extending Serum Half-life of Albumin by Engineering Neonatal Fc Receptor (FcRn) Binding*
Andersen, Jan Terje; Dalhus, Bjørn; Viuff, Dorthe; Ravn, Birgitte Thue; Gunnarsen, Kristin Støen; Plumridge, Andrew; Bunting, Karen; Antunes, Filipa; Williamson, Rebecca; Athwal, Steven; Allan, Elizabeth; Evans, Leslie; Bjørås, Magnar; Kjærulff, Søren; Sleep, Darrell; Sandlie, Inger; Cameron, Jason
2014-01-01
A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals. PMID:24652290
Conti, Stefania; Magliani, Walter; Arseni, Simona; Frazzi, Raffaele; Salati, Antonella; Ravanetti, Lara; Polonelli, Luciano
2002-06-01
Monoclonal (KTmAb) and recombinant (KTscFv) anti-idiotypic antibodies, representing the internal image of a yeast killer toxin, proved to be microbicidal in vitro against important eukaryotic and prokaryotic pathogens such as Candida albicans, Pneumocystis carinii, Mycobacterium tuberculosis, Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae, including multidrug-resistant strains. KTmAb and KTscFv exerted a strong therapeutic effect in well-established animal models of candidiasis and pneumocystosis. Streptococcus mutans is the most important etiologic agent of dental caries that might result from the metabolic end products of dental plaque. Effective strategies to reduce the disease potential of dental plaque have considered the possibility of using antibiotics or antibodies against oral streptococci in general and S. mutans in particular. In this study, the activity of KTmAb and KTscFv against S. mutans and the inhibition and reduction by KTmAb of dental colonization by S. mutans and other oral streptococci in an ex vivo model of human teeth were investigated. KTscFv and KTmAb were used in a conventional colony forming unit (CFU) assay against a serotype C strain of S. mutans, and other oral streptococci (S. intermedius, S. mitis, S. oralis, S. salivarius). An ex vivo model of human teeth submerged in saliva was used to establish KTmAb potential of inhibiting or reducing the adhesion to dental surfaces by S. mutans and other oral streptococci. KTmAb and KTscFv kill in vitro S. mutans and other oral streptococci. KTmAb inhibit colonization of dental surfaces by S. mutans and oral streptococci in the ex vivo model. Killer antibodies with antibiotic activity or their engineered derivatives may have a potential in the prevention of dental caries in vivo.
Affinity purification of antibodies
USDA-ARS?s Scientific Manuscript database
Antibodies are provided in a variety of formats that includes antiserum, hybridoma culture supernatant or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facil...
Role of the constant region domain in the structural diversity of human antibody light chains.
Hifumi, Emi; Taguchi, Hiroaki; Kato, Ryuichi; Uda, Taizo
2017-04-01
Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM -1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains. © FASEB.
Levofloxacin-Induced Acute Immune-Mediated Thrombocytopenia of Rapid-Onset.
Shih, Andrew W; Lam, Andy S; Warkentin, Theodore E
2018-04-01
Drug-induced immune thrombocytopenia (D-ITP) typically occurs after the patient has been receiving the implicated drug for at least 1 week, due to newly forming drug-dependent antibodies ("typical-onset" D-ITP). A "rapid-onset" form of D-ITP can occur when previous sensitization has occurred, where antibodies have thus already been formed, and a precipitous platelet count fall occurs upon reexposure. Typical-onset D-ITP has been reported after levofloxacin, but the rapid-onset form with a well-documented previous exposure has not been described. We report a 76-year-old male treated with levofloxacin for acute exacerbation of chronic obstructive pulmonary disease. After a single 750 mg oral dose of levofloxacin, his platelet count fell from 187 to 5 × 10 9 /L (nadir) over 4 days. Other causes of thrombocytopenia were ruled out. He had received a previous course of levofloxacin 6 months earlier. Discontinuation of levofloxacin and treatment with intravenous immunoglobulin and dexamethasone resulted in platelet count recovery. Levofloxacin-dependent antibodies were not detectable, consistent with the known low sensitivity of laboratory tests for drug-dependent antibodies, presumably indicating antibodies against levofloxacin metabolites, as is indirectly supported by the abrupt but relatively slow platelet count decline observed. This case illustrates a rapid-onset presentation of levofloxacin-induced D-ITP in the setting of previous drug exposure.
Three forms of immune myasthenia.
Agius, Mark A; Richman, David P; Fairclough, Robert H; Aarli, Johan; Gilhus, Nils Erik; Romi, Fredrik
2003-09-01
We propose a new classification for immune myasthenia based on antibody pattern. The types of immune myasthenia presently characterized by known antibody targets segregate into three groups: type 1, in which the muscle target is the acetylcholine receptor only; type 2, in which titin antibodies are present in addition to acetylcholine receptor antibodies; and type 3, in which muscle-specific kinase antibodies are present in the absence of acetylcholine receptor antibodies. The immune target is unknown in the patients with immune myasthenia not associated with these antibodies. This classification has advantages over the present classifications as regards homogeneity of groups, etiology, mechanism of disease, and prognosis.
[Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].
Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming
2016-11-25
Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.
The state-of-play and future of antibody therapeutics.
Elgundi, Zehra; Reslan, Mouhamad; Cruz, Esteban; Sifniotis, Vicki; Kayser, Veysel
2017-12-01
It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field. Copyright © 2016 Elsevier B.V. All rights reserved.
Messer, William B; Yount, Boyd L; Royal, Scott R; de Alwis, Ruklanthi; Widman, Douglas G; Smith, Scott A; Crowe, James E; Pfaff, Jennifer M; Kahle, Kristen M; Doranz, Benjamin J; Ibarra, Kristie D; Harris, Eva; de Silva, Aravinda M; Baric, Ralph S
2016-05-15
The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus have been incompletely described. Here we map a region on dengue virus serotype 3 recognized by the human neutralizing antibody 5J7 and then test the functional significance of this region by transplanting it into a serotype 1 virus. Our studies demonstrate a region on dengue virus necessary for 5J7 binding and neutralization. Our work also demonstrates the technical feasibility of engineering dengue viruses to display targets of protective antibodies. This technology can be used to develop new dengue vaccines and diagnostic assays. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Jahn, Lorenz; Hagedoorn, Renate S.; van der Steen, Dirk M.; Hombrink, Pleun; Kester, Michel G.D.; Schoonakker, Marjolein P.; de Ridder, Daniëlle; van Veelen, Peter A.; Falkenburg, J.H. Frederik; Heemskerk, Mirjam H.M.
2016-01-01
CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy. PMID:27689397
Jahn, Lorenz; Hagedoorn, Renate S; van der Steen, Dirk M; Hombrink, Pleun; Kester, Michel G D; Schoonakker, Marjolein P; de Ridder, Daniëlle; van Veelen, Peter A; Falkenburg, J H Frederik; Heemskerk, Mirjam H M
2016-11-01
CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy.
Genetically engineered multivalent single chain antibody constructs for cancer therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surinder Batra, Ph D
2006-02-27
Current therapeutic approaches against the advanced stages of human solid tumors are palliative rather than curative. Many modalities, including, surgery, radiation, and chemotherapy, either alone or in combination have met with only modest success for advanced metastatic cancers. Radioimmunotherapy (RIT) combines the specificity of monoclonal antibodies with cytotxic effects of radioisotopes. It is the smart way of delivering radiation to the known and occult metastatic cancer cells and is independent of drug toxicity and/or hormone resistance. The tumor associated glycoprotein-72 (TAG-72) containing the unique disaccharide sialyl-Tn, is highly expressed in majority of adenocarcinomas, including carcinomas of the prostate, breast, ovaries,more » pancreas and colon (80-90%) compared to undetectable expression in normal tissues. Monoclonal antibody CC49, reactive with TAG-72, after conjugation to potent gamma- and beta-emitting radionuclides, has been useful in selective systemic radiolocalization of disease and therapy of primary and metastatic tumor sites. However, limited therapeutic responses were observed in patients. Limited success of antibody based delivery of radioisotopes can be attributed to several factors including undesirable pharmacokinetics, poor tumor uptake and high immunogenicity of intact antibodies (IgGs). The primary factors contributing towards the failure of RIT include: 1) longer serum half-lives of the intact IgG molecules resulting in the radiotoxicity, 2) generation of human antibodies against murine antibodies (HAMA) that limits the frequency of dose administration, 3) poor diffusion rates of intact IgG due to the large size and 4) high interstitial fluid pressures (IFP) encountered in solid tumors. The major goal of our multidisciplinary project was to develop specific novel radiopharmaceuticals, with desired pharmacokinetics, for the diagnosis and therapy of solid tumors. To overcome the low uptake of radioactivity by tumors and to increase its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more compatible with RIT and RIS requirements. For RIT, delivery for sc(Fv)2 and [sc(Fv)2]2 in a fractionated schedule clearly presented a therapeutic advantage over single administration. The treatment group receiving tetravalent scFv showed a statistically significant prolonged survival with both single and fractionated administrations. 99mTc-labeled multivalent scFvs show good tumor targeting characteristics with high radiolocalization indices (tumor:background ratio). Macroautoradiography performed at 6 and 16 h post administration of labeled 99mTc-sc(Fv)2 and 99mTc-[sc(Fv)2] clearly detected the tumors in mice. Huamnaized scFs showed decreased immunogencity with patient sera.« less
Rapid classification of biological components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.
A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens of the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array,more » thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.« less
Rapid classification of biological components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.
A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array,more » thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.« less
Use of Synthetic Antibodies Targeted to the Jak/Stat Pathway in Breast Cancer
2011-03-01
substance P ( SP ), an 11 amino acid neuropeptide that is rapidly internalized through specific interaction...no. 27 11011–11015 BI O CH EM IS TR Y Results Engineering a Delivery Vehicle Based on Substance P . Substance P ( SP ) is an 11 amino acid... substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells, Proc Natl Acad Sci USA. 106:11011- 5 , 2009.
Kirton, Christopher M; Laukkanen, Marja-Leena; Nieminen, Antti; Merinen, Marika; Stolen, Craig M; Armour, Kathryn; Smith, David J; Salmi, Marko; Jalkanen, Sirpa; Clark, Michael R
2005-11-01
Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflammatory therapy. In this study we have constructed mouse-human chimeric antibodies by genetic engineering in order to circumvent the potential problems involved in using murine antibodies in man. Our chimeric anti-VAP-1 antibodies, which were designed to lack Fc-dependent effector functions, bound specifically to cell surface-expressed recombinant human VAP-1 and recognized VAP-1 in different cell types in tonsil. Furthermore, the chimeric antibodies prevented leukocyte adhesion and transmigration in vitro and in vivo. Hence, these chimeric antibodies have the potential to be used as a new anti-inflammatory therapy.
Zhao, Xuelian; Howell, Katie A.; He, Shihua; Brannan, Jennifer M.; Wec, Anna Z.; Davidson, Edgar; Turner, Hannah L.; Chiang, Chi-I; Lei, Lin; Fels, J. Maximilian; Vu, Hong; Shulenin, Sergey; Turonis, Ashley N.; Kuehne, Ana I.; Liu, Guodong; Ta, Mi; Wang, Yimeng; Sundling, Christopher; Xiao, Yongli; Spence, Jennifer S.; Doranz, Benjamin J.; Holtsberg, Frederick W.; Ward, Andrew B.; Chandran, Kartik; Dye, John M.; Qiu, Xiangguo; Li, Yuxing; Aman, M. Javad
2018-01-01
Summary While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N-terminus of the ebolavirus glycoproteins (GP) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails. PMID:28525756
Yamada, Tadaaki; Bando, Hideaki; Takeuchi, Shinji; Kita, Kenji; Li, Qi; Wang, Wei; Akinaga, Shiro; Nishioka, Yasuhiko; Sone, Saburo; Yano, Seiji
2011-12-01
Small-cell lung cancer (SCLC) grows rapidly and metastasizes to multiple organs. We examined the antimetastatic effects of the humanized anti-ganglioside GM2 (GM2) antibodies, BIW-8962 and KM8927, compared with the chimeric antibody KM966, in a SCID mouse model of multiple organ metastases induced by GM2-expressing SCLC cells. BIW-8962 and KM8927 induced higher antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity than KM966 against the GM2-expressing SCLC cell line SBC-3 in vitro. These humanized antibodies inhibited the production of multiple organ metastases, increased the number of apoptotic cells, and prolonged the survival of the SCID mice. Histological analyses using clinical specimens showed that SCLC cells expressed GM2. These findings suggest that humanized anti-GM2 antibodies could be therapeutically useful for controlling multiple organ metastases of GM2-expressing SCLC. © 2011 Japanese Cancer Association.
Peng, Haiyong; Nerreter, Thomas; Chang, Jing; Qi, Junpeng; Li, Xiuling; Karunadharma, Pabalu; Martinez, Gustavo J; Fallahi, Mohammad; Soden, Jo; Freeth, Jim; Beerli, Roger R; Grawunder, Ulf; Hudecek, Michael; Rader, Christoph
2017-09-15
Owing to their high affinities and specificities, rabbit monoclonal antibodies (mAbs) have demonstrated value and potential primarily as basic research and diagnostic reagents, but, in some cases, also as therapeutics. To accelerate access to rabbit mAbs bypassing immunization, we generated a large naïve rabbit antibody repertoire represented by a phage display library encompassing >10 billion independent antibodies in chimeric rabbit/human Fab format and validated it by next-generation sequencing. Panels of rabbit mAbs selected from this library against two emerging cancer targets, ROR1 and ROR2, revealed high diversity, affinity, and specificity. Moreover, ROR1- and ROR2-targeting rabbit mAbs demonstrated therapeutic utility as components of chimeric antigen receptor-engineered T cells, further corroborating the value of the naïve rabbit antibody library as a rich and virtually unlimited source of rabbit mAbs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bridging disulfides for stable and defined antibody drug conjugates.
Badescu, George; Bryant, Penny; Bird, Matthew; Henseleit, Korinna; Swierkosz, Julia; Parekh, Vimal; Tommasi, Rita; Pawlisz, Estera; Jurlewicz, Kosma; Farys, Monika; Camper, Nicolas; Sheng, XiaoBo; Fisher, Martin; Grygorash, Ruslan; Kyle, Andrew; Abhilash, Amrita; Frigerio, Mark; Edwards, Jeff; Godwin, Antony
2014-06-18
To improve both the homogeneity and the stability of ADCs, we have developed site-specific drug-conjugating reagents that covalently rebridge reduced disulfide bonds. The new reagents comprise a drug, a linker, and a bis-reactive conjugating moiety that is capable of undergoing reaction with both sulfur atoms derived from a reduced disulfide bond in antibodies and antibody fragments. A disulfide rebridging reagent comprising monomethyl auristatin E (MMAE) was prepared and conjugated to trastuzumab (TRA). A 78% conversion of antibody to ADC with a drug to antibody ratio (DAR) of 4 was achieved with no unconjugated antibody remaining. The MMAE rebridging reagent was also conjugated to the interchain disulfide of a Fab derived from proteolytic digestion of TRA, to give a homogeneous single drug conjugated product. The resulting conjugates retained antigen-binding, were stable in serum, and demonstrated potent and antigen-selective cell killing in in vitro and in vivo cancer models. Disulfide rebridging conjugation is a general approach to prepare stable ADCs, which does not require the antibody to be recombinantly re-engineered for site-specific conjugation.
Influence of macromolecular precipitants on phase behavior of monoclonal antibodies.
Rakel, Natalie; Galm, Lara; Bauer, Katharina Christin; Hubbuch, Juergen
2015-01-01
For the successful application of protein crystallization as a downstream step, a profound knowledge of protein phase behavior in solutions is needed. Therefore, a systematic screening was conducted to analyze the influence of macromolecular precipitants in the form of polyethylene glycol (PEG). First, the influence of molecular weight and concentration of PEG at different pH-values were investigated and analyzed in three-dimensional (3-D) phase diagrams to find appropriate conditions in terms of a fast kinetic and crystal size for downstream processing. In comparison to the use of salts as precipitant, PEG was more suitable to obtain compact 3-D crystals over a broad range of conditions, whereby the molecular weight of PEG is, besides the pH-value, the most important parameter. Second, osmotic second virial coefficients as parameters for protein interactions are experimentally determined with static light scattering to gain a deep insight view in the phase behavior on a molecular basis. The PEG-protein solutions were analyzed as a pseudo-one-compartment system. As the precipitant is also a macromolecule, the new approach of analyzing cross-interactions between the protein and the macromolecule PEG in form of the osmotic second cross-virial coefficient (B23 ) was applied. Both parameters help to understand the protein phase behavior. However, a predictive description of protein phase behavior for systems consisting of monoclonal antibodies and PEG as precipitant is not possible, as kinetic phenomena and concentration dependencies were not taken into account. © 2014 American Institute of Chemical Engineers.
Basilico, Cristina; Modica, Chiara; Maione, Federica; Vigna, Elisa; Comoglio, Paolo M
2018-04-25
MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMET K842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMET K842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience." © 2018 UICC.
Rathore, Anurag S; Kumar Singh, Sumit; Pathak, Mili; Read, Erik K; Brorson, Kurt A; Agarabi, Cyrus D; Khan, Mansoor
2015-01-01
Fermentanomics is an emerging field of research and involves understanding the underlying controlled process variables and their effect on process yield and product quality. Although major advancements have occurred in process analytics over the past two decades, accurate real-time measurement of significant quality attributes for a biotech product during production culture is still not feasible. Researchers have used an amalgam of process models and analytical measurements for monitoring and process control during production. This article focuses on using multivariate data analysis as a tool for monitoring the internal bioreactor dynamics, the metabolic state of the cell, and interactions among them during culture. Quality attributes of the monoclonal antibody product that were monitored include glycosylation profile of the final product along with process attributes, such as viable cell density and level of antibody expression. These were related to process variables, raw materials components of the chemically defined hybridoma media, concentration of metabolites formed during the course of the culture, aeration-related parameters, and supplemented raw materials such as glucose, methionine, threonine, tryptophan, and tyrosine. This article demonstrates the utility of multivariate data analysis for correlating the product quality attributes (especially glycosylation) to process variables and raw materials (especially amino acid supplements in cell culture media). The proposed approach can be applied for process optimization to increase product expression, improve consistency of product quality, and target the desired quality attribute profile. © 2015 American Institute of Chemical Engineers.
[Neuroimmunological diseases associated with VGKC complex antibodies].
Watanabe, Osamu
2013-05-01
Antibodies to voltage-gated potassium channels(VGKC) were first identified by radioimmunoassay of radioisotope labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were found only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in Morvan's syndrome and in a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins(for example LGI-1, Caspr-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now usually known as VGKC-complex antibodies. In general, LGI-1 antibodies are most common in limbic encephalitis with SIADH. Caspr-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability.
Tharakaraman, Kannan; Robinson, Luke N.; Hatas, Andrew; Chen, Yi-Ling; Siyue, Liu; Raguram, S.; Sasisekharan, V.; Wogan, Gerald N.; Sasisekharan, Ram
2013-01-01
Affinity improvement of proteins, including antibodies, by computational chemistry broadly relies on physics-based energy functions coupled with refinement. However, achieving significant enhancement of binding affinity (>10-fold) remains a challenging exercise, particularly for cross-reactive antibodies. We describe here an empirical approach that captures key physicochemical features common to antigen–antibody interfaces to predict protein–protein interaction and mutations that confer increased affinity. We apply this approach to the design of affinity-enhancing mutations in 4E11, a potent cross-reactive neutralizing antibody to dengue virus (DV), without a crystal structure. Combination of predicted mutations led to a 450-fold improvement in affinity to serotype 4 of DV while preserving, or modestly increasing, affinity to serotypes 1–3 of DV. We show that increased affinity resulted in strong in vitro neutralizing activity to all four serotypes, and that the redesigned antibody has potent antiviral activity in a mouse model of DV challenge. Our findings demonstrate an empirical computational chemistry approach for improving protein–protein docking and engineering antibody affinity, which will help accelerate the development of clinically relevant antibodies. PMID:23569282
Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald
2017-07-01
In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa; Calvo-Calle, J Mauricio; Moreno, Alberto
2015-09-01
Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular immune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported approach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PvRMC-CSP, a recombinant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immunogenicity of PvRMC-CSP in groups of six inbred strains of mice. PvRMC-CSP was able to induce robust antibody responses in all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a similar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional CD4(+) and CD8(+) PvRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immunization with PvRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PvRMC-CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These features make PvRMC-CSP a promising vaccine candidate for further development. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa; Calvo-Calle, J. Mauricio
2015-01-01
Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular immune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported approach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PvRMC-CSP, a recombinant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immunogenicity of PvRMC-CSP in groups of six inbred strains of mice. PvRMC-CSP was able to induce robust antibody responses in all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a similar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional CD4+ and CD8+ PvRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immunization with PvRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PvRMC-CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These features make PvRMC-CSP a promising vaccine candidate for further development. PMID:26169267
Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates.
Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao
2017-01-01
Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.
Hashimoto, Haruo; Eto, Tomoo; Suemizu, Hiroshi; Ito, Mamoru
2013-02-01
In this study, we attempted to apply new convenience gender sorting methods using sex-determining region Y (SRY) gene expression on Y spermatozoa to mice. Mouse spermatozoa labeled with Cy3-SRY antibody conjugate were used for intracytoplasmic sperm injection (ICSI). In addition, spermatozoa conjugated with SRY antibody were conjugated with magnetic beads (Mag) and were pulled to the bottom of the medium. The supernatant of the medium was used for in vitro fertilization (IVF). The rate of males reproduced by ICSI using the spermatozoa conjugated with Cy3-SRY antibody was 86.1%. The female proportion reproduced by IVF using the spermatozoa separated in the supernatant after Mag-SRY antibody conjugation was 67.3%. These gender sorting methods are effective for the reproduction of transgenic mice.
Selection of stable scFv antibodies by phage display.
Brockmann, Eeva-Christine
2012-01-01
ScFv fragments are popular recombinant antibody formats but often suffer from limited stability. Phage display is a powerful tool in antibody engineering and applicable also for stability selection. ScFv variants with improved stability can be selected from large randomly mutated phage displayed libraries with a specific antigen after the unstable variants have been inactivated by heat or GdmCl. Irreversible scFv denaturation, which is a prerequisite for efficient selection, is achieved by combining denaturation with reduction of the intradomain disulfide bonds. Repeated selection cycles of increasing stringency result in enrichment of stabilized scFv fragments. Procedures for constructing a randomly mutated scFv library by error-prone PCR and phage display selection for enrichment of stable scFv antibodies from the library are described here.
Gorris, Hans H; Bade, Steffen; Röckendorf, Niels; Fránek, Milan; Frey, Andreas
2011-08-17
The sensitivity of antibody/hapten-based labeling systems is limited by the natural affinity ceiling of immunoglobulins. Breaking this limit by antibody engineering is difficult. We thus attempted a different approach and investigated if the so-called bridge effect, a corecognition of the linker present between hapten and carrier protein during antibody generation, can be utilized to improve the affinity of such labeling systems. The well-known haptens 2,4-dinitrophenol (2,4-DNP) and 2,4-dichlorophenoxyacetic acid (2,4-D) were equipped with various linkers, and the resulting affinity change of their cognate antibodies was analyzed by ELISA. Anti-2,4-DNP antibodies exhibited the best affinity to their hapten when it was combined with aminobutanoic acid or aminohexanoic acid. The affinity of anti-2,4-D antibodies could be enhanced even further with longer aliphatic spacers connected to the hapten. The affinity toward aminoundecanoic acid-2,4-D derivatives, for instance, was improved about 100-fold compared to 2,4-D alone and yielded detection limits as low as 100 amoles of analyte. As the effect occurred for all antibodies and haptens tested, it may be sensible to implement the bridge effect in future antibody/hapten-labeling systems in order to achieve the highest sensitivity possible.
Seidel, Ursula J. E.; Schlegel, Patrick; Lang, Peter
2013-01-01
In the last decade several therapeutic antibodies have been Federal Drug Administration (FDA) and European Medicines Agency (EMEA) approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumor models. However, a direct in vivo effect of ADCC in tumor reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic hematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of Killer-cell Immunoglobuline-like Receptor (KIR) receptor ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function. PMID:23543707
Meng, Q.; Garcia-Rodriguez, C.; Manzanarez, G.; Silberg, M.A.; Conrad, F.; Bettencourt, J.; Pan, X.; Breece, T.; To, R.; Li, M.; Lee, D.; Thorner, L.; Tomic, M.T.; Marks, J.D.
2014-01-01
Quantitation of individual mAbs within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins (XOMA 3B and XOMA 3E) each consisting of three monoclonal antibodies (mAbs) that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (HN). Epitope mapping data was used to design LC-HN domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or 3E. Mutant LC-HN domains were cloned, expressed, and purified from E. coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of ELISAs that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B, and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein. PMID:22922799
Tillotson, Benjamin J; Goulatis, Loukas I; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V
2015-01-01
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.
Tillotson, Benjamin J.; Goulatis, Loukas I.; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V.
2015-01-01
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes. PMID:26713870
Designing proteins for therapeutic applications.
Lazar, Greg A; Marshall, Shannon A; Plecs, Joseph J; Mayo, Stephen L; Desjarlais, John R
2003-08-01
Protein design is becoming an increasingly useful tool for optimizing protein drugs and creating novel biotherapeutics. Recent progress includes the engineering of monoclonal antibodies, cytokines, enzymes and viral fusion inhibitors.
Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K
2016-01-01
The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody. PMID:26496237
Molecular Engineering of Surfaces for Sensing and Detection
2005-08-01
solution was flowed in both chambers at a concentration of 0.05 mg/mL. Biotinylated single- stranded oligonucleotides ( bDNA ) were immobilized on the layer...correspondence between surface-bound bDNA and conjugate, a theoretical minimum coverage of 1.18 × 1012 molecules/cm2 of bDNA is necessary to...immobilize a monolayer of antibody. Above this bDNA coverage a monolayer of immobilized antibody should be observed. These theoretical values are
NASA Astrophysics Data System (ADS)
O’Kennedy, Richard; Fitzgerald, Jenny; Cassedy, Arabelle; Crawley, Aoife; Zhang, Xin; Carrera, Sandro
2018-06-01
This review is designed to focus on antibodies and the attributes that make them ideal for applications in microfluidics-based diagnostic/separation platforms. The structures of different antibody formats and how they can be engineered to be highly effective in microfluidics-based environments will be highlighted. Suggested novel stratagems on the ideal way in which they can be employed in microfluidics systems, based on an informed knowledge of their structures and properties rather than random choice selection, as is often currently employed, will be provided. Finally, a critical assessment of current shortcomings in the approaches used along with possible ways for their resolution will be given.
Kawahara, Masahiro; Ogo, Yuko; Ueda, Hiroshi; Nagamune, Teruyuki
2004-10-01
Structure-based design of antibody/cytokine receptor chimeras has permitted a growth signal transduction in response to non-natural ligands such as fluorescein-conjugated BSA as mimicry of cytokine-cytokine receptor systems. However, while tight on/off regulation is observed in the natural cytokine receptor systems, many chimeras constructed to date showed residual growth-promoting activity in the absence of ligands. Here we tried to reduce the basal growth signal intensity from a chimera by engineering the transmembrane domain (TM) that is thought to be involved in the interchain interaction of natural cytokine receptors. When the retroviral vectors encoding the chimeras with either the wild-type erythropoietin receptor (EpoR) TM or the one bearing two mutations in the leucine zipper motif were transduced to non-strictly interleukin-6-dependent 7TD1 cells, a tight antigen-dependent on/off regulation was attained, also demonstrating the first antigen-mediated genetically modified cell amplification of non-strictly factor-dependent cells. The results clearly indicate that the TM mutation is an effective means to improve the growth response of the antibody/receptor chimera.
Engineered Recombinant Single-Chain Fragment Variable Antibody for Immunosensors
Shen, Zhihong; Mernaugh, Raymond L.; Yan, Heping; Yu, Lei; Zhang, Ying; Zeng, Xiangqun
2008-01-01
A recombinant single-chain fragment variable (scFv) antibody (designated A10B) was engineered to contain two histidines within the linker peptide used to join the scFv heavy and light chains. A piezoimmunosensor using the scFv was successfully developed. A10B scFv bound to the gold piezoimmunosensor surface were correctly oriented, retained antigen-binding activity, and coupled at high surface concentration. These results, and results obtained from an earlier study using an scFv containing a linker cysteine, suggest that the location on the linker sequence in which the amino acids were incorporated was well tolerated by the scFv and did not interfere with scFv antigen-binding activity. The scFv-modified QCM sensor was thoroughly characterized and used to specifically detect antigen in crude serum sample and had a sensitivity of 2.3 ± 0.15 nM (n = 4) with a linear range over 2.3 × 10−9–3.3 × 10−8 M. The piezoimmunosensor was also used to study the kinetics and thermodynamics of antigen/scFv antibody binding. PMID:16255580
Materials composed of the Drosophila Hox protein Ultrabithorax are biocompatible and nonimmunogenic.
Patterson, Jan L; Arenas-Gamboa, Angela M; Wang, Ting-Yi; Hsiao, Hao-Ching; Howell, David W; Pellois, Jean-Philippe; Rice-Ficht, Allison; Bondos, Sarah E
2015-04-01
Although the in vivo function of the Drosophila melanogaster Hox protein Ultrabithorax (Ubx) is to regulate transcription, in vitro Ubx hierarchically self-assembles to form nanoscale to macroscale materials. The morphology, mechanical properties, and functionality (via protein chimeras) of Ubx materials are all easily engineered. Ubx materials are also compatible with cells in culture. These properties make Ubx attractive as a potential tissue engineering scaffold, but to be used as such they must be biocompatible and nonimmunogenic. In this study, we assess whether Ubx materials are suitable for in vivo applications. When implanted into mice, Ubx fibers attracted few immune cells to the implant area. Sera from mice implanted with Ubx contain little to no antibodies capable of recognizing Ubx. Furthermore, Ubx fibers cultured with macrophages in vitro did not lyse or activate the macrophages, as measured by TNF-α and NO secretion. Finally, Ubx fibers do not cause hemolysis when incubated with human red blood cells. The minimal effects observed are comparable with those induced by biomaterials used successfully in vivo. We conclude Ubx materials are biocompatible and nonimmunogenic. © 2014 Wiley Periodicals, Inc.
