Sample records for engineered barrier system

  1. Functions of an engineered barrier system for a nuclear waste repository in basalt

    NASA Astrophysics Data System (ADS)

    Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.

    1980-01-01

    The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.

  2. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  3. The Development of 2700-3000 F Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  4. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  5. Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.

  6. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. Brad

    1995-01-01

    Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  7. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. B.

    1995-01-01

    Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  8. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  9. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  10. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  11. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  12. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  13. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  14. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  15. Analysis and test of insulated components for rotary engine

    NASA Technical Reports Server (NTRS)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  16. Development of Advanced Environmental Barrier Coatings for SiC/SiC Composites at NASA GRC: Prime-Reliant Design and Durability Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2017-01-01

    Environmental barrier coatings (EBCs) are considered technologically important because of the critical needs and their ability to effectively protect the turbine hot-section SiC/SiC ceramic matrix composite (CMC) components in harsh engine combustion environments. The development of NASA's advanced environmental barrier coatings have been aimed at significantly improved the coating system temperature capability, stability, erosion-impact, and CMAS resistance for SiC/SiC turbine airfoil and combustors component applications. The NASA environmental barrier coating developments have also emphasized thermo-mechanical creep and fatigue resistance in simulated engine heat flux and environments. Experimental results and models for advanced EBC systems will be presented to help establishing advanced EBC composition design methodologies, performance modeling and life predictions, for achieving prime-reliant, durable environmental coating systems for 2700-3000 F engine component applications. Major technical barriers in developing environmental barrier coating systems and the coating integration with next generation composites having further improved temperature capability, environmental stability, EBC-CMC fatigue-environment system durability will be discussed.

  17. Metallic seal for thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor)

    1990-01-01

    The invention is particularly concerned with sealing thermal barrier coating systems of the type in use and being contemplated for use in diesel and other internal combustion engines. The invention also would find application in moderately high temperature regions of gas turbine engines and any other application employing a thermal barrier coating at moderate temperatures. Ni-35Cr-6Al-1Y, Ni-35Cr-6Al-1Yb, or other metallic alloy denoted as MCrAlx is applied over a zirconia-based thermal barrier overlayer. The close-out layer is glass-bead preened to densify its surface. This seals and protects the thermal barrier coating system.

  18. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  19. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  20. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  1. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  2. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  3. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  4. Engineered Barrier System: Physical and Chemical Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less

  5. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  6. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  7. Thick thermal barrier coatings for diesel components

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1991-01-01

    An engineered thick thermal barrier coating consisting of multiple layers of zirconia and CoCrAlY with a zirconia top layer and having a system thermal conductance less than 410 w/m(exp 2)K exceeded the 100 hour engine durability goals set forth in this program. The thermal barrier coatings were intact at the test conclusion. Back to back single cylinder research engine tests were conducted with watercooled, metal hardware and oil-cooled, thermal barrier coating insulated hardware to determine apparent heat release and fuel economy. Apparent heat release data revealed that the insulated engine had a shorter ignition delay and a longer combustion duration than the metal engine. The insulated engine fuel economy was approximately two percent worse on average for this series of tests. There was no attempt to optimize engine efficiency of the insulated engine by modifying the engine timing, coating, or other techniques.

  8. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation.

    PubMed

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien" impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types.

  9. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  10. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  11. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  12. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  13. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  14. The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2007-01-01

    Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.

  15. JT90 thermal barrier coated vanes

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.

    1982-01-01

    The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.

  16. Examining E-Learning Barriers as Perceived by Faculty Members of Engineering Colleges in the Jordanian Universities

    ERIC Educational Resources Information Center

    Al-Alawneh, Muhammad K.

    2014-01-01

    Employing computer's technology that includes e-learning system in the field of Engineering is a vital issue which needs to be discussed. Therefore, this study purposed to examine e-learning barriers as perceived by faculty members of engineering in three major universities in Jordan (Yarmouk University, Jordan University of Science and…

  17. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  18. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  19. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna; Kiser, Doug; Wiesner, Valerie L.

    2016-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiCSiC Ceramic Matrix Composite (CMC) components for next generation turbine engines. The emphasis has been placed on the current design challenges of the 2700F environmental barrier coatings; coating processing and integration with SiCSiC CMCs and component systems; and performance evaluation and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements through advanced compositions and architecture designs, as shown in recent simulated engine high heat flux, combustion environment, in conjunction with mechanical creep and fatigue loading testing conditions.

  20. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  1. The blood-brain barrier: an engineering perspective

    PubMed Central

    Wong, Andrew D.; Ye, Mao; Levy, Amanda F.; Rothstein, Jeffrey D.; Bergles, Dwight E.; Searson, Peter C.

    2013-01-01

    It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich's first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and this selective permeability remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore, advances in our understanding of the structure and function of the blood-brain barrier are key to developing effective treatments for a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex, dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases. PMID:24009582

  2. Ceramic thermal barrier coatings for electric utility gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  3. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  4. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  5. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Engineered barriers. 194.44 Section...

  6. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Engineered barriers. 194.44 Section...

  7. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impact on worker exposure to radiation both during and after incorporation of engineered barriers; (iii... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the..., after consideration of one or more of the factors in paragraph (c)(1) of this section, the Department...

  8. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  9. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  10. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Engineered barriers. 194.44 Section 194...

  11. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  12. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades

    NASA Astrophysics Data System (ADS)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  13. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades.

    PubMed

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  14. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  15. Corrosion resistant thermal barrier coating. [protecting gas turbines and other engine parts

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.; Hodge, P. E. (Inventor)

    1981-01-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.

  16. Interdisciplinary barriers: An impediment to the effective application of systems engineering

    NASA Technical Reports Server (NTRS)

    Harrison, E., Jr.

    1971-01-01

    Interdisciplinary transfer of information and technology does not occur very readily, even for system planners, because of the existence of some very real barriers. These barriers to flow of information and technology between disciplines represent one of the important difficulties associated with the application of systems analysis to many problems. The nature and characteristics of some of these barriers are enumerated and discussed in detail. A number of methodologies and techniques which have been specifically developed to aid in the transfer of technology and information across these interdisciplinary barriers is examined.

  17. Collaborative Systems Thinking: A Response to the Problems Faced by Systems Engineering's 'Middle Tier'

    NASA Technical Reports Server (NTRS)

    Phfarr, Barbara B.; So, Maria M.; Lamb, Caroline Twomey; Rhodes, Donna H.

    2009-01-01

    Experienced systems engineers are adept at more than implementing systems engineering processes: they utilize systems thinking to solve complex engineering problems. Within the space industry demographics and economic pressures are reducing the number of experienced systems engineers that will be available in the future. Collaborative systems thinking within systems engineering teams is proposed as a way to integrate systems engineers of various experience levels to handle complex systems engineering challenges. This paper uses the GOES-R Program Systems Engineering team to illustrate the enablers and barriers to team level systems thinking and to identify ways in which performance could be improved. Ways NASA could expand its engineering training to promote team-level systems thinking are proposed.

  18. An investigation of enhanced capability thermal barrier coating systems for diesel engine components

    NASA Technical Reports Server (NTRS)

    Holtzman, R. L.; Layne, J. L.; Schechter, B.

    1984-01-01

    Material systems and processes for the development of effective and durable thermal barriers for heavy duty diesel engines were investigated. Seven coating systems were evaluated for thermal conductivity, erosion resistance, corrosion/oxidation resistance, and thermal shock resistance. An advanced coating system based on plasma sprayed particle yttria stabilized zirconia (PS/HYSZ) was judged superior in these tests. The measured thermal conductivity of the selected coating was 0.893 W/m C at 371 C. The PS/HYSZ coating system was applied to the piston crown, fire deck and valves of a single cylinder low heat rejection diesel engine. The coated engine components were tested for 24 hr at power levels from 0.83 MPa to 1.17 MPa brake mean effective pressure. The component coatings survived the engine tests with a minimum of distress. The measured fire deck temperatures decreased 86 C (155 F) on the intake side and 42 C (75 F) on the exhaust side with the coating applied.

  19. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  20. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  1. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  2. Evaluation of Subsurface Engineered Barriers at Waste Sites Volumes 1 and 2

    EPA Pesticide Factsheets

    This report provides the U.S. Environmental Protection Agency’s (EPA) waste programs with a national retrospective analysis of barrier field performance, as well as information that useful in developing guidance on the use and evaluation of barrier systems

  3. Environmental Barrier Coating Fracture, Fatigue and High-Heat-Flux Durability Modeling and Stochastic Progressive Damage Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nemeth, Noel N.

    2017-01-01

    Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.

  4. A qualitative, interprofessional analysis of barriers to and facilitators of implementation of the Department of Veterans Affairs' Clostridium difficile prevention bundle using a human factors engineering approach.

    PubMed

    Yanke, Eric; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2018-03-01

    Clostridium difficile infection (CDI) is increasingly prevalent, severe, and costly. Adherence to infection prevention practices remains suboptimal. More effective strategies to implement guidelines and evidence are needed. Interprofessional focus groups consisting of physicians, resident physicians, nurses, and health technicians were conducted for a quality improvement project evaluating adherence to the Department of Veterans Affairs' (VA) nationally mandated C difficile prevention bundle. Qualitative analysis with a visual matrix display identified barrier and facilitator themes guided by the Systems Engineering Initiative for Patient Safety model, a human factors engineering approach. Several themes, encompassing both barriers and facilitators to bundle adherence, emerged. Rapid turnaround time of C difficile polymerase chain reaction testing was a facilitator of timely diagnosis. Too few, poorly located, and cluttered sinks were barriers to appropriate hand hygiene. Patient care workload and the time-consuming process of contact isolation precautions were also barriers to adherence. Multiple work system components serve as barriers to and facilitators of adherence to the VA CDI prevention bundle among an interprofessional group of health care workers. Organizational factors appear to significantly influence bundle adherence. Interprofessional perspectives are needed to identify barriers to and facilitators of bundle implementation, which is a necessary first step to address adherence to bundled infection prevention practices. Published by Elsevier Inc.

  5. Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Robinson, Craig

    2017-01-01

    This presentation summarizes NASA's advanced thermal barrier and environmental barrier coating systems, and the coating performance improvements that has recently been achieved and documented in laboratory simulated rig test conditions. One of the emphases has been placed on the toughness and impact resistance enhancements of the low conductivity, defect cluster thermal barrier coating systems. The advances in the next generation environmental barrier coatings for SiCSiC ceramic matrix composites have also been highlighted, particularly in the design of a new series of oxide-silicate composition systems to be integrated with next generation SiC-SiC turbine engine components for 2700F coating applications. Major technical barriers in developing the thermal and environmental barrier coating systems are also described. The performance and model validations in the rig simulated turbine combustion, heat flux, steam and calcium-magnesium-aluminosilicate (CMAS) environments have helped the current progress in improved temperature capability, environmental stability, and long-term fatigue-environment system durability of the advanced thermal and environmental barrier coating systems.

  6. Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  7. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  8. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Zaher; Brentnall, William

    1995-01-01

    Thermal barrier coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in providing thermal protection and increasing engine efficiencies. TBC life requirements for aircraft engines are typically less than those required for industrial gas turbines. This paper describes current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's is reviewed. Areas of concern from the engine designer's and materials engineer's perspective are identified and evaluated. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and highly effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  9. Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    NASA Technical Reports Server (NTRS)

    Duderstadt, E. C.; Agarwal, P.

    1983-01-01

    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.

  10. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  11. Monitoring long-term evolution of engineered barrier systems using magnets: Magnetic response.

    PubMed

    Rigonat, N; Isnard, O; Harley, S L; Butler, I B

    2018-01-05

    Remote and non-destructive monitoring of the stability and performance of Engineered Barrier Systems for Geological Disposal Facility of is gaining considerable importance in establishing the safety cases for Higher Activity Wastes disposal. This study offers an innovative use of mineral magnetism for monitoring groundwater saturation of the barrier. Four mixtures of permanent magnets (Nd-Fe-B, coated and uncoated; SmCo and AlNiCo) and bentonite were reacted for 4, 8 and 12 months with mildly-saline, high-pH leachates, representing the fluids saturating a time-evolved engineered barrier. Coupled hysteresis and thermomagnetic analyses demonstrate how Nd-Fe-B feature a time-dependent transition from square-like ferromagnetic to superparamagnetic loop via pot-bellied and wasp-waist loops, whereas SmCo and AlNiCo do not show so extensive corrosion-related variations of the intrinsic and extrinsic magnetic properties. This study allowed to identify magnetic materials suitable for shorter- (Nd-Fe-B) and longer-term (SmCo and AlNiCo) monitoring purposes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Practical Application of Sociology in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Andrews, James G.; Eckley, Jeri Cassel; Culver, Michael L.

    2017-01-01

    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, who often have different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated will all relevant information informing system decisions. The practical application of the sociology in systems engineering brings in various organizational development concepts including the principles of planned renegotiation and the application of principles to address information barriers created by organizational culture. Concepts such as specification of ignorance, consistent terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that help address the organizational social structure (culture). In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, and insider-outsider behavior. Unintended consequences can result when these social issues are present. These issues can occur when localized subcultures shift from the overarching organizational culture, or when the organizational culture prevents achievement of system goals. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information and provides key sociological barriers to information flow through the organization. This paper will discuss the practical application of sociological principles to systems engineering.

  13. 46 CFR 38.05-1 - Design and construction of vessels-general-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system shall satisfy the requirements for toughness specified in subchapter F (Marine Engineering) of... secondary barrier is required, the material of that barrier and of contiguous hull structure shall have...

  14. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  15. 10 CFR 60.113 - Performance of particular barriers after permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the engineered barrier system are dominated by fission product decay; and (B) any release of... the time during which the thermal pulse is dominated by the decay heat from the fission products; (3...

  16. 10 CFR 60.113 - Performance of particular barriers after permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the engineered barrier system are dominated by fission product decay; and (B) any release of... the time during which the thermal pulse is dominated by the decay heat from the fission products; (3...

  17. Thermal barrier coatings for gas turbine and diesel engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  18. Barriers to the utilization of synthetic fuels for transportation

    NASA Technical Reports Server (NTRS)

    Parker, H. W.; Reilly, M. J.

    1981-01-01

    The principal types of engines for transportation uses are reviewed and the specifications for conventional fuels are compared with specifications for synthetic fuels. Synfuel processes nearing the commercialization phase are reviewed. The barriers to using synfuels can be classified into four groups: technical, such as the uncertainty that a new engine design can satisfy the desired performance criteria; environmental, such as the risk that the engine emissions cannot meet the applicable environmental standards; economic, including the cost of using a synfuel relative to conventional transportation fuels; and market, involving market penetration by offering new engines, establishing new distribution systems and/or changing user expectations.

  19. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when integrated with advanced EBC top coats, showed promise to achieve 1500 C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and long-term durability.

  20. Engineering and Design: Indoor Radon Prevention and Mitigation

    DTIC Science & Technology

    1993-09-15

    slabs on grade, capillary water barrier below floor slabs on grade, dampproofing or waterproofing and protection board on below grade walls, sealants in...will be lapped 12 inches and sealed with adhesives or pressure sensitive tape and sealed at foundation walls with mastic. Capillary water barrier will...Systems, Letter Codes B, C, and D. Sub- slab suction systems consist of 4 inch diameter perforated PVC pipe laid in the capillary water barrier below floor

  1. High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.

    2007-01-01

    Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.

  2. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.

  3. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests (in air), to investigate the water vapor effect. All cyclic tests were conducted using a 60-min hot-time temperature.

  4. Environmental and Mechanical Stability of Environmental Barrier Coated SA Tyrannohex SiC Composites Under Simulated Turbine Engine Environments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay

    2014-01-01

    The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.

  5. Greener, meaner diesels sport thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, M.F.; Parker, D.W.

    1992-05-01

    The highly reliable diesel engine has long been the workhorse of the transportation, industrial power, utility, and marine industries. Demand for diesels is expected to accelerate well into the next century, driven by the engine's ability to economically produce power in almost any environment. Increasingly stringent environmental, efficiency, and durability requirements, however, present new challenges to diesel engine manufacturers and operators. This paper reports that many of these challenges can be met entirely, or in part, by thermal barrier coatings (TBCs). Diesel engine TBCs are plasma-spray-applied ceramics, which insulate combustion system components, such as pistons, valves, and piston fire decks,more » from heat and thermal shock.« less

  6. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  7. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wen-Sheng; Liu, Chen-Wuing; Tsao, Jui-Hsuan

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow,more » and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the future. (authors)« less

  8. Industry tests of NASA ceramic thermal barrier coating. [for gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1979-01-01

    Ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical, marine, and ground-based gas turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt. percent) and a ceramic coating of yttria-stabilized zirconia (ZrO2-12Y2O3, in wt. percent). Seven tests evaluated the system's thermal protection and durability. Five other tests determined thermal conductivity, vibratory fatigue characteristics, and corrosion resistance of the system. The information presented includes test results and photographs of the coated parts. Recommendations are made for improving the coating procedures.

  9. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  10. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  11. Damage Accumulation and Failure of Plasma-Sprayed Thermal Barrier Coatings under Thermal Gradient Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.

  12. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Z. Z.; Hsu, L. L.; Brentnall, W. D.

    1995-01-01

    Thermal Barrier Coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in allowing higher turbine inlet temperatures. TBC life requirements for aircraft engines are typically less than those required in industrial gas turbines. The use of TBC's for industrial gas turbines can increase if durability and longer service life can be successfully demonstrated. This paper will describe current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's will also be reviewed. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and high effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  13. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  14. Confronting Cyberterrorism with Cyber Deception

    DTIC Science & Technology

    2003-12-01

    break into computer systems. A further development in social engineering is the use of online translators and 41 relay telephony services that...allow social engineers to exploit and overcome language barriers [Ollmann, 2003]. Relay telephony services are online services provided by...open source media or actively seeking the information through unscrupulous means. - Desk checking - Social engineering - Dumpster diving

  15. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  16. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    1990-01-01

    Advanced ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  17. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  18. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  19. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  20. Systems engineering and management.

    PubMed

    Rouse, William B; Compton, W Dale

    2010-01-01

    This chapter offers a systems view of healthcare delivery and outlines a wide range of concepts, principles, models, methods and tools from systems engineering and management that can enable the transformation of the dysfunctional "as is" healthcare system to an agreed-upon "to be" system that will provide quality, affordable care for everyone. Topics discussed include systems definition, design, analysis, and control, as well as the data and information needed to support these functions. Barriers to implementation are also considered.

  1. Influences of specific ions in groundwater on concrete degradation in subsurface engineered barrier system.

    PubMed

    Lin, Wen-Sheng; Liu, Chen-Wuing; Li, Ming-Hsu

    2016-01-01

    Many disposal concepts currently show that concrete is an effective confinement material used in engineered barrier systems (EBS) at a number of low-level radioactive waste (LLW) disposal sites. Cement-based materials have properties for the encapsulation, isolation, or retardation of a variety of hazardous contaminants. The reactive chemical transport model of HYDROGEOCHEM 5.0 was applied to simulate the effect of hydrogeochemical processes on concrete barrier degradation in an EBS which has been proposed to use in the LLW disposal site in Taiwan. The simulated results indicated that the main processes that are responsible for concrete degradation are the species induced from hydrogen ion, sulfate, and chloride. The EBS with the side ditch drainage system effectively discharges the infiltrated water and lowers the solute concentrations that may induce concrete degradation. The redox processes markedly influence the formations of the degradation materials. The reductive environment in the EBS reduces the formation of ettringite in concrete degradation processes. Moreover, the chemical conditions in the concrete barriers maintain an alkaline condition after 300 years in the proposed LLW repository. This study provides a detailed picture of the long-term evolution of the hydrogeochemical environment in the proposed LLW disposal site in Taiwan.

  2. On the asteroid hazard

    NASA Astrophysics Data System (ADS)

    Eneev, T. M.; Akhmetshin, R. Z.; Efimov, G. B.

    2012-04-01

    The concept of "space patrol" is considered, aimed at discovering and cataloging the majority of celestial bodies that constitute a menace for the Earth [1, 2]. The scheme of "optical barrier" formed by telescopes of the space patrol is analyzed, requirements to the observation system are formulated, and some schemes of sighting the optical barrier region are suggested (for reliable detection of the celestial bodies approaching the Earth and for determination of their orbits). A comparison is made of capabilities of electro-jet engines and traditional chemical engines for arrangement of patrol spacecraft constellation in the Earth's orbit.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts andmore » the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.« less

  4. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  5. A design perspective on thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Soechting, F. O.

    1999-12-01

    This article addresses the challenges for maximizing the benefit of thermal barrier coatings for turbine engine applications. The perspective is from the viewpoint of a customer, a turbine airfoil designer who is continuously challenged to increase the turbine inlet temperature capability for new products while maintaining cooling flow levels or even reducing them. This is a fundamental requirement for achieving increased engine thrust levels. Developing advanced material systems for the turbine flowpath airfoils, such as high-temperature nickel-base superalloys or thermal barrier coatings to insulate the metal airfoils from the hot flowpath environment, is one approach to solve this challenge. The second approach is to increase the cooling performance of the turbine airfoil, which enables increased flowpath temperatures and reduced cooling flow levels. Thermal barrier coatings have been employed in jet engine applications for almost 30 years. The initial application was on augmentor liners to provide thermal protection during afterburner operation. However, the production use of thermal barrier coatings in the turbine section has only occurred in the past 15 years. The application was limited to stationary parts and only recently incorporated on the rotating turbine blades. This lack of endorsement of thermal barrier coatings resulted from the poor initial duratbility of these coatings in high heat flux environments. Significant improvements have been made to enhance spallation resistance and erosion resistance, which has resulted in increased reliability of these coatings in turbine applications.

  6. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  7. Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill; hide

    2007-01-01

    A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.

  8. Engineered Barrier System performance requirements systems study report. Revision 02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balady, M.A.

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS includemore » the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Kathryn D.

    Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder openmore » source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)« less

  10. U.S. Army Corps of Engineers Manpower Information System: An Integrated Approach to Manpower Management

    DTIC Science & Technology

    1994-04-01

    engineering and con- struction management services for both military and civil works programs. In FY93, the cost of those programs exceeded $10 billion and...A related issue was to explore the USACE costs , benefits, and barriers to implementing a single Class VI system software package for both the military...provide information in useful ways, track utilization information, I A Class HI system is defined in AR 25-3. It is a system whose total program costs are

  11. Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.

  12. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  13. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  14. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  15. Determining when a set of compute nodes participating in a barrier operation on a parallel computer are ready to exit the barrier operation

    DOEpatents

    Blocksome, Michael A [Rochester, MN

    2011-12-20

    Methods, apparatus, and products are disclosed for determining when a set of compute nodes participating in a barrier operation on a parallel computer are ready to exit the barrier operation that includes, for each compute node in the set: initializing a barrier counter with no counter underflow interrupt; configuring, upon entering the barrier operation, the barrier counter with a value in dependence upon a number of compute nodes in the set; broadcasting, by a DMA engine on the compute node to each of the other compute nodes upon entering the barrier operation, a barrier control packet; receiving, by the DMA engine from each of the other compute nodes, a barrier control packet; modifying, by the DMA engine, the value for the barrier counter in dependence upon each of the received barrier control packets; exiting the barrier operation if the value for the barrier counter matches the exit value.

  16. Principles of Sociology in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Andrews, James G.; Larsen, Jordan A.

    2017-01-01

    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, often with different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated with all relevant information informing system decisions. Robert K. Merton studied the sociological principles of the sciences and the sociological principles he developed apply to systems engineering. Concepts such as specification of ignorance, common terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that should be employed by the systems engineer. In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, insider-outsider behavior, unintended consequences, and the self-fulfilling prophecy. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information. This also helps identify key sociological barriers to information flow through the organization. This paper will discuss this theoretical basis for the application of sociological principles to systems engineering.

  17. PILOT-SCALE EVALUATION OF ENGINEERED BARIER SYSTEMS FOR THE YUCCA MOUNTAIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.W. Webb; J.T. George; R.E. Finley

    This paper describes two quarter-scale experiments (1.4 m diameter) and associated numerical analyses on granular backfill engineered barrier systems in support of the Yucca Mountain Project for the potential repository. The two configurations include a sloped capillary barrier and a plain backfill. The tests involve application of dyed water as a constant line infiltration source along the top of the test set-up, monitoring water movement through the test, and measuring water exiting the experiments. A complete water balance estimate is made for each test, and observed water movement is compared with (1) detailed numerical analyses conducted using the TOUGH2 codemore » for unsaturated flow in porous media and (2) posttest observations. The results of the testing and analyses show that for the injection rates and configuration applied, the capillary barrier design diverts a significant amount of all injected water and the TOUGH2 pretest predictions show qualitative and quantitative agreement with the experimental data.« less

  18. Investigating the Potential Barrier Function of Nanostructured Materials Formed in Engineered Barrier Systems (EBS) Designed for Nuclear Waste Isolation.

    PubMed

    Cuevas, Jaime; Ruiz, Ana Isabel; Fernández, Raúl

    2018-02-21

    Clay and cement are known nano-colloids originating from natural processes or traditional materials technology. Currently, they are used together as part of the engineered barrier system (EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until the canisters fail, which is not expected for approximately 10 3  years. The interactions of cementitious materials with bentonite swelling clay have been the scope of our research team at the Autonomous University of Madrid (UAM) with participation in several European Union (EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and microstructure of the alteration rim generated by the contact between concrete and bentonite. Its ability to buffer the surrounding chemical environment may have potential for further protection against RN migration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Further industrial tests of ceramic thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Levine, S. R.

    1982-01-01

    The NASA Lewis Research Center made technical assistance arrangements (contracts) with several commercial organizations under which Lewis designed plasma-sprayed thermal-barrier coatings (TBC) for their products. Lewis was then furnished with the test conditions and evaluations of coating usefulness. The coating systems were developed and sprayed at Lewis. All of the systems incorporated a two-layer, ceramic-bond coating concept. Coating thickness and chemical composition were varied to fit three applications: the leading edges of first-stage turbine vanes for an advanced gas turbine engine; the flame impingement surfaces of a combustor transition section; and diesel engine valves and head surfaces. The TBC incorporated yytria-stabilized zirconia, which lowered metal temperatures, protected metal parts, and increased metal part life. In some cases metal burning, melting, and warping were eliminated. Additional benefits were realized from these endeavors: hands-on experience with thermal-barrier coatings was provided to industry; the success of these endeavors encourages these and other organizations to accelerate the implementation of TBC technology.

  20. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    NASA Astrophysics Data System (ADS)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  1. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input,more » which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates have no impact on the model developed in this report.« less

  2. "The Invisible Staff": A Qualitative Analysis of Environmental Service Workers' Perceptions of the VA Clostridium difficile Prevention Bundle Using a Human Factors Engineering Approach.

    PubMed

    Yanke, Eric; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2018-06-11

    Using a novel human factors engineering approach, the Systems Engineering Initiative for Patient Safety model, we evaluated environmental service workers' (ESWs) perceptions of barriers and facilitators influencing adherence to the nationally mandated Department of Veterans Affairs Clostridium difficile infection (CDI) prevention bundle. A focus group of ESWs was conducted. Qualitative analysis was performed employing a visual matrix display to identify barrier/facilitator themes related to Department of Veterans Affairs CDI bundle adherence using the Systems Engineering Initiative for Patient Safety work system as a framework. Environmental service workers reported adequate cleaning supplies/equipment and displayed excellent knowledge of CDI hand hygiene requirements. Environmental service workers described current supervisory practices as providing an acceptable amount of time to clean CDI rooms, although other healthcare workers often pressured ESWs to clean rooms more quickly. Environmental service workers reported significant concern for CDI patients' family members as well as suggesting uncertainty regarding the need for family members to follow infection prevention practices. Small and cluttered patient rooms made cleaning tasks more difficult, and ESW cleaning tasks were often interrupted by other healthcare workers. Environmental service workers did not feel comfortable asking physicians for more time to finish cleaning a room nor did ESWs feel comfortable pointing out lapses in physician hand hygiene. Multiple work system components serve as barriers to and facilitators of ESW adherence to the nationally mandated Department of Veterans Affairs CDI bundle. Environmental service workers may represent an underappreciated resource for hospital infection prevention, and further efforts should be made to engage ESWs as members of the health care team.

  3. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization broughtmore » a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.« less

  4. Advanced engineering software for in-space assembly and manned planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Delaquil, Donald; Mah, Robert

    1990-01-01

    Meeting the objectives of the Lunar/Mars initiative to establish safe and cost-effective extraterrestrial bases requires an integrated software/hardware approach to operational definitions and systems implementation. This paper begins this process by taking a 'software-first' approach to systems design, for implementing specific mission scenarios in the domains of in-space assembly and operations of the manned Mars spacecraft. The technological barriers facing implementation of robust operational systems within these two domains are discussed, and preliminary software requirements and architectures that resolve these barriers are provided.

  5. Panel Resource Management (PRM) Implementation and Effects within Safety Review Panel Settings and Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Robert W.; Nash, Sally K.

    2007-01-01

    While technical training and advanced degree's assure proficiency at specific tasks within engineering disciplines, they fail to address the potential for communication breakdown and decision making errors familiar to multicultural environments where language barriers, intimidating personalities and interdisciplinary misconceptions exist. In an effort to minimize these pitfalls to effective panel review, NASA's lead safety engineers to the ISS Safety Review Panel (SRP), and Payload Safety Review Panel (PSRP) initiated training with their engineers, in conjunction with the panel chairs, and began a Panel Resource Management (PRM) program. The intent of this program focuses on the ability to reduce the barriers inhibiting effective participation from all panel attendees by bolstering participants confidence levels through increased communication skills, situational awareness, debriefing, and a better technical understanding of requirements and systems.

  6. Experiences of high school Hispanic girls in pursuit of science, technology, engineering, and mathematics-related coursework and careers

    NASA Astrophysics Data System (ADS)

    Vijil, Veronica G.

    2011-12-01

    An overall increased awareness of the importance of science, technology, engineering, and mathematics (STEM) has prompted attention toward the continued underrepresentation of Hispanic women in this field. The purpose of this collective case study was to explore the support systems, perceived barriers, and prior experiences influencing high school Hispanic girls' decisions to pursue advanced coursework and related careers through a career pathway in science, technology, engineering, and mathematics (STEM) areas. Specifically, participants were interviewed regarding their mathematics and science experiences in elementary and middle schools, as well as perceived supports and barriers to their choices to pursue STEM careers and advanced coursework. Results indicated that the participants linked their elementary and middle school experiences with their teachers rather than specific activities. Accolades such as certificates and good grades for academic achievement contributed to the girls' strong self-efficacy at an early age. The participants possessed self-discipline and self-confidence, using intrinsic motivation to pursue their goals. Support systems included families and a few teachers. Barriers were revealed in different forms including derogatory comments by boys in class, difficult curricula with limited tutors available for higher level courses, and receipt of financial assistance to attend a university of their choice.

