Science.gov

Sample records for engineered ethanologenic yeast

  1. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.

    PubMed

    Liu, Z Lewis; Ma, Menggen; Song, Mingzhou

    2009-09-01

    Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)(+) for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under

  2. Evolutionarily Engineered Ethanologenic Yeast Detoxifies Lignocellulosic Biomass Conversion Inhibitors by Reprogrammed Pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass conversion inhibitors furfural and HMF inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor ...

  3. Two new native ß-glucosidases from Clavispora NRRL Y-50464 confer its dual function as cellobiose fermenting ethanologenic yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clavispora NRRL Y-50464, a dual functional cellobiose fermenting and ethanologenic yeast strain, is a candidate biocatalyst for lower cost lignocellulose-to-ethanol production using simultaneous saccharification and fermentation. A ß-glucosidase BGL1 protein from this strain was recently reported an...

  4. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance.

    PubMed

    Wei, Pingying; Li, Zilong; He, Peng; Lin, Yuping; Jiang, Ning

    2008-02-01

    Genome shuffling was used to improve the acetic acid tolerance of an ethanologenic yeast, Candida krusei GL560. A mutant, S4-3, was isolated and selected after four rounds of genome shuffling. It was found that the mutant S4-3 had a higher viability in the YNBX (yeast nitrogen base/xylose) medium with acetic acid and grew better in the YPD (yeast extract, peptone and dextrose) medium [1% (w/v) yeast extract, 2% (w/v) peptone and 2% (w/v) glucose] with acetic acid than the parent strain GL560. The mutant S4-3 also improved its multiple stress tolerance to ethanol, H2O2, heat and freeze-thaw. Furthermore, S4-3 showed higher ethanol production than GL560 in EFM (ethanol fermentation medium) with or without acetic acid. The DNA content of S4-3 was similar to its parent strains in the genome shuffling. This suggested that gene exchange, as caused by homologous recombination, may have occurred during the process. Higher membrane integrity and intracellular catalase activity were two possible reasons for the higher acid-tolerance phenotype of S4-3. These results indicated that genome shuffling is a powerful means of rapidly improving the complex traits of non-haploid organisms, while still maintaining robust growth.

  5. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.

    PubMed

    Choudhary, Jairam; Singh, Surender; Nain, Lata

    2017-03-01

    Lignocellulosic biomass, a promising renewable energy source, can be used for the production of second generation bioethanol. Simultaneous saccharification and fermentation (SSF), the process which alleviates the problem of separate hydrolysis and fermentation (SHF), requires thermotolerant ethanologenic yeast for bioethanol production. Therefore, ten yeast strains isolated from diverse sources, belonging to various genera like Saccharomyces, Candida, Pichia and Wickerhamomyces were evaluated for their thermotolerance, sugar utilization pattern, inhibitor tolerance and ethanol production potential with glucose, xylose and alkali pretreated paddy straw. All the tested strains were found to be thermotolerant, capable of significant growth at 40°C. Candida tropicalis Y6 was capable of utilizing a wide range of sugars as compared with other yeast isolates. Strains of Candida showed better inhibitor tolerance as compared to Saccharomyces and Pichia strains and exhibited only 5.1-18.8% and 4.7-7.9% reduction in growth with furfural and 5-hydroxymethyl furfural, respectively. Saccharomyces cerevisiae JRC6, isolated from distillery waste, produced ethanol with 88.3% and 89.1% theoretical efficiency at 40°C and 42°C, respectively, from glucose. This strain also produced significantly higher amount of ethanol (3.8 g/L) with better fermentation efficiency (87.9%) from alkali pretreated paddy straw at 40°C, as compared with the other yeast strains. Therefore, S. cerevisiae JRC6, based on its ability to ferment sugars at a higher temperature, can be a promising candidate for production of ethanol from lignocellulosic biomass via SSF process.

  6. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.

    PubMed

    Liu, Z Lewis; Slininger, Patricia J; Gorsich, Steve W

    2005-01-01

    Furfural and hydroxymethylfurfural (HMF) are representative inhibitors among many inhibitive compounds derived from biomass degradation and saccharification for bioethanol fermentation. Most yeasts, including industrial strains, are susceptible to these inhibitory compounds, especially when multiple inhibitors are present. Additional detoxification steps add cost and complexity to the process and generate additional waste products. To promote efficient bioethanol production, we studied the mechanisms of stress tolerance, particularly to fermentation inhibitors such as furfural and HMF. We recently reported a metabolite of 2,5-bis-hydroxymethylfuran as a conversion product of HMF and characterized a dose-dependent response of ethanologenic yeasts to inhibitors. In this study, we present newly adapted strains that demonstrated higher levels of tolerance to furfural and HMF. Saccharomyces cerevisiae 307-12H60 and 307-12H120 and Pichia stipitis 307 10H60 showed enhanced biotransformation ability to reduce HMF to 2,5-bis-hydroxymethylfuran at 30 and 60 mM, and S. cerevisiae 307-12-F40 converted furfural into furfuryl alcohol at significantly higher rates compared to the parental strains. Strains of S. cerevisiae converted 100% of HMF at 60 mM and S. cerevisiae 307-12-F40 converted 100% of furfural into furfuryl alcohol at 30 mM. The results of this study suggest a possible in situ detoxification of the inhibitors by using more inhibitor-tolerant yeast strains for bioethanol fermentation. The development of such tolerant strains provided a basis and useful materials for further studies on the mechanisms of stress tolerance.

  7. Development of a phenotypic assay for characterisation of ethanologenic yeast strain sensitivity to inhibitors released from lignocellulosic feedstocks.

    PubMed

    Greetham, D; Wimalasena, T; Kerruish, D W M; Brindley, S; Ibbett, R N; Linforth, R L; Tucker, G; Phister, T G; Smart, K A

    2014-06-01

    Inhibitors released by the breakdown of plant cell walls prevent efficient conversion of sugar into ethanol. The aim of this study was to develop a fast and reliable inhibitor sensitivity assay for ethanologenic yeast strains. The assay comprised bespoke 96-well plates containing inhibitors in isolation or combination in a format that was compatible with the Phenotypic Microarray Omnilog reader (Biolog, hayward, CA, USA). A redox reporter within the assay permits analysis of inhibitor sensitivity in aerobic and/or anaerobic conditions. Results from the assay were verified using growth on spot plates and tolerance assays in which maintenance of viability was assessed. The assay allows for individual and synergistic effects of inhibitors to be determined. It was observed that the presence of both acetic and formic acid significantly inhibited the yeast strains assessed, although this impact could be partially mitigated by buffering to neutral pH. Scheffersomyces stipitis, Candida spp., and Pichia guilliermondii demonstrated increased sensitivity to short chain weak acids at concentrations typically present in lignocellulosic hydrolysates. S. cerevisiae exhibited robustness to short chain weak acids at these concentrations. However, S. stipitis, Candida spp., and P. guilliermondii displayed increased tolerance to HMF when compared to that observed for S. cerevisiae. The results demonstrate that the phenotypic microarray assay developed in the current study is a valuable tool that can be used to identify yeast strains with desirable resistance to inhibitory compounds found in lignocellulosic hydrolysates.

  8. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective

    PubMed Central

    Kricka, William; Fitzpatrick, James; Bond, Ursula

    2014-01-01

    This review focuses on current approaches to metabolic engineering of ethanologenic yeast species for the production of bioethanol from complex lignocellulose biomass sources. The experimental strategies for the degradation of the cellulose and xylose-components of lignocellulose are reviewed. Limitations to the current approaches are discussed and novel solutions proposed. PMID:24795706

  9. [Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination].

    PubMed

    Liu, Xiuying; He, Xiuping; Lu, Ying; Zhang, Borun

    2011-07-01

    Ethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, in the process of industrial production of ethanol, both cell growth and fermentation of ethanologenic S. cerevisiae are dramatically affected by environmental stresses, such as thermal stress. In this study, we improved both the thermotolerance and fermentation performance of industrial ethanologenic S. cerevisiae by combined usage of chemical mutagenesis and genomic DNA mutagenesis-based genetic recombination method. The recombinant S. cerevisiae strain T44-2 could grow at 44 degrees C, 3 degrees C higher than that of the original strain CE6. The survival rate of T44-2 was 1.84 and 1.87-fold of that of CE6 when heat shock at 48 degrees C and 52 degrees C for 1 h respectively. At temperature higher than 37 degrees C, recombinant strain T44-2 always gave higher cell growth and ethanol production than those of strain CE6. Meanwhile, from 30 degrees C to 40 degrees C, recombinant strain T44-2 produces 91.2-83.8 g/L of ethanol from 200 g/L of glucose, which indicated that the recombinant strain T44-2 had both thermotolerance and broad thermal adaptability. The work offers a novel method, called genomic DNA mutagenesis-based genetic recombination, to improve the physiological functions of S. cerevisiae.

  10. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast

    PubMed Central

    Wang, Xu; Liu, Z. Lewis; Weber, Scott A.; Zhang, Xiaoping

    2016-01-01

    Yeast strain Clavispora NRRL Y-50464 is able to produce cellulosic ethanol from lignocellulosic materials without addition of external β-glucosidase by simultaneous saccharification and fermentation. A β-glucosidase BGL1 protein from this strain was recently reported supporting its cellobiose utilization capability. Here, we report two additional new β-glucosidase genes encoding enzymes designated as BGL2 and BGL3 from strain NRRL Y-50464. Quantitative gene expression was analyzed and the gene function of BGL2 and BGL3 was confirmed by heterologous expression using cellobiose as a sole carbon source. Each gene was cloned and partially purified protein obtained separately for direct enzyme assay using varied substrates. Both proteins showed the highest specific activity at pH 5 and relatively strong affinity with a Km of 0.08 and 0.18 mM for BGL2 and BGL3, respectively. The optimum temperature was found to be 50°C for BGL2 and 55°C for BGL3. Both proteins were able to hydrolyze 1,4 oligosaccharides evaluated in this study. They also showed a strong resistance to glucose product inhibition with a Ki of 61.97 and 38.33 mM for BGL2 and BGL3, respectively. While BGL3 was sensitive showing a significantly reduced activity to 4% ethanol, BGL2 demonstrated tolerance to ethanol. Its activity was enhanced in the presence of ethanol but reduced at concentrations greater than 16%. The presence of the fermentation inhibitors furfural and HMF did not affect the enzyme activity. Our results suggest that a β-glucosidase gene family exists in Clavispora NRRL Y-50464 with at least three members in this group that validate its cellobiose hydrolysis functions for lower-cost cellulosic ethanol production. Results of this study confirmed the cellobiose hydrolysis function of strain NRRL Y-50464, and further supported this dual functional yeast as a candidate for lower-cost cellulosic ethanol production and next-generation biocatalyst development in potential industrial

  11. Advances in yeast genome engineering.

    PubMed

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools.

  12. Yeast metabolic engineering for hemicellulosic ethanol production.

    PubMed

    Van Vleet, J H; Jeffries, T W

    2009-06-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of fungal xylose isomerase or modification of cofactor requirements in the yeast oxidoreductase pathway can reduce xylitol production while increasing ethanol yields, but these changes often occur at the expense of xylose utilization rates. Genetic engineering and evolutionary adaptation to increase glycolytic flux coupled with transcriptomic and proteomic studies have identified targets for further modification, as have genomic and metabolic engineering studies in native xylose fermenting yeasts.

  13. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  14. Cell surface engineering of yeast for applications in white biotechnology.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  15. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate

    PubMed Central

    Fujii, Mari; Yoshida, Shiori; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Marine macroalgae is a promising carbon source that contains alginate and mannitol as major carbohydrates. A bioengineered ethanologenic strain of the bacterium Sphingomonas sp. A1 can produce ethanol from alginate, but not mannitol, whereas the yeast Saccharomyces paradoxus NBRC 0259–3 can produce ethanol from mannitol, but not alginate. Thus, one practical approach for converting both alginate and mannitol into ethanol would involve two-step fermentation, in which the ethanologenic bacterium initially converts alginate into ethanol, and then the yeast produces ethanol from mannitol. In this study, we found that, during fermentation from alginate, the ethanologenic bacterium lost viability and secreted toxic byproducts into the medium. These toxic byproducts inhibited bacterial growth and killed bacterial cells and also inhibited growth of S. paradoxus NBRC 0259–3. We discovered that adjusting the pH of the culture supernatant or the culture medium containing the toxic byproducts to 6.0 attenuated the toxicity toward both bacteria and yeast, and also extended the period of viability of the bacterium. Although continuous adjustment of pH to 6.0 failed to improve the ethanol productivity of this ethanologenic bacterium, this pH adjustment worked very well in the two-step fermentation due to the attenuation of toxicity toward S. paradoxus NBRC 0259–3. These findings provide information critical for establishment of a practical system for ethanol production from brown macroalgae. PMID:24445222

  16. Ethanologenic enzymes of Zymomonas mobilis: Progress report

    SciTech Connect

    Ingram, L.O.

    1989-02-01

    In this study, we have proposed to investigate the regulatory mechanisms which permit the high level expression of the ethanologenic enzymes from Zymomonas mobilis (PDC, ADHI, ADHII). This research is continuing essentially as proposed in the original grant except that the scope is being expanded to include the glycolytic enzymes which are also highly expressed. Several enzymes which are expressed only at moderate levels are being examined for comparison (tryptophan biosynthesis, acid phosphatase). Studies of highly expressed genes involve enzyme purification and the production of antibodies, investigations of the effects of growth conditions on expression, cloning and characterization of structural genes, construction of hybrid genes, mutation of alcohol dehydrogenases, and investigation of transcriptional and translational regulation. In addition, we are investigating the feasibility of replacing the NAD regeneration systems of other bacteria with an artificial operon containing the Z. mobilis genes (PDC and ADHII) for the production of ethanol, the ''PET'' operon. 30 refs.

  17. Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose.

    PubMed

    Gutiérrez, Tony; Buszko, Marian L; Ingram, Lonnie O; Preston, James F

    2002-01-01

    The ethanologenic bacteria Escherichia coli strains KO11 and LYO1, and Klebsiella oxytoca strain P2, were investigated for their ability to metabolize furfural. Using high performance liquid chromatography and 13C-nuclear magnetic resonance spectroscopy, furfural was found to be completely biotransformed into furfuryl alcohol by each of the three strains with tryptone and yeast extract as sole carbon sources. This reduction appears to be constitutive with NAD(P)H acting as electron donor. Glucose was shown to be an effective source of reducing power. Succinate inhibited furfural reduction, indicating that flavins are unlikely participants in this process. Furfural at concentrations >10 mM decreased the rate of ethanol formation but did not affect the final yield. Insight into the biochemical nature of this furfural reduction process may help efforts to mitigate furfural toxicity during ethanol production by ethanologenic bacteria.

  18. An Engineered Yeast Efficiently Secreting Penicillin

    PubMed Central

    Gidijala, Loknath; Kiel, Jan A. K. W.; Douma, Rutger D.; Seifar, Reza M.; van Gulik, Walter M.; Bovenberg, Roel A. L.; Veenhuis, Marten; van der Klei, Ida J.

    2009-01-01

    This study aimed at developing an alternative host for the production of penicillin (PEN). As yet, the industrial production of this β-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT) and phenylacetyl CoA ligase (PCL) resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L). PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel) β-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents), whose production involves NRPS's. PMID:20016817

  19. An engineered yeast efficiently secreting penicillin.

    PubMed

    Gidijala, Loknath; Kiel, Jan A K W; Douma, Rutger D; Seifar, Reza M; van Gulik, Walter M; Bovenberg, Roel A L; Veenhuis, Marten; van der Klei, Ida J

    2009-12-15

    This study aimed at developing an alternative host for the production of penicillin (PEN). As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS) delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT) and phenylacetyl CoA ligase (PCL) resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L). PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel) beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents), whose production involves NRPS's.

  20. Engineered yeast for enhanced CO2 mineralization.

    PubMed

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d'Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2013-02-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented.

  1. Engineered yeast for enhanced CO2 mineralization†

    PubMed Central

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2014-01-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  2. Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast

    PubMed Central

    2014-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  3. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.

    PubMed

    Krivoruchko, Anastasia; Siewers, Verena; Nielsen, Jens

    2011-03-01

    Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.

  4. Improvements In Ethanologenic Escherichia Coli and Klebsiella Oxytoca

    SciTech Connect

    Dr. David Nunn

    2010-09-30

    The current Verenium cellulosic ethanol process is based on the dilute-acid pretreatment of a biomass feedstock, followed by a two-stage fermentation of the pentose sugar-containing hydrolysate by a genetically modified ethanologenic Escherichia coli strain and a separate simultaneous saccharification-fermentation (SSF) of the cellulosic fraction by a genetically modified ethanologenic Klebsiella oxytoca strain and a fungal enzyme cocktail. In order to reduce unit operations and produce a fermentation beer with higher ethanol concentrations to reduce distillation costs, we have proposed to develop a simultaneous saccharification co-fermentation (SScF) process, where the fermentation of the pentose-containing hydrolysate and cellulosic fraction occurs within the same fermentation vessel. In order to accomplish this goal, improvements in the ethanologens must be made to address a number of issues that arise, including improved hydrolysate tolerance, co-fermentation of the pentose and hexose sugars and increased ethanol tolerance. Using a variety of approaches, including transcriptomics, strain adaptation, metagenomics and directed evolution, this work describes the efforts of a team of scientists from Verenium, University of Florida, Massachusetts Institute of Technology and Genomatica to improve the E. coli and K. oxytoca ethanologens to meet these requirements.

  5. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast.

    PubMed

    Li, Yanran; Smolke, Christina D

    2016-07-05

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4'-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery.

  6. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast

    PubMed Central

    Li, Yanran; Smolke, Christina D.

    2016-01-01

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4′-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery. PMID:27378283

  7. Synthetic genome engineering forging new frontiers for wine yeast.

    PubMed

    Pretorius, Isak S

    2017-02-01

    Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future

  8. Tools for genetic engineering of the yeast Hansenula polymorpha.

    PubMed

    Saraya, Ruchi; Gidijala, Loknath; Veenhuis, Marten; van der Klei, Ida J

    2014-01-01

    Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years many efforts have led to advances in the development of this microbial host including the generation of expression vectors containing strong constitutive or inducible promoters and a large array of dominant and auxotrophic markers. Moreover, highly efficient transformation procedures used to generate genetically stable strains are now available. Here, we describe these tools as well as the methods for genetic engineering of H. polymorpha.

  9. Recent applications of synthetic biology tools for yeast metabolic engineering.

    PubMed

    Jensen, Michael K; Keasling, Jay D

    2015-02-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead.

  10. Metabolic engineering for improved fermentation of pentoses by yeasts.

    PubMed

    Jeffries, T W; Jin, Y-S

    2004-02-01

    The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g(-1) sugar consumed, so commercialization seems feasible for some applications.

  11. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism.

    PubMed

    Pérez-Torrado, Roberto; Matallana, Emilia

    2015-01-01

    During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry.

  12. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    PubMed

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production.

  13. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  14. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities

    PubMed Central

    Orencio-Trejo, Montserrat; Flores, Noemí; Escalante, Adelfo; Hernández-Chávez, Georgina; Bolívar, Francisco; Gosset, Guillermo; Martinez, Alfredo

    2008-01-01

    Background A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14) derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis). It is suggested that this behavior might be due to lineage differences between E. coli W and C. Results This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical) in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. Conclusion Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates. PMID:18471274

  15. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    SciTech Connect

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  16. Multiplex engineering of industrial yeast genomes using CRISPRm.

    PubMed

    Ryan, Owen W; Cate, Jamie H D

    2014-01-01

    Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.

  17. Engineering an NADPH/NADP(+) Redox Biosensor in Yeast.

    PubMed

    Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas P B; Pedersen, Kasper R; Jensen, Michael K; Keasling, Jay D

    2016-12-16

    Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP(+) redox biosensor in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP(+) ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP(+) ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states.

  18. Molecular Adaptation Mechanisms Employed by Ethanologenic Bacteria in Response to Lignocellulose-derived Inhibitory Compounds

    PubMed Central

    Ibraheem, Omodele; Ndimba, Bongani K.

    2013-01-01

    Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains. PMID:23847442

  19. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds.

    PubMed

    Ibraheem, Omodele; Ndimba, Bongani K

    2013-01-01

    Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains.

  20. Engineering yeast for high-level production of stilbenoid antioxidants

    PubMed Central

    Li, Mingji; Schneider, Konstantin; Kristensen, Mette; Borodina, Irina; Nielsen, Jens

    2016-01-01

    Stilbenoids, including resveratrol and its methylated derivatives, are natural potent antioxidants, produced by some plants in trace amounts as defense compounds. Extraction of stilbenoids from natural sources is costly due to their low abundance and often limited availability of the plant. Here we engineered the yeast Saccharomyces cerevisiae for production of stilbenoids on a simple mineral medium typically used for industrial production. We applied a pull-push-block strain engineering strategy that included overexpression of the resveratrol biosynthesis pathway, optimization of the electron transfer to the cytochrome P450 monooxygenase, increase of the precursors supply, and decrease of the pathway intermediates degradation. Fed-batch fermentation of the final strain resulted in a final titer of 800 mg l−1 resveratrol, which is by far the highest titer reported to date for production of resveratrol from glucose. We further integrated heterologous methyltransferases into the resveratrol platform strain and hereby demonstrated for the first time de novo biosynthesis of pinostilbene and pterostilbene, which have better stability and uptake in the human body, from glucose. PMID:27833117

  1. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment.

    PubMed

    Wei, Pingying; Li, Zilong; Lin, Yuping; He, Peng; Jiang, Ning

    2007-10-01

    An effective, simple, and convenient method to improve yeast's multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H(2)O(2), and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 x 10(7) c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l(-1)) to SC521 at 30 degrees C with 200 g glucose l(-1), and was better than the parent strain at 37 degrees C (72.5 g ethanol l(-1)), with 300 (111 g ethanol l(-1)) or with 400 (85 g ethanol l(-1)) g glucose l(-1).

  2. Rolling adhesion kinematics of yeast engineered to express selectins.

    PubMed

    Bhatia, Sujata K; Swers, Jeffrey S; Camphausen, Raymond T; Wittrup, K Dane; Hammer, Daniel A

    2003-01-01

    Selectins are cell adhesion molecules that mediate capture of leukocytes on vascular endothelium as an essential component of the inflammatory response. Here we describe a method for yeast surface display of selectins, together with a functional assay that measures rolling adhesion of selectin-expressing yeast on a ligand-coated surface. E-selectin-expressing yeast roll specifically on surfaces bearing sialyl-Lewis-x ligands. Observation of yeast rolling dynamics at various stages of their life cycle indicates that the kinematics of yeast motion depends on the ratio of the bud radius to the parent radius (B/P). Large-budded yeast "walk" across the surface, alternately pivoting about bud and parent. Small-budded yeast "wobble" across the surface, with bud pivoting about parent. Tracking the bud location of budding yeast allows measurement of the angular velocity of the yeast particle. Comparison of translational and angular velocities of budding yeast demonstrates that selectin-expressing cells are rolling rather than slipping across ligand-coated surfaces.

  3. A systems-level approach for metabolic engineering of yeast cell factories.

    PubMed

    Kim, Il-Kwon; Roldão, António; Siewers, Verena; Nielsen, Jens

    2012-03-01

    The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories.

  4. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  5. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  6. Engineering industrial yeast for renewable advanced biofuels applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  7. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  8. Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements.

    PubMed

    Gonchar, Mykhailo; Maidan, Mykola; Korpan, Yaroslav; Sibirny, Volodymyr; Kotylak, Zbigniew; Sibirny, Andrei

    2002-08-01

    An extended definition of the term metabolic engineering is given and its successful use in the construction of biorecognition elements of sensors is demonstrated. It is shown that genetic and chemical modifications of methylotrophic yeast cells provide directed changes in their physiological responses towards methanol, ethanol and formaldehyde resulting in enhanced selectivity and shorter time response of the corresponding potentiometric and amperometric biosensors.

  9. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries

    PubMed Central

    Yi, Li; Gebhard, Mark C.; Li, Qing; Taft, Joseph M.; Georgiou, George; Iverson, Brent L.

    2013-01-01

    Myriad new applications of proteases would be enabled by an ability to fine-tune substrate specificity and activity. Herein we present a general strategy for engineering protease selectivity and activity by capitalizing on sequestration of the protease to be engineered within the yeast endoplasmic reticulum (ER). A substrate fusion protein composed of yeast adhesion receptor subunit Aga2, selection and counterselection substrate sequences, multiple intervening epitope tag sequences, and a C-terminal ER retention sequence is coexpressed with a protease library. Cleavage of the substrate fusion protein by the protease eliminates the ER retention sequence, facilitating transport to the yeast surface. Yeast cells that display Aga2 fusions in which only the selection substrate is cleaved are isolated by multicolor FACS with fluorescently labeled antiepitope tag antibodies. Using this system, the Tobacco Etch Virus protease (TEV-P), which strongly prefers Gln at P1 of its canonical ENLYFQ↓S substrate, was engineered to recognize selectively Glu or His at P1. Kinetic analysis indicated an overall 5,000-fold and 1,100-fold change in selectivity, respectively, for the Glu- and His-specific TEV variants, both of which retained high catalytic turnover. Human granzyme K and the hepatitis C virus protease were also shown to be amenable to this unique approach. Further, by adjusting the signaling strategy to identify phosphorylated as opposed to cleaved sequences, this unique system was shown to be compatible with the human Abelson tyrosine kinase. PMID:23589865

  10. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries.

    PubMed

    Yi, Li; Gebhard, Mark C; Li, Qing; Taft, Joseph M; Georgiou, George; Iverson, Brent L

    2013-04-30

    Myriad new applications of proteases would be enabled by an ability to fine-tune substrate specificity and activity. Herein we present a general strategy for engineering protease selectivity and activity by capitalizing on sequestration of the protease to be engineered within the yeast endoplasmic reticulum (ER). A substrate fusion protein composed of yeast adhesion receptor subunit Aga2, selection and counterselection substrate sequences, multiple intervening epitope tag sequences, and a C-terminal ER retention sequence is coexpressed with a protease library. Cleavage of the substrate fusion protein by the protease eliminates the ER retention sequence, facilitating transport to the yeast surface. Yeast cells that display Aga2 fusions in which only the selection substrate is cleaved are isolated by multicolor FACS with fluorescently labeled antiepitope tag antibodies. Using this system, the Tobacco Etch Virus protease (TEV-P), which strongly prefers Gln at P1 of its canonical ENLYFQ↓S substrate, was engineered to recognize selectively Glu or His at P1. Kinetic analysis indicated an overall 5,000-fold and 1,100-fold change in selectivity, respectively, for the Glu- and His-specific TEV variants, both of which retained high catalytic turnover. Human granzyme K and the hepatitis C virus protease were also shown to be amenable to this unique approach. Further, by adjusting the signaling strategy to identify phosphorylated as opposed to cleaved sequences, this unique system was shown to be compatible with the human Abelson tyrosine kinase.

  11. The hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and similar anaerobic thermophiles. Annual technical progress report

    SciTech Connect

    Wiegel, J.

    1995-07-01

    A Xylanase was fractionated from Thermoanaerobacter ethanolicus, an ethanologenic thermophile, and the preparation so obtained was used to determined enzymatic parameters such as pH profile of enzyme activity. The ability of various mono- and di-saccharides as well as temperature variations to induce this enzyme activity were studied.

  12. A new beta-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional cellulose-to-ethanol conversion by simultaneous saccharification and fermentation (SSF)requires enzymatic saccharification using both cellulase and ß-glucosidase allowing cellulose utilization by common ethanologenic yeast. Here we report a new yeast strain of Clavispora NRRL Y-50464 th...

  13. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae

    PubMed Central

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-01-01

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids. PMID:26573460

  14. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-11-17

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  15. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions

    PubMed Central

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  16. Industrial Saccharomyces cerevisiae Yeast Strain Engineered to Convert Glucose, Mannose, Arabinose, and Xylose (GMAX) to Ethanol Anaerobically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technology for engineering an industrial yeast strain for production of ethanol from glucose, mannose, arabinose, and xylose (GMAX-yeast) using both corn starch and cellulosic feedstocks with simultaneous production of valuable coproducts, including biodiesel, will be discussed. A stable industrial...

  17. Technical assessment of cellulosic ethanol production using ß-glucosidase producing yeast Clavispora NRRL Y-50464

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing the cost of cellulosic ethanol production, especially the use of expensive exogenous cellulose hydrolytic enzymes such as cellulase and ß-glucosidase, is a critical challenge and vital for a sustainable advanced biofuels industry. Here we report a novel ethanologenic yeast strain Clavispora...

  18. Engineering strategy of yeast metabolism for higher alcohol production

    PubMed Central

    2011-01-01

    Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols. PMID:21902829

  19. Process engineering for bioflavour production with metabolically active yeasts - a mini-review.

    PubMed

    Carlquist, Magnus; Gibson, Brian; Karagul Yuceer, Yonca; Paraskevopoulou, Adamantini; Sandell, Mari; Angelov, Angel I; Gotcheva, Velitchka; Angelov, Angel D; Etschmann, Marlene; de Billerbeck, Gustavo M; Lidén, Gunnar

    2015-01-01

    Flavours are biologically active molecules of large commercial interest in the food, cosmetics, detergent and pharmaceutical industries. The production of flavours can take place by either extraction from plant materials, chemical synthesis, biological conversion of precursor molecules or de novo biosynthesis. The latter alternatives are gaining importance through the rapidly growing fields of systems biology and metabolic engineering, giving efficient production hosts for the so-called 'bioflavours', which are natural flavour and/or fragrance compounds obtained with cell factories or enzymatic systems. Yeasts are potential production hosts for bioflavours. In this mini-review, we give an overview of bioflavour production in yeasts from the process-engineering perspective. Two specific examples, production of 2-phenylethanol and vanillin, are used to illustrate the process challenges and strategies used.

  20. Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine.

    PubMed

    Mapelli, Valeria; Hillestrøm, Peter R; Kápolna, Emese; Larsen, Erik H; Olsson, Lisbeth

    2011-05-01

    Specific Se-metabolites have been recognized to be the main elements responsible for beneficial effects of Se-enriched diet, and Se-methylselenocysteine (SeMCys) is thought to be among the most effective ones. Here we show that an engineered Saccharomyces cerevisiae strain, expressing a codon optimized heterologous selenocysteine methyltransferase and endowed with high intracellular levels of S-adenosyl-methionine, was able to accumulate SeMCys at levels higher than commercial selenized yeasts. A fine tuned carbon- and sulfate-limited fed-batch bioprocess was crucial to achieve good yields of biomass and SeMCys. Through the coupling of metabolic and bioprocess engineering we achieved a ∼24-fold increase in SeMCys, compared to certified reference material of selenized yeast. In addition, we investigated the interplay between sulfur and selenium metabolism and the possibility that redox imbalance occurred along with intracellular accumulation of Se. Collectively, our data show how the combination of metabolic and bioprocess engineering can be used for the production of selenized yeast enriched with beneficial Se-metabolites.

  1. Short communication: Conversion of lactose and whey into lactic acid by engineered yeast.

    PubMed

    Turner, Timothy L; Kim, Eunbee; Hwang, ChangHoon; Zhang, Guo-Chang; Liu, Jing-Jing; Jin, Yong-Su

    2017-01-01

    Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker's yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a β-glucosidase (GH1-1, which also acts as a β-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1-expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast.

  2. Engineering yeast transcription machinery for improved ethanol tolerance and production.

    PubMed

    Alper, Hal; Moxley, Joel; Nevoigt, Elke; Fink, Gerald R; Stephanopoulos, Gregory

    2006-12-08

    Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.

  3. In-Yeast Engineering of a Bacterial Genome Using CRISPR/Cas9.

    PubMed

    Tsarmpopoulos, Iason; Gourgues, Géraldine; Blanchard, Alain; Vashee, Sanjay; Jores, Joerg; Lartigue, Carole; Sirand-Pugnet, Pascal

    2016-01-15

    One remarkable achievement in synthetic biology was the reconstruction of mycoplasma genomes and their cloning in yeast where they can be modified using available genetic tools. Recently, CRISPR/Cas9 editing tools were developed for yeast mutagenesis. Here, we report their adaptation for the engineering of bacterial genomes cloned in yeast. A seamless deletion of the mycoplasma glycerol-3-phosphate oxidase-encoding gene (glpO) was achieved without selection in one step, using 90 nt paired oligonucleotides as templates to drive recombination. Screening of the resulting clones revealed that more than 20% contained the desired deletion. After manipulation, the overall integrity of the cloned mycoplasma genome was verified by multiplex PCR and PFGE. Finally, the edited genome was back-transplanted into a mycoplasma recipient cell. In accordance with the deletion of glpO, the mutant mycoplasma was affected in the production of H2O2. This work paves the way to high-throughput manipulation of natural or synthetic genomes in yeast.

  4. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.

    PubMed

    Hasunuma, Tomohisa; Kondo, Akihiko

    2012-01-01

    To build an energy and material secure future, a next generation of renewable fuels produced from lignocellulosic biomass is required. Although lignocellulosic biomass, which represents an abundant, inexpensive and renewable source for bioethanol production, is of great interest as a feedstock, the complicated ethanol production processes involved make the cost of producing bioethanol from it higher compared to corn starch and cane juice. Therefore, consolidated bioprocessing (CBP), which combines enzyme production, saccharification and fermentation in a single step, has gained increased recognition as a potential bioethanol production system. CBP requires a highly engineered microorganism developed for several different process-specific characteristics. The dominant strategy for engineering a CBP biocatalyst is to express multiple components of a cellulolytic system from either fungi or bacteria in the yeast Saccharomyces cerevisiae. The development of recombinant yeast strains displaying cellulases and hemicellulases on the cell surface represents significant progress toward realization of CBP. Regardless of the process used for biomass hydrolysis, CBP-enabling microorganisms encounter a variety of toxic compounds produced during biomass pretreatment that inhibit microbial growth and ethanol yield. Systems biology approaches including disruptome screening, transcriptomics, and metabolomics have been recently exploited to gain insight into the molecular and genetic traits involved in tolerance and adaptation to the fermentation inhibitors. In this review, we focus on recent advances in development of yeast strains with both the ability to directly convert lignocellulosic material to ethanol and tolerance in the harsh environments containing toxic compounds in the presence of ethanol.

  5. Engineering strategies for the fermentative production of plant alkaloids in yeast

    PubMed Central

    Trenchard, Isis J.; Smolke, Christina D.

    2015-01-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. PMID:25981946

  6. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    PubMed Central

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    SUMMARY The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in kcat/Km values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the “nonribosomal code” of A-domains. PMID:23352143

  7. Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.

    PubMed

    Iinoya, Kaoru; Kotani, Tetsuya; Sasano, Yu; Takagi, Hiroshi

    2009-06-01

    The budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene, which confers resistance to the proline analogue azetidine-2-carboxylate (AZC). This gene encodes an N-acetyltransferase Mpr1 that detoxifies AZC, and the homologous genes have been found in many yeasts. Recently, we found that Mpr1 protects yeast cells by reducing the intracellular reactive oxygen species (ROS) levels under oxidative stresses, such as heat-shock, freezing, or ethanol treatment. Unlike the known antioxidant enzymes, Mpr1 is thought to acetylate toxic metabolite(s) involved in ROS generation via oxidative events. To improve the enzymatic functions of Mpr1, we applied PCR random mutagenesis to MPR1. The mutagenized plasmid library was introduced into the S. cerevisiae S288C strain lacking MPR1, and we successfully isolated two Mpr1 variants with higher AZC resistance (K63R and F65L/L117V). Interestingly, overexpression of the K63R variant was found to increase cell viability or decrease intracellular ROS levels after exposure to H(2)O(2) or ethanol compared with the wild-type Mpr1. In vitro studies with the recombinant enzymes showed that the catalytic efficiency of the K63R variant for AZC and acetyl-CoA was higher than that of the wild-type Mpr1 and that the F65L mutation greatly enhanced the thermal stability. The mutational analysis and molecular modeling suggest that an alpha-helix containing Lys63 and Phe65 has important roles in the function of Mpr1. In addition, the wild-type and K63R variant Mpr1 reduced intracellular ROS levels under ethanol stress conditions on haploid sake yeast cells. These results suggest that engineering Mpr1 might be useful in breeding oxidative stress-tolerant yeast strains.

  8. Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening.