Cordonnier, M M; Greppin, H; Pratt, L H
1984-01-01
Nine monoclonal antibodies to pea (Pisum sativum L.) and 16 to oat (Avena sativa L.) phytochrome are characterized by enzyme-linked immunosorbent assay against phytochrome from six different sources: pea, zucchini (Cucurbita pepo L.), lettuce (Lactuca sativa L.), oat, rye (Secale cereale L.), and barley (Hordeum vulgare L.). All antibodies were raised against phytochrome with a monomer size near 120,000 daltons. Nevertheless, none of them discriminated qualitatively between 118/114-kilodalton oat phytochrome and a photoreversible, 60-kilodalton proteolytic degradation product derived from it. In addition, none of the 23 antibodies tested discriminated substantially between phytochrome-red-absorbing form and phytochrome-far red-absorbing form. Two antibodies to pea and six to oat phytochrome also bound strongly to phytochrome from the other species, even though these two plants are evolutionarily widely divergent. Of these eight antibodies, two bound significantly to all of the six phytochrome preparations tested, indicating that these two may recognize highly conserved regions of the chromoprotein. Since the molecular function of phytochrome is unknown, these two antibodies may serve as unique probes for regions of this pigment that are important to its mode of action.
CNS syndromes associated with antibodies against metabotropic receptors.
Lancaster, Eric
2017-06-01
Autoantibodies to Central nervous system (CNS) metabotropic receptors are associated with a growing family of autoimmune brain diseases, including encephalitis, basal ganglia encephalitis, Ophelia syndrome, and cerebellitis. The purpose of this review is to summarize the state of knowledge regarding the target receptors, the neurological autoimmune disorders, and the pathogenic mechanisms. Antibodies to the γ-aminobutyric acid B receptor are associate with limbic encephalitis and severe seizures, often with small cell lung cancers. Metabotropic glutamate receptor 5 (mGluR5) antibodies associate with Ophelia syndrome, a relatively mild form of encephalitis linked to Hodgkin lymphoma. mGluR1 antibodies associate with a form of cerebellar degeneration, and also Hodgkin lymphoma. Antibodies to Homer 3, a protein associated with mGluR1, have also been reported in two patients with cerebellar syndromes. Dopamine-2 receptor antibodies have been reported by one group in children with basal ganglia encephalitis and other disorders. CNS metabotropic receptor antibodies may exert direct inhibitory effects on their target receptors, but the evidence is more limited than with autoantibodies to ionotropic glutamate receptors. In the future, improved recognition of these patients may lead to better outcomes. Understanding the molecular mechanisms of the diseases may uncover novel treatment strategies.
Saini, Manisha; Vrati, Sudhanshu
2003-01-01
Protection against Japanese encephalitis virus (JEV) is antibody dependent, and neutralizing antibodies alone are sufficient to impart protection. Thus, we are aiming to develop a peptide-based vaccine against JEV by identifying JEV peptide sequences that could induce virus-neutralizing antibodies. Previously, we have synthesized large amounts of Johnson grass mosaic virus (JGMV) coat protein (CP) in Escherichia coli and have shown that it autoassembled to form virus-like particles (VLPs). The envelope (E) protein of JEV contains the virus-neutralization epitopes. Four peptides from different locations within JEV E protein were chosen, and these were fused to JGMV CP by recombinant DNA methods. The fusion protein autoassembled to form VLPs that could be purified by sucrose gradient centrifugation. Immunization of mice with the recombinant VLPs containing JEV peptide sequences induced anti-peptide and anti-JEV antibodies. A 27-amino-acid peptide containing amino acids 373 to 399 from JEV E protein, present on JGMV VLPs, induced virus-neutralizing antibodies. Importantly, these antibodies were obtained without the use of an adjuvant. The immunized mice showed significant protection against a lethal JEV challenge. PMID:12610124
Gikanga, Benson; Hui, Ada; Maa, Yuh-Fun
2018-01-01
Processing equipment involving grinding of two solid surfaces has been demonstrated to induce subvisible particle formation in monoclonal antibody drug product manufacturing processes. This study elucidated potential stress types associated with grinding action to identify the stress mechanism responsible for subvisible particle formation. Several potential stress types can be associated with the grinding action, including interfacial stresses (air-liquid and liquid-solid), hydraulic/mechanical shear stress, cavitation, nucleation of stressed protein molecules, and localized thermal stress. More than one stress type can synergically affect monoclonal antibody product quality, making it challenging to determine the primary mode of stress. Our strategy was to assess and rule out some stress types through platform knowledge, rational judgments, or via small-scale models, for example, rheometer/rotator-stator homogenizer for hydraulic/mechanical shear stress, sonicator for cavitation, etc. These models may not provide direct evidence but can offer rational correlations. Cavitation, as demonstrated by sonication, proved to be quite detrimental to monoclonal antibody molecules in forming not just subvisible particles but also soluble high-molecular-weight species as well as low-molecular-weight species. This outcome was not consistent with that of grinding monoclonal antibodies between the impeller and the drive unit of a bottom-mounted mixer or between the piston and the housing of a rotary piston pump, both of which formed only subvisible particles without obvious high-molecular-weight species and low-molecular-weight species. In addition, a p -nitrophenol model suggested that cavitation in the bottom-mounted mixer is barely detectable. We attributed the grinding-induced, localized thermal effect to be the primary stress to subvisible particle formation based on a high-temperature, spray-drying model. The heat effect of spray drying also caused subvisible particles, in the absence of significant high-molecular-weight species and low-molecular-weight species, in spray-dried monoclonal antibody powders. This investigation provides a mechanistic understanding of the underlying stress mechanism leading to monoclonal antibody subvisible particle formation as the result of drug product processing involving grinding of solid surfaces. LAY ABSTRACT: Subvisible particles present in therapeutic protein formulations could adversely affect drug product safety and efficacy. We previously illustrated that grinding action of the solid surfaces in some bottom-mounted mixers and piston pump is responsible for subvisible particle formation of monoclonal antibody formulations. In this study, we delved into mechanistic understanding of the stress types associated with solid surface grinding. The approach was to employ several scale-down stress models with known stress types. Protein formulations stressed in these models were analytically characterized for subvisible particles and other degradants. Some commonly known stress types-such as air-liquid interface, mechanical stress, cavitation, nucleation, and thermal effect-were assessed in this study. The stress model yielding a degradation profile matching that of bottom-mounted mixers and piston pump warranted further assessment. Localized, thermal stress proved to be the most feasible mechanism. This study, along with previously published results, may further advance our understanding of these particular drug product manufacturing processes and benefit scientists and engineers in overcoming these development challenges. © PDA, Inc. 2018.
Kinoshita, Yuri; Mayumi, Nobuko; Inaba, Motoyuki; Igarashi, Touru; Katagiri, Ichigen; Kawana, Seiji
2015-07-15
Antiphospholipid syndrome is an autoimmune disorder characterized by the occurrence of venous and arterial thrombosis, as well as morbidity in pregnancy, in the presence of anti-phospholipid antibodies. The diagnosis of antiphospholipid syndrome is usually established based on clinical and laboratory findings by strictly following the 2006 Sapporo classification. However, the diagnosis remains challenging owing to the ongoing debates on the serological criteria. We report a case we describe as forme fruste antiphospholipid syndrome in which these criteria were not fulfilled. Purpura appeared repeatedly in a female infant starting from the age of 6 months and following episodes of upper respiratory infections and vaccinations. The levels of anti-cardiolipin IgG antibodies and anti-phosphatidylserine/prothrombin complex antibodies were elevated in accordance with these events. Histopathological evaluation revealed multiple small vessel thrombi in the dermis and adipose tissue. After 2 weeks of treatment with aspirin and heparin, the cutaneous symptoms subsided. Infection has long been associated with antiphospholipid syndrome, and anti-phosphatidylserine/prothrombin antibodies are considered a new marker for the diagnosis of antiphospholipid syndrome. Forme fruste antiphospholipid syndrome should be considered even if the antiphospholipid syndrome diagnostic criteria are not completely fulfilled, especially in the presence of elevated levels of anti-phosphatidylserine/prothrombin antibodies and known preceding infections.
Antibodyomics: bioinformatics technologies for understanding B-cell immunity to HIV-1.
Kwong, Peter D; Chuang, Gwo-Yu; DeKosky, Brandon J; Gindin, Tatyana; Georgiev, Ivelin S; Lemmin, Thomas; Schramm, Chaim A; Sheng, Zizhang; Soto, Cinque; Yang, An-Suei; Mascola, John R; Shapiro, Lawrence
2017-01-01
Numerous antibodies have been identified from HIV-1-infected donors that neutralize diverse strains of HIV-1. These antibodies may provide the basis for a B cell-mediated HIV-1 vaccine. However, it has been unclear how to elicit similar antibodies by vaccination. To address this issue, we have undertaken an informatics-based approach to understand the genetic and immunologic processes controlling the development of HIV-1-neutralizing antibodies. As DNA sequencing comprises the fastest growing database of biological information, we focused on incorporating next-generation sequencing of B-cell transcripts to determine the origin, maturation pathway, and prevalence of broadly neutralizing antibody lineages (Antibodyomics1, 2, 4, and 6). We also incorporated large-scale robotic analyses of serum neutralization to identify and quantify neutralizing antibodies in donor cohorts (Antibodyomics3). Statistical analyses furnish another layer of insight (Antibodyomics5), with physical characteristics of antibodies and their targets through molecular dynamics simulations (Antibodyomics7) and free energy perturbation analyses (Antibodyomics8) providing information-rich output. Functional interrogation of individual antibodies (Antibodyomics9) and synthetic antibody libraries (Antibodyomics10) also yields multi-dimensional data by which to understand and improve antibodies. Antibodyomics, described here, thus comprise resolution-enhancing tools, which collectively embody an information-driven discovery engine aimed toward the development of effective B cell-based vaccines. © 2017 The Authors. Immunological Reviews published by John Wiley & Sons Ltd.
Cell lines for the production of monoclonal antibodies to human glycophorin A
Bigbee, William L.; Fong, Stella S. N.; Jensen, Ronald H.; Vanderlaan, Martin; Langlois, Richard G.
1988-01-01
Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.
A novel approach to enhance antibody sensitivity and specificity by peptide cross-linking
Namiki, Takeshi; Valencia, Julio C.; Hall, Matthew D.; Hearing, Vincent J.
2008-01-01
Most current techniques employed to improve antigen-antibody signals in western blotting and in immunohistochemistry rely on sample processing prior to staining (e.g. microwaving) or using a more robust reporter (e.g. a secondary antibody with biotin-streptavidin). We have developed and optimized a new approach intended to stabilize the complexes formed between antigens and their respective primary antibodies by cupric ions at high pH. This technique improves the affinity and lowers cross-reactivity with non-specific bands of ∼20% of antibodies tested (5/25). Here we report that this method can enhance antigen-antibody specificity and can improve the utility of some poorly reactive primary antibodies. PMID:18801330
Eubanks, Lisa M.; Ellis, Beverly A.; Cai, Xiaoqing; Schlosburg, Joel E.; Janda, Kim D.
2014-01-01
Cocaine abuse remains prevalent worldwide and continues to be a major health concern; nonetheless, there is no effective therapy. Immunopharmacothery has emerged as a promising treatment strategy by which anti-cocaine antibodies bind to the drug blunting its effects. Previous passive immunization studies using our human monoclonal antibody, GNCgzk, resulted in protection against cocaine overdose and acute toxicity. To further realize the clinical potential of this antibody, a recombinant IgG form of the antibody has been produced in mammalian cells. This antibody displayed a high binding affinity for cocaine (low nanomolar) in line with the superior attributes of the GNCgzk antibody and reduced cocaine-induced ataxia in a cocaine overdose model. PMID:25205191
Role of κ→λ light-chain constant-domain switch in the structure and functionality of A17 reactibody
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponomarenko, Natalia; Chatziefthimiou, Spyros D.; Kurkova, Inna
2014-03-01
Catalytic antibody variants with κ and λ light-chain constant domains show differences in their crystal structures which lead to subtle changes in catalytic efficiency and thermodynamic parameters as well as in their affinity for peptide substrates. The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.95 Å resolution. It was foundmore » that compared with A17κ the active centre of A17λ is displaced, stabilized and made more rigid owing to interdomain interactions involving the CDR loops from the V{sub L} and V{sub H} domains. These V{sub L}/V{sub H} domains also have lower mobility, as deduced from the atomic displacement parameters of the crystal structure. The antibody elbow angle is decreased to 126° compared with 138° in A17κ. These structural differences account for the subtle changes in catalytic efficiency and thermodynamic parameters determined with two organophosphate ligands, as well as in the affinity for peptide substrates selected from a combinatorial cyclic peptide library, between the A17κ and A17λ variants. The data presented will be of interest and relevance to researchers dealing with the design of antibodies with tailor-made functions.« less
Rhoden, John J.; Dyas, Gregory L.
2016-01-01
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022
Stabilization of neurotoxic Alzheimer amyloid-β oligomers by protein engineering
Sandberg, Anders; Luheshi, Leila M.; Söllvander, Sofia; Pereira de Barros, Teresa; Macao, Bertil; Knowles, Tuomas P. J.; Biverstål, Henrik; Lendel, Christofer; Ekholm-Petterson, Frida; Dubnovitsky, Anatoly; Lannfelt, Lars; Dobson, Christopher M.; Härd, Torleif
2010-01-01
Soluble oligomeric aggregates of the amyloid-β peptide (Aβ) have been implicated in the pathogenesis of Alzheimer’s disease (AD). Although the conformation adopted by Aβ within these aggregates is not known, a β-hairpin conformation is known to be accessible to monomeric Aβ. Here we show that this β-hairpin is a building block of toxic Aβ oligomers by engineering a double-cysteine mutant (called Aβcc) in which the β-hairpin is stabilized by an intramolecular disulfide bond. Aβ40cc and Aβ42cc both spontaneously form stable oligomeric species with distinct molecular weights and secondary-structure content, but both are unable to convert into amyloid fibrils. Biochemical and biophysical experiments and assays with conformation-specific antibodies used to detect Aβ aggregates in vivo indicate that the wild-type oligomer structure is preserved and stabilized in Aβcc oligomers. Stable oligomers are expected to become highly toxic and, accordingly, we find that β-sheet-containing Aβ42cc oligomers or protofibrillar species formed by these oligomers are 50 times more potent inducers of neuronal apoptosis than amyloid fibrils or samples of monomeric wild-type Aβ42, in which toxic aggregates are only transiently formed. The possibility of obtaining completely stable and physiologically relevant neurotoxic Aβ oligomer preparations will facilitate studies of their structure and role in the pathogenesis of AD. For example, here we show how kinetic partitioning into different aggregation pathways can explain why Aβ42 is more toxic than the shorter Aβ40, and why certain inherited mutations are linked to protofibril formation and early-onset AD. PMID:20713699
1991-04-01
AD- A235 913 DEVELOPMENT Ei ENGINEERING CENTER CRDEC-TR-268 PATHOGENIC AND NONPATHOGENIC STRAINS OF ENTAMOEBA HISTOLYTICA CAN BE DIFFERENTIATED BY...Pathogenic and Nonpathogenic Strains of Entamoeba Histolytica can be Differentiated by Monoclonal PR-IFJlX2XXRPEW Antibodies to the Galactose-Specific...galactose lectin produced by Entamoeba histolytica provide the basis for development of a model system for the environmental detection of adherence and
NASA Astrophysics Data System (ADS)
Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing
2016-11-01
Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.
A complete, multi-level conformational clustering of antibody complementarity-determining regions
Nikoloudis, Dimitris; Pitts, Jim E.
2014-01-01
Classification of antibody complementarity-determining region (CDR) conformations is an important step that drives antibody modelling and engineering, prediction from sequence, directed mutagenesis and induced-fit studies, and allows inferences on sequence-to-structure relations. Most of the previous work performed conformational clustering on a reduced set of structures or after application of various structure pre-filtering criteria. In this study, it was judged that a clustering of every available CDR conformation would produce a complete and redundant repertoire, increase the number of sequence examples and allow better decisions on structure validity in the future. In order to cope with the potential increase in data noise, a first-level statistical clustering was performed using structure superposition Root-Mean-Square Deviation (RMSD) as a distance-criterion, coupled with second- and third-level clustering that employed Ramachandran regions for a deeper qualitative classification. The classification of a total of 12,712 CDR conformations is thus presented, along with rich annotation and cluster descriptions, and the results are compared to previous major studies. The present repertoire has procured an improved image of our current CDR Knowledge-Base, with a novel nesting of conformational sensitivity and specificity that can serve as a systematic framework for improved prediction from sequence as well as a number of future studies that would aid in knowledge-based antibody engineering such as humanisation. PMID:25071986
Honey, Denise M.; Best, Annie; Qiu, Huawei
2018-01-01
ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938
Buck, Patrick M; Chaudhri, Anuj; Kumar, Sandeep; Singh, Satish K
2015-01-05
Therapeutic monoclonal antibody (mAb) candidates that form highly viscous solutions at concentrations above 100 mg/mL can lead to challenges in bioprocessing, formulation development, and subcutaneous drug delivery. Earlier studies of mAbs with concentration-dependent high viscosity have indicated that mAbs with negatively charged Fv regions have a dipole-like quality that increases the likelihood of reversible self-association. This suggests that weak electrostatic intermolecular interactions can form transient antibody networks that participate in resistance to solution deformation under shear stress. Here this hypothesis is explored by parametrizing a coarse-grained (CG) model of an antibody using the domain charges from four different mAbs that have had their concentration-dependent viscosity behaviors previously determined. Multicopy molecular dynamics simulations were performed for these four CG mAbs at several concentrations to understand the effect of surface charge on mass diffusivity, pairwise interactions, and electrostatic network formation. Diffusion coefficients computed from simulations were in qualitative agreement with experimentally determined viscosities for all four mAbs. Contact analysis revealed an overall greater number of pairwise interactions for the two mAbs in this study with high concentration viscosity issues. Further, using equilibrated solution trajectories, the two mAbs with high concentration viscosity issues quantitatively formed more features of an electrostatic network than the other mAbs. The change in the number of these network features as a function of concentration is related to the number of pairwise interactions formed by electrostatic complementarities between antibody domains. Thus, transient antibody network formation caused by domain-domain electrostatic complementarities is the most probable origin of high concentration viscosity for mAbs in this study.
Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection
Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.
2015-01-01
Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982
Liimatainen, Suvi; Peltola, Jukka; Hietaharju, Aki; Sabater, Lidia; Lang, Bethan
2014-03-01
Over the last few years autoantibodies against neuronal proteins have been identified in several forms of autoimmune encephalitis and epilepsy. NMDA receptor (NMDAR) and voltage gated potassium channel (VGKC) complex antibodies are mainly associated with limbic encephalitis (LE) whereas glutamic acid decarboxylase antibodies (GADA) and anticardiolipin (ACL) antibodies are more commonly detected in patients with chronic epilepsy. Clinical features vary between these antibodies suggesting the specificity of different neuronal antibodies in seizures. Serum samples of 14 GADA positive and 24 ACL positive patients with refractory epilepsy were analyzed for the presence of VGKC or NMDAR antibodies. No positive VGKC or NMDAR antibodies were found in these patients. The results confirm the different significance of these neuronal antibodies in seizure disorders. Different autoantibodies have different significance in seizures and probably have different pathophysiological mechanisms of actions. Copyright © 2014 Elsevier B.V. All rights reserved.
Immune Antibody Libraries: Manipulating The Diverse Immune Repertoire for Antibody Discovery.
Lim, Theam Soon; Chan, Soo Khim
2016-01-01
Antibody phage display is highly dependent on the availability of antibody libraries. There are several forms of libraries depending mainly on the origin of the source materials. There are three major classes of libraries, mainly the naïve, immune and synthetic libraries. Immune antibody libraries are designed to isolate specific and high affinity antibodies against disease antigens. The pre-exposure of the host to an infection results in the production of a skewed population of antibodies against the particular infection. This characteristic takes advantage of the in vivo editing machinery to generate bias and specific immune repertoire. The skewed but diverse repertoire of immune libraries has been adapted successfully in the generation of antibodies against a wide range of diseases. We envisage immune antibody libraries to play a greater role in the discovery of antibodies for diseases in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray
Ramirez, Lisa S.; Wang, Jun
2016-01-01
Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications. PMID:26780370
Sellmann, Carolin; Doerner, Achim; Knuehl, Christine; Rasche, Nicolas; Sood, Vanita; Krah, Simon; Rhiel, Laura; Messemer, Annika; Wesolowski, John; Schuette, Mark; Becker, Stefan; Toleikis, Lars; Kolmar, Harald; Hock, Bjoern
2016-01-01
Bispecific antibodies (bsAbs) and antibody-drug conjugates (ADCs) have already demonstrated benefits for the treatment of cancer in several clinical studies, showing improved drug selectivity and efficacy. In particular, simultaneous targeting of prominent cancer antigens, such as EGF receptor (EGFR) and c-MET, by bsAbs has raised increasing interest for potentially circumventing receptor cross-talk and c-MET-mediated acquired resistance during anti-EGFR monotherapy. In this study, we combined the selectivity of EGFR × c-MET bsAbs with the potency of cytotoxic agents via bispecific antibody-toxin conjugation. Affinity-attenuated bispecific EGFR × c-MET antibody-drug conjugates demonstrated high in vitro selectivity toward tumor cells overexpressing both antigens and potent anti-tumor efficacy. Due to basal EGFR expression in the skin, ADCs targeting EGFR in general warrant early safety assessments. Reduction in EGFR affinity led to decreased toxicity in keratinocytes. Thus, the combination of bsAb affinity engineering with the concept of toxin conjugation may be a viable route to improve the safety profile of ADCs targeting ubiquitously expressed antigens. PMID:27694443
Akbari, Samin; Pirbodaghi, Tohid
2014-09-07
High throughput heterogeneous immunoassays that screen antigen-specific antibody secreting cells are essential to accelerate monoclonal antibody discovery for therapeutic applications. Here, we introduce a heterogeneous single cell immunoassay based on alginate microparticles as permeable cell culture chambers. Using a microfluidic device, we encapsulated single antibody secreting cells in 35-40 μm diameter alginate microbeads. We functionalized the alginate to capture the secreted antibodies inside the microparticles, enabling single cell analysis and preventing the cross-talk between the neighboring encapsulated cells. We demonstrated non-covalent functionalization of alginate microparticles by adding three secondary antibodies to the alginate solution to form high molecular weight complexes that become trapped in the porous nanostructure of alginate and capture the secreted antibodies. We screened anti-TNF-alpha antibody-secreting cells from a mixture of antibody-secreting cells.
Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations.
Kholodenko, Roman V; Kalinovsky, Daniel V; Doronin, Igor I; Ponomarev, Eugene D; Kholodenko, Irina V
2017-08-17
Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wilkinson, Ian C.; Fowler, Susan B.; Machiesky, LeeAnn; Miller, Kenneth; Hayes, David B.; Adib, Morshed; Her, Cheng; Borrok, M. Jack; Tsui, Ping; Burrell, Matthew; Corkill, Dominic J.; Witt, Susanne; Lowe, David C.; Webster, Carl I.
2013-01-01
Antibodies have become the fastest growing class of biological therapeutics, in part due to their exquisite specificity and ability to modulate protein-protein interactions with a high biological potency. The relatively large size and bivalency of antibodies, however, limits their use as therapeutics in certain circumstances. Antibody fragments, such as single-chain variable fragments and antigen binding-fragments, have emerged as viable alternatives, but without further modifications these monovalent formats have reduced terminal serum half-lives because of their small size and lack of an Fc domain, which is required for FcRn-mediated recycling. Using rational engineering of the IgG4 Fc domain to disrupt key interactions at the CH3-CH3 interface, we identified a number of point mutations that abolish Fc dimerization and created half-antibodies, a novel monovalent antibody format that retains a monomeric Fc domain. Introduction of these mutations into an IgG1 framework also led to the creation of half-antibodies. These half-antibodies were shown to be soluble, thermodynamically stable and monomeric, characteristics that are favorable for use as therapeutic proteins. Despite significantly reduced FcRn binding in vitro, which suggests that avidity gains in a dimeric Fc are critical to optimal FcRn binding, this format demonstrated an increased terminal serum half-life compared with that expected for most alternative antibody fragments. PMID:23567207
Methods of identification employing antibody profiles
Francoeur, Ann-Michele
1993-12-14
An identification method, applicable to the identification of animals or inanimate objects, is described. The method takes advantage of the set of individual-specific antibodies that are part of the unique antibody repertoire present in animals, by reacting an effective amount of such antibodies with a particular panel, of n-dimensional array (where n is typically one or two) consisting of an effective amount of many different antigens (typically greater than one thousand), to give antibody-antigen complexes. The profile or pattern formed by the antigen-antibody complexes, termed an antibody fingerprint, when revealed by an effective amount of an appropriate detector molecule, is uniquely representative of a particular individual. The method can similarly be used to distinguish genetically, or otherwise similar individuals, or their body parts containing individual-specific antibodies.
IgG-Paraoxonase-1 Fusion Protein for Targeted Drug Delivery Across the Human Blood-Brain Barrier
Boado, Ruben J.; Zhang, Yun; Zhang, Yufeng; Wang, Yuntao; Pardridge, William M.
2009-01-01
Paraoxonase (PON)-1 is the most potent human protein with organophosphatase activity against organophosphate (OP) toxins. OP compounds readily cross the blood-brain barrier (BBB), and have lethal mechanisms of action within the brain. The production of a brain penetrating form of human PON1, which crosses the BBB, is possible with the re-engineering of the enzyme as a fusion protein with a monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via the endogenous insulin receptor, and acts as a molecular Trojan horse to ferry the PON1 into brain. The human PON1 was fused to the carboxyl terminus of the heavy chain of the chimeric HIRMAb. COS cells were dual transfected with the heavy chain gene and the light chain gene, and the HIRMAb-PON1 fusion protein was affinity purified with protein A chromatography. Western blotting with antibodies to human IgG or human PON1 showed the heavy chain of the HIRMAb-PON1 fusion protein was 40 kDa larger than the heavy chain of the chimeric HIRMAb. The ED50 of binding to the HIR extracellular domain was 0.55 ± 0.07 nM and 1.1 ±0.1 nM, respectively, for the chimeric HIRMAb and the HIRMAb-PON1 fusion protein. The PON1 enzyme activity of the fusion protein was approximately 25% of the enzyme activity in human plasma, based on a fluorometric enzymatic assay. In conclusion, human PON1 has been re-engineered as an IgG-organophosphatase fusion protein that penetrates the human BBB. PMID:19434854
Driving gene-engineered T cell immunotherapy of cancer
Johnson, Laura A; June, Carl H
2017-01-01
Chimeric antigen receptor (CAR) gene-engineered T cell therapy holds the potential to make a meaningful difference in the lives of patients with terminal cancers. For decades, cancer therapy was based on biophysical parameters, with surgical resection to debulk, followed by radiation and chemotherapy to target the rapidly growing tumor cells, while mostly sparing quiescent normal tissues. One breakthrough occurred with allogeneic bone-marrow transplant for patients with leukemia, which provided a sometimes curative therapy. The field of adoptive cell therapy for solid tumors was established with the discovery that tumor-infiltrating lymphocytes could be expanded and used to treat and even cure patients with metastatic melanoma. Tumor-specific T-cell receptors (TCRs) were identified and engineered into patient peripheral blood lymphocytes, which were also found to treat tumors. However, these were limited by patient HLA-restriction. Close behind came generation of CAR, combining the exquisite recognition of an antibody with the effector function of a T cell. The advent of CD19-targeted CARs for treating patients with multiple forms of advanced B-cell malignancies met with great success, with up to 95% response rates. Applying CAR treatment to solid tumors, however, has just begun, but already certain factors have been made clear: the tumor target is of utmost importance for clinicians to do no harm; and solid tumors respond differently to CAR therapy compared with hematologic ones. Here we review the state of clinical gene-engineered T cell immunotherapy, its successes, challenges, and future. PMID:28025979
Endres, Dominique; Perlov, Evgeniy; Riering, Anne Nicole; Maier, Viktoria; Stich, Oliver; Dersch, Rick; Venhoff, Nils; Erny, Daniel; Mader, Irina; Tebartz van Elst, Ludger
2017-01-01
Schizophreniform syndromes can be divided into primary forms from polygenic causes or secondary forms due to immunological, epileptiform, monogenic, or degenerative causes. Steroid-responsive encephalopathy associated with autoimmune thyroiditis (SREAT) is a secondary immunological form associated with increased thyroid antibodies, such as antithyroid peroxidase antibodies and shows a good response to corticosteroids. We present the case of a 41-year-old woman suffering from a schizophreniform syndrome. Starting at the age of 35, she developed psychotic exacerbations with formal thought disorder, acoustic hallucinations, cenesthopathic experiences, and loss of ego boundaries. At the same time, she began to suffer from chronic sexual delusions and olfactory hallucinations, which did not respond to neuroleptic medication. Her levels of antithyroid peroxidase antibodies were slightly increased, and the blood-brain barrier was disturbed. An electroencephalogram (EEG) showed intermittent generalized slowing, and cerebral magnetic resonance imaging (cMRI) depicted mild temporolateral atrophy. High-dose corticosteroid treatment led to convincing improvement of attentional performance and the disappearance of delusions and olfactory hallucinations. SREAT can mimic typical symptoms of schizophreniform syndromes. The increased titer of antithyroid peroxidase antibodies in combination with the EEG slowing, blood-brain barrier dysfunction, and the cMRI alterations were the basis for suspecting an immunological cause in our patient. Chronic delusions, olfactory hallucinations, and cognitive deficits were successfully treated with corticosteroids. The occurrence of secondary immunological forms of schizophreniform syndromes demonstrates the need for innovative immunosuppressive treatment options.
Method and cell lines for the production of monoclonal antibodies to human glycophorin A
Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.
Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.