  7. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  8. 46 CFR 56.07-5 - Definitions (modifies 100.2).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... similar fittings which form part of the pressure barrier of any system are included under this heading.... “Nonstandard fitting” means a component of a piping system which is not fabricated under an adopted industry...

  9. Barriers and Opportunities for 2-Year and 4-Year STEM Degrees: Systemic Change to Support Students' Diverse Pathways

    ERIC Educational Resources Information Center

    Malcom, Shirley, Ed.; Feder, Michael, Ed.

    2016-01-01

    Nearly 40 percent of the students entering 2- and 4-year postsecondary institutions indicated their intention to major in science, technology, engineering, and mathematics (STEM) in 2012. But the barriers to students realizing their ambitions are reflected in the fact that about half of those with the intention to earn a STEM bachelor's degree and…

  10. Barriers to student success in engineering education

    NASA Astrophysics Data System (ADS)

    Boles, Wageeh; Whelan, Karen

    2017-07-01

    In the UK, the USA and Australia, there have been calls for an increase in the number of engineering graduates to meet the needs of current global challenges. Universities around the world have been grappling with how to both attract more engineering students and to then retain them. Attrition from engineering programmes is disturbingly high. This paper reports on an element of research undertaken through an Australian Learning and Teaching Council-funded Fellowship that investigated the factors leading to student attrition in engineering programmes, by identifying barriers to student success. Here, we contrast a review of the literature related to student barriers and success with student perceptions, gathered through a series of focus groups and interviews at three Australian universities. We also present recommendations for action to try to remove barriers to student success.

  11. Development and Testing of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating behavior and temperature limits, in order to potentially take full advantage of the current coating capability, and also accurately assess the benefit gained from advanced coating development. In this study, thermal conductivity behavior and cyclic durability of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under laser heat-flux simulated high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack propagation driving forces and resulting failure modes will be discussed in light of high temperature mechanical fatigue and fracture testing results.

  12. Development and Fatigue Testing of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating thermal fatigue behavior and temperature limit, in order to potentially take full advantage of the current coating capability. In this study, thermal conductivity and cyclic fatigue behaviors of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack initiation and propagation driving forces and failure modes under the cyclic thermal loads will be discussed in light of the high temperature mechanical fatigue and fracture testing results.

  13. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-01-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.

  14. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A NASA ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical marine, and ground-based gas-turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt %) and a ceramic coating of yttria stabilized zirconia (ZrO2-12Y2O3, in wt %). Tests (Liebert and Stenka, 1979) have been conducted to determine corrosion resistance, thermal protection, durability, thermal conductivity, and fatigue characteristics. The information presented covers some of the significant test results obtained on the first three items. The information also includes photographs of coated parts after tests, measurements of coating loss, amount of metal wall temperature reduction when the TBC is used, and extent of base metal corrosion.

  15. Barriers to Fully Implementing Integrated Logistics Support (ILS) in System Acquisition as Perceived by ILS Managers and Program Managers at the Aeronautical Systems Division

    DTIC Science & Technology

    1982-09-01

    is to structure, within Systems Engineering, a process to systematically pull together all the engineering functions that contribute to the design...staff and AiD ptple in the SPOs. There is not enough communication. The DPFL is pulled two ways. 160. Dual chain helps IWll get things done. 103 166...involvement from users, testers, and logisticians. I’d pull AFLC into the development early. On the A-X I wanted logistics inputs early, but it never happened

  16. CMC Technology Advancements for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2013-01-01

    CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.

  17. Emittance and absorptance of NASA ceramic thermal barrier coating system. [for turbine cooling

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1978-01-01

    Spectral emittance measurements were made on a two-layer ceramic thermal barrier coating system consisting of a metal substrate, a NiCrAly bond coating and a yttria-stabilized zirconia ceramic coating. Spectral emittance data were obtained for the coating system at temperatures of 300 to 1590 K, ceramic thickness of zero to 0.076 centimeter, and wavelengths of 0.4 to 14.6 micrometers. The data were transformed into total hemispherical emittance values and correlated with respect to ceramic coating thickness and temperature using multiple regression curve fitting techniques. The results show that the ceramic thermal barrier coating system is highly reflective and significantly reduces radiation heat loads on cooled gas turbine engine components. Calculation of the radiant heat transfer within the nonisothermal, translucent ceramic coating material shows that the gas-side ceramic coating surface temperature can be used in heat transfer analysis of radiation heat loads on the coating system.

  18. Surmounting the Barriers: Ethnic Diversity in Engineering Education: Summary of a Workshop

    ERIC Educational Resources Information Center

    National Academies Press, 2014

    2014-01-01

    "Surmounting the Barriers: Ethnic Diversity in Engineering Education" is the summary of a workshop held in September 2013 to take a fresh look at the impediments to greater diversification in engineering education. The workshop brought together educators in engineering from two- and four-year colleges and staff members from the three…

  19. Land Desertification and it’s Control in Gonghe Basin of Qinghai Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Gao, S.; Lu, R.

    2009-12-01

    Land desertification is an important environmental and social-economic problems that threatening people’s living conditions and impacting social sustainable development. The Gonghe basin in Qinghai Plateau is a fragile cold alpine area which is one of the places seriously threatened by desertification in China. This paper selected Gonghe basin as a study area to study land sandy desertification and its controlling measures. The engineering measures for sandy desertification control include setting clay sand barrier, Salix cheilophila sand barrier, Tamarix sand barrier, Artemisia sand barrier and straw-checker sand-barriers to fix dunes; the biological measures include closure for natural vegetation recovery, direct seeding forestation, transplanting seedlings, and so on. The combination of engineering and biologic measures can fix dunes 2~3 years earlier than the common single measure; and the costs were basically identical. A synthesized evaluation system established based on experimental results and experience in recent years indicated that the effectiveness of the four kinds of sand barrier for prevention and control of sand in study area were: Tamarix sand barrier > Artemisia sand barrier > clay sand barrier > straw-checker sand-barriers. In addition, different optimized management model can be selected according to local material and geographical place. New plants such as Salix cheilophila and Tamarix, which are available in study area, can change from dead sand barrier to live one set in proper seasons, changing engineering measure to biological one directly speeds the progress of forestation and dunes fixation. In addition, we developed new technique of deep planting Salix cheilophila and Tamarix with their long stem, which can effectively resist drought. We found that it had lower cost and higher live rate, and has a better sand prevention effect than deep planting of Poplar. Finally we choose the optimize management model as follows: Artemisia direct seeding > Caragana direct seeding, Tamarix cutting and seedling > Salix cheilophila deep planting, Sea-buckthorn seedling > Tamarix deep planting > Tamarix seedling > Poplar deep planting > Salix cheilophila seedling > Poplar seedling. It has resolved the key problem of control sand flow speed and low efficiency, sand burying and wind erosion and low conservation rate for forestation in the sandy area.

  20. Thermal barrier coating experience in the gas turbine engine

    NASA Technical Reports Server (NTRS)

    Bose, S.; Demasi-Marcin, J.

    1995-01-01

    Thermal Barrier Coatings (TBC), provide thermal insulation and oxidation resistance in an environment consisting of hot combustion gases. TBC's consist of a two layer system. The outer ceramic layer provides good thermal insulation due to the low thermal conductivity of the ceramic coatings used, while the inner metallic bond coat layer provides needed oxidation resistance to the underlying superalloy. Pratt & Whitney has over a decade of experience with several generations of TBC systems on turbine airfoils. This paper will focus on the latest TBC field experience along with a proposed durability model.

  1. Using a Systems Engineering Initiative for Patient Safety to Evaluate a Hospital-wide Daily Chlorhexidine Bathing Intervention.

    PubMed

    Caya, Teresa; Musuuza, Jackson; Yanke, Eric; Schmitz, Michelle; Anderson, Brooke; Carayon, Pascale; Safdar, Nasia

    2015-01-01

    We undertook a systems engineering approach to evaluate housewide implementation of daily chlorhexidine bathing. We performed direct observations of the bathing process and conducted provider and patient surveys. The main outcome was compliance with bathing using a checklist. Fifty-seven percent of baths had full compliance with the chlorhexidine bathing protocol. Additional time was the main barrier. Institutions undertaking daily chlorhexidine bathing should perform a rigorous assessment of implementation to optimize the benefits of this intervention.

  2. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  3. Challenges and opportunities associated with waste management in India

    PubMed Central

    Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh

    2017-01-01

    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362

  4. Enabling High Efficiency Ethanol Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy ismore » due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.« less

  5. The Many Faces of a Software Engineer in a Research Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold

    2013-10-14

    The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks atmore » the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.« less

  6. Women in Engineering: The Impact of the College Internship on Persistence into an Engineering Field

    ERIC Educational Resources Information Center

    Brush, Kimberly M.

    2013-01-01

    The development of a diverse engineering workforce, with a variety of skills and interests is essential to the future of American innovation. Historically, the engineering field has been grounded in a series of standards that often benefit men while creating barriers for women. Thus, strategies for overcoming barriers to women's successful…

  7. Picture this

    Treesearch

    Gary Bentrup; Gary Wells

    2005-01-01

    Despite the use of planting plans and engineering drawings, many landowners find it difficult to conceptualize what a future conservation practice or system will actually look like on their landscape. This lack of understanding can create challenging barriers in the planning process and is exacerbated by the long-term commitment that many conservation systems require...

  8. Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    2014-01-01

    Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas.

  9. Software Innovation in a Mission Critical Environment

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  10. Effects of compositional changes on the performance of a thermal barrier coating system. [yttria-stabilized zirconia coatings on gas turbine engine blades

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1978-01-01

    Currently proposed thermal barrier systems for aircraft gas turbine engines consist of NiCrAlY bond coating covered with an insulating oxide layer of yttria-stabilized zirconia. The effect of yttrium concentration (from 0.15 to 1.08 w/o) in the bond coating and the yttria concentration (4 to 24.4 w/o) in the oxide layer were evaluated. Furnace, natural gas-oxygen torch, and Mach 1.0 burner rig cyclic tests on solid specimens and air-cooled blades were used to identify trends in coating behavior. Results indicate that the combinations of yttrium levels between 0.15 - 0.35 w/o in the bond coating and the yttria concentration between 6 - 8 w/o in the zirconium oxide layer were the most adherent and resistant to high temperature cyclic exposure.

  11. Neutron and gamma (density) logging in welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W

    This Technical Implementation Procedure (TIP) describes the field operation, and the management of data records pertaining to neutron logging and density logging in welded tuff. This procedure applies to all borehole surveys performed in support of Engineered Barrier System Field Tests (EBSFT), including the Earge Block Tests (LBT) and Initial Engineered Barrier System Field Tests (IEBSFT) - WBS 1.2.3.12.4. The purpose of this TIP is to provide guidelines so that other equally trained and qualified personnel can understand how the work is performed or how to repeat the work if needed. The work will be documented by the use ofmore » Scientific Notebooks (SNs) as discussed in 033-YMP-QP 3.4. The TIP will provide a set of guidelines which the scientists will take into account in conducting the mea- surements. The use of this TIP does not imply that this is repetitive work that does not require profes- sional judgment.« less

  12. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  13. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.

    PubMed

    Kalin, Robert M

    2004-06-01

    Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

  14. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    NASA Technical Reports Server (NTRS)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  15. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Sheffler, K. D.

    1986-01-01

    The objective of this program is to establish a methodology to predict Thermal Barrier Coating (TBC) life on gas turbine engine components. The approach involves experimental life measurement coupled with analytical modeling of relevant degradation modes. The coating being studied is a flight qualified two layer system, designated PWA 264, consisting of a nominal ten mil layer of seven percent yttria partially stabilized zirconia plasma deposited over a nominal five mil layer of low pressure plasma deposited NiCoCrAlY. Thermal barrier coating degradation modes being investigated include: thermomechanical fatigue, oxidation, erosion, hot corrosion, and foreign object damage.

  16. Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review

    NASA Astrophysics Data System (ADS)

    Feuerstein, Albert; Knapp, James; Taylor, Thomas; Ashary, Adil; Bolcavage, Ann; Hitchman, Neil

    2008-06-01

    The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.

  17. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  18. The Relationship between Barrier Courses and Persistence in Engineering

    ERIC Educational Resources Information Center

    Suresh, Radhika

    2007-01-01

    Attrition in engineering programs continues to be an important issue for universities across the country. This study examined the connection between student performance in barrier courses and persistence in engineering. Quantitative results showed that high school academic experience, student behaviors (including study habits, work habits, coping…

  19. Biological intrusion of low-level-waste trench covers

    NASA Astrophysics Data System (ADS)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  20. Is There a Foreign Language Barrier in Engineering Research?

    ERIC Educational Resources Information Center

    Hawks, Carla; And Others

    Perception and effects of foreign language publications in engineering research are examined. Through the use of both survey and archival sources, including coverage in major scientific and technical databases as vended by DIALOG, various aspects of the foreign language barrier were measured. A foreign language barrier is said to exist when…

  1. Effect of joint mechanism on vehicle redirectional capability of water-filled road safety barrier systems.

    PubMed

    Thiyahuddin, M I; Thambiratnam, D P; Gu, Y T

    2014-10-01

    Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular "wall" representative of a 30m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier "wall" and the vehicle was obtained and the results show that a rotational stiffness of 3000kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Thermal barrier coating life-prediction model development. Annual report no. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-10-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimenmore » procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.« less

  3. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    NASA Astrophysics Data System (ADS)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  4. Effects of compositional changes on the performance of a thermal barrier coating system. [for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1979-01-01

    Systems consisting of Ni-base bond coatings containing about 16Cr, 6Al, and from 0.15 to 1.08Y (all in wt %) and zirconium oxide layers containing from 4.0 to 24.4Y2O3 were evaluated for suitability as thermal barrier systems for advanced aircraft gas turbine engine components. The evaluations were performed in a cyclic furnace between 990 and 280 C as well as between 1095 and 280 C on solid specimens; in a natural gas-oxygen torch rig between about 1200 and 100 C on solid specimens and up to 1580 C surface temperatures on air-cooled blades; and in a Mach 1.0 burner rig up to 1570 C surface temperatures on air-cooled blades. The data indicate that the best systems consist of combinations involving the Ni-16.4Cr-5.1Al-0.15Y and Ni-17.0Cr-5.4Al-0.35Y bond coatings and the 6.2Y2O3- and 7.9Y2O3- (all in wt %) stabilized zirconium oxide layers.

  5. Identifying barriers to Science, Technology, Society and environment (STSE) educational goals and pedagogy in science education: A case study of UMASS Lowell undergraduate engineering

    NASA Astrophysics Data System (ADS)

    Phaneuf, Tiffany

    The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.

  6. Enzyme as catalytic wheel powered by a Markovian engine: conformational coupling and barrier surfing models

    NASA Astrophysics Data System (ADS)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2005-05-01

    We examine a typical Michaelis-Menten Enzyme (MME) and redress it to form a transducer of free energy, and electric, acoustic, or other types of energy. This amendment and extension is necessary in lieu of recent experiments in which enzymes are shown to perform pump, motor, and locomotion functions resembling their macroscopic counterparts. Classical textbook depicts enzyme, or an MME, as biocatalyst which can enhance the rate of a chemical reaction by lowering the activation barrier but cannot shift the thermodynamic equilibrium of the biochemical reaction. An energy transducer, on the other hand, must also be able to harvest, store, or divert energy and in doing so alter the chemical equilibrium, change the energy form, fuel an energy consuming process, or perform all these functions stepwise in one catalytic turnover. The catalytic wheel presented in this communication is both a catalyst and an energy transducer and can perform all these tasks with ease. A Conformational Coupling Model for the rotary motors and a Barrier Surfing Model for the track-guided stepping motors and transporters, are presented and compared. It is shown that the core engine of the catalytic wheel, or a Brownian motor, is a Markovian engine. It remains to be seen if this core engine is the basic mechanism for a wide variety of bio-molecular energy transducers, as well as certain other dynamic systems, for example, the Parrondo's Games.

  7. Gaseous modification of MCrAlY coatings

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes methods for modifying MCrAlY coatings by using gaseous carburization, gaseous nitriding or gaseous carbonitriding. The modified MCrAlY coatings are useful in thermal barrier coating systems, which may be used in gas turbine engines.

  8. Control of Subsurface Contaminant Migration by Vertical Engineered Barriers

    EPA Science Inventory

    This Fact Sheet is intended to provide remedial project managers (RPMs), on-scene coordinators (OSCs), contractors, and other remediation stakeholders with a basic overview of hazardous waste containment systems constructed to prevent or limit the migration of contamination in gr...

  9. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  10. Thermal barrier coatings issues in advanced land-based gas turbines

    NASA Technical Reports Server (NTRS)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  11. The past, present, and future of littoral transport processes along the Illinois coast of Lake Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzastowski, M.J.; Trask, C.B.

    1994-04-01

    The 101-km Illinois coast of Lake Michigan incorporates diverse settings, ranging from the most intensely engineered shoreline along the Great lakes to a natural shoreline along a well-developed beach-ridge plain. The estimated rate of littoral transport along the Illinois coast, prior to any coastal engineering, was approximately 80,000 cubic m/year. No obstructions interrupted the continuous net southerly transport to a drift terminus along the Indiana coast. Jetties built in the 1830s to defend the mouth of the Chicago River formed the first barriers to littoral transport, and substantial downdrift erosion resulted. Additional coastal structures that form both total and partialmore » barriers to littoral transport have segmented the original single littoral-transport cell into a series of 6 primary cells (bounded by total barriers) and 18 secondary cells (bounded by partial barriers). As a result, the supply of littoral sediment from the Illinois coast that once nourished the Indiana coast has been eliminated. Future management of sand resources along the Illinois coast should recognize and be compatible with the segmentation of the littoral-transport system into separate cells. Rather than viewing littoral-drift nourishment from the standpoint of the entire coastline, sand volumes within the cells should be conserved. Under this approach, sediment nourishment would be used to maintain sediment volumes within cells at some desired level; updrift backpassing of sand among subcells would recycle most littoral sediment within each cell. Artificial bypassing of the total barriers between cells in an attempt to reestablish the preengineered littoral-transport system is unrealistic.« less

  12. Integrated health systems.

    PubMed

    Shortell, Stephen M; McCurdy, Rodney K

    2010-01-01

    Before meaningful gains in improving the value of health care in the US can be achieved, the fragmented nature in which health care is financed and delivered must be addressed. One type of healthcare organization, the Integrated Delivery System (IDS), is poised to play a pivotal role in reform efforts. What are these systems? What is the current evidence regarding their performance? What are the current barriers to their establishment and how can these barriers be removed? This chapter addresses these important questions. Although there are many types of IDS' in the US healthcare landscape, the chapter begins by identifying the necessary healthcare components that encompass an IDS and discusses the levels of integration that are important to improving health care quality and value. Next, it explores the recent evidence regarding IDS performance which, while generally positive, is less than what it could be if there were greater focus on clinical integration. To highlight, the chapter discusses the efficacy of system engineering initiatives in two examples of large, fully integrated systems: Kaiser-Permanente and the Veterans Health Administration. The evidence here is strong that the impact of system engineering methods is enhanced through the integration of processes, goals and outcomes. Reforms necessary to encourage the development of IDS' include: 1) the development of payment mechanisms designed to increase greater inter-dependency of hospitals and physicians; 2) the modification or removal of several regulatory barriers to greater clinical integration; and 3) the establishment of a more robust data collection and reporting system to increase transparency and accountability. The chapter concludes with a framework for considering these reforms across strategic, structural, cultural, and technical dimensions.

  13. Parallax barrier engineering for image quality improvement in an autostereoscopic 3D display.

    PubMed

    Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu

    2015-05-18

    We present a image quality improvement in a parallax barrier (PB)-based multiview autostereoscopic 3D display system under a real-time tracking of positions of a viewer's eyes. The system presented exploits a parallax barrier engineered to offer significantly improved quality of three-dimensional images for a moving viewer without an eyewear under the dynamic eye tracking. The improved image quality includes enhanced uniformity of image brightness, reduced point crosstalk, and no pseudoscopic effects. We control the relative ratio between two parameters i.e., a pixel size and the aperture of a parallax barrier slit to improve uniformity of image brightness at a viewing zone. The eye tracking that monitors positions of a viewer's eyes enables pixel data control software to turn on only pixels for view images near the viewer's eyes (the other pixels turned off), thus reducing point crosstalk. The eye tracking combined software provides right images for the respective eyes, therefore producing no pseudoscopic effects at its zone boundaries. The viewing zone can be spanned over area larger than the central viewing zone offered by a conventional PB-based multiview autostereoscopic 3D display (no eye tracking). Our 3D display system also provides multiviews for motion parallax under eye tracking. More importantly, we demonstrate substantial reduction of point crosstalk of images at the viewing zone, its level being comparable to that of a commercialized eyewear-assisted 3D display system. The multiview autostereoscopic 3D display presented can greatly resolve the point crosstalk problem, which is one of the critical factors that make it difficult for previous technologies for a multiview autostereoscopic 3D display to replace an eyewear-assisted counterpart.

  14. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on various E/PO topics, and an E/PO proposal writing workshop. SCWG members have also worked to incorporate information about E/PO, including what it is, points of contact, and opportunities for participation, into ongoing training sessions at GSFC, such as New Employee Orientation, Road to Mission Success, and Project Scientist Training. In addition, SCWG members have met with GSFC's upper management to voice barriers and concerns raised by scientists and engineers. We will expand on the barriers, efforts to address them, and the results of those efforts.

  15. On the performance of capillary barriers as landfill cover

    NASA Astrophysics Data System (ADS)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  16. Full-participation of students with physical disabilities in science and engineering laboratories.

    PubMed

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  17. Neurophysiology and neural engineering: a review.

    PubMed

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  18. Understanding Barriers and Facilitators to the use of Clinical Information Systems for Intensive Care Units and Anesthesia Record Keeping: A Rapid Ethnography

    PubMed Central

    Saleem, Jason J.; Plew, William R.; Speir, Ross C.; Herout, Jennifer; Wilck, Nancy R.; Ryan, Dale Marie; Cullen, Theresa A.; Scott, Jean M.; Beene, Murielle S.; Phillips, Toni

    2017-01-01

    Objective This study evaluated the current use of commercial-off-the-shelf Clinical Information Systems (CIS) for intensive care units (ICU) and Anesthesia Record Keeping (ARK) for operating rooms and post-anesthesia care recovery settings at three Veterans Affairs Medical Centers (VAMCs). Clinicians and administrative staff use these applications at bedside workstations, in operating rooms, at nursing stations, in physician’s rooms, and in other various settings. The intention of a CIS or an ARK system is to facilitate creation of electronic records of data, assessments, and procedures from multiple medical devices. The US Department of Veterans Affairs (VA) Office of the Chief of Nursing Informatics sought to understand usage barriers and facilitators to optimize these systems in the future. Therefore, a human factors study was carried out to observe the CIS and ARK systems in use at three VAMCs in order to identify best practices and suggested improvements to currently implemented CIS and ARK systems. Methods We conducted a rapid ethnographic study of clinical end-users interacting with the CIS and ARK systems in the critical care and anesthesia care areas in each of three geographically distributed VAMCs. Two observers recorded interactions and/or interview responses from 88 CIS and ARK end-users. We coded and sorted into logical categories field notes from 69 shadowed participants. The team transcribed and combined data from key informant interviews with 19 additional participants with the observation data. We then integrated findings across observations into meaningful patterns and abstracted the data into themes, which translated directly to barriers to effective adoption and optimization of the CIS and ARK systems. Results Effective optimization of the CIS and ARK systems was impeded by: (1) integration issues with other software systems; (2) poor usability; (3) software challenges; (4) hardware challenges; (5) training concerns; (6) unclear roles and lack of coordination among stakeholders; and (7) insufficient technical support. Many of these barriers are multi-faceted and have associated sub-barriers, which are described in detail along with relevant quotes from participants. In addition, regionalized purchases of different CIS and ARK systems, as opposed to enterprise level purchases, contributed to some of the identified barriers. Facilitators to system use included (1) automation and (2) a dedicated facility-level CIS-ARK coordinator. Conclusions We identified barriers that explain some of the challenges with the optimization of the CIS and ARK commercial systems across the Veterans Health Administration (VHA). To help address these barriers, and evolve them into facilitators, we categorized report findings as (1) interface and system-level changes that vendors or VA healthcare systems can implement; (2) implementation factors under VA control and not under VA control; and (3) factors that may be used to inform future application purchases. We outline several recommendations for improved adoption of CIS and ARK systems and further recommend that human factors engineering and usability requirements become an integral part of VA health information technology (HIT) application procurement, customization, and implementation in order to help eliminate or mitigate some of the barriers of use identified in this study. Human factors engineering methods can be utilized to apply a user-centered approach to application requirements specification, application evaluation, system integration, and application implementation. PMID:25843931

  19. Understanding barriers and facilitators to the use of Clinical Information Systems for intensive care units and Anesthesia Record Keeping: A rapid ethnography.

    PubMed

    Saleem, Jason J; Plew, William R; Speir, Ross C; Herout, Jennifer; Wilck, Nancy R; Ryan, Dale Marie; Cullen, Theresa A; Scott, Jean M; Beene, Murielle S; Phillips, Toni

    2015-07-01

    This study evaluated the current use of commercial-off-the-shelf Clinical Information Systems (CIS) for intensive care units (ICUs) and Anesthesia Record Keeping (ARK) for operating rooms and post-anesthesia care recovery settings at three Veterans Affairs Medical Centers (VAMCs). Clinicians and administrative staff use these applications at bedside workstations, in operating rooms, at nursing stations, in physician's rooms, and in other various settings. The intention of a CIS or an ARK system is to facilitate creation of electronic records of data, assessments, and procedures from multiple medical devices. The US Department of Veterans Affairs (VA) Office of the Chief of Nursing Informatics sought to understand usage barriers and facilitators to optimize these systems in the future. Therefore, a human factors study was carried out to observe the CIS and ARK systems in use at three VAMCs in order to identify best practices and suggested improvements to currently implemented CIS and ARK systems. We conducted a rapid ethnographic study of clinical end-users interacting with the CIS and ARK systems in the critical care and anesthesia care areas in each of three geographically distributed VAMCs. Two observers recorded interactions and/or interview responses from 88 CIS and ARK end-users. We coded and sorted into logical categories field notes from 69 shadowed participants. The team transcribed and combined data from key informant interviews with 19 additional participants with the observation data. We then integrated findings across observations into meaningful patterns and abstracted the data into themes, which translated directly to barriers to effective adoption and optimization of the CIS and ARK systems. Effective optimization of the CIS and ARK systems was impeded by: (1) integration issues with other software systems; (2) poor usability; (3) software challenges; (4) hardware challenges; (5) training concerns; (6) unclear roles and lack of coordination among stakeholders; and (7) insufficient technical support. Many of these barriers are multi-faceted and have associated sub-barriers, which are described in detail along with relevant quotes from participants. In addition, regionalized purchases of different CIS and ARK systems, as opposed to enterprise level purchases, contributed to some of the identified barriers. Facilitators to system use included (1) automation and (2) a dedicated facility-level CIS-ARK Coordinator. We identified barriers that explain some of the challenges with the optimization of the CIS and ARK commercial systems across the Veterans Health Administration (VHA). To help address these barriers, and evolve them into facilitators, we categorized report findings as (1) interface and system-level changes that vendors or VA healthcare systems can implement; (2) implementation factors under VA control and not under VA control; and (3) factors that may be used to inform future application purchases. We outline several recommendations for improved adoption of CIS and ARK systems and further recommend that human factors engineering and usability requirements become an integral part of VA health information technology (HIT) application procurement, customization, and implementation in order to help eliminate or mitigate some of the barriers of use identified in this study. Human factors engineering methods can be utilized to apply a user-centered approach to application requirements specification, application evaluation, system integration, and application implementation. Published by Elsevier Ireland Ltd.

  20. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    NASA Astrophysics Data System (ADS)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot-section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  1. MEMS Micropropulsion Activities at JPL

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Chakraborty, Indrani; Vargo, Stephen; Bame, David; Marrese, Colleen; Tang, William C.

    1999-01-01

    A status of MEMS-based micropropulsion activities conducted at JPL will be given. These activities include work conducted on the so called Vaporizing Liquid Micro-Thruster (VLM) which recently underwent proof-of-concept testing, demonstrating the ability to vaporize water propellant at 2 W and 2 V. Micro-ion engine technologies, such m field emitter arrays and micro-grids are being studied. Focus in the field emitter area is on arrays able to survive in thruster plumes and micro-ion engine plasmas to serve as neutralizers aW engine cathodes. Integrated, batch-fabricated Ion repeller grid structures are being studied as well as different emitter tip materials are being investigated to meet these goals. A micro-isolation valve is being studied to isolate microspacecraft feed system during long interplanetary cruises, avoiding leakage and prolonging lifetime and reliability of such systems. This concept relies on the melting of a thin silicon barrier. Burst pressure values as high as 2,900 psig were obtained for these valves and power requirements to melt barriers ranging between 10 - 50 microns in thickness, as determined through thermal finite element calculations, varied between 10 - 30 W to be applied over a duration of merely 0.5 ms.

  2. Bioinspired Infrared Sensing Materials and Systems.

    PubMed

    Shen, Qingchen; Luo, Zhen; Ma, Shuai; Tao, Peng; Song, Chengyi; Wu, Jianbo; Shang, Wen; Deng, Tao

    2018-05-11

    Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  4. Thermal Barrier Coatings (les Revetements anti-mur de chaleur)

    DTIC Science & Technology

    1998-04-01

    blades and vanes of advanced aircraft engines », 1992, Yokohama International Gas Turbine Congress... turbine blade and nozzle guide vane aerofoils for the aerogas turbine engine . Figure 9 Scanning electron micrograph of the surface of a plasma...2. Liebert C. H. et al, "Durability of zirconia thermal barrier coatings on air cooled turbine blades in cyclic jet engine operation", NASA

  5. Identifying the Barriers upon Development of Virtual Education in Engineering Majors (Case Study: The University of Isfahan)

    ERIC Educational Resources Information Center

    Nikoonezhad, Sepideh; Nili, Mohammadreza; Esfahani, Ahmadreza Nasr

    2015-01-01

    The present study aims at investigating barriers upon development of virtual education in engineering majors at the University of Isfahan. The study has applied a mixed method (qualitative and quantitative) and its population consists all of the department members of the technical and engineering majors at the University of Isfahan including 125…

  6. 10 CFR 963.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the sealing of shafts and ramps, except those openings that may be designed for ventilation or... repository, as defined by this section, at the Yucca Mountain site. Design means a description of the... includes the engineered barrier system. Design bases means that information that identifies the specific...