    PubMed

    Choi, Hye-Ji; Kim, Ye-Jin; Choi, Dong-Ki; Kim, Yong-Sung

    2015-01-01

    Immunoglobulin Fc heterodimers, which are useful scaffolds for the generation of bispecific antibodies, have been mostly generated through structure-based rational design methods that introduce asymmetric mutations into the CH3 homodimeric interface to favor heterodimeric Fc formation. Here, we report an approach to generate heterodimeric Fc variants through directed evolution combined with yeast surface display. We developed a combinatorial heterodimeric Fc library display system by mating two haploid yeast cell lines, one haploid cell line displayed an Fc chain library (displayed FcCH3A) with mutations in one CH3 domain (CH3A) on the yeast cell surface, and the other cell line secreted an Fc chain library (secreted FcCH3B) with mutations in the other CH3 domain (CH3B). In the mated cells, secreted FcCH3B is displayed on the cell surface through heterodimerization with the displayed FcCH3A, the detection of which enabled us to screen the library for heterodimeric Fc variants. We constructed combinatorial heterodimeric Fc libraries with simultaneous mutations in the homodimer-favoring electrostatic interaction pairs K370-E357/S364 or D399-K392/K409 at the CH3 domain interface. High-throughput screening of the libraries using flow cytometry yielded heterodimeric Fc variants with heterodimer-favoring CH3 domain interface mutation pairs, some of them showed high heterodimerization yields (~80-90%) with previously unidentified CH3 domain interface mutation pairs, such as hydrogen bonds and cation-π interactions. Our study provides a new approach for engineering Fc heterodimers that could be used to engineer other heterodimeric protein-protein interactions through directed evolution combined with yeast surface display.

  9. A new yeast producing beta-glucosidase and tolerant to lignocellulose hydrolysate inhibitors for cellulosic ethanol production using SSF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional cellulose-to-ethanol conversion requires cellulose degradation in order to be utilized for growth and fermentation by common ethanologenic yeast. Cellulose is commonly enzymatically degraded into cellobiose by cellulase and subsequently cellobiose broken down into glucose by beta-glucos...

  10. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    PubMed

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms.

  11. Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions.

    PubMed

    Gao, Cuijuan; Wang, Zhikun; Liang, Quanfeng; Qi, Qingsheng

    2010-08-01

    Global transcription engineering was developed as a tool to reprogram gene transcription for eliciting new phenotypes important for technological applications (Science 2006, 314(5805):1565-1568). A recent report indicated that the beneficial growth advantage of yeast cells expressing the SPT15-300 mutation is the result of enhanced uptake and/or improved utilization of leucine and thus was seen only on defined media with low concentrations of leucine (Appl Environ Microbiol 2009, 75(19):6055-6061). Further investigation towards a leucine-prototrophic strain of industrial lager brewer's yeast indicated that integration one copy of SPT15-300 in SPT15 allele, however, did lead to an increased ethanol tolerance on complex rich medium at high gravity fermentation condition. Under brewing conditions, the SPT15-300 mutant produced 80.78 g/L ethanol from 200 g/L carbohydrates after 384 h, almost twice as much as that of the wild-type strain. The results convinced us that the effect of global regulator modification of yeast is at multi-genes level and is extremely complicated.

  12. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.

    PubMed

    Zhang, Guo-Chang; Turner, Timothy L; Jin, Yong-Su

    2017-03-01

    Accumulation of reduced byproducts such as glycerol and xylitol during xylose fermentation by engineered Saccharomyces cerevisiae hampers the economic production of biofuels and chemicals from cellulosic hydrolysates. In particular, engineered S. cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD(+)-linked xylitol dehydrogenase (XDH) produces substantial amounts of the reduced byproducts under anaerobic conditions due to the cofactor difference of XR and XDH. While the additional expression of a water-forming NADH oxidase (NoxE) from Lactococcus lactis in engineered S. cerevisiae with the XR/XDH pathway led to reduced glycerol and xylitol production and increased ethanol yields from xylose, volumetric ethanol productivities by the engineered yeast decreased because of growth defects from the overexpression of noxE. In this study, we introduced noxE into an engineered yeast strain (SR8) exhibiting near-optimal xylose fermentation capacity. To overcome the growth defect caused by the overexpression of noxE, we used a high cell density inoculum for xylose fermentation by the SR8 expressing noxE. The resulting strain, SR8N, not only showed a higher ethanol yield and lower byproduct yields, but also exhibited a high ethanol productivity during xylose fermentation. As noxE overexpression elicits a negligible growth defect on glucose conditions, the beneficial effects of noxE overexpression were substantial when a mixture of glucose and xylose was used. Consumption of glucose led to rapid cell growth and therefore enhanced the subsequent xylose fermentation. As a result, the SR8N strain produced more ethanol and fewer byproducts from a mixture of glucose and xylose than the parental SR8 strain without noxE overexpression. Our results suggest that the growth defects from noxE overexpression can be overcome in the case of fermenting lignocellulose-derived sugars such as glucose and xylose.

  13. Tolerant ethanologenic yeast for low-cost lignocellulosic biomass conversion to ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the technical challenges for biomass conversion to ethanol is the generation of inhibitors during biomass pretreatment that interfere with microbial growth and subsequent fermentation. These inhibitors are formed in dehydration of pentoses and hexoses derived from degradation of cellulose an...

  14. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    PubMed

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  15. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages.

  16. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  17. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches.

    PubMed

    Cantone, Irene; Marucci, Lucia; Iorio, Francesco; Ricci, Maria Aurelia; Belcastro, Vincenzo; Bansal, Mukesh; Santini, Stefania; di Bernardo, Mario; di Bernardo, Diego; Cosma, Maria Pia

    2009-04-03

    Systems biology approaches are extensively used to model and reverse engineer gene regulatory networks from experimental data. Conversely, synthetic biology allows "de novo" construction of a regulatory network to seed new functions in the cell. At present, the usefulness and predictive ability of modeling and reverse engineering cannot be assessed and compared rigorously. We built in the yeast Saccharomyces cerevisiae a synthetic network, IRMA, for in vivo "benchmarking" of reverse-engineering and modeling approaches. The network is composed of five genes regulating each other through a variety of regulatory interactions; it is negligibly affected by endogenous genes, and it is responsive to small molecules. We measured time series and steady-state expression data after multiple perturbations. These data were used to assess state-of-the-art modeling and reverse-engineering techniques. A semiquantitative model was able to capture and predict the behavior of the network. Reverse engineering based on differential equations and Bayesian networks correctly inferred regulatory interactions from the experimental data.

  18. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

    PubMed

    Ro, Dae-Kyun; Paradise, Eric M; Ouellet, Mario; Fisher, Karl J; Newman, Karyn L; Ndungu, John M; Ho, Kimberly A; Eachus, Rachel A; Ham, Timothy S; Kirby, James; Chang, Michelle C Y; Withers, Sydnor T; Shiba, Yoichiro; Sarpong, Richmond; Keasling, Jay D

    2006-04-13

    Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.

  19. Genome and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial ethanologenic yeast Saccharomyces cerevisiae is a promising biocatalyst for next-generation advanced biofuels applications including lignocellulose-to-ethanol conversion. Here we present the first insight into the genomic background of NRRL Y-12632, a type strain from a worldwide coll...

  20. The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications.

    PubMed

    Branduardi, Paola; Valli, Minoska; Brambilla, Luca; Sauer, Michael; Alberghina, Lilia; Porro, Danilo

    2004-01-01

    Molecular tools for the production of heterologous proteins and metabolic engineering applications of the non-conventional yeast Zygosaccharomyces bailii were developed. The combination of Z. bailii's resistance to relatively high temperature, osmotic pressure and low pH values, with a high specific growth rate renders this yeast potentially interesting for exploitation for biotechnological purposes as well as for the understanding of the biological phenomena and mechanisms underlying the respective resistances. Looking forward to these potential applications, here we present the tools required for the production and the secretion of different heterologous proteins, and one example of a metabolic engineering application of this non-conventional yeast, employing the newly developed molecular tools.

  1. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-09-09

    Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  2. Engineered Cellulosic Yeast for Direct Production of Energy-Dense, Infrastructure-Compatible Fuels from CO2 and Cellulosic Sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strains of yeast expressing novel lipase will be engineered to produce two energy-dense liquid fuels using an improved column-based process for production of biodiesel and alcohol was developed using a column containing a strongly basic anion-exchange resin in sequence with a column containing a res...

  3. Engineering the supply chain for protein production/secretion in yeasts and mammalian cells.

    PubMed

    Klein, Tobias; Niklas, Jens; Heinzle, Elmar

    2015-03-01

    Metabolic bottlenecks play an increasing role in yeasts and mammalian cells applied for high-performance production of proteins, particularly of pharmaceutical ones that require complex posttranslational modifications. We review the present status and developments focusing on the rational metabolic engineering of such cells to optimize the supply chain for building blocks and energy. Methods comprise selection of beneficial genetic modifications, rational design of media and feeding strategies. Design of better producer cells based on whole genome-wide metabolic network analysis becomes increasingly possible. High-resolution methods of metabolic flux analysis for the complex networks in these compartmented cells are increasingly available. We discuss phenomena that are common to both types of organisms but also those that are different with respect to the supply chain for the production and secretion of pharmaceutical proteins.

  4. Bioethanol Production from Uncooked Raw Starch by Immobilized Surface-engineered Yeast Cells

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.

  5. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production.

    PubMed

    Tai, Mitchell; Stephanopoulos, Gregory

    2013-01-01

    Microbial oil production by heterotrophic organisms is a promising path for the cost-effective production of biofuels from renewable resources provided high conversion yields can be achieved. To this end, we have engineered the oleaginous yeast Yarrowia lipolytica. We first established an expression platform for high expression using an intron-containing translation elongation factor-1α (TEF) promoter and showed that this expression system is capable of increasing gene expression 17-fold over the intronless TEF promoter. We then used this platform for the overexpression of diacylglycerol acyltransferase (DGA1), the final step of the triglyceride (TAG) synthesis pathway, which yielded a 4-fold increase in lipid production over control, to a lipid content of 33.8% of dry cell weight (DCW). We also show that the overexpression of acetyl-CoA carboxylase (ACC1), the first committed step of fatty acid synthesis, increased lipid content 2-fold over control, or 17.9% lipid content. Next we combined the two genes in a tandem gene construct for the simultaneous coexpression of ACC1 and DGA1, which further increased lipid content to 41.4%, demonstrating synergistic effects of ACC1+DGA1 coexpression. The lipid production characteristics of the ACC1+DGA1 transformant were explored in a 2-L bioreactor fermentation, achieving 61.7% lipid content after 120h. The overall yield and productivity were 0.195g/g and 0.143g/L/h, respectively, while the maximum yield and productivity were 0.270g/g and 0.253g/L/h during the lipid accumulation phase of the fermentation. This work demonstrates the excellent capacity for lipid production by the oleaginous yeast Y. lipolytica and the effects of metabolic engineering of two important steps of the lipid synthesis pathway, which acts to divert flux towards the lipid synthesis and creates driving force for TAG synthesis.

  6. Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes.

    PubMed

    Ino, Kosuke; Kitagawa, Yusuke; Watanabe, Tsuyoshi; Shiku, Hitoshi; Koide, Masahiro; Itayama, Tomoaki; Yasukawa, Tomoyuki; Matsue, Tomokazu

    2009-10-01

    Endocrine disruptors that act like hormones in the endocrine system might have toxic effects. Therefore, it is important to develop a portable device that can detect hormone active chemicals in samples rapidly and easily. In this study, a microfluidic device was developed for the detection of hormone active chemicals using genetically engineered yeast cells. The yeast cells were used as biosensors since they were genetically engineered to respond to the presence of hormone active chemicals by synthesizing beta-galactosidase (beta-gal). For achieving further sensitivity, we incorporated interdigitated array (IDA) electrodes (width, 1.2 microm; gap, 0.8 microm) with 40 electrode fingers into the analytical chamber of the microfluidic device. The yeast cells precultured with a hormone active chemical, 17beta-estradiol (E2), were trapped from the main channel of the device to the analytical camber by electrophoresis. After trapping in the analytical chamber, we performed electrochemical detection of beta-gal induced in the yeast cells with the IDA electrodes. Actually, electrochemical detection was performed on p-aminophenol that was converted from p-aminophenyl-beta-D-galactopyranoside with beta-gal. The electrochemical signals from the yeast cells precultured with 17beta-estradiol were successfully detected with the device. Furthermore, the inhibitory effects of antagonists such as tamoxifen were also detected electrochemically by using the device. Thus, the present microfluidic device can be used for highly sensitive detection of hormone active chemicals.

  7. A simplified procedure for antibody engineering by yeast surface display: Coupling display levels and target binding by ribosomal skipping.

    PubMed

    Grzeschik, Julius; Hinz, Steffen C; Könning, Doreen; Pirzer, Thomas; Becker, Stefan; Zielonka, Stefan; Kolmar, Harald

    2017-02-01

    Yeast surface display is a valuable, widely used method for protein engineering. However, current yeast display applications rely on the staining of epitope tags in order to verify full-length presentation of the protein of interest on the cell surface. We aimed at developing a modified yeast display approach that relies on ribosomal skipping, thereby enabling the translation of two proteins from one open reading frame and, in that manner, generating an intracellular fluorescence signal. This improved setup is based on a 2A sequence that is encoded between the protein to be displayed and a gene for green fluorescent protein (GFP). The intracellular GFP fluorescence signal of yeast cells correlates with full-length protein presentation and omits the need for the immunofluorescence detection of epitope tags. For method validation, shark-derived IgNAR variable domains (vNAR) were subjected to affinity maturation using the 2A-GFP system. Yeast library screening of full-length vNAR variants which were detected via GFP expression yielded the same high-affinity binder that had previously been isolated by our group using the conventional epitope tag-based display format. The presented method obviates the need for additional immunofluorescence cell staining, offering an easy and cost-friendly alternative to conventional epitope tag detections.

  8. Ethanol production using a soy hydrolysate-based medium or a yeast autolysate-based medium

    DOEpatents

    Ingram, Lonnie O.

    2000-01-01

    This invention presents a method for the production of ethanol that utilizes a soy hydrolysate-based nutrient medium or a yeast autolysate-based medium nutrient medium in conjunction with ethanologenic bacteria and a fermentable sugar for the cost-effective production of ethanol from lignocellulosic biomass. The invention offers several advantages over presently available media for use in ethanol production, including consistent quality, lack of toxins and wide availability.

  9. Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid.

    PubMed

    Ikushima, Shigehito; Fujii, Toshio; Kobayashi, Osamu; Yoshida, Satoshi; Yoshida, Aruto

    2009-08-01

    Polylactic acid is receiving increasing attention as a renewable alternative for conventional petroleum-based plastics. In the present study, we constructed a metabolically-engineered Candida utilis strain that produces L-lactic acid with the highest efficiency yet reported in yeasts. Initially, the gene encoding pyruvate decarboxylase (CuPDC1) was identified, followed by four CuPDC1 disruption events in order to obtain a null mutant that produced little ethanol (a by-product of L-lactic acid). Two copies of the L-lactate dehydrogenase (L-LDH) gene derived from Bos taurus under the control of the CuPDC1 promoter were then integrated into the genome of the CuPdc1-null deletant. The resulting strain produced 103.3 g/l of L-lactic acid from 108.7 g/l of glucose in 33 h, representing a 95.1% conversion. The maximum production rate of L-lactic acid was 4.9 g/l/h. The optical purity of the L-lactic acid was found to be more than 99.9% e.e.

  10. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    PubMed

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  11. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    PubMed

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  12. Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

    PubMed Central

    Jeandet, Philippe; Delaunois, Bertrand; Aziz, Aziz; Donnez, David; Vasserot, Yann; Cordelier, Sylvain; Courot, Eric

    2012-01-01

    Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines. PMID:22654481

  13. Application of cell-surface engineering for visualization of yeast in bread dough: development of a fluorescent bio-imaging technique in the mixing process of dough.

    PubMed

    Maeda, Tatsuro; Shiraga, Seizaburo; Araki, Tetsuya; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    Cell-surface engineering (Ueda et al., 2000) has been applied to develop a novel technique to visualize yeast in bread dough. Enhanced green fluorescent protein (EGFP) was bonded to the surface of yeast cells, and 0.5% EGFP yeasts were mixed into the dough samples at four different mixing stages. The samples were placed on a cryostat at -30 degrees C and sliced at 10 microm. The sliced samples were observed at an excitation wavelength of 480 nm and a fluorescent wavelength of 520 nm. The results indicated that the combination of the EGFP-displayed yeasts, rapid freezing, and cryo-sectioning made it possible to visualize 2-D distribution of yeast in bread dough to the extent that the EGFP yeasts could be clearly distinguished from the auto-fluorescent background of bread dough.

  14. Engineering yeast consortia for surface-display of complex cellulosome structures

    SciTech Connect

    Chen, Wilfred

    2014-03-31

    As our society marches toward a more technologically advanced future, energy and environmental sustainability are some of the most challenging problems we face today. Biomass is one of the most abundant renewable-feedstock for sustainable production of biofuels. However, the main technological obstacle to more widespread uses of this resource is the lack of low-cost technologies to overcome the recalcitrant nature of the cellulosic structure, especially the hydrolysis step on highly ordered celluloses. In this proposal, we successfully engineered several efficient and inexpensive whole-cell biocatalysts in an effort to produce economically compatible and sustainable biofuels, namely cellulosic ethanol. Our approach was to display of a highly efficient cellulolytic enzyme complex, named cellulosome, on the surface of a historical ethanol producer Saccharomyces cerevisiae for the simultaneous and synergistic saccharification and fermentation of cellulose to ethanol. We first demonstrated the feasibility of assembling a mini-cellulosome by incubating E. coli lysates expressing three different cellulases. Resting cells displaying mini-cellulosomes produced 4-fold more ethanol from phosphoric acid-swollen cellulose (PASC) than cultures with only added enzymes. The flexibility to assemble the mini-cellulosome structure was further demonstrated using a synthetic yeast consortium through intracellular complementation. Direct ethanol production from PASC was demonstrated with resting cell cultures. To create a microorganism suitable for a more cost-effective process, called consolidated bioprocessing (CBP), a synthetic consortium capable of displaying mini-cellulosomes on the cell surface via intercellular complementation was created. To further improve the efficiency, a new adaptive strategy of employing anchoring and adaptor scaffoldins to amplify the number of enzymatic subunits was developed, resulting in the creation of an artificial tetravalent cellulosome on the

  15. Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli Ethanologen

    PubMed Central

    Schwalbach, Michael S.; Tremaine, Mary; Marner, Wesley D.; Zhang, Yaoping; Bothfeld, William; Higbee, Alan; Grass, Jeffrey A.; Cotten, Cameron; Reed, Jennifer L.; da Costa Sousa, Leonardo; Jin, Mingjie; Balan, Venkatesh; Ellinger, James; Dale, Bruce; Kiley, Patricia J.

    2012-01-01

    The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates. PMID:22389370

  16. Hydrocortisone made in yeast: metabolic engineering turns a unicellular microorganism into a drug-synthesizing factory.

    PubMed

    Dumas, Bruno; Brocard-Masson, Corinne; Assemat-Lebrun, Karine; Achstetter, Tilman

    2006-03-01

    Inspired by the successful work of converting Saccharomyces cerevisiae into an microorganism capable of synthesizing hydrocortisone, a 27-carbon molecule, from ethanol, a 2-carbon molecule, this review provides an overview of the potential of yeast as a recombinant organism in the 21st century. Yeast has been used by man for more than 6,000 years, and is still paving the way to new discoveries. It was the first eukaryotic organism to be sequenced, in 1996, and the first to produce hydrocortisone in 2003. In addition, extensive genome-wide analyses have been performed with yeast. In this review, we discuss the pros and cons of using yeast to produce small therapeutic molecules. It is obvious that S. cerevisiae has a cutting edge advantage of being a well-known organism and time will tell if yeast "biohydrocortisone" is a unique example or the beginning of a long list of yeast bioproducts. Other organisms, such as plants and bacteria, are competing with yeast. Bacteria produce a wealth of marketed molecules and plants are capable of producing extremely complex molecules with an unbeatable yield. However, S. cerevisiae offers a unique mix of the simplicity of a recombinant organism combined with the complexity of a eukaryote.

  17. [Metabolic engineering of wild acid-resistant yeast for L-lactic acid production].

    PubMed

    Zhang, Qin; Zhang, Liang; Ding, Zhongyang; Wang, Zhengxiang; Shi, Guiyang

    2011-07-01

    In order to obtain a yeast strain able to produce L-lactic acid under the condition of low pH and high lactate content, one wild acid-resistant yeast strain isolated from natural samples, was found to be able to grow well in YEPD medium (20 g/L glucose, 20 g/L tryptone, 10 g/L yeast extract, adjusted pH 2.5 with lactic acid) without consuming lactic acid. Based on further molecular biological tests, the strain was identified as Candida magnolia. Then, the gene ldhA, encoding a lactate dehydrogenase from Rhizopus oryzae, was cloned into a yeast shuttle vector containing G418 resistance gene. The resultant plasmid pYX212-kanMX-ldhA was introduced into C. magnolia by electroporation method. Subsequently, a recombinant L-lactic acid producing yeast C. magnolia-2 was obtained. The optimum pH of the recombinant yeast is 3.5 for lactic acid production. Moreover, the recombinant strain could grow well and produce lactic acid at pH 2.5. This recombinant yeast strain could be useful for producing L-lactic acid.

  18. Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding.

    PubMed

    Vincent, S F; Bell, P J; Bissinger, P; Nevalainen, K M

    1999-02-01

    Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.

  19. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  20. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.; Martinez, A. |

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  1. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  2. Genetic engineering of brewing yeast to reduce the content of ethanol in beer.

    PubMed

    Nevoigt, Elke; Pilger, Rita; Mast-Gerlach, Edeltraud; Schmidt, Ulrike; Freihammer, Silke; Eschenbrenner, Martin; Garbe, Leif; Stahl, Ulf

    2002-05-01

    The GPD1 gene encoding the glycerol-3-phosphate dehydrogenase was overexpressed in an industrial lager brewing yeast (Saccharomyces cerevisiae ssp. carlsbergensis) to reduce the content of ethanol in beer. The amount of glycerol produced by the GPD1-overexpressing yeast in fermentation experiments simulating brewing conditions was increased 5.6 times and ethanol was decreased by 18% when compared to the wild-type. Overexpression of GPD1 does not affect the consumption of wort sugars. Only minor changes in the concentration of higher alcohols, esters and fatty acids could be observed in beer produced by the GPD1-overexpressing brewing yeast. However, the concentrations of several other by-products, particularly acetoin, diacetyl and acetaldehyde, were considerably increased.

  3. Predicting complex phenotype-genotype interactions to enable yeast engineering: Saccharomyces cerevisiae as a model organism and a cell factory.

    PubMed

    Dikicioglu, Duygu; Pir, Pınar; Oliver, Stephen G

    2013-09-01

    There is an increasing use of systems biology approaches in both "red" and "white" biotechnology in order to enable medical, medicinal, and industrial applications. The intricate links between genotype and phenotype may be explained through the use of the tools developed in systems biology, synthetic biology, and evolutionary engineering. Biomedical and biotechnological research are among the fields that could benefit most from the elucidation of this complex relationship. Researchers have studied fitness extensively to explain the phenotypic impacts of genetic variations. This elaborate network of dependencies and relationships so revealed are further complicated by the influence of environmental effects that present major challenges to our achieving an understanding of the cellular mechanisms leading to healthy or diseased phenotypes or optimized production yields. An improved comprehension of complex genotype-phenotype interactions and their accurate prediction should enable us to more effectively engineer yeast as a cell factory and to use it as a living model of human or pathogen cells in intelligent screens for new drugs. This review presents different methods and approaches undertaken toward improving our understanding and prediction of the growth phenotype of the yeast Saccharomyces cerevisiae as both a model and a production organism.

  4. Predicting complex phenotype–genotype interactions to enable yeast engineering: Saccharomyces cerevisiae as a model organism and a cell factory

    PubMed Central

    Dikicioglu, Duygu; Pir, Pınar; Oliver, Stephen G

    2013-01-01

    There is an increasing use of systems biology approaches in both “red” and “white” biotechnology in order to enable medical, medicinal, and industrial applications. The intricate links between genotype and phenotype may be explained through the use of the tools developed in systems biology, synthetic biology, and evolutionary engineering. Biomedical and biotechnological research are among the fields that could benefit most from the elucidation of this complex relationship. Researchers have studied fitness extensively to explain the phenotypic impacts of genetic variations. This elaborate network of dependencies and relationships so revealed are further complicated by the influence of environmental effects that present major challenges to our achieving an understanding of the cellular mechanisms leading to healthy or diseased phenotypes or optimized production yields. An improved comprehension of complex genotype–phenotype interactions and their accurate prediction should enable us to more effectively engineer yeast as a cell factory and to use it as a living model of human or pathogen cells in intelligent screens for new drugs. This review presents different methods and approaches undertaken toward improving our understanding and prediction of the growth phenotype of the yeast Saccharomyces cerevisiae as both a model and a production organism. PMID:24031036

  5. Nanolaser Spectroscopy of Genetically Engineered Yeast: New Tool for a Better Brew?

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; Naviaux, Robert K.; Yaffe, Michael P.

    2006-03-01

    A basic function of the cell membrane is to selectively uptake ions or molecules from its environment to concentrate them into the interior. This concentration difference results in an osmostic pressure difference across the membrane. Ultimately, this pressure and its fluctuation from cell to cell will be limited by the availability and fluctuations of the solute concentrations in solution, the extent of inter-cell communication, and the state of respiring intracellular mitochondria that fuel the process. To measure these fluctuations, we have employed a high-speed nanolaser technique that samples the osmotic pressure in individual yeast cells and isolated mitochondria. We analyzed 2 yeast cell strains, normal baker’s yeast and a genetically-altered version, that differ only by the presence of mitochondrial DNA. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes. These cells have mitochondria, but the mitochondria lack most normal respiratory chain complexes. The frequency distributions in the nanolaser spectra produced by wild-type and modified cells and mitochondria show a striking shift from Gaussian to Poissonian distributions, revealing a powerful novel method for studying statistical physics of yeast.

  6. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  7. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    PubMed

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  8. Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii

    PubMed Central

    Hudson, Lauren E.; Fasken, Milo B.; McDermott, Courtney D.; McBride, Shonna M.; Kuiper, Emily G.; Guiliano, David B.; Corbett, Anita H.; Lamb, Tracey J.

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders. PMID:25391025

  9. Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones

    PubMed Central

    Hennig, Stefan; Rödel, Gerhard; Ostermann, Kai

    2016-01-01

    Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon functionalization of solid supports with a combination of hydrophobins either lacking or exposing the α-factor, pheromone-specific antibodies were bound to the surface. Increasing concentrations of the pheromone competitively detached the antibodies, thus allowing for quantification of the pheromone. By adjusting the percentage of pheromone-exposing hydrophobins, the sensitivity of the assay could be precisely predefined. The assay proved to be highly robust against changes in sample matrix composition. Due to the high stability of hydrophobin layers, the functionalized surfaces could be repeatedly used without affecting the sensitivity. Furthermore, by using an inverse setup, the sensitivity was increased by three orders of magnitude, yielding a novel kind of biosensor for the yeast pheromone with the lowest limit of detection reported so far. This assay was applied to study the pheromone secretion of diverse yeast strains including a whole-cell biosensor strain of Schizosaccharomyces pombe modulating α-factor secretion in response to an environmental signal. PMID:27128920

  10. Highly Avid Magnetic Bead Capture: An Efficient Selection Method for de novo Protein Engineering Utilizing Yeast Surface Display

    PubMed Central

    Ackerman, Margaret; Levary, David; Tobon, Gabriel; Hackel, Benjamin; Davis Orcutt, Kelly; Wittrup, K. Dane

    2010-01-01

    Protein engineering relies on the selective capture of members of a protein library with desired properties. Yeast surface display technology routinely enables as much as million-fold improvements in binding affinity by alternating rounds of diversification and flow cytometry-based selection. However, flow cytometry is not well suited for isolating de novo binding clones from naïve libraries due to limitations in the size of the population that can be analyzed, the minimum binding affinity of clones that can be reliably captured, the amount of target antigen required, and the likelihood of capturing artifactual binders to the reagents. Here, we demonstrate a method for capturing rare clones that maintains the advantages of yeast as the expression host, while avoiding the disadvantages of FACS in isolating de novo binders from naïve libraries. The multivalency of yeast surface display is intentionally coupled with multivalent target presentation on magnetic beads—allowing isolation of extremely weak binders from billions of non-binding clones, and requiring far less target antigen for each selection, while minimizing the likelihood of isolating undesirable alternative solutions to the selective pressure. Multivalent surface selection allows 30,000-fold enrichment and almost quantitative capture of micromolar binders in a single pass using less than one microgram of target antigen. We further validate the robust nature of this selection method by isolation of de novo binders against lysozyme as well as its utility in negative selections by isolating binders to streptavidin-biotin that do not cross-react to streptavidin alone. PMID:19363813

  11. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.

    PubMed

    Kang, Hahk-Soo; Charlop-Powers, Zachary; Brady, Sean F

    2016-09-16

    The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene-cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.

  12. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.

    PubMed

    Weninger, Astrid; Hatzl, Anna-Maria; Schmid, Christian; Vogl, Thomas; Glieder, Anton

    2016-10-10

    The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is one of the most commonly used expression systems for heterologous protein production. However the recombination machinery in P. pastoris is less effective in contrast to Saccharomyces cerevisiae, where efficient homologous recombination naturally facilitates genetic modifications. The lack of simple and efficient methods for gene disruption and specifically integrating cassettes has remained a bottleneck for strain engineering in P. pastoris. Therefore tools and methods for targeted genome modifications are of great interest. Here we report the establishment of CRISPR/Cas9 technologies for P. pastoris and demonstrate targeting efficiencies approaching 100%. However there appeared to be a narrow window of optimal conditions required for efficient CRISPR/Cas9 function for this host. We systematically tested combinations of various codon optimized DNA sequences of CAS9, different gRNA sequences, RNA Polymerase III and RNA Polymerase II promoters in combination with ribozymes for the expression of the gRNAs and RNA Polymerase II promoters for the expression of CAS9. Only 6 out of 95 constructs were functional for efficient genome editing. We used this optimized CRISPR/Cas9 system for gene disruption studies, to introduce multiplexed gene deletions and to test the targeted integration of homologous DNA cassettes. This system allows rapid, marker-less genome engineering in P. pastoris enabling unprecedented strain and metabolic engineering applications.

  13. Glyco-engineering of human IgG1-Fc through combined yeast expression and in vitro chemoenzymatic glycosylation

    PubMed Central

    Wei, Yadong; Li, Cishan; Huang, Wei; Li, Bing; Strome, Scott; Wang, Lai-Xi

    2009-01-01

    The presence and precise structures of the glycans attached at the Fc domain of monoclonal antibodies play an important role in determining antibody's effector functions such as antibody-dependent cell cytotoxicity (ADCC), complement activation, and anti-inflammatory activity. This paper describes a novel approach for glyco-engineering of human IgG1-Fc that combines high-yield expression of human IgG1-Fc in yeast and subsequent in vitro enzymatic glycosylation, using the endoglycosidase-catalyzed transglycosylation as the key reaction. Human IgG1-Fc was first overproduced in Pichia pastoris. Then the heterogeneous yeast glycans were removed by Endo-H treatment to give the GlcNAc-containing IgG1-Fc as a homodimer. Finally, selected homogeneous glycans were attached to the GlcNAc-primer in the IgG1-Fc through an endoglycosidase-catalyzed transglycosylation, using sugar oxazolines as the donor substrates. It was found that the enzymatic transglycosylation was efficient with native GlcNAc-containing IgG1-Fc homodimer without the need to denature the protein, and the reaction could proceed to completion to give homogeneous glycoforms of IgG1-Fc when excess of oligosaccharide oxazolines was used as the donor substrates. The binding of the synthetic IgG1-Fc glycoforms to the FcγIIIa receptor was also investigated. This novel glyco-engineering approach should be useful for providing various homogeneous, natural or synthetic glycoforms of IgG1-Fc for structure-function relationship studies, and for future clinical applications. PMID:18771295

  14. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene.

    PubMed Central

    Kitamoto, K; Oda, K; Gomi, K; Takahashi, K

    1991-01-01

    Urea is reported to be a main precursor of ethyl carbamate (ECA), which is suspected to be a carcinogen, in wine and sake. In order to minimize production of urea, arginase-deficient mutants (delta car1/delta car1) were constructed from a diploid sake yeast, Kyokai no. 9, by successive disruption of the two copies of the CAR1 gene. First, the yeast strain was transformed with plasmid pCAT2 (delta car1 SMR1), and strains heterozygous for CAR1 gene were isolated on sulfometuron methyl plates. Successively, the other CAR1 gene was disrupted by transformation with plasmid pCAT1 (delta car1 G418r) and the resulting car1 mutants were isolated on a G418 plate. Arginase assay of the total cell lysate of the mutants showed that 70% of transformants isolated on G418 plates had no detectable enzyme activity, possibly as a result of the disruption of the two copies of the CAR1 gene. Further genomic Southern analysis confirmed this result. We could brew sake containing no urea with the delta car1/delta car1 homozygous mutant. It is of additional interest that no ECA was detected in the resulting sake, even after storage for 5 months at 30 degrees C. This molecular biological study suggests that ECA in sake originates mainly from urea that is produced by the arginase. Images PMID:2036017

  15. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica.

    PubMed

    Gao, Cuijuan; Qi, Qingsheng; Madzak, Catherine; Lin, Carol Sze Ki

    2015-09-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients.

  16. Development of engineered yeast for biosorption of beer haze-active polyphenols.

    PubMed

    Cejnar, Rudolf; Hložková, Kateřina; Jelínek, Lukáš; Kotrba, Pavel; Dostálek, Pavel

    2017-02-01

    Compared to most other alcoholic beverages, the shelf life of beer is much more limited due to its instability in the bottle. That instability is most likely to appear as turbidity (haze), even sedimentation, during storage. The haze in beer is mostly caused by colloidal particles formed by interactions between proteins and polyphenols within the beer. Therefore, beers are usually stabilized by removing at least one of these components. We developed and constructed a Saccharomyces cerevisiae strain with a proline-rich QPF peptide attached to the cell wall, using the C-terminal anchoring domain of α-agglutinin. The QPF peptide served to bind polyphenols during fermentation and, thus, to decrease their concentration. Strains displaying QPF were able to bind about twice as much catechin and epicatechin as a control strain displaying only the anchoring domain. All these experiments were done with model solutions. Depending on the concentration of yeast, uptake of polyphenols was 1.7-2.5 times higher. Similarly, the uptake of proanthocyanidins was increased by about 20 %. Since the modification of yeasts with QPF did not affect their fermentation performance under laboratory conditions, the display of QPF appears to be an approach to increase the stability of beer.

  17. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Butanol is an attractive alternative energy fuel owing to several advantages over ethanol. Among the microbial hosts for biobutanol production, yeast Saccharomyces cerevisiae has a great potential as a microbial host due to its powerful genetic tools, a history of successful industrial use, and its inherent tolerance to higher alcohols. Butanol production by S. cerevisiae was first attempted by transferring the 1-butanol-producing metabolic pathway from native microorganisms or using the endogenous Ehrlich pathway for isobutanol synthesis. Utilizing alternative enzymes with higher activity, eliminating competitive pathways, and maintaining cofactor balance achieved significant improvements in butanol production. Meeting future challenges, such as enhancing butanol tolerance and implementing a comprehensive strategy by high-throughput screening, would further elevate the biobutanol-producing ability of S. cerevisiae toward an ideal microbial cell factory exhibiting high productivity of biobutanol.

  18. Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation.

    PubMed

    Zhang, Shuyan; Ito, Masakazu; Skerker, Jeffrey M; Arkin, Adam P; Rao, Christopher V

    2016-11-01

    Natural lipids can be used to make biodiesel and many other value-added compounds. In this work, we explored a number of different metabolic engineering strategies for increasing lipid production in the oleaginous yeast Rhodosporidium toruloides IFO0880. These included increasing the expression of enzymes involved in different aspects of lipid biosynthesis-malic enzyme (ME), pyruvate carboxylase (PYC1), glycerol-3-P dehydrogenase (GPD), and stearoyl-CoA desaturase (SCD)-and deleting the gene PEX10, required for peroxisome biogenesis. Only malic enzyme and stearoyl-CoA desaturase, when overexpressed, were found to significantly increase lipid production. Only stearoyl-CoA desaturase, when overexpressed, further increased lipid production in a strain previously engineered to overexpress acetyl-CoA carboxylase (ACC1) and diacylglycerol acyltransferase (DGA1). Our best strain produced 27.4 g/L lipid with an average productivity of 0.31 g/L/h during batch growth on glucose and 89.4 g/L lipid with an average productivity of 0.61 g/L/h during fed-batch growth on glucose. These results further establish R. toruloides as a platform organism for the production of lipids and potentially other lipid-derived compounds from sugars.