Kowalska, M Anna; Krishnaswamy, Sriram; Rauova, Lubica; Zhai, Li; Hayes, Vincent; Amirikian, Karine; Esko, Jeffrey D; Bougie, Daniel W; Aster, Richard H; Cines, Douglas B; Poncz, Mortimer
2011-09-08
Heparin-induced thrombocytopenia (HIT) is caused by antibodies that recognize complexes between platelet factor 4 (PF4) and heparin or glycosaminoglycan side chains. These antibodies can lead to a limb- and life-threatening prothrombotic state. We now show that HIT antibodies are able to inhibit generation of activated protein C (aPC) by thrombin/thrombomodulin (IIa/TM) in the presence of PF4. Tetrameric PF4 potentiates aPC generation by formation of complexes with chondroitin sulfate (CS) on TM. Formation of these complexes occurs at a specific molar ratio of PF4 to glycosaminoglycan. This observation and the finding that the effect of heparin on aPC generation depends on the concentration of PF4 suggest similarity between PF4/CS complexes and those that bind HIT antibodies. HIT antibodies reduced the ability of PF4 to augment aPC formation. Cationic protamine sulfate, which forms similar complexes with heparin, also enhanced aPC generation, but its activity was not blocked by HIT antibodies. Our studies provide evidence that complexes formed between PF4 and TM's CS may play a physiologic role in potentiating aPC generation. Recognition of these complexes by HIT antibodies reverses the PF4-dependent enhancement in aPC generation and may contribute to the prothrombotic nature of HIT.
Mease, Ronnie C.; Kolsky, Kathryn L.; Mausner, Leonard F.; Srivastava, Suresh C.
1997-06-03
Cyclohexyl chelating agents useful in forming antibody-metal conjugates useful for diagnostic and therapeutic purposes. New compounds and processes of forming these compounds are disclosed including 4-haloacetamido-trans-1,2-diaminocyclohexyl polyaminocarboxylate and 4-isothiocyanato-trans-1,2-diamino cyclohexane-N, N, N', N'-tetra acetic acid.
Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.
1994-01-01
Cyclo agents useful in forming antibody-metal conjugates useful for diagnostic and therapeutic purposes. New compounds and processes of forming these compounds are disclosed including 4-haloacetamido-trans-1,2-diaminocyclohexyl polyaminocarboxylate and 4-isothiocyanato-trans-1,2-diamino cyclohexane-N,N,N',N'-tetra acetic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Hongying; Yoshimura, Kazunori; Kobayashi, Nobuharu
2012-04-01
Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detectedmore » as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with a unique structure.« less
Arimori, Takao; Kitago, Yu; Umitsu, Masataka; Fujii, Yuki; Asaki, Ryoko; Tamura-Kawakami, Keiko; Takagi, Junichi
2017-10-03
Antibody fragments are frequently used as a "crystallization chaperone" to aid structural analysis of complex macromolecules that are otherwise crystallization resistant, but conventional fragment formats have not been designed for this particular application. By fusing an anti-parallel coiled-coil structure derived from the SARAH domain of human Mst1 kinase to the variable region of an antibody, we succeeded in creating a novel chimeric antibody fragment of ∼37 kDa, termed "Fv-clasp," which exhibits excellent crystallization compatibility while maintaining the binding ability of the original IgG molecule. The "clasp" and the engineered disulfide bond at the bottom of the Fv suppressed the internal mobility of the fragment and shielded hydrophobic residues, likely contributing to the high heat stability and the crystallizability of the Fv-clasp. Finally, Fv-clasp antibodies showed superior "chaperoning" activity over conventional Fab fragments, and facilitated the structure determination of an ectodomain fragment of integrin α6β1. Copyright © 2017 Elsevier Ltd. All rights reserved.
Frei, Julia C; Nyakatura, Elisabeth K; Zak, Samantha E; Bakken, Russell R; Chandran, Kartik; Dye, John M; Lai, Jonathan R
2016-01-13
Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct. Few antibodies with cross-neutralizing properties have been described to date. We used antibody engineering to develop novel bispecific antibodies (Bis-mAbs) that are cross-reactive toward base epitopes on GP from EBOV and SUDV. These Bis-mAbs exhibit potent neutralization against EBOV and SUDV GP pseudotyped viruses as well as authentic pathogens, and confer a high degree (in one case 100%) post-exposure protection of mice from both viruses. Our studies show that a single agent that targets the GP base epitopes is sufficient for protection in mice; such agents could be included in panfilovirus therapeutic antibody cocktails.
Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection
Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.
2017-01-01
HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635
Fernandez, Estefania; Dejnirattisai, Wanwisa; Cao, Bin; Scheaffer, Suzanne M; Supasa, Piyada; Wongwiwat, Wiyada; Esakky, Prabagaran; Drury, Andrea; Mongkolsapaya, Juthathip; Moley, Kelle H; Mysorekar, Indira U; Screaton, Gavin R; Diamond, Michael S
2017-11-01
The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.
Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil
2018-01-01
Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks under various conditions with a series of RH. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups within paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude-regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.
NASA Astrophysics Data System (ADS)
Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil
2018-05-01
Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks at room temperature and under different RH conditions. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups with paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude – regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.
PROPERTIES OF VARIOUS ANTI-γ-GLOBULIN FACTORS IN HUMAN SERA
Harboe, Morten; Rau, Barbara; Aho, Kimmo
1965-01-01
The serological and physicochemical properties of the following three forms of human anti-γ-globulin factors were compared: (a) rheumatoid factors; (b) Milgrom type anti-γ-globulin factors; and (c) factors directed against an antigen in human γG-globulin that is hidden in the intact molecule and revealed by enzymatic digestion at low pH. The property common to these factors is ability to interact with human γG-globulin; they are distinguishable because they react with different antigenic groups on this molecule. In all of five sera, the Milgrom type anti-γ-globulin factors were γM-globulins. They reacted with various human γG-globulin antibodies but failed to interact with γM-globulin type antibodies in agglutination and absorption experiments. When isolated from other anti-γ-globulin factors, they agglutinated red cells coated with intact anti-Rh antibodies, but failed to react with cells cells coated with pepsin-digested anti-Rh antibody. These observations indicate that the agglutinator reacts with the crystallizable, inert fragment of γG-globulin. Anti-γ-globulin activity directed against an antigen in human γG-globulin revealed by pepsin digestion was demonstrated in γG-, γA-, and γM-globulins. This anti-γ-globulin factor could be absorbed by antigen-antibody precipitates containing human antibody, which shows that the hidden antigen in human γG-globulin is revealed not only by enzymatic digestion at low pH, but also when γG-globulin is present as antibody in an antigen-antibody precipitate. Rheumatoid factors and Milgrom type anti-γ-globulin factors were also absorbed by antigen-antibody precipitates containing human antibody. The results indicate that the three distinct forms of antiγ-globulin factors may all be produced as a result of antigenic stimulation by autologous antigen-antibody complexes. PMID:14276773
RNA recognition by a human antibody against brain cytoplasmic 200 RNA
Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon
2014-01-01
Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation. PMID:24759090
Influence of ionization states of antigen on anti-fluorescein antibodies
NASA Astrophysics Data System (ADS)
Fukunishi, Hiroaki
2012-10-01
Ratios of anion and di-anion states of fluorescein (FLU(-1) and FLU(-2)) are 21.2% and 78.8%, respectively, in the neutral pH. We investigated the influence of ionization states of antigen on anti-fluorescein antibodies. For this purpose, steered molecular dynamics (SMD) simulations were performed. Potential of mean forces (PMF) based on Jarzynski equality showed that wild-type (4-4-20) more strongly binds to FLU(-1) than FLU(-2), whereas its femtomolar-affinity mutant (4M5.3) more strongly binds to FLU(-2) than FLU(-1). It was speculated that the environment or the process of in vivo antibody production had been different from those of the protein engineering.
Bacteriophage vehicles for phage display: biology, mechanism, and application.
Ebrahimizadeh, Walead; Rajabibazl, Masoumeh
2014-08-01
The phage display technique is a powerful tool for selection of various biological agents. This technique allows construction of large libraries from the antibody repertoire of different hosts and provides a fast and high-throughput selection method. Specific antibodies can be isolated based on distinctive characteristics from a library consisting of millions of members. These features made phage display technology preferred method for antibody selection and engineering. There are several phage display methods available and each has its unique merits and application. Selection of appropriate display technique requires basic knowledge of available methods and their mechanism. In this review, we describe different phage display techniques, available bacteriophage vehicles, and their mechanism.
Hancock, W W
1997-01-01
The triumph of genetic engineering in overcoming hyperacute rejection (HAR) of a discordant organ xenograft is clear, but the promise of clinical application of xenotransplantation remains unfulfilled as further immunologic barriers are defined that lead to rejection of a vascularized xenograft within days of transplantation. This report describes the features of this second set of immunologic responses, collectively termed delayed xenograft rejection (DXR). DXR is a syndrome seen in xenograft recipients in which HAR has been avoided or suppressed by antibody depletion or blockade of complement activation. DXR may result, at least in part, from the persisting activation of those pathways first encountered during the HAR phase. Serial studies over several days after transplant show that, histologically, xenografts undergoing DXR demonstrate varying combinations of (1) progressive infiltration by activated macrophages and natural killer (NK) cells, (2) platelet aggregation and fibrin deposition throughout the microvasculature, and (3) endothelial activation. In various experimental models, DXR is T cell-independent and can occur in the absence of demonstrable xenoreactive antibodies. Hence DXR is probably best regarded as arising from the activation of innate host defense mechanisms coupled with failure of normal regulatory mechanisms due to manifold molecular incompatibilities. Although DXR-like features can be seen in concordant models, T cell involvement in the latter is probably requisite. Similarly, in a much muted form, aspects of a DXR-like process may contribute to numerous inflammatory processes, including allograft rejection. The importance of DXR in xenotransplantation is that its development appears resistant to all but the most dense and toxic forms of immunosuppression, which prolong xenograft survival at the expense of inducing host leukopenia, thrombocytopenia, and coagulopathies. It is likely that until the basis of DXR is more clearly understood there can be no further significant progress toward clinical xenotransplantation. However, as the mechanisms responsible for DXR are dissected and understood, still further genetic engineering of donor pigs, involving the introduction of additional or multiple genes to regulate macrophage and NK cell responses, local coagulation, and endothelial cell activation, may once again prove to be an attractive, practical, powerful therapeutic option.
Analysis of MHC class I folding: novel insights into intermediate forms
Simone, Laura C.; Tuli, Amit; Simone, Peter D.; Wang, Xiaojian; Solheim, Joyce C.
2012-01-01
Folding around a peptide ligand is integral to the antigen presentation function of major histocompatibility complex (MHC) class I molecules. Several lines of evidence indicate that the broadly cross-reactive 34-1-2 antibody is sensitive to folding of the MHC class I peptide-binding groove. Here, we show that peptide-loading complex proteins associated with the murine MHC class I molecule Kd are found primarily in association with the 34-1-2+ form. This led us to hypothesize that the 34-1-2 antibody may recognize intermediately, as well as fully, folded MHC class I molecules. In order to further characterize the form(s) of MHC class I molecules recognized by 34-1-2, we took advantage of its cross-reactivity with Ld. Recognition of the open and folded forms of Ld by the 64-3-7 and 30-5-7 antibodies, respectively, has been extensively characterized, providing us with parameters against which to compare 34-1-2 reactivity. We found that the 34-1-2+ Ld molecules displayed characteristics indicative of incomplete folding, including increased tapasin association, endoplasmic reticulum retention, and instability at the cell surface. Moreover, we demonstrate that an Ld-specific peptide induced folding of the 34-1-2+ Ld intermediate. Altogether, these results yield novel insights into the nature of MHC class I molecules recognized by the 34-1-2 antibody. PMID:22329842
Meng, Q; Garcia-Rodriguez, C; Manzanarez, G; Silberg, M A; Conrad, F; Bettencourt, J; Pan, X; Breece, T; To, R; Li, M; Lee, D; Thorner, L; Tomic, M T; Marks, J D
2012-11-15
Quantitation of individual monoclonal antibodies (mAbs) within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins, XOMA 3B and XOMA 3E, each consisting of three mAbs that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (H(N)). Epitope mapping data were used to design LC-H(N) domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or XOMA 3E. Mutant LC-H(N) domains were cloned, expressed, and purified from Escherichia coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of enzyme-linked immunosorbent assays (ELISAs) that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein. Copyright © 2012 Elsevier Inc. All rights reserved.
Light-Guided Surface Engineering for Biomedical Applications
Jayagopal, Ashwath; Stone, Gregory P.; Haselton, Frederick R.
2010-01-01
Free radical species generated through fluorescence photobleaching have been reported to effectively couple a water-soluble species to surfaces containing electron-rich sites (1). In this report, we expand upon this strategy to control the patterned attachment of antibodies and peptides to surfaces for biosensing and tissue engineering applications. In the first application, we compare hydrophobic attachment and photobleaching methods to immobilize FITC-labeled anti-M13K07 bacteriophage antibodies to the SiO2 layer of a differential capacitive biosensor and to the polyester filament of a feedback-controlled filament array. On both surfaces, antibody attachment and function were superior to the previously employed hydrophobic attachment. Furthermore, a laser scanning confocal microscope could be used for automated, software-guided photoattachment chemistry. In a second application, the cell-adhesion peptide RGDS was site-specifically photocoupled to glass coated with fluorescein-conjugated poly(ethylene glycol). RGDS attachment and bioactivity were characterized by a fibroblast adhesion assay. Cell adhesion was limited to sites of RGDS photocoupling. These examples illustrate that fluorophore-based photopatterning can be achieved by both solution-phase fluorophores or surface-adhered fluorophores. The coupling preserves the bioactivity of the patterned species, is amenable to a variety of surfaces, and is readily accessible to laboratories with fluorescence imaging equipment. The flexibility offered by visible light patterning will likely have many useful applications in bioscreening and tissue engineering where the controlled placement of biomolecules and cells is critical, and should be considered as an alternative to chemical coupling methods. PMID:18314938
The influence of antibody fragment format on phage display based affinity maturation of IgG
Steinwand, Miriam; Droste, Patrick; Frenzel, Andrè; Hust, Michael; Dübel, Stefan; Schirrmann, Thomas
2014-01-01
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG. In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab. PMID:24262918
Hui, James Z; Tsourkas, Andrew
2014-09-17
Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.
Micro and Nano-mediated 3D Cardiac Tissue Engineering
2009-10-01
in both flow cytometry and Western Blot applications. The CD34 antigen is important in stem cell research due to its widespread use in identifying...for further characterization. We generated a pCD34 expressing CHO cell line (CHO-CD34) and analyzed pCD34 expression by flow cytometry (Figure 1A... flow cytometry using the 3G7 antibody and co-stained with an anti-CD31 antibody (AbD Serotec; FITC conjugated). CD31 (PECAM) is a pan endothelial
2001-07-01
stimulated by KUZ, but not KAMP. SHC or Gabi in COS7 cells was immunoprecipitated with the polyclonal 8 antibody to SHC or Gab1 . Activation of SHC or Gab1 ...was detected in immunoblots as phosphorylation of SHC or Gab1 with anti-phosphotyrosine antibody 4G10. (C) KUZ elevates GPCR-induced Ras activation...decreased the bombesin-dependent phosphorylation of all three isoforms of the adapter protein SHC (Fig. 2 A) and another adapter Gab1 (Fig. 2 B). KUZ
Fluorescent antibody detection of microorganisms in terrestrial environments
NASA Technical Reports Server (NTRS)
Schmidt, E. L.
1972-01-01
The fluorescent antibody technique and its use in direct microscopic examination of the soil is discussed. Feasibility analyses were made to determine if the method could be used to simultaneously observe and recognize microorganisms in the soil. Some data indicate this may be possible. Data are also given on two related problems involving the interaction of soil microorganisms with plant roots to form symbiotic structures. One was concerned with the developmental ecology and biology of the root nodule of alder and the second was concerned with the ectotrophic mycorrhizal structure on forest trees, especially pines. In both, the fluorescent antibody detection of the microbial symbiont both as a free living form in soil, and as a root inhabiting form in the higher plant was emphasized. A third aspect of the research involved the detection of autotrophic ammonia oxidizing microorganisms in soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speirs, R.
1962-12-01
Progress is reported in studies of hypersensitivity and antibody formation in mice in which tritiated antigens were used as tracers. Data are included from a study on the initiation of antibody production in irradiated mice and studies on hemopoiesis and antibody production as demonstrated in radioautograms of spleen, peritoneal fluid, bone marrow, and thymus from mice injected with antigen foliowed by tritiated thymidine and autopsied at specific times. (C.H.)
2014-01-01
Background The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. Results To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN–γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. Conclusions Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and GP5 produced a better immune response in mice. PMID:24916952
Kroon, F. P.; van Tol, M. J. D.; Jol-van der Zijde, C. M.; van Furth, R.; van Dissel, J. T.
1999-01-01
In human immunodeficiency virus (HIV)-infected individuals the amount of antibodies formed after vaccination with T-cell-dependent recall antigens such as tetanus toxoid is proportional to the peripheral blood CD4+ T-lymphocyte counts. To investigate whether the immunoglobulin G (IgG) subclass distribution and avidity of the antibodies produced after vaccination are affected as well, we gave 13 HIV-infected adults with low CD4+ T-lymphocyte counts (<200 × 106/liter; group I), 11 HIV-infected adults with intermediate CD4+ T-lymphocyte counts (≥200 × 106/liter; group II), and 5 healthy controls booster immunizations with tetanus toxoid. The prevaccination antibody concentrations against tetanus toxoid were similar in the HIV-infected and healthy adults. After vaccination the total IgG and the IgG1 anti-tetanus toxoid antibody concentrations were significantly lower in group I than in group II and the controls. The avidity of the IgG1 anti-tetanus toxoid antibodies formed by HIV-infected adults was within the range for healthy controls, irrespective of their CD4+ T-lymphocyte counts. PMID:10225835
Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J
2016-05-20
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations
West, Anthony P.; Galimidi, Rachel P.; Gnanapragasam, Priyanthi N. P.
2012-01-01
The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization. PMID:22013046
Antisperm contraceptive vaccines: where we are and where we are going?
Naz, Rajesh K
2011-07-01
This is a review of current status and future perspectives on the development of antisperm contraceptive vaccines (CV) and immunocontraceptives. The development of antisperm CV is an exciting proposition. There is a strong rationale and recent data indicating that this proposition can translate into reality. The search for novel sperm-specific antigens/genes, that can be used for CV, continues using various recent developing technologies. Various approaches of proteomics, genomics, reproductive biology, mucosal immunity and vaccinology and several novel technologies such as gene knockout technology, phage display technology, antibody engineering, differential display technique, subtractive hybridization, and hybridoma technology are being used to delineate sperm-specific antigens and construct CV. Various sperm antigens/genes have been delineated, cloned, and sequenced from various laboratories. Vaccination with these sperm antigens (recombinant/synthetic peptide/DNA) causes a reversible contraceptive effect in females and males of various animal species, by inducing a systemic and local antisperm antibody response. The efficacy is enhanced by combination vaccination, including peptides based on various sperm antigens. Several human novel scFv antibodies with unique complementarity-determining regions (CDRs), that react with specific well-defined fertility-related sperm antigens, have been synthesized. These human infertility-related antibodies may find application in the development of novel immunocontraceptives. Besides finding the novel sperm antigens, the present and future focus is on enhancing the immunogenicity, bioefficacy, and on obliterating the inter-individual variability of the immune response, and proceeding for primate and human clinical trials. Multi-epitope vaccines combining sperm proteins involved in various steps of fertilization cascade have been found to enhance the immunogenicity and bioefficacy of the contraceptive effect. The in vitro synthesis of infertility-related human scFv antibodies may provide unique once-a-month immunocontraceptives, the first of its kind, for human use. The multi-epitope CV and preformed engineered human antibodies of defined specificity may obliterate the concern related to inter-individual variability of the immune response. © 2011 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matho, Michael H.; Schlossman, Andrew; Gilchuk, Iuliia M.
Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here in this paper, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, andmore » VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138– and VACV-304–binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.« less
Matho, Michael H.; Schlossman, Andrew; Gilchuk, Iuliia M.; ...
2017-11-09
Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here in this paper, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, andmore » VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138– and VACV-304–binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.« less
Mabry, Robert; Gilbertson, Debra G; Frank, Amanda; Vu, Tuyen; Ardourel, Dan; Ostrander, Craig; Stevens, Brenda; Julien, Susan; Franke, Secil; Meengs, Brent; Brody, Jennifer; Presnell, Scott; Hamacher, Nels B; Lantry, Megan; Wolf, Anitra; Bukowski, Tom; Rosler, Robert; Yen, Cindy; Anderson-Haley, Monica; Brasel, Kenneth; Pan, Qi; Franklin, Hank; Thompson, Penny; Dodds, Mike; Underwood, Sara; Peterson, Scott; Sivakumar, Pallavur V; Snavely, Mark
2010-01-01
Targeting angiogenesis is a promising approach to the treatment of solid tumors and age-related macular degeneration (AMD). Inhibition of vascularization has been validated by the successful marketing of monoclonal antibodies (mAbs) that target specific growth factors or their receptors, but there is considerable room for improvement in existing therapies. Combination of mAbs targeting both the VEGF and PDGF pathways has the potential to increase the efficacy of anti-angiogenic therapy without the accompanying toxicities of tyrosine kinase inhibitors and the inability to combine efficiently with traditional chemotherapeutics. However, development costs and regulatory issues have limited the use of combinatorial approaches for the generation of more efficacious treatments. The concept of mediating disease pathology by targeting two antigens with one therapeutic was proposed over two decades ago. While mAbs are particularly suitable candidates for a dual-targeting approach, engineering bispecificity into one molecule can be difficult due to issues with expression and stability, which play a significant role in manufacturability. Here, we address these issues upstream in the process of developing a bispecific antibody (bsAb). Single-chain antibody fragments (scFvs) targeting PDGFRbeta and VEGF-A were selected for superior stability. The scFvs were fused to both termini of human Fc to generate a bispecific, tetravalent molecule. The resulting molecule displays potent activity, binds both targets simultaneously, and is stable in serum. The assembly of a bsAb using stable monomeric units allowed development of an anti-PDGFRB/VEGF-A antibody capable of attenuating angiogenesis through two distinct pathways and represents an efficient method for rapid engineering of dual-targeting molecules.
Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia
2014-01-01
The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830
Engineered biomarkers for leprosy diagnosis using labeled and label-free analysis.
de Santana, Juliana F; da Silva, Mariângela R B; Picheth, Guilherme F; Yamanaka, Isabel B; Fogaça, Rafaela L; Thomaz-Soccol, Vanete; Machado-de-Avila, Ricardo A; Chávez-Olórtegui, Carlos; Sierakowski, Maria Rita; de Freitas, Rilton Alves; Alvarenga, Larissa M; de Moura, Juliana
2018-09-01
The biotechnological evolution towards the development of antigens to detect leprosy has been progressing. However, the identification of leprosy in paucibacillary patients, based solely on the antigen-antibody interaction still remains a challenge. The complexity of clinical manifestations requires innovative approaches to improve the sensitivity of assays to detect leprosy before the onset of symptoms, thus avoiding disabilities and contributing, indirectly, to reduce transmission. In this study, the strategies employed for early leprosy diagnosis were: i. using a phage-displayed mimotope (APDDPAWQNIFNLRR) which mimics an immunodominant sequence (PPNDPAWQRNDPILQ) of an antigen of Mycobacterium leprae known as Ag85B; ii. engineering the mimotope by adding a C-terminal flexible spacer (SGSG-C); iii. conjugating the mimotope to a carrier protein to provide better exposure to antibodies; iv. amplifying the signal using biotin-streptavidin detection system in an ELISA; and v. coating the optimized mimotope on a quartz crystal microbalance (QCM) sensor for label-free biosensing. The ELISA sensitivity increased up to 91.7% irrespective of the immunological profile of the 132 patients assayed. By using comparative modeling, the M. tuberculosis Ag85B was employed as a template to ascertain which features make the mimotope a good antigen in terms of its specificity. For the first time, a sensitive QCM-based immunosensor to detect anti M. leprae antibodies in human serum was used. M. leprae antibodies could also be detected in the sera of paucibacillary patients; thus, the use of a mimotope-derived synthetic peptide as bait for antibodies in a novel analytical label-free immunoassay for leprosy diagnosis exhibits great potential. Copyright © 2018 Elsevier B.V. All rights reserved.
Site-specific chemical modification of antibody fragments using traceless cleavable linkers.
Bernardes, Gonçalo J L; Steiner, Martina; Hartmann, Isabelle; Neri, Dario; Casi, Giulio
2013-11-01
Antibody-drug conjugates (ADCs) are promising agents for the selective delivery of cytotoxic drugs to specific cells (for example, tumors). In this protocol, we describe two strategies for the precise modification at engineered C- or N-terminal cysteines of antibodies in IgG, diabody and small immunoprotein (SIP) formats that yield homogenous ADCs. In this protocol, cemadotin derivatives are used as model drugs, as these agents have a potent cytotoxic activity and are easy to synthesize. However, other drugs with similar functional groups could be considered. In the first approach, a cemadotin derivative containing a sulfhydryl group results in a mixed disulfide linkage. In the second approach, a cemadotin derivative containing an aldehyde group is joined via a thiazolidine linkage. The procedures outlined are robust, enabling the preparation of ADCs with a defined number of drugs per antibody in a time frame between 7 and 24 h.
Structural evolution of glycan recognition by a family of potent HIV antibodies.
Garces, Fernando; Sok, Devin; Kong, Leopold; McBride, Ryan; Kim, Helen J; Saye-Francisco, Karen F; Julien, Jean-Philippe; Hua, Yuanzi; Cupo, Albert; Moore, John P; Paulson, James C; Ward, Andrew B; Burton, Dennis R; Wilson, Ian A
2014-09-25
The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans. Copyright © 2014 Elsevier Inc. All rights reserved.
A comparison of capture antibody fragments in cardiac troponin I immunoassay.
Hyytiä, Heidi; Järvenpää, Marja-Leena; Ristiniemi, Noora; Lövgren, Timo; Pettersson, Kim
2013-08-01
To compare cardiac troponin I (cTnI) values measured from 32 normal plasma specimens with a two-site cTnI research assay exploiting different molecular forms of a capture antibody. The current research assay consists of two capture antibodies immobilized on streptavidin-well surface and one detection antibody attached to highly fluorescent europium(III)-chelate-doped nanoparticles. Four different molecular forms of one of the capture antibodies (intact monoclonal (Mab), F(ab')2 fragment, Fab fragment and chimeric Fab fragment (cFab)) were tested. The developed immunoassays were evaluated in terms of their analytical sensitivities and assay kinetics. Furthermore, cTnI concentrations were measured from 32 heparin plasma samples from apparently healthy donors (mean age 32; range 24-60 years). The differences in the measured cTnI concentrations (corrected for the buffer-based zero calibrator) between the Mab and the three fragmented forms were highly significant (P<0.0001). Replacing the intact Mab with the antibody fragments also reduced the required antibody amount from 100 ng to 66 ng (F(ab')2) and 16.5 ng (Fab and cFab). Furthermore, the limit of detection was improved when Fab fragments were employed (Mab: 0.90 ng/L, Fab: 0.69 ng/L and cFab: 0.41 ng/L). The apparent normal range median (minimum/maximum) of the 32 healthy subjects was reduced from 7.28 ng/L (2.64/116 ng/L) with Mab to 1.80 ng/L (0.746/10.6 ng/L) for the cFab. Eliminating the Fc-part from one of the two capture antibodies in an immunofluorometric cTnI assay substantially reduced the measured cTnI concentrations, simultaneously improving the assay sensitivity and reducing the reagent consumption. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
78 FR 13354 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
... via the antibody binding fragment of the CAR. Thus, by engineering a T-cell to express a CAR that is... significantly overexpressed in primary and metastasizing tumors relative to normal human tissues. Stimulation of...
Replacing antibodies with modified DNA aptamers in vaccine potency assays.
Trausch, Jeremiah J; Shank-Retzlaff, Mary; Verch, Thorsten
2017-10-04
Vaccine in vitro potency assays are vital regulatory tests that are used to confirm the presence and concentration of an antigen of interest in a form that directly or indirectly relates to protective activity in patients. Current assays come in many forms, but they almost exclusively use antibody reagents for selective detection of the target antigen. Antibodies provide specific recognition of vaccine antigens but also exhibit drawbacks such as stability limitations, cost, and lot-to-lot variation, which can make it challenging to maintain the reagent throughout the lifetime of the vaccine. We explored replacing antibodies with aptamers. Aptamers are macromolecules, such as nucleic acids, which can bind to their targets with high specificity and affinity, similar to that of antibodies. Some of the advantages of using aptamers over antibodies is that aptamers can be more stable, smaller, less expensive to produce, synthesized in vitro, and logistically easier to supply throughout the multi-decade lifespan of a commercial vaccine. We created modified DNA aptamers against the common vaccine carrier protein, CRM 197 . Several aptamers were discovered and one was chosen for further characterization. The binding kinetics of the aptamer revealed an off-rate 16-fold slower than anti-CRM 197 antibodies used for comparison. The aptamers were more sensitive than available antibodies in some assay formats and comparable in others. The aptamer epitope was mapped to the receptor-binding domain of CRM 197 , a site adjacent to a known antibody binding site. These data address some key aspects for a path forward in replacing antibodies with aptamers for use as critical reagents in vaccine assays. We further highlight the possibility of using nucleic acid reagents to develop next generation potency assays. Copyright © 2017 Elsevier Ltd. All rights reserved.
Watanabe, Osamu
2013-04-01
Various antibodies are associated with voltage-gated potassium channels (VGKCs). Representative antibodies to VGKCs were first identified by radioimmunoassays using radioisotope-labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were detected only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in patients with Morvan's syndrome and in those with a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins (for example LGI-1 and CASPR-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now commonly known as VGKC-complex antibodies. In general, LGI-1 antibodies are most commonly detected in patients with limbic encephalitis with syndrome of inappropriate secretion of antidiuretic hormone. CASPR-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability. Furthermore, VGKC-complex antibodies are tightly associated with chronic idiopathic pain. Hyperexcitability of nociceptive pathways has also been implicated. These antibodies may be detected in sera of some patients with neurodegenerative diseases (for example, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease).
Facile Method for the Site-Specific, Covalent Attachment of full-length IgG onto Nanoparticles
Hui, James Zhe; Al Zaki, Ajlan; Cheng, Zhiliang; Popik, Vladimir; Zhang, Hongtao; Luning Prak, Eline T.
2014-01-01
Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzycyclooctyne-modified nanoparticles, via copper-free click chemistry. PMID:24729432
Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles.