  7. 10 CFR 963.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the sealing of shafts and ramps, except those openings that may be designed for ventilation or... repository, as defined by this section, at the Yucca Mountain site. Design means a description of the... includes the engineered barrier system. Design bases means that information that identifies the specific...

  8. 10 CFR 963.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the sealing of shafts and ramps, except those openings that may be designed for ventilation or... repository, as defined by this section, at the Yucca Mountain site. Design means a description of the... includes the engineered barrier system. Design bases means that information that identifies the specific...

  9. 10 CFR 963.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the sealing of shafts and ramps, except those openings that may be designed for ventilation or... repository, as defined by this section, at the Yucca Mountain site. Design means a description of the... includes the engineered barrier system. Design bases means that information that identifies the specific...

  10. 10 CFR 963.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the sealing of shafts and ramps, except those openings that may be designed for ventilation or... repository, as defined by this section, at the Yucca Mountain site. Design means a description of the... includes the engineered barrier system. Design bases means that information that identifies the specific...

  11. Emittance and absorptance of the National Aeronautics and Space Administration ceramic thermal barrier coating. [for gas turbine engine components

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1978-01-01

    The spectral emittance of a NASA developed zirconia ceramic thermal barrier coating system, consisting of a metal substrate, a layer of Ni-Cr-Al-Y bond material and a layer of yttria-stabilized zirconia ceramic material, is analyzed. The emittance, needed for evaluation of radiant heat loads on cooled coated gas turbine components, was measured over a range of temperatures that would be typical of its use on such components. Emittance data were obtained with a spectrometer, a reflectometer and a radiation pyrometer at a single bond coating thickness of 0.010 cm and at a ceramic coating thickness of 0-0.076 cm. The data were transformed into the hemispherical total emittance and were correlated to the ceramic coating thickness and temperature using multiple-regression curve-fitting techniques. The system was found to be highly reflective, and, consequently, capable of significantly reducing radiation heat loads on cooled gas turbine engine components.

  12. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less

  13. Application of CFD codes to the design and development of propulsion systems

    NASA Technical Reports Server (NTRS)

    Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.

    1987-01-01

    The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.

  14. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance assessment; (vi) Public comments requesting specific engineered barriers; (vii) The increased or..., after consideration of one or more of the factors in paragraph (c)(1) of this section, the Department... without evaluating the remaining factors in paragraph (c)(1) of this section, then any compliance...

  15. Re-engineering therapeutic antibodies for Alzheimer's disease as blood-brain barrier penetrating bi-specific antibodies.

    PubMed

    Pardridge, William M

    2016-12-01

    Therapeutic antibodies are large molecule drugs that do not cross the blood-brain barrier (BBB). Therefore, drug development of therapeutic antibodies for Alzheimer's disease (AD) requires that these molecules be re-engineered to enable BBB delivery. This is possible by joining the therapeutic antibody with a transporter antibody, resulting in the engineering of a BBB-penetrating bispecific antibody (BSA). Areas covered: The manuscript covers transporter antibodies that cross the BBB via receptor-mediated transport systems on the BBB, such as the insulin receptor or transferrin receptor. Furthermore, it highlights therapeutic antibodies for AD that target the Abeta amyloid peptide, beta secretase-1, or the metabotropic glutamate receptor-1. BSAs are comprised of both the transporter antibody and the therapeutic antibody, as well as IgG constant region, which can induce immune tolerance or trigger transport via Fc receptors. Expert opinion: Multiple types of BSA molecular designs have been used to engineer BBB-penetrating BSAs, which differ in valency and spatial orientation of the transporter and therapeutic domains of the BSA. The plasma pharmacokinetics and dosing regimens of BSAs differ from that of conventional therapeutic antibodies. BBB-penetrating BSAs may be engineered in the future as new treatments of AD, as well as other neural disorders.

  16. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  17. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  18. SSME Electrical Harness and Cable Development and Evolution

    NASA Technical Reports Server (NTRS)

    Abrams, Russ; Heflin, Johnny; Burns, Bob; Camper, Scott J.; Hill, Arthur J.

    2010-01-01

    The Space Shuttle Main Engine (SSME) electrical harness and cable system consists of the various interconnecting devices necessary for operation of complex rocket engine functions. Thirty seven harnesses incorporate unique connectors, backshell adapters, conductors, insulation, shielding, and physical barriers for a long maintenance-free life while providing the means to satisfy performance requirements and to mitigate adverse environmental influences. The objective of this paper is to provide a description of the SSME electrical harness and cable designs as well as the development history and lessons learned.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klipstein, David H.; Robinson, Sharon

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  20. Final Environmental Assessment for the Proposed Naval Ordnance Test Unit Engineering Services Facility at Cape Canaveral Air Force Station

    DTIC Science & Technology

    2006-08-01

    and on the west by the Banana River, which is an estuarine system. Figure 1-1 shows CCAFS and the surrounding area. CCAFS encompasses approximately...barrier island on which it is located characterizes the visual environment in the vicinity of CCAFS. The Indian and Banana rivers separate the...large expanses of inland waters in the Indian, Banana , and St. John’s rivers and large ENVIRONMENTAL ASSESSMENT-ENGINEERING SERVICES FACILITY AT

  1. Systems Biocatalysis: Development and engineering of cell-free "artificial metabolisms" for preparative multi-enzymatic synthesis.

    PubMed

    Fessner, Wolf-Dieter

    2015-12-25

    Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products ("artificial metabolisms") by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    NASA Astrophysics Data System (ADS)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  3. Hydrologic behavior of two engineered barriers following extreme wetting.

    PubMed

    Porro, I

    2001-01-01

    Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage-evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary-biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared with pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared with thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.

  4. Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.

    2008-09-29

    Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondarymore » objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected pre- and post-burn to determine changes in the gravel content of the surface layer so as to quantify inflationary or deflationary responses to fire and to reveal the ability of the surface to resist post-fire erosive stresses. Measures of bulk density, water repellency, water retention, and hydraulic conductivity will be used to characterize changes in infiltration rates and water storage capacity following the fire. Samples will also be analyzed to quantify geochemical changes including changes in soil pH, cation exchange capacity, specific surface area, and the concentration of macro nutrients (e.g. N, P, K) and other elements such as Na, Mg, Ca, that are critical to the post-fire recovery revegetation. Soil CO2 emissions will be measured monthly for one year following the burn to document post-fire stimulation of carbon turnover and soil biogenic emissions. Surface and subsurface temperature measurements at and near monitoring installations will be used to document fire effects on electronic equipment. The results of this study will be used to bridge the gaps in knowledge on the effects of fire on engineered ecosystems (e.g. surface barriers), particularly the hydrologic and biotic characteristics that govern the water and energy balance. These results will also support the development of practical fire management techniques for barriers that are compatible with wildfire suppression strategies. Furthermore, lessons learned will be use to develop installation strategies needed to protect electronic monitoring equipment from the intense heat of fire and the potential damaging effects of smoke and fire extinguishing agents. Such information is needed to better understand long-term barrier performance under extreme conditions, especially if site maintenance and operational funding is lost for activities such as barrier revegetation.« less

  5. Laboratory Barriers in Science, Engineering, and Mathematics for Students with Disabilities.

    ERIC Educational Resources Information Center

    Heidari, Farzin

    This report addresses the barriers college students with disabilities face in the laboratory setting. In engineering, mathematics, and science education most courses require laboratory work which may pose challenges to those with disabilities. Instructors should be aware of the individual needs of students with disabilities and make necessary…

  6. Employees' Perceptions of Barriers to Participation in Training and Development in Small Engineering Businesses

    ERIC Educational Resources Information Center

    Susomrith, Pattanee; Coetzer, Alan

    2015-01-01

    Purpose: This paper aims to investigate barriers to employee participation in voluntary formal training and development opportunities from the perspective of employees in small engineering businesses. Design/methodology/approach: An exploratory qualitative methodology involving data collection via site visits and in-depth semi-structured…

  7. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs.

    PubMed

    Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A

    2015-01-01

    A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.

  8. `Not hard to sway': a case study of student engagement in two large engineering classes

    NASA Astrophysics Data System (ADS)

    Shekhar, Prateek; Borrego, Maura

    2018-07-01

    Although engineering education research has empirically validated the effectiveness of active learning in improving student learning over traditional lecture-based methods, the adoption of active learning in classrooms has been slow. One of the greatest reported barriers is student resistance towards engagement in active learning exercises. This paper argues that the level of student engagement in active learning classrooms is an interplay of social and physical classroom characteristics. Using classroom observations and instructor interviews, this study describes the influence of the interaction of student response systems and classroom layout on student engagement in two large active-learning-based engineering classrooms. The findings suggest that the use of different student response systems in combination with cluster-style seating arrangements can increase student engagement in large classrooms.

  9. Understanding the Current State of Infection Prevention to Prevent Clostridium difficile Infection: A Human Factors and Systems Engineering Approach

    PubMed Central

    Yanke, Eric; Zellmer, Caroline; Van Hoof, Sarah; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2015-01-01

    Background Achieving and sustaining high levels of healthcare worker (HCW) compliance with contact isolation precautions is challenging. The aim of this study was to determine HCW work system barriers to, and facilitators of, adherence to contact isolation for patients with suspected or confirmed Clostridium difficile infection (CDI) using a human factors and systems engineering approach. Methods Prospective cohort study from September 2013 to November 2013 at a large academic medical center (hospital A) and an affiliated Veterans Administration (VA) hospital (hospital B). A human factors engineering (HFE) model for patient safety – the Systems Engineering Initiative for Patient Safety (SEIPS) model – was used to guide work system analysis and direct observation data collection. 288 observations were conducted. HCWs and visitors were assessed for compliance with all components of contact isolation precautions (hand hygiene, gowning, and gloving) before and after patient contact. Time required to complete contact isolation precautions was measured and adequacy of contact isolation supplies was assessed. Results Full compliance with contact isolation precautions was low at both hospitals: hospital A, 7%; hospital B, 22%. Lack of appropriate hand hygiene prior to room entry (Compliance: hospital A, 18%; hospital B, 29%) was the most common reason for lack of full compliance. More time was required for full compliance as compared to compliance with no components of contact isolation precautions before patient room entry, inside patient room, and after patient room exit (59.9 sec vs. 3.2 sec; P < .001; 507.3 sec vs. 149.7 sec; P = .006; 15.2 sec vs. 1.3 sec; P < .001). Compliance was lower when contact isolation supplies were inadequate (4% vs. 16%; P = .005). Conclusions Adherence to contact isolation precautions for CDI is a complex, time-consuming process. HFE analysis indicates multiple work system components serve as barriers and facilitators to full compliance with contact isolation precautions and should be addressed further to prevent CDI. PMID:25728149

  10. Understanding the current state of infection prevention to prevent Clostridium difficile infection: a human factors and systems engineering approach.

    PubMed

    Yanke, Eric; Zellmer, Caroline; Van Hoof, Sarah; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2015-03-01

    Achieving and sustaining high levels of health care worker (HCW) compliance with contact isolation precautions is challenging. The aim of this study was to determine HCW work system barriers to and facilitators of adherence to contact isolation for patients with suspected or confirmed Clostridium difficile infection (CDI) using a human factors and systems engineering approach. This prospective cohort study took place between September 2013 and November 2013 at a large academic medical center (hospital A) and an affiliated Veterans Administration hospital (hospital B). A human factors engineering (HFE) model for patient safety, the Systems Engineering Initiative for Patient Safety model, was used to guide work system analysis and direct observation data collection. There were 288 observations conducted. HCWs and visitors were assessed for compliance with all components of contact isolation precautions (hand hygiene, gowning, and gloving) before and after patient contact. Time required to complete contact isolation precautions was measured, and adequacy of contact isolation supplies was assessed. Full compliance with contact isolation precautions was low at both hospitals A (7%) and B (22%). Lack of appropriate hand hygiene prior to room entry (compliance for hospital A: 18%; compliance for hospital B: 29%) was the most common reason for lack of full compliance. More time was required for full compliance compared with compliance with no components of contact isolation precautions before patient room entry, inside patient room, and after patient room exit (59.9 vs 3.2 seconds, P < .001; 507.3 vs 149.7 seconds, P = .006; 15.2 vs 1.3 seconds, P < .001, respectively). Compliance was lower when contact isolation supplies were inadequate (4% vs 16%, P = .005). Adherence to contact isolation precautions for CDI is a complex, time-consuming process. HFE analysis indicates that multiple work system components serve as barriers and facilitators to full compliance with contact isolation precautions and should be addressed further to prevent CDI. Published by Elsevier Inc.

  11. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt.% Y2O3 thermal barrier coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high power CO2 laser. Experiments showed that the combined LCF/HCF tests induced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue damages at crack wake surfaces, due to such phenomena as asperity/debris contact induced cracking and splat pull-out bending during cycling, were observed especially for the combined LCF/HCF tests. It is found that the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. The failure associated with HCF process, however, is mainly associated with a surface wedging mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative importance of LCF and HCF in crack propagation are also discussed based on the experimental evidence.

  12. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Thomas; Scarcelli, Riccardo; Zhang, Anqi

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  13. Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering

    ERIC Educational Resources Information Center

    National Academies Press, 2007

    2007-01-01

    The United States economy relies on the productivity, entrepreneurship, and creativity of its people. To maintain its scientific and engineering leadership amid increasing economic and educational globalization, the United States must aggressively pursue the innovative capacity of all its people--women and men. However, women face barriers to…

  14. How Does Service Learning Increase and Sustain Interest in Engineering Education for Underrepresented Pre-Engineering College Students?

    ERIC Educational Resources Information Center

    Bosman, Lisa; Chelberg, Kelli; Winn, Ryan

    2017-01-01

    Many barriers exist for American Indian students pursuing STEM degree programs. However, federally recognized Tribal Colleges and Universities (TCUs) are uniquely suited to overcome these barriers because of their shared mission to provide 21st Century educational opportunities for American Indian students. Qualitative and quantitative findings…

  15. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  16. Barriers to the clinical translation of orthopedic tissue engineering.

    PubMed

    Evans, Christopher H

    2011-12-01

    Tissue engineering and regenerative medicine have been the subject of increasingly intensive research for over 20 years, and there is concern in some quarters over the lack of clinically useful products despite the large sums of money invested. This review provides one perspective on orthopedic applications from a biologist working in academia. It is suggested that the delay in clinical application is not atypical of new, biologically based technologies. Some barriers to progress are acknowledged and discussed, but it is also noted that preclinical studies have identified several promising types of cells, scaffolds, and morphogenetic signals, which, although not optimal, are worth advancing toward human trials to establish a bridgehead in the clinic. Although this transitional technology will be replaced by more sophisticated, subsequent systems, it will perform valuable pioneering functions and facilitate the clinical development of the field. Some strategies for achieving this are suggested. © Mary Ann Liebert, Inc.

  17. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    NASA Astrophysics Data System (ADS)

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  18. Thermochemistry of CaO-MgO-Al2O3-SiO2 (CMAS) and Advanced Thermal and Environmental Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo C. C.; Zhu, Dongming

    2016-01-01

    CaO-MgO-Al2O3-SiO2 (CMAS) oxides are constituents in a broad number of materials and minerals which have recently inferred to discussions in materials science, planetary science, geochemistry and cosmochemistry communities. In materials science, there is increasing interest in the degradation studies of thermal (TBC) and environmental (EBC) barrier coatings of gas turbines by molten CMAS. These coatings have been explored to be applied on silicon-based ceramics and composites which are lighter and more temperature capable hot-section materials of gas turbines than the current Ni-based superalloys. The degradation of the coatings occurs when CMAS minerals carried by the intake air into gas turbines, e.g. in aircraft engines, reacts at high temperatures (1000C) with the coating materials. This causes premature failure of the static and rotating components of the turbine engines. We discuss some preliminary results of the reactions between CMAS and Rare-Earth (RE Y, Yb and Gd) oxide stabilized ZrO2 systems, and stability of the resulting oxides and silicates.

  19. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery.

    PubMed

    Parodi, Alessandro; Molinaro, Roberto; Sushnitha, Manuela; Evangelopoulos, Michael; Martinez, Jonathan O; Arrighetti, Noemi; Corbo, Claudia; Tasciotti, Ennio

    2017-12-01

    The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles. Copyright © 2017. Published by Elsevier Ltd.

  20. Engineered Sulfur‐Resistant Catalyst System with an Assisted Regeneration Strategy for Lean‐Burn Methane Combustion

    PubMed Central

    Kallinen, Kauko; Maunula, Teuvo; Suvanto, Mika

    2018-01-01

    Abstract Catalytic combustion of methane, the main component of natural gas, is a challenge under lean‐burn conditions and at low temperatures owing to sulfur poisoning of the Pd‐rich catalyst. This paper introduces a more sulfur‐resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production. PMID:29780434

  1. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Swami Nathan

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less

  2. Evaluation of Thermal Barrier and PS-200 Self-Lubricating Coatings in an Air-Cooled Rotary Engine

    NASA Technical Reports Server (NTRS)

    Moller, Paul S.

    1995-01-01

    This project provides an evaluation of the feasibility and desirability of applying a thermal barrier coating overlaid with a wear coating on the internal surfaces of the combustion area of rotary engines. Many experiments were conducted with different combinations of coatings applied to engine components of aluminum, iron and titanium, and the engines were run on a well-instrumented test stand. Significant improvements in specific fuel consumption were achieved and the wear coating, PS-200, which was invented at NASA's Lewis Research Center, held up well under severe test conditions.

  3. Engine technology challenges for a 21st century high speed civil transport

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    1991-01-01

    Recent NASA funded studies by Boeing and Douglas suggest an opportunity exists for a 21st Century High Speed Civil Transport (HSCT) to become part of the international air transportation system. However, before this opportunity for high speed travel can be realized, certain environmental and and economic barrier issues must be overcome. These challenges are outlined. Research activities which NASA has planned to address these barrier issues and to provide a technology base to allow U.S. manufacturers to make an informed go/no go decision on developing the HSCT are discussed.

  4. 2000 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2001-01-01

    The 2000 NASA Seal/Secondary Air System Workshop covered four main areas: (1) overviews of NASA-sponsored Ultra-Efficient Engine Technology (UEET) and Access to Space Programs, with emphasis on program goals and seal needs; (2) review of turbine engine seal issues from the perspective of end users such as United Airlines; (3) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (4) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future engine system efficiency and emission goals. GE, Pratt & Whitney, and Honeywell presented advanced seal development work being performed within their organizations. The NASA-funded GE/Stein Seal team has successfully demonstrated a large (3-ft. diam) aspirating seal that can withstand all anticipated pressures, speeds, and rotor runouts anticipated for a GE90 L.P. turbine balance piston location. GE/Stein Seal are fabricating a full-scale seal to be tested in a GE-90 ground test engine in early 2002. Pratt & Whitney and Stein Seal are investigating carbon seals to accommodate large radial movements anticipated in future geared-fan gearbox locations. Honeywell presented a finger seal design being considered for a high-temperature static combustor location incorporating ceramic finger elements. Successful demonstration of the braided carbon rope thermal barriers to extreme temperatures (5500 F) for short durations provide a new form of very high temperature thermal barrier for future Shuttle solid rocket motor nozzle joints. The X-37, X-38, and future highly reusable launch vehicles pose challenging control surface seal demands that require new seal concepts made from emerging high temperature ceramics and other materials.

  5. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay

    NASA Astrophysics Data System (ADS)

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1 Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t = 104 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1 Ma are approximately equal to 1 and 3.3 cm thick, respectively. The hyper-alkaline front (pH > 8.5) spreads 2.5 cm into the clay formation after 1 Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1 Ma.

  6. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay.

    PubMed

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t=10 4 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1Ma are approximately equal to 1 and 3.3cm thick, respectively. The hyper-alkaline front (pH>8.5) spreads 2.5cm into the clay formation after 1Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1Ma. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems

    NASA Astrophysics Data System (ADS)

    Curry, Nicholas; Markocsan, Nicolaie; Östergren, Lars; Li, Xin-Hai; Dorfman, Mitch

    2013-08-01

    The aim of this study was the further development of dysprosia-stabilized zirconia coatings for gas turbine applications. The target for these coatings was a longer lifetime and higher insulating performance compared to today's industrial standard thermal barrier coating. Two morphologies of ceramic top coat were studied: one using a dual-layer system and the second using a polymer to generate porosity. Evaluations were carried out using a laser flash technique to measure thermal properties. Lifetime testing was conducted using thermo-cyclic fatigue testing. Microstructure was assessed with SEM and Image analysis was used to characterize porosity content. The results show that coatings with an engineered microstructure give performance twice that of the present reference coating.

  8. Case Study Analysis of the Effect of Contextual Supports and Barriers on African American Students' Persistence in Engineering

    ERIC Educational Resources Information Center

    Montgomery, Lisa

    2009-01-01

    Using case study methodology (Stake, 2006), this research examined the environmental influences, or contextual supports and barriers, that were most influential in contributing to African American students' persistence in an engineering major. Social cognitive career theory provides the framework for understanding the role of contextual supports…

  9. Race and Gender Effects on Persistence, Barriers to Engineering and Life Goals by Middle School Children.

    ERIC Educational Resources Information Center

    Wood, Rose Morgan; Schaer, Barbara B.

    The under-representation of women and African Americans in engineering spurred the research documented in this study. This document reports the reults of a study investigating middle school (in a southeastern rural community) children's attitudes toward persistence, life goals and sex-stereotypes, as potential barriers to their pursuit of…

  10. Oxide Protective Coats for Ir/Re Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur; Tuffias, Robert H.

    2003-01-01

    An improved material system has been developed for rocket engine combustion chambers for burning oxygen/ hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.

  11. Effective Usability Engineering in Healthcare: A Vision of Usable and Safer Healthcare IT.

    PubMed

    Kushniruk, Andre; Senathirajah, Yalini; Borycki, Elizabeth

    2017-01-01

    Persistent problems with healthcare IT that is unusable and unsafe have been reported worldwide. In this paper we present our vision for deploying usability engineering in healthcare in a more substantive way in order to improve the current situation. The argument will be made that stronger and more substantial efforts need to be made to bring multiple usability engineering methods to bear on points in both system design and deployment (and not just as a one-time effort restricted to software product development). In addition, improved processes for ensuring the usability of commercial vendor-based systems being implemented in healthcare organizations need to be addressed. A discussion will also be provided on challenges and barriers that will need to be overcome to ensure that the heatlhcare IT that is released is both usable and safe.

  12. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  13. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    NASA Technical Reports Server (NTRS)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  14. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  15. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).

  16. Coatings Extend Life of Engines and Infrastructure

    NASA Technical Reports Server (NTRS)

    2010-01-01

    MesoCoat Inc., of Euclid, Ohio, collaborated with Glenn Research Center to provide thermal barrier coating (TBC) technology, developed by Glenn researcher Dongming Zhu, to enhance the lifespan and performance of engines in U.S. Air Force legacy aircraft. The TBC reduces thermal stresses on engine parts, increasing component life by 50 percent. MesoCoat is also producing metal cladding technology that may soon provide similar life-lengthening benefits for the Nation's infrastructure. Through a Space Act Agreement with Glenn, the company employs the Center's high-density infrared arc lamp system to bond its cladding materials for demonstration prototypes; the coating technology can prevent corrosion on metal beams, pipes, and rebar for up to 100 years.

  17. Probability of Flood-Induced Overtopping of Barriers in Watershed-Reservoir-Dam Systems

    DTIC Science & Technology

    2011-09-01

    developed empirical charts to estimate the historical 6-h, 10 mi2 PMP attributable to a uniform storm on such a point within the basin area (USBR 1976, 1977...ENGINEERING © ASCE / SEPTEMBER 2011 / 11 Queries 1. Please provide 10 mi2 in SI units. 2. The double parentheses in the spillway outflow have been

  18. West Europe Report, Science and Technology, No. 136.

    DTIC Science & Technology

    1983-02-01

    their barriers and work with the large enterprises (Pechiney, Sanofi , Rhone- Poulenc) or the small and medium-size industrial enterprises on specific...traditional products of the agro-nutritional industries, —production of amino acids, antibiotics, vitamins, vaccines , hormones, en- zymes and...systems engineering; 4. Production of bioreagents for analysis, vaccines , monoclonal antibodies, and new cell-derived products for therapeutic

  19. Thermal barrier coatings for aircraft engines: History and directions

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1995-01-01

    Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined. The discussion focuses on those advances that led first to their use for component life extension and more recently as an integral part of airfoil design. It is noted that development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlY TBC's is emphasized in addition to observations fundamentally related to their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA is also noted.

  20. Education in Engineering and Ecohydrology for Fish Passage

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D.; Towler, B.

    2011-12-01

    Historical fish migration routes linking feeding and spawning habitats have been significantly impacted by culverts, dikes, dams, and other barriers on waterways throughout the world. For example an estimated 2.5 million barriers to fish migration exist in the United States. In recent years, there has been an increased focus on removing or mitigating these barriers as an efficient mechanism to restore habitat. Effective design and implementation of these measures requires specialists with skills at the intersection of engineering, hydrology and biology. Recognizing the need for a cadre of engineers with the additional skills in hydraulics and ecohydrology needed to analyze and design solutions for enhancing fish passage in streams and rivers, the University of Massachusetts Amherst now offers a Master of Science in Civil Engineering (MSCE) degree with a specialization in Fish Passage Engineering. The curriculum is offered in conjunction with the U.S. Fish and Wildlife Service and is informed by the recommendations of the Curriculum Working Group of the Bioengineering Section of the American Fisheries Society. The curriculum is offered through the Department of Civil and Environmental Engineering. This presentation will describe the motivation for the degree, the content of coursework and the challenges inherent in developing an interdisciplinary education program spanning biogeosciences and engineering.

  1. Ancient engineering geology projects in China; A canal system in Ganzu province and trenches along the Great Wall in Ningxia Hui Autonomous Region

    USGS Publications Warehouse

    Wallace, R.E.; Bucknam, R.C.; Hanks, T.C.

    1994-01-01

    Two major construction projects of ancient times in China involved what today would be considered engineering geology. We describe an ancient canal system in Gaotai County, Gansu province that was possibly begun in the Han dynasty (206 BC-220 AD). The canal system heads at the Dasha River and extends northwestward for about 55 km to the City of Camels and Xusanwan village. Four parallel canals are present at the local site we examined. The canals were likely built primarily to transport water but may also have served as defensive military barriers. A second project involves trenches and berms along the north side of the Great Wall, clearly part of the Great Wall defensive system. This site is in Ningxia Autonomous Region near the town of Shizuishan. ?? 1994.

  2. Understanding the THMC evolution of bentonite barrier — modeling an in situ test for bentonite backfilled engineered barrier system

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Xu, H.; Rutqvist, J.; Birkholzer, J. T.

    2016-12-01

    The most common buffer material for engineered barrier system (EBS) is compacted bentonite, which features low permeability and high retardation of radionuclide transport. The safety functions of EBS bentonite include limiting transport in the near field; damping the shear movement of the host rock; preventing the sinking of canisters, limiting pressure on the canister and rock, and reducing microbial activity. To assess whether EBS bentonite can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. The FEBEX (Full-scale Engineered Barrier EXperiment) in situ test was dismantled after 18 years' heating and hydration. The comprehensive THMC data obtained in the test provide a unique opportunity to validate coupled THMC models and deepen our understanding of the THMC evolution in bentonite. In this presentation, coupled THMC models were developed for the in situ test. Water content data obtained after dismantling and relative humidity data measured real time showed that the hydration of bentonite is slower than predicted by the typical Darcy flow model. Including Non-Darcian flow into the model however leads a significant underestimation of the relative humidity data. The reason could be that the calibration of relative permeability (and retention curve) already encompasses the nonlinear relationship between gradient and flux for bentonite, which would obviate the consideration of Non-Darcian flow in the model. THMC models that take into account the porosity and permeability changes due to mechanical processes match reasonably well all the THM data. However, they did not provide a desirable fit of the measured Cl concentration profile, further calibration of porosity/permeability changes over the course of hydration and swelling and considering thermal osmosis eventually lead to a model that sufficiently explain all the THMC data. Model results also showed that transport processes, i.e. advection and diffusion, control the concentration profile of conservative species (Cl for example) and play a major role in shaping the profile of most reactive species except pH and bicarbonate.

  3. Synthetic Biology in Cell and Organ Transplantation.

    PubMed

    Stevens, Sean

    2017-02-01

    The transplantation of cells and organs has an extensive history, with blood transfusion and skin grafts described as some of the earliest medical interventions. The speed and efficiency of the human immune system evolved to rapidly recognize and remove pathogens; the human immune system also serves as a barrier against the transplant of cells and organs from even highly related donors. Although this shows the remarkable effectiveness of the immune system, the engineering of cells and organs that will survive in a host patient over the long term remains a steep challenge. Progress in the understanding of host immune responses to donor cells and organs, combined with the rapid advancement in synthetic biology applications, allows the rational engineering of more effective solutions for transplantation. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    2014-06-01

    One of the important applications of yttria-stabilized zirconia (YSZ) is as a thermal barrier coating for gas turbine engines. While YSZ performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite-derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability, and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  5. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.

    PubMed

    Mattern, Kai; Beißner, Nicole; Reichl, Stephan; Dietzel, Andreas

    2018-05-01

    Conventional safety and efficacy test models, such as animal experiments or static in vitro cell culture models, can often not reliably predict the most promising drug candidates. Therefore, a novel microfluidic cell culture platform, called Dynamic Micro Tissue Engineering System (DynaMiTES), was designed to allow online analysis of drugs permeating through barrier forming tissues under dynamic conditions combined with monitoring of the transepithelial electrical resistance (TEER) by electrodes optimized for homogeneous current distribution. A variety of pre-cultivated cell culture inserts can be integrated and exposed to well controlled dynamic micro flow conditions, resulting in a tightly regulated exposure of the cells to tested drugs, drug formulations and shear forces. With these qualities, the new system can provide more relevant information compared to static measurements. As a first in vitro model, a three-dimensional hemicornea construct consisting of human keratocytes (HCK-Ca) and epithelial cells (HCE-T) was successfully tested in the DynaMiTES. Thereby, we were able to demonstrate the functionality and cell compatibility of this new organ on chip test platform. The modular design of the DynaMiTES allows fast adaptation suitable for the investigation of drug permeation through other important cellular barriers. Copyright © 2017. Published by Elsevier B.V.