  19. Whole recombinant yeast vaccine induces antitumor immunity and improves survival in a genetically engineered mouse model of melanoma

    PubMed Central

    Tanaka, A; Jensen, JD; Prado, R; Riemann, H; Shellman, YG; Norris, DA; Chin, L; Yee, C; Fujita, M

    2015-01-01

    Malignant melanoma is one of the deadliest forms of skin cancer and its incidence is expected to rise over the next two decades. At present, there are no effective therapies for advanced melanoma. We have previously shown that administration of whole recombinant yeast expressing human MART-1 (hMART-IT) induces protective antimelanoma immunity in a B16F10 transplantable mouse model. In this study, we examine the effectiveness of the hMART-IT vaccine in a congenic strain of genetically engineered mouse model of melanoma, which recapitulates both the underlying genetics and the proper tumor microenvironment of naturally occurring melanoma. Subcutaneous administration of hMART-IT induced cytotoxicity against melanoma cells and antigen-specific production of Th1-specific cytokines by splenocytes. Weekly administration of hMART-IT significantly delayed the development of melanoma and prolonged the survival of mice compared with controls. Although histological analysis demonstrated diffuse infiltration of CD4+ T cells and CD8+ T cells, no reduction of regulatory T cells was observed, suggesting that hMART-IT cannot prevent immunotolerance in the tumor microenvironment. This study provides a proof of concept that genetically engineered mouse models lend valuable insights into immunotherapeutics being tested in the preclinical setting. PMID:21390072

  20. A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display.

    PubMed

    Schröter, Christian; Günther, Ralf; Rhiel, Laura; Becker, Stefan; Toleikis, Lars; Doerner, Achim; Becker, Janine; Schönemann, Andreas; Nasu, Daichi; Neuteboom, Berend; Kolmar, Harald; Hock, Björn

    2015-01-01

    There is growing interest in the fast and robust engineering of protein pH-sensitivity that aims to reduce binding at acidic pH, compared to neutral pH. Here, we describe a novel strategy for the incorporation of pH-sensitive antigen binding functions into antibody variable domains using combinatorial histidine scanning libraries and yeast surface display. The strategy allows simultaneous screening for both, high affinity binding at pH 7.4 and pH-sensitivity, and excludes conventional negative selection steps. As proof of concept, we applied this strategy to incorporate pH-dependent antigen binding into the complementary-determining regions of adalimumab. After 3 consecutive rounds of separate heavy and light chain library screening, pH-sensitive variants could be isolated. Heavy and light chain mutations were combined, resulting in 3 full-length antibody variants that revealed sharp, reversible pH-dependent binding profiles. Dissociation rate constants at pH 6.0 increased 230- to 780-fold, while high affinity binding at pH 7.4 in the sub-nanomolar range was retained. Furthermore, binding to huFcRn and thermal stability were not affected by histidine substitutions. Overall, this study emphasizes a generalizable strategy for engineering pH-switch functions potentially applicable to a variety of antibodies and further proteins-based therapeutics.

  1. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    PubMed

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  2. A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Imatoukene, Nabila; Verbeke, Jonathan; Beopoulos, Athanasios; Idrissi Taghki, Abdelghani; Thomasset, Brigitte; Sarde, Claude-Olivier; Nonus, Maurice; Nicaud, Jean-Marc

    2017-03-29

    Conjugated linoleic acids (CLAs) have been found to have beneficial effects on human health when used as dietary supplements. However, their availability is limited because pure, chemistry-based production is expensive, and biology-based fermentation methods can only create small quantities. In an effort to enhance microbial production of CLAs, four genetically modified strains of the oleaginous yeast Yarrowia lipolytica were generated. These mutants presented various genetic modifications, including the elimination of β-oxidation (pox1-6∆), the inability to store lipids as triglycerides (dga1∆ dga2∆ are1∆ lro1∆), and the overexpression of the Y. lipolytica ∆12-desaturase gene (YlFAD2) under the control of the constitutive pTEF promoter. All strains received two copies of the pTEF-oPAI or pPOX-oPAI expression cassettes; PAI encodes linoleic acid isomerase in Propionibacterium acnes. The strains were cultured in neosynthesis or bioconversion medium in flasks or a bioreactor. The strain combining the three modifications mentioned above showed the best results: when it was grown in neosynthesis medium in a flask, CLAs represented 6.5% of total fatty acids and in bioconversion medium in a bioreactor, and CLA content reached 302 mg/L. In a previous study, a CLA degradation rate of 117 mg/L/h was observed in bioconversion medium. Here, by eliminating β-oxidation, we achieved a much lower rate of 1.8 mg/L/h.

  3. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system

    PubMed Central

    Enkler, Ludovic; Richer, Delphine; Marchand, Anthony L.; Ferrandon, Dominique; Jossinet, Fabrice

    2016-01-01

    Among Candida species, the opportunistic fungal pathogen Candida glabrata has become the second most common causative agent of candidiasis in the world and a major public health concern. Yet, few molecular tools and resources are available to explore the biology of C. glabrata and to better understand its virulence during infection. In this study, we describe a robust experimental strategy to generate loss-of-function mutants in C. glabrata. The procedure is based on the development of three main tools: (i) a recombinant strain of C. glabrata constitutively expressing the CRISPR-Cas9 system, (ii) an online program facilitating the selection of the most efficient guide RNAs for a given C. glabrata gene, and (iii) the identification of mutant strains by the Surveyor technique and sequencing. As a proof-of-concept, we have tested the virulence of some mutants in vivo in a Drosophila melanogaster infection model. Our results suggest that yps11 and a previously uncharacterized serine/threonine kinase are involved, directly or indirectly, in the ability of the pathogenic yeast to infect this model host organism. PMID:27767081

  4. Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. Since S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI...

  5. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    PubMed Central

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, Lihui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-01-01

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts. PMID:25956650

  6. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.

    PubMed

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, Lihui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-07-27

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts.

  7. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    PubMed

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  8. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites

    PubMed Central

    Husseneder, Claudia; Donaldson, Jennifer R.; Foil, Lane D.

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival. PMID:26985663

  9. Molecular tools and protocols for engineering the acid-tolerant yeast Zygosaccharomyces bailii as a potential cell factory.

    PubMed

    Branduardi, Paola; Dato, Laura; Porro, Danilo

    2014-01-01

    Microorganisms offer a tremendous potential as cell factories, and they are indeed used by humans for centuries for biotransformations. Among them, yeasts combine the advantage of unicellular state with a eukaryotic organization, and, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycetales budding yeast, is widely known for its peculiar tolerance to various stresses, among which are organic acids. Despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here, we describe in detail protocols for transformation, for target gene disruption or gene integration, and for designing episomal expression plasmids helpful for developing and further studying the yeast Z. bailii.

  10. Hemicellulases from the ethanologenic thermophile Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect

    Wiegel, J.

    1998-05-01

    The SHORT TERM GOALS of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following TASKS: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-0-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium (one of our long term goals).

  11. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.

  12. L-arabinose fermenting yeast

    SciTech Connect

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  13. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  14. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions.

    PubMed

    Kuroda, K; Shibasaki, S; Ueda, M; Tanaka, A

    2001-12-01

    A histidine oligopeptide (hexa-His) with the ability to chelate divalent heavy metal ions was displayed on the yeast cell surface for the purpose of enhanced adsorption of heavy metal ions. We genetically fused a hexa-His-encoding gene with the gene encoding the C-terminal half of alpha-agglutinin that includes a glycosylphosphatidylinositol anchor attachment signal sequence and attached the hexa-His peptide on the cell wall of Saccharomyces cerevisiae. This surface-engineered yeast adsorbed three to eight times more copper ions than the parent strain and was more resistant to copper (4 mM) than the parent (below 1 mM at pH 7.8). It was possible to recover about a half of the copper ions adsorbed by whole cells with EDTA treatment without disintegrating the cells. Thus, we succeeded in constructing a novel yeast cell with both tolerance to toxic contaminants and enhanced adsorption of metal ions onto the cell surface.

  15. [Metabolic engineering of the initial stages of xylose catabolism in yeasts for construction of efficient producers of ethanol from lignocelluloses].

    PubMed

    Dmytruk, O V; Dmytruk, K V; Voronovs'kyĭ, A Ia; Sybirnyĭ, A A

    2008-01-01

    Plant biomass possesses a huge potential as a source for biofuel production. The main components of biomass are glucose and five-carbon sugar xylose. The yeast Saccharomyces cerevisiae that is used for industrial ethanol production from glucose is unable to xylose fermentation. Therefore a microorganism capable for efficient fermentation of both glucose and xylose has to be found in nature or constructed for economically feasible biomass conversion to ethanol. The active xylose fermentation could be performed by increasing the efficiency of initial stages of xylose metabolism. In this review the enzymes of initial stages of xylose metabolism in yeasts (xylose reductase, xylitol dehydrogenase, xylulokinase) and bacteria (xylose isomerase and xylulokinase) are characterized. The ways for construction of yeast strains capable of efficient alcoholic xylose fermentation are discussed.

  16. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  17. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    PubMed

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given.

  18. Polyamine Transporters and Polyamines Increase Furfural Tolerance during Xylose Fermentation with Ethanologenic Escherichia coli Strain LY180

    PubMed Central

    Geddes, Ryan D.; Wang, Xuan; Yomano, Lorraine P.; Miller, Elliot N.; Zheng, Huabao; Shanmugam, Keelnatham T.

    2014-01-01

    Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural. PMID:25063650

  19. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.

    PubMed

    Cheng, Hairong; Lv, Jiyang; Wang, Hengwei; Wang, Ben; Li, Zilong; Deng, Zixin

    2014-04-01

    Xylitol is industrially synthesized by chemical reduction of D-xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce D-arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of D-arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the D-xylulose-forming D-arabitol dehydrogenase (DalD) gene from Klebsiella pneumoniae and the xylitol dehydrogenase (XDH) gene from Gluconobacter oxydans. Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose-D-arabitol-D-xylulose-xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.

  20. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  1. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.

    PubMed

    Wei, Wei; Wang, Pingping; Wei, Yongjun; Liu, Qunfang; Yang, Chengshuai; Zhao, Guoping; Yue, Jianmin; Yan, Xing; Zhou, Zhihua

    2015-09-01

    Ginsenosides, the main pharmacologically active natural compounds in ginseng (Panax ginseng), are mostly the glycosylated products of protopanaxadiol (PPD) and protopanaxatriol (PPT). No uridine diphosphate glycosyltransferase (UGT), which catalyzes PPT to produce PPT-type ginsenosides, has yet been reported. Here, we show that UGTPg1, which has been demonstrated to regio-specifically glycosylate the C20-OH of PPD, also specifically glycosylates the C20-OH of PPT to produce bioactive ginsenoside F1. We report the characterization of four novel UGT genes isolated from P. ginseng, sharing high deduced amino acid identity (>84%) with UGTPg1. We demonstrate that UGTPg100 specifically glycosylates the C6-OH of PPT to produce bioactive ginsenoside Rh1, and UGTPg101 catalyzes PPT to produce F1, followed by the generation of ginsenoside Rg1 from F1. However, UGTPg102 and UGTPg103 were found to have no detectable activity on PPT. Through structural modeling and site-directed mutagenesis, we identified several key amino acids of these UGTs that may play important roles in determining their activities and substrate regio-specificities. Moreover, we constructed yeast recombinants to biosynthesize F1 and Rh1 by introducing the genetically engineered PPT-producing pathway and UGTPg1 or UGTPg100. Our study reveals the possible biosynthetic pathways of PPT-type ginsenosides in Panax plants, and provides a sound manufacturing approach for bioactive PPT-type ginsenosides in yeast via synthetic biology strategies.

  2. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.

    PubMed

    Hasunuma, Tomohisa; Sakamoto, Takatoshi; Kondo, Akihiko

    2016-01-01

    Improving the production of ethanol from xylose is an important goal in metabolic engineering of Saccharomyces cerevisiae. Furthermore, S. cerevisiae must produce ethanol in the presence of weak acids (formate and acetate) generated during pre-treatment of lignocellulosic biomass. In this study, weak acid-containing xylose fermentation was significantly improved using cells that were acclimated to the weak acids during pre-cultivation. Transcriptome analyses showed that levels of transcripts for transcriptional/translational machinery-related genes (RTC3 and ANB1) were enhanced by formate and acetate acclimation. Recombinant yeast strains overexpressing RTC3 and ANB1 demonstrated improved ethanol production from xylose in the presence of the weak acids, along with improved tolerance to the acids. Novel metabolic engineering strategy based on the combination of short-term acclimation and system-wide analysis was developed, which can develop stress-tolerant strains in a short period of time, although conventional evolutionary engineering approach has required long periods of time to isolate inhibitor-adapted strains.

  3. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production

    PubMed Central

    Gruchattka, Evamaria; Kayser, Oliver

    2015-01-01

    Background Engineering of the central carbon metabolism of Saccharomyces cerevisiae to redirect metabolic flux towards cytosolic acetyl-CoA has become a central topic in yeast biotechnology. A cell factory with increased flux into acetyl-CoA can be used for heterologous production of terpenoids for pharmaceuticals, biofuels, fragrances, or other acetyl-CoA derived compounds. In a previous study, we identified promising metabolic engineering targets in S. cerevisiae using an in silico stoichiometric metabolic network analysis. Here, we validate selected in silico strategies in vivo. Results Patchoulol was produced by yeast via a heterologous patchoulol synthase of Pogostemon cablin. To increase the metabolic flux from acetyl-CoA towards patchoulol, a truncated HMG-CoA reductase was overexpressed and farnesyl diphosphate synthase was fused with patchoulol synthase. The highest increase in production could be achieved by modifying the carbon source; sesquiterpenoid titer increased from glucose to ethanol by a factor of 8.4. Two strategies predicted in silico were chosen for validation in this work. Disruption of α-ketoglutarate dehydrogenase gene (KGD1) was predicted to redirect the metabolic flux via the pyruvate dehydrogenase bypass towards acetyl-CoA. The metabolic flux was redirected as predicted, however, the effect was dependent on cultivation conditions and the flux was interrupted at the level of acetate. High amounts of acetate were produced. As an alternative pathway to synthesize cytosolic acetyl-CoA, ATP-citrate lyase was expressed as a polycistronic construct, however, in vivo performance of the enzyme needs to be optimized to increase terpenoid production. Conclusions Stoichiometric metabolic network analysis can be used successfully as a metabolic prediction tool. However, this study highlights that kinetics, regulation and cultivation conditions may interfere, resulting in poor in vivo performance. Main sites of regulation need to be released and

  4. A rationally engineered yeast pyruvyltransferase Pvg1p introduces sialylation-like properties in neo-human-type complex oligosaccharide.

    PubMed

    Higuchi, Yujiro; Yoshinaga, Sho; Yoritsune, Ken-Ichi; Tateno, Hiroaki; Hirabayashi, Jun; Nakakita, Shin-Ichi; Kanekiyo, Miho; Kakuta, Yoshimitsu; Takegawa, Kaoru

    2016-05-19

    Pyruvylation onto the terminus of oligosaccharide, widely seen from prokaryote to eukaryote, confers negative charges on the cell surface and seems to be functionally similar to sialylation, which is found at the end of human-type complex oligosaccharide. However, detailed molecular mechanisms underlying pyruvylation have not been clarified well. Here, we first determined the crystal structure of fission yeast pyruvyltransferase Pvg1p at a resolution of 2.46 Å. Subsequently, by combining molecular modeling with mutational analysis of active site residues, we obtained a Pvg1p mutant (Pvg1p(H168C)) that efficiently transferred pyruvyl moiety onto a human-type complex glycopeptide. The resultant pyruvylated human-type complex glycopeptide recognized similar lectins on lectin arrays as the α2,6-sialyl glycopeptides. This newly-generated pyruvylation of human-type complex oligosaccharides would provide a novel method for glyco-bioengineering.

  5. A rationally engineered yeast pyruvyltransferase Pvg1p introduces sialylation-like properties in neo-human-type complex oligosaccharide

    PubMed Central

    Higuchi, Yujiro; Yoshinaga, Sho; Yoritsune, Ken-ichi; Tateno, Hiroaki; Hirabayashi, Jun; Nakakita, Shin-ichi; Kanekiyo, Miho; Kakuta, Yoshimitsu; Takegawa, Kaoru

    2016-01-01

    Pyruvylation onto the terminus of oligosaccharide, widely seen from prokaryote to eukaryote, confers negative charges on the cell surface and seems to be functionally similar to sialylation, which is found at the end of human-type complex oligosaccharide. However, detailed molecular mechanisms underlying pyruvylation have not been clarified well. Here, we first determined the crystal structure of fission yeast pyruvyltransferase Pvg1p at a resolution of 2.46 Å. Subsequently, by combining molecular modeling with mutational analysis of active site residues, we obtained a Pvg1p mutant (Pvg1pH168C) that efficiently transferred pyruvyl moiety onto a human-type complex glycopeptide. The resultant pyruvylated human-type complex glycopeptide recognized similar lectins on lectin arrays as the α2,6-sialyl glycopeptides. This newly-generated pyruvylation of human-type complex oligosaccharides would provide a novel method for glyco-bioengineering. PMID:27194449

  6. GMAX Yeast Background Strain Made from Industrial Tolerant Saccharomyces Cerevisiae Engineered to Convert Pretreated Lignocellulosic Starch and Cellulosic Sugars Universally to Ethanol Anaerobically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tailored GMAX yeast background strain technology for universal ethanol production industrially: Production of the stable baseline glucose, mannose, arabinose, xylose-utilizing (GMAX) yeast will be evaluated by taking the genes identified in high-throughput screening for a plasmid-based yeast to util...

  7. GMAX Yeast Background Strain Made from Industrial Tolerant Saccharomyces cerevisiae Engineered to Convert Sucrose, Starch and Cellulosic Sugars Universally to Ethanol Anaerobically with Concurrent Coproduct Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tailored GMAX yeast background strain technology for universal ethanol production industrially. Production of the stable baseline glucose, mannose, arabinose, xylose-utilizing (GMAX) yeast will be evaluated by taking the genes identified in high-throughput screening for a plasmid-based yeast to uti...

  8. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

    PubMed

    Wei, Na; Oh, Eun Joong; Million, Gyver; Cate, Jamie H D; Jin, Yong-Su

    2015-06-19

    The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion.

  9. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.

    PubMed

    Jayakody, Lahiru N; Horie, Kenta; Hayashi, Nobuyuki; Kitagaki, Hiroshi

    2013-07-01

    Hot-compressed water treatment of lignocellulose liberates numerous inhibitors that prevent ethanol fermentation of yeast Saccharomyces cerevisiae. Glycolaldehyde is one of the strongest fermentation inhibitors and we developed a tolerant strain by overexpressing ADH1 encoding an NADH-dependent reductase; however, its recovery was partial. In this study, to overcome this technical barrier, redox cofactor preference of glycolaldehyde detoxification was investigated. Glycolaldehyde-reducing activity of the ADH1-overexpressing strain was NADH-dependent but not NADPH-dependent. Moreover, genes encoding components of the pentose phosphate pathway, which generates intracellular NADPH, was upregulated in response to high concentrations of glycolaldehyde. Mutants defective in pentose phosphate pathways were sensitive to glycolaldehyde. Genome-wide survey identified GRE2 encoding a NADPH-dependent reductase as the gene that confers tolerance to glycolaldehyde. Overexpression of GRE2 in addition to ADH1 further improved the tolerance to glycolaldehyde. NADPH-dependent glycolaldehyde conversion to ethylene glycol and NADP+ content of the strain overexpressing both ADH1 and GRE2 were increased at 5 mM glycolaldehyde. Expression of GRE2 was increased in response to glycolaldehyde. Carbon metabolism of the strain was rerouted from glycerol to ethanol. Thus, it was concluded that the overexpression of GRE2 together with ADH1 restores glycolaldehyde tolerance by augmenting the NADPH-dependent reduction pathway in addition to NADH-dependent reduction pathway. The redox cofactor control for detoxification of glycolaldehyde proposed in this study could influence strategies for improving the tolerance of other fermentation inhibitors.

  10. Production of a yeast artificial chromosome for stable expression of a synthetic xylose isomerase-xylulokinase polyprotein in a fuel ethanol yeast strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. A yeast artificial chromosome (YAC) was engineered to contain a polyprotein gene construct expressing xylos...

  11. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  12. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars.

    PubMed

    Li, Yun-Jie; Wang, Miao-Miao; Chen, Ya-Wei; Wang, Meng; Fan, Li-Hai; Tan, Tian-Wei

    2017-03-06

    Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO2) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.

  13. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars

    PubMed Central

    Li, Yun-Jie; Wang, Miao-Miao; Chen, Ya-Wei; Wang, Meng; Fan, Li-Hai; Tan, Tian-Wei

    2017-01-01

    Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO2) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars. PMID:28262754

  14. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate.

    PubMed

    Takagi, Toshiyuki; Yokoi, Takahiro; Shibata, Toshiyuki; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Alginate is a major component of brown macroalgae. In macroalgae, an endolytic alginate lyase first degrades alginate into oligosaccharides. These oligosaccharides are further broken down into monosaccharides by an exolytic alginate lyase. In this study, genes encoding various alginate lyases derived from alginate-assimilating marine bacterium Saccharophagus degradans were isolated, and their enzymes were displayed using the yeast cell surface display system. Alg7A-, Alg7D-, and Alg18J-displaying yeasts showed endolytic alginate lyase activity. On the other hand, Alg7K-displaying yeast showed exolytic alginate lyase activity. Alg7A, Alg7D, Alg7K, and Alg18J, when displayed on yeast cell surface, demonstrated both polyguluronate lyase and polymannuronate lyase activities. Additionally, polyguluronic acid could be much easily degraded by Alg7A, Alg7K, and Alg7D than polymannuronic acid. In contrast, polymannuronic acid could be much easily degraded by Alg18J than polyguluronic acid. We further constructed yeasts co-displaying endolytic and exolytic alginate lyases. Degradation efficiency by the co-displaying yeasts were significantly higher than single alginate lyase-displaying yeasts. Alg7A/Alg7K co-displaying yeast had maximum alginate degrading activity, with production of 1.98 g/L of reducing sugars in a 60-min reaction. This system developed, along with our findings, will contribute to the efficient utilization and production of useful and non-commercialized monosaccharides from alginate by Saccharomyces cerevisiae.

  15. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway.

    PubMed

    Cadière, Axelle; Ortiz-Julien, Anne; Camarasa, Carole; Dequin, Sylvie

    2011-05-01

    Amplification of the flux toward the pentose phosphate (PP) pathway might be of interest for various S. cerevisiae based industrial applications. We report an evolutionary engineering strategy based on a long-term batch culture on gluconate, a substrate that is poorly assimilated by S. cerevisiae cells and is metabolized by the PP pathway. After adaptation for various periods of time, we selected strains that had evolved a greater consumption capacity for gluconate. (13)C metabolic flux analysis on glucose revealed a redirection of carbon flux from glycolysis towards the PP pathway and a greater synthesis of lipids. The relative flux into the PP pathway was 17% for the evolved strain (ECA5) versus 11% for the parental strain (EC1118). During wine fermentation, the evolved strains displayed major metabolic changes, such as lower levels of acetate production, higher fermentation rates and enhanced production of aroma compounds. These represent a combination of novel traits, which are of great interest in the context of modern winemaking.

  16. Vaginal Yeast Infections

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness Vaginal Yeast Infections KidsHealth > For Teens > Vaginal Yeast Infections Print ... side effect of taking antibiotics. What Is a Yeast Infection? A yeast infection is a common infection ...

  17. From yeast genetics to biotechnology.

    PubMed

    Maráz, Anna

    2002-01-01

    fermentation biotechnology [6]. Developments in yeast genetics, biochemistry, physiology and process engineering provided bases of rapid development in modern biotechnology, but elaboration of the recombinant DNA technique is far the most important milestone in this field. Other molecular genetic techniques, as molecular genotyping of yeast strains proved also very beneficial in yeast fermentation technologies, because dynamics of both the natural and inoculated yeast biota could be followed by these versatile DNA-based techniques.

  18. Characterization of the microheterogeneities of PIXY321, a genetically engineered granulocyte-macrophage colony-stimulating factor/interleukin-3 fusion protein expressed in yeast.

    PubMed

    Balland, A; Krasts, D A; Hoch, K L; Gerhart, M J; Stremler, K E; Waugh, S M

    1998-02-01

    PIXY321, a human cytokine analog genetically engineered by the fusion of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3), was expressed in yeast under the control of the alcohol dehydrogenase 2 (ADH2) promoter and the alpha-mating factor expression system. To provide the material necessary for the evaluation of PIXY321 in clinical trials, the production was scaled up to the 1200-1 scale and the PIXY321 molecule isolated by four successive steps of ion-exchange chromatography. Multiple heterogeneities, due to the presence of different patterns of glycosylation as well as multiple amino acid sequences at both N and C termini, were characterized on the purified molecule using complementary analytical techniques including electrophoresis, liquid chromatography and electrospray mass spectrometry. Four different N-terminal sequences were identified but simplified to a reproducible ratio of two sequences, the mature form and a form starting at Ala3, by adjustment of the process conditions. Molecules lacking 1-6 residues at the C-terminus were identified and their relative frequencies quantified. Amino acid modifications, such as three oxidized Met residues at positions 79, 141 and 187 and one deamidated Asn residue at position 176, were detected at low level. Microheterogeneities in glycosylation were characterized on four different sites, one located in the GM-CSF portion and three in the IL-3 portion of the molecule. The sites were shown to be differentially occupied and to carry 0-10 mannose residues according to their location in the sequence. Precise measurement of the heterogeneities at the molecular level were used to tune the process conditions and ensure reproducibility of the clinical product between lots.

  19. Nitric oxide signaling in yeast.

    PubMed

    Astuti, Rika Indri; Nasuno, Ryo; Takagi, Hiroshi

    2016-11-01

    As a cellular signaling molecule, nitric oxide (NO) is widely conserved from microorganisms, such as bacteria, yeasts, and fungi, to higher eukaryotes including plants and mammals. NO is mainly produced by NO synthase (NOS) or nitrite reductase (NIR) activity. There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis based on the balance between NO synthesis and degradation is important for the regulation of its physiological functions because an excess level of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but NO and its signaling have been poorly understood due to the lack of mammalian NOS orthologs in the genome. Even though the activities of NOS and NIR have been observed in yeast cells, the gene encoding NOS and the NO production mechanism catalyzed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain an intracellular redox balance following endogenous NO production, exogenous NO treatment, or environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed here. Such investigations into NO signaling are essential for understanding the NO-dependent genetic and physiological modulations. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signaling may be a potential target for the construction and engineering of industrial yeast strains.

  20. Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae.

    PubMed

    Okuda, Naoyuki; Ninomiya, Kazuaki; Katakura, Yoshio; Shioya, Suteaki

    2008-02-01

    In this paper, we report a simultaneous realization of both efficient ethanol production and saving medium nutrient (corn steep liquor [CSL]) during bioethanol fermentation of overliming-treated hydrolysate of waste house wood (WHW) using ethanologenic Escherichia coli KO11. In cultivation using WHW hydrolysate supplemented with 4% (v/v) CSL and 0.2 g-dry cell weight (DCW)/l E. coli KO11 cells, the overall ethanol yield reached 84% of the theoretical value at 61 h. When we conducted the cultivation with 1% CSL to reduce the supplemental medium cost, the overall ethanol yield remained in the range of 66-72% even at 90 h. We proposed two alternative methods for increasing the overall yield even with 1% CSL. The first method involved increasing the inoculum size of E. coli KO11 up to 0.8 g-DCW/l, where 83% of the overall yield was attained at 60 h of cultivation. The second method involved the coculture of 0.2 g-DCW/l E. coli KO11 together with 0.02 g-DCW/l of Saccharomyces cerevisiae TJ1, and the overall yield reached 81% at 47 h of cultivation.

  1. Manipulating yeast genome using plasmid vectors.

    PubMed

    Stearns, T; Ma, H; Botstein, D

    1990-01-01

    The vectors and techniques described here enable one to manipulate the yeast genome to meet specific needs. Genes can be cloned, and the clone used to delete the wild-type gene from the chromosome, or replace it with mutant versions. Mutants derived by classical methods, such as mutagenesis of whole cells, or by reversion of a phenotype, can be cloned and analyzed in vitro. Yeast genes and foreign genes can either be inserted into autonomously replicating plasmid vectors that are reasonably stable or integrated into a yeast chromosome where they are maintained at one copy per genome. The combination of these techniques with the characterized promoter systems available in yeast make it possible to express almost any gene in yeast. Once this is achieved, the entire repertoire of yeast genetics is available to probe the function of the gene, or to engineer the expression in useful ways.

  2. Antitumor effects of genetically engineered stem cells expressing yeast cytosine deaminase in lung cancer brain metastases via their tumor-tropic properties.

    PubMed

    Yi, Bo-Rim; Kim, Seung U; Kim, Yun-Bae; Lee, Hong Jun; Cho, Myung-Haing; Choi, Kyung-Chul

    2012-06-01

    Although mortality related with primary tumors is approximately 10%, metastasis leads to 90% of cancer-associated death. The majority of brain metastases result from lung cancer, but the metastatic mechanism remains unclear. In general, chemotherapy for treating brain diseases is disrupted by the brain blood barrier (BBB). As an approach to improve treatment of lung cancer metastasis to the brain, we employed genetically engineered stem cells (GESTECs), consisting of neural stem cells (NSCs) expressing a suicide gene. Cytosine deaminase (CD), one of the suicide genes, originating from bacterial (bCD) or yeast (yCD), which can convert the non-toxic prodrug, 5-fluorocytosine (5-FC), into 5-fluorouracil (5-FU), can inhibit cancer cell growth. We examined the therapeutic efficacy and migratory properties of GESTECs expressing yCD, designated as HB1.F3.yCD, in a xenograft mouse model of lung cancer metastasis to the brain. In this model, A549 lung cancer cells were implanted in the right hemisphere of the mouse brain, while CM-DiI pre-stained HB1.F3.yCD cells were implanted in the contralateral brain. Two days after the injection of stem cells, 5-FC was administered via intraperitoneal injection. The tumor-tropic effect of HB1.F3.yCD was evident by fluorescent analysis, in which red-colored stem cells migrated to the lung tumor mass of the contralateral brain. By histological analysis of extracted brain, the therapeutic efficacy of HB1.F3.yCD in the presence of 5-FC was confirmed by the reduction in density and aggressive tendency of lung cancer cells following treatment with 5-FC, compared to a negative control or HB1.F3.yCD injection without 5-FC. Taken together, these results indicate that HB1.F3.yCD expressing a suicide gene may be a new therapeutic strategy for lung cancer metastases to the brain in the presence of a prodrug.

  3. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.

    PubMed

    Saitoh, Satoshi; Tanaka, Tsutomu; Kondo, Akihiko

    2011-09-01

    We constructed a recombinant industrial Saccharomyces cerevisiae yeast strain OC2-AXYL2-ABGL2-Xyl2 by inserting two copies of the β-glucosidase (BGL) and β-xylosidase (XYL) genes, and a gene cassette for xylose assimilation in the genome of yeast strain OC-2HUT. Both BGL and XYL were expressed on the yeast cell surface with high enzyme activities. Using OC2-AXYL2-ABGL2-Xyl2, we performed ethanol fermentation from a mixture of powdered cellulose (KC-flock) and Birchwood xylan, with the additional supplementation of a 30-g/l Trichoderma reesei cellulase complex mixture. The ethanol yield (gram per gram of added cellulases) of the strain OC2-AXYL2-ABGL2-Xyl2 increased approximately 2.5-fold compared to that of strain OC2-Xyl2, which lacked β-glucosidase and β-xylosidase activities. Notably, the concentration of additional T. reesei cellulase was reduced from 30 to 24 g/l without affecting ethanol production. The BGL- and XYL-displaying industrial yeast of the strain OC2-AXYL2-ABGL2-Xyl2 represents a promising yeast for reducing cellulase consumption of ethanol fermentation from lignocellulosic biomass by compensating for the inherent weak BGL and XYL activities of T. reesei cellulase complexes.

  4. Screening of novel yeast inulinases and further application to bioprocesses.

    PubMed

    Paixão, Susana M; Teixeira, Pedro D; Silva, Tiago P; Teixeira, Alexandra V; Alves, Luís

    2013-09-25

    Inulin is a carbohydrate composed of linear chains of β-2,1-linked D-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. Jerusalem artichoke (JA) is one of the most interesting materials among unconventional and renewable raw materials, with levels of inulin reaching 50-80% of dry matter. Inulin or inulin-rich materials can be actively hydrolyzed by microbial inulinases to produce glucose and fructose syrups that can be used in bioprocesses. In this study, several microbial strains were isolated and their ability to inulinase biosynthesis was evaluated. The novel yeast strain Talf1, identified as Zygosaccharomyces bailii, was the best inulinase producer, attaining 8.67 U/ml of inulinase activity when JA juice was used as the inducer substrate. Z. bailii strain Talf1 and/or its enzymatic crude extract were further applied for bioethanol production and biodesulfurization (BDS) processes, using inulin and JA juice as carbon source. In a consolidated bioprocessing for ethanol production from 200 g/l inulin, Z. bailii strain Talf1 was able to produce 67 g/l of ethanol. This ethanol yield was improved in a simultaneous saccharification and fermentation (SSF) process, with the ethanologenic yeast Saccharomyces cerevisiae CCMI 885 and the Talf1 inulinases, achieving a production of 78 g/l ethanol. However, the highest ethanol yield (∼48%) was obtained in a SSF process from JA juice (∼130 g/l fermentable sugars), where the S. cerevisiae produced 63 g/l ethanol. Relatively to the dibenzothiophene BDS tests, the Gordonia alkanivorans strain 1B achieved a desulfurization rate of 4.8 μM/h within a SSF process using Talf1 inulinases and JA juice, highlighting the potential of JA as a less expensive alternative carbon source. These results showed the high potential of Z. bailii strain Talf1 inulinases as a versatile tool for bioprocesses using inulin-rich materials.

  5. Comparative evaluation of 13 yeast species in the Yarrowia clade on lignocellulosic biomass hydrolysate and genetic engineering of inhibitor tolerant strains for lipid and biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yarrowia lipolytica is an oleaginous yeast that has garnered interest for commercial production of single cell oil and other fatty acid-derived chemicals because of its GRAS status and genetic tractability. Three recent peer-reviewed studies have highlighted the possibility of lipid production by th...

  6. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  7. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  8. Yeast extracellular proteases.

    PubMed

    Ogrydziak, D M

    1993-01-01

    Many species of yeast secrete significant amounts of protease(s). In this article, results of numerous surveys of yeast extracellular protease production have been compiled and inconsistencies in the data and limitations of the methodology have been examined. Regulation, purification, characterization, and processing of yeast extracellular proteases are reviewed. Results obtained from the sequences of cloned genes, especially the Saccharomyces cerevisiae Bar protease, the Candida albicans acid protease, and the Yarrowia lipolytica alkaline protease, have been emphasized. Biotechnological applications and the medical relevance of yeast extracellular proteases are covered. Yeast extracellular proteases have potential in beer and wine stabilization, and they probably contribute to pathogenicity of Candida spp. Yeast extracellular protease genes also provide secretion and processing signals for yeast expression systems designed for secretion of heterologous proteins. Coverage of the secretion of foreign proteases such as prochymosin, urokinase, and tissue plasminogen activator by yeast in included.

  9. Protein expression-yeast.

    PubMed

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline.

  10. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  11. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  12. Yeast Infection during Pregnancy

    MedlinePlus

    ... OK? What's the best way to treat a yeast infection during pregnancy? Answers from Yvonne Butler Tobah, M.D. You can safely treat a yeast infection during pregnancy with various over-the-counter ...

  13. Ethanologenic Enzymes of Zymomonas mobilis

    SciTech Connect

    Ingram, Lonnie O'Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  14. Inventions on baker's yeast strains and specialty ingredients.

    PubMed

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  15. Complete biosynthesis of opioids in yeast

    PubMed Central

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J.; Interrante, Maria Filsinger; Smolke, Christina D.

    2016-01-01

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. Here, we engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof-of-principle, and major hurdles remain before optimization and scale up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds. PMID:26272907

  16. Complete biosynthesis of opioids in yeast.

    PubMed

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J; Filsinger Interrante, Maria; Smolke, Christina D

    2015-09-04

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines, despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. We engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required the expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof of principle, and major hurdles remain before optimization and scale-up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds.

  17. Novel characteristics and regulation of a divergent cinnamate 4-hydroxylase (CYP73A15) from French bean: engineering expression in yeast.