Hui, James Zhe; Al Zaki, Ajlan; Cheng, Zhiliang; Popik, Vladimir; Zhang, Hongtao; Luning Prak, Eline T; Tsourkas, Andrew
2014-08-27
Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled the crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzocyclooctyne-modified nanoparticles, via copper-free click chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Hongjun; Zangar, Richard C.
Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine,more » and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.« less
Imaging of colorectal carcinoma with radiolabeled antibodies.
Goldenberg, D M; Goldenberg, H; Sharkey, R M; Lee, R E; Higgenbotham-Ford, E; Horowitz, J A; Hall, T C; Pinsky, C M; Hansen, H J
1989-10-01
Colorectal cancer has been the tumor type most frequently studied with radiolabeled antibodies. Among the various antibodies, a majority of patients with colorectal cancer have received xenogeneic polyclonal or monoclonal antibodies against carcino-embryonic antigen. This review summarizes the current status of colorectal cancer imaging with radiolabeled antibodies, ie, radioimmunodetection (RAID), and examines the published studies involving carcinoembryonic antigen (CEA) antibodies and 17-1A, 19-9, and B72.3, and other monoclonal antibodies. In order to better address the issue of the current and future clinical usefulness of this emerging technology, particular attention is given to the protocols, methods, and results of the published studies. Despite differences in study parameters, antibodies and forms, labels, administration routes and doses, and scanning instruments and methods, it has been found that (1) almost no adverse reactions have been evident; (2) antibody fragments are preferred over whole immunoglobulin G reagents because they achieve higher tumor-to-background ratios earlier, thus reducing or precluding the need for dual-isotope subtraction methods or long delays before imaging; (3) use of antibody fragments, including the monovalent Fab' form, permits imaging with short-lived radionuclides of excellent photon properties, such as 123I and 99mTc; (4) circulating antigens against which the imaging antibody is directed can complex with the injected antibody, but such complexes have not prevented successful RAID; (5) patients with high serum titers of the appropriate antigen target usually have higher rates of positive RAID; (6) patients who are seronegative for the tumor antigen being studied can have positive RAID findings, which can represent the detection of occult lesions; (7) single photon emission computed tomography appears to provide better image resolution than planar scanning; (8) regardless of the sensitivity reported in any particular study, almost all investigators have observed the disclosure of occult neoplasms by RAID; and (9) RAID, a more functional test of usually high specificity, can complement other radiological methods, such as computed tomography scans, which are limited to structural information.
Biocarrier composition for and method of degrading pollutants
Fliermans, C.B.
1994-01-01
The present invention relates to biocarrier compositions that attract and bond pollutant-degrading antigens that will degrade the pollutants. Biocarriers are known generally as a variety of inert or semi-inert compounds or structures having the ability to sequester (attract), hold and biomagnify (enhance) specific microorganisms within their structure. Glass or polystyrene beads are the most well known biocarriers. The biocarrier, which is preferably in the form of glass microspheres, is coated with an antibody or group of antibodies that attract and react specifically with certain pollutant-degrading antigens. The antibody, once bonded to the biocarrier, is used by the composition to attract and bond those pollutant-degrading antigens. Each antibody is specific for an antigen that is specific for a given pollutant. The resulting composition is subsequently exposed to an environment contaminated with pollutants for degradation. In the preferred use, the degrading composition is formed and then injected directly into or near a plume or source of contamination.
Conti, Stefania; Magliani, Walter; Arseni, Simona; Frazzi, Raffaele; Salati, Antonella; Ravanetti, Lara; Polonelli, Luciano
2002-01-01
BACKGROUND: Monoclonal (KTmAb) and recombinant (KTscFv) anti-idiotypic antibodies, representing the internal image of a yeast killer toxin, proved to be microbicidal in vitro against important eukaryotic and prokaryotic pathogens such as Candida albicans, Pneumocystis carinii, Mycobacterium tuberculosis, Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae, including multidrug-resistant strains. KTmAb and KTscFv exerted a strong therapeutic effect in well-established animal models of candidiasis and pneumocystosis. Streptococcus mutans is the most important etiologic agent of dental caries that might result from the metabolic end products of dental plaque. Effective strategies to reduce the disease potential of dental plaque have considered the possibility of using antibiotics or antibodies against oral streptococci in general and S. mutans in particular. In this study, the activity of KTmAb and KTscFv against S. mutans and the inhibition and reduction by KTmAb of dental colonization by S. mutans and other oral streptococci in an ex vivo model of human teeth were investigated. MATERIALS AND METHODS: KTscFv and KTmAb were used in a conventional colony forming unit (CFU) assay against a serotype C strain of S. mutans, and other oral streptococci (S. intermedius, S. mitis, S. oralis, S. salivarius). An ex vivo model of human teeth submerged in saliva was used to establish KTmAb potential of inhibiting or reducing the adhesion to dental surfaces by S. mutans and other oral streptococci. RESULTS: KTmAb and KTscFv kill in vitro S. mutans and other oral streptococci. KTmAb inhibit colonization of dental surfaces by S. mutans and oral streptococci in the ex vivo model. CONCLUSIONS: Killer antibodies with antibiotic activity or their engineered derivatives may have a potential in the prevention of dental caries in vivo. PMID:12428062
Development of solid - based paper strips for rapid diagnosis of Pseudorabies infection.
Joon Tam, Yew; Mohd Lila, Mohd Azmi; Bahaman, Abdul Rani
2004-12-01
Pseudorabies (Aujeszky's disease) is an economically significant disease of swine known to cause central nervous disorders, respiratory disease, reproductive failure and mortality in infected pigs. In attempts to eradicate the disease from becoming endemic, early detection is important to prevent further economic losses and to allow for detection and removal of infected pigs in domestic herds. Thus, a rapid and sensitive technique is necessary for the detection of the virus. For rapid and simple examination, an immuno - chromatographic lateral - flow assay system based on immunologic recognition of specific pseudorabies virus antigen was developed by utilising, as signal generator, colloidal gold conjugated to secondary antibody to detect primary or sample antibody in the sera of pseudorabies infected animals. The pseudorabies virus used as a capture antigen in the test strip was first cultivated in VERO cell culture and then purified by sucrose gradient separation to produce the viral protein concentration of 3.8 mg/ml. The standard pseudorabies antigens reacted well with the hyperimmune serum (HIS). The antibody detection system is basically composed of colloidal gold - labelled antibodies fixed on a conjugate pad, and the complementary pseudorabies antigen immobilised onto a nitrocellulose membrane forming capture zone. If the target antibody is present in a specimen, the colloidal gold-labelled antibody will form a complex with the antibody sample. Subsequently, the formed complex will migrate to the capture zone and is then bound to the solid phase via antigen - antibody interaction. As a result, a signal marker is generated by the accumulation of colloidal gold for detection confirmation. The results obtained demonstrated that the optimum combination of pseudorabies antigen needed as the capture reagent and gold conjugate as secondary antibody recognition marker was at a concentration of 0.38mg/ml and at 1:10 dilution factor respectively. The sensitivity of the solid - based test strip towards pseudorabies antibodies was high with a detection limit of 1 to 10,000 - dilution factor. The specificity of the assay was 100% with no cross - reaction being observed with other sera or antibodies. Accurate reading time needed for confirmation of the assay can be completed in 5 min with a whole blood sample of 25 microl. The colloidal gold - labelled antibody is stable at room temperature for 6 months or more (data not shown). Findings from this study indicated that the solid - based test strip assay system provided high sensitivity and specificity for the detection of pseudorabies at low levels of antibody concentration. The assay was rapid, simple, cheap, and does not require any sophisticated equipment. Thus, the solid based test strip will be a useful serological screening technique or for rapid diagnosis of an infectious disease in target populations of animals characterised by heterogeneous antibody responses.
Mohiuddin, Muhammad M; Singh, Avneesh K; Corcoran, Philip C; Hoyt, Robert F; Thomas, Marvin L; Ayares, David; Horvath, Keith A
2014-09-01
Cardiac transplantation and available mechanical alternatives are the only possible solutions for end-stage cardiac disease. Unfortunately, because of the limited supply of human organs, xenotransplantation may be the ideal method to overcome this shortage. We have recently seen significant prolongation of heterotopic cardiac xenograft survival from 3 to 12 months and beyond. Hearts from genetically engineered piglets that were alpha 1-3 galactosidase transferase knockout and expressed the human complement regulatory gene, CD46 (groups A-C), and the human thrombomodulin gene (group D) were heterotropically transplanted in baboons treated with antithymocyte globulin, cobra venom factor, anti-CD20 antibody, and costimulation blockade (anti-CD154 antibody [clone 5C8]) in group A, anti-CD40 antibody (clone 3A8; 20 mg/kg) in group B, clone 2C10R4 (25 mg/kg) in group C, or clone 2C10R4 (50 mg/kg) in group D, along with conventional nonspecific immunosuppressive agents. Group A grafts (n = 8) survived for an average of 70 days, with the longest survival of 236 days. Some animals in this group (n = 3) developed microvascular thrombosis due to platelet activation and consumption, which resulted in spontaneous hemorrhage. The median survival time was 21 days in group B (n = 3), 80 days in group C (n = 6), and more than 200 days in group D (n = 5). Three grafts in group D are still contracting well, with the longest ongoing graft survival surpassing the 1-year mark. Genetically engineered pig hearts (GTKOhTg.hCD46.hTBM) with modified targeted immunosuppression (anti-CD40 monoclonal antibody) achieved long-term cardiac xenograft survival. This potentially paves the way for clinical xenotransplantation if similar survival can be reproduced in an orthotopic transplantation model. Copyright © 2014 The American Association for Thoracic Surgery. All rights reserved.
Olimpieri, Pier Paolo; Chailyan, Anna; Tramontano, Anna; Marcatili, Paolo
2013-09-15
Antibodies or immunoglobulins are proteins of paramount importance in the immune system. They are extremely relevant as diagnostic, biotechnological and therapeutic tools. Their modular structure makes it easy to re-engineer them for specific purposes. Short of undergoing a trial and error process, these experiments, as well as others, need to rely on an understanding of the specific determinants of the antibody binding mode. In this article, we present a method to identify, on the basis of the antibody sequence alone, which residues of an antibody directly interact with its cognate antigen. The method, based on the random forest automatic learning techniques, reaches a recall and specificity as high as 80% and is implemented as a free and easy-to-use server, named prediction of Antibody Contacts. We believe that it can be of great help in re-design experiments as well as a guide for molecular docking experiments. The results that we obtained also allowed us to dissect which features of the antibody sequence contribute most to the involvement of specific residues in binding to the antigen. http://www.biocomputing.it/proABC. anna.tramontano@uniroma1.it or paolo.marcatili@gmail.com Supplementary data are available at Bioinformatics online.
Patel, Rekha; Andrien, Bruce A
2010-01-01
Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.
Rani, Mridula; Bolles, Meagan; Donaldson, Eric F.; Van Blarcom, Thomas; Baric, Ralph; Iverson, Brent
2012-01-01
Even though the effect of antibody affinity on neutralization potency is well documented, surprisingly, its impact on neutralization breadth and escape has not been systematically determined. Here, random mutagenesis and DNA shuffling of the single-chain variable fragment of the neutralizing antibody 80R followed by bacterial display screening using anchored periplasmic expression (APEx) were used to generate a number of higher-affinity variants of the severe acute respiratory syndrome coronavirus (SARS-CoV)-neutralizing antibody 80R with equilibrium dissociation constants (KD) as low as 37 pM, a >270-fold improvement relative to that of the parental 80R single-chain variable fragment (scFv). As expected, antigen affinity was shown to correlate directly with neutralization potency toward the icUrbani strain of SARS-CoV. Additionally, the highest-affinity antibody fragment displayed 10-fold-increased broad neutralization in vitro and completely protected against several SARS-CoV strains containing substitutions associated with antibody escape. Importantly, higher affinity also led to the suppression of viral escape mutants in vitro. Escape from the highest-affinity variant required reduced selective pressure and multiple substitutions in the binding epitope. Collectively, these results support the hypothesis that engineered antibodies with picomolar dissociation constants for a neutralizing epitope can confer escape-resistant protection. PMID:22696652
Estupina, Pauline; Fontayne, Alexandre; Barret, Jean-Marc; Kersual, Nathalie; Dubreuil, Olivier; Le Blay, Marion; Pichard, Alexandre; Jarlier, Marta; Pugnière, Martine; Chauvin, Maëva; Chardès, Thierry; Pouget, Jean-Pierre; Deshayes, Emmanuel; Rossignol, Alexis; Abache, Toufik; de Romeuf, Christophe; Terrier, Aurélie; Verhaeghe, Lucie; Gaucher, Christine; Prost, Jean-François
2017-01-01
Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10−11 M vs 7.9 × 10−10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was then investigated. 3C23K-dependent (100 ng/ml) ADCP was more active with murine than human macrophages (only 10% of living target cells vs. about 25%). These in vitro results suggest that the reduced ADCC with murine effectors could be partially balanced by ADCP activity in in vivo experiments. Taken together, these preclinical data indicate that 3C23K is a new promising therapeutic candidate for ovarian cancer immunotherapy and justify its recent introduction in a phase I clinical trial. PMID:28427157
Characterization of single-domain antibodies with an engineered disulfide bond.
Hussack, Greg; Mackenzie, C Roger; Tanha, Jamshid
2012-01-01
Camelidae single-domain antibodies (VHHs) represent a unique class of emerging therapeutics. Similar to other recombinant antibody fragments (e.g., Fabs, scFvs), VHHs are amenable to library screening and selection, but benefit from superior intrinsic biophysical properties such as high refolding efficiency, high solubility, no tendency for aggregation, resistance to proteases and chemical denaturants, and high expression, making them ideal agents for antibody-based drug design. Despite these favorable biophysical characteristics, further improvements to VHH stability are desirable when considering applications in adverse environments like high heat, low humidity, pH extremes, and the acidic, protease-rich gastrointestinal tract. Recently, the introduction of a disulfide bond into the hydrophobic core of camelid VHHs increased antibody thermal and conformational stability. Here, we present additional protocols for characterizing the effects of the introduced disulfide bond on a panel of llama VHHs. Specifically, we employ mass spectrometry fingerprinting analysis of VHH peptides to confirm the presence of the introduced disulfide bond, size exclusion chromatography, and surface plasmon resonance to examine the effects on aggregation state and target affinity, and circular dichroism spectroscopy and protease digestion assays to assess the effects on thermal and proteolytic stability. The disulfide bond stabilization strategy can be incorporated into antibody library design and should lead to hyperstabilized single-domain antibodies (VHHs, VHs), and possibly Fabs and scFvs, if selection pressures such as denaturants or proteases are introduced during antibody selection.
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, Mathew L.
1994-01-01
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, Mathew L.
1991-01-01
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.
Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses.
Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Yokoyama, Shigeyuki
2014-07-01
Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Conserved Neutralizing Epitope at Globular Head of Hemagglutinin in H3N2 Influenza Viruses
Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Yokoyama, Shigeyuki
2014-01-01
ABSTRACT Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. IMPORTANCE Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. PMID:24719430
Li, Jingquan; Xu, Yongping; Wang, Xitao; Li, Yuan; Wang, Lili; Li, Xiaoyu
2016-06-01
The purpose of this study was to construct a single-chain variable fragment (scFv) antibody from chicken egg yolk immunoglobulin (IgY) by means of genetic engineering and subsequent panning for a specific antibody against Staphylococcus aureus. We amplified the scFv using blood and spleen obtained from 100-day-old Roman chickens immunized with inactivated S. aureus and subsequently constructed a T7 phage display antibody library using phage display technology. Four non-repeated blood scFv and 6 spleen scFv were obtained following 3 rounds of panning of the T7 phage display antibody library, enzyme-linked immunosorbent assay and sequencing. These 10 scFv were cloned into the prokaryotic expression vector pCold I with expression induced at a low temperature. Four soluble proteins were obtained. Among them, soluble protein SFV6 derived from the spleen showed good reactivity against S. aureus using indirect ELISA and produced a particularly strong antibacterial effect in vitro. We were successful in isolating a highly specific scFv antibody against S. aureus from the spleen phage display library. This study provides a simple and rapid method for the quick preparation of a large number of antibodies against S. aureus and provides the foundation for the positioning of antibodies in the organism and the study of the antibacterial mechanism through which the antibody functions. Copyright © 2016 Elsevier B.V. All rights reserved.
Helicobacter pylori link to pernicious anaemia.
Desai, H G; Gupte, P A
2007-12-01
An immunological classification of chronic gastritis based on the detection of Helicobacter pylori (H. pylori) antibody, parietal cell antibody, intrinsic factor antibody, is reported. H. pylori chronic gastritis, slowly progresses to atrophic gastritis, in the majority of patients; in a few patients, with genetic susceptibility to form intrinsic factor antibody, it progresses to pernicious anaemia. In majority of patients of pernicious anaemia, H. pylori gradually disappears from the gastric mucosa, on development of intestinal metaplasia in them. Atrophic gastritis results from H. pylori or non H. pylori. H. pylori infection is diagnosed in the presence of H. pylori in the gastric mucosal biopsy and/or H. pylori antibody (IgG) in the serum. The presence of the genetic factor (intrinsic factor antibody) is essential for the diagnosis of pernicious aneamia. Pernicious anaemia patients without intrinsic factor antibody, should be correctly diagnosed as atrophic gastritis, in view of the absence of the genetic factor (intrinsic factor antibody) in them.
Mease, R.C.; Mausner, L.F.; Srivastava, S.C.
1994-03-08
Cyclo agents are described which are useful in forming antibody-metal conjugates which are used for diagnostic and therapeutic purposes. New compounds and processes of forming these compounds are disclosed including 4-haloacetamido-trans-1,2diaminocyclohexyl polyaminocarboxylate and 4-isothiocyanato-trans-1,2diamino cyclohexane-N,N,N',N'-tetra acetic acid. No Drawings
Mease, R.C.; Kolsky, K.L.; Mausner, L.F.; Srivastava, S.C.
1997-06-03
Cyclohexyl chelating agents useful in forming antibody-metal conjugates which are used for diagnostic and therapeutic purposes are synthesized. New compounds and processes of forming these compounds are disclosed including 4-haloacetamido-trans-1,2-diaminocyclohexyl polyaminocarboxylate and 4-isothiocyanato-trans-1,2-diamino cyclohexane-N,N,N{prime},N{prime}-tetra acetic acid.
Yu, Yanbin; Piddington, Christopher; Fitzpatrick, Dan; Twomey, Brian; Xu, Ren; Swanson, Steven J; Jing, Shuqian
2006-10-20
The presence of neutralizing antibodies against protein therapeutics is a concern in the biomedical field. Such antibodies not only reduce the efficacy of protein therapeutics, but also impose potential dangers to the patients receiving them. To date, a small number of in vitro cell-based bioassays for detecting neutralizing antibodies against therapeutic proteins have been developed. Most of the existing assays, however, either involve the use of radioactive materials or have limited sensitivities and/or poor specificities. With advances in mRNA profiling and detection techniques, we have established a novel and non-radioactive bioassay system using branched DNA (bDNA) technology for detecting protein-therapeutic neutralizing antibodies in patient serum. Our assay measures the variations of target gene expression that reflect the biologic effect of the therapeutic agent and the capability of the antibodies, if present, to neutralize the therapeutics. Compared with most existing assays, the new assay is more sensitive and specific, and completely eliminates the use of radioactive materials. Application of the new assay system can be widely expanded if new target genes and responding cell lines for other therapeutics are identified or engineered.
[Biotechnological advances in monoclonal antibody therapy: the RANK ligand inhibitor antibody].
Kiss, Emese; Kuluncsics, Zénó; Kiss, Zoltán; Poór, Gyula
2010-12-26
Biological drugs have been used since the middle of the last century in medicine. Nowadays we are witnesses of the intensive development and wider administration of these drugs in clinical practice. Around 250 biological drugs are available and more than 350 million patients have been treated since their marketed authorization. Among the biologics there are protein based macromolecules, which mass production can be performed with the help of biotechnology. This term referring to the use of living organisms for production of molecules, was introduced by the Hungarian engineer, Károly Ereky. The present review focuses on the research, production and development of monoclonal antibodies manufactured by biotechnology. Some steps of this development have changed our immunological knowledge and the outcome of several diseases. The development of antibodies was highly recognized by two Nobel prizes. Authors detail the structure and functions of immunoglobulins, and their development, including fully human monoclonal antibodies. The RANKL inhibitor denosumab, a fully human IgG2 monoclonal antibody belongs to this latter group and it is available for treatment of osteoporosis. Authors also summarize the basic process of bone metabolism and the benefits of RANK ligand inhibition.
NASA Astrophysics Data System (ADS)
Moreira, I. S.; Fernandes, P. A.; Ramos, M. J.
The definition and comprehension of the hot spots in an interface is a subject of primary interest for a variety of fields, including structure-based drug design. Therefore, to achieve an alanine mutagenesis computational approach that is at the same time accurate and predictive, capable of reproducing the experimental mutagenesis values is a major challenge in the computational biochemistry field. Antibody/protein antigen complexes provide one of the greatest models to study protein-protein recognition process because they have three fundamentally features: specificity, high complementary association and a small epitope restricted to the diminutive complementary determining regions (CDR) region, while the remainder of the antibody is largely invariant. Thus, we apply a computational mutational methodological approach to the study of the antigen-antibody complex formed between the hen egg white lysozyme (HEL) and the antibody HyHEL-10. A critical evaluation that focuses essentially on the limitations and advantages between different computational methods for hot spot determination, as well as between experimental and computational methodological approaches, is presented.
Solforosi, Laura; Mancini, Nicasio; Canducci, Filippo; Clementi, Nicola; Sautto, Giuseppe Andrea; Diotti, Roberta Antonia; Clementi, Massimo; Burioni, Roberto
2012-07-01
A novel phagemid vector, named pCM, was optimized for the cloning and display of antibody fragment (Fab) libraries on the surface of filamentous phage. This vector contains two long DNA "stuffer" fragments for easier differentiation of the correctly cut forms of the vector. Moreover, in pCM the fragment at the heavy-chain cloning site contains an acid phosphatase-encoding gene allowing an easy distinction of the Escherichia coli cells containing the unmodified form of the phagemid versus the heavy-chain fragment coding cDNA. In pCM transcription of heavy-chain Fd/gene III and light chain is driven by a single lacZ promoter. The light chain is directed to the periplasm by the ompA signal peptide, whereas the heavy-chain Fd/coat protein III is trafficked by the pelB signal peptide. The phagemid pCM was used to generate a human combinatorial phage display antibody library that allowed the selection of a monoclonal Fab fragment antibody directed against the nucleoprotein (NP) of Influenza A virus.
Shumak, K H; Rachkewich, R A
1983-01-01
An antibody to human granulocytes was raised in rabbits by immunization with granulocytes pretreated with rabbit antibody to contaminating antigens. The antibody reacted not only with granulocytes but also with monocytes and bone marrow granulocyte precursors including colony-forming units in culture (CFU-C). In tests with leukemic cells, the antibody reacted with blasts from most (8 of 9) patients with acute myelomonoblastic leukemia and from some patients with acute myeloblastic leukemia, morphologically undifferentiated acute leukemia and chronic myelogenous leukemia in blast crisis. The antibody did not react with blasts from patients with acute lymphoblastic leukemia nor with leukemic cells from patients with chronic lymphocytic leukemia.
Miller, Maria A; Khan, Tarik A; Kaczorowski, Kevin J; Wilson, Brian K; Dinin, Aileen K; Borwankar, Ameya U; Rodrigues, Miguel A; Truskett, Thomas M; Johnston, Keith P; Maynard, Jennifer A
2012-10-01
Monoclonal antibodies continue to command a large market for treatment of a variety of diseases. In many cases, the doses required for therapeutic efficacy are large, limiting options for antibody delivery and administration. We report a novel formulation strategy based on dispersions of antibody nanoclusters that allows for subcutaneous injection of highly concentrated antibody (≈ 190 mg/mL). A solution of monoclonal antibody 1B7 was rapidly frozen and lyophilized using a novel spiral-wound in-situ freezing technology to generate amorphous particles. Upon gentle stirring, a translucent dispersion of approximately 430 nm protein clusters with low apparent viscosity (≈ 24 cp) formed rapidly in buffer containing the pharmaceutically acceptable crowding agents such as trehalose, polyethylene glycol, and n-methyl-2-pyrrolidone. Upon in vitro dilution of the dispersion, the nanoclusters rapidly reverted to monomeric protein with full activity, as monitored by dynamic light scattering and antigen binding. When administered to mice as an intravenous solution, subcutaneous solution, or subcutaneous dispersion at similar (4.6-7.3 mg/kg) or ultra-high dosages (51.6 mg/kg), the distribution and elimination kinetics were within error and the protein retained full activity. Overall, this method of generating high-concentration, low-viscosity dispersions of antibody nanoclusters could lead to improved administration and patient compliance, providing new opportunities for the biotechnology industry. Copyright © 2012 Wiley Periodicals, Inc.
Miller, Maria A.; Khan, Tarik A.; Kaczorowski, Kevin J.; Wilson, Brian K.; Dinin, Aileen K.; Borwankar, Ameya U.; Rodrigues, Miguel A.; Truskett, Thomas M.; Johnston, Keith P.; Maynard, Jennifer A.
2013-01-01
Monoclonal antibodies continue to command a large market for treatment of a variety of diseases. In many cases, the doses required for therapeutic efficacy are large, limiting options for antibody delivery and administration. We report a novel formulation strategy based on dispersions of antibody nanoclusters that allows for subcutaneous injection of highly concentrated antibody (~190 mg/ml). A solution of monoclonal antibody 1B7 was rapidly frozen and lyophilized using a novel spiral-wound in situ freezing technology (SWIFT) to generate amorphous particles. Upon gentle stirring, a translucent dispersion of ~430 nm protein clusters low apparent viscosity (~24 cp) formed rapidly in buffer containing the pharmaceutically acceptable crowding agents, trehalose, polyethylene glycol and n-methyl-2-pyrrolidone. Upon in vitro dilution of the dispersion, the nanoclusters rapidly reverted to monomeric protein with full activity, as monitored by dynamic light scattering and antigen binding. When administered to mice as an intravenous solution, subcutaneous solution or subcutaneous dispersion at similar (4.6-7.3 mg/kg) or ultra-high dosages (51.6 mg/kg), the distribution and elimination kinetics were within error and the protein retained full activity. Overall, this method of generating high-concentration, low-viscosity dispersions of antibody nanoclusters could lead to improved administration and patient compliance, providing new opportunities for the biotechnology industry. PMID:22777686
Panicali, D; Davis, S W; Weinberg, R L; Paoletti, E
1983-01-01
Recombinant vaccinia viruses containing the cloned hemagglutinin (HA) gene from influenza virus were constructed. The biological activity of these poxvirus vectors was demonstrated both in vitro and in vivo. Expression of HA in cells infected with recombinant vaccinia was detected by using specific anti-HA antiserum and 125I-labeled protein A, showing that HA synthesized under the regulation of vaccinia virus was antigenic. Immunization of rabbits with these recombinant poxviruses resulted in the production of antibodies reactive with authentic influenza HA as detected by radioimmunoassay, by inhibition of HA erythrocyte agglutination, and by neutralization of influenza virus infectivity. The production of antibodies directed against influenza HA suggested that the HA gene expressed in vaccinia is immunogenic. These data indicate the potential of genetically engineered poxviruses for use as generic live vaccine vehicles that have both human and veterinary applications. Images PMID:6310573
Postdoctoral Fellow | Center for Cancer Research
Dr. St. Croix’s laboratory at the Mouse Cancer Genetics Program (MCGP), National Cancer Institute, USA has an open postdoctoral position. We seek a highly motivated, creative and bright individual to participate in a collaborative project that involves the targeting of tumor-associated stroma using T-cells engineered to express chimeric antigen receptors (CARs). The laboratory focuses on the characterization and exploitation of molecules associated with tumor angiogenesis. The successful candidate would be involved in developing, producing and characterizing new therapeutic antibodies and CARs that recognize cancer cells or its associated stroma, and preclinical testing of these agents using mouse tumor models. The tumor angiogenesis lab is located at the National Cancer Institute in Frederick with access to state-of-the-art facilities for antibody engineering, genomic analysis, pathology, and small animal imaging, among others. Detailed information about Dr. St. Croix’s research and publications can be accessed at https://ccr.cancer.gov/Mouse-Cancer-Genetics-Program/brad-st-croix.
Brune, Karl D; Buldun, Can M; Li, Yuanyuan; Taylor, Iona J; Brod, Florian; Biswas, Sumi; Howarth, Mark
2017-05-17
Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.
Joseph, Narcisse Ms; Ho, Kok Lian; Tey, Beng Ti; Tan, Chon Seng; Shafee, Norazizah; Tan, Wen Siang
2016-07-08
The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016. © 2016 American Institute of Chemical Engineers.
Heterologous expression of antigenic peptides in Bacillus subtilis biofilms.
Vogt, Cédric M; Schraner, Elisabeth M; Aguilar, Claudio; Eichwald, Catherine
2016-08-11
Numerous strategies have been developed for the display of heterologous proteins in the surface of live bacterial carriers, which can be used as vaccines, immune-modulators, cancer therapy or bioremediation. Bacterial biofilms have emerged as an interesting approach for the expression of proteins of interest. Bacillus subtilis is a well-described, endospore-forming organism that is able to form biofilms and also used as a probiotic, thus making it a suitable candidate for the display of heterologous proteins within the biofilm. Here, we describe the use of TasA, an important structural component of the biofilms formed by B. subtilis, as a genetic tool for the display of heterologous proteins. We first engineered the fusion protein TasA-mCherry and showed that was widely deployed within the B. subtilis biofilms. A significant enhancement of the expression of TasA-mCherry within the biofilm was obtained when depleting both tasA and sinR genes. We subsequently engineered fusion proteins of TasA to antigenic peptides of the E. granulosus parasite, paramyosin and tropomyosin. Our results show that the antigens were well expressed within the biofilm as denoted by macrostructure complementation and by the detection of the fusion protein in both immunoblot and immunohistochemistry. In addition, we show that the recombinant endospores of B. subtilis preserve their biophysical and morphological properties. In this work we provide strong evidence pointing that TasA is a suitable candidate for the display of heterologous peptides, such as antigens, cytokines, enzymes or antibodies, in the B. subtilis biofilms. Finally, our data portray that the recombinant endospores preserve their morphological and biophysical properties and could be an excellent tool to facilitate the transport and the administration.