  6. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.« less

  7. Delay time and Hartman effect in strain engineered graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi, E-mail: xchen@shu.edu.cn; Deng, Zhi-Yong; Ban, Yue, E-mail: yban@shu.edu.cn

    2014-05-07

    Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.

  8. Integrating ergonomics into production system development--the Volvo Powertrain case.

    PubMed

    Neumann, W Patrick; Ekman, Marianne; Winkel, Jørgen

    2009-05-01

    Understanding the barriers and assists to integrating ergonomics into production system design remains a research issue. An action research case study at Volvo Powertrain/Sweden was conducted. Researchers worked collaboratively with the firm in efforts to improve the company's ability to handle ergonomics in their daily work of improving and developing production systems. Researchers observed and reflected collectively on the change process using field notes and recordings to support their observations. Observed integration barriers included both individual level issues like life events, and organisational aspects such as communication barriers between groups or assignment of tasks to people not involved in decision-making. Observed assists included the 'political reflective navigation' (c.f. Broberg, O., Hermund, I., 2004. The OHS consultant as a 'political reflective navigator' in technological change processes. International Journal of Industrial Ergonomics 33 (4), 315-326) by the project owner to find new ways to overcome barriers and anchor ergonomics into the organisation. While special 'ergonomics' groups did not survive long, progress was observed in including ergonomics in regular design groups. A cross-functional workshop that fostered discussion across organisational boundaries helped shift focus from retrofitting systems to future production systems and improve engagement of engineering teams. Progress was marked by both success and setbacks and full integration appears to require more than 2 years time. It is concluded that support by senior managers should include succession planning for personnel that are key to the change effort.

  9. Silicon Nitride Plates for Turbine Blade Application: FEA and NDE Assessment

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Engine manufacturers are continually attempting to improve the performance and the overall efficiency of internal combustion engines. The thermal efficiency is typically improved by raising the operating temperature of essential engine components in the combustion area. This reduces the heat loss to a cooling system and allows a greater portion of the heat to be used for propulsion. Further improvements can be achieved by diverting part of the air from the compressor, which would have been used in the combustor for combustion purposes, into the turbine components. Such a process is called active cooling. Increasing the operating temperature, decreasing the cooling air, or both can improve the efficiency of the engine. Furthermore, lightweight, strong, tough hightemperature materials are required to complement efficiency improvement for nextgeneration gas turbine engines that can operate with minimum cooling. Because of their low-density, high-temperature strength, and thermal conductivity, ceramics are being investigated as potential materials for replacing ordinary metals that are currently used for engine hot section components. Ceramic structures can withstand higher operating temperatures and other harsh environmental factors. In addition, their low densities relative to metals helps condense component mass (ref. 1). The objectives of this program at the NASA Glenn Research Center are to develop manufacturing technology, a thermal barrier coating/environmental barrier coating (TBC/EBC), and an analytical modeling capability to predict thermomechanical stresses, and to do minimal burner rig tests of silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Furthermore, and in support of the latter objectives, an optimization exercise using finite element analysis and nondestructive evaluation (NDE) was carried out to characterize and evaluate silicon nitride plates with cooling channels.

  10. Resonant tunneling diode based on band gap engineered graphene antidot structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palla, Penchalaiah, E-mail: penchalaiah.palla@vit.ac.in; Ethiraj, Anita S.; Raina, J. P.

    The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green’s Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved themore » Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.« less

  11. Greatest barrier is retaining young scientists

    NASA Astrophysics Data System (ADS)

    Chandler, Mark; Hopper, John

    The National Science Foundation's top priorities as listed by director Neal Lane in Eos (November 9) are to strengthen NSF and its support of scientific research and education, to better articulate to the public why it is so important that support of science and engineering be strengthened, and to continue to lower barriers that discourage young people from choosing careers in science.While we firmly support the first two priorities, we are concerned about the underlying assumptions and implications of the third. Barriers discouraging women and minorities from considering careers in math and science do exist within our educational system, and there is now abundant statistical evidence showing these groups are under-represented in most fields of science. However, as stated in the Eos article, solving these problems and leveling the playing field is not the primary goal of the NSF policy.

  12. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  13. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  14. Engineering species-like barriers to sexual reproduction.

    PubMed

    Maselko, Maciej; Heinsch, Stephen C; Chacón, Jeremy M; Harcombe, William R; Smanski, Michael J

    2017-10-12

    Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter.Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a 'species-like' barrier to reproduction between two otherwise compatible populations.

  15. Bioengineered vocal fold mucosa for voice restoration*

    PubMed Central

    Ling, Changying; Li, Qiyao; Brown, Matthew E.; Kishimoto, Yo; Toya, Yutaka; Devine, Erin E.; Choi, Kyeong-Ok; Nishimoto, Kohei; Norman, Ian G.; Tsegyal, Tenzin; Jiang, Jack J.; Burlingham, William J.; Gunasekaran, Sundaram; Smith, Lloyd M.; Frey, Brian L.; Welham, Nathan V.

    2015-01-01

    Patients with voice impairment caused by advanced vocal fold (VF) fibrosis or tissue loss have few treatment options. A transplantable, bioengineered VF mucosa would address the individual and societal costs of voice-related communication loss. Such a tissue must be biomechanically capable of aerodynamic-to-acoustic energy transfer and high-frequency vibration, and physiologically capable of maintaining a barrier against the airway lumen. Here, we isolated primary human VF fibroblasts and epithelial cells and cocultured them under organotypic conditions. The resulting engineered mucosae showed morphologic features of native tissue, proteome-level evidence of mucosal morphogenesis and emerging extracellular matrix complexity, and rudimentary barrier function in vitro. When grafted into canine larynges ex vivo, the mucosae generated vibratory behavior and acoustic output that were indistinguishable from those of native VF tissue. When grafted into humanized mice in vivo, the mucosae survived and were well tolerated by the human adaptive immune system. This tissue engineering approach has the potential to restore voice function in patients with otherwise untreatable VF mucosal disease. PMID:26582902

  16. Thermal barrier coatings for gas-turbine engine applications.

    PubMed

    Padture, Nitin P; Gell, Maurice; Jordan, Eric H

    2002-04-12

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.

  17. 105-KE Isolation Barrier Leak Rate Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCracken, K.J.

    1995-06-14

    This Acceptance Test Report (ATR) contains the completed and signed Acceptance Procedure (ATP) for the 105-KE Isolations Barrier Leak Rate Test. The Test Engineer`s log, the completed sections of the ATP in the Appendix for Repeat Testing (Appendix K), the approved WHC J-7s (Appendix H), the data logger files (Appendices T and U), and the post test calibration checks (Appendix V) are included.

  18. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  19. The role of genetically engineered pigs in xenotransplantation research.

    PubMed

    Cooper, David K C; Ekser, Burcin; Ramsoondar, Jagdeece; Phelps, Carol; Ayares, David

    2016-01-01

    There is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near future. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGES

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  1. An ecological engineering approach for keeping water from reaching interred wastes in arid or semiarid regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.E.

    1997-12-31

    This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands ofmore » perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.« less

  2. Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  3. Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases.

    PubMed

    Curtis, Chad; Zhang, Mengying; Liao, Rick; Wood, Thomas; Nance, Elizabeth

    2017-03-01

    Neurological diseases account for 13% of the global burden of disease. As a result, treating these diseases costs $750 billion a year. Nanotechnology, which consists of small (~1-100 nm) but highly tailorable platforms, can provide significant opportunities for improving therapeutic delivery to the brain. Nanoparticles can increase drug solubility, overcome the blood-brain and brain penetration barriers, and provide timed release of a drug at a site of interest. Many researchers have successfully used nanotechnology to overcome individual barriers to therapeutic delivery to the brain, yet no platform has translated into a standard of care for any neurological disease. The challenge in translating nanotechnology platforms into clinical use for patients with neurological disease necessitates a new approach to: (1) collect information from the fields associated with understanding and treating brain diseases and (2) apply that information using scalable technologies in a clinically-relevant way. This approach requires systems-level thinking to integrate an understanding of biological barriers to therapeutic intervention in the brain with the engineering of nanoparticle material properties to overcome those barriers. To demonstrate how a systems perspective can tackle the challenge of treating neurological diseases using nanotechnology, this review will first present physiological barriers to drug delivery in the brain and common neurological disease hallmarks that influence these barriers. We will then analyze the design of nanotechnology platforms in preclinical in vivo efficacy studies for treatment of neurological disease, and map concepts for the interaction of nanoparticle physicochemical properties and pathophysiological hallmarks in the brain. WIREs Nanomed Nanobiotechnol 2017, 9:e1422. doi: 10.1002/wnan.1422 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  4. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods removed. The openings for the SSMEs have been covered with a flexible barrier to create a positive pressure envelope inside of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Engineering and commercialization of human-device interfaces, from bone to brain.

    PubMed

    Knothe Tate, Melissa L; Detamore, Michael; Capadona, Jeffrey R; Woolley, Andrew; Knothe, Ulf

    2016-07-01

    Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  6. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurlo, James; Lueck, Steve

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. willmore » leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background« less

  7. An analytical study of thermal barrier coated first stage blades in a JT9D engine

    NASA Technical Reports Server (NTRS)

    Sevcik, W. R.; Stoner, B. L.

    1978-01-01

    Steady state and transient heat transfer and structural calculations were completed to determine the coating and base alloy temperatures and strains. Results indicate potential for increased turbine life using thin durable thermal barrier coatings on turbine airfoils due to a significant reduction in blade average and maximum temperatures, and alloy strain range. An intepretation of the analytical results is compared to the experimental engine test data.

  8. Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy.

    PubMed

    Zheng, Meng; Tao, Wei; Zou, Yan; Farokhzad, Omid C; Shi, Bingyang

    2018-05-01

    Small interfering RNA (siRNA)-based gene silencing technology has demonstrated significant potential for treating brain-associated diseases. However, effective and safe systemic delivery of siRNA into the brain remains challenging because of biological barriers such as enzymatic degradation, short circulation lifetime, the blood-brain barrier (BBB), insufficient tissue penetration, cell endocytosis, and cytosolic transport. Nanotechnology offers intriguing potential for addressing these challenges in siRNA brain delivery in conjunction with chemical and biological modification strategies. In this review, we outline the challenges of systemic delivery of siRNA-based therapy for brain diseases, highlight recent advances in the development and engineering of siRNA nanomedicines for various brain diseases, and discuss our perspectives on this exciting research field for siRNA-based therapy towards more effective brain disease therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Manufacturing Aids

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Contractor's work for Lewis Research Center on "thermal barrier" coatings designed to improve aircraft engine efficiency resulted in two related but separate spinoffs. The Materials and Manufacturing Technology Center of TRW, Inc. invented a robotic system for applying the coating, and in the course of that research found it necessary to develop a new, extremely accurate type of optical gage that offers multiple improvements in controlling the quality of certain manufactured parts.

  10. Calibration of micro-capacitance measurement system for thermal barrier coating testing

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Chen, Dixiang; Wan, Chengbiao; Tian, Wugang; Pan, Mengchun

    2018-06-01

    In order to comprehensively evaluate the thermal barrier coating system of an engine blade, an integrated planar sensor combining electromagnetic coils with planar capacitors is designed, in which the capacitance measurement accuracy of the planar capacitor is a key factor. The micro-capacitance measurement system is built based on an impedance analyzer. Because of the influence of non-ideal factors on the measuring system, there is an obvious difference between the measured value and the actual value. It is necessary to calibrate the measured results and eliminate the difference. In this paper, the measurement model of a planar capacitive sensor is established, and the relationship between the measured value and the actual value of capacitance is deduced. The model parameters are estimated with the least square method, and the calibration accuracy is evaluated with experiments under different dielectric conditions. The capacitance measurement error is reduced from 29% ˜ 46.5% to around 1% after calibration, which verifies the feasibility of the calibration method.

  11. Overview of Glenn Mechanical Components Branch Research

    NASA Astrophysics Data System (ADS)

    Zakrajsek, James

    2002-09-01

    Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.

  12. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Corman; Krishan Luthra; Jill Jonkowski

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000more » hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.« less

  13. FY2016 Propulsion Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies thatmore » overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  14. Secondary barrier construction for vessels carrying spherical low temperature liquefied gas storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-05-16

    To simplify and thus reduce the cost of the secondary barrier for spherical LNG storage tanks onboard ocean-transport vessels, Japan's Hitachi Shipbuilding and Engineering Co., Ltd., has developed a new secondary-containment system that allows easy installation directly on the cargo hold's bottom plate beneath the spherical tank. The new system comprises at least two layers of rigid-foam synthetic resin sprayed on the hold plates and covered by a layer of glass mesh and adhesive. Alternatively, the layers of synthetic resin, glass mesh, and adhesive are applied to plywood attached to the hold plates by joists, thus forming an air spacemore » between the secondary barrier and the hold plates. Where the hold plates have a multisurface construction, (1) laminated rigid urethane foam blocks are butted end-to-end and are bonded to each other and to the plywood sheets at the corners between adjacent hold plates, (2) the spray-formed layers are applied between the blocks, and (3) the entire assembly is covered by a protective layer of glass mesh and adhesive.« less

  15. Fusion antibody for Alzheimer's disease with bidirectional transport across the blood-brain barrier and abeta fibril disaggregation.

    PubMed

    Boado, Ruben J; Zhang, Yufeng; Zhang, Yun; Xia, Chun-Fang; Pardridge, William M

    2007-01-01

    Delivery of monoclonal antibody therapeutics across the blood-brain barrier is an obstacle to the diagnosis or therapy of CNS disease with antibody drugs. The immune therapy of Alzheimer's disease attempts to disaggregate the amyloid plaque of Alzheimer's disease with an anti-Abeta monoclonal antibody. The present work is based on a three-step model of immune therapy of Alzheimer's disease: (1) influx of the anti-Abeta monoclonal antibody across the blood-brain barrier in the blood to brain direction, (2) binding and disaggregation of Abeta fibrils in brain, and (3) efflux of the anti-Abeta monoclonal antibody across the blood-brain barrier in the brain to blood direction. This is accomplished with the genetic engineering of a trifunctional fusion antibody that binds (1) the human insulin receptor, which mediates the influx from blood to brain across the blood-brain barrier, (2) the Abeta fibril to disaggregate amyloid plaque, and (3) the Fc receptor, which mediates the efflux from brain to blood across the blood-brain barrier. This fusion protein is a new antibody-based therapeutic for Alzheimer's disease that is specifically engineered to cross the human blood-brain barrier in both directions.

  16. Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions

    NASA Astrophysics Data System (ADS)

    Manero, Albert; Sofronsky, Stephen; Knipe, Kevin; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Raghavan, Seetha; Bartsch, Marion

    2015-07-01

    Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far.

  17. Microtextured Surfaces for Turbine Blade Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  18. Some aspects of the hot corrosion of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Jones, Robert L.

    1995-01-01

    This paper provides a pro tem review of the hot corrosion of zirconia-based thermal barrier coatings for engine applications. Emphasis is placed on trying to understand the chemical reactions, and such other mechanisms as can be identified, that cause corrosive degradation of the thermal barrier coating. The various approaches taken in attempts to improve the hot corrosion resistance of thermal barrier coatings are also briefly described and critiqued.

  19. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  20. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  1. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  2. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  3. Monitoring engineered remediation with borehole radar

    USGS Publications Warehouse

    Lane, J.W.; Day-Lewis, F. D.; Joesten, P.K.

    2007-01-01

    The success of engineered remediation is predicated on correct emplacement of either amendments (e.g., vegetable-oil emulsion, lactate, molasses, etc.) or permeable reactive barriers (e.g., vegetable oil, zero-valent iron, etc.) to enhance microbial or geochemical breakdown of contaminants and treat contaminants. Currently, site managers have limited tools to provide information about the distribution of injected materials; the existence of gaps or holes in barriers; and breakdown or transformation of injected materials over time. ?? 2007 Society of Exploration Geophysicists.

  4. Barrier Engineered Quantum Dot Infrared Photodetectors

    DTIC Science & Technology

    2015-06-01

    dual-color detectors using InAs/GaSb strained layer superlattices ." In Lester Eastman Conference on High Performance Devices (LEC), 2012, pp. 1-4. IEEE...Gautam, S. S. Krishna, E. P. Smith, S. Johnson, and S. Krishna. "Dual-band pBp detectors based on InAs/GaSb strained layer superlattices ." Infrared ...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0111 TR-2015-0111 BARRIER ENGINEERED QUANTUM DOT INFRARED PHOTODETECTORS Sanjay Krishna Center for High Technology

  5. PVD thermal barrier coating applications and process development for aircraft engines

    NASA Astrophysics Data System (ADS)

    Rigney, D. V.; Viguie, R.; Wortman, D. J.; Skelly, D. W.

    1997-06-01

    Thermal barrier coatings (TBCs) have been developed for application to aircraft engine components to improve service life in an increasingly hostile thermal environment. The choice of TBC type is related to the component, intended use, and economics. Selection of electron beam physical vapor deposition proc-essing for turbine blade is due in part to part size, surface finish requirements, thickness control needs, and hole closure issues. Process development of PVD TBCs has been carried out at several different sites, including GE Aircraft Engines (GEAE). The influence of processing variables on microstructure is dis-cussed, along with the GEAE development coater and initial experiences of pilot line operation.

  6. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  7. Cyber-Informed Engineering: The Need for a New Risk Informed and Design Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Joseph Daniel; Anderson, Robert Stephen

    Current engineering and risk management methodologies do not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Current methodologies focus on equipment failures or human error as initiating events for a hazard, while cyber attacks use the functionality of a trusted system to perform operations outside of the intended design and without the operator’s knowledge. These threats can by-pass or manipulate traditionally engineered safety barriers and present false information, invalidating the fundamental basis of a safety analysis. Cyber threats must be fundamentally analyzed from a completely new perspective where neither equipment nor human operationmore » can be fully trusted. A new risk analysis and design methodology needs to be developed to address this rapidly evolving threatscape.« less

  8. Strategies in biomimetic surface engineering of nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gong, Yong-Kuan; Winnik, Françoise M.

    2012-01-01

    Engineered nanoparticles (NPs) play an increasingly important role in biomedical sciences and in nanomedicine. Yet, in spite of significant advances, it remains difficult to construct drug-loaded NPs with precisely defined therapeutic effects, in terms of release time and spatial targeting. The body is a highly complex system that imposes multiple physiological and cellular barriers to foreign objects. Upon injection in the blood stream or following oral administation, NPs have to bypass numerous barriers prior to reaching their intended target. A particularly successful design strategy consists in masking the NP to the biological environment by covering it with an outer surface mimicking the composition and functionality of the cell's external membrane. This review describes this biomimetic approach. First, we outline key features of the composition and function of the cell membrane. Then, we present recent developments in the fabrication of molecules that mimic biomolecules present on the cell membrane, such as proteins, peptides, and carbohydrates. We present effective strategies to link such bioactive molecules to the NPs surface and we highlight the power of this approach by presenting some exciting examples of biomimetically engineered NPs useful for multimodal diagnostics and for target-specific drug/gene delivery applications. Finally, critical directions for future research and applications of biomimetic NPs are suggested to the readers.

  9. Barriers to Student Success in Engineering Education

    ERIC Educational Resources Information Center

    Boles, Wageeh; Whelan, Karen

    2017-01-01

    In the UK, the USA and Australia, there have been calls for an increase in the number of engineering graduates to meet the needs of current global challenges. Universities around the world have been grappling with how to both attract more engineering students and to then retain them. Attrition from engineering programmes is disturbingly high. This…

  10. Small Engine Technology (SET) - Task 4, Regional Turboprop/Turbofan Engine Advanced Combustor Study

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert; Srinivasan, Ram; Myers, Geoffrey; Cardenas, Manuel; Penko, Paul F. (Technical Monitor)

    2003-01-01

    Under the SET Program Task 4 - Regional Turboprop/Turbofan Engine Advanced Combustor Study, a total of ten low-emissions combustion system concepts were evaluated analytically for three different gas turbine engine geometries and three different levels of oxides of nitrogen (NOx) reduction technology, using an existing AlliedSignal three-dimensional (3-D) Computational Fluid Dynamics (CFD) code to predict Landing and Takeoff (LTO) engine cycle emission values. A list of potential Barrier Technologies to the successful implementation of these low-NOx combustor designs was created and assessed. A trade study was performed that ranked each of the ten study configurations on the basis of a number of manufacturing and durability factors, in addition to emissions levels. The results of the trade study identified three basic NOx-emissions reduction concepts that could be incorporated in proposed follow-on combustor technology development programs aimed at demonstrating low-NOx combustor hardware. These concepts are: high-flow swirlers and primary orifices, fuel-preparation cans, and double-dome swirlers.

  11. 200-BP-1 Prototype Hanford Barrier -- 15 Years of Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Draper, Kathryn E.; Link, Steven O.

    2011-09-30

    Monitoring is an essential component of engineered barrier system design and operation. A composite capacitive cover, including a capillary break and an evapotranspiration (ET) barrier at the Hanford Site, is generating data that can be used to help resolve these issues. The prototype Hanford barrier was constructed over the 216-B-57 Crib in 1994 to evaluate surface-barrier constructability, construction costs, and physical and hydrologic performance at the field scale. The barrier has been routinely monitored between November 1994 and September 1998 as part of a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) treatability test of barrier performance formore » the 200 BP 1 Operable Unit. Since FY 1998, monitoring has focused on a more limited set of key water balance, stability, and biotic parameters. In FY 2009, data collection was focused on: (1) water-balance monitoring, consisting of precipitation, runoff, soil moisture storage, and drainage measurements with evapotranspiration calculated by difference; (2) stability monitoring, consisting of asphalt-layer-settlement, basalt-side-slope-stability, and surface-elevation measurements; (3) vegetation dynamics; and (4) animal use. September 2009 marked 15 years since the start of monitoring and the collection of performance data. This report describes the results of monitoring activities during the period October 1, 2008, through September 30, 2009, and summarizes the 15 years of performance data collected from September 1994 through September 2009.« less

  12. Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems

    PubMed Central

    Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.

    2013-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224

  13. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion may affect the engineering performance of the bentonite buffer such that any interfaces between bentonite blocks that may be present immediately following buffer emplacement may persist in the longer term.

  14. The Great Womanhunt.

    ERIC Educational Resources Information Center

    Seltz-Petrash, Ann

    1980-01-01

    Discusses the aggressive recruitment of women by engineering schools and firms, progress in eliminating sex discrimination barriers, and lingering sex bias problems in the field. Offers suggestions to new women engineering graduates. (SK)

  15. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  16. High speed infrared radiation thermometer, system, and method

    DOEpatents

    Markham, James R.

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  17. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    PubMed

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  18. Concrete and cement composites used for radioactive waste deposition.

    PubMed

    Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel

    2017-11-01

    This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. International Collaborations on Engineered Barrier Systems: Brief Overview of SKB-EBS Activities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jove-Colon, Carlos F.

    2015-10-01

    Research collaborations with international partners on the behavior and performance of engineered barrier systems (EBS) are an important aspect of the DOE-NE Used Fuel Disposition Campaign strategy in the evaluation of disposal design concepts. These international partnerships are a cost-effective way of engaging in key R&D activities with common goals resulting in effective scientific knowledge exchanges thus enhancing existing and future research programs in the USA. This report provides a brief description of the activities covered by the Swedish Nuclear Fuel and Waste Management Company (SKB) EBS Task Force (TF) (referred hereafter as SKB EBS TF) and potential future directionsmore » for engagement of the DOE-NE UFDC program in relevant R&D activities. Emphasis is given to SKB EBS TF activities that are still ongoing and aligned to the UFDC R&D program. This include utilization of data collected in the bentonite rock interaction experiment (BRIE) and data sets from benchmark experiments produced by the chemistry or “C” part of the SKB EBS TF. Potential applications of information generated by this program include comparisons/tests between model and data (e.g., reactive diffusion), development and implementation of coupled-process models (e.g., HM), and code/model benchmarking.« less

  20. Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering

    NASA Astrophysics Data System (ADS)

    Joost, William J.

    2012-09-01

    Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.

  1. Thermochemistry of CaO-MgO-Al2O3-SiO2 (CMAS) and Advanced Thermal and Environmental Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Zhu, Dongming

    2017-01-01

    CaO-MgO-Al2O3-SiO2 (CMAS) oxides are constituents in a broad number of materials and minerals which have recently inferred to discussions in materials science, planetary science, geochemistry and cosmochemistry communities. In materials science, there is increasing interest in the degradation studies of thermal (TBC) and environmental (EBC) barrier coatings of gas turbines by molten CMAS. CMAS minerals usually are carried by the intake air into gas turbines, e.g. in aircraft engines, and their deposits react at high temperatures (1000C) with the coating materials. This causes degradation and accelerated failure of the static and rotating components of the turbine engines. We discuss some preliminary results of the reactions between CMAS and Rare-Earth (RE Y, Yb, Dy, Gd, Nd and Sm) oxide stabilized ZrO2 or HfO2 systems, and the stability of the resulting oxides and silicates. Plasma sprayed hollow tube samples ( 2.2 mm and 26 mm height) were half filled with CMAS powder, wrapped and sealed with platinum foil, and heat treated at 1310 C for 5h. Samples were characterized by differential scanning calorimetry, X-ray diffraction and cross section electron microscopy analysis.

  2. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2002-01-01

    Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  3. Development of Advanced Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  4. Sun, Sand and Water: A History of the Jacksonville District U.S. Army Corps of Engineers 1821-1975

    DTIC Science & Technology

    1981-01-01

    plan envisioned a dredged cut through the barrier beach to Banana River. On the river there would be a turning basin with terminal facilities, and...intracoastal canal to the west This canal would cut through Merritt Island, which separated Indian River from Banana River.6 District Engineer, Colonel...canal, guarded by two jetties, through the barrier land from the 27 -foot contour line in the Atlantic to a 27 -foot turning basin in the Banana

  5. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.

  6. Micro pore arrays in free standing cyclic olefin copolymer membranes: fabrication and surface functionalization strategies for in-vitro barrier tissue models

    NASA Astrophysics Data System (ADS)

    Gel, M.; Kandasamy, S.; Cartledge, K.; Be, C. L.; Haylock, D.

    2013-12-01

    In recent years there has been growing interest in micro engineered in-vitro models of tissues and organs. These models are designed to mimic the in-vivo like physiological conditions with a goal to study human physiology in an organ-specific context or to develop in-vitro disease models. One of the challenges in the development of these models is the formation of barrier tissues in which the permeability is controlled locally by the tissues cultured at the interface. In-vitro models of barrier tissues are typically created by generating a monolayer of cells grown on thin porous membranes. This paper reports a robust preparation method for free standing porous cyclic olefin copolymer (COC) membranes. We also demonstrate that gelatin coated membranes facilitate formation of highly confluent monolayer of HUVECs. Membranes with thickness in the range of 2-3 um incorporating micro pores with diameter approximately 20 um were fabricated and integrated with microfluidic channels. The performance of the device was demonstrated with a model system mimicking the endothelial barrier in bone marrow sinusoids.

  7. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    PubMed

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-11-17

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  8. Evaluating Admission Practices as Potential Barriers to Creating Equitable Access to Undergraduate Engineering Education

    ERIC Educational Resources Information Center

    Myers, Beth Ann

    2016-01-01

    To create a more competitive and creative engineering workforce, breakthroughs in how we attract and educate more diverse engineers are mandated. Despite a programmatic focus on increasing the representation of women and minorities in engineering during the last few decades, no single solution has been identified and is probably not realistic. But…

  9. Barriers to wider adoption of mobile telerobotic surgery: engineering, clinical and business challenges.

    PubMed

    Moses, Gerald R; Doarn, Charles R

    2008-01-01

    A portable robotic telesurgery network could remove the geographic disparity of surgical care and provide expert surgical support for first responders to traumatic injury. This is particularly relevant to battlefield medicine where surgical intervention is currently not available to the most perilous fighting circumstances. Similar utility applies to the peacetime healthcare mission. The authors identify the potential advantage to healthcare from a mobile robotic telesurgery system and specify barriers to the employability and acceptance of such a system. The proposed research roadmap will describe a portable telesurgery system that represe government/industrial recognition and reward for excellent care provided by quality surgeons. The provision of expert surgical care improves the outcomes of surgical intervention by reducing errors. For example, during the common procedure of laparoscopic cholecystectomy, distributed telesurgical care could normalize surgical performance and limit major variance of surgeon outliers; such as reducing common bile duct injury to the very low rate seen with operation by proficient surgeons.

  10. Alternating-Composition Layered Ceramic Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming

    2008-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) that contain multiple layers of alternating chemical composition have been developed as improved means of protecting underlying components of gas-turbine and other heat engines against both corrosive combustion gases and high temperatures.

  11. Historical changes in the Mississippi-Alabama barrier-island chain and the roles of extreme storms, sea level, and human activities

    USGS Publications Warehouse

    Morton, R.A.

    2008-01-01

    Barrier-island chains worldwide are undergoing substantial changes, and their futures remain uncertain. An historical analysis of a barrier-island chain in the north-central Gulf of Mexico shows that the Mississippi barriers are undergoing rapid systematic land loss and translocation associated with: (1) unequal lateral transfer of sand related to greater updrift erosion compared to downdrift deposition; (2) barrier narrowing resulting from simultaneous erosion of shores along the Gulf and Mississippi Sound; and (3) barrier segmentation related to storm breaching. Dauphin Island, Alabama, is also losing land for some of the same reasons as it gradually migrates landward. The principal causes of land loss are frequent intense storms, a relative rise in sea level, and a sediment-budget deficit. Considering the predicted trends for storms and sea level related to global warming, it is certain that the Mississippi-Alabama (MS-AL) barrier islands will continue to lose land area at a rapid rate unless the trend of at least one causal factor reverses. Historical land-loss trends and engineering records show that progressive increases in land-loss rate correlate with nearly simultaneous deepening of channels dredged across the outer bars of the three tidal inlets maintained for deep-draft shipping. This correlation indicates that channel-maintenance activities along the MS-AL barriers have impacted the sediment budget by disrupting the alongshore sediment transport system and progressively reducing sand supply. Direct management of this causal factor can be accomplished by strategically placing dredged sediment where adjacent barrier-island shores will receive it for island nourishment and rebuilding.

  12. Methods and systems to thermally protect fuel nozzles in combustion systems

    DOEpatents

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  13. 76 FR 34145 - Safety Zone, Barrier Testing Operations, Chicago Sanitary and Ship Canal, Romeoville, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Michigan and creates an electric field in the water by pulsing low voltage DC current through steel cables... the U.S. Army Corps of Engineers' simultaneous operation of electric barriers IIA and IIB. Under 5 U.S... selected an electric barrier because it is a non-lethal deterrent with a proven history, which does not...