    PubMed

    Nedelkina, S; Jupe, S C; Blee, K A; Schalk, M; Werck-Reichhart, D; Bolwell, G P

    1999-04-01

    cDNAs showing high sequence similarity (>70%) over large stretches to plant CYP73A orthologues from other species were isolated from a cDNA library derived from mRNAs expressed in elicitor-treated suspension-cultured cells. These clones appear to code for a full-length 1554 bp open reading frame with a 78 bp 5'-untranslated region and a 140 bp 3'-untranslated region. The open reading frame, determined by sequence similarity, codes for a protein with a predicted Mr of 59229 and a pI of 8.8. It contains the conserved cysteine haem-binding site found in all cytochrome P450s. The protein encoded by this cDNA diverges however from other CYP73As in its N- and C-terminus and in four domains internally, so that overall sequence similarity is in the range 58-66%. Many clones contained an identical intron, which may be associated with a novel regulatory mechanism. Sequence similarity is sufficient for it to be classified as CYP73A15, although it is the least similar member of this family classified so far. The cDNA was expressed in yeast. Successful expression of cinnamate 4-hydroxylase activity required removal of the intron. High-level expression also required modification of the N-terminus to that of CYP73A1. Yeast did not process the intron at all and the leader sequence for A15 was not as compatible as that of A1. The mRNA for CYP73A15 was shown to be rapidly induced by elicitor treatment of suspension-cultured cells of French bean but induction was more transient than that of phenylalanine ammonia-lyase (PAL). In contrast, induction in cells undergoing xylogenesis was much more coordinate with PAL. The cloned cDNA may represent a cinnamate 4-hydroxylase isoform, whose expression is more related to differentiation than the responses to stress in which the majority of CYP73As cloned so far are involved.

  18. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  19. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.

    PubMed

    Katzberg, Michael; Skorupa-Parachin, Nàdia; Gorwa-Grauslund, Marie-Françoise; Bertau, Martin

    2010-04-14

    The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the gamma-diketone 2,5-hexanedione furnishing the diol (2S,5S)-hexanediol and the gamma-hydroxyketone (5S)-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%). This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  20. Engineering Cofactor Preference of Ketone Reducing Biocatalysts: A Mutagenesis Study on a γ-Diketone Reductase from the Yeast Saccharomyces cerevisiae Serving as an Example

    PubMed Central

    Katzberg, Michael; Skorupa-Parachin, Nàdia; Gorwa-Grauslund, Marie-Françoise; Bertau, Martin

    2010-01-01

    The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the γ-diketone 2,5-hexanedione furnishing the diol (2S,5S)-hexanediol and the γ-hydroxyketone (5S)-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%). This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants. PMID:20480039

  1. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation.

  2. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

    PubMed

    Rodriguez, Angelica; Kildegaard, Kanchana R; Li, Mingji; Borodina, Irina; Nielsen, Jens

    2015-09-01

    Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites, such as polyphenols, flavonoids, and some polyketides. Here we developed a p-coumaric acid-overproducing Saccharomyces cerevisiae platform strain. First, we reduced by-product formation by knocking out phenylpyruvate decarboxylase ARO10 and pyruvate decarboxylase PDC5. Second, different versions of feedback-resistant DAHP synthase and chorismate mutase were overexpressed. Finally, we identified shikimate kinase as another important flux-controlling step in the aromatic amino acid pathway by overexpressing enzymes from Escherichia coli, homologous to the pentafunctional enzyme Aro1p and to the bifunctional chorismate synthase-flavin reductase Aro2p. The highest titer of p-coumaric acid of 1.93 ± 0.26 g L(-1) was obtained, when overexpressing tyrosine ammonia-lyase TAL from Flavobacterium johnsoniaeu, DAHP synthase ARO4(K229L), chorismate mutase ARO7(G141S) and E. coli shikimate kinase II (aroL) in Δpdc5Δaro10 strain background. To our knowledge this is the highest reported titer of an aromatic compound produced by yeast. The developed S. cerevisiae strain represents an attractive platform host for production of p-coumaric-acid derived secondary metabolites, such as flavonoids, polyphenols, and polyketides.

  3. High-level production of tetraacetyl phytosphingosine (TAPS) by combined genetic engineering of sphingoid base biosynthesis and L-serine availability in the non-conventional yeast Pichia ciferrii.

    PubMed

    Schorsch, Christoph; Köhler, Tim; Andrea, Heiko; Boles, Eckhard

    2012-03-01

    The non-conventional yeast Pichia ciferrii is known to secrete the sphingoid long-chain base phytosphingosine in a tetraacetylated form (TAPS). Sphingolipids are important ingredients in cosmetic applications as they play important roles in human skin. Our work aimed to improve TAPS production by genetic engineering of P. ciferrii. In the first step we improved precursor availability by blocking degradation of L-serine, which is condensed with palmitoyl-CoA by serine palmitoyltransferase in the first committed step of sphingolipid biosynthesis. Successive deletion of two genes, SHM1 and SHM2, encoding L-serine hydroxymethyltransferases, and of CHA1 encoding L-serine deaminase, resulted in a strain producing 65 mg((TAPS))g(-1)((cdw)), which is a threefold increase in comparison with the parental strain. Attempts to increase the metabolic flux into and through the L-serine biosynthesis pathway did not improve TAPS production. However, genetic engineering of the sphingolipid pathway further increased secretion of TAPS. Blocking of sphingoid long-chain base phosphorylation by deletion of the LCB kinase gene PcLCB4 resulted in a further increase in TAPS production by 78% and significant secretion of the direct precursor of phytosphingosine, sphinganin, in a triacetylated form (TriASa). Overproduction of two serine palmitoyltransferase subunits, Lcb1 and Lcb2, together with a deletion of the gene ORM12 encoding a putative negative regulator of sphingolipid synthesis resulted in a strain producing 178 mg((TAPS))g(-1)((cdw)). Additional overproduction of the C4-hydroxylase Syr2 converting sphinganine to phytosphingosine reduced TriASa production and further improved TAPS production. The final recombinant P. ciferrii strain produced up to 199 mg((TAPS))g(-1)((cdw)) with a maximal production rate of 8.42 mg×OD(600nm)(-1)h(-1) and a titer of about 2 g L(-1), and should be applicable for industrial TAPS production.

  4. Coupling Binding to Catalysis – Using Yeast Cell Surface Display to Select Enzymatic Activities

    PubMed Central

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    Summary We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence activated cell sorting. PMID:26060080

  5. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.

    PubMed

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting.

  6. Yeast DNA plasmids.

    PubMed

    Gunge, N

    1983-01-01

    The study of yeast DNA plasmids has been initiated with the discovery of the 2-micron DNA in Saccharomyces cerevisiae. This multiple copy plasmid, organized into chromatin structure in vivo, probably exists in the nucleus and provides a good system to obtain information on eukaryotic DNA replication. Yeast transformation with the 2-micron DNA or artificially constructed chimeric plasmids had contributed significantly to the study of the molecular biology of yeast and eukaryotes, allowing the isolation and characterization of various genes, ars, centromeres, and telomeres, and also serving as a tool to study the expression of various heterologous genes. Encouraged by these fruitful results, new yeast plasmids have been screened among phylogenetically distant yeasts. The linear DNA plasmids (pGKl1 and pGKl2) from Kluyveromyces lactis are the first case of yeast plasmids associated with biological function (killer phenotype). This plasmid system would be ideal as a model to study the structure and function of eukaryotic linear chromosomes. The extracellular secretion of protein toxin suggests the plasmids to be an excellent candidate for a secretion vector. The importance of yeasts as suitable materials for the study of eukaryotic cell biology would be much enhanced by the advent of new transformation systems with diverse host yeasts of genetically and phylogenetically distinct properties.

  7. The yeast Golgi apparatus.

    PubMed

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.

  8. Yeast cell factories for fine chemical and API production

    PubMed Central

    Pscheidt, Beate; Glieder, Anton

    2008-01-01

    This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii. PMID:18684335

  9. Yeast Proteome Analysis

    NASA Astrophysics Data System (ADS)

    Matros, Andrea; Mock, Hans-Peter

    Yeast organisms, and specifically Saccharomyces cerevisiae, have become model systems for many aspects in fundamental and applied research. Consistently, many papers have been published applying proteome techniques to study these organisms. The review will give an overview on the proteome research performed on yeast systems so far; however, due to the large number of publications, only selected reports can be cited neglecting many more interesting ones in the interest of space. The review will focus on research involving mass spectrom-etry as a basic proteome technique, although many more approaches are relevant for the functional characterization of proteins in the cell, e.g. the yeast two-hybrid system. We will provide an overview on yeasts as models in the context of pro-teome analysis, and explain the basic techniques currently applied in proteome approaches. The main part of the review will deal with a survey on the current status of proteomic studies in yeasts. In a first part of this chapter, we will deal with the currently available proteome maps of yeasts, and in the following part we will discuss studies dealing with fundamental aspects, but also mention proteome studies related to applied microbiology. Finally, we will envisage future perspectives of the proteome technology for studying yeasts, and draw major conclusion on the current status reached in this field of functional genomics.

  10. Yeast (Saccharomyces cerevisiae).

    PubMed

    Hooykaas, Paul J J; den Dulk-Ras, Amke; Bundock, Paul; Soltani, Jalal; van Attikum, Haico; van Heusden, G Paul H

    2006-01-01

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic organisms. This species has enabled a detailed study of the (genetic) requirements for Agrobacterium-mediated DNA transformation. For instance research with this yeast has led to the recognition that the transforming DNA molecules integrate into the eukaryotic chromosomes either by homologous recombination, which is the preferred pathway in S. cerevisiae, or by nonhomologous end-joining. Based on the protocol for Agrobacterium-mediated transformation of S. cerevisiae methodology has been developed for the transformation of many other yeast and fungal species.

  11. Transgenic wine yeast technology comes of age: is it time for transgenic wine?

    PubMed

    Cebollero, Eduardo; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2007-02-01

    Saccharomyces cerevisiae is the main yeast responsible for alcoholic fermentation of grape juice during wine making. This makes wine strains of this species perfect targets for the improvement of wine technology and quality. Progress in winemaking has been achieved through the use of selected yeast strains, as well as genetic improvement of wine yeast strains through the sexual and pararexual cycles, random mutagenesis and genetic engineering. Development of genetically engineered wine yeasts, their potential application, and factors affecting their commercial viability will be discussed in this review.

  12. Replicative Aging in Yeast

    PubMed Central

    Steinkraus, K.A.; Kaeberlein, M.; Kennedy, B.K.

    2009-01-01

    Progress in aging research is now rapid, and surprisingly, studies in a single-celled eukaryote are a driving force. The genetic modulators of replicative life span in yeast are being identified, the molecular events that accompany aging are being discovered, and the extent to which longevity pathways are conserved between yeast and multicellular eukaryotes is being tested. In this review, we provide a brief retrospective view on the development of yeast as a model for aging and then turn to recent discoveries that have pushed aging research into novel directions and also linked aging in yeast to well-developed hypotheses in mammals. Although the question of what causes aging still cannot be answered definitively, that day may be rapidly approaching. PMID:18616424

  13. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  14. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  15. Plasmidic Expression of nemA and yafC* Increased Resistance of Ethanologenic Escherichia coli LY180 to Nonvolatile Side Products from Dilute Acid Treatment of Sugarcane Bagasse and Artificial Hydrolysate.

    PubMed

    Shi, Aiqin; Zheng, Huabao; Yomano, Lorraine P; York, Sean W; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2016-01-29

    Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural. Two new resistance genes were discovered from Sau3A1 libraries of SL100 genomic DNA: nemA (N-ethylmaleimide reductase) and a putative regulatory gene containing a mutation in the coding region, yafC*. The presence of these mutations in SL100 was confirmed by sequencing. A single mutation was found in the upstream regulatory region of nemR (nemRA operon) in SL100. This mutation increased nemA activity 20-fold over that of the parent organism (LY180) in AM1 medium without hydrolysate and increased nemA mRNA levels >200-fold. Addition of hydrolysates induced nemA expression (mRNA and activity), in agreement with transcriptional control. NemA activity was stable in cell extracts (9 h, 37°C), eliminating a role for proteinase in regulation. LY180 with a plasmid expressing nemA or yafC* was more resistant to a vacuum-treated sugarcane bagasse hydrolysate and to a vacuum-treated artificial hydrolysate than LY180 with an empty-vector control. Neither gene affected furfural tolerance. The vacuum-treated hydrolysates inhibited the reduction of N-ethylmaleimide by NemA while also serving as substrates. Expression of the nemA or yafC* plasmid in LY180 doubled the rate of ethanol production from the vacuum-treated sugarcane bagasse hydrolysate.

  16. Engineering Robust Yeasts for Biorefinery Applications

    SciTech Connect

    Lee, Taek Soon; Niles, Brad; Chow, Ruthie; Oikawa, Ai

    2016-06-22

    Isoprene is highly-valued terpene based-chemical feedstock and can be derived from either petroleum or from fermentation of plant biomass. This project enabled more efficient isoprene fermentation using renewable resources and at yields that can compete economically with non-renewable sources. This Phase I project applied a novel synthetic biology approach, the Artificial Positive Feedback Loop (APFL) technology, to improve production yields of isoprene.

  17. Impact of yeast genetics and molecular biology on traditional and new biotechnology.

    PubMed

    Maráz, A

    1999-01-01

    Developments in yeast genetics, biochemistry, physiology and process engineering provided bases of rapid development in modern biotechnology. Elaboration of the recombinant DNA technique is far the most important milestone in this field. Other molecular genetic techniques, as molecular genotyping of yeast strains proved also very beneficial in yeast fermentation technologies. Saccharomyces cerevisiae is the most exploited eukaryotic microorganism in biotechnology but non-Saccharomyces species are becoming more and more important in the production of perfectly translated heterologous proteins.

  18. Mapping yeast transcriptional networks.

    PubMed

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  19. Yeasts associated with Manteca.

    PubMed

    Suzzi, Giovanna; Schirone, Maria; Martuscelli, Maria; Gatti, Monica; Fornasari, Maria Emanuela; Neviani, Erasmo

    2003-04-01

    Manteca is a traditional milk product of southern Italy produced from whey deriving from Caciocavallo Podolico cheese-making. This study was undertaken to obtain more information about the microbiological properties of this product and particularly about the presence, metabolic activities, and technological significance of the different yeast species naturally occurring in Manteca. High numbers of yeasts were counted after 7 days ripening (10(4)-10(5) cfu g(-1)) and then decreased to 10(2) at the end. A total of 179 isolates were identified and studied for their phenotypic and genotypic characteristics. The most frequently encountered species were Trichosporon asahii (45), Candida parapsilosis (33), Rhodotorula mucilaginosa (32), Candida inconspicua (29). Some of these yeasts showed lipolytic activity (32 strains) and proteolytic activity (29 strains), NaCl resistance up to 10% and growth up to 45 degrees C (42 strains). Biogenic amines were formed by proteolytic strains, in particular phenylethylamine, putrescine and spermidine. Spermidine was produced by all the yeasts tested in this work, but only Trichosporon produced a great quantity of this compound. Histamine was not detectable. Caseinolytic activity was common to almost all strains, corresponding to the ability to efficiently split off amino-terminal amino acids. The highest and most constant activity expressed by all species was X-prolyl-dipeptidyl aminopeptidase. The findings suggest that the presence of yeasts may play a significant role in justifying interactions with lactic acid bacteria, and consequently with their metabolic activity in the definition of the peculiar characteristics of Manteca cheese.

  20. [Fructose transporter in yeasts].

    PubMed

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  1. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  2. Evolutionary history of Ascomyceteous Yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 20 ascomyceteous yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comp...

  3. The Red and White Yeast Lab: An Introduction to Science as a Process.

    ERIC Educational Resources Information Center

    White, Brian T.

    1999-01-01

    Describes an experimental system based on an engineered strain of bakers' yeast that is designed to involve students in the process by which scientific knowledge is generated. Students are asked to determine why the yeast grow to form a reproducible pattern of red and white. (WRM)

  4. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  5. Conversion of pentoses by yeasts

    SciTech Connect

    Gong, C.S.; Claypool, T.A.; Maun, C.M.; Mccracken, L.D.; Tsao, G.T.; Ueng, P.P.

    1983-01-01

    The utilization and conversion of D-xylose, D-xyulose, L-arabinose, and xylitol by yeast strains have been investigated with the following results: 1) The majority of yeasts tested utilize D-xylose and produce polyols, ethanol, and organic acids. The type and amount of products formed varies with the yeast strains used. The most commonly detected product is xylitol. 2) The majority of yeasts tested utilize D-xylulose aerobically and fermentatively to produce ethanol, xylitol D-arabitol, and organic acids. The type and amount of products varies depending upon the yeast strains used. 3) Xylitol is a poor carbon and energy source for most yeasts tested. Some yeast strains produce small amounts of ethanol from xylitol. 4) Most yeast strains utilize L-arabinose, and L-arabitol is the common product. Small amounts of ethanol are also produced by some yeast strains. 5) Of the four substrates examined, D-xylulose was the preferred substrate, followed by D-xylose, L-arabinose, and xylitol. 6) Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp. Saccharomyces cerevisiae, and other yeasts. These mutant strains can be used for ethanol production from D-xylose as well as for the study of metabolic regulation of pentose utilization in yeasts.

  6. Yeast Infection (Vaginal)

    MedlinePlus

    ... dose estrogen birth control pills or estrogen hormone therapy. Uncontrolled diabetes. Women with diabetes who have poorly controlled blood ... of yeast infections than women with well-controlled diabetes. Impaired ... such as from corticosteroid therapy or HIV infection — are more likely to get ...

  7. Yeast ecology of Kombucha fermentation.

    PubMed

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  8. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    PubMed Central

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  9. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  10. Mitochondrial inheritance in yeast.

    PubMed

    Westermann, Benedikt

    2014-07-01

    Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  11. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  12. Necrosis in yeast.

    PubMed

    Eisenberg, Tobias; Carmona-Gutierrez, Didac; Büttner, Sabrina; Tavernarakis, Nektarios; Madeo, Frank

    2010-03-01

    Necrosis was long regarded as an accidental cell death process resulting from overwhelming cellular injury such as chemical or physical disruption of the plasma membrane. Such a definition, however, proved to be inapplicable to many necrotic scenarios. The discovery that genetic manipulation of several proteins either protected or enhanced necrotic cell death argued in favor of a regulated and hence programmed process, as it is the case for apoptosis. For more than a decade, yeast has served as a model for apoptosis research; recently, evidence accumulated that it also harbors a necrotic program. Here, we summarize the current knowledge about factors that control necrotic cell death in yeast. Mitochondria, aging and a low pH are positive regulators of this process while cellular polyamines (e.g. spermidine) and endonuclease G as well as homeostatic organelles like the vacuole or peroxisomes are potent inhibitors of necrosis. Physiological necrosis may stimulate intercellular signaling via the release of necrotic factors that promote viability of healthy cells and, thus, assure survival of the clone. Together, the data obtained in yeast argue for the existence of a necrotic program, which controls longevity and whose physiological function may thus be aging.

  13. Comparative genomics of biotechnologically important yeasts

    PubMed Central

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H.; Lopes, Mariana R.; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A.; Wisecaver, Jennifer H.; Long, Tanya M.; Aerts, Andrea L.; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y.; Deshpande, Shweta; Douglass, Alexander P.; Hanson, Sara J.; Klenk, Hans-Peter; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lipzen, Anna M.; Meier-Kolthoff, Jan P.; Ohm, Robin A.; Otillar, Robert P.; Pangilinan, Jasmyn L.; Peng, Yi; Rosa, Carlos A.; Scheuner, Carmen; Sibirny, Andriy A.; Slot, Jason C.; Stielow, J. Benjamin; Sun, Hui; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor V.

    2016-01-01

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  14. Oleaginous yeasts from Ethiopia.

    PubMed

    Jiru, Tamene Milkessa; Abate, Dawit; Kiggundu, Nicholas; Pohl, Carolina; Groenewald, Marizeth

    2016-12-01

    Oleaginous microorganisms can produce high amounts of oil (>20 % of their biomass) under suitable cultivation conditions. In this research work 200 samples were collected from soil, plant surfaces (leaves, flowers and fruits), waste oils from traditional oil milling houses and dairy products (cheese, milk and yoghurt) in Ethiopia. Three hundred and forty yeast colonies were isolated from these samples. By applying Sudan III staining tests, 18 strains were selected as possible oleaginous yeasts. The 18 strains were identified and characterized for their lipid production as a feedstock for biodiesel production in the future. They were identified using morphological and physiological methods as well as sequencing the 3'end of the small-subunit rRNA gene, the internal transcribed spacer regions (ITS; ITS 1, ITS 2 and the intervening 5.8S rRNA gene), and the D1/D2 domain of the 26S rRNA gene. The 18 yeasts were identified as Cutaneotrichosporon curvatus (syn, Cryptococcus curvatus) (PY39), Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) (SY89), Rhodotorula dairenensis (SY94) and Rhodotourula mucilaginosa (SY09, SY18, SY20, PY21, PY23, PY25, SY30, PY32, SY43, PY44, SY52, PY55, PY61, SY75 and PY86). Under nitrogen-limited cultivation conditions, R. mucilaginosa PY44 produced the highest biomass (15.10 ± 0.54 g/L), while R. mucilaginosa PY32 produced the lowest biomass (10.32 ± 0.18 g/L). The highest lipid yield of 6.87 ± 0.62 g/L and lipid content of 46.51 ± 0.70 % were attained by C. curvatus (syn, C. curvatus) PY39. On the other hand, R. mucilaginosa PY61 gave the lowest lipid yield (2.06 ± 0.52 g/L) and R. mucilaginosa SY52 gave the lowest lipid content of 16.99 ± 0.85 %. The results in this research work suggest that much more oleaginous yeasts can be isolated from Ethiopian environment. On the basis of their substantial lipid production abilities, the three oleaginous yeast strains PY39, SY89 and SY18 were selected and

  15. Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin.

    PubMed

    Sumer, Fatma; Stark, Benjamin C; Yesilcimen Akbas, Meltem

    2015-01-01

    Engineering of ethanologenic E. coli to express the haemoglobin (VHb) from the bacterium Vitreoscilla has been shown to enhance ethanol production by fermentation of pure sugars, sugars from hydrolysis of lignocellulose, components of whey, and sugars from wastewater produced during potato processing. Here, these studies were extended to see whether the same effect could be seen when a mixture of waste materials from processing of potatoes and corn into potato and corn chips were used as sugar sources. Consistent increases in ethanol production coincident with VHb expression were seen in shake flasks at both low aeration and high aeration conditions. The ethanol increases were due almost entirely to increases in the amount of ethanol produced per unit of cell mass. The VHb strategy for increasing fermentation to ethanol (and perhaps other valuable fermentation products) may be of general use, particularly regarding conversion of otherwise discarded materials into valuable commodities.

  16. Progress in metabolic engineering of Saccharomyces cerevisiae.

    PubMed

    Nevoigt, Elke

    2008-09-01

    The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial ("white") biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.

  17. Genomics and the making of yeast biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  18. Ethanol tolerance in yeasts.

    PubMed

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  19. Expanding the yeast prion world

    PubMed Central

    Suzuki, Genjiro; Tanaka, Motomasa

    2013-01-01

    Mammalian and fungal prion proteins form self-perpetuating β-sheet-rich fibrillar aggregates called amyloid. Prion inheritance is based on propagation of the regularly oriented amyloid structures of the prion proteins. All yeast prion proteins identified thus far contain aggregation-prone glutamine/asparagine (Gln/Asn)-rich domains, although the mammalian prion protein and fungal prion protein HET-s do not contain such sequences. In order to fill this gap, we searched for novel yeast prion proteins lacking Gln/Asn-rich domains via a genome-wide screen based on cross-seeding between two heterologous proteins and identified Mod5, a yeast tRNA isopentenyltransferase, as a novel non-Gln/Asn-rich yeast prion protein. Mod5 formed self-propagating amyloid fibers in vitro and the introduction of Mod5 amyloids into non-prion yeast induced dominantly and cytoplasmically heritable prion state [MOD+], which harbors aggregates of endogenous Mod5. [MOD+] yeast showed an increased level of membrane lipid ergosterol and acquired resistance to antifungal agents. Importantly, enhanced de novo formation of [MOD+] was observed when non-prion yeast was grown under selective pressures from antifungal drugs. Our findings expand the family of yeast prions to non-Gln/Asn-rich proteins and reveal the acquisition of a fitness advantage for cell survival through active prion conversion. PMID:23117914

  20. New and emerging yeast pathogens.

    PubMed Central

    Hazen, K C

    1995-01-01

    The most common yeast species that act as agents of human disease are Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans. The incidence of infections by other yeasts has increased during the past decade. The most evident emerging pathogens are Malassezia furfur, Trichosporon beigelii, Rhodotorula species, Hansenula anomala, Candida lusitaniae, and Candida krusei. Organisms once considered environmental contaminants or only industrially important, such as Candida utilis and Candida lipolytica, have now been implicated as agents of fungemia, onychomycosis, and systemic disease. The unusual yeasts primarily infect immunocompromised patients, newborns, and the elderly. The role of central venous catheter removal and antifungal therapy in patient management is controversial. The antibiograms of the unusual yeasts range from resistant to the most recent azoles and amphotericin B to highly susceptible to all antifungal agents. Current routine methods for yeast identification may be insufficient to identify the unusual yeasts within 2 days after isolation. The recognition of unusual yeasts as agents of sometimes life-threatening infection and their unpredictable antifungal susceptibilities increase the burden on the clinical mycology laboratory to pursue complete species identification and MIC determinations. Given the current and evolving medical practices for management of seriously ill patients, further evaluations of the clinically important data about these yeasts are needed. PMID:8665465

  1. Yeast two-hybrid screen.

    PubMed

    Makuch, Lauren

    2014-01-01

    Yeast two-hybrid is a method for screening large numbers of gene products (encoded by cDNA libraries) for their ability to interact with a protein of interest. This system can also be used for characterizing and manipulating candidate protein: protein interactions. Interactions between proteins are monitored by the growth of yeast plated on selective media.

  2. A Method of Visualizing Three-Dimensional Distribution of Yeast in Bread Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Shiraga, Seizaburou; Ueda, Mitsuyoshi; Takeya, Koji; Endo, Shigeru

    A novel technique was developed to monitor the change in three-dimensional (3D) distribution of yeast in frozen bread dough samples in accordance with the progress of mixing process. Application of a surface engineering technology allowed the identification of yeast in bread dough by bonding EGFP (Enhanced Green Fluorescent Protein) to the surface of yeast cells. The fluorescent yeast (a biomarker) was recognized as bright spots at the wavelength of 520 nm. A Micro-Slicer Image Processing System (MSIPS) with a fluorescence microscope was utilized to acquire cross-sectional images of frozen dough samples sliced at intervals of 1 μm. A set of successive two-dimensional images was reconstructed to analyze 3D distribution of yeast. Samples were taken from each of four normal mixing stages (i.e., pick up, clean up, development, and final stages) and also from over mixing stage. In the pick up stage yeast distribution was uneven with local areas of dense yeast. As the mixing progressed from clean up to final stages, the yeast became more evenly distributed throughout the dough sample. However, the uniformity in yeast distribution was lost in the over mixing stage possibly due to the breakdown of gluten structure within the dough sample.

  3. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes.

  4. Ethanologenic bacteria with increased resistance to furfural

    DOEpatents

    Miller, Elliot Norman; Jarboe, Laura R.; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham; Ingram, Lonnie O'Neal

    2015-10-06

    The invention relates to bacterium that have increased resistance to furfural and methods of preparation. The invention also relates to methods of producing ethanol using the bacterium and corresponding kits.

  5. Agriculturally important yeasts: Biological control of field and postharvest diseases using yeast antagonists, and yeasts as pathogens of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two important agricultural aspects of yeasts, control of plant diseases through application of yeasts as the control agent, and yeasts that are plant pathogens are reviewed. Yeasts as biocontrol organisms are presented first, followed by a discussion of some of the more common plant pathogenic yeas...

  6. Bioprotective Role of Yeasts

    PubMed Central

    Muccilli, Serena; Restuccia, Cristina

    2015-01-01

    The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance. PMID:27682107

  7. BIOSYNTHESIS OF YEAST CAROTENOIDS

    PubMed Central

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  8. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  9. Oral yeast colonization throughout pregnancy

    PubMed Central

    Rio, Rute; Simões-Silva, Liliana; Garro, Sofia; Silva, Mário-Jorge; Azevedo, Álvaro

    2017-01-01

    Background Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. Material and Methods The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Results Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Conclusions Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment. Key words:Oral yeast, fungi, pregnancy, saliva pH. PMID:28160578

  10. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  11. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  12. Centromeric chromatin in fission yeast.

    PubMed

    Partridge, Janet F

    2008-05-01

    A fundamental requirement for life is the ability of cells to divide properly and to pass on to their daughters a full complement of genetic material. The centromere of the chromosome is essential for this process, as it provides the DNA sequences on which the kinetochore (the proteinaceous structure that links centromeric DNA to the spindle microtubules) assembles to allow segregation of the chromosomes during mitosis. It has long been recognized that kinetochore assembly is subject to epigenetic control, and deciphering how centromeres promote faithful chromosome segregation provides a fascinating intellectual challenge. This challenge is made more difficult by the scale and complexity of DNA sequences in metazoan centromeres, thus much research has focused on dissecting centromere function in the single celled eukaryotic yeasts. Interestingly, in spite of similarities in the genome size of budding and fission yeasts, they seem to have adopted some striking differences in their strategy for passing on their chromosomes. Budding yeast have "point" centromeres, where a 125 base sequence is sufficient for mitotic propagation, whereas fission yeast centromeres are more reminiscent of the large repetitive centromeres of metazoans. In addition, the centromeric heterochromatin which coats centromeric domains of fission yeast and metazoan centromeres and is critical for their function, is largely absent from budding yeast centromeres. This review focuses on the assembly and maintenance of centromeric chromatin in the fission yeast.

  13. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  14. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  15. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  16. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  17. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida...

  18. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  19. Marine yeasts and their applications in mariculture

    NASA Astrophysics Data System (ADS)

    Zhenming, Chi; Zhiqiang, Liu; Lingmei, Gao; Fang, Gong; Chunling, Ma; Xianghong, Wang; Haifeng, Li

    2006-07-01

    The terrestrial yeasts have been receiving great attention in science and industry for over one hundred years because they can produce many kinds of bioactive substances. However, little is known about the bioactive substances of marine yeasts. In recent years, it has been found that marine yeasts have wide applications in mariculture and other fields. Therefore, marine yeasts, the bioactive substances from them and the applications of marine yeasts themselves and the bioactive substances they produced are reviewed in this paper.

  20. An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor.

    PubMed

    Fukutani, Yosuke; Ishii, Jun; Noguchi, Keiichi; Kondo, Akihiko; Yohda, Masafumi

    2012-12-01

    The goal of this work was to improve the bioluminescence-based signaling assay system to create a practical application of a biomimetic odor sensor using an engineered yeast-expressing olfactory receptors (ORs). Using the yeast endogenous pheromone receptor (Ste2p) as a model GPCR, we determined the suitable promoters for the firefly luciferase (luc) reporter and GPCR genes. Additionally, we deleted some genes to further improve the sensitivity of the luc reporter assay. By replacing the endogenous yeast G-protein α-subunit (Gpa1p) with the olfactory-specific Gα(olf), the optimized yeast strain successfully transduced signal through both OR and yeast Ste2p. Our results will assist the development of a bioluminescence-based odor-sensing system using OR-expressing yeast.

  1. The Yeast Sphingolipid Signaling Landscape

    PubMed Central

    Montefusco, David J.; Matmati, Nabil

    2014-01-01

    Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field. PMID:24220500

  2. Assimilation of nitrate by yeasts.

    PubMed

    Siverio, José M

    2002-08-01

    Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.

  3. Yeasts preservation: alternatives for lyophilisation.

    PubMed

    Nyanga, Loveness K; Nout, Martinus J R; Smid, Eddy J; Boekhout, Teun; Zwietering, Marcel H

    2012-11-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cakes. During storage at 25 °C in the dark, yeast cultures preserved in dry rice cakes, and lyophilised cultures of Saccharomyces cerevisiae and Issatchenkia orientalis showed no significant loss of viable cells up to 4 months of storage. Yeast cultures preserved in dry plant fibre strands had the greatest loss of viable count during the 6 months of storage at 25 °C. Preservation of yeasts cultures in dry rice cakes provided better survival during storage at 4 °C than lyophilisation. The current study demonstrated that traditional methods can be useful and effective for starter culture preservation in small-scale, low-tech applications.

  4. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  5. Regulatory steps associated with use of value-added recombinant proteins and peptides screened in high-throughput for expression in genetically engineered starch and cellulosic fuel ethanol yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant proteins expressed in animals have been a public concern as a perceived risk to the consumer. Animals are currently being treated with genetically engineered biologicals, such as growth hormone, or fed genetically modified plants. Similarly, various commercially-valuable proteins or pe...

  6. Red Yeast Rice

    PubMed Central

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-01-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  7. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  8. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  9. Advances in mechanisms and modifications for rendering yeast thermotolerance.

    PubMed

    Gao, Liman; Liu, Yueqin; Sun, Hun; Li, Chun; Zhao, Zhiping; Liu, Guiyan

    2016-06-01

    Thermotolerant Saccharomyces cerevisiae is widely regarded as an attractive strain with which to accomplish the coupling of enzyme saccharification, ethanol fermentation and ethanol distillation in non-grain fuel bioethanol fermentation systems, and it has many advantages for increasing the ethanol yield and reducing production costs. This review provided an overview of the yeast heat-resistant mechanisms from six aspects, including gene expression responses, heat shock proteins, trehalose, ATPase, the ubiquitin-proteasome pathway and heat-induced antioxidant defenses. Innovative methods, such as random and rational strategies for improving yeast thermotolerance, were further discussed, and several special cases were provided. To rationally engineer thermotolerance in yeast, the advances in employing heat-resistant mechanisms of thermophiles were particularly discussed. By designing and constructing heat-resistant devices consists of heat-resistant parts from thermophiles to yeast, a superior thermotolerance of S. cerevisiae has been achieved, providing a new system with important applications for research regarding the improvement of the robustness of microbes.

  10. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  11. Engineering of the Saccharomyces cerevisiae yeast strain with multiple chromosome-integrated genes of human alpha-fetoprotein and its high-yield secretory production, purification, structural and functional characterization.

    PubMed

    Dudich, Elena; Dudich, Igor; Semenkova, Lidia; Benevolensky, Sergey; Morozkina, Elena; Marchenko, Aleksey; Zatcepin, Sergey; Dudich, Dmitry; Soboleva, Galina; Khromikh, Luidmila; Roslovtceva, Olga; Tatulov, Eduard

    2012-07-01

    Alpha-fetoprotein (AFP) is a biological drug candidate of high medicinal potential in the treatment of autoimmune diseases, cancer, and regenerative medicine. Large-scale production of recombinant human alpha-fetoprotein (rhAFP) is desirable for structural and functional studies and applied research. In this study we cloned and expressed in the secreted form wild-type glycosylated human rhAFP and non-glycosylated mutant rhAFP(0) (N233S) in the yeast strain Saccharomyces cerevisiae with multiple chromosome-integrated synthetic human AFP genes. RhAFP and rhAFP(0) were successfully produced and purified from the culture liquids active naturally folded proteins. Elimination of the glycosylation by mutation reduced rhAFP(0) secretion about threefold as compared to the wild-type protein showing critical role of the N-linked glycan for heterologous protein folding and secretion. Structural similarity of rhAFP and rhAFP(0) with natural embryonic eAFP was confirmed by circular dichroism technique. Functional tests demonstrated similar type of tumor suppressive and immunosuppressive activity for both recombinant species rhAFP and rhAFP(0) as compared to natural eAFP. It was documented that both types of biological activities attributed to rhAFP and rhAFP(0) are due to the fast induction of apoptosis in tumor cells and mitogen-activated lymphocytes. Despite the fact that rhAFP and rhAFP(0) demonstrated slightly less effective tumor suppressive activity as compared to eAFP but rhAFP(0) had produced statistically notable increase in its ability to induce inhibition of in vitro lymphocyte proliferation as compared to the glycosylated rhAFP and eAFP. We conclude that N-linked glycosylation of rhAFP is required for efficient folding and secretion. However the presence of N-linked sugar moiety was shown to be unimportant for tumor suppressive activity but was critically important for its immunoregulative activity which demonstrates that different molecular mechanisms are involved

  12. The intronome of budding yeasts.

    PubMed

    Neuvéglise, Cécile; Marck, Christian; Gaillardin, Claude

    2011-01-01

    Whatever their abundance in genomes, spliceosomal introns are the signature of eukaryotic genes. The sequence of Saccharomyces cerevisiae, achieved fifteen years ago, revealed that this yeast has very few introns, but conserved intron boundaries typical for an intron definition mechanism. With the improvement and the development of new sequencing technologies, yeast genomes have been extensively sequenced during the last decade. We took advantage of this plethora of data to compile and assess the intron content of the protein-coding genes of 13 genomes representative of the evolution of hemiascomycetous yeasts. We first observed that intron paucity is a general rule and that the fastest evolving genomes tend to lose their introns more rapidly (e.g. S. cerevisiae versus Yarrowia lipolytica). Noticeable differences were also confirmed for 5' splice sites and branch point sites (BP) as well as for the relative position of the BP. These changes seemed to be correlated with the lineage specific evolution of splicing factors.