2009-01-01
Patents provide one of the few protections companies can avail themselves of to help protect their therapeutic monoclonal antibody products. Just as the therapeutic monoclonal antibody field is constantly evolving, so too is the legal environment surrounding these inventions. In a series of articles, the general state of the law surrounding therapeutic antibodies will be explained, and important challenges to this technology area will be discussed. Much is at stake when companies market therapeutic monoclonal antibodies; therefore, a firm understanding of this important form of protection is critically important for anyone developing such products. PMID:20068400
Costa Gomes, Rosane; Cerqueira Maia, Jussara; Fernando Arrais, Ricardo; André Nunes Jatobá, Carlos; Auxiliadora Carvalho Rocha, Maria; Edinilma Felinto Brito, Maria; Laissa Oliveira Nazion, Ana; Marques Maranhão, Clarissa; De Sousa Maranhão, Hélcio
2016-01-01
The objective of this study is to investigate the occurrence of gastrointestinal (GI) and extraintestinal symptoms in children and adolescents with type 1 diabetes mellitus (DM1) and Down syndrome (DS) and their association with specific antibodies and histopathology of celiac disease (CelD), representing its clinical forms in the iceberg. Cross-sectional study (November 2009-December 2012) conducted at an outpatient care facility in Northeast Brazil including patients [DM1 (n = 111); DS (n = 77)] aged 10 months-18 years old. Measurement of anti-endomysial (EmA) and anti-tissue transglutaminase (anti-tTG) IgA antibodies was performed, as was that of anti-tTG-IgG in the cases with low serum IgA. The patients with antibody positivity were subjected to small intestine biopsy. GI symptoms occurred in 53.7% of the sample, extraintestinal symptoms in 4.3%, and antibody positivity in 28.2% (n = 53). Of those who underwent biopsy (n = 40), histopathological findings of CelD were found in 37.5% [DM1 = 5/111 (4.5%), DS = 10/77 (13.0%)]. GI symptoms were associated with antibody positivity, but not with the histopathology. The GI (32.5%), silent (5.0%), and potential (62.5%) forms of disease were detected. The prevalence of GI symptoms was high in groups DM1 and DS, and the occurrence of such symptoms was associated with antibody positivity. The lack of association between the symptoms and histopatholological findings points to the inconsistency of the former as indicators of CelD. Although the GI form predominated among the cases with active CelD, its contribution to the celiac iceberg was smaller compared with the potential form, which determined the large and submerged base of the iceberg representing the high-risk groups investigated.
Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G
2016-11-01
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
NASA Astrophysics Data System (ADS)
Ido, Shinichiro; Kimiya, Hirokazu; Kobayashi, Kei; Kominami, Hiroaki; Matsushige, Kazumi; Yamada, Hirofumi
2014-03-01
The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.
Controversies concerning the antiphospholipid syndrome in obstetrics.
Camarena Cabrera, Dulce María Albertina; Rodriguez-Jaimes, Claudia; Acevedo-Gallegos, Sandra; Gallardo-Gaona, Juan Manuel; Velazquez-Torres, Berenice; Ramírez-Calvo, José Antonio
Antiphospholipid antibody syndrome is a non-inflammatory autoimmune disease characterized by recurrent thrombotic events and/or obstetric complications associated with the presence of circulating antiphospholipid antibodies (anticardiolipin antibodies, anti-β 2 glycoprotein-i antibodies, and/or lupus anticoagulant. Antiphospholipid antibodies are a heterogeneous group of autoantibodies associated with recurrent miscarriage, stillbirth, fetal growth restriction and premature birth. The diversity of the features of the proposed placental antiphospholipid antibodies fingerprint suggests that several disease processes may occur in the placentae of women with antiphospholipid antibody syndrome in the form of immune responses: inflammatory events, complement activation, angiogenic imbalance and, less commonly, thrombosis and infarction. Because of the disparity between clinical and laboratory criteria, and the impact on perinatal outcome in patients starting treatment, we reviewed the aspects of antiphospholipid antibody syndrome related to obstetric complications and seronegative antiphospholipid antibody syndrome, and their treatment in obstetrics. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Bogers, Willy M.; Yates, Nicole L.; Ferrari, Guido; Dey, Antu K.; Williams, William T.; Jaeger, Frederick H.; Wiehe, Kevin; Sawant, Sheetal; Alam, S. Munir; LaBranche, Celia C.; Montefiori, David C.; Martin, Loic; Srivastava, Indresh; Heeney, Jonathan; Barnett, Susan W.
2017-01-01
ABSTRACT Evaluation of the epitope specificities, locations (systemic or mucosal), and effector functions of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitudes, epitope specificities, avidities, and functions of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4-mimetic miniprotein (gp140-M64U1) in rhesus macaques. Cross-linking of gp140 Env to M64U1 resulted in earlier increases of both the magnitude and avidity of the IgG binding response than those with Env protein alone. Notably, IgG binding responses at an early time point correlated with antibody-dependent cellular cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the cross-linked Env group than for the Env group. In addition, the cross-linked Env group developed higher IgG responses against a linear epitope in the gp120 C1 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by cross-linking of gp140 with the CD4-mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses, correlating with the rise of subsequent antibody-mediated antiviral functions. IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and immune correlate analysis of that trial revealed a role for binding antibodies and antibody Fc-mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope, with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that structural modifications of Env that aim to mimic the CD4-bound conformation can result in earlier antibody elicitation, altered epitope specificity, and increased antiviral function postimmunization. PMID:28490585
Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tongqing; Doria-Rose, Nicole A.; Cheng, Cheng
While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralizationmore » character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.« less
Nimmerjahn, Falk
2015-08-01
Passive immunotherapy with polyclonal or hyperimmune serum immunoglobulin G (IgG) preparations provides an efficient means of protecting immunocompromised patients from microbial infections. More recently, the use of passive immunotherapy to prevent or to treat established infections with the human immunodeficiency virus (HIV) has gained much attention, due to promising preclinical data obtained in monkey and humanized mouse in vivo model systems, demonstrating that the transfer of HIV-specific antibodies can not only prevent HIV infection, but also diminish virus load during chronic infection. Furthermore, an array of broadly neutralizing HIV-specific antibodies has become available and the importance of the IgG constant region as a critical modulator of broadly neutralizing activity has been demonstrated. The aim of this review is to summarize the most recent findings with regard to the molecular and cellular mechanisms responsible for antibody-mediated clearance of HIV infection, and to discuss how this may help to improve HIV therapy via optimizing Fcγ-receptor-dependent activities of HIV-specific antibodies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rajabibazl, Masoumeh; Rasaee, Mohammad Javad; Forouzandeh, Mehdi; Rahimpour, Azam
2013-12-01
Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. To study the development of transgenic chicken using a recombinant retrovirus containing fluonanobody. The retrovirus constructs containing nanobody genes along with secretory signals and GFP gene were established and packed. The virus particle containing the obtained fusion gene was injected into the eggs in stage X. Molecular detection and protein analysis was done in the G0 chickens. The rate of hatched chicken after gene manipulation was estimated to be about 33%. Real-Time PCR assay showed that the nanobody along with GFP gene were integrated in cells of 1.2% of chickens. We conclude that although the rate of gene transfer by recombinant viruses in chickens is low, it would be possible to transfect the target camel immunoglobulin gene into chicken genome.
Antibody drug conjugates - Trojan horses in the war on cancer.
Iyer, U; Kadambi, V J
2011-01-01
Antibody drug conjugates (ADCs) consist of an antibody attached to a cytotoxic drug by means of a linker. ADCs provide a way to couple the specificity of a monoclonal antibody (mAb) to the cytotoxicity of a small-molecule drug and, therefore, are promising new therapies for cancer. ADCs are prodrugs that are inactive in circulation but exert their cytotoxicity upon binding to the target cancer cell. Earlier unsuccessful attempts to generate ADCs with therapeutic value have emphasized the important role each component plays in determining the efficacy and safety of the final ADC. Scientific advances in engineering antibodies for maximum efficacy as anticancer agents, identification of highly cytotoxic molecules, and generation of linkers with increased stability in circulation have all contributed to the development of the many ADCs that are currently in clinical trials. This review discusses parameters that guide the selection of the components of an ADC to increase its therapeutic window, provides a brief look at ADCs currently in clinical trials, and discusses future challenges in this field. Copyright © 2011. Published by Elsevier Inc.
Hoffman, Lindsey M.; Gore, Lia
2014-01-01
Leukemia is the most common childhood malignancy and acute lymphoblastic leukemia (ALL) represents the largest sub-type. Despite remarkable improvements over the last 40 years, standard therapy fails in 10–20% of newly diagnosed patients. Survival for children with relapsed ALL is poor, and the development and implementation of novel therapeutic strategies in pediatric ALL are critical to further advancements. Immunotherapeutic approaches have been central to more novel ALL therapies. However, more recent innovation in antibody engineering has improved potency and efficacy, and antibody–drug conjugates (ADCs) are an especially attractive option in severely immunocompromised patients. An even more sophisticated antibody design is that of bi-specific T-cell engaging or BiTE® antibodies, which directly recruit effector T cells to augment the anti-neoplastic effect. This review focuses on blinatumomab, a bi-specific anti-CD19/CD3 antibody that has shown efficacy in adult patients with precursor B-ALL and is currently being evaluated in the pediatric setting. PMID:24744989
Triamines and their derivatives as bifunctional chelating agents
Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.
1992-03-31
A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes.
Yao, Qingxia; Qian, Ping; Huang, Qinfeng; Cao, Yi; Chen, Huanchun
2008-01-01
The P12A3C gene from FMDV (serotype O) encoding the capsid precursor protein, and the highly immunogenic gene FHG, which encodes multiple epitopes of FMDV capsid proteins, were inserted into eukaryotic expression vectors to compare different candidate genetically engineered vaccines for foot-and-mouth disease (FMD). A modified live pseudorabies virus (MLPRV) was also used to deliver P12A3C. Guinea pigs were inoculated intramuscularly with the candidate vaccines to compare the ability to elicit immunity of the DNA vector and a live viral vector. An indirect enzyme-linked immunosorbent assay (iELISA), virus-neutralization test and lymphoproliferation assay were used to detect antibody and cellular responses. The group immunized with P12A3C delivered by MLPRV produced significantly greater antibody and cellular responses indicating that MLPRV has a greater ability to mediate exogenous gene delivery than the plasmid DNA vector. Comparison of the immune responses induced by P12A3C and FHG, which were both mediated by DNA plasmids, showed that FHG and P12A3C elicited similar cellular responses, while P12A3C induced higher antibody levels, suggesting that P12A3C is a more powerful immunogen than FHG. In challenge experiments, guinea pigs vaccinated with P12A3C delivered by MLPRV were protected fully from FMDV challenge, whereas guinea pigs vaccinated with P12A3C or FHG delivered by DNA plasmid were only protected partially. This study provides a basis for future construction of a genetically engineered vaccine for FMDV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp; Hirai, Yuya; Yoshimura, Shige H.
2013-12-10
To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do notmore » take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.« less
Khan, Md Asad; Alam, Khursheed; Mehdi, Syed Hassan; Rizvi, M Moshahid A
2017-12-01
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by auto-antibodies against native deoxyribonucleic acid after modification and is one of the reasons for the development of SLE. Here, we have evaluated the structural perturbations in human placental DNA by peroxynitrite using spectroscopy, thermal denaturation and high-performance liquid chromatography (HPLC). Peroxynitrite is a powerful potent bi-functional oxidative/nitrative agent that is produced both endogenously and exogenously. In experimental animals, the peroxynitrite-modified DNA was found to be highly immunogenic. The induced antibodies showed cross-reactions with different types of DNA and nitrogen bases that were modified with peroxynitrite by inhibition ELISA. The antibody activity was inhibited by approximately 89% with its immunogen as the inhibitor. The antigen-antibodies interaction between induced antibodies with peroxynitrite-modified DNA showed retarded mobility as compared to the native form. Furthermore, significantly increased binding was also observed in SLE autoantibodies with peroxynitrite-modified DNA than native form. Moreover, DNA isolated from lymphocyte of SLE patients revealed significant recognition of anti-peroxynitrite-modified DNA immunoglobulin G (IgG). Our data indicates that DNA modified with peroxynitrite presents unique antigenic determinants that may induce autoantibody response in SLE. Copyright © 2017 Elsevier Inc. All rights reserved.
Monedero, Vicente; Rodríguez-Díaz, Jesús; Viana, Rosa; Buesa, Javier; Pérez-Martínez, Gaspar
2004-01-01
Single-chain antibodies (scFv) recognizing the VP8* fraction of rotavirus outer capsid and blocking rotavirus infection in vitro were isolated by phage display. Vectors for the extracellular expression in Lactobacillus casei of one of the scFv were constructed. L. casei was able to secrete active scFv to the growth medium, showing the potential of probiotic bacteria to be engineered to express molecules suitable for in vivo antirotavirus therapies. PMID:15528568
Methanol induction optimization for scFv antibody fragment production in Pichia pastoris.
Cunha, A E; Clemente, J J; Gomes, R; Pinto, F; Thomaz, M; Miranda, S; Pinto, R; Moosmayer, D; Donner, P; Carrondo, M J T
2004-05-20
Fibronectin splice variant ED B (extracellular domain B) is a promising marker for angiogenesis in growing solid tumors. Currently, recombinant antibodies against ED B are being investigated concerning their potential use, for either therapeutic or diagnostic purposes. Single-chain antibody fragments directed against the ED B can be efficiently expressed in Pichia pastoris; thus, a recombinant strain of the methylotropic yeast P. pastoris was used for this work. Three different forms of scFv antibody fragment are found in the supernatant from this fermentation: covalent homodimer, associative homodimer, and monomer. Both homodimeric forms can be converted to the monomeric form (under reducing conditions) and be efficiently radiolabeled, whereas the monomeric form of scFv already present in the supernatant cannot. It was also found that the fraction of protein in the monomeric form is highly dependent on the mode of induction rather than scFv concentration. This suggests that the monomeric form of the scFv present in the supernatant might be a result of events occurring at the expression, secretion, or folding level. A high cell density fermentation protocol was developed by optimizing methanol induction, yielding the highest scFv antibody fragment production rate and product quality; cell concentration at the induction point and specific methanol uptake rate were found to be the most important control variables. A decrease in specific methanol uptake rate led to a higher specific production rate for the scFv antibody fragment (5.4 microg g(cell) h(-1)). Product quality, i.e., percentage of product in a homodimeric form, also increased with the decrease in methanol uptake rate. Furthermore, the volumetric productivity depended on cell concentration at the induction point, increasing with the increase of cell concentration up to 320 g L(-1) wet cell weight (WCW). The reduction of the methanol feeding rate for induction, and consequently of the oxygen uptake rate, have important consequences for optimizing product titers and quality and thus on the scale-up of this production process; hence one of the major limitations upon high cell density cultivation in bioreactors is keeping the high oxygen transfer rate required. From the results obtained, a scale-up strategy was developed based on the available oxygen transfer rates at larger scales, allowing the definition of the optimum biomass concentration for induction and methanol feeding strategy for maximization of product titer and quality. Copyright 2004 Wiley Periodicals, Inc.
Conlon, Kimberly A.; Berrios, Miguel
2007-01-01
The specific light-induced, non-enzymatic photolysis of mOGG1 by porphyrin-conjugated or rose bengal-conjugated streptavidin and porphyrin-conjugated or rose bengal-conjugated first specific or secondary anti-IgG antibodies is reported. The porphyrin chlorin e6 and rose bengal were conjugated to either streptavidin, rabbit anti-mOGG1 primary specific antibody fractions or goat anti-rabbit IgG secondary antibody fractions. Under our experimental conditions, visible light of wavelengths greater than 600 nm induced the non-enzymatic degradation of mOGG1 when this DNA repair enzyme either directly formed a complex with chlorin e6-conjugated anti-mOGG1 primary specific antibodies or indirectly formed complexes with either streptavidin-chlorin e6 conjugates and biotinylated first specific anti-mOGG1 antibodies or first specific anti-mOGG1antibodies and chlorin e6-conjugated anti-rabbit IgG secondary antibodies. Similar results were obtained when rose bengal was used as photosensitizer instead of chlorine e6. The rate of the photochemical reaction of mOGG1 site-directed by all three chlorine e6 antibody complexes was not affected by the presence of the singlet oxygen scavenger sodium azide. Site-directed photoactivatable probes having the capacity to generate reactive oxygen species (ROS) while destroying the DNA repair system in malignant cells and tumors may represent a powerful strategy to boost selectivity, penetration and efficacy of current photodynamic (PDT) therapy methodologies. PMID:17251034
Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys.
Oswald, Wendelien B; Geisbert, Thomas W; Davis, Kelly J; Geisbert, Joan B; Sullivan, Nancy J; Jahrling, Peter B; Parren, Paul W H I; Burton, Dennis R
2007-01-01
Prophylaxis with high doses of neutralizing antibody typically offers protection against challenge with viruses producing acute infections. In this study, we have investigated the ability of the neutralizing human monoclonal antibody, KZ52, to protect against Ebola virus in rhesus macaques. This antibody was previously shown to fully protect guinea pigs from infection. Four rhesus macaques were given 50 mg/kg of neutralizing human monoclonal antibody KZ52 intravenously 1 d before challenge with 1,000 plaque-forming units of Ebola virus, followed by a second dose of 50 mg/kg antibody 4 d after challenge. A control animal was exposed to virus in the absence of antibody treatment. Passive transfer of the neutralizing human monoclonal antibody not only failed to protect macaques against challenge with Ebola virus but also had a minimal effect on the explosive viral replication following infection. We show that the inability of antibody to impact infection was not due to neutralization escape. It appears that Ebola virus has a mechanism of infection propagation in vivo in macaques that is uniquely insensitive even to high concentrations of neutralizing antibody.
Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J
2017-05-01
Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.
Triamines and their derivatives as bifunctional chelating agents
Troutner, D.E.; John, C.S.; Pillai, M.R.A.
1992-03-31
A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. No Drawings
Monoclonal antibodies to human glycophorin A and cell lines for the production thereof
Vanderlaan, Martin; Bigbee, William L.; Jensen, Ronald H.; Fong, Stella S. N.; Langlois, Richard G.
1988-01-01
Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that are highly specific to and exhibit high affinity for glycophorin A.sup.N and differentiate between the M and N forms of human glycophorin A.
Cupo, A; Vion-Dury, J; Jarry, T
1986-10-01
We described here a new immunization procedure to obtain high titre and high specific antibodies against Leu-enkephalin (LE). The immunogen form is composed of one part of LE conjugate and one part of LE-Arg6 conjugate. We have observed an increase of titre, affinity and specificity of the antibodies in the coimmunization procedure compared to those obtained by conventional immunization involving only the LE conjugate. The Leu-enkephalin antibodies exhibit a high affinity (KD 8 X 10(-12) M) and we are able to detect the Leu-enkephalin at the 10(-15) mole level. These LE antibodies are highly specific of the C part of LE peptide and cross-react weakly with Met-enkephalin (1%).
Bertozzi, Carolyn R [Berkeley, CA; Kehoe, John [Saint Davids, PA; Bradbury, Andrew M [Santa Fe, NM
2009-09-15
The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.
Polynucleotides encoding anti-sulfotyrosine antibodies
Bertozzi, Carolyn R [Berkeley, CA; Kehoe, John [Saint Davids, PA; Bradbury, Andrew M [Santa Fe, NM
2011-01-11
The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.
Chaturvedi, Shalini; Siegel, Derick; Wagner, Carrie L; Park, Jaehong; van de Velde, Helgi; Vermeulen, Jessica; Fung, Man-Cheong; Reddy, Manjula; Hall, Brett; Sasser, Kate
2015-01-01
Aim Interleukin-6 (IL-6), a multifunctional cytokine, exists in several forms ranging from a low molecular weight (MW 20–30 kDa) non-complexed form to high MW (200–450 kDa), complexes. Accurate baseline IL-6 assessment is pivotal to understand clinical responses to IL-6-targeted treatments. Existing assays measure only the low MW, non-complexed IL-6 form. The present work aimed to develop a validated assay to measure accurately total IL-6 (complexed and non-complexed) in serum or plasma as matrix in a high throughput and easily standardized format for clinical testing. Methods Commercial capture and detection antibodies were screened against humanized IL-6 and evaluated in an enzyme-linked immunosorbent assay format. The best antibody combinations were screened to identify an antibody pair that gave minimum background and maximum recovery of IL-6 in the presence of 100% serum matrix. A plate-based total IL-6 assay was developed and transferred to the Meso Scale Discovery (MSD) platform for large scale clinical testing. Results The top-performing antibody pair from 36 capture and four detection candidates was validated on the MSD platform. The lower limit of quantification in human serum samples (n = 6) was 9.77 pg l–1, recovery ranged from 93.13–113.27%, the overall pooled coefficients of variation were 20.12% (inter-assay) and 8.67% (intra-assay). High MW forms of IL-6, in size fractionated serum samples from myelodysplastic syndrome and rheumatoid arthritis patients, were detected by the assay but not by a commercial kit. Conclusion This novel panoptic (sees all forms) IL-6 MSD assay that measures both high and low MW forms may have clinical utility. PMID:25847183
NASA Astrophysics Data System (ADS)
Nabiev, Igor
2017-01-01
An ideal single-photon (1P) or multiphoton fluorescent nanoprobe should combine a nanocrystal with the largest possible 1P or two-photon (2P) absorption cross section and the smallest possible highly specific recognition molecules conjugated with the nanoparticle in an oriented manner. However, the conditions used for conjugation of typical recognition molecules (conventional antibodies, Abs) with nanoparticles often provoke their unfolding and/or yield nanoprobes with irregular orientation of Abs on the nanoparticle surface. Conjugation of smaller Ab fragments, such as single-domain antibodies (sdAbs), with quantum dots (QDs) in an oriented manner can be considered as an attractive approach to engineering of ultrasmall diagnostic nanoprobes. QDs conjugated to 13-kDa sdAbs derived from camelid IgG or streptavidin have been used as efficient 1P or 2P excitation probes for imaging of cancer markers. The 2P absorption cross sections (TPACSs) for some conjugates are higher than 49,000 GM (Goeppert-Mayer units), which is close to the theoretical value calculated for CdSe QDs and considerably exceeds that of organic dyes. A further step in advanced QD-based cancer diagnostics has been made through implementation of efficient FRET-based imaging with 2P excitation, which has been demonstrated for double immunostaining complexes formed on the surface of cancer cells from sdAb-QD conjugates (donor) and a combination of monoclonal Abs and secondary antibodies labeled with the AlexaFluor dye (acceptor). The proposed approach permits obtaining an exceptional contrast of 2P imaging of cancer biomarkers without any contribution of cell and tissue autofluorescence in the recorded images.
Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J
2016-01-01
JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin's enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin's bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells.
Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten
2016-01-01
JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin’s enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin’s bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140
Cross-Reactivity between Chlamydia trachomatis Heat Shock Protein 10 and Early Pregnancy Factor
Betsou, Fotini; Borrego, Maria José; Guillaume, Nicolas; Catry, Maria Anjos; Romão, Sandra; Machado-Caetano, J. A.; Sueur, Jean Marie; Mention, Jacques; Faille, Nicole; Orfila, Jeanne
2003-01-01
Chlamydia trachomatis heat shock protein 10 (Chsp10) is associated with chronic genital tract infection with C. trachomatis. Chsp10 is homologous to human chaperonin 10 (Cpn10) and early pregnancy factor (EPF), a form of human Cpn10 that is specifically secreted at the start of pregnancy. We investigated cross-reactions between serum anti-Chsp10 antibodies and anti-EPF antibodies in pregnant and nonpregnant patients. Pregnancy was found to be associated with the presence of anti-EPF antibodies, which are specifically induced in pregnant women with a history of C. trachomatis infection, and with the presence of serum anti-Chsp10 antibodies. We also found that infertility was associated with the presence of anti-Chsp10 and anti-EPF antibodies. The HLA class II haplotype DR8 DQ4 was associated with the presence of anti-Chsp10 antibodies but not of anti-EPF antibodies. PMID:12738647
Orcutt, Kelly D; Adams, Gregory P; Wu, Anna M; Silva, Matthew D; Harwell, Catey; Hoppin, Jack; Matsumura, Manabu; Kotsuma, Masakatsu; Greenberg, Jonathan; Scott, Andrew M; Beckman, Robert A
2017-10-01
Competitive radiolabeled antibody imaging can determine the unlabeled intact antibody dose that fully blocks target binding but may be confounded by heterogeneous tumor penetration. We evaluated the hypothesis that smaller radiolabeled constructs can be used to more accurately evaluate tumor expressed receptors. The Krogh cylinder distributed model, including bivalent binding and variable intervessel distances, simulated distribution of smaller constructs in the presence of increasing doses of labeled antibody forms. Smaller constructs <25 kDa accessed binding sites more uniformly at large distances from blood vessels compared with larger constructs and intact antibody. These observations were consistent for different affinity and internalization characteristics of constructs. As predicted, a higher dose of unlabeled intact antibody was required to block binding to these distant receptor sites. Small radiolabeled constructs provide more accurate information on total receptor expression in tumors and reveal the need for higher antibody doses for target receptor blockade.
Safety and General Considerations for the Use of Antibodies in Infectious Diseases.
Hey, Adam Seidelin
2017-01-01
Monocolonal antibodies are valuable potential new tools for meeting unmet needs in treating infectious dieseases and to provide alternatives and supplements to antibiotics in these times of growing resistance. Especially when considering the ability to screen for antibodies reacting to very diverse target antigens and the ability to design and engineer them to work specifically to hit and overcome their strategies, like toxins and their hiding in specific cells to evade the immuneresponse and their special features enabling killing of the infectious agents and or the cells harbouring them. Antibodies are generally very safe and adverse effects of treatments with therapeutic antibodies are usually related to exaggeration of the intended pharmacology. In this chapter general safety considerations for the use of antibodies is reviewed and the general procedures for nonclinical testing to support their clinical development. Special considerations for anti-infective mAb treatments are provided including the special features that makes nonclinical safety programs for anti-infective mAbs much more simple and restricted. However at a cost since only limited information for clinical safety and modeling can be derived from such programs. Then strategies for optimally designing antibodies are discussed including the use of combination of antibodies. Finally ways to facilitate development of more than the currently only three approved mAb based treatments are discussed with a special focus on high costs and high price and how collaboration and new strategies for development in emerging markets can be a driver for this.
Baculovirus display of functional antibody Fab fragments.
Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki
2015-08-01
The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.
Feige, Matthias J; Gräwert, Melissa A; Marcinowski, Moritz; Hennig, Janosch; Behnke, Julia; Ausländer, David; Herold, Eva M; Peschek, Jirka; Castro, Caitlin D; Flajnik, Martin; Hendershot, Linda M; Sattler, Michael; Groll, Michael; Buchner, Johannes
2014-06-03
Sharks and other cartilaginous fish are the phylogenetically oldest living organisms that rely on antibodies as part of their adaptive immune system. They produce the immunoglobulin new antigen receptor (IgNAR), a homodimeric heavy chain-only antibody, as a major part of their humoral adaptive immune response. Here, we report the atomic resolution structure of the IgNAR constant domains and a structural model of this heavy chain-only antibody. We find that despite low sequence conservation, the basic Ig fold of modern antibodies is already present in the evolutionary ancient shark IgNAR domains, highlighting key structural determinants of the ubiquitous Ig fold. In contrast, structural differences between human and shark antibody domains explain the high stability of several IgNAR domains and allowed us to engineer human antibodies for increased stability and secretion efficiency. We identified two constant domains, C1 and C3, that act as dimerization modules within IgNAR. Together with the individual domain structures and small-angle X-ray scattering, this allowed us to develop a structural model of the complete IgNAR molecule. Its constant region exhibits an elongated shape with flexibility and a characteristic kink in the middle. Despite the lack of a canonical hinge region, the variable domains are spaced appropriately wide for binding to multiple antigens. Thus, the shark IgNAR domains already display the well-known Ig fold, but apart from that, this heavy chain-only antibody employs unique ways for dimerization and positioning of functional modules.
Hempel, Franziska; Maurer, Michael; Brockmann, Björn; Mayer, Christian; Biedenkopf, Nadine; Kelterbaum, Anne; Becker, Stephan; Maier, Uwe G
2017-07-27
The ideal protein expression system should provide recombinant proteins in high quality and quantity involving low production costs only. However, especially for complex therapeutic proteins like monoclonal antibodies many challenges remain to meet this goal and up to now production of monoclonal antibodies is very costly and delicate. Particularly, emerging disease outbreaks like Ebola virus in Western Africa in 2014-2016 make it necessary to reevaluate existing production platforms and develop robust and cheap alternatives that are easy to handle. In this study, we engineered the microalga Phaeodactylum tricornutum to produce monoclonal IgG antibodies against the nucleoprotein of Marburg virus, a close relative of Ebola virus causing severe hemorrhagic fever with high fatality rates in humans. Sequences for both chains of a mouse IgG antibody were retrieved from a murine hybridoma cell line and implemented in the microalgal system. Fully assembled antibodies were shown to be secreted by the alga and antibodies were proven to be functional in western blot, ELISA as well as IFA studies just like the original hybridoma produced IgG. Furthermore, synthetic variants with constant regions of a rabbit IgG and human IgG with optimized codon usage were produced and characterized. This study highlights the potential of microalgae as robust and low cost expression platform for monoclonal antibodies secreting IgG antibodies directly into the culture medium. Microalgae possess rapid growth rates, need basically only water, air and sunlight for cultivation and are very easy to handle.
Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris.
Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Forouzandeh, Mehdi; Allameh, Abdol-Amir
2006-02-01
The methylotrophic yeast Pichia pastoris has become a highly popular expression host system for the recombinant production of a wide variety of proteins, such as antibody fragments. Camelids produce functional antibodies devoid of light chains and constant heavy-chain domain (CH1). The antigen binding fragments of such heavy chain antibodies are therefore comprised in one single domain, the so-called VH of the camelid heavy chain antibody (VHH). To test the feasibility of expressing VHHs in the yeast, which on account of their small size and antigen recognition properties would have a major impact on antibody engineering strategies, we constructed two VHH genes encoding the single-domain antibody fragments with specificity for a cancer associated mucin, MUC1. The recombinant strains of the yeast P. pastoris were developed which secrete single-domain antibody fragment to the culture supernatant as a biologically active protein. Supplementation of medium with sorbitol (in pre-induction phase) and casamino acid or EDTA (in induction phase) provided ideal condition of increasing the yield of VHH production compared to culture condition devoid of above recipe. The secreted protein was purified following a 80% ammonium sulfate precipitation step, followed by a affinity chromatography column. The specific activity in enzyme-linked immunosorbant assay (ELISA) of the purified yeast VHH was higher than that of a bacterial periplasmic counterpart. These results reaffirm that the yeast P. pastoris is a suitable host for high level and correctly folded production of VHH antibody fragments with potential in vivo diagnostic and therapeutic applications. This is the first report of expression of VHH in P. pastoris.
Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H.
2017-01-01
Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy. PMID:28448627
Chan, Yee-Peng; Lu, Min; Dutta, Somnath; Yan, Lianying; Barr, Jennifer; Flora, Michael; Feng, Yan-Ru; Xu, Kai; Nikolov, Dimitar B.; Wang, Lin-Fa; Skiniotis, Georgios
2012-01-01
The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are paramyxoviruses discovered in the mid- to late 1990s that possess a broad host tropism and are known to cause severe and often fatal disease in both humans and animals. HeV and NiV infect cells by a pH-independent membrane fusion mechanism facilitated by their attachment (G) and fusion (F) glycoproteins. Here, several soluble forms of henipavirus F (sF) were engineered and characterized. Recombinant sF was produced by deleting the transmembrane (TM) and cytoplasmic tail (CT) domains and appending a glycosylphosphatidylinositol (GPI) anchor signal sequence followed by GPI-phospholipase D digestion, appending a trimeric coiled-coil (GCNt) domain (sFGCNt), or deleting the TM, CT, and fusion peptide domain. These sF glycoproteins were produced as F0 precursors, and all were apparent stable trimers recognized by NiV-specific antisera. Surprisingly, however, only the GCNt-appended constructs (sFGCNt) could elicit cross-reactive henipavirus-neutralizing antibody in mice. In addition, sFGCNt constructs could be triggered in vitro by protease cleavage and heat to transition from an apparent prefusion to postfusion conformation, transitioning through an intermediate that could be captured by a peptide corresponding to the C-terminal heptad repeat domain of F. The pre- and postfusion structures of sFGCNt and non-GCNt-appended sF could be revealed by electron microscopy and were distinguishable by F-specific monoclonal antibodies. These data suggest that only certain sF constructs could serve as potential subunit vaccine immunogens against henipaviruses and also establish important tools for further structural, functional, and diagnostic studies on these important emerging viruses. PMID:22915804
Designing Trojan Horses | Center for Cancer Research
Waging battle against cancer cells without inflicting damage on normal tissue has long been a goal for cancer treatment. A new type of drug called immunotoxins may help make this goal a reality. Much like the Greeks used a wooden horse to get soldiers inside the gates of Troy, immunotoxins use clever genetic engineering to get a lethal toxin inside cancer cells. Each immunotoxin consists of two components an antibody and a toxin that are fused together. The custom-designed antibody acts as a homing signal, seeking out a specific target present on the surface of cancer cells. When the antibody binds its target, the whole immunotoxin is brought inside the cell. Unwittingly, the cancer cell has exposed itself to a powerful poison, a mistake that will likely condemn it to death.
Specific Amyloid β Clearance by a Catalytic Antibody Construct*
Planque, Stephanie A.; Nishiyama, Yasuhiro; Sonoda, Sari; Lin, Yan; Taguchi, Hiroaki; Hara, Mariko; Kolodziej, Steven; Mitsuda, Yukie; Gonzalez, Veronica; Sait, Hameetha B. R.; Fukuchi, Ken-ichiro; Massey, Richard J.; Friedland, Robert P.; O'Nuallain, Brian; Sigurdsson, Einar M.; Paul, Sudhir
2015-01-01
Classical immunization methods do not generate catalytic antibodies (catabodies), but recent findings suggest that the innate antibody repertoire is a rich catabody source. We describe the specificity and amyloid β (Aβ)-clearing effect of a catabody construct engineered from innate immunity principles. The catabody recognized the Aβ C terminus noncovalently and hydrolyzed Aβ rapidly, with no reactivity to the Aβ precursor protein, transthyretin amyloid aggregates, or irrelevant proteins containing the catabody-sensitive Aβ dipeptide unit. The catabody dissolved preformed Aβ aggregates and inhibited Aβ aggregation more potently than an Aβ-binding IgG. Intravenous catabody treatment reduced brain Aβ deposits in a mouse Alzheimer disease model without inducing microgliosis or microhemorrhages. Specific Aβ hydrolysis appears to be an innate immune function that could be applied for therapeutic Aβ removal. PMID:25724648
Alternative Affinity Ligands for Immunoglobulins.
Kruljec, Nika; Bratkovič, Tomaž
2017-08-16
The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.
Hagihara, Yoshihisa; Mine, Shouhei; Uegaki, Koichi
2007-12-14
We report for the first time the stabilization of an immunoglobulin fold domain by an engineered disulfide bond. In the llama single-domain antibody, which has human chorionic gonadotropin as its specific antigen, Ala49 and Ile70 are buried in the structure. A mutant with an artificial disulfide bond at this position showed a 10 degrees C higher midpoint temperature of thermal unfolding than that without the extra disulfide bond. The modified domains exhibited an antigen binding affinity comparable with that of the wild-type domain. Ala49 and Ile70 are conserved in camel and llama single-domain antibody frameworks. Therefore, domains against different antigens are expected to be stabilized by the engineered disulfide bond examined here. In addition to the effect of the loop constraints in the unfolded state, thermodynamic analysis indicated that internal interaction and hydration also control the stability of domains with disulfide bonds. The change in physical properties resulting from mutation often causes unpredictable and destabilizing effects on these interactions. The introduction of a hydrophobic cystine into the hydrophobic region maintains the hydrophobicity of the protein and is expected to minimize the unfavorable mutational effects.
Immunotherapy for the treatment of drug abuse.
Kosten, Thomas; Owens, S Michael
2005-10-01
Antibody therapy (as either active or passive immunization) is designed primarily to prevent drugs of abuse from entering the central nervous system (CNS). Antidrug antibodies reduce rush, euphoria, and drug distribution to the brain at doses that exceed the apparent binding capacity of the antibody. This is accomplished through a pharmacokinetic antagonism, which reduces the amount of drug in the brain, the rate of clearance across the blood-brain barrier, and the volume of drug distribution. Because the antibodies remain primarily in the circulatory system, they have no apparent central nervous system side effects. Active immunization with drug-protein conjugate vaccines has been tested for cocaine, heroin, methamphetamine, and nicotine in animal, with 1 cocaine and 3 nicotine vaccines in Phase 2 human trials. Passive immunization with high affinity monoclonal antibodies has been tested for cocaine, methamphetamine, nicotine, and phencyclidine (PCP) in preclinical animal models. Antibodies have 2 immediate clinical applications in drug abuse treatment: to treat drug overdose and to reduce relapse to drug use in addicted patients. The specificity of the therapies, the lack of addiction liability, minimal side effects, and long-lasting protection against drug use offer major therapeutic benefit over conventional small molecule agonists and antagonists. Immunotherapies can also be combined with other antiaddiction medications and enhance behavioral therapies. Current immunotherapies already show efficacy, but improved antigen design and antibody engineering promise highly specific and rapidly developed treatments for both existing and future addictions.
Production of Recombinant Human scFv Against Tetanus Toxin Heavy Chain by Phage Display Technology.
Khalili, Ehsan; Lakzaei, Mostafa; Rasaee, Mohhamad Javad; Aminian, Mahdi
2015-10-01
Tetanus, as a major cause of death in developing countries, is caused by tetanus neurotoxin. Recombinant antibodies against tetanus neurotoxin can be useful in tetanus management. Phage display of antibody fragments from immune human antibody libraries with single chain constructs combining the variable fragments (scFv) has been one of the most prominent technologies in antibody engineering. The aim of this study was the generation of a single chain fragment of variable region (scFv) library and selection of specific antibodies with high affinity against tetanus toxin. Immune human single chain fragment variable (HuscFv) antibody phagemid library was displayed on pIII of filamentous bacteriophage. Selection of scFv clones was performed against tetanus toxin antigens after three rounds of panning. The selected scFv clones were analyzed for inhibition of tetanus toxin binding to ganglioside GT1b. After the third round of panning, over 35 HuscFv phages specific for tetanus toxin were isolated from this library of which 15 clones were found to bind specifically to tetanus toxin. The selected HuscFv phages expressed as a soluble HuscFv peptide and some clones showed positive signals against tetanus toxin. We found that six HuscFv clones inhibit toxin binding to ganglioside GT1b. These selected antibodies can be used in the management of tetanus.
Agarabi, Cyrus D; Schiel, John E; Lute, Scott C; Chavez, Brittany K; Boyne, Michael T; Brorson, Kurt A; Khan, Mansoora; Read, Erik K
2015-06-01
Consistent high-quality antibody yield is a key goal for cell culture bioprocessing. This endpoint is typically achieved in commercial settings through product and process engineering of bioreactor parameters during development. When the process is complex and not optimized, small changes in composition and control may yield a finished product of less desirable quality. Therefore, changes proposed to currently validated processes usually require justification and are reported to the US FDA for approval. Recently, design-of-experiments-based approaches have been explored to rapidly and efficiently achieve this goal of optimized yield with a better understanding of product and process variables that affect a product's critical quality attributes. Here, we present a laboratory-scale model culture where we apply a Plackett-Burman screening design to parallel cultures to study the main effects of 11 process variables. This exercise allowed us to determine the relative importance of these variables and identify the most important factors to be further optimized in order to control both desirable and undesirable glycan profiles. We found engineering changes relating to culture temperature and nonessential amino acid supplementation significantly impacted glycan profiles associated with fucosylation, β-galactosylation, and sialylation. All of these are important for monoclonal antibody product quality. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio.
Scarcelli, John J; Shang, Tanya Q; Iskra, Tim; Allen, Martin J; Zhang, Lin
2017-11-01
Development of stable cell lines for expression of large-molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high-level expression is critical, and a site-specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site-specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site-specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1463-1467, 2017. © 2017 American Institute of Chemical Engineers.
Studies on the Immunochemical Techniques for Detection of Selected Fungal and Dinoflagellate Toxins
1983-08-15
was tested. Alpha epimer ( natural form) was found to be more effective than the beta form in the RIA. Not only was much less antibody required, the...with tritiated reduced-VT, DAS, T-2, and DOVE. After completion of these studies, we should be able to understand the nature of such antibodies and to...the ELISA. The nature of the cross-linking of the toxin to BSA is poorly understood. Further studies should be directed to characterize the reaction
Sapkota, Muna; Burnham, Ellen L; DeVasure, Jane M; Sweeter, Jenea M; Hunter, Carlos D; Duryee, Michael J; Klassen, Lynell W; Kharbanda, Kusum K; Sisson, Joseph H; Thiele, Geoffrey M; Wyatt, Todd A
2017-12-01
Malondialdehyde (MDA) and acetaldehyde (AA) exist following ethanol metabolism and tobacco pyrolysis. As such, lungs of individuals with alcohol use disorders (AUDs) are a target for the effects of combined alcohol and cigarette smoke metabolites. MDA and AA form a stable protein adduct, malondialdehyde-acetaldehyde (MAA) adduct, known to be immunogenic, profibrotic, and proinflammatory. MAA adduct is the dominant epitope in anti-MAA antibody formation. We hypothesized that MAA-adducted protein forms in lungs of those who both abuse alcohol and smoke cigarettes, and that this would be associated with systemically elevated anti-MAA antibodies. Four groups were established: AUD subjects who smoked cigarettes (+AUD/+smoke), smokers without AUD (-AUD/+smoke), AUD without smoke (+AUD/-smoke), and non-AUD/nonsmokers (-AUD/-smoke). We observed a significant increase in MAA adducts in lung cells of +AUD/+smoke versus -AUD/-smoke. No significant increase in MAA adducts was observed in -AUD/+smoke or in +AUD/-smoke compared to -AUD/-smoke. Serum from +AUD/+smoke had significantly increased levels of circulating anti-MAA IgA antibodies. After 1 week of alcohol that MAA-adducted protein is formed in the lungs of those who smoke cigarettes and abuse alcohol, leading to a subsequent increase in serum IgA antibodies. MAA-adducted proteins could play a role in pneumonia and other diseases of the lung in the setting of AUD and smoking. Copyright © 2017 by the Research Society on Alcoholism.
Hu, Zhilan; Guo, Donglin; Yip, Shirley S M; Zhan, Dejin; Misaghi, Shahram; Joly, John C; Snedecor, Bradley R; Shen, Amy Y
2013-01-01
Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR-deficient DG44, and DUXB11-based DHFR deficient CHO. Current Genentech commercial full-length antibody products have all been produced in the DUXB11-derived DHFR-deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11-derived DHFR-deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11-based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14-day fed batch cultures in shake flasks. In contrast, the DUXB11-based host produced ∼0.1 g/l for both antibodies in the same 14-day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ∼2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers.
Wels, Winfried; Biburger, Markus; Müller, Tina; Dälken, Benjamin; Giesübel, Ulrike; Tonn, Torsten; Uherek, Christoph
2004-03-01
Over the past years, monoclonal antibodies have attracted enormous interest as targeted therapeutics, and a number of such reagents are in clinical use. However, responses could not be achieved in all patients with tumors expressing high levels of the respective target antigens, suggesting that other factors such as limited recruitment of endogenous immune effector mechanisms can also influence treatment outcome. This justifies the search for alternative, potentially more effective reagents. Antibody-toxins and cytolytic effector cells genetically modified to carry antibody-based receptors on the surface, represent such tailor-made targeting vehicles with the potential of improved tumor localization and enhanced efficacy. In this way, advances in recombinant antibody technology have made it possible to circumvent problems inherent in chemical coupling of antibodies and toxins, and have allowed construction via gene fusion of recombinant molecules which combine antibody-mediated recognition of tumor cells with specific delivery of potent protein toxins of bacterial or plant origin. Likewise, recombinant antibody fragments provide the basis for the construction of chimeric antigen receptors that, upon expression in cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells, link antibody-mediated recognition of tumor antigens with these effector cells' potent cytolytic activities, thereby making them promising cellular therapeutics for adoptive cancer therapy. Here, general principles for the derivation of cytotoxic proteins and effector cells with antibody-dependent tumor specificity are summarized, and current strategies to employ these molecules and cells for directed cancer therapy are discussed, focusing mainly on the tumor-associated antigens epidermal growth factor receptor (EGFR) and the closely related ErbB2 (HER2) as targets.
Design of multivalent complexes using the barnase*barstar module.
Deyev, Sergey M; Waibel, Robert; Lebedenko, Ekaterina N; Schubiger, August P; Plückthun, Andreas
2003-12-01
The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and purification of defined dimeric and trimeric complexes. Immobilized barnase fusions are used to capture barstar fusions from crude extracts to yield homogeneous, heterodimeric fusion proteins. These proteins are stable, soluble and resistant to proteolysis. Using fusions with anti-p185(HER2-ECD) 4D5 scFv, we show that the anticipated gain in avidity from monomer to dimer to trimer is obtained and that favorable tumor targeting properties are achieved. Many permutations of engineered multispecific fusion proteins become accessible with this technology of quasi-covalent heterodimers.
Production and characterization of vaccines based on flaviviruses defective in replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Peter W.; Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019
2006-08-01
To develop new vaccine candidates for flavivirus infections, we have engineered two flaviviruses, yellow fever virus (YFV) and West Nile virus (WNV), that are deficient in replication. These defective pseudoinfectious viruses (PIVs) lack a functional copy of the capsid (C) gene in their genomes and are incapable of causing spreading infection upon infection of cells both in vivo and in vitro. However, they produce extracellular E protein in form of secreted subviral particles (SVPs) that are known to be an effective immunogen. PIVs can be efficiently propagated in trans-complementing cell lines making high levels of C or all three viralmore » structural proteins. PIVs derived from YFV and WNV, demonstrated very high safety and immunization produced high levels of neutralizing antibodies and protective immune response. Such defective flaviviruses can be produced in large scale under low biocontainment conditions and should be useful for diagnostic or vaccine applications.« less
Tumor infiltrating lymphocytes in ovarian cancer
Santoiemma, Phillip P; Powell, Daniel J
2015-01-01
The accumulation of tumor infiltrating lymphocytes (TILs) in ovarian cancer is prognostic for increased survival while increases in immunosuppressive regulatory T-cells (Tregs) are associated with poor outcomes. Approaches that bolster tumor-reactive TILs may limit tumor progression. However, identifying tumor-reactive TILs in ovarian cancer has been challenging, though adoptive TIL therapy in patients has been encouraging. Other forms of TIL immunomodulation remain under investigation including Treg depletion, antibody-based checkpoint modification, activation and amplification using dendritic cells, antigen presenting cells or IL-2 cytokine culture, adjuvant cytokine injections, and gene-engineered T-cells. Many approaches to TIL manipulation inhibit ovarian cancer progression in preclinical or clinical studies as monotherapy. Here, we review the impact of TILs in ovarian cancer and attempts to mobilize TILs to halt tumor progression. We conclude that effective TIL therapy for ovarian cancer is at the brink of translation and optimal TIL activity may require combined methodologies to deliver clinically-relevant treatment. PMID:25894333
NASA Astrophysics Data System (ADS)
Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio
2016-09-01
Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.
A G-Quadruplex-Containing RNA Activates Fluorescence in a GFP-Like Fluorophore
Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng; Shelke, Sandip A.; Evans, Molly E.; Koldobskaya, Yelena; Rice, Phoebe A.; Piccirilli, Joseph A.
2014-01-01
Spinach is an in vitro selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence.Spinach is thus an RNA analog of GFP, and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2 and 2.4 Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially pre-formed binding site for the fluorophore.The fluorophore binds in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers. PMID:24952597
In silico Driven Redesign of a Clinically Relevant Antibody for the Treatment of GD2 Positive Tumors
Ahmed, Mahiuddin; Goldgur, Yehuda; Hu, Jian; Guo, Hong-Fen; Cheung, Nai-Kong V.
2013-01-01
Ganglioside GD2 is a cell surface glycolipid that is highly expressed on cancer cells of neuroectodermal origin, including neuroblastoma, retinoblastoma, melanoma, sarcomas, brain tumors and small cell lung cancer. Monoclonal antibodies (MoAb) that target GD2 have shown clinical efficacy in the treatment of GD2 expressing tumors, and are expected to be the new standard of care for the treatment of pediatric neuroblastoma. In this study, the crystal structure of anti-GD2 murine MoAb 3F8 was solved to 1.65 Å resolution and used as a template for molecular docking simulations of its antigen, the penta-saccharide head group of GD2. Molecular docking revealed a binding motif composed of 12 key interacting amino acid side-chains, involving an extensive network of interactions involving main-chain and side-chain hydrogen bonding, two Pi – CH interactions, and an important charged interaction between Arg95 of the H3 loop with the penultimate sialic acid residue of GD2. Based on in silico scanning mutagenesis of the 12 interacting amino acids from the docked 3F8:GD2 model, a single point mutation (Heavy Chain: Gly54Ile) was engineered into a humanized 3F8 (hu3F8) MoAb and found to have a 6–9 fold enhancement in antibody-dependent cell-mediated cytotoxicity of neuroblastoma and melanoma cell lines. With enhanced tumor-killing properties, the re-engineered hu3F8 has the potential be a more effective antibody for the treatment of GD2-positive tumors. PMID:23696816
Kerekov, Nikola S; Ivanova, Iva I; Mihaylova, Nikolina M; Nikolova, Maria; Prechl, Jozsef; Tchorbanov, Andrey I
2014-10-01
Highly purified, subunit, or synthetic viral antigens are known to be weakly immunogenic and potentate only the antibody, rather than cell-mediated immune responses. An alternative approach for inducing protective immunity with small viral peptides would be the direct targeting of viral epitopes to the immunocompetent cells by DNA vaccines encoding antibody fragments specific to activating cell surface co-receptor molecules. Here, we are exploring as a new genetic vaccine, a DNA chimeric molecule encoding a T and B cell epitope-containing influenza A virus hemagglutinin peptide joined to sequences encoding a single-chain variable fragment antibody fragment specific for the costimulatory B cell complement receptors 1 and 2. This recombinant DNA molecule was inserted into eukaryotic expression vector and used as a naked DNA vaccine in WT and CR1/2 KO mice. The intramuscular administration of the DNA construct resulted in the in vivo expression of an immunogenic chimeric protein, which cross-links cell surface receptors on influenza-specific B cells. The DNA vaccination was followed by prime-boosting with the protein-engineered replica of the DNA construct, thus delivering an activation intracellular signal. Immunization with an expression vector containing the described construct and boosting with the protein chimera induced a strong anti-influenza cytotoxic response, modulation of cytokine profile, and a weak antibody response in Balb/c mice. The same immunization scheme did not result in generation of influenza-specific response in mice lacking the target receptor, underlining the molecular adjuvant effect of receptor targeting.
Cheetham, G M; Hale, G; Waldmann, H; Bloomer, A C
1998-11-20
The CAMPATH-1 family of antibodies are able systematically to lyse human lymphocytes with human complement by targeting the small cell-surface glycoprotein CD52, commonly called the CAMPATH-1 antigen. These antibodies have been used clinically for several years, providing therapy for patients with a variety of immunologically mediated diseases. We report here the first X-ray crystallographic analyses of a Fab fragment from a rat antibody, the original therapeutic monoclonal CAMPATH-1G and its humanized counterpart CAMPATH-1H, into which the six complementarity-determining regions of the rat antibody have been introduced. These structures have been refined at 2.6 A and 3.25 A resolution, respectively. The VL domains of adjacent molecules of CAMPATH-1H form a symmetric dimer within the crystals with an inter-molecular extended beta-sheet as seen in light chain dimers of the kappa class. Crystals of CAMPATH-1G have translational pseudo-symmetry. Within the antibody-combining sites, which are dominated by the protrusion of LysH52b and LysH53 from hypervariable loop H2, the charge distribution and overall integrity are highly conserved, but large changes in the position of loop H1 are observed and an altered conformation of loop H2. The major determinants of this are framework residues H71 and H24, whose identity differs in these two antibodies. These structures provide a detailed structural insight into the transplantation of an intact antibody-combining site between a rodent and a human framework, and provide an increased understanding of the specificity and antigen affinity of this pair of CAMPATH-1 antibodies for CD52. This study forms the structural basis for future modification and design of more effective antibodies to this important antigen. Copyright 1998 Academic Press
Don, Elena; Farafonova, Olga; Pokhil, Suzanna; Barykina, Darya; Nikiforova, Marina; Shulga, Darya; Borshcheva, Alena; Tarasov, Sergey; Ermolaeva, Tatyana; Epstein, Oleg
2016-01-01
In preliminary ELISA studies where released-active forms (RAF) of antibodies (Abs) to interferon-gamma (IFNg) were added to the antigen-antibody system, a statistically significant difference in absorbance signals obtained in their presence in comparison to placebo was observed. A piezoelectric immunosensor assay was developed to support these data and investigate the effects of RAF Abs to IFNg on the specific interaction between Abs to IFNg and IFNg. The experimental conditions were designed and optimal electrode coating, detection circumstances and suitable chaotropic agents for electrode regeneration were selected. The developed technique was found to provide high repeatability, intermediate precision and specificity. The difference between the analytical signals of RAF Ab samples and those of the placebo was up to 50.8%, whereas the difference between non-specific controls and the placebo was within 5%–6%. Thus, the piezoelectric immunosensor as well as ELISA has the potential to be used for detecting the effects of RAF Abs to IFNg on the antigen-antibody interaction, which might be the result of RAF’s ability to modify the affinity of IFNg to specific/related Abs. PMID:26791304
Conformational Heterogeneity of the HIV Envelope Glycan Shield.
Yang, Mingjun; Huang, Jing; Simon, Raphael; Wang, Lai-Xi; MacKerell, Alexander D
2017-06-30
To better understand the conformational properties of the glycan shield covering the surface of the HIV gp120/gp41 envelope (Env) trimer, and how the glycan shield impacts the accessibility of the underlying protein surface, we performed enhanced sampling molecular dynamics (MD) simulations of a model glycosylated HIV Env protein and related systems. Our simulation studies revealed a conformationally heterogeneous glycan shield with a network of glycan-glycan interactions more extensive than those observed to date. We found that partial preorganization of the glycans potentially favors binding by established broadly neutralizing antibodies; omission of several specific glycans could increase the accessibility of other glycans or regions of the protein surface to antibody or CD4 receptor binding; the number of glycans that can potentially interact with known antibodies is larger than that observed in experimental studies; and specific glycan conformations can maximize or minimize interactions with individual antibodies. More broadly, the enhanced sampling MD simulations described here provide a valuable tool to guide the engineering of specific Env glycoforms for HIV vaccine design.
Application of histone modification-specific interaction domains as an alternative to antibodies.
Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul; Jeltsch, Albert
2014-11-01
Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. © 2014 Kungulovski et al.; Published by Cold Spring Harbor Laboratory Press.
Capito, Florian; Skudas, Romas; Stanislawski, Bernd; Kolmar, Harald
2013-01-01
This manuscript describes customization of copolymers to be used for polymer-driven protein purification in bioprocessing. To understand how copolymer customization can be used for fine-tuning, precipitation behavior was analyzed for five target antibodies (mAbs) and BSA as model impurity protein, at ionic strength similar to undiluted cell culture fluid. In contrast to the use of standardized homopolymers, customized copolymers, composed of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and 4-(acryloylamino)benzoic acid (ABZ), exhibited antibody precipitation yields exceeding 90%. Additionally, copolymer average molecular weight (Mw ) was varied and its influence on precipitation yield and contaminant coprecipitation was investigated. Results revealed copolymer composition as the major driving force for precipitation selectivity, which was also dependent on protein hydrophobicity. By adjusting ABZ content and Mw of the precipitant for each of the mAbs, conditions were found that allowed for high precipitation yield and selectivity. These findings may open up new avenues for using polymers in antibody purification processes. © 2013 American Institute of Chemical Engineers.
Immunoconjugates against solid tumors: mind the gap.
Ricart, A D
2011-04-01
The objective of immunoconjugate development is to combine the specificity of immunoglobulins with the efficacy of cytotoxic molecules. This therapeutic approach has been validated in hematologic malignancies; however, several obstacles to achieving efficacy in treating solid tumors have been identified. These include insufficient specificity of targets and poor antibody delivery, most specifically to the tumor core. Heterogeneous antigen expression, imperfect vascular supply, and elevated interstitial fluid pressure have been suggested as the factors responsible for the poor delivery of antibodies. Promising immunoconjugates are in development: immunoconjugates targeting the prostate-specific membrane antigen, trastuzumab-DM1, lorvotuzumab mertansine, and SS1P. Advances in cancer biology and antibody engineering may overcome some of the challenges. New small antibody formats, such as single-chain Fv, Fab, and diabodies, may improve penetration within tumor masses. Nevertheless, the cost of treatment might require justification in terms of demonstrable improvement in quality of life in addition to efficacy; further economic evaluation might be necessary before this approach can replace the current standards of care in clinical practice.
48 CFR 53.236-2 - Architect-engineer services (SF's 252 and 330).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Architect-engineer... ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.236-2 Architect-engineer...-engineer and related services: (a) SF 252 (Rev. 10/83), Architect-Engineer Contract. SF 252 is prescribed...
48 CFR 53.236-2 - Architect-engineer services (SF's 252 and 330).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Architect-engineer... ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.236-2 Architect-engineer...-engineer and related services: (a) SF 252 (Rev. 10/83), Architect-Engineer Contract. SF 252 is prescribed...
48 CFR 53.236-2 - Architect-engineer services (SF's 252 and 330).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Architect-engineer... ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.236-2 Architect-engineer...-engineer and related services: (a) SF 252 (Rev. 10/83), Architect-Engineer Contract. SF 252 is prescribed...
48 CFR 53.236-2 - Architect-engineer services (SF's 252 and 330).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Architect-engineer... ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.236-2 Architect-engineer...-engineer and related services: (a) SF 252 (Rev. 10/83), Architect-Engineer Contract. SF 252 is prescribed...
Mohammadzadeh, Sara; Rajabibazl, Masoumeh; Fourozandeh, Mehdi; Rasaee, Mohammad Javad; Rahbarizadeh, Fatemeh; Mohammadi, Mohammad
2014-02-01
Phage display has a fundamental role in protein isolation and engineering. Isolated proteins produced with this method can be modified for specific binding and affinity. P24 is the most produced protein during human immune deficiency virus (HIV) replication; especially in the early steps of HIV-1 infection, its evaluation may have diagnostic values. To test the HIV-1 infection, p24 antigen assay appears to be a very promising alternative to RNA assays. In this study, we have generated a recombinant mouse single chain antibody fragment against p24 of the HIV-1 with the use of phage display technology. After isolation of antibody variable-region (V) gene of B cells extracted from the spleen of an immunized mouse, a library of single chain Fv fragments (scFv) was constructed. The library was used in a series of bio-panning processes against recombinant p24 protein expressed from Escherichia coli. The isolated scFv antibody specifically recognizes the HIV-1 capsid protein p24. The affinity constant of the isolated scFv antibody (MF85) was found to be 2×10(-9) M. Our studies showed that the MF85 scFV antibody has similar properties as that of monoclonal antibodies produced by the hybridoma technology.
Mard-Soltani, Maysam; Rasaee, Mohamad Javad; Khalili, Saeed; Sheikhi, Abdol-Karim; Hedayati, Mehdi; Ghaderi-Zefrehi, Hossein; Alasvand, Milad
2018-04-01
The production of human thyroid stimulating hormone (hTSH) immunoassays requires specific antibodies against hTSH which is a cumbersome process. Therefore, producing specific polyclonal antibodies against engineered recombinant fusion hTSH antigens would be of great significance. The best immunogenic region of the hTSH was selected based on in silico analyses and equipped with two different fusions. Standard methods were used for protein expression, purification, verification, structural evaluation, and immunizations of the white New Zealand rabbits. Ultimately, immunized serums were used for antibody titration, purification and characterization (specificity, sensitivity and cross reactivity). The desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for in vivo immunization. Structural analyses indicated that only the bigger antigen has showed changed 2 dimensional (2D) and 3D structural properties in comparison to the smaller antigen. The raised polyclonal antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum and negligible. The fusion which was solely composed of the tetanus toxin epitopes led to better protein folding and was capable of immunizing the host animals resulting into high titer antibody. Therefore, the minimal fusion sequences seem to be more effective in eliciting specific antibody responses.