  14. Integrated approach to modeling long-term durability of concrete engineered barriers in LLRW disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Roy, D.M.; Mann, B.

    1995-12-31

    This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less

  15. Graphene-Based Environmental Barriers

    PubMed Central

    Guo, Fei; Silverberg, Gregory; Bowers, Shin; Kim, Sang-Pil; Datta, Dibakar; Shenoy, Vivek; Hurt, Robert H.

    2012-01-01

    Many environmental technologies rely on containment by engineered barriers that inhibit the release or transport of toxicants. Graphene is a new, atomically thin, two-dimensional sheet material, whose aspect ratio, chemical resistance, flexibility, and impermeability make it a promising candidate for inclusion in a next generation of engineered barriers. Here we show that ultrathin graphene oxide (GO) films can serve as effective barriers for both liquid and vapor permeants. First, GO deposition on porous substrates is shown to block convective flow at much lower mass loadings than other carbon nanomaterials, and can achieve hydraulic conductivities of 5×10−12 cm/s or lower. Second we show that ultrathin GO films of only 20 nm thickness coated on polyethylene films reduce their vapor permeability by 90% using elemental mercury as a model vapor toxicant. The barrier performance of GO in this thin-film configuration is much better than the Nielsen model limit, which describes ideal behavior of flake-like fillers uniformly imbedded in a polymer. The Hg barrier performance of GO films is found to be sensitive to residual water in the films, which is consistent with molecular dynamics (MD) simulations that show lateral diffusion of Hg atoms in graphene interlayer spaces that have been expanded by hydration. PMID:22717015

  16. Exploiting Expertise and Knowledge Sharing Online for the Benefit of NASA's GN&C Community of Practice

    NASA Technical Reports Server (NTRS)

    Topousis, Daria E.; Lebsock, Kenneth L.; Dennehy, Cornelius J.

    2010-01-01

    In 2004, NASA faced major knowledge sharing challenges due to geographically isolated field centers that inhibited engineers from sharing their experiences, expertise, ideas, and lessons learned. The necessity to collaborate on complex development projects and the reality of constrained project resources together drove the need for ensuring that personnel at all NASA centers had comparable skill sets and that engineers could find resources in a timely fashion. Mission failures and new directions for the Agency also demanded better collaborative tools for NASA's engineering workforce. In response to these needs, the online NASA Engineering Network (NEN) was formed by the NASA Office of the Chief Engineer to provide a multi-faceted system for overcoming geographic and cultural barriers. NEN integrates communities of practice with a cross-repository search and the Lessons Learned Information System. This paper describes the features of the GN&C engineering discipline CoP site which went live on NEN in May of 2008 as an online means of gathering input and guidance from practitioners. It allows GN&C discipline expertise captured at one field center to be shared in a collaborative way with the larger discipline CoP spread across the entire Agency. The site enables GN&C engineers to find the information they need quickly, to find solutions to questions from experienced engineers, and to connect with other practitioners regardless of geographic location, thus increasing the probability of project success.

  17. Advanced Environmental Barrier Coatings Developed for SiC/SiC Composite Vanes

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Fox, Dennis S.; Eldridge, Jeffrey I.; Zhu, Dongming; Bansal, Narottam P.; Miller, Robert A.

    2003-01-01

    Ceramic components exhibit superior high-temperature strength and durability over conventional component materials in use today, signifying the potential to revolutionize gas turbine engine component technology. Silicon-carbide fiber-reinforced silicon carbide ceramic matrix composites (SiC/SiC CMCs) are prime candidates for the ceramic hotsection components of next-generation gas turbine engines. A key barrier to the realization of SiC/SiC CMC hot-section components is the environmental degradation of SiC/SiC CMCs in combustion environments. This is in the form of surface recession due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is a logical approach to achieve protection and long-term durability.

  18. CEM V based special cementitious materials investigated by means of SANS method. Preliminary results

    NASA Astrophysics Data System (ADS)

    Dragolici, A. C.; Balasoiu, M.; Orelovich, O. L.; Ionascu, L.; Nicu, M.; Soloviov, D. V.; Kuklin, A. I.; Lizunov, E. I.; Dragolici, F.

    2017-05-01

    The management of the radioactive waste assume the conditioning in a cement matrix as an embedding, stable, disposal material. Cement matrix is the first and most important engineering barrier against the migration in the environment of the radionuclides contained in the waste packages. Knowing how the microstructure develops is therefore desirable in order to assess the compatibility of radioactive streams with cement and predict waste form performance during storage and disposal. For conditioning wastes containing radioactive aluminum new formulas of low basicity cements, using coatings as a barrier between the metal and the conditioning environment or introducing a corrosion inhibitor in the matrix system are required. Preliminary microstructure investigation of such improved CEM V based cement matrix is reported.

  19. Barriers and facilitators to recovering from e-prescribing errors in community pharmacies.

    PubMed

    Odukoya, Olufunmilola K; Stone, Jamie A; Chui, Michelle A

    2015-01-01

    To explore barriers and facilitators to recovery from e-prescribing errors in community pharmacies and to explore practical solutions for work system redesign to ensure successful recovery from errors. Cross-sectional qualitative design using direct observations, interviews, and focus groups. Five community pharmacies in Wisconsin. 13 pharmacists and 14 pharmacy technicians. Observational field notes and transcribed interviews and focus groups were subjected to thematic analysis guided by the Systems Engineering Initiative for Patient Safety (SEIPS) work system and patient safety model. Barriers and facilitators to recovering from e-prescription errors in community pharmacies. Organizational factors, such as communication, training, teamwork, and staffing levels, play an important role in recovering from e-prescription errors. Other factors that could positively or negatively affect recovery of e-prescription errors include level of experience, knowledge of the pharmacy personnel, availability or usability of tools and technology, interruptions and time pressure when performing tasks, and noise in the physical environment. The SEIPS model sheds light on key factors that may influence recovery from e-prescribing errors in pharmacies, including the environment, teamwork, communication, technology, tasks, and other organizational variables. To be successful in recovering from e-prescribing errors, pharmacies must provide the appropriate working conditions that support recovery from errors.

  20. Synthetic constructs in/for the environment: Managing the interplay between natural and engineered Biology

    PubMed Central

    Schmidt, Markus; de Lorenzo, Víctor

    2012-01-01

    The plausible release of deeply engineered or even entirely synthetic/artificial microorganisms raises the issue of their intentional (e.g. bioremediation) or accidental interaction with the Environment. Containment systems designed in the 1980s–1990s for limiting the spread of genetically engineered bacteria and their recombinant traits are still applicable to contemporary Synthetic Biology constructs. Yet, the ease of DNA synthesis and the uncertainty on how non-natural properties and strains could interplay with the existing biological word poses yet again the challenge of designing safe and efficacious firewalls to curtail possible interactions. Such barriers may include xeno-nucleic acids (XNAs) instead of DNA as information-bearing molecules, rewriting the genetic code to make it non-understandable by the existing gene expression machineries, and/or making growth dependent on xenobiotic chemicals. PMID:22710182

  1. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  2. A Survey of Gender Biases of Freshman Students toward Engineering.

    ERIC Educational Resources Information Center

    Schaer, Barbara; And Others

    1991-01-01

    A survey of 724 freshman engineering orientation students investigated the significance of 5 literature-cited barriers to women's success in engineering--sexual discrimination, financial concerns, academic comfort, career awareness, and locus of control. Significant main effects were found for gender but not ethnic group. The instrument is…

  3. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  4. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  5. Biomaterials for tissue engineering: summary

    NASA Technical Reports Server (NTRS)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  6. Science and Engineering Programs: On Target for Women?

    ERIC Educational Resources Information Center

    Matyas, Marsha Lakes, Ed.; Dix, Linda Skidmore, Ed.

    To increase women's participation in science and engineering, many barriers must be overcome. This book, an outcome of a conference held by the National Research Council's Committee on Women in Science and Engineering, summarizes presentations of many experts and presents information on specific strategies for increasing the participation of women…

  7. 40 CFR 191.14 - Assurance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Assurance requirements. 191.14 Section 191.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... barriers to isolate the wastes from the accessible environment. Both engineered and natural barriers shall...

  8. Money, Math and Engineering: The Relationships between Community Economics, Math Preparation and the Graduation of Racially Underrepresented Engineers

    ERIC Educational Resources Information Center

    Freeman, Amy Louise

    2009-01-01

    A primary gateway to a career in engineering is the attainment of the bachelor of science degree in engineering. In contrast, a common barrier to becoming an engineer is failure to attain the degree. Those variables that are related to college graduation are often in place prior to college admission. The purpose of this study was to examine the…

  9. International Collaboration Activities on Engineered Barrier Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jove-Colon, Carlos F.

    The Used Fuel Disposition Campaign (UFDC) within the DOE Fuel Cycle Technologies (FCT) program has been engaging in international collaborations between repository R&D programs for high-level waste (HLW) disposal to leverage on gathered knowledge and laboratory/field data of near- and far-field processes from experiments at underground research laboratories (URL). Heater test experiments at URLs provide a unique opportunity to mimetically study the thermal effects of heat-generating nuclear waste in subsurface repository environments. Various configurations of these experiments have been carried out at various URLs according to the disposal design concepts of the hosting country repository program. The FEBEX (Full-scale Engineeredmore » Barrier Experiment in Crystalline Host Rock) project is a large-scale heater test experiment originated by the Spanish radioactive waste management agency (Empresa Nacional de Residuos Radiactivos S.A. – ENRESA) at the Grimsel Test Site (GTS) URL in Switzerland. The project was subsequently managed by CIEMAT. FEBEX-DP is a concerted effort of various international partners working on the evaluation of sensor data and characterization of samples obtained during the course of this field test and subsequent dismantling. The main purpose of these field-scale experiments is to evaluate feasibility for creation of an engineered barrier system (EBS) with a horizontal configuration according to the Spanish concept of deep geological disposal of high-level radioactive waste in crystalline rock. Another key aspect of this project is to improve the knowledge of coupled processes such as thermal-hydro-mechanical (THM) and thermal-hydro-chemical (THC) operating in the near-field environment. The focus of these is on model development and validation of predictions through model implementation in computational tools to simulate coupled THM and THC processes.« less

  10. Gradient complex protective coatings for single-crystal turbine blades of high-heat gas turbine engines

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. P.; Lesnikov, V. P.; Muboyadzhyan, S. A.; Repina, O. V.

    2007-05-01

    Complex diffusion-condensation protective coatings characterized by gradient distribution of alloying elements over the thickness due to formation of a diffusion barrier layer on the surface of blades followed by deposition of condensation alloyed layers based on the Ni-Co-Cr-Al-Y system and an external layer based on a NiAl alloyed β-phase and a ZrO2: Y2O3 ceramics are presented. A complex gradient coating possessing unique protective properties at t = 1100-1200°C for single-crystal blades from alloy ZhS36VI for advanced gas turbine engines with gas temperature of 1550°C at the inlet to the turbine is described.

  11. Spanish methodological approach for biosphere assessment of radioactive waste disposal.

    PubMed

    Agüero, A; Pinedo, P; Cancio, D; Simón, I; Moraleda, M; Pérez-Sánchez, D; Trueba, C

    2007-10-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS "Reference Biospheres Methodology" and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates.

  12. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    NASA Technical Reports Server (NTRS)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.

  13. Geomorphologic Evolution of Barrier Islands along the Northern U.S. Gulf of Mexico and Implications for Engineering Design in Barrier Restoration

    DTIC Science & Technology

    2009-01-01

    Chandeleur Is- lands). Finally, Stage 3 occurs when erosion and subsidence reduce the barrier island to a subaqueous inner shelf shoal (e.g., Ship Shoal...exception is the western- most island, Cat Island, which is primarily protected from offshore waves from the incident wave sheltering of the Chandeleur and...KAHN and ROBERTS (1982) discussed the morpho- logic response of the Chandeleur barrier islands to Hurricane Frederic, a powerful storm that made

  14. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  15. Multi-Attribute Tradespace Exploration in Space System Design

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Hastings, D. E.

    2002-01-01

    The complexity inherent in space systems necessarily requires intense expenditures of resources both human and monetary. The high level of ambiguity present in the early design phases of these systems causes long, highly iterative, and costly design cycles. This paper looks at incorporating decision theory methods into the early design processes to streamline communication of wants and needs among stakeholders and between levels of design. Communication channeled through formal utility interviews and analysis enables engineers to better understand the key drivers for the system and allows a more thorough exploration of the design tradespace. Multi-Attribute Tradespace Exploration (MATE), an evolving process incorporating decision theory into model and simulation- based design, has been applied to several space system case studies at MIT. Preliminary results indicate that this process can improve the quality of communication to more quickly resolve project ambiguity, and enable the engineer to discover better value designs for multiple stakeholders. MATE is also being integrated into a concurrent design environment to facilitate the transfer knowledge of important drivers into higher fidelity design phases. Formal utility theory provides a mechanism to bridge the language barrier between experts of different backgrounds and differing needs (e.g. scientists, engineers, managers, etc). MATE with concurrent design couples decision makers more closely to the design, and most importantly, maintains their presence between formal reviews.

  16. Sensor for performance monitoring of advanced gas turbines

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.

    1999-01-01

    Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.

  17. Role of housing modalities on management and surveillance strategies for adventitious agents of rodents.

    PubMed

    Shek, William R

    2008-01-01

    Specific pathogen-free (SPF) rodents for modern biomedical research need to be free of pathogens and other infectious agents that may not produce disease but nevertheless cause research interference. To meet this need, rodents have been rederived to eliminate adventitious agents and then housed in room- to cage-level barrier systems to exclude microbial contaminants. Because barriers can and do fail, routine health monitoring (HM) is necessary to verify the SPF status of colonies. Testing without strict adherence to biosecurity practices, however, can lead to the inadvertent transfer of unrecognized, inapparent agents among institutions and colonies. Microisolation caging systems have become popular for housing SPF rodents because they are versatile and provide a highly effective cage-level barrier to the entry and spread of adventitious agents. But when a microisolation-caged colony is contaminated, the cage-level barrier impedes the spread of infection and so the prevalence of infection is often low, which increases the chance of missing a contamination and complicates the corroboration of unexpected positive findings. The expanding production of genetically engineered mutant (GEM) rodent strains at research institutions, where biosecurity practices vary and the risk of microbial contamination can be high, underscores the importance of accurate HM results in mitigating the risk of the introduction and spread of microbial contaminants with the exchange of mutant rodent strains among investigators and institutions.

  18. FY2014 Propulsion Materials R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  19. FY2015 Propulsion Materials Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  20. Collagen-based brain microvasculature model in vitro using three-dimensional printed template

    PubMed Central

    Kim, Jeong Ah; Kim, Hong Nam; Im, Sun-Kyoung; Chung, Seok

    2015-01-01

    We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications. PMID:25945141

  1. Influence of Cracks in Cementitious Engineered Barriers in a Near-Surface Disposal System: Assessment Analysis of the Belgian Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Janez; Seetharam, Suresh C.; Jacques, Diederik

    2013-07-01

    In large cement-based structures such as a near surface disposal facility for radioactive waste voids and cracks are inevitable. However, the pattern and nature of cracks are very difficult to predict reliably. Cracks facilitate preferential water flow through the facility because their saturated hydraulic conductivity is generally higher than the conductivity of the cementitious matrix. Moreover, sorption within the crack is expected to be lower than in the matrix and hence cracks in engineered barriers can act as a bypass for radionuclides. Consequently, understanding the effects of crack characteristics on contaminant fluxes from the facility is of utmost importance inmore » a safety assessment. In this paper we numerically studied radionuclide leaching from a crack-containing cementitious containment system. First, the effect of cracks on radionuclide fluxes is assessed for a single repository component which contains a radionuclide source (i.e. conditioned radwaste). These analyses reveal the influence of cracks on radionuclide release from the source. The second set of calculations deals with the safety assessment results for the planned near-surface disposal facility for low-level radioactive waste in Dessel (Belgium); our focus is on the analysis of total system behaviour in regards to release of radionuclide fluxes from the facility. Simulation results are interpreted through a complementary safety indicator (radiotoxicity flux). We discuss the possible consequences from different scenarios of cracks and voids. (authors)« less

  2. Cost-effective implementation of intelligent systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.; Heer, Ewald

    1990-01-01

    Significant advances have occurred during the last decade in knowledge-based engineering research and knowledge-based system (KBS) demonstrations and evaluations using integrated intelligent system technologies. Performance and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent system technologies can be realized. In this paper the rationale and potential benefits for typical examples of application projects that demonstrate an increase in productivity through the use of intelligent system technologies are discussed. These demonstration projects have provided an insight into additional technology needs and cultural barriers which are currently impeding the transition of the technology into operational environments. Proposed methods which addresses technology evolution and implementation are also discussed.

  3. Life modeling of thermal barrier coatings for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1988-01-01

    Thermal barrier coating life models developed under the NASA Lewis Research Center's Hot Section Technology (HOST) program are summarized. An initial laboratory model and three design-capable models are discussed. Current understanding of coating failure mechanisms are also summarized.

  4. The Effects of Fire on the Function of the 200-BP-1 Engineered Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Link, Steven O.; Hasan, Nazmul

    2009-09-01

    A critical unknown in use of barrier technology for long-term waste isolation is performance after a major disturbance especially when institutional controls are intact, but there are no resources to implement corrective actions. The objective of this study was to quantify the effects of wild fire on alterations the function of an engineered barrier. A controlled burn September 26, 2008 was used to remove all the vegetation from the north side of the barrier. Flame heights exceeded 9 m and temperatures ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above themore » surface. Post-fire analysis of soil properties show significant decreases in wettability, hydraulic conductivity, air entry pressure, organic matter, and porosity relative to pre-fire conditions whereas dry bulk density increased. Decreases in hydraulic conductivity and wettabilty immediately after the fire are implicated in a surface runoff event that occurred in January 2009, the first in 13 years. There was a significant increase in macro-nutrients, pH, and electrical conductivity. After one year, hydrophobicity has returned to pre-burn levels with only 16% of samples still showing signs of decreased wettability. Over the same period, hydraulic conductivity and air entry pressure returned to pre-burn levels at one third of the locations but remained identical to values recorded immediately after the fire at the other two thirds. Soil nutrients, pH, and electrical conductivity remain elevated after 1 year. Species composition on the burned surface changed markedly from prior years and relative to the unburned surface and two analog sites. An increase in the proportion of annuals and biennials is characteristic of burned surfaces that have become dominated by ruderal species. Greenhouse seedling emergence tests conducted to assess the seed bank of pre- and post-burn soils and of two analog sites at the McGee Ranch show no difference in the number of species emerging from soils collected before and after the fire. However, there were fewer species emerging from the seed bank on the side slopes and more species emerging from two analog sites. Leaf area index measures confirmed the substantial differences in plant communities after fire. Xylem pressure potential were considerably higher on the burned half of the barrier in September 2009 suggesting that not all the water in the soil profile will be removed before the fall rains begin. The results of this study are expected to contribute to a better understanding of barrier performance after major disturbances in a post-institutional control environment. Such an understanding is needed to enhance stakeholder acceptance regarding the long-term efficacy of engineered barriers. This study will also support improvements in the design of evapotranspiration (ET) and hybrid (ET + capacitive) barriers and the performance monitoring systems.« less

  5. Reactive Transport Modeling and Changes in Porosity at Reactive Interfaces in a HLW repository in Clay

    NASA Astrophysics Data System (ADS)

    Samper, J.; Mon, A.; Montenegro, L.; Naves, A.; Fernández, J.

    2016-12-01

    High-level radioactive waste disposal in a deep geological repository is based on a multibarrier concept which combines natural barriers such as the geological formation and artificial barriers such as metallic containers, bentonite and concrete buffers and sealing materials. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyperalkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyperalkaline plume at the concrete-clay interface. Here we present a nonisothermal reactive transport model of the long-term interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. This problem involves large pH changes with a hyperalkaline high-pH plume, complex mineral dissolution/precipitation patterns, cation exchange reactions and proton surface complexation. These reactions lead to large changes in porosity which can even lead to pore clogging. Model results show that magnetite, the main corrosion product, precipitates and reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The zones affected by pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces at 1 Ma are equal to 10, 25 and 25 mm thick, respectively. The results of our simulations share many of the features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Narrow alteration zones; and 2) Pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces.

  6. Scaffold Translation: Barriers Between Concept and Clinic

    PubMed Central

    Murphy, William L.

    2011-01-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. PMID:21902613

  7. To Educate Engineers or to Engineer Educators?: Exploring Access to Engineering Careers

    ERIC Educational Resources Information Center

    Eastman, Michael G.; Christman, Jeanne; Zion, George H.; Yerrick, Randy

    2017-01-01

    Although studies claim increases in underrepresented populations choosing STEM majors, barriers to retention, and higher education degree completion in STEM still exist. This study examined efforts of a prominent technical university to attract and retain urban high school graduates through a tuition scholarship program. We sought to determine the…

  8. The Transferability and Retraining of Defense Engineers.

    ERIC Educational Resources Information Center

    Rittenhouse, Carl H.

    This study was undertaken to describe any special barriers to the transfer of engineers from defense to commercial work, and to evaluate retraining and reorientation techniques that might help ease the transfer. Interviews and questionnaires were used to obtain data from about 2,100 engineers and 100 managers in 14 industries. Characteristics,…

  9. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-03-01

    A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, nine national laboratories, and numerous industry and academic partners to more rapidly identify commercially viable solutions. This multi-year project will provide industry with the scientific underpinnings required tomore » move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions.« less

  10. Optimal design of wind barriers using 3D computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fang, H.; Wu, X.; Yang, X.

    2017-12-01

    Desertification is a significant global environmental and ecological problem that requires human-regulated control and management. Wind barriers are commonly used to reduce wind velocity or trap drifting sand in arid or semi-arid areas. Therefore, optimal design of wind barriers becomes critical in Aeolian engineering. In the current study, we perform 3D computational fluid dynamics (CFD) simulations for flow passing through wind barriers with different structural parameters. To validate the simulation results, we first inter-compare the simulated flow field results with those from both wind-tunnel experiments and field measurements. Quantitative analyses of the shelter effect are then conducted based on a series of simulations with different structural parameters (such as wind barrier porosity, row numbers, inter-row spacing and belt schemes). The results show that wind barriers with porosity of 0.35 could provide the longest shelter distance (i.e., where the wind velocity reduction is more than 50%) thus are recommended in engineering designs. To determine the optimal row number and belt scheme, we introduce a cost function that takes both wind-velocity reduction effects and economical expense into account. The calculated cost function show that a 3-row-belt scheme with inter-row spacing of 6h (h as the height of wind barriers) and inter-belt spacing of 12h is the most effective.

  11. Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Steve Stecura

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Miller, Robert A.

    2017-01-01

    Thermal barrier coatings are widely used in all turbine engines, typically using a 7 wt% Y2O3-ZrO2 formulation. Extensive research and development over many decades have refined the processing and structure of these coatings for increased durability and reliability. New compositions demonstrate some unique advantages and are gaining in application. However, the "7YSZ" formulation predominates and is still in widespread use. This special composition has been universally found to produce nanoscale precipitates of metastable t' tetragonal phase, giving rise to a unique toughening mechanism via ferro-elastic switching under stress. This note recalls the original study that identified superior properties of 6 to 8 wt% YSZ plasma sprayed thermal barrier coatings, published in 1978. The impact of this discovery, arguably, continues in some form to this day. At one point, 7YSZ thermal barrier coatings were used in every new aircraft and ground power turbine engine produced worldwide. It is a tribute to its inventor, Dr. Stephan J. Stecura, NASA retiree.

  12. CaO-MgO-Al 2O 3-SiO 2 (CMAS) corrosion of Gd 2Zr 2O 7 and Sm 2Zr 2O 7

    DOE PAGES

    Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; ...

    2016-08-08

    Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al 2O 3-SiO 2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd 2Zr 2O 7 and Sm 2Zr 2O 7more » in CMAS is studied. Here, the results show that the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less

  13. Ambulatory Antibiotic Stewardship through a Human Factors Engineering Approach: A Systematic Review.

    PubMed

    Keller, Sara C; Tamma, Pranita D; Cosgrove, Sara E; Miller, Melissa A; Sateia, Heather; Szymczak, Julie; Gurses, Ayse P; Linder, Jeffrey A

    2018-01-01

    In the United States, most antibiotics are prescribed in ambulatory settings. Human factors engineering, which explores interactions between people and the place where they work, has successfully improved quality of care. However, human factors engineering models have not been explored to frame what is known about ambulatory antibiotic stewardship (AS) interventions and barriers and facilitators to their implementation. We conducted a systematic review and searched OVID MEDLINE, Embase, Scopus, Web of Science, and CINAHL to identify controlled interventions and qualitative studies of ambulatory AS and determine whether and how they incorporated principles from a human factors engineering model, the Systems Engineering Initiative for Patient Safety 2.0 model. This model describes how a work system (ambulatory clinic) contributes to a process (antibiotic prescribing) that leads to outcomes. The work system consists of 5 components, tools and technology, organization, person, tasks, and environment, within an external environment. Of 1,288 abstracts initially identified, 42 quantitative studies and 17 qualitative studies met inclusion criteria. Effective interventions focused on tools and technology (eg, clinical decision support and point-of-care testing), the person (eg, clinician education), organization (eg, audit and feedback and academic detailing), tasks (eg, delayed antibiotic prescribing), the environment (eg, commitment posters), and the external environment (media campaigns). Studies have not focused on clinic-wide approaches to AS. A human factors engineering approach suggests that investigating the role of the clinic's processes or physical layout or external pressures' role in antibiotic prescribing may be a promising way to improve ambulatory AS. © Copyright 2018 by the American Board of Family Medicine.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Jeffrey

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed tomore » achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70, Taurus 65, Titan 130, Titan 250 and Mercury 50). This TBC coating system significantly outperformed all other TBC systems evaluated under the program. The initial field unit, with the 40 mil advanced TBC developed under this program, has far exceeded the 4,000-hour requirement of the program, accumulating over 20,000 hours of commercial operation at Qualcomm Inc. in San Diego, CA. The 40 mil advanced TBC remains in excellent condition, with no evidence of chipping or spalling. The engine will continue operation until the unit is due for overhaul at approximately 30,000 hours. The Oxide Dispersion Strengthened (ODS) alloy injector tip testing and evaluation was also successful, however, the ODS injector tip development on this program was terminated, primarily due to the fact that the Mercury 50 injector tip was redesigned (Generation 3) by Combustion Engineering.« less

  15. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  16. Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Fischer, D.D.; Crawford, R.C.

    1982-06-01

    Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier tomore » mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.« less

  17. New course in bioengineering and bioinspired design.

    PubMed

    Erickson, Jonathan C

    2012-01-01

    The past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs. Two (among many) examples are how the adhesion of the gecko foot inspired a new class of adhesives based on Van der Waals forces; and how the iridophore protein plates found in mimic octopus and squid act as tunable ¼ wave stacks, thus inspiring the engineering of optically tunable block copolymer gels for sensing temperature, pressure, or chemical gradients. A major component of this course is the integration of a 6-8 week long research project. To date, projects have included engineering: a soft-body robot whose motion mimics the inchworm; an electrical circuit to sense minute electric fields in aqueous environments based on the shark electrosensory system; and cyborg grasshoppers whose jump motion is controlled via an electronic-neural interface. Initial feedback has indicated that this course has served to increase student interaction and “cross-pollination” of ideas between the physical and life sciences. Student feedback also indicated a marked increase in desire and confidence to continue to pursue problems at the boundary of biology and engineering—bioengineering.

  18. On-Site Fuel Cell Energy Systems: The U.S. Air Force Field Test Demonstration Plan.

    DTIC Science & Technology

    1980-12-01

    Continue on reverse -, de if necessary and identify by block number) Fuel cells Cogererati on Energy conversion ABSTRACT (Continue an reverse ide If...fuel electrode, water at the oxygen electrode, and to act as a mechanical barrier between the two gases to prevent mixing and direct combustion . When the...possibility of more effective utilization of hydrocarbon fuels, especially when compared with the alternative heat engine combustion technologies. Figure 12

  19. The SKI repository performance assessment project Site-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, J.; Dverstorp, B.; Sjoeblom, R.

    1995-12-01

    SITE-94 is a research project conducted as a performance assessment of a hypothetical repository for spent nuclear fuel, but with real pre-excavation data from a real site. The geosphere, the engineered barriers and the processes for radionuclide release and transport comprise an integrated interdependent system, which is described by an influence diagram (PID) that reflects how different Features, Events or Processes (FEPs) inside the system interact. Site evaluation is used to determine information of transport paths in the geosphere and to deliver information on geosphere interaction with the engineered barriers. A three-dimensional geological structure model of the site as wellmore » as alternative conceptual models consistent with the existing hydrological field data, have been analyzed. Groundwater chemistry is evaluated and a model, fairly consistent with the flow model, for the origin of the different waters has been developed. The geological structure model is also used for analyzing the mechanical stability of the site. Several phenomena of relevance for copper corrosion in a repository environment have been investigated. For Reference Case conditions and regardless of flow variability, output is dominated by I-129, which, for a single canister, may give rise to drinking water well doses in the order of 10{sup -6}Sv/yr. Finally, it appears that the procedures involved in the development of influence diagrams may be a promising tool for quality assurance of performance assessments.« less

  20. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE PAGES

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; ...

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe 2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe 2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe 2 and EG. Vertical transport measurements across the WSe 2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supportedmore » by density functional theory that predicts a 1.6 eV barrier for transport from WSe 2 to graphene.« less

  1. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  2. Performance Stability of Silicone Oxide-Coated Plastic Parenteral Vials.

    PubMed

    Weikart, Christopher M; Pantano, Carlo G; Shallenberger, Jeff R

    2017-01-01

    A new packaging system was developed for parenteral pharmaceuticals that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. The demand for this product is driven by the expanding market, regulatory constraints, and product recalls for injectable drugs and biologics packaged in traditional glass materials. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. LAY ABSTRACT: A new packaging system for parenteral pharmaceuticals was developed that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. © PDA, Inc. 2017.