  13. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.

    PubMed

    Sakamoto, Takatoshi; Hasunuma, Tomohisa; Hori, Yoshimi; Yamada, Ryosuke; Kondo, Akihiko

    2012-04-30

    The cost of the lignocellulose-hydrolyzing enzymes used in the saccharification process of ethanol production from biomass accounts for a relatively high proportion of total processing costs. Cell surface engineering technology has facilitated a reduction in these costs by integrating saccharification and fermentation processes into a recombinant microbe strain expressing heterologous enzymes on the cell surface. We constructed a recombinant Saccharomyces cerevisiae that not only hydrolyzed hemicelluloses by codisplaying endoxylanase from Trichoderma reesei, β-xylosidase from Aspergillus oryzae, and β-glucosidase from Aspergillus aculeatus but that also assimilated xylose through the expression of xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. The recombinant strain successfully produced ethanol from rice straw hydrolysate consisting of hemicellulosic material containing xylan, xylooligosaccharides, and cellooligosaccharides without requiring the addition of sugar-hydrolyzing enzymes or detoxication. The ethanol titer of the strain was 8.2g/l after 72h fermentation, which was approximately 2.5-fold higher than that of the control strain. The yield (grams of ethanol per gram of total sugars in rice straw hydrolysate consumed) was 0.41g/g, which corresponded to 82% of the theoretical yield. The cell surface-engineered strain was thus highly effective for consolidating the process of ethanol production from hemicellulosic materials.

  14. UV and arsenate toxicity: a specific and sensitive yeast bioluminescence assay.

    PubMed

    Bakhrat, Anya; Eltzov, Evgeni; Finkelstein, Yishay; Marks, Robert S; Raveh, Dina

    2011-06-01

    We describe a Saccharomyces cerevisiae bioluminescence assay for UV and arsenate in which bacterial luciferase genes are regulated by the promoter of the yeast gene, UFO1. UFO1 encodes the F-box subunit of the Skp1–Cdc53–F-box protein ubiquitin ligase complex and is induced by DNA damage and by arsenate. We engineered the UFO1 promoter into an existing yeast bioreporter that employs human genes for detection of steroid hormone-disrupting compounds in water bodies. Our analysis indicates that use of an endogenous yeast promoter in different mutant backgrounds allows discrimination between different environmental signals. The UFO1-engineered yeast give a robust bioluminescence response to UVB and can be used for evaluating UV protective sunscreens. They are also effective in detecting extremely low concentrations of arsenate, particularly in pdr5Δ mutants that lack a mechanism to extrude toxic chemicals; however, they do not respond to cadmium or mercury. Combined use of endogenous yeast promoter elements and mutants of stress response pathways may facilitate development of high-specificity yeast bioreporters able to discriminate between closely related chemicals present together in the environment.

  15. Yeast Can Affect Behavior and Learning.

    ERIC Educational Resources Information Center

    Crook, William G.

    1984-01-01

    A pediatrician recounts his experiences in diagnosing and treating allergies to common yeast germs that may result in behavior and learning problems. He lists characteristics that may predispose children to yeast-connected health problems. (CL)

  16. Genomic evolution of the ascomycetous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphr...

  17. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  18. Mitochondrial inheritance in budding yeast.

    PubMed

    Boldogh, I R; Yang, H C; Pon, L A

    2001-06-01

    During the past decade significant advances were made toward understanding the mechanism of mitochondrial inheritance in the yeast Saccharomyces cerevisiae. A combination of genetics, cell-free assays and microscopy has led to the discovery of a great number of components. These fall into three major categories: cytoskeletal elements, mitochondrial membrane components and regulatory proteins. These proteins mediate activities, including movement of mitochondria from mother cells to buds, segregation of mitochondria and mitochondrial DNA, and equal distribution of the organelle between mother cells and buds during yeast cell division.

  19. Challenges to production of antibodies in bacteria and yeast.

    PubMed

    Lee, Yong Jae; Jeong, Ki Jun

    2015-11-01

    Currently, antibodies play major role in treating a wide variety of human diseases (e.g., cancer, viral infection, inflammation). Those pharmaceutic antibodies have become major therapeutic reagents in the pharmaceutical drug market. In addition to full-length antibodies, the market of antibody fragments, which offer potential advantages in clinical use as well as diagnostics, is gradually growing. As the demand for antibody therapeutics increase, the development of host systems for enhanced, and less expensive, production has also become more important. All therapeutic antibodies approved to date are predominantly produced in mammalian hosts, but due to drawbacks such as high production cost and long-term cultivation, the alternative use of bacteria and yeasts has been seriously considered. Recently, there have been reports of substantial progress in genetic engineering and systems biotechnology, results in development of potential hosts that overcame the critical limitations in bacterial and yeast cells, and much enhanced productivity of functional antibodies. In this review, we highlight recent, significant progress made in the engineering of bacterial and yeast cells for enhanced production of functional antibodies.

  20. Yeast Golden Gate (yGG) for the Efficient Assembly of S. cerevisiae Transcription Units.

    PubMed

    Agmon, Neta; Mitchell, Leslie A; Cai, Yizhi; Ikushima, Shigehito; Chuang, James; Zheng, Allen; Choi, Woo-Jin; Martin, J Andrew; Caravelli, Katrina; Stracquadanio, Giovanni; Boeke, Jef D

    2015-07-17

    We have adapted the Golden Gate DNA assembly method to the assembly of transcription units (TUs) for the yeast Saccharomyces cerevisiae, in a method we call yeast Golden Gate (yGG). yGG allows for the easy assembly of TUs consisting of promoters (PRO), coding sequences (CDS), and terminators (TER). Carefully designed overhangs exposed by digestion with a type IIS restriction enzyme enable virtually seamless assembly of TUs that, in principle, contain all of the information necessary to express a gene of interest in yeast. We also describe a versatile set of yGG acceptor vectors to be used for TU assembly. These vectors can be used for low or high copy expression of assembled TUs or integration into carefully selected innocuous genomic loci. yGG provides synthetic biologists and yeast geneticists with an efficient new means by which to engineer S. cerevisiae.

  1. Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines.

    PubMed

    Cebollero, Eduardo; Gonzalez, Ramon

    2006-06-01

    Autophagy is a transport system mediated by vesicles, ubiquitous in eukaryotic cells, by which bulk cytoplasm is targeted to a lysosome or vacuole for degradation. In the yeast Saccharomyces cerevisiae, autophagy is triggered by nutritional stress conditions (e.g., carbon- or nitrogen-depleted medium). In this study we showed that there is induction of autophagy in second-fermentation yeasts during sparkling wine making. Two methods were employed to detect autophagy: a biochemical approach based on depletion of the protein acetaldehyde dehydrogenase Ald6p and a morphological strategy consisting of visualization of autophagic bodies and autophagosomes, which are intermediate vesicles in the autophagic process, by transmission electron microscopy. This study provides the first demonstration of autophagy in second-fermentation yeasts under enological conditions. The correlation between autophagy and yeast autolysis during sparkling wine production is discussed, and genetic engineering of autophagy-related genes in order to accelerate the aging steps in wine making is proposed.

  2. Induction of Autophagy by Second-Fermentation Yeasts during Elaboration of Sparkling Wines

    PubMed Central

    Cebollero, Eduardo; Gonzalez, Ramon

    2006-01-01

    Autophagy is a transport system mediated by vesicles, ubiquitous in eukaryotic cells, by which bulk cytoplasm is targeted to a lysosome or vacuole for degradation. In the yeast Saccharomyces cerevisiae, autophagy is triggered by nutritional stress conditions (e.g., carbon- or nitrogen-depleted medium). In this study we showed that there is induction of autophagy in second-fermentation yeasts during sparkling wine making. Two methods were employed to detect autophagy: a biochemical approach based on depletion of the protein acetaldehyde dehydrogenase Ald6p and a morphological strategy consisting of visualization of autophagic bodies and autophagosomes, which are intermediate vesicles in the autophagic process, by transmission electron microscopy. This study provides the first demonstration of autophagy in second-fermentation yeasts under enological conditions. The correlation between autophagy and yeast autolysis during sparkling wine production is discussed, and genetic engineering of autophagy-related genes in order to accelerate the aging steps in wine making is proposed. PMID:16751523

  3. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive... stabilized color additive mixture. Color additive mixtures for fish feed use made with phaffia yeast may... additive mixtures for coloring foods. (b) Specifications. Phaffia yeast shall conform to the...

  4. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  5. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  6. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  7. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  8. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  9. Comparative Evaluation of the BD Phoenix Yeast ID Panel and Remel RapID Yeast Plus System for Yeast Identification.

    PubMed

    Grant, Michelle L; Parajuli, Shobha; Deleon-Gonsalves, Raquel; Potula, Raghava; Truant, Allan L

    2016-01-01

    Becton Dickinson Phoenix Yeast ID Panel was compared to the Remel RapID Yeast Plus System using 150 recent clinical yeast isolates and the API 20C AUX system to resolve discrepant results. The concordance rate between the Yeast ID Panel and the RapID Yeast Plus System (without arbitration) was 93.3% with 97.3% (146/150) and 95.3% (143/150) of the isolates correctly identified by the Becton Dickinson Phoenix and the Remel RapID, respectively, with arbitration.

  10. Comparative Evaluation of the BD Phoenix Yeast ID Panel and Remel RapID Yeast Plus System for Yeast Identification

    PubMed Central

    Grant, Michelle L.; Parajuli, Shobha; Deleon-Gonsalves, Raquel; Potula, Raghava; Truant, Allan L.

    2016-01-01

    Becton Dickinson Phoenix Yeast ID Panel was compared to the Remel RapID Yeast Plus System using 150 recent clinical yeast isolates and the API 20C AUX system to resolve discrepant results. The concordance rate between the Yeast ID Panel and the RapID Yeast Plus System (without arbitration) was 93.3% with 97.3% (146/150) and 95.3% (143/150) of the isolates correctly identified by the Becton Dickinson Phoenix and the Remel RapID, respectively, with arbitration. PMID:27366167

  11. Immobilized yeast for alcohol production

    SciTech Connect

    Not Available

    1982-02-03

    Construction of a pilot alcohol plant has been completed in Japan to test a new idea in fermentation that could cut the time required from three or four days to several hours. According to developers, the key is an unidentified radiation-cured polymer that is used to immobilize yeast, permitting the process to run continuously.

  12. Yeast as factory and factotum.

    PubMed

    Dixon, B

    2000-02-01

    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering.

  13. Overexpression of multisubunit replication factors in yeast.

    PubMed

    Burgers, P M

    1999-07-01

    Facile genetic and biochemical manipulation coupled with rapid cell growth and low cost of growth media has established the yeast Saccharomyces cerevisiae as a versatile workhorse. This article describes the use of yeast expression systems for the overproduction of complex multipolypeptide replication factors. The regulated overexpression of these factors in yeast provides for a readily accessible and inexpensive source of these factors in large quantities. The methodology is illustrated with the five-subunit replication factor C. Whole-cell extracts are prepared by blending yeast cells with glass beads or frozen yeast with dry ice. Procedures are described that maximize the yield of these factors while minimizing proteolytic degradation.

  14. The wine and beer yeast Dekkera bruxellensis.

    PubMed

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history.

  15. A Simple Laboratory Exercise for Ethanol Production by Immobilized Bakery Yeasts ("Saccharomyces Cerevisiae")

    ERIC Educational Resources Information Center

    Vullo, Diana L.; Wachsman, Monica B.

    2005-01-01

    This laboratory experiment was designed for Chemistry, Food Technology, Biology, and Chemical Engineering undergraduate students. This laboratory experience shows the advantages of immobilized bakery yeasts in ethanol production by alcoholic fermentation. The students were able to compare the ethanol production yields by free or calcium alginate…

  16. Improved vanillin production in baker's yeast through in silico design

    PubMed Central

    2010-01-01

    Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories. PMID:21059201

  17. Mycotoxins - prevention and decontamination by yeasts.

    PubMed

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  18. Yeasts colonizing the leaf surfaces.

    PubMed

    Sláviková, Elena; Vadkertiová, Renata; Vránová, Dana

    2007-08-01

    The yeasts were isolated from the leaf surfaces of ten species of trees. The study site was a forest park (Zelezná Studnicka) of the Small Carpathians mountain range. One hundred and thirty seven yeast strains belonging to 13 genera were isolated from 320 samples of leaves and needles. Seventeen yeast species were isolated, but only seven occurred regularly: Aureobasidium pullulans, Cryptococcus laurentii, Pichia anomala, Metschnikowia pulcherrima, Saccharomyces sp., Lachancea thermotolerans, and Rhodotorula glutinis. The remaining species were isolated from the leaves and needles of three or less tree species. A. pullulans, Cr. laurentii, and P. anomala were the most frequently found species and they occurred on leaves and needles of all ten tree species. Saccharomyces sp. occurred in leaf samples collected from eight kinds of trees. M. pulcherrima and L. thermotolerans were found in samples collected from six species of trees. Both these species occurred almost always on the leaves of deciduous trees. Rh. glutinis was the most frequently isolated carotenoids producing species. We have found out that the ascomycetous and basidiomycetous species were present in the leaf samples in approximately equal frequency, contrary to the soil samples taken from this forest park, where the ascomycetous species were found rarely.

  19. Visualization and quantification of three-dimensional distribution of yeast in bread dough.

    PubMed

    Maeda, Tatsuro; DO, Gab-Soo; Sugiyama, Junichi; Araki, Tetsuya; Tsuta, Mizuki; Shiraga, Seizaburo; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    A three-dimensional (3-D) bio-imaging technique was developed for visualizing and quantifying the 3-D distribution of yeast in frozen bread dough samples in accordance with the progress of the mixing process of the samples, applying cell-surface engineering to the surfaces of the yeast cells. The fluorescent yeast was recognized as bright spots at the wavelength of 520 nm. Frozen dough samples were sliced at intervals of 1 microm by an micro-slicer image processing system (MSIPS) equipped with a fluorescence microscope for acquiring cross-sectional images of the samples. A set of successive two-dimensional images was reconstructed to analyze the 3-D distribution of the yeast. The average shortest distance between centroids of enhanced green fluorescent protein (EGFP) yeasts was 10.7 microm at the pick-up stage, 9.7 microm at the clean-up stage, 9.0 microm at the final stage, and 10.2 microm at the over-mixing stage. The results indicated that the distribution of the yeast cells was the most uniform in the dough of white bread at the final stage, while the heterogeneous distribution at the over-mixing stage was possibly due to the destruction of the gluten network structure within the samples.

  20. The Insertion Green Monster (iGM) Method for Expression of Multiple Exogenous Genes in Yeast

    PubMed Central

    Labunskyy, Vyacheslav M.; Suzuki, Yo; Hanly, Timothy J.; Murao, Ayako; Roth, Frederick P.; Gladyshev, Vadim N.

    2014-01-01

    Being a simple eukaryotic organism, Saccharomyces cerevisiae provides numerous advantages for expression and functional characterization of proteins from higher eukaryotes, including humans. However, studies of complex exogenous pathways using yeast as a host have been hampered by the lack of tools to engineer strains expressing a large number of genetic components. In addition to inserting multiple genes, it is often desirable to knock out or replace multiple endogenous genes that might interfere with the processes studied. Here, we describe the “insertion Green Monster” (iGM) set of expression vectors that enable precise insertion of many heterologous genes into the yeast genome in a rapid and reproducible manner and permit simultaneous replacement of selected yeast genes. As a proof of principle, we have used the iGM method to replace components of the yeast pathway for methionine sulfoxide reduction with genes encoding the human selenoprotein biosynthesis machinery and generated a single yeast strain carrying 11 exogenous components of the selenoprotein biosynthetic pathway in precisely engineered loci. PMID:24776987

  1. Facile chemical functionalization of proteins through intein-linked yeast display.

    PubMed

    Marshall, Carrie J; Agarwal, Nitin; Kalia, Jeet; Grosskopf, Vanessa A; McGrath, Nicholas A; Abbott, Nicholas L; Raines, Ronald T; Shusta, Eric V

    2013-09-18

    Intein-mediated expressed protein ligation (EPL) permits the site-specific chemical customization of proteins. While traditional techniques have used purified, soluble proteins, we have extended these methods to release and modify intein fusion proteins expressed on the yeast surface, thereby eliminating the need for soluble protein expression and purification. To this end, we sought to simultaneously release yeast surface-displayed proteins and selectively conjugate with chemical functionalities compatible with EPL and click chemistry. Single-chain antibodies (scFv) and green fluorescent protein (GFP) were displayed on the yeast surface as fusions to the N-terminus of the Mxe GyrA intein. ScFv and GFP were released from the yeast surface with either a sulfur nucleophile (MESNA) or a nitrogen nucleophile (hydrazine) linked to an azido group. The hydrazine azide permitted the simultaneous release and azido functionalization of displayed proteins, but nonspecific reactions with other yeast proteins were detected, and cleavage efficiency was limited. In contrast, MESNA released significantly more protein from the yeast surface while also generating a unique thioester at the carboxy-terminus of the released protein. These protein thioesters were subsequently reacted with a cysteine alkyne in an EPL reaction and then employed in an azide-alkyne cycloaddition to immobilize the scFv and GFP on an azide-decorated surface with >90% site-specificity. Importantly, the immobilized proteins retained their activity. Since yeast surface display is also a protein engineering platform, these approaches provide a particularly powerful tool for the rapid assessment of engineered proteins.

  2. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae.

    PubMed

    Franken, Jaco; Burger, Anita; Swiegers, Jan H; Bauer, Florian F

    2015-08-01

    Industrial synthesis of L-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly D-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, L-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to L-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of L-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains.

  3. YTPdb: a wiki database of yeast membrane transporters.

    PubMed

    Brohée, Sylvain; Barriot, Roland; Moreau, Yves; André, Bruno

    2010-10-01

    Membrane transporters constitute one of the largest functional categories of proteins in all organisms. In the yeast Saccharomyces cerevisiae, this represents about 300 proteins ( approximately 5% of the proteome). We here present the Yeast Transport Protein database (YTPdb), a user-friendly collaborative resource dedicated to the precise classification and annotation of yeast transporters. YTPdb exploits an evolution of the MediaWiki web engine used for popular collaborative databases like Wikipedia, allowing every registered user to edit the data in a user-friendly manner. Proteins in YTPdb are classified on the basis of functional criteria such as subcellular location or their substrate compounds. These classifications are hierarchical, allowing queries to be performed at various levels, from highly specific (e.g. ammonium as a substrate or the vacuole as a location) to broader (e.g. cation as a substrate or inner membranes as location). Other resources accessible for each transporter via YTPdb include post-translational modifications, K(m) values, a permanently updated bibliography, and a hierarchical classification into families. The YTPdb concept can be extrapolated to other organisms and could even be applied for other functional categories of proteins. YTPdb is accessible at http://homes.esat.kuleuven.be/ytpdb/.

  4. Yeast metabolic state identification using micro-fiber optics spectroscopy

    NASA Astrophysics Data System (ADS)

    Silva, J. S.; Castro, C. C.; Vicente, A. A.; Tafulo, P.; Jorge, P. A. S.; Martins, R. C.

    2011-05-01

    Saccharomyces cerevisiae morphology is known to be dependent on the cell physiological state and environmental conditions. On their environment, wild yeasts tend to form complex colonies architectures, such as stress response and pseudohyphal filaments morphologies, far away from the ones found inside bioreactors, where the regular cell cycle is observed under controlled conditions (e.g. budding and flocculating colonies). In this work we explore the feasibility of using micro-fiber optics spectroscopy to classify Saccharomyces cerevisiae S288C colony structures in YPD media, under different growth conditions, such as: i) no alcohol; ii) 1 % (v/v) Ethanol; iii) 1 % (v/v) 1-butanol; iv) 1 % (v/v) Isopropanol; v) 1 % (v/v) Tert-Amyl alcohol (2 Methyl-2-butanol); vi) 0,2 % (v/v) 2-Furaldehyde; vii) 5 % (w/v) 5 (Hydroxymethyl)-furfural; and viii) 1 % (w/v) (-)-Adenosine3', 5'cyclic monophosphate. The microscopy system includes a hyperspectral camera apparatus and a micro fiber (sustained by micro manipulator) optics system for spectroscopy. Results show that micro fiber optics system spectroscopy has the potential for yeasts metabolic state identification once the spectral signatures of colonies differs from each others. This technique associated with others physico-chemical information can benefit the creation of an information system capable of providing extremely detailed information about yeast metabolic state that will aid both scientists and engineers to study and develop new biotechnological products.

  5. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  6. [Metabolomics analysis of taxadiene producing yeasts].

    PubMed

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin

    2014-02-01

    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  7. Tracer studies of nitrogen assimilation in yeast.

    PubMed

    ABRAMS, R; HAMMARSTEN, E

    1949-01-01

    By using N(15) as a tracer the assimilation of ammonia by the yeast, Torulopsis utilis, has been studied. It has been shown that: 1. There was no measurable incorporation of N in the protein or polynucleotide purine of carbon-starved yeast. 2. When ammonia is added to nitrogen-starved yeast there is a long lag period before division begins during which the yeast rapidly synthesizes protein, this process being accompanied by a turnover of polynucleotide purine. There was no significant dilution of the N(15)H(4) (+) of the medium by ordinary NH(4) (+). 3. When yeast containing N(15) is allowed to divide and grow in ordinary ammonia, the total amount of N(15) in the yeast remains constant. The dicarboxylic amino acids are most diluted, while arginine and nucleic acid guanine are not diluted at all.

  8. Beer brewing using a fusant between a sake yeast and a brewer's yeast.

    PubMed

    Mukai, N; Nishimori, C; Fujishige, I W; Mizuno, A; Takahashi, T; Sato, K

    2001-01-01

    Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.

  9. Yeasts in floral nectar: a quantitative survey

    PubMed Central

    Herrera, Carlos M.; de Vega, Clara; Canto, Azucena; Pozo, María I.

    2009-01-01

    Background and Aims One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. Methods The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37–63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. Key Results Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 × 105 cells mm−3). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 104 cells mm−3 were commonplace, and densities >105 cells mm−3 were not rare. About one-fifth of species at each site had mean yeast cell densities >104 cells mm−3. Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. Conclusions Incorporating nectar yeasts into the scenario of plant–pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence

  10. Development of yeasts for xylose fermentation

    SciTech Connect

    Jeffries, T.W.; Yang, V.; Marks, J.; Amartey, S.; Kenealy, W.R.; Cho, J.Y.; Dahn, K.; Davis, B.P.

    1993-12-31

    Xylose is an abundant sugar in hardwoods and agricultural residues. Its use is essential for any economical conversion of lignocellulose to ethanol. Only a few yeasts ferment xylose effectively. Our results show that the best strains are Candida shehatae ATCC 2984 and Pichia stipitis CBS 6054. Wild type strains of C. shehatae ATCC 22984 will produce 56 g/L of ethanol from xylose within 48 h in a fed batch fermentation. We have obtained improved mutants of P.stipitis by selecting for growth on L-xylose and L-arabinose. Mutant strains produce up to 55% more ethanol than the parent and exhibit higher specific fermentation rates. We have also developed an effective transformation system that enables the introduction and expression of heterologous DNA on integrating and autonomous vectors. The transformation system for P. stipitis is based on its URA3 gene as a selectable marker and an autonomous replication sequence (ARS) which we isolated from the parent. We are using integrating and ARS vectors to metabolically engineer P. stipitis by altering the regulation and expression of key enzymes. As model systems we are examining the expression of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) that are present in limiting amounts or induced only under non-growth conditions.

  11. Topical therapy for mucosal yeast infections.

    PubMed

    Summers, Paul R

    2011-01-01

    Mucosal yeast infection is best understood as a consequence of compromised mucosal cell-mediated and innate immunity. Defense against oral candidiasis is dominantly cell mediated. The innate immune system may play the main role in regulating vulvovaginal yeast infection. Conditions that compromise cell-mediated immunity such as leukemia, severe illness and HIV infection must be considered as predisposing factors for recurrent oral candidiasis. Compromise of vaginal innate immunity due to mucosal allergy or due to a genetic defect such as mannose-binding lectin deficiency contributes to chronic vulvovaginal yeast infection. Treatment of cofactors must be considered in order to achieve control in recurrent mucosal yeast infection.

  12. Yeast phytases: present scenario and future perspectives.

    PubMed

    Kaur, Parvinder; Kunze, G; Satyanarayana, T

    2007-01-01

    Phytases hydrolyze phytates to liberate soluble and thus readily utilizable inorganic phosphate. Although phytases are produced by various groups of microbes, yeasts being simple eukaryotes and mostly non-pathogenic with proven probiotic benefits can serve as ideal candidates for phytase research. The full potential of yeast phytases has not, however, been exploited. This review focuses attention on the present status of knowledge on the production, characterization, molecular characteristics, and cloning and over-expression of yeast phytases. Several potential applications of the yeast phytases in feeds and foods, and in the synthesis of lower myo-inositol phosphates are also discussed.

  13. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  14. [Species composition and biochemical properties of yeasts from the water of the Bratsk reservoir].

    PubMed

    Zemskaia, T I; Novozhilova, M I

    1980-01-01

    The specific composition of 370 yeast strains isolated from the water of the Bratsk Reservoir was studied. The strains were assigned to 7 genera and 16 species according to their morphological, cultural, and physiologo-biochemical properties. Asporogenous forms prevailed; 52 strains possessed the amylolytic activity. The proteolytic activity was found in the cultures very seldom. The capability to assimilate organic phosphorus compounds was detected in 8% of the strains, and the ability to use inorganic phosphorus compounds was registered in 38% of the strains. Up to 95% of the strains utilized oil; 88%--engine oil; 43%--phenol. The specific yeast composition varied depending on the biotype.

  15. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  16. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  17. YMDB: the Yeast Metabolome Database

    PubMed Central

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S.

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated ‘metabolomic’ database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  18. Advanced biofuel production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2013-06-01

    Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels.

  19. Spoilage yeasts in the wine industry.

    PubMed

    Loureiro, V; Malfeito-Ferreira, M

    2003-09-01

    Yeasts play a central role in the spoilage of foods and beverages, mainly those with high acidity and reduced water activity (a(w)). A few species are capable of spoiling foods produced according to good manufacturing practices (GMPs). These can survive and grow under stress conditions where other microorganisms are not competitive. However, many of the aspects determining yeast spoilage have yet to be clarified. This critical review uses the wine industry as a case study where serious microbiological problems are caused by yeasts. First, the limitations of the available tools to assess the presence of spoilage yeasts in foods are discussed. Next, yeasts and factors promoting their colonisation in grapes and wines are discussed from the ecological perspective, demonstrating that a deeper knowledge of vineyard and winery ecosystems is essential to establish the origin of wine spoilage yeasts, their routes of contamination, critical points of yeast infection, and of course, their control. Further, zymological indicators are discussed as important tools to assess the microbiological quality of wines, although they are rarely used by the wine industry. The concepts of the susceptibility of wine to spoilage yeasts and wine stability are addressed based on scientific knowledge and industrial practices for monitoring yeast contamination. A discussion on acceptable levels of yeasts and microbiological criteria in the wine industry is supported by data obtained from wineries, wholesalers, and the scientific literature.Finally, future directions for applied research are proposed, involving collaboration between scientists and industry to improve the quality of wine and methods for monitoring the presence of yeast.

  20. Surface Structure of Yeast Protoplasts

    PubMed Central

    Streiblová, Eva

    1968-01-01

    The fine structure of the yeast cell wall during protoplast formation was studied by means of phase-contrast microscopy and the freeze-etching technique. The freeze-etching results indicated that at least in some cases the entire wall substance was not removed from the surface of the protoplasts. After a treatment of 30 min to 3 hr with 2% snail enzymes, an innermost thin wall layer as well as remnants of the fibrillar middle layer sometimes could be demonstrated. Images PMID:4867751

  1. Experimental evolution in budding yeast

    NASA Astrophysics Data System (ADS)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  2. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering.

    PubMed Central

    Deanda, K; Zhang, M; Eddy, C; Picataggio, S

    1996-01-01

    The substrate fermentation range of the ethanologenic bacterium Zymomonas mobilis was expanded to include the pentose sugar, L-arabinose, which is commonly found in agricultural residues and other lignocellulosic biomass. Five genes, encoding L-arabinose isomerase (araA), L-ribulokinase (araB), L-ribulose-5-phosphate-4-epimerase (araD), transaldolase (talB), and transketolase (tktA), were isolated from Escherichia coli and introduced into Z. mobilis under the control of constitutive promoters that permitted their expression even in the presence of glucose. The engineered strain grew on and produced ethanol from L-arabinose as a sole C source at 98% of the maximum theoretical ethanol yield, based on the amount of consumed sugar. This indicates that arabinose was metabolized almost exclusively to ethanol as the sole fermentation product, with little by-product formation. Although no diauxic growth pattern was evident, the microorganism preferentially utilized glucose before arabinose, apparently reflecting the specificity of the indigenous facilitated diffusion transport system. This microorganism may be useful, along with the previously developed xylose-fermenting Z. mobilis (M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio, Science 267:240-243, 1995), in a mixed culture for efficient fermentation of the predominant hexose and pentose sugars in agricultural residues and other lignocellulosic feedstocks to ethanol. PMID:8953718

  3. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  4. Prevention of Yeast Spoilage in Feed and Food by the Yeast Mycocin HMK

    PubMed Central

    Lowes, K. F.; Shearman, C. A.; Payne, J.; MacKenzie, D.; Archer, D. B.; Merry, R. J.; Gasson, M. J.

    2000-01-01

    The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts. PMID:10698773

  5. Yeast: An Experimental Organism for Modern Biology.

    ERIC Educational Resources Information Center

    Botstein, David; Fink, Gerald R.

    1988-01-01

    Discusses the applicability and advantages of using yeasts as popular and ideal model systems for studying and understanding eukaryotic biology at the cellular and molecular levels. Cites experimental tractability and the cooperative tradition of the research community of yeast biologists as reasons for this success. (RT)

  6. Comparative genomics of biotechnologically important yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  7. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  8. Geographical differences in human oral yeast flora.

    PubMed

    Xu, Jianping; Mitchell, Thomas G

    2003-01-15

    The oral yeast flora of healthy humans from eastern North America and China were sampled and compared. Chinese persons harbored a greater number and diversity of yeast species in the mouth. Furthermore, Candida albicans, which is the predominant commensal and etiologic species of candidiasis in Europe and the Western Hemisphere, was relatively rare in China.

  9. Yeasts are essential for cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics.

  10. Fermentation studies using Saccharomyces diastaticus yeast strains

    SciTech Connect

    Erratt, J.A.; Stewart, G.G.

    1981-01-01

    The yeast species, Saccharomyces diastaticus, has the ability to ferment starch and dextrin, because of the extracellular enzyme, glucoamylase, which hydrolyzes the starch/dextrin to glucose. A number of nonallelic genes--DEX 1, DEX 2, and dextrinase B which is allelic to STA 3--have been isolated, which impart to the yeast the ability to ferment dextrin. Various diploid yeast strains were constructed, each being either heterozygous or homozygous for the individual dextrinase genes. Using 12 (sup 0) plato hopped wort (30% corn adjunct) under agitated conditions, the fermentation rates of the various diploid yeast strains were monitored. A gene-dosage effect was exhibited by yeast strains containing DEX 1 or DEX 2, however, not with yeast strains containing dextrinase B (STA 3). The fermentation and growth rates and extents were determined under static conditions at 14.4 C and 21 C. With all yeast strains containing the dextrinase genes, both fermentation and growth were increased at the higher incubation temperature. Using 30-liter fermentors, beer was produced with the various yeast strains containing the dextrinase genes and the physical and organoleptic characteristics of the products were determined. The concentration of glucose in the beer was found to increase during a 3-mo storage period at 21 C, indicating that the glucoamylase from Saccharomyces diastaticus is not inactivated by pasteurization. (Refs. 36).

  11. Comparative genomics of biotechnologically important yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae, is used in the vast majority of the world’s bioprocesses, and its economic significance is unchallenged. It, however, represents only a small slice of yeast physiological diversity. Many other yeasts, are used in lesser known, but commercially important processes that take ...

  12. Growth requirements of san francisco sour dough yeasts and bakers' yeast.

    PubMed

    Henry, N

    1976-03-01

    The growth requirements of several yeasts isolated from San Francisco sour dough mother sponges were compared with those of bakers' yeast. The sour dough yeasts studied were one strain of Saccharomyces uvarum, one strain of S. inusitatus, and four strains of S. exiguus. S. inusitatus was the only yeast found to have an amino acid requirement, namely, methionine. All of the yeasts had an absolute requirement for pantothenic acid and a partial requirement for biotin. Inositol was stimulatory to all except bakers' yeast. All strains of S. exiguus required niacin and thiamine. Interestingly, S. inusitatus, the only yeast that required methionine, also needed folic acid. For optimal growth of S. exiguus in a molasses medium, supplementation with thiamine was required.

  13. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration.

    PubMed

    Trofimova, Yuliya; Walker, Graeme; Rapoport, Alexander

    2010-07-01

    The influence of calcium and magnesium ions on resistance to dehydration in the yeast, Saccharomyces cerevisiae, was investigated. Magnesium ion availability directly influenced yeast cells' resistance to dehydration and, when additionally supplemented with calcium ions, this provided further significant increase of yeast resistance to dehydration. Gradual rehydration of dry yeast cells in water vapour indicated that both magnesium and calcium may be important for the stabilization of yeast cell membranes. In particular, calcium ions were shown for the first time to increase the resistance of yeast cells to dehydration in stress-sensitive cultures from exponential growth phases. It is concluded that magnesium and calcium ion supplementations in nutrient media may increase the dehydration stress tolerance of S. cerevisiae cells significantly, and this finding is important for the production of active dry yeast preparations for food and fermentation industries.

  14. Fermentation of corn starch to ethanol with genetically engineered yeast.

    PubMed

    Inlow, D; McRae, J; Ben-Bassat, A

    1988-07-05

    Expression of the glucoamylase gene from Aspergillus awamori by laboratory and distiller's strains of Saccharomyces cerevisiae allowed them to ferment soluble starch. Approximately 95% of the carbohydrates in the starch were utilized. Glycerol production was significantly decreased when soluble starch was used instead of glucose. Ethanol yield on soluble starch was higher than that on glucose. The rate of starch fermentation was directly related to the level of glucoamylase activity. Strains with higher levels of glucoamylase expression fermented starch faster. The decline in starch fermentation rates toward the end of the fermentation was associated with accumulation of disaccharides and limit dextrins, poor substrates for glucoamylase. The buildup of these products in continuous fermentations inhibited glucoamylase activity and complete utilization of the starch. Under these conditions maltose-fermenting strains had a significant advantage over nonfermenting strains. The synthesis and secretion of glucoamylase showed no deleterious effects on cell growth rates, fermetation rates, and fermentation products.

  15. Engineering yeast for the expression and secretion of cellulase cocktails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme systems that digest the cellulose in plant cell walls have potential value in the biorefining of renewable feedstocks such as crop residues, straws, and grasses to biofuels and other bioproducts. The bacterium Clostridium cellulovorans is a useful source of biomass-degrading enzymes because ...

  16. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast.

  17. Dual display of proteins on the yeast cell surface simplifies quantification of binding interactions and enzymatic bioconjugation reactions.

    PubMed

    Lim, Sungwon; Glasgow, Jeff E; Filsinger Interrante, Maria; Storm, Erica M; Cochran, Jennifer R

    2017-03-16

    Yeast surface display, a well-established technology for protein analysis and engineering, involves expressing a protein of interest as a genetic fusion to either the N- or C-terminus of the yeast Aga2p mating protein. Historically, yeast-displayed protein variants are flanked by peptide epitope tags that enable flow cytometric measurement of construct expression using fluorescent primary or secondary antibodies. Here, we built upon this technology to develop a new yeast display strategy that comprises fusion of two different proteins to Aga2p, one to the N-terminus and one to the C-terminus. This approach allows an antibody fragment, ligand, or receptor to be directly coupled to expression of a fluorescent protein readout, eliminating the need for antibody-staining of epitope tags to quantify yeast protein expression levels. We show that this system simplifies quantification of protein-protein binding interactions measured on the yeast cell surface. Moreover, we show that this system facilitates co-expression of a bioconjugation enzyme and its corresponding peptide substrate on the same Aga2p construct, enabling enzyme expression and catalytic activity to be measured on the surface of yeast.