Wu, Hong-Yin; Abdu, Samira; Stinson, Dana; Russell, Michael W.
2000-01-01
Genital antibody responses were compared in female mice immunized intravaginally (i.vag.) or intranasally (i.n.) with a bacterial protein antigen (AgI/II of Streptococcus mutans) coupled to the B subunit of cholera toxin. Serum and salivary antibodies were also evaluated as measures of disseminated mucosal and systemic responses. Although i.vag. immunization induced local vaginal immunoglobulin A (IgA) and IgG antibody responses, these were not disseminated to a remote secretion, the saliva, and only modest levels of serum antibodies were generated. In contrast, i.n. immunization was substantially more effective at inducing IgA and IgG antibody responses in the genital tract and in the circulation, as well as at inducing IgA antibodies in the saliva. Moreover, mucosal and systemic antibodies induced by i.n. immunization persisted for at least 12 months. Analysis of the molecular form of genital IgA indicated that the majority of both total IgA and specific IgA antibody was polymeric, and likely derived from the common mucosal immune system. PMID:10992451
21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... immunoglobulin G (resulting from breakdown of immunoglobulin G antibodies) in urine, serum, and other body fluids. Measurement of immunoglobulin G Fc fragments aids in the diagnosis of plasma cell antibody-forming...
21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... immunoglobulin G (resulting from breakdown of immunoglobulin G antibodies) in urine, serum, and other body fluids. Measurement of immunoglobulin G Fc fragments aids in the diagnosis of plasma cell antibody-forming...
21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... immunoglobulin G (resulting from breakdown of immunoglobulin G antibodies) in urine, serum, and other body fluids. Measurement of immunoglobulin G Fc fragments aids in the diagnosis of plasma cell antibody-forming...
21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... immunoglobulin G (resulting from breakdown of immunoglobulin G antibodies) in urine, serum, and other body fluids. Measurement of immunoglobulin G Fc fragments aids in the diagnosis of plasma cell antibody-forming...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speirs, R.S.
1961-10-31
>Progress is reported in studies on the action of tritiated tetanus toxin and toxoid upon the nervous system and upon the antibody forming mechanisms in mice. Procedures are described for the preparation of purified tritiated tetanus toxin. The tritiated toxin was injected into mice immunized to tetanus toxoid. Distinct differences were noted in the cellular reaction to the tritiated antigen in immunized and control animals. The data suggest that antibody-producing cells contain antigen at the time antibody is being produced. A quantitative procedure was developed for determining the number of cells responding during an inflammation. Procedures were developed for themore » automatic processing of radioautograms. ( C.H.)« less
Role of Reactive Stroma in Prostate Cancer Progression
2007-02-01
buffer with 5% nonfat milk at 4jC overnight. Mouse anti-V5 monoclonal antibody (Invitrogen), diluted at 1:5,000, was used as primary antibody to...detect the presence of CTGF-V5-His fusion protein, and incubated for 2 hours at room temperature. Secondary antibody was biotin-conjugated sheep anti-mouse...genes is associated with reactive stroma that forms at sites of wound repair, microbial invasion, or carcinoma as we have reported previously (1, 32, 35
Atomic features of an autoantigen in heparin-induced thrombocytopenia (HIT).
Cai, Zheng; Zhu, Zhiqiang; Greene, Mark I; Cines, Douglas B
2016-07-01
Autoantigen development is poorly understood at the atomic level. Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by antibodies to an antigen composed of platelet factor 4 (PF4) and heparin or cellular glycosaminoglycans (GAGs). In solution, PF4 exists as an equilibrium among monomers, dimers and tetramers. Structural studies of these interacting components helped delineate a multi-step process involved in the pathogenesis of HIT. First, heparin binds to the 'closed' end of the PF4 tetramer and stabilizes its conformation; exposing the 'open' end. Second, PF4 arrays along heparin/GAG chains, which approximate tetramers, form large antigenic complexes that enhance antibody avidity. Third, pathogenic HIT antibodies bind to the 'open' end of stabilized PF4 tetramers to form an IgG/PF4/heparin ternary immune complex and also to propagate the formation of 'ultralarge immune complexes' (ULCs) that contain multiple IgG antibodies. Fourth, ULCs signal through FcγRIIA receptors, activating platelets and monocytes directly and generating thrombin, which transactivates hematopoietic and endothelial cells. A non-pathogenic anti-PF4 antibody prevents tetramer formation, binding of pathogenic antibody, platelet activation and thrombosis, providing a new approach to manage HIT. An improved understanding of the pathogenesis of HIT may lead to novel diagnostics and therapeutics for this autoimmune disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Radioimmunoassays of hidden viral antigens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neurath, A.R.; Strick, N.; Baker, L.
1982-07-01
Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis Bmore » virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure.« less
The ongoing evolution of antibody-based treatments for Ebola virus infection.
Mendoza, Emelissa J; Racine, Trina; Kobinger, Gary P
2017-03-01
The 2014-2016 Ebola virus outbreak in West Africa was the deadliest in history, prompting the evaluation of various drug candidates, including antibody-based therapeutics for the treatment of Ebola hemorrhagic fever (EHF). Prior to 2014, only convalescent blood products from EHF survivors had been administered to newly infected individuals as a form of treatment. However, during the recent outbreak, monoclonal antibody cocktails such as ZMapp, ZMAb and MB-003 were either tested in a human clinical safety and efficacy trial or provided to some based on compassionate grounds. This review aims to discuss the evolution of antibody-based treatments for EHF, their clinical trial efficacy and the development of new antibody-based therapies currently advancing in preclinical testing.
Shope, R E; Muscoplat, C C; Chen, A W; Johnson, D W
1976-01-01
A series of investigations was designed to study the role of cellular immunity and passive antibody in protecting neonatal calves from primary bovine viral diarrhea virus infection. Administration of corticosteroids (dexamethasone) in doses capable of suppressing cellular immunity markedly potentiated systemic bovine viral diarrhea virus infection in calves which lacked bovine viral diarrhea passive neutralizing antibody. Immunosuppressed calves did not form neutralizing antibody to bovine viral diarrhea virus and developed a fatal viremia. Calves with high levels of passive bovine viral diarrhea neutralizing antibodies were protected from the effect of corticosteroids. The results suggest an essential role for humoral passive antibody, but not for cellular immunity, in protection from primary systemic bovine viral diarrhea virus infection in calves. PMID:187303
Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody.
Shanker, Sreejesh; Czakó, Rita; Sapparapu, Gopal; Alvarado, Gabriela; Viskovska, Maria; Sankaran, Banumathi; Atmar, Robert L; Crowe, James E; Estes, Mary K; Prasad, B V Venkataram
2016-10-04
Human noroviruses (HuNoVs) cause sporadic and epidemic gastroenteritis worldwide. They are classified into two major genogroups (GI and GII), with each genogroup further divided into multiple genotypes. Susceptibility to these viruses is influenced by genetically determined histo-blood group antigen (HBGA) expression. HBGAs function as cell attachment factors by binding to a surface-exposed region in the protruding (P) domain of the capsid protein. Sequence variations in this region that result in differential HBGA binding patterns and antigenicity are suggested to form a basis for strain diversification. Recent studies show that serum antibodies that block HBGA binding correlate with protection against illness. Although genogroup-dependent variation in HBGA binding specificity is structurally well characterized, an understanding of how antibodies block HBGA binding and how genotypic variations affect such blockade is lacking. Our crystallographic studies of the GI.1 P domain in complex with the Fab fragment of a human IgA monoclonal antibody (IgA 5I2) with HBGA blocking activity show that the antibody recognizes a conformational epitope formed by two surface-exposed loop clusters in the P domain. The antibody engulfs the HBGA binding site but does not affect its structural integrity. An unusual feature of the antigen recognition by IgA 5I2 is the predominant involvement of the CDR light chain 1 in contrast to the commonly observed CDR heavy chain 3, providing a unique perspective into antibody diversity in antigen recognition. Identification of the antigenic site in the P domain shows how genotypic variations might allow escape from antibody neutralization and exemplifies the interplay between antigenicity and HBGA specificity in HuNoV evolution.
Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang
2017-02-01
Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.
Three-dimensional structure of an antibody-antigen complex.
Sheriff, S; Silverton, E W; Padlan, E A; Cohen, G H; Smith-Gill, S J; Finzel, B C; Davies, D R
1987-11-01
We have determined the three-dimensional structure of two crystal forms of an antilysozyme Fab-lysozyme complex by x-ray crystallography. The epitope on lysozyme consists of three sequentially separated subsites, including one long, nearly continuous, site from Gln-41 through Tyr-53 and one from Gly-67 through Pro-70. Antibody residues interacting with lysozyme occur in each of the six complementarity-determining regions and also include one framework residue. Arg-45 and Arg-68 form a ridge on the surface of lysozyme, which binds in a groove on the antibody surface. Otherwise the surface of interaction between the two proteins is relatively flat, although it curls at the edges. The surface of interaction is approximately 26 X 19 A. No water molecules are found in the interface. The positive charge on the two arginines is complemented by the negative charge of Glu-35 and Glu-50 from the heavy chain of the antibody. The backbone structure of the antigen, lysozyme, is mostly unperturbed, although there are some changes in the epitope region, most notably Pro-70. One side chain not in the epitope, Trp-63, undergoes a rotation of approximately 180 degrees about the C beta--C gamma bond. The Fab elbow bends in the two crystal forms differ by 7 degrees.
Antibody Prophylaxis Against Dengue Virus 2 Infection in Non-Human Primates.
Simmons, Monika; Putnak, Robert; Sun, Peifang; Burgess, Timothy; Marasco, Wayne A
2016-11-02
Passive immunization with anti-dengue virus (DENV) immune serum globulin (ISG) or monoclonal antibodies (Mabs) may serve to supplement or replace vaccination for short-term dengue immune prophylaxis. In the present study, we sought to establish proof-of-concept by evaluating several DENV-neutralizing antibodies for their ability to protect rhesus macaques against viremia following live virus challenge, including human anti-dengue ISG, and a human Mab (Mab11/wt) and its genetically engineered variant (Mab11/mutFc) that is unable to bind to cells with Fc gamma receptors (FcγR) and potentiate antibody-dependent enhancement (ADE). In the first experiment, groups of animals received ISG or Mab11/wt at low doses (3-10 mg/kg) or a saline control followed by challenge with DENV-2 at day 10 or 30. After passive immunization, only low-titered circulating virus-neutralizing antibody titers were measured in both groups, which were undetectable by day 30. After challenge at day 10, a reduction in viremia duration compared with the control was seen only in the ISG group (75%). However, after a day 30 challenge, no reduction in viremia was observed in both immunized groups. In a second experiment to test the effect of higher antibody doses on short-term protection, groups received either ISG, Mab11/wt, Mab11/mutFc (each at 25 mg/kg) or saline followed by challenge with DENV-2 on day 10. Increased virus-neutralizing antibody titers were detected in all groups at day 5 postinjection, with geometric mean titers (GMTs) of 464 (ISG), 313 (Mab11/wt), and 309 (Mab11/mutFc). After challenge, there was complete protection against viremia in the group that received ISG, and a reduction in viremia duration of 89% and 83% in groups that received Mab11/wt and Mab11/mutFc, respectively. An in vitro ADE assay in Fcγ receptor-bearing K562 cells with sera collected immediately before challenge showed increased DENV-2 infection levels in the presence of both ISG and Mab11/wt, which peaked at a serum dilution of 1:90, but not in Mab11/mutFc containing sera. The results suggest that antibody prophylaxis for dengue might be beneficial in eliminating or reducing viral loads thereby minimizing disease progression. Our results also suggest that blocking FcγR interactions through Mab11 Fc engineering may further prevent ADE. © The American Society of Tropical Medicine and Hygiene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, W.G.
Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand,more » and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.« less
Datta-Mannan, Amita; Lu, Jirong; Witcher, Derrick R; Leung, Donmienne; Tang, Ying; Wroblewski, Victor J
2015-01-01
The application of protein engineering technologies toward successfully improving antibody pharmacokinetics has been challenging due to the multiplicity of biochemical factors that influence monoclonal antibody (mAb) disposition in vivo. Physiological factors including interactions with the neonatal Fc receptor (FcRn) and specific antigen binding properties of mAbs, along with biophysical properties of the mAbs themselves play a critical role. It has become evident that applying an integrated approach to understand the relative contribution of these factors is critical to rationally guide and apply engineering strategies to optimize mAb pharmacokinetics. The study presented here evaluated the influence of unintended non-specific interactions on the disposition of mAbs whose clearance rates are governed predominantly by either non-specific (FcRn) or target-mediated processes. The pharmacokinetics of 8 mAbs representing a diverse range of these properties was evaluated in cynomolgus monkeys. Results revealed complementarity-determining region (CDR) charge patch engineering to decrease charge-related non-specific binding can have a significant impact on improving the clearance. In contrast, the influence of enhanced in vitro FcRn binding was mixed, and related to both the strength of charge interaction and the general mechanism predominant in governing the clearance of the particular mAb. Overall, improved pharmacokinetics through enhanced FcRn interactions were apparent for a CDR charge-patch normalized mAb which was affected by non-specific clearance. The findings in this report are an important demonstration that mAb pharmacokinetics requires optimization on a case-by-case basis to improve the design of molecules with increased therapeutic application. PMID:26337808
Turki, Imène; Hammami, Akil; Kharmachi, Habib; Mousli, Mohamed
2014-02-01
Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Budnik, Lygia T; Scheer, Edwin; Burge, P Sherwood; Baur, Xaver
2017-01-01
The use of genetically engineered enzymes in the synthesis of flavourings, fragrances and other applications has increased tremendously. There is, however, a paucity of data on sensitisation and/or allergy to the finished products. We aimed to review the use of genetically modified enzymes and the enormous challenges in human biomonitoring studies with suitable assays of specific IgE to a variety of modified enzyme proteins in occupational settings and measure specific IgE to modified enzymes in exposed workers. Specific IgE antibodies against workplace-specific individual enzymes were measured by the specific fluorescence enzyme-labelled immunoassay in 813 exposed workers seen in cross-sectional surveys. Twenty-three per cent of all exposed workers showed type I sensitisation with IgE antibodies directed against respective workplace-specific enzymes. The highest sensitisation frequencies observed were for workers exposed enzymes derived from α-amylase (44%), followed by stainzyme (41%), pancreatinin (35%), savinase (31%), papain (31%), ovozyme (28%), phytase (16%), trypsin (15%) and lipase (4%). The highest individual antibody levels (up to 110 kU/L) were detected in workers exposed to phytase, xylanase and glucanase. In a subgroup comprising 134 workers, detailed clinical diagnostics confirmed work-related symptoms. There was a strong correlation (r=0.75, p<0.0001) between the symptoms and antibody levels. Workers with work-related respiratory symptoms showed a higher prevalence for the presence of specific IgE antibodies against workplace-specific enzymes than asymptomatic exposed workers (likelihood ratio 2.32, sensitivity 0.92, specificity 0.6). Our data confirm the previous findings showing that genetically engineered enzymes are potent allergens eliciting immediate-type sensitisation. Owing to lack of commercial diagnostic tests, few of those exposed receive regular surveillance including biomonitoring with relevant specific IgE assays. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Plant-expressed Fc-fusion protein tetravalent dengue vaccine with inherent adjuvant properties.
Kim, Mi Young; Copland, Alastair; Nayak, Kaustuv; Chandele, Anmol; Ahmed, Muhammad S; Zhang, Qibo; Diogo, Gil R; Paul, Matthew J; Hofmann, Sven; Yang, Moon-Sik; Jang, Yong-Suk; Ma, Julian K-C; Reljic, Rajko
2017-12-09
Dengue is a major global disease requiring improved treatment and prevention strategies. The recently licensed Sanofi Pasteur Dengvaxia vaccine does not protect children under the age of nine, and additional vaccine strategies are thus needed to halt this expanding global epidemic. Here, we employed a molecular engineering approach and plant expression to produce a humanized and highly immunogenic poly-immunoglobulin G scaffold (PIGS) fused to the consensus dengue envelope protein III domain (cEDIII). The immunogenicity of this IgG Fc receptor-targeted vaccine candidate was demonstrated in transgenic mice expressing human FcγRI/CD64, by induction of neutralizing antibodies and evidence of cell-mediated immunity. Furthermore, these molecules were able to prime immune cells from human adenoid/tonsillar tissue ex vivo as evidenced by antigen-specific CD4 + and CD8 + T-cell proliferation, IFN-γ and antibody production. The purified polymeric fraction of dengue PIGS (D-PIGS) induced stronger immune activation than the monomeric form, suggesting a more efficient interaction with the low-affinity Fcγ receptors on antigen-presenting cells. These results show that the plant-expressed D-PIGS have the potential for translation towards a safe and easily scalable single antigen-based tetravalent dengue vaccine. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Generation of Viable Cell and Biomaterial Patterns by Laser Transfer
NASA Astrophysics Data System (ADS)
Ringeisen, Bradley
2001-03-01
In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.
Genetic code expansion for multiprotein complex engineering.
Koehler, Christine; Sauter, Paul F; Wawryszyn, Mirella; Girona, Gemma Estrada; Gupta, Kapil; Landry, Jonathan J M; Fritz, Markus Hsi-Yang; Radic, Ksenija; Hoffmann, Jan-Erik; Chen, Zhuo A; Zou, Juan; Tan, Piau Siong; Galik, Bence; Junttila, Sini; Stolt-Bergner, Peggy; Pruneri, Giancarlo; Gyenesei, Attila; Schultz, Carsten; Biskup, Moritz Bosse; Besir, Hueseyin; Benes, Vladimir; Rappsilber, Juri; Jechlinger, Martin; Korbel, Jan O; Berger, Imre; Braese, Stefan; Lemke, Edward A
2016-12-01
We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.
Brimijoin, Stephen
2013-01-01
Recent progress in enzyme engineering has led to versions of human butyrylcholinesterase (BChE) that hydrolyze cocaine efficiently in plasma, reduce concentrations reaching reward neurocircuity in the brain, and weaken behavioral responses to this drug. Along with enzyme advances, increasingly avid anti-cocaine antibodies and potent anti-cocaine vaccines have also been developed. Here we review these developments and consider the potential advantages along with the risks of delivering drug-intercepting proteins via gene transfer approaches to treat cocaine addiction. PMID:22229308
McMichael, A. J.; Williamson, A. R.
1974-01-01
A single clone of B cells producing anti-DNP antibody recognizable by the isoelectric-focusing spectrum has been used, in a double transfer system, to study clonal memory. Trasnsferable B memory develops between 4 and 7 days after the first transfer with antigen. B-memory cells thus proliferate before or concomitantly with antibody-forming cells. PMID:4545165
Malecki, Marek; Putzer, Emily; Quach, Caroline; Dodivenaka, Chaitanya; Tombokan, Xenia
2016-12-01
Only eight women out of one hundred diagnosed with ovarian epithelial cancers, which progressed to the clinical stage IV, survive 10 years. First line therapies: surgery, chemotherapy, and radiation therapy inflict very serious iatrogenic consequences. Passive immunotherapy of ovarian cancers offers only low efficacy. Prophylactic and therapeutic vaccines for ovarian cancers are not available. Interestingly, prophylactic vaccines for Hepatitis B Viruses (HBV) are very effective. The specific aim of this work was to design, synthesize, and administer biomolecules, which would engage prophylactic, vaccination-induced immunity for HBV towards killing of ovarian cancer cells with high specificity and efficacy. Tissue biopsies, ascites, and blood were acquired from the patients, whose identities were entirely concealed in accordance with the Declaration of Helsinki, pursuant to the Institutional Review Board approval, and with the Patients' informed consent. By biomolecular engineering, we have created a novel family of biomolecules: antibody × vaccine engineered constructs (AVEC: anti-HER-2 × HBsAg). We have collected the blood from the volunteers, and measured the titers of anti-HBV antibodies resulting from the FDA approved and CDC scheduled HBV vaccinations. We have acquired tumor biopsies, ascites, and blood from patients suffering from the advanced ovarian cancers. We have established cultures of HER-2 over-expressing epithelial ovarian cancers: OV-90, TOC-112D, SKOV-3, as well as human ovary surface epithelial (HOSE) and human artery endothelial (HAE) cells. Treatment of the HER-2+ ovarian cancer cells with AVEC: anti-HER-2 × HBsAg, accompanied by administration of blood drawn from patients with high titers of the anti-HBV antibodies, resulted in much higher therapeutic efficacy as compared to treatment with the naked anti-HER-2 antibodies alone and/or with the relevant isotype antibodies. This treatment had practically no effect upon the HOSE and HAE cells. Herein, we report attaining the great improvement in eradication efficacy of ovarian epithelial cancer cells' by engaging prophylactic immunity against HBV; thus creating a novel paradigm for immunotherapy of ovarian cancer. We have accomplished that by designing, synthesis, and administration of AVEC. Therefore, the HBV vaccination acquired immunity mounts immune response against the vaccine, but AVEC redirect, accelerate, and amplify this immune response of all the elements of the native and adaptive immune system against ovarian cancer. Our novel paradigm of immunotherapy is currently streamlined to clinical trials also of other cancers, while also engaging prophylactic and acquired immunity. Novel antibody-vaccine engineered constructs (AVEC) create the solid foundation for redirected, accelerated, and amplified prophylactic, HBV vaccination-induced immunity immunotherapy (RAAVIIT) of ovarian cancers.
Abbott, Christina; Huang, Guo; Ellison, Aaron R; Chen, Ching; Arora, Taruna; Szilvassy, Stephen J; Wei, Ping
2010-04-01
Mouse monoclonal antibodies (MAbs) against human c-Mpl, the cognate receptor for thrombopoietin (TPO), were generated using hybridoma technology and characterized by various assays to demonstrate their specificity and affinity. Two such MAbs, 1.6 and 1.75, were determined to be superior for flow cytometry studies and exhibited double-digit picomolar (pM) affinities to soluble human c-Mpl protein. Both MAbs specifically bound to cells engineered to overexpress human c-Mpl protein, immortalized human hematopoietic cell lines that express endogenous c-Mpl, primary human bone marrow and peripheral blood-derived CD34(+) cells, and purified human platelets. No binding was detected on cell lines that did not express c-Mpl. Receptor competition and siRNA knock-down studies further confirmed the specificity of antibodies 1.6 and 1.75 for human c-Mpl. In contrast to these newly generated MAbs, none of eight commercially available anti-c-Mpl antibodies tested were found to bind specifically to human c-Mpl and were thus shown to be unsuitable for flow cytometry studies. Monoclonal antibodies 1.6 and 1.75 will therefore be useful flow cytometry reagents to detect cell surface c-Mpl expression.
Crivianu-Gaita, Victor; Thompson, Michael
2016-11-15
The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability). Copyright © 2016 Elsevier B.V. All rights reserved.
Debaene, François; Wagner-Rousset, Elsa; Colas, Olivier; Ayoub, Daniel; Corvaïa, Nathalie; Van Dorsselaer, Alain; Beck, Alain; Cianférani, Sarah
2013-10-15
Monoclonal antibodies (mAbs) and derivatives such as antibody-drug conjugates (ADC) and bispecific antibodies (bsAb), are the fastest growing class of human therapeutics. Most of the therapeutic antibodies currently on the market and in clinical trials are chimeric, humanized, and human immunoglobulin G1 (IgG1). An increasing number of IgG2s and IgG4s that have distinct structural and functional properties are also investigated to develop products that lack or have diminished antibody effector functions compared to IgG1. Importantly, wild type IgG4 has been shown to form half molecules (one heavy chain and one light chain) that lack interheavy chain disulfide bonds and form intrachain disulfide bonds. Moreover, IgG4 undergoes a process of Fab-arm exchange (FAE) in which the heavy chains of antibodies of different specificities can dissociate and recombine in bispecific antibodies both in vitro and in vivo. Here, native mass spectrometry (MS) and time-resolved traveling wave ion mobility MS (TWIM-MS) were used for the first time for online monitoring of FAE and bsAb formation using Hz6F4-2v3 and natalizumab, two humanized IgG4s which bind to human Junctional Adhesion Molecule-A (JAM-A) and alpha4 integrin, respectively. In addition, native MS analysis of bsAb/JAM-A immune complexes revealed that bsAb can bind up to two antigen molecules, confirming that the Hz6F4 family preferentially binds dimeric JAM-A. Our results illustrate how IM-MS can rapidly assess bsAb structural heterogeneity and be easily implemented into MS workflows for bsAb production follow up and bsAb/antigen complex characterization. Altogether, these results provide new MS-based methodologies for in-depth FAE and bsAb formation monitoring. Native MS and IM-MS will play an increasing role in next generation biopharmaceutical product characterization like bsAbs, antibody mixtures, and antibody-drug conjugates (ADC) as well as for biosimilar and biobetter antibodies.
Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep; Karthik, Kumaragurubaran; Tiwari, Ruchi; Malik, Yashpal Singh; Singh, Raj Kumar; Chaicumpa, Wanpen
2018-01-01
Antibody-dependent enhancement (ADE) is a phenomenon in which preexisting poorly neutralizing antibodies leads to enhanced infection. It is a serious concern with mosquito-borne flaviviruses such as Dengue virus (DENV) and Zika virus (ZIKV). In vitro experimental evidences have indicated the preventive, as well as a pathogenicity-enhancing role, of preexisting DENV antibodies in ZIKV infections. ADE has been confirmed in DENV but not ZIKV infections. Principally, the Fc region of the anti-DENV antibody binds with the fragment crystallizable gamma receptor (FcγR), and subsequent C1q interactions and immune effector functions are responsible for the ADE. In contrast to normal DENV infections, with ADE in DENV infections, inhibition of STAT1 phosphorylation and a reduction in IRF-1 gene expression, NOS2 levels, and RIG-1 and MDA-5 expression levels occurs. FcγRIIA is the most permissive FcγR for DENV-ADE, and under hypoxic conditions, hypoxia-inducible factor-1 alpha transcriptionally enhances expression levels of FcγRIIA, which further enhances ADE. To produce therapeutic antibodies with broad reactivity to different DENV serotypes, as well as to ZIKV, bispecific antibodies, Fc region mutants, modified Fc regions, and anti-idiotypic antibodies may be engineered. An in-depth understanding of the immunological and molecular mechanisms of DENV-ADE of ZIKV pathogenicity will be useful for the design of common and safe therapeutics and prophylactics against both viral pathogens. The present review discusses the role of DENV antibodies in modulating DENV/ZIKV pathogenicity/infection and strategies to counter ADE to protect against Zika infection.
Immune response and histology of humoral rejection in kidney transplantation.
González-Molina, Miguel; Ruiz-Esteban, Pedro; Caballero, Abelardo; Burgos, Dolores; Cabello, Mercedes; Leon, Miriam; Fuentes, Laura; Hernandez, Domingo
2016-01-01
The adaptive immune response forms the basis of allograft rejection. Its weapons are direct cellular cytotoxicity, identified from the beginning of organ transplantation, and/or antibodies, limited to hyperacute rejection by preformed antibodies and not as an allogenic response. This resulted in allogenic response being thought for decades to have just a cellular origin. But the experimental studies by Gorer demonstrating tissue damage in allografts due to antibodies secreted by B lymphocytes activated against polymorphic molecules were disregarded. The special coexistence of binding and unbinding between antibodies and antigens of the endothelial cell membranes has been the cause of the delay in demonstrating the humoral allogenic response. The endothelium, the target tissue of antibodies, has a high turnover, and antigen-antibody binding is non-covalent. If endothelial cells are attacked by the humoral response, immunoglobulins are rapidly removed from their surface by shedding and/or internalization, as well as degrading the components of the complement system by the action of MCP, DAF and CD59. Thus, the presence of complement proteins in the membrane of endothelial cells is transient. In fact, the acute form of antibody-mediated rejection was not demonstrated until C4d complement fragment deposition was identified, which is the only component that binds covalently to endothelial cells. This review examines the relationship between humoral immune response and the types of acute and chronic histological lesion shown on biopsy of the transplanted organ. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Chao, B N; Baldwin, W H; Healey, J F; Parker, E T; Shafer-Weaver, K; Cox, C; Jiang, P; Kanellopoulou, C; Lollar, P; Meeks, S L; Lenardo, M J
2016-02-01
ESSENTIALS: Anti-factor VIII (FVIII) inhibitory antibody formation is a severe complication in hemophilia A therapy. We genetically engineered and characterized a mouse model with complete deletion of the F8 coding region. F8(TKO) mice exhibit severe hemophilia, express no detectable F8 mRNA, and produce FVIII inhibitors. The defined background and lack of FVIII in F8(TKO) mice will aid in studying FVIII inhibitor formation. The most important complication in hemophilia A treatment is the development of inhibitory anti-Factor VIII (FVIII) antibodies in patients after FVIII therapy. Patients with severe hemophilia who express no endogenous FVIII (i.e. cross-reacting material, CRM) have the greatest incidence of inhibitor formation. However, current mouse models of severe hemophilia A produce low levels of truncated FVIII. The lack of a corresponding mouse model hampers the study of inhibitor formation in the complete absence of FVIII protein. We aimed to generate and characterize a novel mouse model of severe hemophilia A (designated the F8(TKO) strain) lacking the complete coding sequence of F8 and any FVIII CRM. Mice were created on a C57BL/6 background using Cre-Lox recombination and characterized using in vivo bleeding assays, measurement of FVIII activity by coagulation and chromogenic assays, and anti-FVIII antibody production using ELISA. All F8 exonic coding regions were deleted from the genome and no F8 mRNA was detected in F8(TKO) mice. The bleeding phenotype of F8(TKO) mice was comparable to E16 mice by measurements of factor activity and tail snip assay. Similar levels of anti-FVIII antibody titers after recombinant FVIII injections were observed between F8(TKO) and E16 mice. We describe a new C57BL/6 mouse model for severe hemophilia A patients lacking CRM. These mice can be directly bred to the many C57BL/6 strains of genetically engineered mice, which is valuable for studying the impact of a wide variety of genes on FVIII inhibitor formation on a defined genetic background. © 2015 International Society on Thrombosis and Haemostasis.
Crystal structure of a cocaine-binding antibody.