  3. Bioreactor engineering as an enabling technology to tap biodiversity. The case of taxol.

    PubMed

    Shuler, M L

    1994-11-30

    One barrier to exploiting the chemical and genetic diversity in nature is the difficulty of cultivating many organisms in a controlled manner. In some cases it is difficult to achieve growth. In many others, good growth is achieved, but the expression of the organism's genetic potential to make a desired product is not realized. The thesis of this paper is that a coupling of an understanding of reactor engineering principles with the basic knowledge of the biology is often necessary to circumvent these barriers. In many cases the construction of appropriate cultivation systems is a necessary step to better understanding of cellular physiology. In some cases the chemical of interest is of high social utility and comes from a natural source that is uncommon and difficult to secure. In these cases a method of controlled cultivation becomes a prerequisite for commercial exploitation. These points were illustrated using a taxol. Taxol is an important new anticancer drug whose development has been greatly impeded by supply problems. Taxol has been derived from the park of the pacific yew tree, a process that kills the tree. The pacific yew is a relatively uncommon tree and very slow growing. One alternative to the natural source is plant cell culture. Such cultures can produce significant levels of taxol with substantial release into the medium. Taxane products not observed in typical extracts from field-grown plants can be found in cell cultures, indicating the potential unmasking of pathways. These cultures are quite responsive to changes in their environments as illustrated by the summary of initial observations. With regard to natural compounds, biochemical engineers can play a major role in the capture and preservation of producing systems, in the discovery of useful compounds, and in providing the basis for commercial production of natural compounds.

  4. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  5. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    NASA Technical Reports Server (NTRS)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  6. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-11-17

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  7. Automation U.S.A.: Overcoming Barriers to Automation.

    ERIC Educational Resources Information Center

    Brody, Herb

    1985-01-01

    Although labor unions and inadequate technology play minor roles, the principal barrier to factory automation is "fear of change." Related problems include long-term benefits, nontechnical executives, and uncertainty of factory cost accounting. Industry support for university programs is helping to educate engineers to design, implement, and…

  8. Diffusion-Limited Cargo Loading of an Engineered Protein Container.

    PubMed

    Zschoche, Reinhard; Hilvert, Donald

    2015-12-30

    The engineered bacterial nanocompartment AaLS-13 is a promising artificial encapsulation system that exploits electrostatic interactions for cargo loading. In order to study its ability to take up and retain guests, a pair of fluorescent proteins was developed which allows spectroscopic determination of the extent of encapsulation by Förster resonance energy transfer (FRET). The encapsulation process is generally complete within a second, suggesting low energetic barriers for proteins to cross the capsid shell. Formation of intermediate aggregates upon mixing host and guest in vitro complicates capsid loading at low ionic strength, but can be sidestepped by increasing salt concentrations or diluting the components. Encapsulation of guests is completely reversible, and the position of the equilibrium is easily tuned by varying the ionic strength. These results, which challenge the notion that AaLS-13 is a continuous rigid shell, provide valuable information about cargo loading that will guide ongoing efforts to engineer functional host-guest complexes. Moreover, it should be possible to adapt the protein FRET pair described in this report to characterize functional capsid-cargo complexes generated by other encapsulation systems.

  9. Process engineering concerns in the lunar environment

    NASA Technical Reports Server (NTRS)

    Sullivan, T. A.

    1990-01-01

    The paper discusses the constraints on a production process imposed by the lunar or Martian environment on the space transportation system. A proposed chemical route to produce oxygen from iron oxide bearing minerals (including ilmenite) is presented in three different configurations which vary in complexity. A design for thermal energy storage is presented that could both provide power during the lunar night and act as a blast protection barrier for the outpost. A process to release carbon from the lunar regolith as methane is proposed, capitalizing on the greater abundance and favorable physical properties of methane relative to hydrogen to benefit the entire system.

  10. Resistance of Metallic Screens in a Cryogenic Flow

    NASA Astrophysics Data System (ADS)

    Fischer, Alexander; Stief, Malte

    The propellant behaviour in cryogenic upper stages tanks imposes challenging requirements on the design, especially for future upper stages designed for multiple restarts and long ballistic flight phases. The main challenge is the supply of the propellants to the feed system prior to the engine reignition. During the entire mission the engine requires a gaseous and bubble free liquid supply of propellant at the required thermodynamic conditions. The current research focus is to prepare the initial steps for the maturation of the Propellant Management Device (PMD) technology for cryogenic tank systems. Main components of such a PMD are metallic screens. The metallic screens are used as barrier for any gas bubbles within the fluid stream approaching the space craft engines. The screen characteristics are of fundamental importance for the PMD and feed system design. The paper presents a summary on available experimental screen data with regard to the flow resistance and gives a comparison with theoretical and empirical predictions found in literature. The lack on comparable data with regard to space craft applications and the need on further research with cryogenic flows is demonstrated. The DLR Institute of Space Systems is preparing various cryogenic tests to collect the desired information about the flow properties of such metallic screens. The planned test setup and the foreseen experiments will be presented.

  11. Co-Optimization of Fuels and Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John

    2016-03-24

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less

  12. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.

    1985-01-01

    Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.

  13. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    ERIC Educational Resources Information Center

    Kelly, Jacquelyn

    2012-01-01

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to…

  14. A Qatari Perspective on Women in the Engineering Pipeline: An Exploratory Study

    ERIC Educational Resources Information Center

    Sulaiman, Noor Fauziah; AlMuftah, Hend

    2010-01-01

    Under-representation of women in engineering has received a great deal of attention, but remained limited largely to a Western context. Thus, this article aims to unveil the barriers to progress, tracking the performance and the emerging trend of success at the undergraduate level of women in engineering in a different cultural dimension.…

  15. Barriers to the Implementation of Project Lead the Way as Perceived by Indiana High School Principals

    ERIC Educational Resources Information Center

    Shields, C. J.

    2007-01-01

    Technology education (TE) has come to encompass many facets of curriculum, ranging from industrial arts (IA) to integrating problem-solving and engineering concepts into the curriculum. For technology educators who have chosen the pre-engineering problem-solving route there is a pre-engineering curriculum called Project Lead The Way (PLTW), that…

  16. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers.

    PubMed

    MacEwan, Sarah R; Chilkoti, Ashutosh

    2017-06-06

    The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fatigue in hospital nurses - 'Supernurse' culture is a barrier to addressing problems: A qualitative interview study.

    PubMed

    Steege, Linsey M; Rainbow, Jessica G

    2017-02-01

    Fatigue in hospital nurses is associated with decreased nurse satisfaction, increased turnover and negative patient outcomes. Addressing fatigue in nurses has been identified as a priority by many organizations worldwide in an effort to promote both a culture of patient safety and a healthy nursing workforce. The overall aim of this study was to explore barriers and facilitators within the hospital nurse work system to nurse coping and fatigue. The purpose of this paper is to describe emergent themes that offer new insight describing the relationships among nurse perceptions of fatigue, nursing professional culture, and implications for the nursing workforce. A qualitative exploratory study was used to explore nurse identified sources, barriers to addressing, and consequences of fatigue. Twenty-two nurses working in intensive care and medical-surgical units within a large academic medical center in the United States participated in the interviews. Interviews with the participants followed a semi-structured interview guide that included questions eliciting participants' views on nurse fatigue levels, consequences of fatigue, and barriers to addressing fatigue. The interview transcripts were analyzed using directed content analysis guided by the Systems Engineering Initiative for Patient Safety (SEIPS) model. Additional themes that did not directly align with the SEIPS model were also identified. All nurses in the current study experienced fatigue; yet they had varying perspectives on the importance of addressing fatigue in relation to other health systems challenges. A new construct related to nursing professional culture was identified and defined as "Supernurse". Identified subthemes of Supernurse include: extraordinary powers used for good; cloak of invulnerability; no sidekick; Kryptonite, and an alterego. These values, beliefs, and behaviors define the specific aspects of nursing professional culture that can act as barriers to fatigue risk management programs and achieving safety culture in hospital organizations. Nurse fatigue and attributes of nurse professional culture also have implications for nurse satisfaction and retention. Findings from this study further support the role of nursing professional culture as an important barrier to effectively addressing fatigue in nursing work systems. Future work is needed to identify and evaluate innovative culture change models and strategies to target these barriers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Overview of ORNL/NRC programs addressing durability of concrete structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, D.J.; Oland, C.B.

    1994-06-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal.

  19. Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2013-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.

  20. Ceramic thermal-barrier coatings for cooled turbines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1976-01-01

    Coating systems consisting of a plasma sprayed layer of zirconia stabilized with either yttria, magnesia or calcia over a thin alloy bond coat have been developed, their potential was analyzed and their durability and benefits evaluated in a turbojet engine. The coatings on air cooled rotating blades were in good condition after completing as many as 500 two-minute cycles of engine operation between full power at a gas temperature of 1644 K and flameout, or as much as 150 hours of steady state operation on cooled vanes and blades at gas temperatures as high as 1644 K with 35 start and stop cycles. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  1. Updating the Behavior Engineering Model.

    ERIC Educational Resources Information Center

    Chevalier, Roger

    2003-01-01

    Considers Thomas Gilbert's Behavior Engineering Model as a tool for systematically identifying barriers to individual and organizational performance. Includes a detailed case study and a performance aid that incorporates gap analysis, cause analysis, and force field analysis to update the original model. (Author/LRW)

  2. Engineering an in vitro air-blood barrier by 3D bioprinting

    PubMed Central

    Horváth, Lenke; Umehara, Yuki; Jud, Corinne; Blank, Fabian; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-01-01

    Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing. PMID:25609567

  3. High Temperature Degradation of Advanced Thermal and Environmental Barrier Coatings (TEBCs) by CaO-MgO-Al2O3-SiO2 (CMAS)

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Zhu, Dongming

    2017-01-01

    There is increasing interest in the degradation studies of thermal and environmental barrier coatings (TEBCs) of gas turbines by molten CaO-MgO-Al2O3-SiO2 (CMAS). CMAS minerals are usually referred as silica-containing sand dust and volcano ash materials that are carried by the intake air into gas turbines, e.g. aircraft engines. The low-melting deposits react at high temperatures (1000C) with the coating materials. This causes degradation and accelerated coating failure of the static and rotating components of the turbine engines. We discuss some preliminary results of the reactions between CMAS and Rare-Earth (RE Y, Yb, Dy, Gd, Nd and Sm) oxide stabilized ZrO2 or HfO2 systems, and the stability of the resulting oxides and silicates. Plasma sprayed hollow tube samples (outer diameter 4.7 mm, wall thickness 0.76 mm and 26 mm height) were half filled with CMAS powder, wrapped and sealed with platinum foil, and heat- treated at 1310 C for 5h. Samples were characterized by differential scanning calorimetry, X-ray diffraction and cross section electron microscopy analysis.

  4. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  5. Mapping Remote and Multidisciplinary Learning Barriers: Lessons from "Challenge-Based Innovation" at CERN

    ERIC Educational Resources Information Center

    Jensen, Matilde Bisballe; Utriainen, Tuuli Maria; Steinert, Martin

    2018-01-01

    This paper presents the experienced difficulties of students participating in the multidisciplinary, remote collaborating engineering design course challenge-based innovation at CERN. This is with the aim to identify learning barriers and improve future learning experiences. We statistically analyse the rated differences between distinct design…

  6. Perceived Gender and Racial/Ethnic Barriers to STEM Success

    ERIC Educational Resources Information Center

    Grossman, Jennifer M.; Porche, Michelle V.

    2014-01-01

    This mixed-methods study examined urban adolescents' perceptions of gender and racial/ethnic barriers to STEM (science, technology, engineering, and mathematics) success, and their meaning-making and coping regarding these experiences. The sample includes surveys from 1024 high school-aged students and interviews from 53 students. Logistic…

  7. Evaluation of Subsurface Engineered Barriers at Waste Sites

    DTIC Science & Technology

    1998-08-01

    28 3-4 MATRIX FOR EVALUATING BARRIER CQA/CQC AGAINST ACCEPTABLE INDSUTRY PRACTICES...STANDARDS................................................................. 66 4-2 MATRIX FOR EVALUATING CAP AGAINST ACCEPTABLE INDSUTRY PRACTICES...stated previously, the most widely used technique for containment is the soil-bentonite slurry wall. It is typically the most economical , utilizes low

  8. Regional Interdependence in Adaptation to Sea Level Rise and Coastal Flooding

    NASA Astrophysics Data System (ADS)

    Stacey, M. T.; Lubell, M.; Hummel, M.; Wang, R. Q.; Barnard, P.; Erikson, L. H.; Herdman, L.; Pozdnukhov, A.; Sheehan, M.

    2017-12-01

    Projections of sea level rise may differ in the pace of change, but there is clear consensus that coastal communities will be facing more frequent and severe flooding events in the coming century. As communities adapt to future conditions, infrastructure systems will be developed, modified and abandoned, with important consequences for services and resilience. Whether action or inaction is pursued, the decisions made by an individual community regarding a single infrastructure system have implications that extend spatially and temporally due to geographic and infrastructure system interactions. At the same time, there are a number of barriers to collective or coordinated action that inhibit regional solutions. This interplay between local actions and regional responses is one of the great challenges facing decision-makers grappling with both local and regional climate-change adaptation. In this talk, I present case studies of the San Francisco Bay Area that examine how shoreline infrastructure, transporation sytems and decision-making networks interact to define the regional response to local actions and the local response to regional actions. I will characterize the barriers that exist to regional solutions, and characterize three types of interdependence that may motivate decision-makers to overcome those barriers. Using these examples, I will discuss the importance of interdisciplinary analyses that integrate the natural sciences, engineering and the social science to climate change adaptation more generally.

  9. Sediment data collected in 2010 from Cat Island, Mississippi

    USGS Publications Warehouse

    Buster, Noreen A.; Kelso, Kyle W.; Miselis, Jennifer L.; Kindinger, Jack G.

    2014-01-01

    Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, in collaboration with the U.S. Army Corps of Engineers, conducted geophysical and sedimentological surveys in 2010 around Cat Island, Mississippi, which is the westernmost island in the Mississippi-Alabama barrier island chain. The objective of the study was to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico by identifying relationships between the geologic history, present day morphology, and sediment distribution. This data series serves as an archive of terrestrial and marine sediment vibracores collected August 4-6 and October 20-22, 2010, respectively. Geographic information system data products include marine and terrestrial core locations and 2007 shoreline data. Additional files include marine and terrestrial core description logs, core photos, results of sediment grain-size analyses, optically stimulated luminescence dating and carbon-14 dating locations and results, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.

  10. Development of strain tolerant thermal barrier coating systems, tasks 1 - 3

    NASA Technical Reports Server (NTRS)

    Anderson, N. P.; Sheffler, K. D.

    1983-01-01

    Insulating ceramic thermal barrier coatings can reduce gas turbine airfoil metal temperatures as much as 170 C (about 300 F), providing fuel efficiency improvements greater than one percent and durability improvements of 2 to 3X. The objective was to increase the spalling resistance of zirconia based ceramic turbine coatings. To accomplish this, two baseline and 30 candidate duplex (layered MCrAlY/zirconia based ceramic) coatings were iteratively evaluated microstructurally and in four series of laboratory burner rig tests. This led to the selection of two candidate optimized 0.25 mm (0.010 inch) thick plasma sprayed partially stabilized zirconia ceramics containing six weight percent yttria and applied with two different sets of process parameters over a 0.13 mm (0.005 inch) thick low pressure chamber sprayed MCrAlY bond coat. Both of these coatings demonstrated at least 3X laboratory cyclic spalling life improvement over the baseline systems, as well as cyclic oxidation life equivalent to 15,000 commercial engine flight hours.

  11. A qualitative assessment of a community pharmacy cognitive pharmaceutical services program, using a work system approach.

    PubMed

    Chui, Michelle A; Mott, David A; Maxwell, Leigh

    2012-01-01

    Although lack of time, trained personnel, and reimbursement have been identified as barriers to pharmacists providing cognitive pharmaceutical services (CPS) in community pharmacies, the underlying contributing factors of these barriers have not been explored. One approach to better understand barriers and facilitators to providing CPS is to use a work system approach to examine different components of a work system and how the components may impact care processes. The goals of this study were to identify and describe pharmacy work system characteristics that pharmacists identified and changed to provide CPS in a demonstration program. A qualitative approach was used for data collection. A purposive sample of 8 pharmacists at 6 community pharmacies participating in a demonstration program was selected to be interviewed. Each semistructured interview was audio recorded and transcribed, and the text was analyzed in a descriptive and interpretive manner by 3 analysts. Themes were identified in the text and aligned with 1 of 5 components of the Systems Engineering Initiative for Patient Safety (SEIPS) work system model (organization, tasks, tools/technology, people, and environment). A total of 21 themes were identified from the interviews, and 7 themes were identified across all 6 interviews. The organization component of the SEIPS model contained the most (n=10) themes. Numerous factors within a pharmacy work system appear important to enable pharmacists to provide CPS. Leadership and foresight by the organization to implement processes (communication, coordination, planning, etc.) to facilitate providing CPS was a key finding across the interviews. Expanding technician responsibilities was reported to be essential for successfully implementing CPS. To be successful in providing CPS, pharmacists must be cognizant of the different components of the pharmacy work system and how these components influence providing CPS. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A qualitative assessment of a community pharmacy cognitive pharmaceutical services program, using a work system approach

    PubMed Central

    Chui, Michelle A.; Mott, David A.; Maxwell, Leigh

    2012-01-01

    Background Although lack of time, trained personnel, and reimbursement have been identified as barriers to pharmacists providing cognitive pharmaceutical services (CPS) in community pharmacies, the underlying contributing factors of these barriers have not been explored. One approach to better understand barriers and facilitators to providing CPS is to use a work system approach to examine different components of a work system and how the components may impact care processes. Objectives The goals of this study were to identify and describe pharmacy work system characteristics that pharmacists identified and changed to provide CPS in a demonstration program. Methods A qualitative approach was used for data collection. A purposive sample of 8 pharmacists at 6 community pharmacies participating in a demonstration program was selected to be interviewed. Each semistructured interview was audio recorded and transcribed, and the text was analyzed in a descriptive and interpretive manner by 3 analysts. Themes were identified in the text and aligned with 1 of 5 components of the Systems Engineering Initiative for Patient Safety (SEIPS) work system model (organization, tasks, tools/technology, people, and environment). Results A total of 21 themes were identified from the interviews, and 7 themes were identified across all 6 interviews. The organization component of the SEIPS model contained the most (n = 10) themes. Numerous factors within a pharmacy work system appear important to enable pharmacists to provide CPS. Leadership and foresight by the organization to implement processes (communication, coordination, planning, etc.) to facilitate providing CPS was a key finding across the interviews. Expanding technician responsibilities was reported to be essential for successfully implementing CPS. Conclusions To be successful in providing CPS, pharmacists must be cognizant of the different components of the pharmacy work system and how these components influence providing CPS. PMID:21824822

  13. Thermal Barrier Coatings Resistant to Glassy Deposits

    NASA Astrophysics Data System (ADS)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or anorthite phases. In fact, it will be shown that if the industrial standard 7YSZ coatings contained more Y2O3 they would be very effective in stopping CMAS penetration. Lastly, thermal cyclic testing of 7YSZ and YSZ+20Al+5Ti TBCs reveals that partially CMAS-impregnated TBCs can survive mechanically if cycled in thermal gradient while in most isothermal tests they would fail. Since parts in a jet engine are in a thermal gradient, this type of testing should be performed on future CMAS resistant TBCs.

  14. KSC-2012-1598

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. -- -- Tim Wright, a United Space Alliance engineering manager at NASA's Kennedy Space Center in Florida, explains the properties of the thermal barriers that will be installed to the backshell of the Orion Multi-Purpose Crew Vehicle's Exploration Flight Test EFT-1 capsule. The work to manufacture and inspect the tiles is taking place in Kennedy's Thermal Protection System Facility. EFT-1 will be used during Orion's first test flight in space. For more information, visit www.nasa.gov/orion. Photo credit: Frankie Martin

  15. Prototype Engineered Barrier System Field Test (PEBSFT); Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, A.L.; Buscheck, T.; Carlson, R.

    1991-08-01

    This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity andmore » attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.« less

  16. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    PubMed

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (<7.5 mg/L) and high current (>45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  17. The future of fish passage science, engineering, and practice

    USGS Publications Warehouse

    Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore R.; Katopodis, Christos; Baumgartner, Lee J.; Thiem, Jason D.; Aarestrup, Kim; Pompeu, Paulo S.; O'Brien, Gordon C.; Braun, Douglas C.; Burnett, Nicholas J.; Zhu, David Z.; Fjeldstad, Hans-Petter; Forseth, Torbjorn; Rajarathnam, Nallamuthu; Williams, John G.; Cooke, Steven J.

    2018-01-01

    Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i.e., biology, ecology, physiology, ecohydraulics, engineering) and from different continents (i.e., North and South America, Europe, Africa, Australia) identified knowledge gaps and provided a roadmap for research priorities and technical developments. Once dominated by an engineering‐focused approach, fishway science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South‐East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post‐passage impacts, requires adaptive management and continued innovation. While the use of fishways in river restoration demands a transition towards fish passage at the community scale, advances in selective fishways are also needed to manage invasive fish colonization. Because of the erroneous view in some literature and communities of practice that fish passage is largely a proven technology, improved international collaboration, information sharing, method standardization and multidisciplinary training are needed. Further development of regional expertise is needed in South America, Asia and Africa where hydropower dams are currently being planned and constructed.

  18. Scaffold translation: barriers between concept and clinic.

    PubMed

    Hollister, Scott J; Murphy, William L

    2011-12-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.

  19. Life modeling of thermal barrier coatings for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1989-01-01

    Thermal barrier coating life models developed under the NASA Lewis Research Center's Hot Section Technology (HOST) Program are summarized. An initial laboratory model and three design-capable models are discussed. Current understanding of coating failure mechanisms are also summarized. The materials and structural aspects of thermal barrier coatings have been successfully integrated under the HOST program to produce models which may now or in the near future be used in design. Efforts on this program continue at Pratt and Whitney Aircraft where their model is being extended to the life prediction of physical vapor deposited thermal barrier coatings.

  20. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    NASA Astrophysics Data System (ADS)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  1. Low-Thermal-Conductivity Pyrochlore Oxide Materials Developed for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2005-01-01

    When turbine engines operate at higher temperatures, they consume less fuel, have higher efficiencies, and have lower emissions. The upper-use temperatures of the base materials (superalloys, silicon-based ceramics, etc.) used for the hot-section components of turbine engines are limited by the physical, mechanical, and corrosion characteristics of these materials. Thermal barrier coatings (TBCs) are applied as thin layers on the surfaces of these materials to further increase the operating temperatures. The current state-of-the-art TBC material in commercial use is partially yttria-stabilized zirconia (YSZ), which is applied on engine components by plasma spraying or by electron-beam physical vapor deposition. At temperatures higher than 1000 C, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective. The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating s durability significantly. Alternate TBC materials with lower thermal conductivity and better sintering resistance are needed to further increase the operating temperature of turbine engines.

  2. Crossing the barrier between the laboratory working model and the practicable production model

    NASA Astrophysics Data System (ADS)

    Curby, William A.

    1992-12-01

    Transforming apparatus that has developed into a successfully working laboratory system into a system that is ready, or nearly ready for production, distribution and general use is not always accomplished in a cost effective or timely fashion. Several design elements must be considered interactively during the planning, construction, use and servicing of the final production form of the system. The basic design elements are: Operating Specifications, Reliability Factors, Safety Factors, Precision Limits, Accuracy Limits, Uniformity Factors, Cost Limits and Calibration Requirements. Secondary elements including: Human Engineering, Documentation, Training, Maintenance, Proprietary Rights, Protection, Marketing, Replacement of Parts, and Packing and Shipping must also be considered during the transition.

  3. Delamination-Indicating Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2007-01-01

    The risk of premature failure of thermal barrier coatings (TBCs), typically composed of yttria-stabilized zirconia (YSZ), compromises the reliability of TBCs used to provide thermal protection for turbine engine components. Unfortunately, TBC delamination proceeds well beneath the TBC surface and cannot be monitored by visible inspection. Nondestructive diagnostic tools that could reliably probe the subsurface damage state of TBCs would alleviate the risk of TBC premature failure by indicating when the TBC needs to be replaced before the level of TBC damage threatens engine performance or safety. To meet this need, a new coating design for thermal barrier coatings (TBCs) that are self-indicating for delamination has been successfully implemented by incorporating a europium-doped luminescent sublayer at the base of a TBC composed of YSZ. The luminescent sublayer has the same YSZ composition as the rest of the TBC except for the addition of low-level europium doping and therefore does not alter TBC performance.

  4. Conceptual model analysis of interaction at a concrete-Boom Clay interface

    NASA Astrophysics Data System (ADS)

    Liu, Sanheng; Jacques, Diederik; Govaerts, Joan; Wang, Lian

    In many concepts for deep disposal of high-level radioactive waste, cementitious materials are used in the engineered barriers. For example, in Belgium the engineered barrier system is based on a considerable amount of cementitious materials as buffer and backfill in the so-called supercontainer embedded in the hosting geological formation. A potential hosting formation is Boom Clay. Insight in the interaction between the high-pH pore water of the cementitious materials and neutral-pH Boom Clay pore water is required. Two problems are quite common for modeling of such a system. The first one is the computational cost due to the long timescale model assessments envisaged for the deep disposal system. Also a very fine grid (in sub-millimeter), especially at interfaces has to be used in order to accurately predict the evolution of the system. The second one is whether to use equilibrium or kinetic reaction models. The objectives of this paper are twofold. First, we develop an efficient coupled reactive transport code for this diffusion-dominated system by making full use of multi-processors/cores computers. Second, we investigate how sensitive the system is to chemical reaction models especially when pore clogging due to mineral precipitation is considered within the cementitious system. To do this, we selected two portlandite dissolution models, i.e., equilibrium (fastest) and diffusion-controlled model with precipitation of a calcite layer around portlandite particles (diffusion-controlled dissolution). The results show that with shrinking core model portlandite dissolution and calcite precipitation are much slower than with the equilibrium model. Also diffusion-controlled dissolution smooths out dissolution fronts compared to the equilibrium model. However, only a slight difference with respect to the clogging time can be found even though we use a very small diffusion coefficient (10-20 m2/s) in the precipitated calcite layer.

  5. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  6. Copper and zinc removal from roof runoff: from research to full-scale adsorber systems.

    PubMed

    Steiner, M; Boller, M

    2006-01-01

    Large, uncoated copper and zinc roofs cause environmental problems if their runoff is infiltrated into the underground or discharged into receiving waters. Since source control is not always feasible, barrier systems for efficient copper and zinc removal are recommended in Switzerland. During the last few years, research carried out in order to test the performance of GIH-calcite adsorber filters as a barrier system. Adsorption and mass transport processes were assessed and described in a mathematical model. However, this model is not suitable for practical design, because it does not give explicit access to design parameters such as adsorber diameter and adsorber bed depth. Therefore, for e.g. engineers, an easy to use design guideline for GIH-calcite adsorber systems was developed, mainly based on the mathematical model. The core of this guideline is the design of the depth of the GIH-calcite adsorber layer. The depth is calculated by adding up the GIH depth for sorption equilibrium and the depth for the mass transfer zone (MTZ). Additionally, the arrangement of other adsorber system components such as particle separation and retention volume was considered in the guideline. Investigations of a full-scale adsorber confirm the successful application of this newly developed design guideline for the application of GIH-calcite adsorber systems in practice.

  7. Space shuttle electrical power generation and reactant supply system

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.

  8. Integrated Sensitivity Analysis Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest J.; Hoffman, Edward L.; Gibson, Marcus J.

    2014-08-01

    Sensitivity analysis is a crucial element of rigorous engineering analysis, but performing such an analysis on a complex model is difficult and time consuming. The mission of the DART Workbench team at Sandia National Laboratories is to lower the barriers to adoption of advanced analysis tools through software integration. The integrated environment guides the engineer in the use of these integrated tools and greatly reduces the cycle time for engineering analysis.

  9. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors.

    PubMed

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-03

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  10. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    NASA Astrophysics Data System (ADS)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  11. Youth Exploring Science

    NASA Astrophysics Data System (ADS)

    Miller, Diane

    2008-04-01

    This session features Youth Exploring Science (YES), Saint Louis Science Center's nationally recognized work-based teen development program. In YES, underserved audiences develop interest and understanding in physics through design engineering projects. I will discuss breaking down barriers, helping youth develop skills, and partnering with community organizations, universities and engineering firms.

  12. Thermochemistry of Calcium-Magnesium-Aluminum-Silicate (CMAS) and Components of Advanced Thermal and Environmental Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo C. C.; Acosta, Waldo A.; Zhu, Dongming; Ghoshal, Anindya

    2017-01-01

    There is increasing interest in the degradation mechanism studies of thermal and environmental barrier coatings (TEBCs) of gas turbines by molten CaO-MgO-Al(exp. 2)O(exp. 3)-SiO(exp. 2) CMAS). CMAS minerals are usually referred as silicon-containing sand dust and volcano ash materials that are carried by the intake air into gas turbines, e.g. in aircraft engines, and their deposits often react at high temperatures (greater than 1200 degrees C) with the engine turbine coating systems and components. The high temperature reactions causes degradation and accelerated failure of the static and rotating components of the turbine engines. We discuss some results of the reactions between the CMAS and Rare-Earth (RE = Y, Yb, Dy, Gd, Nd and Sm) - oxide stabilized ZrO(exp. 2) or HfO(exp. 2) systems, and the stability of the resulting oxides and silicates. Plasma sprayed hollow tube samples (outside diameter = 4.7 mm, wall thickness = 0.76 mm and = 26 mm height) were half filled with CMAS powder, wrapped and sealed with platinum foil, and heat treated at 1310 degrees C for 5h. Samples were characterized by differential scanning calorimetry (DSC), X-ray diffraction, and cross-section electron microscopy analysis and energy dispersive X-ray spectroscopy. It was found that CMAS penetrated the samples at the grain boundaries and dissolved the TEBC materials to form silicate phases containing the rare-earth elements. Furthermore, it was found that apatite crystalline phases were formed in the samples with total rare-earth content higher than 12 mol% in the reaction zone for the ZrO(exp. 2) system. In general, samples with the nominal compositions (30YSZ), HfO(exp. 2)-7Dy(exp. 2)O(exp. 2) and ZrO(exp. 2)-9.5Y(exp. 2)O(exp. 3)-2.25Gd(exp. 2)O(exp. 3)-2.25Yb(exp. 2)O(exp. 3) exhibited lower reactivity or more resistance to CMAS than the other coating compositions of this work.

  13. Engineering and Development Support of General Decon Technology for the U.S. Army’s Installation Restoration Program. Task 1. Literature Review on Ground Water Containment and Diversion Barriers.