  18. Genetic constitution of industrial yeast.

    PubMed

    Benítez, T; Martínez, P; Codón, A C

    1996-09-01

    Saccharomyces cerevisiae industrial yeast strains are highly heterogeneous. These industrial strains, including bakers', wine, brewing and distillers', have been compared with respect to their DNA content, number and size of chromosomes, homologies between their genes and those of laboratory strains, and restriction fragment lengths of their mitDNA. A high variability, and the presence of multigenic families, were observed in some industrial yeast groups. The occurrence or the lack of chromosomal polymorphism, as well as the presence of multiple copies of some genes, could be related to a selective process occurring under specific industrial conditions. This polymorphism is generated by reorganization events, that take place mainly during meiosis and are mediated by repetitive Y' and Ty elements. These elements give rise to ectopic and asymmetric recombination and to gene conversion. The polymorphism displayed by the mitDNA could also result from specific industrial conditions. However, in enological strains the selective process is masked by the mutagenic effect that ethanol exerts on this DNA.

  19. Antifungal resistance in yeast vaginitis.

    PubMed Central

    Dun, E.

    1999-01-01

    The increased number of vaginal yeast infections in the past few years has been a disturbing trend, and the scientific community has been searching for its etiology. Several theories have been put forth to explain the apparent increase. First, the recent widespread availability of low-dosage, azole-based over-the-counter antifungal medications for vaginal yeast infections encourages women to self-diagnose and treat, and women may be misdiagnosing themselves. Their vaginitis may be caused by bacteria, parasites or may be a symptom of another underlying health condition. As a result, they may be unnecessarily and chronically expose themselves to antifungal medications and encourage fungal resistance. Second, medical technology has increased the life span of seriously immune compromised individuals, yet these individuals are frequently plagued by opportunistic fungal infections. Long-term and intense azole-based antifungal treatment has been linked to an increase in resistant Candida and non-Candida species. Thus, the future of limiting antifungal resistance lies in identifying the factors promoting resistance and implementing policies to prevent it. PMID:10907778

  20. Regulation of yeast oscillatory dynamics

    PubMed Central

    Murray, Douglas B.; Beckmann, Manfred; Kitano, Hiroaki

    2007-01-01

    When yeast cells are grown continuously at high cell density, a respiratory oscillation percolates throughout the population. Many essential cellular functions have been shown to be separated temporally during each cycle; however, the regulatory mechanisms involved in oscillatory dynamics remain to be elucidated. Through GC-MS analysis we found that the majority of metabolites show oscillatory dynamics, with 70% of the identified metabolite concentrations peaking in conjunction with NAD(P)H. Through statistical analyses of microarray data, we identified that biosynthetic events have a defined order, and this program is initiated when respiration rates are increasing. We then combined metabolic, transcriptional data and statistical analyses of transcription factor activity, identified the top oscillatory parameters, and filtered a large-scale yeast interaction network according to these parameters. The analyses and controlled experimental perturbation provided evidence that a transcriptional complex formed part of the timing circuit for biosynthetic, reductive, and cell cycle programs in the cell. This circuitry does not act in isolation because both have strong translational, proteomic, and metabolic regulatory mechanisms. Our data lead us to conclude that the regulation of the respiratory oscillation revolves around coupled subgraphs containing large numbers of proteins and metabolites, with a potential to oscillate, and no definable hierarchy, i.e., heterarchical control. PMID:17284613

  1. GPCR production in a novel yeast strain that makes cholesterol-like sterols.

    PubMed

    Kitson, Susan M; Mullen, William; Cogdell, Richard J; Bill, Roslyn M; Fraser, Niall J

    2011-12-01

    The activities of many mammalian membrane proteins including G-protein coupled receptors are cholesterol-dependent. Unlike higher eukaryotes, yeast do not make cholesterol. Rather they make a related molecule called ergosterol. As cholesterol and ergosterol are biologically non-equivalent, the potential of yeast as hosts for overproducing mammalian membrane proteins has never been fully realised. To address this problem, we are trying to engineer a novel strain of Saccharomyces cerevisiae in which the cholesterol biosynthetic pathway of mammalian cells has been fully reconstituted. Thus far, we have created a modified strain that makes cholesterol-like sterols which has an increased capacity to make G-protein coupled receptors compared to control yeast.

  2. Functional expression of chicken calmodulin in yeast.

    PubMed

    Ohya, Y; Anraku, Y

    1989-01-31

    The coding region of a chicken calmodulin cDNA was fused to a galactose-inducible GAL1 promoter, and an expression system was constructed in the yeast Saccharomyces cerevisiae. Expression of calmodulin was demonstrated by purifying the heterologously expressed protein and analyzing its biochemical properties. When the expression plasmid was introduced into a calmodulin gene (cmd1)-disrupted strain of yeast, the cells grew in galactose medium, showing that chicken calmodulin could complement the lesion of yeast calmodulin functionally. Repression of chicken calmodulin in the (cmd1)-disrupted strain caused cell cycle arrest with a G2/M nucleus, as observed previously with a conditional-lethal mutant of yeast calmodulin. These results suggest that the essential function of calmodulin for cell proliferation is conserved in cells ranging from yeast to vertebrate cells.

  3. Yeast community survey in the Tagus estuary.

    PubMed

    de Almeida, João M G C F

    2005-07-01

    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated.

  4. Yeasts that utilize lactose in sweet whey

    SciTech Connect

    Gholson, J.H.; Gough, R.H.

    1980-01-01

    Since processing costs are usually higher for whey than for other available food or feed nutrients, only about one-third of whey produced in the US is used by food and feed industries. As a result whey disposal costs are a problem. Further; when whey is disposed of through municipal sewerage systems, the lactose present is changed by bacteria to lactic acid which tends to act as a preservative and retards further oxidation of whey constituents. This article describes a method of utilizing lactose-fermenting yeasts to produce large quantities of yeast cells, single-cell protein. Kluveromyces fragilis was found to be the most effective yeast species and the yeast cells produced could be used as a natural food or feed additive. Results of this study determined that certain methods and yeast strains could reduce whey-related pollution and thus help reduce costs of whey disposal.

  5. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    NASA Astrophysics Data System (ADS)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  6. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae].

    PubMed

    Xu, Lili; Shen, Yu; Bao, Xiaoming

    2010-07-01

    Ethanol production from lignocelluloses of consolidated bioprocessing (CBP) is a system in which cellulase and hemicellulase production, substrate hydrolysis, and fermentation are combined or partially combined by ethanologen microorganisms that express cellulolytic or hemicellulolytic enzymes or engineering cellulolytic microorganisms with ethanol production properties. Due to its potential for significant cost reduction, CBP is receiving more and more attention. In this review article, we discuss the factors that influence the expression level of cellulases in Saccharomyces cerevisiae and updated progress in bioethanol production from lignocellulose by the CBP strategy using the yeast species.

  7. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference.

    PubMed

    Murphy, Katherine A; Tabuloc, Christine A; Cervantes, Kevin R; Chiu, Joanna C

    2016-03-02

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest.

  8. 16 years research on lactic acid production with yeast - ready for the market?

    PubMed

    Sauer, Michael; Porro, Danilo; Mattanovich, Diethard; Branduardi, Paola

    2010-01-01

    The use of plastic produced from non-renewable resources constitutes a major environmental problem of the modern society. Polylactide polymers (PLA) have recently gained enormous attention as one possible substitution of petroleum derived polymers. A prerequisite for high quality PLA production is the provision of optically pure lactic acid, which cannot be obtained by chemical synthesis in an economical way. Microbial fermentation is therefore the commercial option to obtain lactic acid as monomer for PLA production. However, one major economic hurdle for commercial lactic acid production as basis for PLA is the costly separation procedure, which is needed to recover and purify the product from the fermentation broth. Yeasts, such as Saccharomyces cerevisiae (bakers yeast) offer themselves as production organisms because they can tolerate low pH and grow on mineral media what eases the purification of the acid. However, naturally yeasts do not produce lactic acid. By metabolic engineering, ethanol was exchanged with lactic acid as end product of fermentation. A vast amount of effort has been invested into the development of yeasts for lactic acid production since the first paper on this topic by Dequin and Barre appeared 1994. Now yeasts are very close to industrial exploitation - here we summarize the developments in this field.

  9. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.

    PubMed

    Dakal, Tikam Chand; Solieri, Lisa; Giudici, Paolo

    2014-08-18

    The osmotolerant and halotolerant food yeast Zygosaccharomyces rouxii is known for its ability to grow and survive in the face of stress caused by high concentrations of non-ionic (sugars and polyols) and ionic (mainly Na(+) cations) solutes. This ability determines the success of fermentation on high osmolarity food matrices and leads to spoilage of high sugar and high salt foods. The knowledge about the genes, the metabolic pathways, and the regulatory circuits shaping the Z. rouxii sugar and salt-tolerance, is a prerequisite to develop effective strategies for fermentation control, optimization of food starter culture, and prevention of food spoilage. This review summarizes recent insights on the mechanisms used by Z. rouxii and other osmo and halotolerant food yeasts to endure salts and sugars stresses. Using the information gathered from S. cerevisiae as guide, we highlight how these non-conventional yeasts integrate general and osmoticum-specific adaptive responses under sugar and salts stresses, including regulation of Na(+) and K(+)-fluxes across the plasma membrane, modulation of cell wall properties, compatible osmolyte production and accumulation, and stress signalling pathways. We suggest how an integrated and system-based knowledge on these mechanisms may impact food and biotechnological industries, by improving the yeast spoilage control in food, enhancing the yeast-based bioprocess yields, and engineering the osmotolerance in other organisms.

  10. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  11. Modeling competition between yeast strains

    NASA Astrophysics Data System (ADS)

    de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap

    2016-04-01

    We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the strains. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.

  12. Analysis of Yeast Extracellular Vesicles.

    PubMed

    Rodrigues, Marcio L; Oliveira, Debora L; Vargas, Gabriele; Girard-Dias, Wendell; Franzen, Anderson J; Frasés, Susana; Miranda, Kildare; Nimrichter, Leonardo

    2016-01-01

    Extracellular vesicles (EV) are important carriers of biologically active components in a number of organisms, including fungal cells. Experimental characterization of fungal EVs suggested that these membranous compartments are likely involved in the regulation of several biological events. In fungal pathogens, these events include mechanisms of disease progression and/or control, suggesting potential targets for therapeutic intervention or disease prophylaxis. In this manuscript we describe methods that have been used in the last 10 years for the characterization of EVs produced by yeast forms of several fungal species. Experimental approaches detailed in this chapter include ultracentrifugation methods for EV fractionation, chromatographic approaches for analysis of EV lipids, microscopy techniques for analysis of both intracellular and extracellular vesicular compartments, interaction of EVs with host cells, and physical chemical analysis of EVs by dynamic light scattering.

  13. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  14. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  15. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.

    PubMed

    Favaro, Lorenzo; Jooste, Tania; Basaglia, Marina; Rose, Shaunita H; Saayman, Maryna; Görgens, Johann F; Casella, Sergio; van Zyl, Willem H

    2013-01-01

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one step process, is a promising strategy for the effective ethanol production from cheap lignocellulosic and starchy materials. CBP requires a highly engineered microbial strain able to both hydrolyze biomass with enzymes produced on its own and convert the resulting simple sugars into high-titer ethanol. Recently, heterologous production of cellulose and starch-degrading enzymes has been achieved in yeast hosts, which has realized direct processing of biomass to ethanol. However, essentially all efforts aimed at the efficient heterologous expression of saccharolytic enzymes in yeast have involved laboratory strains and much of this work has to be transferred to industrial yeasts that provide the fermentation capacity and robustness desired for large scale bioethanol production. Specifically, the development of an industrial CBP amylolytic yeast would allow the one-step processing of low-cost starchy substrates into ethanol. This article gives insight in the current knowledge and achievements on bioethanol production from starchy materials with industrial engineered S. cerevisiae strains.

  16. Characterizing yeast promoters used in Kluyveromyces marxianus.

    PubMed

    Yang, Chun; Hu, Shenglin; Zhu, Songli; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2015-10-01

    Fermentation at higher temperatures can potentially reduce the cooling cost in large-scale fermentation and reduce the contamination risk. Thus, the thermotolerant yeast, Kluyveromyces marxianus, which can grow and ferment at elevated temperatures, is a promising biotechnological tool for future applications. However, the promoters used in K. marxianus are not well characterized, especially at elevated temperatures, which is important in efficient metabolic pathway construction. In this study, six constitutive promoters (P(TDH3), P(PGK), and P(ADH1) from both Saccharomyces cerevisiae and K. marxianus) were evaluated in K. marxianus through the heterologous expression of the KlLAC4, GUSA, and SH BLE genes at various temperatures, with various carbon sources and oxygen conditions. The expression was evaluated at the transcription and protein level using real-time PCR and protein activity determination to eliminate the effect of heterologous protein stability. While the transcription of all the promoters decreased at higher temperatures, the order of their promoting strength at various temperatures with glucose as the carbon source was P(KmPGK) > P(KmTDH3) > P(ScPGK) > P(ScTDH3) > P(KmADH1) > P(ScADH1). When glycerol or xylose was supplied as the carbon source at 42 °C, the order of promoter strength was P(KmPGK) > P(ScPGK) > P(KmADH1) > P(ScADH1) > P(ScTDH3) > P(KmTDH3). The promoter activity of P TDH3 decreased significantly, while the promoter activity of both of the P(ADH1) promoters increased. Oxygen conditions had non-significant effect. The results of this study provide important information for fine-tuned pathway construction for the metabolic engineering of K. marxianus.

  17. Mitigating health risks associated with alcoholic beverages through metabolic engineering.

    PubMed

    Jayakody, Lahiru N; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2016-02-01

    Epidemiological studies have established a positive relationship between the occurrence of cancer and consumption of alcoholic beverages. Metabolic engineering of brewing yeast to reduce potential carcinogenic compounds in alcoholic beverage is technically feasible as well as economically promising. This review presents the mechanisms of formation of potentially carcinogenic components in alcoholic beverages, such as formaldehyde, acetaldehyde, ethyl carbamate, acrylamide, and heavy metals, and introduces effective genetic perturbations to minimize the concentrations of these harmful components. As precise and effective genome editing tools for polyploid yeast are now available, we envision that yeast metabolic engineering might open up new research directions for improving brewing yeast in order to ensure product safety as well as to increase overall quality of alcoholic beverages.

  18. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast,...

  19. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  20. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  1. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae,...

  2. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  3. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  4. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  5. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  6. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  7. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  8. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  9. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  10. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  11. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  12. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  13. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  14. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  15. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  16. Corning and Kroger turn whey to yeast

    SciTech Connect

    Not Available

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  17. Efforts to make and apply humanized yeast

    PubMed Central

    Laurent, Jon M.; Young, Jonathan H.; Kachroo, Aashiq H.

    2016-01-01

    Despite a billion years of divergent evolution, the baker’s yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism. PMID:26462863

  18. Pseudoporphyria associated with consumption of brewers' yeast.

    PubMed Central

    Lim, C K; Rideout, J M; Peters, T J

    1984-01-01

    A case of pseudoporphyria associated with excessive consumption of brewers ' yeast was studied. Detailed analysis of the yeast tablets by high performance liquid chromatography showed the presence of dicarboxylic deuteroporphyrin , mesoporphyrin, and protoporphyrin; coproporphyrin I and III isomers; and uroporphyrin I and III isomers. The faecal porphyrin concentration of the patient taking yeast tablets was significantly increased, resembling the excretion pattern in variegate porphyria. Any patient showing an unusual porphyrin excretion pattern on high performance liquid chromatography should be investigated for a possible dietary cause. PMID:6426673

  19. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    DOE PAGES

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; ...

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks formore » high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

  20. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.

  1. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy).

    PubMed

    Branda, Eva; Turchetti, Benedetta; Diolaiuti, Guglielmina; Pecci, Massimo; Smiraglia, Claudio; Buzzini, Pietro

    2010-06-01

    The present study reports the characterization of psychrophilic yeast and yeast-like diversity in cold habitats (superficial and deep sediments, ice cores and meltwaters) of the Calderone Glacier (Italy), which is the southernmost glacier in Europe. After incubation at 4 and 20 degrees C, sediments contained about 10(2)-10(3) CFU of yeasts g(-1). The number of viable yeast cells in ice and meltwaters was several orders of magnitude lower. The concomitant presence of viable bacteria and filamentous fungi has also been observed. In all, 257 yeast strains were isolated and identified by 26S rRNA gene D1/D2 and internal transcribed spacers (1 and 2) sequencing as belonging to 28 ascomycetous and basidiomycetous species of 11 genera (Candida, Cystofilobasidium, Cryptococcus, Dioszegia, Erythrobasidium, Guehomyces, Mastigobasidium, Mrakia, Mrakiella, Rhodotorula and Sporobolomyces). Among them, the species Cryptococcus gastricus accounted for almost 40% of the total isolates. In addition, 12 strains were identified as belonging to the yeast-like species Aureobasidium pullulans and Exophiala dermatitidis, whereas 15 strains, presumably belonging to new species, yet to be described, were also isolated. Results herein reported indicate that the Calderone Glacier, although currently considered a vanishing ice body due to the ongoing global-warming phenomenon, still harbors viable psychrophilic yeast populations. Differences of yeast and yeast-like diversity between the glacier under study and other worldwide cold habitats are also discussed.

  2. Yeast Infections: MedlinePlus Health Topic

    MedlinePlus

    ... Candidiasis ("Thrush") (Centers for Disease Control and Prevention) Tinea Versicolor (American Academy of Dermatology) Vaginal Yeast Infections (Department of Health and Human Services, Office on Women's Health) Also in Spanish ...

  3. [Red yeast rice: An unsafe food supplement?

    PubMed

    Steffen, Christian

    2017-03-01

    Red yeast rice is the fermentation product of the mould Monascus ruber and is traditionally used in East Asia to dye and conserve food. Its main pharmacologically active compound, monakolin K, was isolated from red yeast rice and is used as an inhibitor of cholesterol synthesis under the INN lovastatin. Lovastatin and several other statins are marketed as drugs whereas red yeast rice is offered as a food supplement. As statins can cause severe side effects, such as muscle damage and kidney failure, the dosing and information about interactions with drugs and food is essential for the use of these products. Furthermore, red yeast rice can contain the mycotoxin citrinin and several other substances that are not yet toxicologically evaluated.

  4. Barcode technology in yeast: application to pharmacogenomics.

    PubMed

    Delneri, Daniela

    2010-12-01

    The common baker's yeast, Saccharomyces cerevisiae, is one of the oldest domesticated organisms known, and has been exploited by our ancestors in several different applications, particularly in food and fermentations industries and in bioconversion and biodegradation processes. Over the years, yeast has become an excellent experimental model for biological and medical studies, thanks to its genetic tractability, well-known physiology and fast-doubling cycle. In the last decade, the advances in genome sequencing opened the doors to high-throughput studies and yeast quickly has become a model system for drug discovery and mode of action. This review provides a focused overview of the achievements in the field of human medicine and pharmacology by exploiting the molecular tools available for yeast.

  5. Developmentally programmed nuclear destruction during yeast gametogenesis.

    PubMed

    Eastwood, Michael D; Cheung, Sally W T; Lee, Kwan Yin; Moffat, Jason; Meneghini, Marc D

    2012-07-17

    Autophagy controls cellular catabolism in diverse eukaryotes and modulates programmed cell death in plants and animals. While studies of the unicellular yeast Saccharomyces cerevisiae have provided fundamental insights into the mechanisms of autophagy, the roles of cell death pathways in yeast are less well understood. Here, we describe widespread developmentally programmed nuclear destruction (PND) events that occur during yeast gametogenesis. PND is executed through apoptotic-like DNA fragmentation in coordination with an unusual form of autophagy that is most similar to mammalian lysosomal membrane permeabilization and mega-autophagy, a form of plant autophagic cell death. Undomesticated strains execute gametogenic PND broadly in maturing colonies to the apparent benefit of sibling cells, confirming its prominence during the yeast life cycle. Our results reveal that diverse cell-death-related processes converge during gametogenesis in a microbe distantly related to plants or animals, highlighting gametogenesis as a process during which programmed cell death mechanisms may have evolved.

  6. Genomic Evolution of the Ascomycete Yeasts

    SciTech Connect

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  7. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  8. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast

    PubMed Central

    Misra, Ashish; Conway, Matthew F.; Johnnie, Joseph; Qureshi, Tabish M.; Lige, Bao; Derrick, Anne M.; Agbo, Eddy C.; Sriram, Ganesh

    2013-01-01

    Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo 13C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast. PMID:23898325

  9. DISRUPTION OF YEAST MEMBRANES BY METHYLPHENIDATE.

    DTIC Science & Technology

    Methylphenidate blocked sorbose uptake and loss by yeast spheroplasts and, at higher concentrations, disrupted spheroplasts. At high concentrations methylphenidate also ruptured the membranes of whole yeast cells; sorbose and 280 nm-absorbing materials were lost from the cells, and methylene blue stained them. Intracellular structures were extensively affected as shown by electron micrographs, and evidently were more sensitive to methylphenidate than the external membrane. N-ethylmaleimide and Ca(++) enhanced the rupture of external membranes by methylphenidate. (Author)

  10. Metallothionein function and genetic regulation in yeast

    SciTech Connect

    Ecker, D.J.; Butt, T.R.; Crooke, S.T.

    1986-05-01

    Copper resistance in yeast is mediated by the CUP1 locus which codes for yeast metallothionein (MT). A genetic approach was taken to study yeast MT gene regulation and to test the function of MT in the detoxification of metal ions other than copper. A yeast strain was constructed (cup1/sup ..delta../) in which the MT structural and regulatory sequences were deleted. The deleted gene was then replaced with the following genetically modified forms of MT on high copy episomal plasmid (YE/sup p/ 13): 1) the intact yeast gene with normal structural and regulatory sequences; 2) a constitutively expressed yeast promoter (TDH) running the yeast MT structural gene. Metal resistance in the cup1/sup ..delta../ strain and the cup1/sup ..delta../ strain transformed with the MT plasmid constructions was compared on metal-supplemented agar plates. Both of the high copy MT plasmids conferred in excess of 500-fold greater copper resistance to the cup1/sup ..delta../ strain. Increased cadmium resistance was not observed in any of the strains that had MT under normal regulatory control. However, the strain with constitutively expressed MT was in excess of 1000-fold more resistant to cadmium. Neither of the MT constructions conferred resistance to Hg,Zn,Co,Ni,Ag,Au,Pt,La,U or Sn. MT gene induction measured by the analysis of MT mRNA on northern blots showed that the yeast MT promoter is not induced by Cd, Zn, Au, Hg, Ag, superoxide, hydrogen peroxide, steroid hormones or heat shock.

  11. Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production.

    PubMed

    Li, Qian; Zhao, Xin-Qing; Chang, Alan K; Zhang, Qiu-Mei; Bai, Feng-Wu

    2012-01-01

    Yeast flocculation is an important trait in the brewing industry as well as in ethanol production, through which biomass can be recovered by cost-effective sedimentation. However, mass transfer limitation may affect yeast growth and ethanol fermentation if the flocculation occurs earlier before fermentation is completed. In this article, a novel type of cell-cell flocculation induced by trehalose-6-phosphate synthase 1 (TPS1) promoter was presented. The linear cassette HO-P(TPS1)-FLO1(SPSC01)-KanMX4-HO was constructed to transform the non-flocculating industrial yeast S. cerevisiae 4126 by chromosome integration to obtain a new flocculating yeast strain, ZLH01, whose flocculation was induced by ethanol produced during fermentation. The experimental results illustrated that flocculation of ZLH01 was triggered by 3% (v/v) ethanol and enhanced as ethanol concentration increased till complete flocculation was achieved at ethanol concentration of 8% (v/v). Real time PCR analysis confirmed that the expression of FLO1(SPSC01) was dependent on ethanol concentration. The growth and ethanol fermentation of ZLH01 were improved significantly, compared with the constitutive flocculating yeast BHL01 engineered with the same FLO gene but directed by the constitutive 3-phosphoglycerate kinase promoter PGK1, particularly under high temperature conditions. These characteristics make the engineered yeast more suitable for ethanol production from industrial substrates under high gravity and temperature conditions. In addition, this strategy offers advantage in inducing differential expression of other genes for metabolic engineering applications of S. cerevisiae.

  12. Subcellular localization of the yeast proteome.

    PubMed

    Kumar, Anuj; Agarwal, Seema; Heyman, John A; Matson, Sandra; Heidtman, Matthew; Piccirillo, Stacy; Umansky, Lara; Drawid, Amar; Jansen, Ronald; Liu, Yang; Cheung, Kei-Hoi; Miller, Perry; Gerstein, Mark; Roeder, G Shirleen; Snyder, Michael

    2002-03-15

    Protein localization data are a valuable information resource helpful in elucidating eukaryotic protein function. Here, we report the first proteome-scale analysis of protein localization within any eukaryote. Using directed topoisomerase I-mediated cloning strategies and genome-wide transposon mutagenesis, we have epitope-tagged 60% of the Saccharomyces cerevisiae proteome. By high-throughput immunolocalization of tagged gene products, we have determined the subcellular localization of 2744 yeast proteins. Extrapolating these data through a computational algorithm employing Bayesian formalism, we define the yeast localizome (the subcellular distribution of all 6100 yeast proteins). We estimate the yeast proteome to encompass approximately 5100 soluble proteins and >1000 transmembrane proteins. Our results indicate that 47% of yeast proteins are cytoplasmic, 13% mitochondrial, 13% exocytic (including proteins of the endoplasmic reticulum and secretory vesicles), and 27% nuclear/nucleolar. A subset of nuclear proteins was further analyzed by immunolocalization using surface-spread preparations of meiotic chromosomes. Of these proteins, 38% were found associated with chromosomal DNA. As determined from phenotypic analyses of nuclear proteins, 34% are essential for spore viability--a percentage nearly twice as great as that observed for the proteome as a whole. In total, this study presents experimentally derived localization data for 955 proteins of previously unknown function: nearly half of all functionally uncharacterized proteins in yeast. To facilitate access to these data, we provide a searchable database featuring 2900 fluorescent micrographs at http://ygac.med.yale.edu.

  13. Subcellular localization of the yeast proteome

    PubMed Central

    Kumar, Anuj; Agarwal, Seema; Heyman, John A.; Matson, Sandra; Heidtman, Matthew; Piccirillo, Stacy; Umansky, Lara; Drawid, Amar; Jansen, Ronald; Liu, Yang; Cheung, Kei-Hoi; Miller, Perry; Gerstein, Mark; Roeder, G. Shirleen; Snyder, Michael

    2002-01-01

    Protein localization data are a valuable information resource helpful in elucidating eukaryotic protein function. Here, we report the first proteome-scale analysis of protein localization within any eukaryote. Using directed topoisomerase I-mediated cloning strategies and genome-wide transposon mutagenesis, we have epitope-tagged 60% of the Saccharomyces cerevisiae proteome. By high-throughput immunolocalization of tagged gene products, we have determined the subcellular localization of 2744 yeast proteins. Extrapolating these data through a computational algorithm employing Bayesian formalism, we define the yeast localizome (the subcellular distribution of all 6100 yeast proteins). We estimate the yeast proteome to encompass ∼5100 soluble proteins and >1000 transmembrane proteins. Our results indicate that 47% of yeast proteins are cytoplasmic, 13% mitochondrial, 13% exocytic (including proteins of the endoplasmic reticulum and secretory vesicles), and 27% nuclear/nucleolar. A subset of nuclear proteins was further analyzed by immunolocalization using surface-spread preparations of meiotic chromosomes. Of these proteins, 38% were found associated with chromosomal DNA. As determined from phenotypic analyses of nuclear proteins, 34% are essential for spore viability—a percentage nearly twice as great as that observed for the proteome as a whole. In total, this study presents experimentally derived localization data for 955 proteins of previously unknown function: nearly half of all functionally uncharacterized proteins in yeast. To facilitate access to these data, we provide a searchable database featuring 2900 fluorescent micrographs at http://ygac.med.yale.edu. PMID:11914276

  14. Flor Yeast: New Perspectives Beyond Wine Aging.

    PubMed

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C; Mannazzu, Ilaria; Coi, Anna L; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air-liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed.

  15. The growth of solar radiated yeast

    NASA Technical Reports Server (NTRS)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  16. Novel brewing yeast hybrids: creation and application.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  17. Physiological and environmental control of yeast prions

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2014-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638

  18. The growth of solar radiated yeast

    SciTech Connect

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  19. Yeast communities in a natural tequila fermentation.

    PubMed

    Lachance, M A

    1995-08-01

    Fresh and cooked agave, Drosophila spp., processing equipment, agave molasses, agave extract, and fermenting must at a traditional tequila distillery (Herradura, Amatitan, Jalisco, México) were studied to gain insight on the origin of yeasts involved in a natural tequila fermentations. Five yeast communities were identified. (1) Fresh agave contained a diverse mycobiota dominated by Clavispora lusitaniae and an endemic species, Metschnikowia agaveae. (2) Drosophila spp. from around or inside the distillery yielded typical fruit yeasts, in particular Hanseniaspora spp., Pichia kluyveri, and Candida krusei. (3) Schizosaccharomyces pombe prevailed in molasses. (4) Cooked agave and extract had a considerable diversity of species, but included Saccharomyces cerevisiae. (5) Fermenting juice underwent a gradual reduction in yeast heterogeneity. Torulaspora delbrueckii, Kluyveromyces marxianus, and Hanseniaspora spp. progressively ceded the way to S. cerevisiae, Zygosaccharomyces bailii, Candida milleri, and Brettanomyces spp. With the exception of Pichia membranaefaciens, which was shared by all communities, little overlap existed. That separation was even more manifest when species were divided into distinguishable biotypes based on morphology or physiology. It is concluded that crushing equipment and must holding tanks are the main source of significant inoculum for the fermentation process. Drosophila species appear to serve as internal vectors. Proximity to fruit trees probably contributes to maintaining a substantial Drosophila community, but the yeasts found in the distillery exhibit very little similarity to those found in adjacent vegetation. Interactions involving killer toxins had no apparent direct effects on the yeast community structure.

  20. Phylogenetics of Saccharomycetales, the ascomycete yeasts.

    PubMed

    Suh, Sung-Oui; Blackwell, Meredith; Kurtzman, Cletus P; Lachance, Marc-André

    2006-01-01

    Ascomycete yeasts (phylum Ascomycota: subphylum Saccharomycotina: class Saccharomycetes: order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals and their interfaces. A few species account for most human mycotic infections, and fewer than 10 species are plant pathogens. Yeasts are responsible for important industrial and biotechnological processes, including baking, brewing and synthesis of recombinant proteins. Species such as Saccharomyces cerevisiae are model organisms in research, some of which led to a Nobel Prize. Yeasts usually reproduce asexually by budding, and their sexual states are not enclosed in a fruiting body. The group also is well defined by synapomorphies visible at the ultrastructural level. Yeast identification and classification changed dramatically with the availability of DNA sequencing. Species identification now benefits from a constantly updated sequence database and no longer relies on ambiguous growth tests. A phylogeny based on single gene analyses has shown the order to be remarkably divergent despite morphological similarities among members. The limits of many previously described genera are not supported by sequence comparisons, and multigene phylogenetic studies are under way to provide a stable circumscription of genera, families and orders. One recent multigene study has resolved species of the Saccharomycetaceae into genera that differ markedly from those defined by analysis of morphology and growth responses, and similar changes are likely to occur in other branches of the yeast tree as additional sequences become available.

  1. Flor Yeast: New Perspectives Beyond Wine Aging

    PubMed Central

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  2. A yeast pheromone-based inter-species communication system.

    PubMed

    Hennig, Stefan; Clemens, André; Rödel, Gerhard; Ostermann, Kai

    2015-02-01

    We report on a pheromone-based inter-species communication system, allowing for a controlled cell-cell communication between the two species Saccharomyces cerevisiae and Schizosaccharomyces pombe as a proof of principle. It exploits the mating response pathways of the two yeast species employing the pheromones, α- or P-factor, as signaling molecules. The authentic and chimeric pheromone-encoding genes were engineered to code for the P-factor in S. cerevisiae and the α-factor in S. pombe. Upon transformation of the respective constructs, cells were enabled to express the mating pheromone of the opposite species. The supernatant of cultures of S. pombe cells expressing α-factor were able to induce a G1 arrest in the cell cycle, a change in morphology to the typical shmoo effect and expression driven by the pheromone-responsive FIG1 promoter in S. cerevisiae. The supernatant of cultures of S. cerevisiae cells expressing P-factor similarly induced cell cycle arrest in G1, an alteration in morphology typical for mating as well as the activation of the pheromone-responsive promoters of the rep1 and sxa2 genes in a pheromone-hypersensitive reporter strain of S. pombe. Apparently, both heterologous pheromones were correctly processed and secreted in an active form by the cells of the other species. Our data clearly show that the species-specific pheromone systems of yeast species can be exploited for a controlled inter-species communication.

  3. Next-generation biofuels: a new challenge for yeast.

    PubMed

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review.

  4. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  5. Three different targets for the genetic modification of wine yeast strains resulting in improved effectiveness of bentonite fining.

    PubMed

    Gonzalez-Ramos, Daniel; Quirós, Manuel; Gonzalez, Ramon

    2009-09-23

    Bentonite fining is used in the clarification of white wines to prevent protein haze. This treatment results in the loss of a significant portion of the wine itself, as well as aroma compounds important for the quality of white wines. Among other interesting effects on wine quality, yeast cell wall mannoproteins have been shown to stabilize wine against protein haze. A previous work showed that wine yeast strains engineered by deletion of KNR4 release increased amounts of mannoproteins and produce wines showing attenuated responses in protein haze tests. This paper describes the technological properties of several new recombinant wine yeast strains, deleted for genes involved in cell-wall biogenesis, as well as the regulatory gene KNR4. Stabilization of wines produced by three of the six recombinant strains analyzed required 20-40% less bentonite than those made with their nonrecombinant counterparts. The availability of multiple targets for genetically improving yeast mannoprotein release, as shown in this work, is relevant not only for genetic engineering of wine yeast but especially for the feasibility of genetically improving this character by classical methods of strain development such as random mutagenesis or sexual hybridization.

  6. Training of yeast cell dynamics.

    PubMed

    Reijenga, Karin A; Bakker, Barbara M; van der Weijden, Coen C; Westerhoff, Hans V

    2005-04-01

    In both industrial fermenters and in their natural habitats, microorganisms often experience an inhomogeneous and fluctuating environment. In this paper we mimicked one aspect of this nonideal behaviour by imposing a low and oscillating extracellular glucose concentration on nonoscillating suspensions of yeast cells. The extracellular dynamics changed the intracellular dynamics--which was monitored through NADH fluorescence--from steady to equally dynamic; the latter followed the extracellular dynamics at the frequency of glucose pulsing. Interestingly, the amplitude of the oscillation of the NADH fluorescence increased with time. This increase in amplitude was sensitive to inhibition of protein synthesis, and was due to a change in the cells rather than in the medium; the cell population was 'trained' to respond to the extracellular dynamics. To examine the mechanism behind this 'training', we subjected the cells to a low and constant extracellular glucose concentration. Seventy-five minutes of adaptation to a low and constant glucose concentration induced the same increase of the amplitude of the forced NADH oscillations as did the train of glucose pulses. Furthermore, 75 min of adaptation to a low (oscillating or continuous) glucose concentration decreased the K(M) of the glucose transporter from 26 mm to 3.5 mm. When subsequently the apparent K(M) was increased by addition of maltose, the amplitude of the forced oscillations dropped to its original value. This demonstrated that the increased affinity of glucose transport was essential for the training of the cells' dynamics.

  7. Spermidine cures yeast of prions

    PubMed Central

    Speldewinde, Shaun H.; Grant, Chris M.

    2015-01-01

    Prions are self-perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals. The molecular basis underlying their conversion from a normally soluble protein into the prion form remains largely unknown. Studies aimed at uncovering these mechanism(s) are therefore essential if we are to develop effective therapeutic strategies to counteract these disease-causing entities. Autophagy is a cellular degradation system which has predominantly been considered as a non-selective bulk degradation process which recycles macromolecules in response to starvation conditions. We now know that autophagy also serves as a protein quality control mechanism which selectively degrades protein aggregates and damaged organelles. These are commonly accumulated in various neurodegenerative disorders including prion diseases. In our recent study [Speldewinde et al. Mol. Biol. Cell. (2015)] we used the well-established yeast [PSI+]/Sup35 and [PIN¬+]/Rnq1 prion models to show that autophagy prevents sporadic prion formation. Importantly, we found that spermidine, a polyamine that has been used to increase autophagic flux, acts as a protective agent which prevents spontaneous prion formation.