Larsen, N A; Zhou, B; Heine, A; Wirsching, P; Janda, K D; Wilson, I A
2001-08-03
Murine monoclonal antibody GNC92H2 was elicited by active immunization with a cocaine immunoconjugate and binds free cocaine with excellent specificity and moderate affinity. Improvement of affinity, as well as humanization of GNC92H2, would be advantageous in immunopharmacotherapy for cocaine addiction, and for emergency cases of drug overdose. Toward this end, the crystal structure of an engineered murine-human chimeric Fab of GNC92H2 complexed with cocaine was determined at 2.3 A resolution. Structural analysis reveals a binding pocket with high shape and charge complementarity to the cocaine framework, which explains the specificity for cocaine, as opposed to the pharmacologically inactive cocaine metabolites. Importantly, the structure provides a foundation for mutagenesis to enhance the binding affinity for cocaine and potent cocaine derivatives, such as cocaethylene, and for additional humanization of the antibody. Copyright 2001 Academic Press.
Specific amyloid β clearance by a catalytic antibody construct.
Planque, Stephanie A; Nishiyama, Yasuhiro; Sonoda, Sari; Lin, Yan; Taguchi, Hiroaki; Hara, Mariko; Kolodziej, Steven; Mitsuda, Yukie; Gonzalez, Veronica; Sait, Hameetha B R; Fukuchi, Ken-ichiro; Massey, Richard J; Friedland, Robert P; O'Nuallain, Brian; Sigurdsson, Einar M; Paul, Sudhir
2015-04-17
Classical immunization methods do not generate catalytic antibodies (catabodies), but recent findings suggest that the innate antibody repertoire is a rich catabody source. We describe the specificity and amyloid β (Aβ)-clearing effect of a catabody construct engineered from innate immunity principles. The catabody recognized the Aβ C terminus noncovalently and hydrolyzed Aβ rapidly, with no reactivity to the Aβ precursor protein, transthyretin amyloid aggregates, or irrelevant proteins containing the catabody-sensitive Aβ dipeptide unit. The catabody dissolved preformed Aβ aggregates and inhibited Aβ aggregation more potently than an Aβ-binding IgG. Intravenous catabody treatment reduced brain Aβ deposits in a mouse Alzheimer disease model without inducing microgliosis or microhemorrhages. Specific Aβ hydrolysis appears to be an innate immune function that could be applied for therapeutic Aβ removal. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W
2016-02-01
The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
Antibody-mediated targeting of replication-competent retroviral vectors.
Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki
2003-05-20
Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.
Muscle-Specific Tyrosine Kinase and Myasthenia Gravis Owing to Other Antibodies.
Rivner, Michael H; Pasnoor, Mamatha; Dimachkie, Mazen M; Barohn, Richard J; Mei, Lin
2018-05-01
Around 20% of patients with myasthenia gravis are acetylcholine receptor antibody negative; muscle-specific tyrosine kinase antibodies (MuSK) were identified as the cause of myasthenia gravis in 30% to 40% of these cases. Anti MuSK myasthenia gravis is associated with specific clinical phenotypes. One is a bulbar form with fewer ocular symptoms. Others show an isolated head drop or symptoms indistinguishable from acetylcholine receptor-positive myasthenia gravis. These patients usually respond well to immunosuppressive therapy, but not as well to cholinesterase inhibitors. Other antibodies associated with myasthenia gravis, including low-density lipoprotein receptor-related protein 4, are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Staudt, Nicole; Müller-Sienerth, Nicole; Fane-Dremucheva, Alla; Yusaf, Shahnaz P; Millrine, David; Wright, Gavin J
2015-01-02
Cell surface receptors and secreted proteins play important roles in neural recognition processes, but because their site of action can be a long distance from neuron cell bodies, antibodies that label these proteins are valuable to understand their function. The zebrafish embryo is a popular vertebrate model for neurobiology, but suffers from a paucity of validated antibody reagents. Here, we use the entire ectodomain of neural zebrafish cell surface or secreted proteins expressed in mammalian cells to select monoclonal antibodies to ten different antigens. The antibodies were characterised by Western blotting and the sensitivity of their epitopes to formalin fixation was determined. The rearranged antigen binding regions of the antibodies were amplified and cloned which enabled expression in a recombinant form from a single plasmid. All ten antibodies gave specific staining patterns within formalin-treated embryonic zebrafish brains, demonstrating that this generalised approach is particularly efficient to elicit antibodies that stain native antigen in fixed wholemount tissue. Finally, we show that additional tags can be easily added to the recombinant antibodies for convenient multiplex staining. The antibodies and the approaches described here will help to address the lack of well-defined antibody reagents in zebrafish research. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
[Hashimoto's encephalopathy and autoantibodies].
Yoneda, Makoto
2013-04-01
Encephalopathy occasionally occurs in association with thyroid disorders, but most of these are treatable. These encephalopathies include a neuropsychiatric disorder associated with hypothyroidism, called myxedema encephalopathy. Moreover, Hashimoto's encephalopathy (HE) has been recognized as a new clinical disease based on an autoimmune mechanism associated with Hashimoto's thyroiditis. Steroid treatment was successfully administered to these patients. Recently, we discovered that the serum autoantibodies against the NH2-terminal of α-enolase (NAE) are highly specific diagnostic biomarkers for HE. Further, we analyzed serum anti-NAE autoantibodies and the clinical features in many cases of HE from institutions throughout Japan and other countries. Approximately half of assessed HE patients carry anti-NAE antibodies. The age was widely distributed with 2 peaks (20-30 years and 50-70 years). Most HE patients were in euthyroid states, and all patients had anti-thyroid (TG) antibodies and anti-thyroid peroxidase (TPO) antibodies. Anti-TSH receptor (TSH-R) antibodies were observed in some cases. The common neuropsychiatry features are consciousness disturbance and psychosis, followed by cognitive dysfunction, involuntary movements, seizures, and ataxia. Abnormalities on electroencephalography (EEG) and decreased cerebral blood flow on brain SPECT were common findings, whereas abnormal findings on brain magnetic resonance imaging (MRI) were rare. HE patients have various clinical phenotypes such as the acute encephalopathy form, the chronic psychiatric form, and other particular clinical forms, including limbic encephalitis, progressive cerebellar ataxia, and Creutzfeldt-Jakob disease (CJD)-like form. The cerebellar ataxic form of HE clinically mimics spinocerebellar degeneration (SCD) and is characterized by the absence of nystagmus, absent or mild cerebellar atrophy, and lazy background activities on EEG. Taken together, these data suggest that the possibility of encephalopathy associated with thyroid disorders must be considered.
Basic immunology of antibody targeted radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Jeffrey Y.C.
2006-10-01
Antibody targeted radiotherapy brings an important new treatment modality to Radiation oncology clinic. Radiation dose to tumor and normal tissues are determined by a complex interplay of antibody, antigen, tumor, radionuclide, and host-related factors. A basic understanding of these immunologic and physiologic factors is important to optimally utilize this therapy in the clinic. Preclinical and clinical studies need to be continued to broaden our understanding and to develop new strategies to further improve the efficacy of this promising form of targeted therapy.
Tanner, Jerome E; Coinçon, Mathieu; Leblond, Valérie; Hu, Jing; Fang, Janey M; Sygusch, Jurgen; Alfieri, Caroline
2015-05-01
Epstein-Barr virus (EBV) is the etiologic agent of infectious mononucleosis and the root cause of B-cell lymphoproliferative disease in individuals with a weakened immune system, as well as a principal cofactor in nasopharyngeal carcinoma, various lymphomas, and other cancers. The EBV major virion surface glycoprotein gp350 is viewed as the best vaccine candidate to prevent infectious mononucleosis in healthy EBV-naive persons and EBV-related cancers in at-risk individuals. Previous epitope mapping of gp350 revealed only one dominant neutralizing epitope, which has been shown to be the target of the monoclonal antibody 72A1. Computer modeling of the 72A1 antibody interaction with the gp350 amino terminus was used to identify gp350 amino acids that could form strong ionic, electrostatic, or hydrogen bonds with the 72A1 antibody. Peptide DDRTTLQLAQNPVYIPETYPYIKWDN (designated peptide 2) and peptide GSAKPGNGSYFASVKTEMLGNEID (designated peptide 3) were designed to spatially represent the gp350 amino acids predicted to interact with the 72A1 antibody paratope. Peptide 2 bound to the 72A1 antibody and blocked 72A1 antibody recognition of the native gp350 molecule. Peptide 2 and peptide 3 were recognized by human IgG and shown to elicit murine antibodies that could target gp350 and block its recognition by the 72A1 antibody. This work provides a structural mapping of the interaction between the EBV-neutralizing antibody 72A1 and the major virion surface protein gp350. gp350 mimetic peptides that spatially depict the EBV-neutralizing epitope would be useful as a vaccine to focus the immune system exclusively to this important virus epitope. The production of virus-neutralizing antibodies targeting the Epstein-Barr virus (EBV) major surface glycoprotein gp350 is important for the prevention of infectious mononucleosis and EBV-related cancers. The data presented here provide the first in silico map of the gp350 interaction with a virus-blocking monoclonal antibody. Immunization with gp350 peptides identified by in silico mapping generated antibodies that cross-react with the EBV gp350 molecule and block recognition of the gp350 molecule by a virus-neutralizing antibody. Through its ability to focus the immune system exclusively on the gp350 sequence important for viral entry, these peptides may form the basis of an EBV vaccine candidate. This strategy would sidestep the production of other irrelevant gp350 antibodies that divert the immune system from generating a protective antiviral response or that impede access to the virus-blocking epitope by protective antibodies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
KALLEL SELLAMI, M; BEN AYED, M; MOUQUET, H; DROUOT, L; ZITOUNI, M; MOKNI, M; CERRUTI, M; TURKI, H; FEZZA, B; MOKHTAR, I; BEN OSMAN, A; ZAHAF, A; KAMOUN, M R; JOLY, P; MASMOUDI, H; MAKNI, S; TRON, F; GILBERT, D
2004-01-01
Pemphigus foliaceus is an autoimmune blistering skin disease mediated by autoantibodies directed against desmoglein 1 and occurs as a sporadic form throughout the world, or as an endemic form called fogo selvagem in Brazil. Healthy subjects living in Brazilian endemic areas produce antidesmoglein 1 antibodies, suggesting the role of environmental factors in the initiation of the autoimmune response. Tunisia was described recently as an endemic area where the disease is characterized by its high rate among young people, especially women. An enzyme-linked immunosorbent assay using recombinant desmoglein 1 as antigen was used to detect antibodies against desmoglein 1 and calibrated with sera from 67 French healthy blood donors, 20 French pemphigus foliaceus patients and patients with other bullous skin diseases. When sera from 179 healthy Tunisian blood donors were tested, 31 (17%) were found positive. The desmoglein 1 binding activity of these 31 sera was confirmed in 10 cases by indirect immunofluorescence analysis and/or immunoblotting using human epidermal extract. Subclass analysis of antidesmoglein 1 antibodies showed that they were almost exclusively of the IgG2 subclass in positive normal sera and of IgG4 subclass in patients with PF. Thus, antibodies against desmoglein 1 are prevalent in normal subjects living in Tunisia which, along with their IgG2 isotype, suggests the role of the environment in the pathogenesis of this endemic type of pemphigus foliaceus and the need for additional factors to switch from a subclinical to a clinical form of the disease. PMID:15196262
[Anti-FGF23 antibody therapy for patients with tumor-induced osteomalacia].
Kinoshita, Yuka; Fukumoto, Seiji
2014-08-01
Tumor-induced osteomalacia (TIO) is a disease caused by fibroblast growth factor 23 (FGF23) secreted from the causative tumor. This disease is cured by complete surgical removal of the tumor. However, there are several difficult cases in which the responsible tumors cannot be found, are incompletely removed, or relapse after the surgery. Anti-FGF23 antibody is being studied as a novel therapy for FGF23-related hypophosphatemic diseases. The efficacy of anti-FGF23 antibodies were confirmed using a murine model of X-linked hypophosphatemic rickets (XLHR) , which is the most common heritable form of FGF23-related hypophosphatemic disease. In addition, results of phase I study of single injection of humanized anti-FGF23 antibody for adult patients with XLHR were recently published and the safety and effectiveness of this antibody was shown. This antibody therapy may be useful for patients with TIO with similar pathogenesis to that of XLHR.
Kou, Jinghong; Yang, Junling; Lim, Jeong-Eun; Pattanayak, Abhinandan; Song, Min; Planque, Stephanie; Paul, Sudhir; Fukuchi, Ken-Ichiro
2015-02-01
Accumulation of amyloid beta-peptide (Aβ) in the brain is hypothesized to be a causal event leading to dementia in Alzheimer's disease (AD). Aβ vaccination removes Aβ deposits from the brain. Aβ immunotherapy, however, may cause T cell- and/or Fc-receptor-mediated brain inflammation and relocate parenchymal Aβ deposits to blood vessels leading to cerebral hemorrhages. Because catalytic antibodies do not form stable immune complexes and Aβ fragments produced by catalytic antibodies are less likely to form aggregates, Aβ-specific catalytic antibodies may have safer therapeutic profiles than reversibly-binding anti-Aβ antibodies. Additionally, catalytic antibodies may remove Aβ more efficiently than binding antibodies because a single catalytic antibody can hydrolyze thousands of Aβ molecules. We previously isolated Aβ-specific catalytic antibody, IgVL5D3, with strong Aβ-hydrolyzing activity. Here, we evaluated the prophylactic and therapeutic efficacy of brain-targeted IgVL5D3 gene delivery via recombinant adeno-associated virus serotype 9 (rAAV9) in an AD mouse model. One single injection of rAAV9-IgVL5D3 into the right ventricle of AD model mice yielded widespread, high expression of IgVL5D3 in the unilateral hemisphere. IgVL5D3 expression was readily detectable in the contralateral hemisphere but to a much lesser extent. IgVL5D3 expression was also confirmed in the cerebrospinal fluid. Prophylactic and therapeutic injection of rAAV9-IgVL5D3 reduced Aβ load in the ipsilateral hippocampus of AD model mice. No evidence of hemorrhages, increased vascular amyloid deposits, increased proinflammatory cytokines, or infiltrating T-cells in the brains was found in the experimental animals. AAV9-mediated anti-Aβ catalytic antibody brain delivery can be prophylactic and therapeutic options for AD.
The ionic charge of Copper-64 complexes conjugated to an engineered antibody effects biodistribution
Dearling, Jason L. J.; Smith, Suzanne V.; Paterson, Brett M.; ...
2015-04-15
The development of biomolecules as imaging probes requires radiolabeling methods that do not significantly influence their biodistribution. Sarcophagine (Sar) chelators form extremely stable complexes with copper, and are therefore a promising option for labeling proteins with ⁶⁴Cu. However, initial studies using the first-generation sarcophagine bifunctional chelator SarAr to label the engineered antibody fragment ch14.18-ΔC H2 (MW 120 kDa) with ⁶⁴Cu showed high tracer retention in the kidneys,(>38% injected dose per gram (ID/g) 48 h post-injection), presumably because the high local positive charge on the Cu II-SarAr moiety resulted in increased binding of the labeled protein to the negatively charged basalmore » cells of the glomerulus. To test this hypothesis, ch14.18-ΔC H2 was conjugated with a series of Sar derivatives of decreasing positive charge and three commonly used macrocyclic polyaza polycarboxylate (PAC) BFCs. The immunoconjugates were labeled with ⁶⁴Cu and injected into mice, and PET/CT images were obtained at 24 and 48 h post injection (p.i.). At 48 h p.i., ex vivo biodistribution was carried out. In addition, to demonstrate the potential of metastasis detection using ⁶⁴Cu-labeled ch14.18-ΔC H2, a preclinical imaging study of intrahepatic neuroblastoma tumors was performed carried out. Reducing the positive charge on the Sar chelators decreased kidney uptake of Cu-labeled ch14.18-ΔC H2 by more than 6-fold, from >45 ID/g to <6% ID/g, while the uptake in most other tissues, including liver, was relatively unchanged. However, despite this dramatic decrease, the renal uptake of the PAC BFCs was generally lower than that of the Sar derivatives, as was the liver uptake. Uptake of ⁶⁴Cu-labeled ch14.18-ΔC H2 in neuroblastoma hepatic metastases was detected using PET.« less
Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies
2010-01-01
Background All polypeptide backbones have the potential to form amyloid fibrils, which are associated with a number of degenerative disorders. However, the likelihood that amyloidosis would actually occur under physiological conditions depends largely on the amino acid composition of a protein. We explore using a naive Bayesian classifier and a weighted decision tree for predicting the amyloidogenicity of immunoglobulin sequences. Results The average accuracy based on leave-one-out (LOO) cross validation of a Bayesian classifier generated from 143 amyloidogenic sequences is 60.84%. This is consistent with the average accuracy of 61.15% for a holdout test set comprised of 103 AM and 28 non-amyloidogenic sequences. The LOO cross validation accuracy increases to 81.08% when the training set is augmented by the holdout test set. In comparison, the average classification accuracy for the holdout test set obtained using a decision tree is 78.64%. Non-amyloidogenic sequences are predicted with average LOO cross validation accuracies between 74.05% and 77.24% using the Bayesian classifier, depending on the training set size. The accuracy for the holdout test set was 89%. For the decision tree, the non-amyloidogenic prediction accuracy is 75.00%. Conclusions This exploratory study indicates that both classification methods may be promising in providing straightforward predictions on the amyloidogenicity of a sequence. Nevertheless, the number of available sequences that satisfy the premises of this study are limited, and are consequently smaller than the ideal training set size. Increasing the size of the training set clearly increases the accuracy, and the expansion of the training set to include not only more derivatives, but more alignments, would make the method more sound. The accuracy of the classifiers may also be improved when additional factors, such as structural and physico-chemical data, are considered. The development of this type of classifier has significant applications in evaluating engineered antibodies, and may be adapted for evaluating engineered proteins in general. PMID:20144194
Harakuni, Tetsuya; Andoh, Kiyohiko; Sakamoto, Ryu-Ichi; Tamaki, Yukihiro; Miyata, Takeshi; Uefuji, Hirotaka; Yamazaki, Ken-Ichi; Arakawa, Takeshi
2016-06-08
Egg-drop syndrome (EDS) virus is an avian adenovirus that causes a sudden drop in egg production and in the quality of the eggs when it infects chickens, leading to substantial economic losses in the poultry industry. Inactivated EDS vaccines produced in embryonated duck eggs or cell culture systems are available for the prophylaxis of EDS. However, recombinant subunit vaccines that are efficacious and inexpensive are a desirable alternative. In this study, we engineered chimeric fusion proteins in which the trimeric fiber knob domain lacking the triple β-spiral motif in the fiber shaft region was genetically fused to trimeric coiled coils, such as those of the engineered form of the GCN4 leucine zipper peptide or chicken cartilage matrix protein (CMP). The fusion proteins were expressed predominantly as soluble trimeric proteins in Escherichia coli at levels of 15-80mg/L of bacterial culture. The single immunization of chickens with the purified fusion proteins, at a dose equivalent to 10μg of the knob moiety, elicited serum antibodies with high hemagglutination inhibition (HI) activities, similar to those induced by an inactivated EDS vaccine. A dose-response analysis indicated that a single immunization with as little as 1μg of the knob moiety of the CMP-knob fusion protein was as effective as the inactivated vaccine in inducing antibodies with HI activity. The immunization of laying hens had no apparent adverse effects on egg production and effectively prevented clinical symptoms of EDS when the chickens were challenged with pathogenic EDS virus. This study demonstrates that the knob domain lacking the shaft sequence but fused to a trimeric coiled coil is a promising candidate subunit vaccine for the prophylaxis of EDS in chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies.
David, Maria Pamela C; Concepcion, Gisela P; Padlan, Eduardo A
2010-02-08
All polypeptide backbones have the potential to form amyloid fibrils, which are associated with a number of degenerative disorders. However, the likelihood that amyloidosis would actually occur under physiological conditions depends largely on the amino acid composition of a protein. We explore using a naive Bayesian classifier and a weighted decision tree for predicting the amyloidogenicity of immunoglobulin sequences. The average accuracy based on leave-one-out (LOO) cross validation of a Bayesian classifier generated from 143 amyloidogenic sequences is 60.84%. This is consistent with the average accuracy of 61.15% for a holdout test set comprised of 103 AM and 28 non-amyloidogenic sequences. The LOO cross validation accuracy increases to 81.08% when the training set is augmented by the holdout test set. In comparison, the average classification accuracy for the holdout test set obtained using a decision tree is 78.64%. Non-amyloidogenic sequences are predicted with average LOO cross validation accuracies between 74.05% and 77.24% using the Bayesian classifier, depending on the training set size. The accuracy for the holdout test set was 89%. For the decision tree, the non-amyloidogenic prediction accuracy is 75.00%. This exploratory study indicates that both classification methods may be promising in providing straightforward predictions on the amyloidogenicity of a sequence. Nevertheless, the number of available sequences that satisfy the premises of this study are limited, and are consequently smaller than the ideal training set size. Increasing the size of the training set clearly increases the accuracy, and the expansion of the training set to include not only more derivatives, but more alignments, would make the method more sound. The accuracy of the classifiers may also be improved when additional factors, such as structural and physico-chemical data, are considered. The development of this type of classifier has significant applications in evaluating engineered antibodies, and may be adapted for evaluating engineered proteins in general.
Ismaili, Ahmad; Jalali-Javaran, Mokhtar; Rasaee, Mohammad J; Rahbarizadeh, Fatemeh; Forouzandeh-Moghadam, Mehdi; Memari, Hamid Rajabi
2007-05-01
Members of the Camelidae (camels, dromedaries, llamas, alpacas, guanacos and vicunas) are known to produce Igs (immunoglobulins) devoid of light chains and CH1s (constant heavy-chain domains). The antigen-specific binding fragments of these heavy-chain antibodies therefore comprise one single domain (the so-called 'VHH') and are of great importance in biotechnological applications. To evaluate the expression and biological activity of sdAbs (single-domain antibodies) in plants, which, on account of their small size and antigen-recognition properties, would have a major impact on antibody-engineering strategies, we constructed a pBI121-VHH gene encoding the recombinant sdAb fragments with specificity for a cancer-associated mucin, MUC1. Analysis of transgenic tobacco (Nicotiana tabacum cultivar Xanthi) plants by PCR and Western blotting demonstrated the expression of sdAb, while ELISA results with various MUC1 antigens and immunocytochemistry with cancerous cell lines confirmed that the activity of these molecules compared favourably with that of the parent recombinant antibodies. Protein purification was achieved by using sequential (NH4)2SO4 precipitation, gel filtration and immunoaffinity chromatography. Analysis of the purified VHH by ELISA indicated that the purified antibody fragments were able to react successfully with a MUC1-related peptide. These results reaffirm that the tobacco plant is a suitable host for the production of correctly folded VHH antibody fragments with diagnostic and therapeutic applications.
Imbeault, Annie; Bernard, Geneviève; Ouellet, Gabrielle; Bouhout, Sara; Carrier, Serge; Bolduc, Stéphane
2011-11-01
Surgical treatment is indicated in severe cases of Peyronie's disease. Incision of the plaque with subsequent graft material implantation is the option of choice. Ideal graft tissue is not yet available. To evaluate the use of an autologous tissue-engineered endothelialized graft by the self-assembly method, for tunica albuginea (TA) reconstruction in Peyronie's disease. Two TA models were created. Human fibroblasts were isolated from a skin biopsy and cultured in vitro until formation of fibroblast sheets. After 4 weeks of maturation, human umbilical vein endothelial cells (HUVEC) were seeded on fibroblasts sheets and wrapped around a tubular support to form a cylinder of about 10 layers. After 21 days of tube maturation, HUVEC were seeded into the lumen of the fibroblast tubes for the endothelialized tunica albuginea (ETA). No HUVEC were seeded into the lumen for the TA model. Both constructs were placed under perfusion in a bioreactor for 1 week. Histology, immunohistochemistry, and burst pressure were performed to characterize mature tubular graft. Animal manipulations were also performed to demonstrate the impact of endothelial cells in vivo. Histology showed uniform multilayered fibroblasts. Extracellular matrix, produced entirely by fibroblasts, presented a good staining for collagen 1. Some elastin fibers were also present. For the TA model, anti-human von Willebrand antibody revealed the endothelial cells forming capillary-like structures. TA model reached a burst pressure of 584 mm Hg and ETA model obtained a burst pressure of 719 mm Hg. This tissue-engineered endothelialized tubular graft is structurally similar to normal TA and presents an adequate mechanical resistance. The self-assembly method used and the autologous property of this model could represent an advantage comparatively to other available grafts. Further evaluation including functional testing will be necessary to characterize in vivo implantation and behavior of the graft. © 2011 International Society for Sexual Medicine.
Recombinant human antibody fragment against tetanus toxoid produced by phage display.
Neelakantam, B; Sridevi, N V; Shukra, A M; Sugumar, P; Samuel, S; Rajendra, L
2014-03-01
Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Noble, Kyle A.; Mao, Yuan; Young, Nicolas L.; Sathe, Shridhar K.; Roux, Kenneth H.; Marshall, Alan G.
2013-07-01
The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.
Hussain, Altaf; Rawat, Amit; Jindal, Ankur Kumar; Gupta, Anju; Singh, Surjit
2017-05-01
The objective of this study is to determine autoantibody profile in children with juvenile dermatomyositis (JDM). Children who were diagnosed with JDM (either recently diagnosed during the study period or follow-up patients) were included in the study. Autoantibodies were detected with commercially available Immunodot kit. Thirty patients were included in the study. Nine out of thirty patients (30%) were positive for one of the 12 autoantibodies tested. Anti-SRP antibody was most common antibody detected in 3 patients followed by anti-MDA-5 antibody in 2 patients; while anti-Jo1 antibody, anti-TIF1-γ antibody, anti-Mi-2 antibody, and anti-PM-Scl antibody were positive in 1 patient each. A different disease phenotype was observed with each autoantibody. The patient with anti-Jo1 antibody had a severe systemic disease in the form of interstitial lung disease; patients with anti-MDA-5 antibody and anti-Mi2 antibody had more severe skin disease with mild muscle disease and patients with anti-SRP antibody had significant skin and muscle disease. Anti-TIF1-γ and anti-PM-Scl antibodies were seen in patients with features of overlap syndrome (myositis-scleroderma). Estimation of autoantibodies may serve as an adjunct tool in delineating and defining distinct clinical phenotypes in children diagnosed with juvenile dermatomyositis. They may also help in prognostication.
[Antibodies and physiopathogeny of autoimmune hepatitis].
García-Leiva, Jorge; Ríos-Vaca, Aurelio; Torre-Delgadillo, Aldo
2003-01-01
Autoimmune hepatitis (AIH) is an inflammatory disease of unknown cause characterized by periportal hepatitis, increased serum globulins and the presence of certain antibodies. The disorder can be classified in three types. Type 1 AIH is characterized by the presence of antinuclear antibodies (ANA) and smooth muscle autoantibodies (SMA) in up to 70-80% of patients. ANA and SMA can be the only antibodies present in 13 and 33% of cases respectively. Type 2 AIH is defined by the presence of liver and kidney antimicrosomal antibodies (LKM1). Type 2 AIH is the only form of the disease in which the autoantigen has been identified: cytochrome mono-oxygenase (P-450 IID6) CYP2D6. In type 3 AIH the presence of anti-SLA/LP (soluble liver antigen/liver pancreas) targets a cytosolic protein involved in the incorporation of selenocysteine into peptidic chains. The pathophysiology of AIH is complex and involves genetic predisposition, previous exposure to antigens (autoantigens), presence of triggering factors and defects in immunoregulation. In spite of the advances in the understanding of AIH, the role of autoantibodies in the pathophysiology of this disease has not been fully established and their presence does not clearly distinguish any prognostic groups. Further investigations will help in the diagnosis of this disorder, the comprehension of its origins and the establishment of new forms of treatment.
An update on laboratory diagnosis in myasthenia gravis.
Oger, Joel; Frykman, Hans
2015-09-20
This review describes the state of the art for the use of laboratory testing in myasthenia gravis. The review brings a detailed description of the different clinical forms of auto-immune myasthenia and of the Lambert Eaton Myasthenic Syndrome (LEMS). They stress the differences between the different forms of acquired (auto-immune) myasthenia. Then they present a summary of the different antibodies found in the disease. They insist on the advantage of the RIPA assay to measure antibodies to the acetylcholine receptor. They stress the different types of contribution of each of these antibodies to the clinical diagnosis. They also describe the methods to measure each of the specific antibodies that have recently permitted to split the diagnosis: Abs to omega-conotoxin receptor in Lambert Eaton Myasthenic Syndrome (LEMS), abs to the acetylcholine receptor (AchR) in MG, Abs to muscle specific tyrosine kinase (MuSK) in Ab negative MG, and Abs to low molecular weight receptor related low-density lipo protein-4 (LRP-4). They also broach over the striated antibodies, less frequent and clinically less useful such as anti-titin, -ryanodine, -agrin and -rapsyn. This represent a 360° view of the field as presented in Toronto in October 2014. Copyright © 2015. Published by Elsevier B.V.
Adjuvant-specific regulation of long-term antibody responses by ZBTB20
Wang, Yinan
2014-01-01
The duration of antibody production by long-lived plasma cells varies with the type of immunization, but the basis for these differences is unknown. We demonstrate that plasma cells formed in response to the same immunogen engage distinct survival programs depending on the adjuvant. After alum-adjuvanted immunization, antigen-specific bone marrow plasma cells deficient in the transcription factor ZBTB20 failed to accumulate over time, leading to a progressive loss of antibody production relative to wild-type controls. Fetal liver reconstitution experiments demonstrated that the requirement for ZBTB20 was B cell intrinsic. No defects were observed in germinal center numbers, affinity maturation, or plasma cell formation or proliferation in ZBTB20-deficient chimeras. However, ZBTB20-deficient plasma cells expressed reduced levels of MCL1 relative to wild-type controls, and transgenic expression of BCL2 increased serum antibody titers. These data indicate a role for ZBTB20 in promoting survival in plasma cells. Strikingly, adjuvants that activate TLR2 and TLR4 restored long-term antibody production in ZBTB20-deficient chimeras through the induction of compensatory survival programs in plasma cells. Thus, distinct lifespans are imprinted in plasma cells as they are formed, depending on the primary activation conditions. The durability of vaccines may accordingly be improved through the selection of appropriate adjuvants. PMID:24711582