    DTIC Science & Technology

    1982-04-01

    number) This report presents a review and evaluation of the available information on the use of physical and hydrological barriers for containment or...UNCLASSIFIED 1 $SCCuRITY CLASSIFICATION OF T.qiS *&GE When Daa Entered SUMMARY The available literature on methods for containment or diversion of ground...II. Preliminary Considerations for Installation of a Ground Water Containment or Diversion Barrier .. ... ....... ...... 13 III. Slurry-Trench Cutoff

  14. Influence of Temperature on CaO-MgO-Al2O3-SiO2 (CMAS) Corrosion on Thermal Barrier Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Honglong; Zhang, Xingxing; Agubra, Victor

    2015-10-23

    Higher operating temperature improves the energy efficiency in gas turbine engines and thermal barrier coatings are applied to protect the blades from high temperature and dust corrosion. Dust composed by CaO-MgO-Al2O3-SiO2 (CMAS) can melt and react with pyrochlore zirconates thermal barrier materials and degrade the performance or cause failure of the coatings. This paper discusses the relationship of the reaction product and corrosion temperature.

  15. Improving Safety through Human Factors Engineering.

    PubMed

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  16. Method of depositing a coating on Si-based ceramic composites

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Lau, Yuk-Chiu (Inventor); Spitsberg, Irene (Inventor); Henry, Arnold T. (Inventor)

    2004-01-01

    A process of depositing a coating system suitable for use as an environmental barrier coating on various substrate materials, particularly those containing silicon and intended for high temperature applications such as the hostile thermal environment of a gas turbine engine. The process comprises depositing a first coating layer containing mullite, and preferably a second coating layer of an alkaline earth aluminosilicate, such as barium-strontium-aluminosilicate (BSAS), by thermal spraying while maintaining the substrate at a temperature of 800.degree. C. or less, preferably 500.degree. C. or less, by which a substantially crack-free coating system is produced with desirable mechanical integrity.

  17. Prospects for the use of plant cell cultures in food biotechnology.

    PubMed

    Davies, Kevin M; Deroles, Simon C

    2014-04-01

    Plant cell cultures can offer continuous production systems for high-value food and health ingredients, independent of geographical or environmental variations and constraints. Yet despite many improvements in culture technologies, cell line selection, and bioreactor design, there are few commercial successes. This is principally due to the culture yield and market price of food products not being sufficient to cover the plant cell culture production costs. A better understanding of the underpinning biological mechanisms that control the target metabolite biosynthetic pathways may allow the metabolic engineering of cell lines to provide for economically competitive product yields. However, uncertainty around the regulatory and public acceptance of products derived from engineered cell cultures presents a barrier to the uptake of the technology by food product companies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman

    2018-04-01

    We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.

  19. Towards self-correcting quantum memories

    NASA Astrophysics Data System (ADS)

    Michnicki, Kamil

    This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real implementations of quantum memories. Numerical evidence also suggests that the cellular automaton could function as a decoder with a soft threshold.

  20. Co-Optimization of Fuels and Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John

    2016-04-11

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less

  1. Signs of Autonomy: Facilitating Independence and Inquiry in Deaf Science Classrooms

    ERIC Educational Resources Information Center

    Kahn, Sami; Feldman, Allan; Cooke, Michele L.

    2013-01-01

    Deaf and hard of hearing (DHH) persons are underrepresented in the fields of science, technology, engineering, and mathematics (STEM). One of the major barriers to STEM careers is DHH students' extremely low college graduation rates. While social and literacy barriers play a critical role in this phenomenon, student autonomy has also been cited as…

  2. Coated silicon comprising material for protection against environmental corrosion

    NASA Technical Reports Server (NTRS)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  3. The North Carolina Coastal Geology Cooperative-a Model of Federal, State, and Academic Cooperation

    NASA Astrophysics Data System (ADS)

    Hoffman, C. W.; Thieler, E. R.; Riggs, S. R.; Schwab, W. C.

    2002-12-01

    In June 1999, The U.S. and N.C. Geological Surveys hosted a meeting of coastal geologists and engineers to identify coastal geological issues of greatest importance to North Carolina and to explore the possibility of initiating a cooperative research program to address these issues. Several factors came together to allow a coordinated program to develop: keen state interest in coastal hazards following several significant hurricanes, interest on the part of the USGS in combining work in North Carolina with a similar program in South Carolina, and recognition of the strong knowledge base that existed within the coastal scientific community in N.C. The meeting resulted in a strong consensus for comprehensive study of the entire coastal system and for initiating work in the northern coastal region (the Quaternary section east of the Suffolk Scarp, focusing on the barrier-island and estuarine system). Among the most important issues to be addressed by the data and knowledge developed from this program are: coastal and estuarine shoreline erosion (controls on erosion rates, sediment transport, response of wetlands to sea level rise); sand resources (location, quality, and quantity of offshore, estuarine, or onshore sand); storm impacts (barrier island/inlet migration, estuarine water movement, relative stability of barrier island segments); sea level change (history and potential impacts); water resources (surface and groundwater); habitat (ability to sustain uses, trends, threats). The cooperative will provide a strong science foundation for management of the N.C. coastal zone. Endorsements, support, and cooperation have come from the N.C. Coastal Resources Commission, several state and federal resource agencies, and local government units who all have an interest in information the program is producing. Supplemental federal appropriations have resulted from such support and the National Park Service has provided partnership funding. Additional partnership opportunities exist and are being pursued with the Army Corps of Engineers (two feasibility studies are active in the project area), the N.C. Outer Banks Task Force, and U.S. Minerals Management Service.

  4. Department of Defense Program Solicitation 94; Small Business Technology Transfer (STTR) Program; Fiscal Year 1994.

    DTIC Science & Technology

    1994-01-01

    advanced diesel engine components; high-temperature titanium aluminide and Al-Fe alloys for aircraft and missile engines; environmentally compliant...gun-chamber liners and KE penetrator stabilizer fins, tips, and leading edges; low cost, ceramic thermal barrier coatings for gas turbine blades and

  5. Navigating Community College Transfer in Science, Technical, Engineering, and Mathematics Fields

    ERIC Educational Resources Information Center

    Packard, Becky Wai-Ling; Gagnon, Janelle L.; Senas, Arleen J.

    2012-01-01

    Given financial barriers facing community college students today, and workforce projections in science, technical, engineering, and math (STEM) fields, the costs of unnecessary delays while navigating transfer pathways are high. In this phenomenological study, we analyzed the delay experiences of 172 students (65% female) navigating community…

  6. History of the Pacific Ocean Division Corps of Engineers 1957-1967

    DTIC Science & Technology

    1972-01-01

    mound barrier; designed by HED civil engineer Robert Q. Palmer, these concrete three-bar struc- tures provided a sturdy substitute for scarce rock...that metal buildings would require high main- tenance costs, while the termite problem eliminates construction in wood. Not only for these reasons

  7. Predictive GT-Power Simulation for VNT Matching on a 1.6 L Turbocharged GDI Engine

    EPA Science Inventory

    The thermal efficiency benefits of low-pressure (LP) exhaust gas recirculation (EGR) in spark-ignition engine combustion are well known. One of the greatest barriers facing adoption of LP-EGR for high power-density applications is the challenge of boosting. Variable nozzle turbin...

  8. Developing and Designing Online Engineering Ethics Instruction for International Graduate Students

    ERIC Educational Resources Information Center

    Austin, Katherine A.; Gorsuch, Greta J.; Lawson, William D.; Newberry, Byron P.

    2011-01-01

    The present project embarked on an educational intervention, consisting of a series of online ethics learning modules, to aid international graduate students in overcoming the acculturation barriers to understanding and inculcating normative ethical obligations associated with engineering practice and research in the United States. A fundamental…

  9. Identifying Barriers to and Outcomes of Interdisciplinarity in the Engineering Classroom

    ERIC Educational Resources Information Center

    Richter, David M.; Paretti, Marie C.

    2009-01-01

    In addition to developing deep knowledge of a single discipline, engineers must also be able to collaborate across disciplinary boundaries and develop interdisciplinary expertise to successfully address the complex challenges of the contemporary workplace. While numerous descriptions of interdisciplinary courses and projects appear in the…

  10. Next-Gen Search Engines

    ERIC Educational Resources Information Center

    Gupta, Amardeep

    2005-01-01

    Current search engines--even the constantly surprising Google--seem unable to leap the next big barrier in search: the trillions of bytes of dynamically generated data created by individual web sites around the world, or what some researchers call the "deep web." The challenge now is not information overload, but information overlook.…

  11. Key Barriers for Academic Institutions Seeking To Retain Female Scientists and Engineers: Family-Unfriendly Policies, Low Numbers, Stereotypes, and Harassment.

    ERIC Educational Resources Information Center

    Rosser, Sue V.; Lane, Eliesh O'Neil

    2002-01-01

    Evaluates survey responses from almost (n=400) Professional Opportunities for Women in Research and Education (POWRE) awardees from fiscal years 1997-2000 to elucidate problems and opportunities identified by female scientists and engineers. (Contains 25 references.) (Author/YDS)

  12. Abradable dual-density ceramic turbine seal system

    NASA Technical Reports Server (NTRS)

    Clingman, D. L.; Schechter, B.; Cross, K. R.; Cavanagh, J. R.

    1981-01-01

    A plasma sprayed dual density ceramic abradable seal system for direct application to the HPT seal shroud of small gas turbine engines. The system concept is based on the thermal barrier coating and depends upon an additional layer of modified density ceramic material adjacent to the gas flow path to provide the desired abradability. This is achieved by codeposition of inert fillers with yttria stabilized zirconia (YSZ) to interrupt the continuity of the zirconia struture. The investigation of a variety of candidate fillers, with hardness values as low as 2 on Moh's scale, led to the conclusion that solid filler materials in combination with a YSZ matrix, regardless of their hardness values, have a propensity for compacting rather than shearing as originally expected. The observed compaction is accompanied by high energy dissipation in the rub interaction, usually resulting in the adhesive transfer of blade material to the stationary seal member. Two YSZ based coating systems which incorported hollow alumino silicate spheres as density reducing agents were surveyed over the entire range of compositions from 100 percent filler to 100 percent YSZ. Abradability and erosion characteristics were determined, hardness and permeability characterized, and engine experience acquired with several system configurations.

  13. Quality optimization of thermally sprayed coatings produced by the JP-5000 (HVOF) gun using mathematical modeling

    NASA Technical Reports Server (NTRS)

    Tawfik, Hazem

    1994-01-01

    Currently, thermal barrier coatings (TBC) of gas-turbine blades and similar applications have centered around the use of zirconia as a protective coating for high thermal applications. The advantages of zirconia include low thermal conductivity and good thermal shock resistance. Thermally sprayed tungsten carbide hardface coatings are used for a wide range of applications spanning both the aerospace and other industrial markets. Major aircraft engine manufacturers and repair facilities use hardface coatings for original engine manufacture (OEM), as well as in the overhaul of critical engine components. The principle function of these coatings is to resist severe wear environments for such wear mechanisms as abrasion, adhesion, fretting, and erosion. The (JP-5000) thermal spray gun is the most advanced in the High Velocity Oxygen Fuel (HVOF) systems. Recently, it has received considerable attention because of its relative low cost and its production of quality coatings that challenge the very successful but yet very expensive Vacuum Plasma Spraying (VPS) system. The quality of thermal spray coatings is enhanced as porosity, oxidation, residual stress, and surface roughness are reduced or minimized. Higher densification, interfacial bonding strength, hardness and wear resistance of coating are desirable features for quality improvement.

  14. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  15. Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DWYER,BRIAN P.

    2000-01-01

    Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for themore » 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This project along with others such as the Durango, CO and Monticello, UT reactive barriers will provide the data to determine the long-term effectiveness and return on investment (ROI) for this technology for comparison to the baseline pump and treat.« less

  16. Illitization within bentonite engineered barrier system in clay repositories for nuclear waste and its effect on the swelling stress: a coupled THMC modeling study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Liu, H. H.

    2014-12-01

    Geological repositories for disposal of high-level nuclear waste generally rely on a multi-barrier system to isolate radioactive waste from the biosphere. An engineered barrier system (EBS), which comprises in many design concepts a bentonite backfill, is widely used. Clay formations have been considered as a host rock throughout the world. Illitization, the transformation of smectite to illite, could compromise some beneficiary features of EBS bentonite and clay host rock such as sorption and swelling capacity. It is the major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present a fully coupled THMC simulation study of a generic nuclear waste repository in a clay formation with a bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant under higher temperature. However, the quantity of illitization is affected by many chemical factors and therefore varies a great deal. The most important chemical factors are the concentration of K in the pore water as well as the abundance and dissolution rate of K-feldspar. For the particular case and bentonite properties studied, the reduction in swelling stress as a result of chemical changes vary from 2% up to 70% depending on chemical and temperature conditions, and key mechanical parameters. The modeling work is illustrative in light of the relative importance of different processes occurring in EBS bentonite and clay host rock at higher than 100 oC conditions, and could be of greater use when site specific data are available.

  17. Requirements for a Hydrogen Powered All-Electric Manned Helicopter

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav

    2012-01-01

    The objective of this paper is to set propulsion system targets for an all-electric manned helicopter of ultra-light utility class to achieve performance comparable to combustion engines. The approach is to begin with a current two-seat helicopter (Robinson R 22 Beta II-like), design an all-electric power plant as replacement for its existing piston engine, and study performance of the new all-electric aircraft. The new power plant consists of high-pressure Proton Exchange Membrane fuel cells, hydrogen stored in 700 bar type-4 tanks, lithium-ion batteries, and an AC synchronous permanent magnet motor. The aircraft and the transmission are assumed to remain the same. The paper surveys the state of the art in each of these areas, synthesizes a power plant using best available technologies in each, examines the performance achievable by such a power plant, identifies key barriers, and sets future technology targets to achieve performance at par with current internal combustion engines.

  18. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  19. A Coupled THMC model of FEBEX mock-up test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Samper, Javier

    2008-09-15

    FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project for the engineered barrier system (EBS) of a radioactive waste repository in granite. It includes two full-scale heating and hydration tests: the in situ test performed at Grimsel (Switzerland) and a mock-up test operating at CIEMAT facilities in Madrid (Spain). The mock-up test provides valuable insight on thermal, hydrodynamic, mechanical and chemical (THMC) behavior of EBS because its hydration is controlled better than that of in situ test in which the buffer is saturated with water from the surrounding granitic rock. Here we present a coupled THMC model ofmore » the mock-up test which accounts for thermal and chemical osmosis and bentonite swelling with a state-surface approach. The THMC model reproduces measured temperature and cumulative water inflow data. It fits also relative humidity data at the outer part of the buffer, but underestimates relative humidities near the heater. Dilution due to hydration and evaporation near the heater are the main processes controlling the concentration of conservative species while surface complexation, mineral dissolution/precipitation and cation exchanges affect significantly reactive species as well. Results of sensitivity analyses to chemical processes show that pH is mostly controlled by surface complexation while dissolved cations concentrations are controlled by cation exchange reactions.« less

  20. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    NASA Technical Reports Server (NTRS)

    Lee, Kang; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2017-01-01

    SiC/SiC Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment because of their light weight, higher temperature capability, and oxidation resistance. Limitations of SiC/SiC CMCs include surface recession and component cracking and associated chemical changes in the CMC. The solutions pursued to improve the life of SiC/SiC CMCs include the incorporation of coating systems that provide surface protection, which has become known as an Environmental Barrier Coating (EBC). The development of EBCs for the protection of gas turbine hot section CMC components was a continuation of coating development work for corrosion protection of silicon-based monolithics. Work on EBC development for SiC/SiC CMCs has been ongoing at several national laboratories and the original gas turbine equipment manufacturers. The work includes extensive laboratory, rig and engine testing, including testing of EBC coated SiC/SiC CMCs in actual field applications. Another EBC degradation issue which is especially critical for CMC components used in aircraft engines is the degradation from glassy deposits of calcium-magnesium-aluminosilicate (CMAS) with other minor oxides. This paper addresses the need for and properties of external coatings on SiC/SiC CMCs to extend their useful life in service and the retention of their properties.

  1. Engineering Surfaces for Enhanced Nucleation and Droplet Removal During Dropwise Condensation

    NASA Astrophysics Data System (ADS)

    Dutta, Sanmitra; Khan, Sameera; Anand, Sushant

    2017-11-01

    Condensation plays critical role in numerous industrial applications, such as condensers, HVAC,etc In the most applications, fast formation (i.e. high nucleation) and subsequent removal of water droplets is critical for enhancing the efficiencies of their associated systems. Significant focus has been placed on the aspect of droplet removal from surfaces. This has led to, development of superhydrophobic surfaces with special textures on which droplets are self-removed after coalescence. However,because of their inherent low surface energy, nucleation energy barriers are also high on such surfaces. In contrast to conventional superhydrophobic surfaces, here we show that surfaces can be engineered such that the simultaneous benefits of high nucleation rates and fast droplet removal can be obtained during the condensation process.These benefits are obtained by impregnating a superhydrophobic surface with an oil that despite its defect-free interface provides low nucleation energy barrier during condensation. At the same time, the oil facilitates high droplet shedding rates by providing a lubricating layer below the droplets due to which droplets have negligible contact angle hysteresis. We provide a guide to choose oils that lead to enhanced nucleation, and provide experimental evidence supporting the proposed guide. We discuss the importance of different oil properties in affecting the droplet growth and subsequent removal of water droplets.

  2. Delivery of Biologics Across the Blood-Brain Barrier with Molecular Trojan Horse Technology.

    PubMed

    Pardridge, William M

    2017-12-01

    Biologics are potential new therapeutics for many diseases of the central nervous system. Biologics include recombinant lysosomal enzymes, neurotrophins, decoy receptors, and therapeutic antibodies. These are large molecule drugs that do not cross the blood-brain barrier (BBB). All classes of biologics have been tested, without success, in clinical trials of brain disease over the last 25 years. In none of these past clinical trials was the biologic re-engineered to enable transport across the BBB. If the biologic does not cross the BBB, the drug cannot reach the target site in brain, and success in a clinical trial is not expected. Biologics can be re-engineered for BBB transport with the use of molecular Trojan horse technology. A BBB molecular Trojan horse is a monoclonal antibody (MAb) against an endogenous BBB receptor transporter, such as the insulin receptor or transferrin receptor. The receptor-specific MAb penetrates the brain via transport on the endogenous BBB receptor. The MAb acts as a molecular Trojan horse to deliver across the BBB the biologic pharmaceutical that is genetically fused to the MAb. The lead Trojan horse is a MAb against the human insulin receptor (HIR), and HIRMAb-derived fusion proteins have entered clinical trials for the treatment of brain disease.

  3. Advanced Gas Turbine (AGT) technology development

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A 74.5 kW (100 hp) automotive gas turbine was evaluated. The engine structure, bearings, oil system, and electronics were demonstrated and no shaft dynamics or other vibration problem were encountered. Areas identified during the five tests are the scroll retention features, and transient thermal deflection of turbine backplates. Modifications were designed. Seroll retention is addressed by modifying the seal arrangement in front of the gasifier turbine assembly, which will increase the pressure load on the scroll in the forward direction and thereby increase the retention forces. the backplate thermal deflection is addressed by geometric changes and thermal insulation to reduce heat input. Combustor rig proof testing of two ceramic combustor assemblies was completed. The combustor was modified to incorporate slots and reduce sharp edges, which should reduce thermal stresses. The development work focused on techniques to sinter these barrier materials onto the ceramic rotors with successes for both material systems. Silicon carbide structural parts, including engine configuration gasifier rotors (ECRs), preliminary gasifier scroll parts, and gasifier and power turbine vanes are fabricated.

  4. Engineering photosynthetic organisms for the production of biohydrogen

    DOE PAGES

    Dubini, Alexandra; Ghirardi, Maria L.

    2014-03-27

    Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H 2 production. Biological H 2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H 2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogenmore » production in green algae and how those limitations are being addressed, through metabolic and genetic engineering. We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H 2 production. Lastly we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production.« less

  5. Blood-brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow.

    PubMed

    Guerra, M; Blázquez, J L; Rodríguez, E M

    2017-07-13

    Despite decades of research, no compelling non-surgical therapies have been developed for foetal hydrocephalus. So far, most efforts have pointed to repairing disturbances in the cerebrospinal fluid (CSF) flow and to avoid further brain damage. There are no reports trying to prevent or diminish abnormalities in brain development which are inseparably associated with hydrocephalus. A key problem in the treatment of hydrocephalus is the blood-brain barrier that restricts the access to the brain for therapeutic compounds or systemically grafted cells. Recent investigations have started to open an avenue for the development of a cell therapy for foetal-onset hydrocephalus. Potential cells to be used for brain grafting include: (1) pluripotential neural stem cells; (2) mesenchymal stem cells; (3) genetically-engineered stem cells; (4) choroid plexus cells and (5) subcommissural organ cells. Expected outcomes are a proper microenvironment for the embryonic neurogenic niche and, consequent normal brain development.

  6. Alternating InGaN barriers with GaN barriers for enhancing optical performance in InGaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yujue; Zeng, Yiping, E-mail: ypzeng@semi.ac.cn

    2015-01-21

    InGaN-based light-emitting diodes (LEDs) with some specific designs on the quantum barrier layers by alternating InGaN barriers with GaN barriers are proposed and studied numerically. In the proposed structure, simulation results show that the carriers are widely dispersed in the multi-quantum well active region, and the radiative recombination rate is efficiently improved and the electron leakage is suppressed accordingly, due to the appropriate band engineering. The internal quantum efficiency and light-output power are thus markedly enhanced and the efficiency droop is smaller, compared to the original structures with GaN barriers or InGaN barriers. Moreover, the gradually decrease of indium compositionmore » in the alternating quantum barriers can further promote the LED performance because of the more uniform carrier distribution, which provides us a simple but highly effective approach for high-performance LED applications.« less

  7. The requirements and challenges in preventing of road traffic injury in Iran. A qualitative study.

    PubMed

    Khorasani-Zavareh, Davoud; Mohammadi, Reza; Khankeh, Hamid Reza; Laflamme, Lucie; Bikmoradi, Ali; Haglund, Bo J A

    2009-12-23

    Road traffic injuries (RTIs) are a major public health problem, especially in low- and middle-income countries. Among middle-income countries, Iran has one of the highest mortality rates from RTIs. Action is critical to combat this major public health problem. Stakeholders involved in RTI control are of key importance and their perceptions of barriers and facilitators are a vital source of knowledge. The aim of this study was to explore barriers to the prevention of RTIs and provide appropriate suggestions for prevention, based on the perceptions of stakeholders, victims and road-users as regards RTIs. Thirty-eight semi-structured interviews were conducted with informants in the field of RTI prevention including: police officers; public health professionals; experts from the road administrators; representatives from the General Governor, the car industry, firefighters; experts from Emergency Medical Service and the Red Crescent; and some motorcyclists and car drivers as well as victims of RTIs. A qualitative approach using grounded theory method was employed to analyze the material gathered. The core variable was identified as "The lack of a system approach to road-user safety". The following barriers in relation to RTI prevention were identified as: human factors; transportation system; and organizational coordination. Suggestions for improvement included education (for the general public and targeted group training), more effective legislation, more rigorous law enforcement, improved engineering in road infrastructure, and an integrated organization to supervise and coordinate preventive activities. The major barriers identified in this study were human factors and efforts to change human behaviour were suggested by means of public education campaigns and stricter law enforcement. However, the lack of a system approach to RTI prevention was also an important concern. There is an urgent need for both an integrated system to coordinate RTI activities and prevention and a major change in stakeholders' attitudes towards RTI prevention. The focus of all activities should take place on road users' safety.

  8. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  9. Biological Systems for Hydrogen Photoproduction (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghirardi, M. L.

    2012-05-01

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algalmore » H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.« less

  10. A Model for Reform. Two-Year Colleges in the Twenty-First Century: Breaking Down Barriers (TYC21).

    ERIC Educational Resources Information Center

    Palmer, James C., Ed.

    This book describes the TYC21 project (Two-Year Colleges in the Twenty-First Century: Breaking Down Barriers), which provided a framework to implement reform in science, engineering, and physics education at two-year colleges via the cooperative efforts of faculty in cross-educational activities. The project sought to increase the quality of…

  11. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    PubMed Central

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-01-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories. PMID:28513590

  12. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    NASA Astrophysics Data System (ADS)

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-05-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories.

  13. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  14. Impact of a systems engineering intervention on PMTCT service delivery in Côte d’Ivoire, Kenya, Mozambique: a cluster randomized trial

    PubMed Central

    Rustagi, Alison Silvis; Gimbel, Sarah; Nduati, Ruth; de Fatima Cuembelo, Maria; Wasserheit, Judith N.; Farquhar, Carey; Gloyd, Stephen; Sherr, Kenneth

    2016-01-01

    BACKGROUND Efficacious interventions to prevent mother-to-child HIV transmission (PMTCT) have not translated well into effective programs. Prior studies of systems engineering applications to PMTCT lacked comparison groups or randomization. METHODS Thirty-six health facilities in Côte d’Ivoire, Kenya, and Mozambique were randomized to usual care or a systems engineering intervention, stratified by country and volume. The intervention guided facility staff to iteratively identify and then rectify barriers to PMTCT implementation. Registry data quantified coverage of HIV testing during first antenatal care visit, antiretrovirals (ARVs) for HIV-positive pregnant women, and screening HIV-exposed infants (HEI) for HIV by 6–8 weeks. We compared the change between baseline (January 2013–January 2014) and post-intervention (January–March 2015) periods using t-tests. All analyses were intent-to-treat. RESULTS ARV coverage increased 3-fold (+13.3 percentage points [95% CI: 0.5, 26.0] in intervention vs. +4.1 [−12.6, 20.7] in control facilities) and HEI screening increased 17-fold (+11.6 [−2.6, 25.7] in intervention vs. +0.7 [−12.9, 14.4] in control facilities). In pre-specified sub-group analyses, ARV coverage increased significantly in Kenya (+20.9 [−3.1, 44.9] in intervention vs. −21.2 [−52.7, 10.4] in controls; p=0.02). HEI screening increased significantly in Mozambique (+23.1 [10.3, 35.8] in intervention vs. +3.7 [−13.1, 20.6] in controls; p=0.04). HIV testing did not differ significantly between arms. CONCLUSIONS In this first randomized trial of systems engineering to improve PMTCT, we saw substantially larger improvements in ARV coverage and HEI screening in intervention facilities compared to controls, which were significant in pre-specified sub-groups. Systems engineering could strengthen PMTCT service delivery and protect infants from HIV. PMID:27082507

  15. Implementation and Operational Research: Impact of a Systems Engineering Intervention on PMTCT Service Delivery in Côte d'Ivoire, Kenya, Mozambique: A Cluster Randomized Trial.

    PubMed

    Rustagi, Alison Silvis; Gimbel, Sarah; Nduati, Ruth; Cuembelo, Maria de Fatima; Wasserheit, Judith N; Farquhar, Carey; Gloyd, Stephen; Sherr, Kenneth

    2016-07-01

    Efficacious interventions to prevent mother-to-child HIV transmission (PMTCT) have not translated well into effective programs. Previous studies of systems engineering applications to PMTCT lacked comparison groups or randomization. Thirty-six health facilities in Côte d'Ivoire, Kenya, and Mozambique were randomized to usual care or a systems engineering intervention, stratified by country and volume. The intervention guided facility staff to iteratively identify and then rectify barriers to PMTCT implementation. Registry data quantified coverage of HIV testing during first antenatal care visit, antiretrovirals (ARVs) for HIV-positive pregnant women, and screening HIV-exposed infants (HEI) for HIV by 6-8 weeks. We compared the change between baseline (January 2013-January 2014) and postintervention (January 2015-March 2015) periods using t-tests. All analyses were intent-to-treat. ARV coverage increased 3-fold [+13.3% points (95% CI: 0.5 to 26.0) in intervention vs. +4.1 (-12.6 to 20.7) in control facilities] and HEI screening increased 17-fold [+11.6 (-2.6 to 25.7) in intervention vs. +0.7 (-12.9 to 14.4) in control facilities]. In prespecified subgroup analyses, ARV coverage increased significantly in Kenya [+20.9 (-3.1 to 44.9) in intervention vs. -21.2 (-52.7 to 10.4) in controls; P = 0.02]. HEI screening increased significantly in Mozambique [+23.1 (10.3 to 35.8) in intervention vs. +3.7 (-13.1 to 20.6) in controls; P = 0.04]. HIV testing did not differ significantly between arms. In this first randomized trial of systems engineering to improve PMTCT, we saw substantially larger improvements in ARV coverage and HEI screening in intervention facilities compared with controls, which were significant in prespecified subgroups. Systems engineering could strengthen PMTCT service delivery and protect infants from HIV.

  16. Gender Equity in Science and Engineering: Advancing Change in Higher Education. Routledge Studies in Management, Organizations and Society

    ERIC Educational Resources Information Center

    Bilimoria, Diana; Liang, Xiangfen

    2011-01-01

    Women faculty's participation in academic science and engineering is critical for future US global competitiveness, yet their underrepresentation particularly in senior positions remains a widespread problem. To overcome persistent institutional resistance and barriers to change, the "NSF ADVANCE" institutional transformation initiative,…

  17. National Alliance for Advance Biofuels and Bio-Products Final Technical Report Addendum Hydrothermal Processing Pilot System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyler, James R.

    2015-12-21

    The main objective of the NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. As a part of the consortium, Genifuel’s NAABB goals was to fabricate and demonstrate a pilot-scale system to convert algae into fuels. The purpose of this pilot system was to show that processes developed in the laboratory at bench-scale during the program could be successfully scaled up to a pre-commercial level, and thereby provide visibility into the ultimate viability and cost of algae biofuels. The pilot system has now been completedmore » and tested, and this report documents what has been achieved.« less

  18. Input and output constraints-based stabilisation of switched nonlinear systems with unstable subsystems and its application

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liu, Qian; Zhao, Jun

    2018-01-01

    This paper studies the problem of stabilisation of switched nonlinear systems with output and input constraints. We propose a recursive approach to solve this issue. None of the subsystems are assumed to be stablisable while the switched system is stabilised by dual design of controllers for subsystems and a switching law. When only dealing with bounded input, we provide nested switching controllers using an extended backstepping procedure. If both input and output constraints are taken into consideration, a Barrier Lyapunov Function is employed during operation to construct multiple Lyapunov functions for switched nonlinear system in the backstepping procedure. As a practical example, the control design of an equilibrium manifold expansion model of aero-engine is given to demonstrate the effectiveness of the proposed design method.

  19. Simulation of residual stresses and their effects on thermal barrier coating systems using finite element method

    NASA Astrophysics Data System (ADS)

    Zhu, JianGuo; Chen, Wei; Xie, HuiMin

    2015-03-01

    Thermal barrier coating (TBC) systems are widely used in industrial gas-turbine engines. However, premature failures have impaired the use of TBCs and cut down their lifetime, which requires a better understanding of their failure mechanisms. In the present study, experimental studies of isothermal cycling are firstly carried out with the observation and estimation of microstructures. According to the experimental results, a finite element model is established for the analysis of stress perpendicular to the TBC/BC interface. Detailed residual stress distributions in TBC are obtained to reflect the influence of mechanical properties, oxidation, and interfacial roughness. The calculated results show that the maximum tensile stress concentration appears at the peak of TBC and continues to increase with thermal cycles. Because of the microstructural characteristics of plasma-sprayed TBCs, cracks initialize in tensile stress concentration (TSC) regions at the peaks of TBC and propagate along the TBC/BC interface resulting in the spallation of TBC. Also, the inclusion of creep is crucial to failure prediction and is more important than the inclusion of sintering in the simulation.