  8. A Yeast Artificial Chromosome Library Database: Design Considerations

    PubMed Central

    Frisse, Mark E.; Ge, NengJie; Langenbacher, JulieM.; Kahn, Michael G.; Brownstein, Bernard H.

    1990-01-01

    This paper first describes a simple collection of HyperCard stacks created and used by genetics researchers to catalog information in a human yeast artificial chromosome (YAC) library. Although an intuitive human-computer interface made the HyperCard program easy to use, the program was neither an efficient nor a secure primary database for vital laboratory data. This paper subsequently describes a relational database implementation prototype that overcomes HyperCard's deficiencies as a database engine while still allowing users to interact with their data through their familiar HyperCard stacks. The authors argue that although HyperCard often can serve as an interface to a database management system, HyperCard should not be viewed as a substitute for a database management system.

  9. Oleaginous yeast: a value-added platform for renewable oils.

    PubMed

    Probst, Kyle V; Schulte, Leslie R; Durrett, Timothy P; Rezac, Mary E; Vadlani, Praveen V

    2016-10-01

    Yeast single cell oil (SCO) is a non-crop-based, renewable oil source that can be used for the production of bio-based oleochemicals. Stand-alone production of SCO for oleochemicals is currently not cost-competitive because lower-cost alternatives from petroleum and crop-based resources are available. Utilizing low-valued nutrient sources, implementing cost-efficient downstream processes and adopting biotechnological advancements such as systems biology and metabolic engineering could prove valuable in making an SCO platform a reality in the emerging bio-based economy. This review aims to consider key biochemical pathways for storage lipid synthesis, possible pathways for SCO yield improvement, previously used bioprocessing techniques for SCO production, challenges in SCO commercialization and advantages of adopting a renewable SCO platform.

  10. Production of Aromatic Plant Terpenoids in Recombinant Baker's Yeast.

    PubMed

    Emmerstorfer-Augustin, Anita; Pichler, Harald

    2016-01-01

    Plant terpenoids are high-value compounds broadly applied as food additives or fragrances in perfumes and cosmetics. Their biotechnological production in yeast offers an attractive alternative to extraction from plants. Here, we provide two optimized protocols for the production of the plant terpenoid trans-nootkatol with recombinant S. cerevisiae by either (I) converting externally added (+)-valencene with resting cells or (II) cultivating engineered self-sufficient production strains. By synthesis of the hydrophobic compounds in self-sufficient production cells, phase transfer issues can be avoided and the highly volatile products can be enriched in and easily purified from n-dodecane, which is added to the cell broth as second phase.

  11. YeastIP: a database for identification and phylogeny of Saccharomycotina yeasts.

    PubMed

    Weiss, Stéphanie; Samson, Franck; Navarro, David; Casaregola, Serge

    2013-02-01

    With the advances in sequencing techniques, identification of ascomycetous yeasts to the species level and phylogeny reconstruction increasingly require curated and updated taxonomic information. A specific database with nucleotide sequences of the most common markers used for yeast taxonomy and phylogeny and a user-friendly interface allowing identification, taxonomy and phylogeny of yeasts species was developed. By 1 September 2012, the YeastIP database contained all the described Saccharomycotina species for which sequences used for taxonomy and phylogeny, such as D1/D2 rDNA and ITS, are available. The database interface was developed to provide a maximum of relevant information and data mining tools, including the following features: (1) the blast n program for the sequences of the YeastIP database; (2) easy retrieval of selected sequences; (3) display of the available markers for each selected group of species; and (4) a tool to concatenate marker sequences, including those provided by the user. The concatenation tool allows phylogeny reconstruction through a direct link to the Phylogeny.fr platform. YeastIP is thus a unique database in that it provides taxonomic information and guides users in their taxonomic analyses. YeastIP facilitates multigenic analysis to encourage good practice in ascomycetous yeast phylogeny (URL: http://genome.jouy.inra.fr/yeastip.).

  12. Antimycotic activity of 4-thioisosteres of flavonoids towards yeast and yeast-like microorganisms.

    PubMed

    Buzzini, Pietro; Menichetti, Stefano; Pagliuca, Chiara; Viglianisi, Caterina; Branda, Eva; Turchetti, Benedetta

    2008-07-01

    Different substituted methoxy- and hydroxy-4-thioisosteres of flavonoids were prepared and their in vitro antimycotic activity towards yeast (Candida spp., Clavispora spp., Cryptococcus spp., Filobasidiella spp., Issatchenkia spp., Pichia spp., Kluyveromyces spp., Saccharomyces spp. and Yarrowia spp.) and yeast-like (Prototheca spp.) microorganisms was tested. Further insights in the biological activities of these antioxidant, oestrogenic and antimicrobial biomimetic derivatives were obtained.

  13. Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations

    PubMed Central

    Kazemzadeh, Laleh; Cvijovic, Marija; Petranovic, Dina

    2012-01-01

    Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested. PMID:23233838

  14. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

    PubMed

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-02-06

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

  15. Seborrhoeic dermatitis and Pityrosporum yeasts.

    PubMed

    Bergbrant, I M

    1995-01-01

    The connection between P. ovale and seborrhoeic dermatitis has been clearly demonstrated in a number of treatment studies but we still do not know how P. ovale induces skin lesions. An enhanced growth of P. ovale cannot be the cause, because a number of studies with quantitative determinations of P. ovale have not been able to show any difference in the number of yeast cells between patients and healthy controls. The number of P. ovale is probably only important for the individuals who are susceptible to seborrhoeic dermatitis. An abnormal immune response to P. ovale could be another explanation. Sohnle et al. have shown that P. ovale can activate complement by both the classical and the alternative pathway. A defective cell-mediated immunity to P. ovale in patients with seborrhoeic dermatitis has been demonstrated by Wikler et al. In patients with AIDS, who are known to have a diminished T-cell function, a high incidence of seborrhoeic dermatitis has been found. Activation of the alternative complement pathway by P. ovale, which does not require T-cell function, could be an explanation for the inflammatory response. I also believe that the skin lipids are important in the pathogenesis. An improvement of seborrhoeic dermatitis has been demonstrated after treatment with drugs that reduce the sebum excretion. Pityrosporum has lipase activity and may generate free fatty acids, which could also contribute to the inflammatory response. There are a number of factors which are probably important in the pathogenesis of seborrhoeic dermatitis, that is, the number of P. ovale, P. ovale lipase activity, skin lipids, immune function, heredity, atmospheric humidity and emotional state. A reduction in the number of P. ovale in patients suffering from seborrhoeic dermatitis and being treated with antimycotic treatment is, at the present state of knowledge, the best way to treat the disease.

  16. Mutational analysis of yeast profilin.

    PubMed

    Haarer, B K; Petzold, A S; Brown, S S

    1993-12-01

    We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.

  17. Influence of pesticides on yeasts colonizing leaves.

    PubMed

    Vadkertiová, Renata; Sláviková, Elena

    2011-01-01

    The effect of nine different pesticides on the growth of yeasts isolated from the leaves of fruit and forest trees was investigated. Four insecticides (with the active ingredients: thiacloprid, deltamethrin, lambdacyhalothrin, and thiamethoxam) and five fungicides (with the effective substances: bitertanol, kresoxim-methyl, mancozeb, trifloxystrobin, and cupric oxychloride) were tested. The concentrations of chemicals were those recommended by the manufacturers for the spraying of trees. The yeast strains isolated from the leaves of fruit trees were not sensitive to any of the insecticides. The majority of yeast strains isolated from the leaves of forest trees were either not sensitive or only to a small extent. While Rhodotorula mucilaginosa and Pichia anomala were not affected by any insecticide, the strains of Cryptococcus laurentii and Rhodotorula glutinis showed the highest sensitivity. The effects of fungicides on the growth of isolated yeasts were more substantial. The fungicide Dithane DG (mancozeb) completely inhibited the growth of all yeasts. All strains isolated from fruit tree leaves were more resistant to the tested fungicides than those isolated from the leaves of forest trees. The most resistant strains from the leaves of fruit trees belonged to the species Metschnikowia pulcherrima, Pichia anomala, and Saccharomyces cerevisiae, whereas Cryptococcus albidus and C. laurentii, originating from the leaves of forest trees, showed the highest sensitivity to fungicides.

  18. Ecology of pathogenic yeasts in Amazonian soil.

    PubMed Central

    Mok, W Y; Luizão, R C; do Socorro Barreto da Silva, M; Teixeira, M F; Muniz, E G

    1984-01-01

    In an investigation of Amazonian soil as a natural reservoir for pathogenic fungi, 1,949 soil samples collected from diverse geographical and ecological settings of the Brazilian Amazon Basin were analyzed for the presence of non-keratinophilic fungi by the indirect mouse inoculation procedure and for the presence of keratinophilic fungi by the hair bait technique. All soil samples were acidic with low pH values. From 12% of the soil samples, 241 yeast and yeastlike isolates pertaining to six genera and 82 species were recovered, of which 63% were Torulopsis and 26% were Candida species. Nine fungi with known pathogenic potentials were encountered among 43% (104) of the isolates: T. glabrata, C. guilliermondii, C. albicans, C. pseudotropicalis, C. stellatoidea, C. tropicalis, Rhodotorula rubra, and Wangiella dermatitidis. The yeast flora was marked by species diversity, low frequency of each species, random geographical distribution, and an apparent lack of species clustering. The composition and distribution of the yeast flora in soil differed from those of the yeast flora harbored by bats, suggesting that the Amazonian external environment and internal bat organs act as independent natural habitats for yeasts. PMID:6538774

  19. Properties of the yeast nuclear histone deacetylase.

    PubMed Central

    Sanchez del Pino, M M; Lopez-Rodas, G; Sendra, R; Tordera, V

    1994-01-01

    A nuclear histone deacetylase from yeast was partially purified and some of its characteristics were studied. Histone deacetylase activity was stimulated in vitro by high-mobility-group nonhistone chromatin proteins 1 and 2 and ubiquitin and inhibited by spermine and spermidine, whereas n-butyrate had no significant inhibitory effect. Like the mammalian enzyme, partially purified histone deacetylase from yeast was strongly inhibited by trichostatin A. However, in crude extract preparations the yeast enzyme was not inhibited and treatment with trichostatin in vivo did not show any effect, either on the histone acetylation level or on cell viability. At low ionic strength, the enzyme can be isolated as a complex of high molecular mass that is much less inhibited by trichostatin A than is partially purified histone deacetylase activity. Furthermore, radiolabelled oligonucleosomes were more efficiently deacetylated by the complex than by the low-molecular-mass form of the enzyme. The histone deacetylase activity was separated from a polyamine deacetylase activity and its specificity studied. Using h.p.l.c.-purified core histone species as substrate, histone deacetylase from yeast is able to deacetylate all core histones with a slight preference for H3. Our results support the idea that the yeast histone deacetylase may act as a high-molecular-mass complex in vivo. Images Figure 3 PMID:7980438

  20. Production of alpha-amylase by yeast

    SciTech Connect

    Thomse, K.K.

    1987-01-01

    The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

  1. Yeasts associated with Sardinian ewe's dairy products.

    PubMed

    Cosentino, S; Fadda, M E; Deplano, M; Mulargia, A F; Palmas, F

    2001-09-19

    In the present work, the occurrence of yeasts in different types of typical Sardinian ewe's cheeses (32 samples of pecorino, 32 of caciotta, 40 of feta, 56 of ricotta) was determined. For the strains isolated the following properties were studied: proteolytic and lipolytic activities, the ability to grow at different temperatures, different concentrations of salt, and to assimilate and/or ferment compounds like lactate, citrate, lactose, glucose, galactose, lactic acid. Of 160 samples analysed, 76.2% yielded growth of yeasts. Yeast counts showed a certain variability among the samples. The highest levels were observed in caciotta and feta cheeses. A total of 281 strains belonging to 16 genera and 25 species were identified. In general, Debaryomyces hansenii was the dominant species, representing 28.8% of the total isolates. Other frequently appearing species were Geotrichum candidum, Kluyveromyces lactis and K. marxianus. Other genera encountered were Pichia, Candida, Dekkera, Yarrowia and Rhodotorula. With regard to the biochemical and technological properties of the yeasts, only K. lactis, K. marxianus and Dek. anomala assimilated and fermented lactose, whereas the majority of the species assimilated lactic acid. The assimilation of citrate was a characteristic of D. hansenii, R. rubra and Y. lipolytica. On the whole, the yeasts were weakly proteolytic while lipolytic activity was present in several species. A high percentage of strains showed a certain tolerance to low temperatures while only some strains of D. hansenii and K. lactis were able to grow at a 10% NaCl concentration.

  2. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  3. Stress responses in yeasts: what rules apply?

    PubMed

    González-Párraga, Pilar; Sánchez-Fresneda, Ruth; Martínez-Esparza, María; Argüelles, Juan-Carlos

    2008-04-01

    Living organisms have evolved a complex network of mechanisms to face the unforeseen nutritional and environmental circumstances imposed on their natural habitats, commonly termed "stress". To learn more about these mechanisms, several challenges are usually applied in the laboratory, namely nutrient starvation, heat shock, dehydration, oxidative exposures, etc. Yeasts are chosen as convenient models for studying stress phenomena because of their simple cellular organization and the amenability to genetic analysis. A vast scientific literature has recently appeared on the defensive cellular responses to stress. However, this plethora of studies covers quite different experimental conditions, making any conclusions open to dispute. In fact, the term "yeast stress" is rather confusing, since the same treatment may be very stressful or irrelevant, depending on the yeast. Customary expressions such as "gentle stress" (non-lethal) or "severe stress" (potentially lethal) should be precisely clarified. In turn, although prototypic yeasts share a common repertoire of signalling responsive pathways to stress, these are adapted to the specific ecological niche and biological activity of each particular species. What does "stress" really mean? Before we go any deeper, we have to define this uncertain meaning along with a proper explanation concerning the terms and conditions used in research on yeast stress.

  4. Anaerobic digestion of food waste using yeast.

    PubMed

    Suwannarat, Jutarat; Ritchie, Raymond J

    2015-08-01

    Fermentative breakdown of food waste seems a plausible alternative to feeding food waste to pigs, incineration or garbage disposal in tourist areas. We determined the optimal conditions for the fermentative breakdown of food waste using yeast (Saccharomyces cerevisiae) in incubations up to 30days. Yeast efficiently broke down food waste with food waste loadings as high as 700g FW/l. The optimum inoculation was ≈46×10(6)cells/l of culture with a 40°C optimum (25-40°C). COD and BOD were reduced by ≈30-50%. Yeast used practically all the available sugars and reduced proteins and lipids by ≈50%. Yeast was able to metabolize lipids much better than expected. Starch was mobilized after very long term incubations (>20days). Yeast was effective in breaking down the organic components of food waste but CO2 gas and ethanol production (≈1.5%) were only significant during the first 7days of incubations.

  5. Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Ostergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2000-01-01

    Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production. PMID:10704473

  6. Large-Scale Mutagenesis of the Yeast Genome Using a Tn7-Derived Multipurpose Transposon

    PubMed Central

    Kumar, Anuj; Seringhaus, Michael; Biery, Matthew C.; Sarnovsky, Robert J.; Umansky, Lara; Piccirillo, Stacy; Heidtman, Matthew; Cheung, Kei-Hoi; Dobry, Craig J.; Gerstein, Mark B.; Craig, Nancy L.; Snyder, Michael

    2004-01-01

    We present here an unbiased and extremely versatile insertional library of yeast genomic DNA generated by in vitro mutagenesis with a multipurpose element derived from the bacterial transposon Tn7. This mini-Tn7 element has been engineered such that a single insertion can be used to generate a lacZ fusion, gene disruption, and epitope-tagged gene product. Using this transposon, we generated a plasmid-based library of ∼300,000 mutant alleles; by high-throughput screening in yeast, we identified and sequenced 9032 insertions affecting 2613 genes (45% of the genome). From analysis of 7176 insertions, we found little bias in Tn7 target-site selection in vitro. In contrast, we also sequenced 10,174 Tn3 insertions and found a markedly stronger preference for an AT-rich 5-base pair target sequence. We further screened 1327 insertion alleles in yeast for hypersensitivity to the chemotherapeutic cisplatin. Fifty-one genes were identified, including four functionally uncharacterized genes and 25 genes involved in DNA repair, replication, transcription, and chromatin structure. In total, the collection reported here constitutes the largest plasmid-based set of sequenced yeast mutant alleles to date and, as such, should be singularly useful for gene and genome-wide functional analysis. PMID:15466296

  7. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon.

    PubMed

    Kumar, Anuj; Seringhaus, Michael; Biery, Matthew C; Sarnovsky, Robert J; Umansky, Lara; Piccirillo, Stacy; Heidtman, Matthew; Cheung, Kei-Hoi; Dobry, Craig J; Gerstein, Mark B; Craig, Nancy L; Snyder, Michael

    2004-10-01

    We present here an unbiased and extremely versatile insertional library of yeast genomic DNA generated by in vitro mutagenesis with a multipurpose element derived from the bacterial transposon Tn7. This mini-Tn7 element has been engineered such that a single insertion can be used to generate a lacZ fusion, gene disruption, and epitope-tagged gene product. Using this transposon, we generated a plasmid-based library of approximately 300,000 mutant alleles; by high-throughput screening in yeast, we identified and sequenced 9032 insertions affecting 2613 genes (45% of the genome). From analysis of 7176 insertions, we found little bias in Tn7 target-site selection in vitro. In contrast, we also sequenced 10,174 Tn3 insertions and found a markedly stronger preference for an AT-rich 5-base pair target sequence. We further screened 1327 insertion alleles in yeast for hypersensitivity to the chemotherapeutic cisplatin. Fifty-one genes were identified, including four functionally uncharacterized genes and 25 genes involved in DNA repair, replication, transcription, and chromatin structure. In total, the collection reported here constitutes the largest plasmid-based set of sequenced yeast mutant alleles to date and, as such, should be singularly useful for gene and genome-wide functional analysis.

  8. NY-ESO-1 protein glycosylated by yeast induces enhanced immune responses.

    PubMed

    Wadle, Andreas; Mischo, Axel; Strahl, Sabine; Nishikawa, Hiroyoshi; Held, Gerhard; Neumann, Frank; Wullner, Beate; Fischer, Eliane; Kleber, Sascha; Karbach, Julia; Jager, Elke; Shiku, Hiroshi; Odunsi, Kunle; Shrikant, Protul A; Knuth, Alexander; Cerundolo, Vincenzo; Renner, Christoph

    2010-11-01

    Vaccine strategies that target dendritic cells to elicit potent cellular immunity are the subject of intense research. Here we report that the genetically engineered yeast Saccharomyces cerevisiae, expressing the full-length tumour-associated antigen NY-ESO-1, is a versatile host for protein production. Exposing dendritic cells (DCs) to soluble NY-ESO-1 protein linked to the yeast a-agglutinin 2 protein (Aga2p) protein resulted in protein uptake, processing and MHC class I cross-presentation of NY-ESO-1-derived peptides. The process of antigen uptake and cross-presentation was dependent on the glycosylation pattern of NY-ESO-1-Aga2p protein and the presence of accessible mannose receptors. In addition, NY-ESO-1-Aga2p protein uptake by dendritic cells resulted in recognition by HLA-DP4 NY-ESO-1-specific CD4(+) T cells, indicating MHC class II presentation. Finally, vaccination of mice with yeast-derived NY-ESO-1-Aga2p protein led to an enhanced humoral and cellular immune response, when compared to the bacterially expressed NY-ESO-1 protein. Together, these data demonstrate that yeast-derived full-length NY-ESO-1-Aga2p protein is processed and presented efficiently by MHC class I and II complexes and warrants clinical trials to determine the potential value of S. cerevisiae as a host for cancer vaccine development.

  9. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current knowledge about its metabolism. Results Combining in silico tools and expert manual curation, we have produced an accurate genome-scale metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific expansion of protein families. We used physiological measures obtained under lab conditions to validate our predictions. Conclusions Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast, providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other species in the Yarrowia clade and other oleaginous yeasts. PMID:22558935

  10. Fission yeast profilin is tailored to facilitate actin assembly by the cytokinesis formin Cdc12.

    PubMed

    Bestul, Andrew J; Christensen, Jenna R; Grzegorzewska, Agnieszka P; Burke, Thomas A; Sees, Jennifer A; Carroll, Robert T; Sirotkin, Vladimir; Keenan, Robert J; Kovar, David R

    2015-01-15

    The evolutionarily conserved small actin-monomer binding protein profilin is believed to be a housekeeping factor that maintains a general pool of unassembled actin. However, despite similar primary sequences, structural folds, and affinities for G-actin and poly-L-proline, budding yeast profilin ScPFY fails to complement fission yeast profilin SpPRF temperature-sensitive mutant cdc3-124 cells. To identify profilin's essential properties, we built a combinatorial library of ScPFY variants containing either WT or SpPRF residues at multiple positions and carried out a genetic selection to isolate variants that support life in fission yeast. We subsequently engineered ScPFY(9-Mut), a variant containing nine substitutions in the actin-binding region, which complements cdc3-124 cells. ScPFY(9-Mut), but not WT ScPFY, suppresses severe cytokinesis defects in cdc3-124 cells. Furthermore, the major activity rescued by ScPFY(9-Mut) is the ability to enhance cytokinesis formin Cdc12-mediated actin assembly in vitro, which allows cells to assemble functional contractile rings. Therefore an essential role of profilin is to specifically facilitate formin-mediated actin assembly for cytokinesis in fission yeast.

  11. Yeast cell surface display for lipase whole cell catalyst and its applications

    SciTech Connect

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  12. Evidence for yeast autophagy during simulation of sparkling wine aging: a reappraisal of the mechanism of yeast autolysis in wine.

    PubMed

    Cebollero, Eduardo; Carrascosa, Alfonso V; Gonzalez, Ramon

    2005-01-01

    Yeast autolysis is the source of several molecules responsible for the quality of wines aged in contact with yeast cells. However, the mechanisms of yeast autolysis during wine aging are not completely understood. All descriptions of yeast autolysis in enological conditions emphasize the disturbance of cell organization as the starting event in the internal digestion of the cell, while no reference to autophagy is found in wine-related literature. By using yeast mutants defective in the autophagic or the Cvt pathways we have demonstrated that autophagy does take place in wine production conditions. This finding has implications for the genetic improvement of yeasts for accelerated autolysis.

  13. Engineering Practice and Engineering Ethics.

    ERIC Educational Resources Information Center

    Lynch, William T.; Kline, Ronald

    2000-01-01

    Offers ways of applying science and technology studies to the teaching of engineering ethics. Suggests modifications of both detailed case studies on engineering disasters and hypothetical, ethical dilemmas employed in engineering ethics classes. (Author/CCM)

  14. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation

    PubMed Central

    Ha, Suk-Jin; Galazka, Jonathan M.; Rin Kim, Soo; Choi, Jin-Ho; Yang, Xiaomin; Seo, Jin-Ho; Louise Glass, N.; Cate, Jamie H. D.; Jin, Yong-Su

    2011-01-01

    The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily glucose and xylose. However, strains of Saccharomyces cerevisiae presently used in bioethanol production ferment glucose but not xylose. Yeasts engineered to ferment xylose do so slowly, and cannot utilize xylose until glucose is completely consumed. To overcome these bottlenecks, we engineered yeasts to coferment mixtures of xylose and cellobiose. In these yeast strains, hydrolysis of cellobiose takes place inside yeast cells through the action of an intracellular β-glucosidase following import by a high-affinity cellodextrin transporter. Intracellular hydrolysis of cellobiose minimizes glucose repression of xylose fermentation allowing coconsumption of cellobiose and xylose. The resulting yeast strains, cofermented cellobiose and xylose simultaneously and exhibited improved ethanol yield when compared to fermentation with either cellobiose or xylose as sole carbon sources. We also observed improved yields and productivities from cofermentation experiments performed with simulated cellulosic hydrolyzates, suggesting this is a promising cofermentation strategy for cellulosic biofuel production. The successful integration of cellobiose and xylose fermentation pathways in yeast is a critical step towards enabling economic biofuel production. PMID:21187422

  15. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  16. Biofuels. Altered sterol composition renders yeast thermotolerant.

    PubMed

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam; Feizi, Amir; Buskov, Steen; Hallström, Björn M; Petranovic, Dina; Nielsen, Jens

    2014-10-03

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype.

  17. Molecular control of fission yeast cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-05-01

    Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.

  18. Yeast Interactions in Inoculated Wine Fermentation

    PubMed Central

    Ciani, Maurizio; Capece, Angela; Comitini, Francesca; Canonico, Laura; Siesto, Gabriella; Romano, Patrizia

    2016-01-01

    The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process. PMID:27148235

  19. Cytotoxic Mechanism of Selenomethionine in Yeast*

    PubMed Central

    Kitajima, Toshihiko; Jigami, Yoshifumi; Chiba, Yasunori

    2012-01-01

    Although selenium is an essential element, its excessive uptake is detrimental to living organisms. The significance of selenium for living organisms has been exploited for various purposes. However, the molecular basis of selenium toxicity is not completely understood. Here, we applied a capillary electrophoresis time-of-flight mass spectrometry-based metabolomics approach to analysis of yeast cells treated with selenomethionine. The data indicated that intracellular thiol compounds are significantly decreased, and diselenide and selenosulfide compounds are increased in selenomethionine-treated cells. The growth defect induced by selenomethionine was recovered by extracellular addition of cysteine and by genetic modification of yeast cells that have an additional de novo synthetic pathway for cysteine. Because cysteine is an intermediate of thiol compounds, these results suggested that the loss of a reduced form of thiol compounds due to selenomethionine causes a growth defect of yeast cells. PMID:22311978

  20. Mitochondrial movement and inheritance in budding yeast.

    PubMed

    Boldogh, Istvan R; Fehrenbacher, Kammy L; Yang, Hyeong-Cheol; Pon, Liza A

    2005-07-18

    Mitochondria are essential organelles that perform fundamental cellular functions including aerobic energy mobilization, fatty acid oxidation, amino acid metabolism, heme biosynthesis and apoptosis. Mitochondria cannot be synthesized de novo. Therefore, the inheritance of this organelle is an essential part of the cell cycle; that is, daughter cells that do not inherit mitochondria will not survive. The budding yeast, Saccharomyces cerevisiae, is a facultative aerobe that can tolerate mitochondrial mutations that would be lethal in other organisms. Therefore, yeast has been used extensively to study inheritance and segregation of mitochondria. As a result, much of what we know regarding mitochondrial inheritance has been uncovered using yeast as a model system. Here, we describe the latest developments in mitochondrial motility and inheritance.

  1. [The yeast biofilm in human medicine].

    PubMed

    Růzicka, Filip; Holá, Veronika; Votava, Miroslav

    2007-08-01

    In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to

  2. Predicting the fission yeast protein interaction network.

    PubMed

    Pancaldi, Vera; Saraç, Omer S; Rallis, Charalampos; McLean, Janel R; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-04-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein-protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70-80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt).

  3. Predicting the Fission Yeast Protein Interaction Network

    PubMed Central

    Pancaldi, Vera; Saraç, Ömer S.; Rallis, Charalampos; McLean, Janel R.; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-01-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein–protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70–80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt). PMID:22540037

  4. Biochemical Comparison of Commercial Selenium Yeast Preparations.

    PubMed

    Fagan, Sheena; Owens, Rebecca; Ward, Patrick; Connolly, Cathal; Doyle, Sean; Murphy, Richard

    2015-08-01

    The trace mineral selenium (Se) is an essential element for human and animal nutrition. The addition of Se to the diet through dietary supplements or fortified food/feed is increasingly common owing to the often sub-optimal content of standard diets of many countries. Se supplements commercially available include the inorganic mineral salts such as sodium selenite or selenate, and organic forms such as Se-enriched yeast. Today, Se yeast is produced by several manufacturers and has become the most widely used source of Se for human supplementation and is also widely employed in animal nutrition where approval in all species has been granted by regulatory bodies such as the European Food Safety Authority (EFSA). Characterisation and comparison of Se-enriched yeast products has traditionally been made by quantifying total selenomethionine (SeMet) content. A disadvantage of this approach, however, is that it does not consider the effects of Se deposition on subsequent digestive availability. In this study, an assessment was made of the water-soluble extracts of commercially available Se-enriched yeast samples for free, peptide-bound and total water-soluble SeMet. Using LC-MS/MS, a total of 62 Se-containing proteins were identified across four Se yeast products, displaying quantitative/qualitative changes in abundance relative to the certified reference material, SELM-1 (P value <0.05; fold change ≥2). Overall, the study indicates that significant differences exist between Se yeast products in terms of SeMet content, Se-containing protein abundance and associated metabolic pathways.

  5. Yeast 14-3-3 proteins.

    PubMed

    van Heusden, G Paul H; Steensma, H Yde

    2006-02-01

    14-3-3 proteins form a family of highly conserved proteins which are present in all eukaryotic organisms investigated, often in multiple isoforms, up to 13 in some plants. They interact with more than 200 different, mostly phosphorylated proteins. The molecular consequences of 14-3-3 binding are diverse: this binding may result in stabilization of the active or inactive phosphorylated form of the protein, to a conformational alteration leading to activation or inhibition, to a different subcellular localization, to the interaction with other proteins or to shielding of binding sites. The binding partners, and hence the 14-3-3 proteins, are involved in almost every cellular process and 14-3-3 proteins have been linked to several diseases, such as cancer, Alzheimer's disease, the neurological Miller-Dieker and spinocerebellar ataxia type 1 diseases and bovine spongiform encephalopathy (BSE). The yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe both have two genes encoding 14-3-3 proteins, BMH1 and BMH2 and rad24 and rad25, respectively. In these yeasts, 14-3-3 proteins are essential in most laboratory strains. As in higher eukaryotes, yeast 14-3-3 proteins bind to numerous proteins involved in a variety of cellular processes. Recent genome-wide studies on yeast strains with impaired 14-3-3 function support the participation of 14-3-3 proteins in numerous yeast cellular processes. Given the high evolutionary conservation of the 14-3-3 proteins, the experimental accessibility and relative simplicity of yeasts make them excellent model organisms for elucidating the function of the 14-3-3 protein family.

  6. 'Red Yeast Rice' Statin Alternative Not Harmless Either, Study Says

    MedlinePlus

    ... medlineplus.gov/news/fullstory_163221.html 'Red Yeast Rice' Statin Alternative Not Harmless Either, Study Says The ... A natural cholesterol-lowering supplement called red yeast rice could pose the same health risks to users ...

  7. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    SciTech Connect

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; Chou, Yat -Chen; Chen, Xiaowen; Dowe, Nancy; Himmel, Michael E.; Zhang, Min

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.

  8. [Invasive yeast infections in neutropenic patients].

    PubMed

    Ruiz Camps, Isabel; Jarque, Isidro

    2016-01-01

    Invasive fungal diseases caused by yeasts still play an important role in the morbidity and mortality in neutropenic patients with haematological malignancies. Although the overall incidence of invasive candidiasis has decreased due to widespread use of antifungal prophylaxis, the incidence of non-Candida albicans Candida species is increasing compared with that of C.albicans, and mortality of invasive candidiasis continues to be high. In addition, there has been an increase in invasive infections caused by an array of uncommon yeasts, including species of the genus Malassezia, Rhodotorula, Trichosporon and Saprochaete, characterised by their resistance to echinocandins and poor prognosis.

  9. Principles of chromosomal organization: lessons from yeast

    PubMed Central

    Zimmer, Christophe

    2011-01-01

    The spatial organization of genes and chromosomes plays an important role in the regulation of several DNA processes. However, the principles and forces underlying this nonrandom organization are mostly unknown. Despite its small dimension, and thanks to new imaging and biochemical techniques, studies of the budding yeast nucleus have led to significant insights into chromosome arrangement and dynamics. The dynamic organization of the yeast genome during interphase argues for both the physical properties of the chromatin fiber and specific molecular interactions as drivers of nuclear order. PMID:21383075

  10. DNA replication in yeast is stochastic

    NASA Astrophysics Data System (ADS)

    Cheng-Hsin Yang, Scott; Rhind, Nicholas; Bechhoefer, John

    2010-03-01

    Largely on the basis of a simple --- perhaps too simple --- analysis of microarray-chip experiments, people have concluded that DNA replication in budding yeast (S. cerevisiae) is a nearly deterministic process, in which the position and activation time of each origin of replication is pre-determined. In this talk, we introduce a more quantitative approach to the analysis of microarray data. Applying our new methods to budding yeast, we show that the microarray data imply a picture of replication where the timing of origin activation is highly stochastic. We then propose a physical model (the ``multiple-initiator model") to account for the observed probability distributions of origin- activation timing.

  11. Genetic diversity of the yeast Candida utilis.

    PubMed

    Stoltenburg, R; Klinner, U; Ritzerfeld, P; Zimmermann, M; Emeis, C C

    1992-12-01

    The electrophoretic karyotypes and some mtDNA restriction fragment patterns of 13 strains of Candida utilis and one strain of Hansenula jadinii were compared. PFGE separations revealed remarkable chromosome length polymorphisms between two groups of strains suggesting that perhaps they do not belong to the same species. However, all strains had the same or similar EcoRI, HindIII and BamHI mtDNA restriction patterns. The mtDNA genomes had an average size range of 55 kb. These results support the supposition that C. utilis is a yeast with a highly variable electrophoretic karyotype as already known for another imperfect yeast species, Candida albicans.

  12. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines

    PubMed Central

    Sipiczki, Matthias

    2016-01-01

    The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility, that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia) in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological, and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae, and S. uvarum) were recovered from 13% of the samples. No Candida zemplinina was found. The isolates with Aureobasidium morphology

  13. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol.

    PubMed

    Wen, Fei; Sun, Jie; Zhao, Huimin

    2010-02-01

    By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a beta-glucosidase, each bearing a C-terminal dockerin. Cell surface assembly of the minicellulosomes was dependent on expression of the miniscaffoldin, indicating that formation of the complex was dictated by the high-affinity interactions between cohesins and dockerins. Compared to the unifunctional and bifunctional minicellulosomes, the quaternary trifunctional complexes showed enhanced enzyme-enzyme synergy and enzyme proximity synergy. More importantly, surface display of the trifunctional minicellulosomes gave yeast cells the ability to simultaneously break down and ferment phosphoric acid-swollen cellulose to ethanol with a titer of approximately 1.8 g/liter. To our knowledge, this is the first report of a recombinant yeast strain capable of producing cell-associated trifunctional minicellulosomes. The strain reported here represents a useful engineering platform for developing CBP-enabling microorganisms and elucidating principles of cellulosome construction and mode of action.

  14. Yeast Surface Display of Trifunctional Minicellulosomes for Simultaneous Saccharification and Fermentation of Cellulose to Ethanol▿ †

    PubMed Central

    Wen, Fei; Sun, Jie; Zhao, Huimin

    2010-01-01

    By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a β-glucosidase, each bearing a C-terminal dockerin. Cell surface assembly of the minicellulosomes was dependent on expression of the miniscaffoldin, indicating that formation of the complex was dictated by the high-affinity interactions between cohesins and dockerins. Compared to the unifunctional and bifunctional minicellulosomes, the quaternary trifunctional complexes showed enhanced enzyme-enzyme synergy and enzyme proximity synergy. More importantly, surface display of the trifunctional minicellulosomes gave yeast cells the ability to simultaneously break down and ferment phosphoric acid-swollen cellulose to ethanol with a titer of ∼1.8 g/liter. To our knowledge, this is the first report of a recombinant yeast strain capable of producing cell-associated trifunctional minicellulosomes. The strain reported here represents a useful engineering platform for developing CBP-enabling microorganisms and elucidating principles of cellulosome construction and mode of action. PMID:20023102

  15. Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits.

    PubMed

    Schehl, Beatus; Senn, Thomas; Lachenmeier, Dirk W; Rodicio, Rosaura; Heinisch, Jürgen J

    2007-03-01

    Fermented fruit and beverages frequently contain ethyl carbamate (EC), a potentially carcinogenic compound that can be formed by the reaction of urea with ethanol. Both are produced by the yeast Saccharomyces cerevisiae with ethanol as the major end product of hexose fermentation and urea as a by-product in arginine catabolism. In spirit production, EC can also be derived from cyanide introduced by stone fruit. To determine the relative contribution of yeast metabolism to EC production, we genetically engineered a diploid laboratory strain to reduce the arginase activity, thus blocking the pathway to urea production. For this purpose, strains with either a heterozygous CAR1/car1 deletion or a homozygous defect (car1/car1) were constructed. These strains were compared to the parental wild type and to an industrial yeast strain in cherry mash fermentations and spirit production. The strain with the homozygous car1 deletion showed a significant reduction of EC in the final spirits in comparison to the non-engineered controls. Nevertheless, using this strain for fermentation of stoneless cherry mashes did not completely impede EC formation. This indicates another, as yet unidentified, source for this compound.