  20. Intermetallic Al-, Fe-, Co- and Ni-Based Thermal Barrier Coatings Prepared by Cold Spray for Applications on Low Heat Rejection Diesel Engines

    NASA Astrophysics Data System (ADS)

    Leshchinsky, E.; Sobiesiak, A.; Maev, R.

    2018-02-01

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat insulating topcoat. They possess the desired low thermal conductivity, but at the same time they are very brittle and sensitive to thermal shock and thermal cycling due to the inherently low coefficient of thermal expansion. Recent research activities are focused on the developing of multilayer TBC structures obtained using cold spraying and following annealing. Aluminum intermetallics have demonstrated thermal and mechanical properties that allow them to be used as the alternative TBC materials, while the intermetallic layers can be additionally optimized to achieve superior thermal physical properties. One example is the six layer TBC structure in which cold sprayed Al-based intermetallics are synthesized by annealing in nitrogen atmosphere. These multilayer coating systems demonstrated an improved thermal fatigue capability as compared to conventional ceramic TBC. The microstructures and properties of the coatings were characterized by SEM, EDS and mechanical tests to define the TBC material properties and intermetallic formation mechanisms.

  1. The Effects of Thermal Barrier Coating, Common-Rail Injection, and Reduced Compression Ratio on the Efficiency of Single-Cylinder Diesel Engines

    DTIC Science & Technology

    2010-05-12

    m) YXX:........................................Molar Fraction of Compound XX 12 1 Introduction and Background Small internal combustion...Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988. [9] Judge, A.W. High Speed Diesel Engines. London...performance and exergy potential of the exhaust gas. Energy Conversion and Management 46:489-499. [11] Parlak A., Yasar H., and Sahin B. 2003. Performance

  2. Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier

    NASA Astrophysics Data System (ADS)

    Huang, W. H.; Chuang, Y. F.

    2014-12-01

    Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  3. Control Strategies for HCCI Mixed-Mode Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Robert M; Edwards, Kevin Dean

    2010-03-01

    Delphi Automotive Systems and ORNL established this CRADA to expand the operational range of Homogenous Charge Compression Ignition (HCCI) mixed-mode combustion for gasoline en-gines. ORNL has extensive experience in the analysis, interpretation, and control of dynamic engine phenomena, and Delphi has extensive knowledge and experience in powertrain compo-nents and subsystems. The partnership of these knowledge bases was important to address criti-cal barriers associated with the realistic implementation of HCCI and enabling clean, efficient operation for the next generation of transportation engines. The foundation of this CRADA was established through the analysis of spark-assisted HCCI data from a single-cylinder research engine.more » This data was used to (1) establish a conceptual kinetic model to better understand and predict the development of combustion instabilities, (2) develop a low-order model framework suitable for real-time controls, and (3) provide guidance in the initial definition of engine valve strategies for achieving HCCI operation. The next phase focused on the development of a new combustion metric for real-time characterization of the combustion process. Rapid feedback on the state of the combustion process is critical to high-speed decision making for predictive control. Simultaneous to the modeling/analysis studies, Delphi was focused on the development of engine hardware and the engine management system. This included custom Delphi hardware and control systems allowing for flexible control of the valvetrain sys-tem to enable HCCI operation. The final phase of this CRADA included the demonstration of conventional and spark assisted HCCI on the multi-cylinder engine as well as the characterization of combustion instabilities, which govern the operational boundaries of this mode of combustion. ORNL and Delphi maintained strong collaboration throughout this project. Meetings were held on a bi-weekly basis with additional reports, presentation, and meetings as necessary to maintain progress. Delphi provided substantial support through modeling, hardware, data exchange, and technical consultation. This CRADA was also successful at establishing important next steps to further expanding the use of an HCCI engine for improved fuel efficiency and emissions. These topics will be address in a follow-on CRADA. The objectives are: (1) Improve fundamental understanding of the development of combustion instabilities with HCCI operation through modeling and experiments; (2) Develop low-order model and feedback combustion metrics which are well suited to real-time predictive controls; and (3) Construct multi-cylinder engine system with advanced Delphi technologies and charac-terize HCCI behavior to better understand limitations and opportunities for expanded high-efficiency operation.« less

  4. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A

  5. Bridging the engineering gap: integrated systems thinking

    NASA Astrophysics Data System (ADS)

    Weintré, J. R.; Delfi, M.

    2017-09-01

    On visits to rural Indonesia it is apparent that the advances made possible by technical engineered solutions, are rarely at the same pace as the human captivation of technical development. This uneven pace has limited the application of labour-saving equipment and efficiency. It is suggested to be of primary importance to advance technical application skills among communities as part of the continuous advancement cycle in our human environment. A creative approach to inclusive technology and internal transfer of equipment knowledge in society, reduces barriers and could diminish structural or societal undesired situations. Earlier theoretical concepts provide us a lens for describing the practices of habitus, conceptualization of social capital and integrated systems thinking. The interrelationship and complexities in technical and social systems requires to be investigated. This paper aims to describe those, combined with technological applications in an empirical ethnographic approach. The study analyses the negotiations of community members with the available technology. It intends to foster a better understanding of the various cultural-economic values by exploring the systems thinking theory, with a focus on rice cultivation in Indonesia, Japan and Australia. This research suggests that cultural, economic and technical advances vary considerably and human expectations are strongly influenced by local culture.

  6. Experimental evaluation of optimization method for developing ultraviolet barrier coatings

    NASA Astrophysics Data System (ADS)

    Gonome, Hiroki; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    Ultraviolet (UV) barrier coatings can be used to protect many industrial products from UV attack. This study introduces a method of optimizing UV barrier coatings using pigment particles. The radiative properties of the pigment particles were evaluated theoretically, and the optimum particle size was decided from the absorption efficiency and the back-scattering efficiency. UV barrier coatings were prepared with zinc oxide (ZnO) and titanium dioxide (TiO2). The transmittance of the UV barrier coating was calculated theoretically. The radiative transfer in the UV barrier coating was modeled using the radiation element method by ray emission model (REM2). In order to validate the calculated results, the transmittances of these coatings were measured by a spectrophotometer. A UV barrier coating with a low UV transmittance and high VIS transmittance could be achieved. The calculated transmittance showed a similar spectral tendency with the measured one. The use of appropriate particles with optimum size, coating thickness and volume fraction will result in effective UV barrier coatings. UV barrier coatings can be achieved by the application of optical engineering.

  7. Synthesis and Evaluation of Single Layer, Bilayer, and Multilayer Thermoelectric Thin Films

    DOE R&D Accomplishments Database

    Farmer, J. C.; Barbee, T. W. Jr.; Chapline, G. C. Jr.; Olsen, M. L.; Foreman, R. J.; Summers, L. J.; Dresselhaus, M. S.; Hicks, L. D.

    1995-01-20

    The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (ID) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering thermoelectric and barrier materials onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum well concept and gain insight into relevant transport mechanisms. If successful, research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

  8. Double barrier system for an in situ conversion process

    DOEpatents

    McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL

    2009-05-05

    A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.

  9. XLR-11 - X-1 rocket engine display

    NASA Technical Reports Server (NTRS)

    1996-01-01

    What started as a hobby for four rocket fanatics went on to break the sound barrier: Lovell Lawrence, Hugh Franklin Pierce, John Shesta, and Jimmy Wyld the four founders of Reaction Motors, Inc. that built the XLR-11 Rocket Engine. The XLR-11 engine is shown on display in the NASA Exchange Gift Shop, NASA Hugh L. Dryden Flight Research Center at Edwards, California. This engine, familiarly known as Black Betsy, a 4-chamber rocket that ignited diluted ethyl alcohol and liquid oxygen into 6000 pounds or more of thrust powered the X-1 series airplanes.

  10. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  11. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  12. Illitization of Potassium, Cesium, and Ammonium Exchanged Smectite

    NASA Astrophysics Data System (ADS)

    Mills, M. M.; Wang, Y.; Payne, C.; Sanchez, A. C.; Boisvert, L.; Matteo, E. N.

    2017-12-01

    Bentonite clay is a primary choice for engineered barrier systems within geologic repositories for disposal of radioactive wastes due to its low permeability at saturated states, warranting diffusion as the dominant transport mechanism, and large swelling pressures that promote sealing. In order to predict how well the barrier will function over time at repository relevant temperatures, it is important to understand thermal alteration effects on montmorillonite, better known as smectite, a main constituent of bentonite. One type of thermal alteration is the conversion to illite, when exposed to elevated temperatures and a sufficient amount of potassium ions, thereby weakening barrier functions. To facilitate the conversion of smectite to illite and examine the influence of interlayer cations, illitization experiments on cation exchanged smectite were performed within hydrothermal reaction vessels over one week timescales. The <2um fraction of a Na-rich smectite clay was first exchanged with 1M Cs, K, and NH4 salt solutions and further exposed to hydrous pyrolysis using a 1M KCl solution with various solid to liquid ratios at 200°C. Multiple analysis techniques were used to characterize the altered clay and identify extent of conversion, such as XRD, cation exchange capacity, and morphology changes by SEM. The pore-water chemistry was also analyzed by ICP-OES to detect any dissolved products and silica content. Results suggest the conversion rate is relatively fast, occurring within days, and is dependent on not only the amount of K, but also dissolved silica concentration related to total solid in solution. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7856A

  13. Base-resolution detection of N 4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing

    DOE PAGES

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; ...

    2015-07-15

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N 6-methyladenine (6mA), 5-methylcytosine (5mC) and N 4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method thatmore » rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.« less

  14. Acoustic Liner for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  15. 'Not Hard to Sway': A Case Study of Student Engagement in Two Large Engineering Classes

    ERIC Educational Resources Information Center

    Shekhar, Prateek; Borrego, Maura

    2018-01-01

    Although engineering education research has empirically validated the effectiveness of active learning in improving student learning over traditional lecture-based methods, the adoption of active learning in classrooms has been slow. One of the greatest reported barriers is student resistance towards engagement in active learning exercises. This…

  16. Women of Color in Mathematics, Science & Engineering: A Review of the Literature.

    ERIC Educational Resources Information Center

    Clewell, Beatriz Chu; Anderson, Bernice

    This review of the literature on women of color in mathematics, science, and engineering helps define the need for a national agenda for equity in these fields sponsored by the Educational Equity Policy Studies Program of the Center for Women Policy Studies, and for a comprehensive research program that examines barriers to the participation of…

  17. Women's Leadership in Science, Technology, Engineering and Mathematics: Barriers to Participation

    ERIC Educational Resources Information Center

    McCullough, Laura

    2011-01-01

    Despite gains overall, women are still under-represented in leadership positions in science, technology, engineering, and mathematics (STEM) fields. Data in the US suggest around one-quarter of deans and department heads are women; in science this drops to nearly 1 in 20. Part of this problem of under-representation stems from the population pool:…

  18. Gender Stereotypes among Women Engineering and Technology Students in the UK: Lessons from Career Choice Narratives

    ERIC Educational Resources Information Center

    Powell, Abigail; Dainty, Andrew; Bagilhole, Barbara

    2012-01-01

    In the UK, women remain under-represented in engineering and technology (E&T). Research has, therefore, investigated barriers and solutions to women's recruitment, retention and progression. Recruitment into the sector may be supported by exploring the career decisions of women and men who have chosen to study E&T. Triangulating…

  19. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  20. Living Learning Communities: An Intervention in Keeping Women Strong in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Belichesky, Jennifer

    2013-01-01

    The purpose of this study was to expand on the current research pertaining to women in science, technology, engineering, and mathematics (STEM) majors, better understand the experiences of undergraduate women in the sciences, identify barriers to female persistence in their intended STEM majors, and understand the impact of the STEM co-educational…

  1. Schooling Increases Risk Exposure for Fish Navigating Past Artificial Barriers

    PubMed Central

    Lemasson, Bertrand H.; Haefner, James W.; Bowen, Mark D.

    2014-01-01

    Artificial barriers have become ubiquitous features in freshwater ecosystems and they can significantly impact a region's biodiversity. Assessing the risk faced by fish forced to navigate their way around artificial barriers is largely based on assays of individual swimming behavior. However, social interactions can significantly influence fish movement patterns and alter their risk exposure. Using an experimental flume, we assessed the effects of social interactions on the amount of time required for juvenile palmetto bass (Morone chrysops × M. saxatilis) to navigate downstream past an artificial barrier. Fish were released either individually or in groups into the flume using flow conditions that approached the limit of their expected swimming stamina. We compared fish swimming behaviors under solitary and schooling conditions and measured risk as the time individuals spent exposed to the barrier. Solitary fish generally turned with the current and moved quickly downstream past the barrier, while fish in groups swam against the current and displayed a 23-fold increase in exposure time. Solitary individuals also showed greater signs of skittish behavior than those released in groups, which was reflected by larger changes in their accelerations and turning profiles. While groups displayed fission-fusion dynamics, inter-individual positions were highly structured and remained steady over time. These spatial patterns align with theoretical positions necessary to reduce swimming exertion through either wake capturing or velocity sheltering, but diverge from any potential gains from channeling effects between adjacent neighbors. We conclude that isolated performance trials and projections based on individual behaviors can lead to erroneous predictions of risk exposure along engineered structures. Our results also suggest that risk perception and behavior may be more important than a fish's swimming stamina in artificially modified systems. PMID:25268736

  2. Schooling increases risk exposure for fish navigating past artificial barriers.

    PubMed

    Lemasson, Bertrand H; Haefner, James W; Bowen, Mark D

    2014-01-01

    Artificial barriers have become ubiquitous features in freshwater ecosystems and they can significantly impact a region's biodiversity. Assessing the risk faced by fish forced to navigate their way around artificial barriers is largely based on assays of individual swimming behavior. However, social interactions can significantly influence fish movement patterns and alter their risk exposure. Using an experimental flume, we assessed the effects of social interactions on the amount of time required for juvenile palmetto bass (Morone chrysops × M. saxatilis) to navigate downstream past an artificial barrier. Fish were released either individually or in groups into the flume using flow conditions that approached the limit of their expected swimming stamina. We compared fish swimming behaviors under solitary and schooling conditions and measured risk as the time individuals spent exposed to the barrier. Solitary fish generally turned with the current and moved quickly downstream past the barrier, while fish in groups swam against the current and displayed a 23-fold increase in exposure time. Solitary individuals also showed greater signs of skittish behavior than those released in groups, which was reflected by larger changes in their accelerations and turning profiles. While groups displayed fission-fusion dynamics, inter-individual positions were highly structured and remained steady over time. These spatial patterns align with theoretical positions necessary to reduce swimming exertion through either wake capturing or velocity sheltering, but diverge from any potential gains from channeling effects between adjacent neighbors. We conclude that isolated performance trials and projections based on individual behaviors can lead to erroneous predictions of risk exposure along engineered structures. Our results also suggest that risk perception and behavior may be more important than a fish's swimming stamina in artificially modified systems.

  3. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. © The Author(s) 2016.

  4. Landslide barriers at A83 Rest and be Thankful in Scotland and their first event 2015

    NASA Astrophysics Data System (ADS)

    Wendeler, Corinna; Volkwein, Axel; Luis, Roberto

    2016-04-01

    Rest and be Thankful is a part of the road A83 in northern Scotland and has a long history of landslides. In 2007, the site was closed for several weeks after a shallow landslide. A kind of mudslides deposited 400 tons of material on the road. In early September 2009, a further event resulted in 1070 tons of material slipping onto the road at the same place, forcing its closure for 48 hours. No one was hurt in either incident, but these slides pose a serious threat to the country's main rural routes (Gibson, 2010). The site has then been the subject of study and is included in the recent Scottish Roads Network Landslides Study produced by Transport Scotland. The study identified the A83 at Rest and be Thankful as one of the most risk sites for debris flow and/or landslides - a fact confirmed by the events that have occurred. The development of flexible debris flow and landslide barriers is more recent but has reached a point where they may be designed, specified and installed with confidence. Indeed, installations are now quite common in European alpine areas, California, Japan and Korea in particular. The standard system SL-150 of company Geobrugg with a height of 3.5 m was installed in 2011, the design parameters as well as the calculation of the structural system were checked by WSL to fulfil newest research results out of a 3 year research project (Bugnion et al, 2011 and 2012). In 2015, the first event happened to the barrier SL-150. Storm Desmond released on Saturday 5th December during daytime a first slide of around 150 m3 into the barrier, afterwards around night time a second slide with 100 m3 impacted the same barrier and some smaller slides followed. In total 300 m3 of material were captured successfully by that SL-150 barrier and the major transport route in this area remained open while storm Desmond. No failure at the barrier happened, only the so called energy absorbers got activated. A big success of the past research project in which originally the loading approach and the system itself were developed. The maintenance work at the barrier itself will now be to clean up, and to re-install the energy absorbers. Then the barrier is ready again for new events. References Winter M G, Macgregor F, Shack-man L (2008) Scottish Road Network Landslides Study Edinburgh. Gibson D (2010) Landslide Victory, the UK's first flexible debris flow barrier being installed at the landslide prone Rest and be Thankful site in Scotland, Ground Engineering April 2010. Bugnion L, McArdell B, Bartelt P, Wendeler C (2011) Measurements of Hillslope Debris Flow Impact Pressure on Obstacles. Landslides, 9, 179-187. Bugnion L, Wendeler C (2010) Shallow landslide full-scale experiments in combination with testing of flexible barrier. Debris Flow 2010 Milano, Italy. Bugnion L, Boetticher A v, Wendeler C (2012) Large scale field Testing of hill slope debris flows resulting in The Design of Flexible Protection Barriers, Abstract of 12th Interprevent Conference 2012 Grenoble, France.

  5. Investigating the Language of Engineering Education

    NASA Astrophysics Data System (ADS)

    Variawa, Chirag

    A significant part of professional communication development in engineering is the ability to learn and understand technical vocabulary. Mastering such vocabulary is often a desired learning outcome of engineering education. In promoting this goal, this research investigates the development of a tool that creates wordlists of characteristic discipline-specific vocabulary for a given course. These wordlists explicitly highlight requisite vocabulary learning and, when used as a teaching aid, can promote greater accessibility in the learning environment. Literature, including work in higher education, diversity and language learning, suggest that designing accessible learning environments can increase the quality of instruction and learning for all students. Studying the student/instructor interface using the framework of Universal Instructional Design identified vocabulary learning as an invisible barrier in engineering education. A preliminary investigation of this barrier suggested that students have difficulty assessing their understanding of technical vocabulary. Subsequently, computing word frequency on engineering course material was investigated as an approach for characterizing this barrier. However, it was concluded that a more nuanced method was necessary. This research program was built on previous work in the fields of linguistics and computer science, and lead to the design of an algorithm. The developed algorithm is based on a statistical technique called, Term Frequency-Inverse Document Frequency. Comparator sets of documents are used to hierarchically identify characteristic terms on a target document, such as course materials from a previous term of study. The approach draws on a standardized artifact of the engineering learning environment as its dataset; a repository of 2254 engineering final exams from the University of Toronto, to process the target material. After producing wordlists for ten courses, with the goal of highlighting characteristic discipline-specific terms, the effectiveness of the approach was evaluated by comparing the computed results to the judgment of subject-matter experts. The overall data show a good correlation between the program and the subject-matter experts. The results indicated a balance between accuracy and feasibility, and suggested that this approach could mimic subject-matter expertise to create a list discipline-specific vocabulary from course materials.

  6. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  7. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-09

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  8. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases.

    PubMed

    Gabathuler, Reinhard

    2010-01-01

    The central nervous system is protected by barriers which control the entry of compounds into the brain, thereby regulating brain homeostasis. The blood-brain barrier, formed by the endothelial cells of the brain capillaries, restricts access to brain cells of blood-borne compounds and facilitates nutrients essential for normal metabolism to reach brain cells. This very tight regulation of the brain homeostasis results in the inability of some small and large therapeutic compounds to cross the blood-brain barrier (BBB). Therefore, various strategies are being developed to enhance the amount and concentration of therapeutic compounds in the brain. In this review, we will address the different approaches used to increase the transport of therapeutics from blood into the brain parenchyma. We will mainly concentrate on the physiologic approach which takes advantage of specific receptors already expressed on the capillary endothelial cells forming the BBB and necessary for the survival of brain cells. Among all the approaches used for increasing brain delivery of therapeutics, the most accepted method is the use of the physiological approach which takes advantage of the transcytosis capacity of specific receptors expressed at the BBB. The low density lipoprotein receptor related protein (LRP) is the most adapted for such use with the engineered peptide compound (EPiC) platform incorporating the Angiopep peptide in new therapeutics the most advanced with promising data in the clinic.

  9. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols.

    PubMed

    Madry, H; Alini, M; Stoddart, M J; Evans, C; Miclau, T; Steiner, S

    2014-05-06

    Research in orthopaedic tissue engineering has intensified over the last decade and new protocols continue to emerge. The clinical translation of these new applications, however, remains associated with a number of obstacles. This report highlights the major issues that impede the clinical translation of advanced tissue engineering concepts, discusses strategies to overcome these barriers, and examines the need to increase incentives for translational strategies. The statements are based on presentations and discussions held at the AO Foundation-sponsored symposium "Where Science meets Clinics 2013" held at the Congress Center in Davos, Switzerland, in September, 2013. The event organisers convened a diverse group of over one hundred stakeholders involved in clinical translation of orthopaedic tissue engineering, including scientists, clinicians, healthcare industry professionals and regulatory agency representatives. A major point that emerged from the discussions was that there continues to be a critical need for early trans-disciplinary communication and collaboration in the development and execution of research approaches. Equally importantly was the need to address the shortage of sustained funding programs for multidisciplinary teams conducting translational research. Such detailed discussions between experts contribute towards the development of a roadmap to more successfully advance the clinical translation of novel tissue engineering concepts and ultimately improve patient care in orthopaedic and trauma surgery.

  10. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less

  11. SpaceTech—Postgraduate space education

    NASA Astrophysics Data System (ADS)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering, Interpersonal Skills, Telecommunications, Earth Observation and Navigation. A group CCP, a major asset of this unique program, is a focused project, aimed at the formation of a credible virtual commercial space-related business. Participants exercise space systems engineering fundamentals as well as marketing and business engineering tools, with the goal of creating a financially viable business opportunity. They then present the result, in the form of an unsolicited proposal to potential investors, as well as a varied group of engineers, managers and executives from the space community. During the CCP, participants learn the ties between mission and system design and the potential return to investors. They develop an instinct for the technical concepts and which of the parameters to adjust to make their newly conceived business more effective and profitable.

  12. Effects of tow transit on the efficacy of the Chicago Sanitary and Ship Canal Electric Dispersal Barrier System

    USGS Publications Warehouse

    Davis, Jeremiah J.; LeRoy, Jessica Z.; Shanks, Matthew R.; Jackson, Patrick Ryan; Engel, Frank; Murphy, Elizabeth; Baxter, Carey L.; McInerney, Michael K.; Barkowski, Nicholas A.

    2017-01-01

    In 2016, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a field study in the Chicago Sanitary and Ship Canal near Romeoville, Illinois to determine the influence of tow transit on the efficacy of the Electric Dispersal Barrier System (EDBS) in preventing the passage of juvenile fish (total length < 100 millimeters (mm)). Dual-frequency identification sonar data showed that large schools of juvenile fish (mean school size of 120 fish; n = 19) moved upstream and crossed the electric field of an array in the EDBS concurrent with downstream-bound (downbound) loaded tows in 89.5% of trials. Smaller schools of juvenile fish (mean school size of 98 fish; n = 15) moved downstream and crossed the electric field of an array in the EDBS concurrent with upstream-bound (upbound) loaded tows in 73.3% of trials. Observed fish passages through the EDBS were always opposite to the direction of tow movement, and not associated with propeller wash. These schools were not observed to breach the EDBS in the absence of a tow and showed no signs of incapacitation in the barrier during tow passage. Loaded tows transiting the EDBS create a return current of water flowing between the tow and the canal wall that typically travels opposite the direction of tow movement, and cause a decrease in the voltage gradient of the barrier of up to 88%. Return currents and decreases in voltage gradients induced by tow passage likely contributed to the observed fish passage through the EDBS. The efficacy of the EDBS in preventing the passage of small, wild fish is compromised while tows are moving across the barrier system. In particular, downbound tows moving through the EDBS create a pathway for the upstream movement of small fish, and therefore may increase the risk of transfer of invasive fishes from the Mississippi River Basin to the Great Lakes Basin.

  13. Similarity tests of turbine vanes, effects of ceramic thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.

    1980-01-01

    The role of material thermal conductivity was analyzed for its effect on the thermal performance of air-cooled gas turbine components coated with a ceramic thermal barrier material when tested at reduced temperatures and pressures. It is shown that the thermal performance can be evaluated reliably at reduced gas and coolant conditions; however, thermal conductivity corrections are required for the data at reduced conditions. Corrections for a ceramic thermal barrier coated vane are significantly different than for an uncoated vane. Comparison of uncorrected test data, therefore, would show erroneously that the thermal barrier coating was ineffective. When thermal conductivity corrections are applied to the test data these data are then shown to be representative of engine data and also show that the thermal barrier coating increases the vane cooling effectiveness by 12.5 percent.

  14. Spectroscopic investigation of Ni speciation in hardened cement paste.

    PubMed

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  15. Detecting Small-Scale Topographic Changes and Relict Geomorphic Features on Barrier Islands Using SAR

    NASA Technical Reports Server (NTRS)

    Gibeaut, James C.; Crawford, Melba M.; Gutierrez, Roberto; Slatton, K. Clint; Neuenschwander, Amy L.; Ricard, Michael R.

    1997-01-01

    The shapes and elevations of barrier islands may change dramatically over a short period of time during a storm. Coastal scientists and engineers, however, are currently unable to measure these changes occurring over an entire barrier island at once. This three-year project, which is funded by NASA and jointly conducted by the Bureau of Economic Geology and the Center for Space Research at The University of Texas at Austin, is designed to overcome this problem by developing the use of interferometry from airborne synthetic aperture radar (AIRSAR) to measure coastal topography and to detect storm-induced changes in topography. Surrogate measures of topography observed in multiband, fully polarimetric AIRSAR (This type of data are now referred to as POLSAR data.) are also being investigated. Digital elevation models (DEM) of Galveston Island and Bolivar Peninsula, Texas obtained with Topographic SAR (TOPSAR) are compared with measurements by Global Positioning System (GPS) ground surveys and electronic total station surveys. In addition to topographic mapping, this project is evaluating the use of POLSAR to detect old features such as storm scarps, storm channels, former tidal inlets, and beach ridges that have been obscured by vegetation, erosion, deposition, and artificial filling. We have also expanded the work from the original proposal to include the mapping of coastal wetland vegetation and depositional environments. Methods developed during this project will provide coastal geologists with an unprecedented tool for monitoring and understanding barrier island systems. This understanding will improve overall coastal management policies and will help reduce the effects of natural and man-induced coastal hazards. This report summarizes our accomplishments during the second year of the study. Also included is a discussion of our planned activities for year 3 and a revised budget.

  16. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2014-07-01

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  17. Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory

    PubMed Central

    Marino, Kristen A.; Hinnemann, Berit; Carter, Emily A.

    2011-01-01

    To maximize energy efficiency, gas turbine engines used in airplanes and for power generation operate at very high temperatures, even above the melting point of the metal alloys from which they are comprised. This feat is accomplished in part via the deposition of a multilayer, multicomponent thermal barrier coating (TBC), which lasts up to approximately 40,000 h before failing. Understanding failure mechanisms can aid in designing circumvention strategies. We review results of quantum mechanics calculations used to test hypotheses about impurities that harm TBCs and transition metal (TM) additives that render TBCs more robust. In particular, we discovered a number of roles that Pt and early TMs such as Hf and Y additives play in extending the lifetime of TBCs. Fundamental insight into the nature of the bonding created by such additives and its effect on high-temperature evolution of the TBCs led to design principles that can be used to create materials for even more efficient engines.

  18. On the acquisition and representation of procedural knowledge

    NASA Technical Reports Server (NTRS)

    Saito, T.; Ortiz, C.; Loftin, R. B.

    1992-01-01

    Historically knowledge acquisition has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some of some types of knowledge, little attention has been devoted to procedural knowledge. NASA personnel frequently perform tasks that are primarily procedural in nature. Previous work is reviewed in the field of knowledge acquisition and then focus on knowledge acquisition for procedural tasks with special attention devoted to the Navy's VISTA tool. The design and development is described of a system for the acquisition and representation of procedural knowledge-TARGET (Task Analysis and Rule Generation Tool). TARGET is intended as a tool that permits experts to visually describe procedural tasks and as a common medium for knowledge refinement by the expert and knowledge engineer. The system is designed to represent the acquired knowledge in the form of production rules. Systems such as TARGET have the potential to profoundly reduce the time, difficulties, and costs of developing knowledge-based systems for the performance of procedural tasks.

  19. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  20. Improving the Efficiency of 3-D Hydrogeological Mixers: Dilution Enhancement Via Coupled Engineering-Induced Transient Flows and Spatial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Di Dato, Mariaines; de Barros, Felipe P. J.; Fiori, Aldo; Bellin, Alberto

    2018-03-01

    Natural attenuation and in situ oxidation are commonly considered as low-cost alternatives to ex situ remediation. The efficiency of such remediation techniques is hindered by difficulties in obtaining good dilution and mixing of the contaminant, in particular if the plume deformation is physically constrained by an array of wells, which serves as a containment system. In that case, dilution may be enhanced by inducing an engineered sequence of injections and extractions from such pumping system, which also works as a hydraulic barrier. This way, the aquifer acts as a natural mixer, in a manner similar to the industrialized engineered mixers. Improving the efficiency of hydrogeological mixers is a challenging task, owing to the need to use a 3-D setup while relieving the computational burden. Analytical solutions, though approximated, are a suitable and efficient tool to seek the optimum solution among all possible flow configurations. Here we develop a novel physically based model to demonstrate how the combined spatiotemporal fluctuations of the water fluxes control solute trajectories and residence time distributions and therefore, the effectiveness of contaminant plume dilution and mixing. Our results show how external forcing configurations are capable of inducing distinct time-varying groundwater flow patterns which will yield different solute dilution rates.

Top