  16. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates.

    PubMed

    Oreb, Mislav; Dietz, Heiko; Farwick, Alexander; Boles, Eckhard

    2012-01-01

    Economically feasible production of second-generation biofuels requires efficient co-fermentation of pentose and hexose sugars in lignocellulosic hydrolysates under very harsh conditions. Baker's yeast is an excellent, traditionally used ethanol producer but is naturally not able to utilize pentoses. This is due to the lack of pentose-specific transporter proteins and enzymatic reactions. Thus, natural yeast strains must be modified by genetic engineering. Although the construction of various recombinant yeast strains able to ferment pentose sugars has been described during the last two decades, their rates of pentose utilization is still significantly lower than D-glucose fermentation. Moreover, pentoses are only fermented after D-glucose is exhausted, resulting in an uneconomical increase in the fermentation time. In this addendum, we discuss novel approaches to improve utilization of pentoses by development of specific transporters and substrate channeling in enzyme cascades.

  17. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.

    PubMed

    Pérez-Torrado, Roberto; Gómez-Pastor, Rocío; Larsson, Christer; Matallana, Emilia

    2009-01-01

    Induction of the oxidative stress response has been described under many physiological conditions in Saccharomyces cerevisiae, including industrial fermentation for wine yeast biomass production where cells are grown through several batch and fed-batch cultures on molasses. Here, we investigate the influence of aeration on the expression changes of different gene markers for oxidative stress and compare the induction profiles to the accumulation of several intracellular metabolites in order to correlate the molecular response to physiological and metabolic changes. We also demonstrate that this specific oxidative response is relevant for wine yeast performance by construction of a genetically engineered wine yeast strain overexpressing the TRX2 gene that codifies a thioredoxin, one of the most important cellular defenses against oxidative damage. This modified strain displays an improved fermentative capacity and lower levels of oxidative cellular damages than its parental strain after dry biomass production.

  18. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions.

    PubMed

    Costa, Carlos E; Romaní, Aloia; Cunha, Joana T; Johansson, Björn; Domingues, Lucília

    2017-03-01

    In this work, four robust yeast chassis isolated from industrial environments were engineered with the same xylose metabolic pathway. The recombinant strains were physiologically characterized in synthetic xylose and xylose-glucose medium, on non-detoxified hemicellulosic hydrolysates of fast-growing hardwoods (Eucalyptus and Paulownia) and agricultural residues (corn cob and wheat straw) and on Eucalyptus hydrolysate at different temperatures. Results show that the co-consumption of xylose-glucose was dependent on the yeast background. Moreover, heterogeneous results were obtained among different hydrolysates and temperatures for each individual strain pointing to the importance of designing from the very beginning a tailor-made yeast considering the specific raw material and process.

  19. The yin and yang of yeast: biodiversity research and systems biology as complementary forces driving innovation in biotechnology.

    PubMed

    Roberts, Ian N; Oliver, Stephen G

    2011-03-01

    The aim of this article is to review how yeast has contributed to contemporary biotechnology and to seek underlying principles relevant to its future exploitation for human benefit. Recent advances in systems biology combined with new knowledge of genome diversity promise to make yeast the eukaryotic workhorse of choice for production of everything from probiotics and pharmaceuticals to fuels and chemicals. The ability to engineer new capabilities through introduction of controlled diversity based on a complete understanding of genome complexity and metabolic flux is key. Here, we briefly summarise the history that has led to these apparently simple organisms being employed in such a broad range of commercial applications. Subsequently, we discuss the likely consequences of current yeast research for the future of biotechnological innovation.

  20. The hemicellulases from the ethanologenic thermophile: Themoanaerobacter ethanolius

    SciTech Connect

    Wiegel, J.

    1991-05-01

    Previously, we had only obtained extremely low xylanase activity in cultures of {ital Thermoanaerobacter ethanolicus} strain JW200, despite demonstrated xylan hydrolysis. We were not able to increase the enzyme activity or concentrate it in solution. Therefore, we decided to isolate new strains of thermophilic anaerobes with higher xylanase activity as a future source for cloning xylanases into {ital T. ethanolicus}. We now have organisms exhibiting 100-fold higher xylanase activity than JW200, but still cannot isolate or concentrate the enzyme activity except at very low yields. We have concentrated and partially purified a xylanase from strain N.D. using preparative matrix-free isoelectric focusing. We have also purified to homogeneity and partially characterized a xylosidase from {ital T. ethanolicus}. We have detected and measured arabinosidase and acetyl esterase activity in {ital T.ethanolicus}, {ital Clostridium thermohydrosulfuricum} and strain N.D. 7 refs., 2 tabs. (MHB)

  1. Biochemical characteristics of osmophilic yeasts isolated from pollens and honey.

    PubMed

    Park, Y K; Koo, M H; Oliveira, I M

    1996-11-01

    A total of 1752 strains of osmophilic yeasts were isolated from honey and pollens. Forty-three strains of osmophilic yeasts produced polyols, among which 6 strains produced erythritol in good yields. On the other hand, 52 osmophilic yeasts converted sucrose to fructooligosaccharides, among which 8 strains produced both extra and intracellular beta-fructofuranosidase, which converted sucrose to fructooligosaccharides. This investigation concluded that osmophilic yeasts converted sucrose not only to polyols, but also to fructooligosaccharides in good yields.

  2. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display

    PubMed Central

    Wen, Fei; Sethi, Dhruv K.; Wucherpfennig, Kai W.; Zhao, Huimin

    2011-01-01

    Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2–MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs. PMID:21752831

  3. Further modifications of the auxanographic method for identification of yeasts.

    PubMed Central

    Mickelsen, P A; McCarthy, L R; Propst, M A

    1977-01-01

    A modified auxanographic carbohydrate assimilation procedure for the identification of medically important yeasts is described. This method employs a heavy inoculum of unstarved yeasts, autoclaved yeast assimilation medium, pour plates of shallow depth, and commercially available carbohydrate-impregnated disks. The accuracy of this procedure was established in a comparison with the Wickerham broth method. PMID:853120

  4. Further modifications of the auxanographic method for identification of yeasts.

    PubMed

    Mickelsen, P A; McCarthy, L R; Propst, M A

    1977-03-01

    A modified auxanographic carbohydrate assimilation procedure for the identification of medically important yeasts is described. This method employs a heavy inoculum of unstarved yeasts, autoclaved yeast assimilation medium, pour plates of shallow depth, and commercially available carbohydrate-impregnated disks. The accuracy of this procedure was established in a comparison with the Wickerham broth method.

  5. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  6. Drosophila-associated yeast species in vineyard ecosystems.

    PubMed

    Lam, Samuel S T H; Howell, Kate S

    2015-10-01

    Yeast activity during wine fermentation directly contributes to wine quality, but the source and movement of yeasts in vineyards and winery environments have not been resolved. Here, we investigate the yeast species associated with the Drosophila insect vector to help understand yeast dispersal and persistence. Drosophila are commonly found in vineyards and are known to have a mutualistic relationship with yeasts in other ecosystems. Drosophilids were collected from vineyards, grape waste (marc) piles and wineries during grape harvest. Captured flies were identified morphologically, and their associated yeasts were identified. Drosophila melanogaster/D. simulans, D. hydei and Scaptodrosophila lativittata were identified in 296 captured Drosophila flies. These flies were associated with Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii and H. valbyensis yeasts. Yeast and Drosophila species diversity differed between collection locations (vineyard and marc: R = 0.588 for Drosophila and R = 0.644 for yeasts). Surprisingly, the primary wine fermentation yeast, Saccharomyces cerevisiae, was not isolated. Drosophila flies are preferentially associated with different yeast species in the vineyard and winery environments, and this association may help the movement and dispersal of yeast species in the vineyard and winery ecosystem.

  7. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  8. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  9. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  10. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  11. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  12. Stirling engines

    SciTech Connect

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  13. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  14. Evolution of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae

    PubMed Central

    Helmstaedt, Kerstin; Strittmatter, Axel; Lipscomb, William N.; Braus, Gerhard H.

    2005-01-01

    The shikimate pathway resulting in three aromatic amino acids is initiated in different organisms by two and three 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases, respectively. Aro3p and Aro4p are the yeast enzymes feedback-inhibited by phenylalanine and tyrosine, respectively. A yeast strain deficient in the general control transcriptional regulatory system of amino acid biosynthesis is unable to live in the presence of high amounts of phenylalanine and tyrosine. Here, we show that this yeast strain can be rescued by the expression of aroH from Escherichia coli encoding the tryptophan-regulated AroH as third isoenzyme. Yeast carrying Ec AroH as the only enzyme for the initial step of the shikimate pathway can grow in the absence of tryptophan. Without aromatic amino acids, this yeast strain survives only when the yeast ARO3 promoter instead of the ARO4 promoter drives E. coli aroH. The detailed analysis of Aro3p and Aro4p revealed a triple feedback control by tyrosine/phenylalanine and tryptophan. Dissecting this control allowed engineering of Aro4p S195A as an enzyme, which is inhibited like AroH only by tryptophan. In addition, Aro4p variants were constructed that show an equally strong inhibition by tyrosine and tryptophan (Aro4p P165G Q302R) and in which the regulation by tyrosine and tryptophan was reversed (Aro4p P165G). Our data suggest that yeast possesses only two instead of three isogenes encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases because both isoenzymes can be fine tuned by tryptophan as additional effector and because transcriptional regulation by the general control system can be induced as backup when aromatic amino acids in the environment are imbalanced. PMID:15987779

  15. Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.

    PubMed

    Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi

    2015-12-01

    The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes.

  16. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    PubMed

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production.

  17. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast.

  18. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  19. Yeast metallothionein function in metal ion detoxification.

    PubMed

    Ecker, D J; Butt, T R; Sternberg, E J; Neeper, M P; Debouck, C; Gorman, J A; Crooke, S T

    1986-12-25

    A genetic approach was taken to test the function of yeast metallothionein in metal ion detoxification. A yeast strain was constructed in which the metallothionein locus was deleted (cup1 delta). The cup1 delta strain was complemented with normal or mutant metallothionein genes under normal or constitutive regulatory control on high copy episomal plasmids. Metal resistance of the cup1 delta strain with and without the metallothionein-expressing vectors was analyzed. The normally regulated metallothionein gene conferred resistance only to copper (1000-fold); constitutively expressed metallothionein conferred resistance to both copper (500-fold) and cadmium (1000-fold), but not to mercury, zinc, silver, cobalt, nickel, gold, platinum, lanthanum, uranium, or tin. Two mutant versions of the metallothionein gene were constructed and tested for their ability to confer metal resistance in the cup1 delta background. The first had a deletion of a highly conserved amino acid sequence (Lys-Lys-Ser-Cys-Cys-Ser). The second was a hybrid gene consisting of the sequences coding for the first 20 amino acids of the yeast protein fused to the monkey metallothionein gene. Expression of these genes under the CUP1 promoter provided significant protection from copper, but none of the other metals tested. These results demonstrate that there is significant flexibility in the structural requirements for metallothionein to function in copper detoxification and that yeast metallothionein is also capable of detoxifying cadmium under conditions of constitutive expression.

  20. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  1. Antarctic Yeasts: Biodiversity and Potential Applications

    NASA Astrophysics Data System (ADS)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  2. Degradation of 5-hydroxymethylfurfural during yeast fermentation.

    PubMed

    Akıllıoglu, Halise Gül; Mogol, Burçe Ataç; Gökmen, Vural

    2011-12-01

    5-Hydroxymethyl furfural (HMF) may occur in malt in high quantities depending on roasting conditions. However, the HMF content of different types of beers is relatively low, indicating its potential for degradation during fermentation. This study investigates the degradation kinetics of HMF in wort during fermentation by Saccharomyces cerevisiae. The results indicated that HMF decreased exponentially as fermentation progressed. The first-order degradation rate of HMF was 0.693 × 10(-2) and 1.397 × 10(-2)min(-1) for wort and sweet wort, respectively, indicating that sugar enhances the activity of yeasts. In wort, HMF was converted into hydroxymethyl furfuryl alcohol by yeasts with a high yield (79-84% conversion). Glucose and fructose were utilised more rapidly by the yeasts in dark roasted malt than in pale malt (p<0.05). The conversion of HMF into hydroxymethyl furfuryl alcohol seems to be a primary activity of yeast cells, and presence of sugars in the fermentation medium increases this activity.

  3. Microfermentation Test For Identification Of Yeast

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mishra, S. K.; Molina, Thomas C.

    1995-01-01

    Microfermentation test developed as supplementary method for use in identifying yeasts, especially in clinical and environmental studies. In comparison with traditional fermentation tests, simpler and easier, and requiries less equipment, material, and laboratory space. Results obtained in days instead of weeks.

  4. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned.

  5. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation

    PubMed Central

    Guimarães, Pedro MR; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity. PMID:21326922

  6. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.

    PubMed

    Domingues, Lucília; Guimarães, Pedro M R; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity.

  7. Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species

    DOE PAGES

    Yang, Shihui; Wang, Wei; Wei, Hui; ...

    2016-08-29

    Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG) biosynthesis pathway in Trichoderma reesei. Wemore » then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. In addition, while the overall fatty acid methyl ester (FAME) profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion

  8. Preservation of frozen yeast cells by trehalose.

    PubMed

    Diniz-Mendes, L; Bernardes, E; de Araujo, P S; Panek, A D; Paschoalin, V M

    1999-12-05

    Two different methods commonly used to preserve intact yeast cells-freezing and freeze-drying-were compared. Different yeast cells submitted to these treatments were stored for 28 days and cell viability assessed during this period. Intact yeast cells showed to be less tolerant to freeze-drying than to freezing. The rate of survival for both treatments could be enhanced by exogenous trehalose (10%) added during freezing and freeze-drying treatments or by a combination of two procedures: a pre-exposure of cells to 40 degrees C for 60 min and addition of trehalose. A maximum survival level of 71.5 +/- 6.3% after freezing could be achieved at the end of a storage period of 28 days, whereas only 25.0 +/- 1.4% showed the ability to tolerate freeze-drying treatment, if both low-temperature treatments were preceded by a heat exposure and addition of trehalose to yeast cells. Increased survival ability was also obtained when the pre-exposure treatment of yeast cells was performed at 10 degrees C for 3 h and trehalose was added: these treatments enhanced cell survival following freezing from 20.5 +/- 7. 7% to 60.0 +/- 3.5%. Although both mild cold and heat shock treatments could enhance cell tolerance to low temperature, only the heat treatment was able to increase the accumulation of intracellular trehalose whereas, during cold shock exposure, the intracellular amount of trehalose remained unaltered. Intracellular trehalose levels seemed not to be the only factor contributing to cell tolerance against freezing and freeze-drying treatments; however, the protection that this sugar confers to cells can be exerted only if it is to be found on both sides of the plasma membrane.

  9. Biotransformation of hop aroma terpenoids by ale and lager yeasts.

    PubMed

    King, Andrew J; Dickinson, J Richard

    2003-03-01

    Terpenoids are important natural flavour compounds, which are introduced to beer via hopping. It has been shown recently that yeasts are able to biotransform some monoterpene alcohols. As a first step towards examining whether yeasts are capable of altering hop terpenoids during the brewing of beer, we investigated whether they were transformed when an ale and lager yeast were cultured in the presence of a commercially available syrup. Both yeasts transformed the monoterpene alcohols geraniol and linalool. The lager yeast also produced acetate esters of geraniol and citronellol. The major terpenoids of hop oil, however, were not biotransformed. Oxygenated terpenoids persisted much longer than the alkenes.

  10. Evaluation of Fungichrom 1: a new yeast identification system.

    PubMed

    Umabala, P; Satheeshkumar, T; Lakshmi, V

    2002-01-01

    Advances in anti-fungal therapy necessitate the need for accurate identification of fungi especially yeasts to their species level for more effective management. Unlike the time consuming conventional methods of yeast identification using fermentation and assimilation patterns of various carbohydrates, the new commercialized yeast identification systems are simpler, rapid and are particularly easy to interpret. In our study, a new colorimetric yeast identification system-Fungichrom 1(International microbio, Signes, France) was evaluated against the conventional method to identify 50 clinical isolates of yeasts belonging to the genera -Candida, Cryptococcus, Geotrichum. 96% agreement was found between the two methods.

  11. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  12. Optical engineering

    SciTech Connect

    Saito, T T

    1998-01-01

    The Optical Engineering thrust area at Lawrence Livermore National Laboratory (LLNL) was created in the summer of 1996 with the following main objectives: (1) to foster and stimulate leading edge optical engineering research and efforts key to carrying out LLNL's mission and enabling major new programs; (2) to bring together LLNL's broad spectrum of high level optical engineering expertise to support its programs. Optical engineering has become a pervasive and key discipline, with applications across an extremely wide range of technologies, spanning the initial conception through the engineering refinements to enhance revolutionary application. It overlaps other technologies and LLNL engineering thrust areas.

  13. Molecular identification of yeasts associated with traditional Egyptian dairy products.

    PubMed

    El-Sharoud, W M; Belloch, C; Peris, D; Querol, A

    2009-09-01

    This study aimed to examine the diversity and ecology of yeasts associated with traditional Egyptian dairy products employing molecular techniques in yeast identification. A total of 120 samples of fresh and stored Domiati cheese, kariesh cheese, and "Matared" cream were collected from local markets and examined. Forty yeast isolates were cultured from these samples and identified using the restriction-fragment length polymorphism (RFLPs) of 5.8S-ITS rDNA region and sequencing of the domains D1 and D2 of the 26S rRNA gene. Yeasts were identified as Issatchenkia orientalis (13 isolates), Candida albicans (4 isolates), Clavispora lusitaniae (Candida lusitaniae) (9 isolates), Kodamaea ohmeri (Pichia ohmeri) (1 isolate), Kluyveromyces marxianus (6 isolates), and Candida catenulata (7 isolates). With the exception of C. lusitaniae, the D1/D2 26S rRNA gene sequences were 100% identical for the yeast isolates within the same species. Phylogenetic reconstruction of C. lusitaniae isolates grouped them into 3 distinguished clusters. Kariesh cheese was found to be the most diverse in its yeast floras and contained the highest total yeast count compared with other examined dairy products. This was linked to the acidic pH and lower salt content of this cheese, which favor the growth and survival of yeasts in foodstuffs. Stored Domiati cheese also contained diverse yeast species involving isolates of the pathogenic yeast C. albicans. This raises the possibility of dairy products being vehicles of transmission of pathogenic yeasts.

  14. A caspase-related protease regulates apoptosis in yeast.

    PubMed

    Madeo, Frank; Herker, Eva; Maldener, Corinna; Wissing, Silke; Lächelt, Stephan; Herlan, Mark; Fehr, Markus; Lauber, Kirsten; Sigrist, Stephan J; Wesselborg, Sebastian; Fröhlich, Kai Uwe

    2002-04-01

    Yeast can undergo cell death accompanied by cellular markers of apoptosis. However, orthologs of classical mammalian apoptosis regulators appeared to be missing from the yeast genome, challenging a common mechanism of yeast and mammalian apoptosis. Here we investigate Yor197w, a yeast protein with structural homology to mammalian caspases, and demonstrate caspase-like processing of the protein. Hydrogen peroxide treatment induces apoptosis together with a caspase-like enzymatic activity in yeast. This response is completely abrogated after disruption and strongly stimulated after overexpression of Yor197w. Yor197w also mediates the death process within chronologically aged cultures, pointing to a physiological role in elimination of overaged cells. We conclude that Yor197w indeed functions as a bona fide caspase in yeast and propose the name Yeast Caspase-1 (YCA1, gene YCA1).

  15. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

    PubMed

    Gombert, Andreas K; van Maris, Antonius J A

    2015-06-01

    Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness.

  16. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    PubMed Central

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  17. Misidentification of clinical yeast isolates by using the updated Vitek Yeast Biochemical Card.

    PubMed Central

    Dooley, D P; Beckius, M L; Jeffrey, B S

    1994-01-01

    The Vitek Yeast Biochemical Card (YBC) is widely used as a rapid identification (RI) (within 48 h) system for clinical yeast isolates. We compared the RI results obtained by the YBC technique with matched results obtained with the API 20C system. The RI of germ tube-negative yeasts isolated from 222 clinical specimens was performed with the YBC system, and the results were compared with those of standard identifications obtained by using the API 20C system and morphology, with additional biochemical reactions performed as required. Commonly isolated yeasts (Candida albicans [n = 29], Candida tropicalis [n = 40], Torulopsis [Candida] glabrata [n = 28], Candida parapsilosis [n = 12], and Cryptococcus neoformans [n = 14]) were generally well identified (115 of 123 [93%] identified correctly, with only C. albicans, C. tropicalis, and C. neoformans mis- or unidentified more than once). The RI of less commonly isolated yeasts included in the YBC database, however, was less successful (54 of 99 [55%] correct). The YBC card failed to identify 42% (10 of 24) of Candida krusei isolates, 80% (4 of 5) of Candida lambica isolates, 88% (7 of 8) of Trichosporon beigelii isolates, and 83% (10 of 12) of Cryptococcus isolates (non-C. neoformans species). For most identification failures (79%; 42 of 53) there was no identification by the end of 48 h; the other identification failures (21%; 11 of 53) gave definite but incorrect identifications. Of eight rare clinical yeast isolates not included in the Vitek database, six were correctly, not identified, while two (25%) were falsely assigned a definite RI (one Hansenula fabianii isolate was identified as Rhodotorula glutinis, and one Hansenula isolate [non-Hansenula anomala] was identified as Hansenula anomala). While the Vitek YBC rapidly and adequately identifies common yeast isolates, it fails in the RI of more unusual organisms. PMID:7883873

  18. Engineering Motion

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  19. Engineering therapeutic protein disaggregases

    PubMed Central

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  20. Cell-Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors.

    PubMed

    Khakhar, Arjun; Bolten, Nicholas J; Nemhauser, Jennifer; Klavins, Eric

    2016-04-15

    An engineering framework for synthetic multicellular systems requires a programmable means of cell-cell communication. Such a communication system would enable complex behaviors, such as pattern formation, division of labor in synthetic microbial communities, and improved modularity in synthetic circuits. However, it remains challenging to build synthetic cellular communication systems in eukaryotes due to a lack of molecular modules that are orthogonal to the host machinery, easy to reconfigure, and scalable. Here, we present a novel cell-to-cell communication system in Saccharomyces cerevisiae (yeast) based on CRISPR transcription factors and the plant hormone auxin that exhibits several of these features. Specifically, we engineered a sender strain of yeast that converts indole-3-acetamide (IAM) into auxin via the enzyme iaaH from Agrobacterium tumefaciens. To sense auxin and regulate transcription in a receiver strain, we engineered a reconfigurable library of auxin-degradable CRISPR transcription factors (ADCTFs). Auxin-induced degradation is achieved through fusion of an auxin-sensitive degron (from IAA corepressors) to the CRISPR TF and coexpression with an auxin F-box protein. Mirroring the tunability of auxin perception in plants, our family of ADCTFs exhibits a broad range of auxin sensitivities. We characterized the kinetics and steady-state behavior of the sender and receiver independently as well as in cocultures where both cell types were exposed to IAM. In the presence of IAM, auxin is produced by the sender cell and triggers deactivation of reporter expression in the receiver cell. The result is an orthogonal, rewireable, tunable, and, arguably, scalable cell-cell communication system for yeast and other eukaryotic cells.

  1. Yeast as Models of Mitotic Fidelity.

    PubMed

    Torres, Eduardo

    2015-01-01

    Chromosome missegregation leads to aneuploidy which is defined as the cellular state of having a chromosome count that is not an exact multiple of the haploid number. Aneuploidy is associated with human diseases including mental retardation, neurodegenerative diseases and cancer. In addition, aneuploidy is the major cause of spontaneous abortions and its occurrence increases with aging. Therefore, it is important to understand the molecular mechanisms by which cells respond and adapt to aneuploidy. Saccharomyces cerevisiae has proven to be a good model to study the effects aneuploidy elicits on cellular homeostasis and physiology. This chapter focuses on the current understanding of how the yeast S. cerevisiae responds to the acquisition of extra chromosomes and highlights how studies in aneuploid yeasts provide insights onto the effects of aneuploidy in human cells.

  2. A Sampling of the Yeast Proteome

    PubMed Central

    Futcher, B.; Latter, G. I.; Monardo, P.; McLaughlin, C. S.; Garrels, J. I.

    1999-01-01

    In this study, we examined yeast proteins by two-dimensional (2D) gel electrophoresis and gathered quantitative information from about 1,400 spots. We found that there is an enormous range of protein abundance and, for identified spots, a good correlation between protein abundance, mRNA abundance, and codon bias. For each molecule of well-translated mRNA, there were about 4,000 molecules of protein. The relative abundance of proteins was measured in glucose and ethanol media. Protein turnover was examined and found to be insignificant for abundant proteins. Some phosphoproteins were identified. The behavior of proteins in differential centrifugation experiments was examined. Such experiments with 2D gels can give a global view of the yeast proteome. PMID:10523624

  3. Nuclear organisation and RNAi in fission yeast.

    PubMed

    Woolcock, Katrina J; Bühler, Marc

    2013-06-01

    Over the last decade, the fission yeast Schizosaccharomyces pombe has been used extensively for investigating RNA interference (RNAi)-mediated heterochromatin assembly. However, only recently have studies begun to shed light on the 3D organisation of chromatin and the RNAi machinery in the fission yeast nucleus. These studies indicate association of repressive and active chromatin with different regions of the nuclear periphery, similar to other model organisms, and clustering of functionally related genomic features. Unexpectedly, RNAi factors were shown to associate with nuclear pores and were implicated in the regulation of genomic features outside of the well-studied heterochromatic regions. Nuclear organisation is likely to contribute to substrate specificity of the RNAi pathway. However, further studies are required to elucidate the exact mechanisms and functional importance of this nuclear organisation.

  4. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  5. A switchable yeast display/secretion system

    PubMed Central

    Van Deventer, James A.; Kelly, Ryan L.; Rajan, Saravanan; Wittrup, K. Dane; Sidhu, Sachdev S.

    2015-01-01

    Display technologies such as yeast and phage display offer powerful alternatives to traditional immunization-based antibody discovery, but require conversion of displayed proteins into soluble form prior to downstream characterization. Here we utilize amber suppression to implement a yeast-based switchable display/secretion system that enables the immediate production of soluble, antibody-like reagents at the end of screening efforts. Model selections in the switchable format remain efficient, and library screening in the switchable format yields renewable sources of affinity reagents exhibiting nanomolar binding affinities. These results confirm that this system provides a seamless link between display-based screening and the production and evaluation of soluble forms of candidate binding proteins. Switchable display/secretion libraries provide a cloning-free, accessible approach to affinity reagent generation. PMID:26333274

  6. A switchable yeast display/secretion system.

    PubMed

    Van Deventer, James A; Kelly, Ryan L; Rajan, Saravanan; Wittrup, K Dane; Sidhu, Sachdev S

    2015-10-01

    Display technologies such as yeast and phage display offer powerful alternatives to traditional immunization-based antibody discovery, but require conversion of displayed proteins into soluble form prior to downstream characterization. Here we utilize amber suppression to implement a yeast-based switchable display/secretion system that enables the immediate production of soluble, antibody-like reagents at the end of screening efforts. Model selections in the switchable format remain efficient, and library screening in the switchable format yields renewable sources of affinity reagents exhibiting nanomolar binding affinities. These results confirm that this system provides a seamless link between display-based screening and the production and evaluation of soluble forms of candidate binding proteins. Switchable display/secretion libraries provide a cloning-free, accessible approach to affinity reagent generation.

  7. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  8. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  9. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    PubMed

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  10. Identification of Protein Components of Yeast Telomerase

    DTIC Science & Technology

    2000-09-01

    for forming telomeres at sites with stretches of telomere- like DNA. The pifl mutants also exhibit increased loss and decreased recombination of...like DNA. The pifl mutants also exhibit increased loss 6 and decreased recombination of mitochondrial DNA and thus have a high fraction of...the fission yeast Schizosaccharomyces pombe that was predicted to encode a 805 amino acid protein. The S. pombe gene was called rphl+ (RRM3/PIF1

  11. Multipurpose Transposon-Insertion Libraries in Yeast.

    PubMed

    Kumar, Anuj

    2016-06-01

    Libraries of transposon-insertion alleles constitute powerful and versatile tools for large-scale analysis of yeast gene function. Transposon-insertion libraries are constructed most simply through mutagenesis of a plasmid-based genomic DNA library; modification of the mutagenizing transposon by incorporation of yeast selectable markers, recombination sites, and an epitope tag enables the application of insertion alleles for phenotypic screening and protein localization. In particular, yeast genomic DNA libraries have been mutagenized with modified bacterial transposons carrying the URA3 marker, lox recombination sites, and sequence encoding multiple copies of the hemagglutinin (HA) epitope. Mutagenesis with these transposons has yielded a large resource of insertion alleles affecting nearly 4000 yeast genes in total. Through well-established protocols, these insertion libraries can be introduced into the desired strain backgrounds and the resulting insertional mutants can be screened or systematically analyzed. Relative to alternative methods of UV irradiation or chemical mutagenesis, transposon-insertion alleles can be easily identified by PCR-based approaches or high-throughput sequencing. Transposon-insertion libraries also provide a cost-effective alternative to targeted deletion approaches, although, in contrast to start-codon to stop-codon deletions, insertion alleles might not represent true null-mutants. For protein-localization studies, transposon-insertion alleles can provide encoded epitope tags in-frame with internal codons; in many cases, these transposon-encoded epitope tags can provide a more accurate localization for proteins in which terminal sequences are crucial for intracellular targeting. Thus, overall, transposon-insertion libraries can be used quickly and economically and have a particular utility in screening for desired phenotypes and localization patterns in nonstandard genetic backgrounds.

  12. Structures of yeast vesicle trafficking proteins.

    PubMed Central

    Tishgarten, T.; Yin, F. F.; Faucher, K. M.; Dluhy, R. A.; Grant, T. R.; Fischer von Mollard, G.; Stevens, T. H.; Lipscomb, L. A.

    1999-01-01

    In protein transport between organelles, interactions of v- and t-SNARE proteins are required for fusion of protein-containing vesicles with appropriate target compartments. Mammalian SNARE proteins have been observed to interact with NSF and SNAP, and yeast SNAREs with yeast homologues of NSF and SNAP proteins. This observation led to the hypothesis that, despite low sequence homology, SNARE proteins are structurally similar among eukaryotes. SNARE proteins can be classified into two groups depending on whether they interact with SNARE binding partners via conserved glutamine (Q-SNAREs) or arginine (R-SNAREs). Much of the published structural data available is for SNAREs involved in exocytosis (either in yeast or synaptic vesicles). This paper describes circular dichroism, Fourier transform infrared spectroscopy, and dynamic light scattering data for a set of yeast v- and t-SNARE proteins, Vti1p and Pep12p, that are Q-SNAREs involved in intracellular trafficking. Our results suggest that the secondary structure of Vti1p is highly alpha-helical and that Vti1p forms multimers under a variety of solution conditions. In these respects, Vti1p appears to be distinct from R-SNARE proteins characterized previously. The alpha-helicity of Vti1p is similar to that of Q-SNARE proteins characterized previously. Pep12p, a Q-SNARE, is highly alpha-helical. It is distinct from other Q-SNAREs in that it forms dimers under many of the solution conditions tested in our experiments. The results presented in this paper are among the first to suggest heterogeneity in the functioning of SNARE complexes. PMID:10595551

  13. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis.

    PubMed

    Rodicio, Rosaura; Heinisch, Jürgen J

    2013-05-01

    The milk yeast Kluyveromyces lactis has a life cycle similar to that of Saccharomyces cerevisiae and can be employed as a model eukaryote using classical genetics, such as the combination of desired traits, by crossing and tetrad analysis. Likewise, a growing set of vectors, marker cassettes and tags for fluorescence microscopy are available for manipulation by genetic engineering and investigating its basic cell biology. We here summarize these applications, as well as the current knowledge regarding its central metabolism, glucose and extracellular stress signalling pathways. A short overview on the biotechnological potential of K. lactis concludes this review.

  14. SNF1/AMPK pathways in yeast

    PubMed Central

    Hedbacker, Kristina; Carlson, Marian

    2009-01-01

    The SNF1/AMPK family of protein kinases is highly conserved in eukaryotes and is required for energy homeostasis in mammals, plants, and fungi. SNF1 protein kinase was initially identified by genetic analysis in the budding yeast Saccharomyces cerevisiae. SNF1 is required primarily for the adaptation of yeast cells to glucose limitation and for growth on carbon sources that are less preferred than glucose, but is also involved in responses to other environmental stresses. SNF1 regulates transcription of a large set of genes, modifies the activity of metabolic enzymes, and controls various nutrient-responsive cellular developmental processes. Like AMPK, SNF1 protein kinase is heterotrimeric. It is phosphorylated and activated by the upstream kinases Sak1, Tos3, and Elm1 and is inactivated by the Reg1-Glc7 protein phosphatase 1. Further regulation of SNF1 is achieved through autoinhibition and through control of its subcellular localization. Here we review the current understanding of SNF1 protein kinase pathways in Saccharomyces cerevisiae and other yeasts. PMID:17981722

  15. Strategies for identifying new prions in yeast.

    PubMed

    MacLea, Kyle S; Ross, Eric D

    2011-01-01

    The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology.

  16. How to build a yeast nucleus.

    PubMed

    Wong, Hua; Arbona, Jean-Michel; Zimmer, Christophe

    2013-01-01

    Biological functions including gene expression and DNA repair are affected by the 3D architecture of the genome, but the underlying mechanisms are still unknown. Notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular DNA sequences. The budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and DNA contact frequencies. We recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. This model ignores the DNA sequence information except for specific constraints at the centromeres, telomeres, and the ribosomal DNA (rDNA). Despite its simplicity, the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromosomal and subchromosomal scales. Here, we also illustrate the model's ability to reproduce observed features of chromatin movements. Our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of DNA-specific factors or epigenetic modifications. In addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture.

  17. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  18. How do yeast sense mitochondrial dysfunction?

    PubMed Central

    Knorre, Dmitry A.; Sokolov, Svyatoslav S.; Zyrina, Anna N.; Severin, Fedor F.

    2016-01-01

    Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain) or increase (inhibitors of ATP-synthase) mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely) unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state. PMID:28357322

  19. Wood impregnation of yeast lees for winemaking.

    PubMed

    Palomero, Felipe; Bertani, Paolo; Fernández de Simón, Brígida; Cadahía, Estrella; Benito, Santiago; Morata, Antonio; Suárez-Lepe, José A

    2015-03-15

    This study develops a new method to produce more complex wines by means of an indirect diffusion of wood aromas from yeast cell-walls. An exogenous lyophilized biomass was macerated with an ethanol wood extract solution and subsequently dried. Different times were used for the adsorption of polyphenols and volatile compounds to the yeast cell-walls. The analysis of polyphenols and volatile compounds (by HPLC/DAD and GC-MS, respectively) demonstrate that the adsorption/diffusion of these compounds from the wood to the yeast takes place. Red wines were also aged with Saccharomyces cerevisiae lees that had been impregnated with wood aromas and subsequently dried. Four different types of wood were used: chestnut, cherry, acacia and oak. Large differences were observed between the woods studied with regards to their volatile and polyphenolic profiles. Sensory evaluations confirmed large differences even with short-term contact between the wines and the lees, showing that the method could be of interest for red wine making. In addition, the results demonstrate the potential of using woods other than oak in cooperage.

  20. Yeasts found in vineyards and wineries.

    PubMed

    Varela, Cristian; Borneman, Anthony R

    2017-03-01

    Wine is a complex beverage, comprising thousands of metabolites that are produced through the action of a plethora of yeasts and bacteria during fermentation of grape must. These microbial communities originate in the vineyard and the winery and reflect the influence of several factors including grape variety, geographical location, climate, vineyard spraying, technological practices, processing stage and season (pre-harvest, harvest, post-harvest). Vineyard and winery microbial communities have the potential to participate during fermentation and influence wine flavour and aroma. Therefore, there is an enormous interest in isolating and characterising these communities, particularly non-Saccharomyces yeast species to increase wine flavour diversity, while also exploting regional signature microbial populations to enhance regionality. In this review we describe the role and relevance of the main non-Saccharomyces yeast species found in vineyards and wineries. This includes the latest reports covering the application of these species for winemaking; and the biotechnological characteristics and potential applications of non-Saccharomyces species in other areas. In particular, we focus attention on the species for which molecular and genomic tools and resources are available for study. Copyright © 2016 John Wiley & Sons, Ltd.