Science.gov

Sample records for engineered ethanologenic yeast

  1. Two new native ß-glucosidases from Clavispora NRRL Y-50464 confer its dual function as cellobiose fermenting ethanologenic yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clavispora NRRL Y-50464, a dual functional cellobiose fermenting and ethanologenic yeast strain, is a candidate biocatalyst for lower cost lignocellulose-to-ethanol production using simultaneous saccharification and fermentation. A ß-glucosidase BGL1 protein from this strain was recently reported an...

  2. A linear discrete dynamic system model for temporal gene interaction and regulatory network influence in response to bioethanol conversion inhibitor HMF for ethanologenic yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A linear discrete dynamic system model is constructed to represent the temporal interactions among significantly expressed genes in response to bioethanol conversion inhibitor 5-hydroxymethylfurfural for ethanologenic yeast Saccharomyces cerevisiae. This study identifies the most significant linear...

  3. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective

    PubMed Central

    Kricka, William; Fitzpatrick, James; Bond, Ursula

    2014-01-01

    This review focuses on current approaches to metabolic engineering of ethanologenic yeast species for the production of bioethanol from complex lignocellulose biomass sources. The experimental strategies for the degradation of the cellulose and xylose-components of lignocellulose are reviewed. Limitations to the current approaches are discussed and novel solutions proposed. PMID:24795706

  4. [Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination].

    PubMed

    Liu, Xiuying; He, Xiuping; Lu, Ying; Zhang, Borun

    2011-07-01

    Ethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, in the process of industrial production of ethanol, both cell growth and fermentation of ethanologenic S. cerevisiae are dramatically affected by environmental stresses, such as thermal stress. In this study, we improved both the thermotolerance and fermentation performance of industrial ethanologenic S. cerevisiae by combined usage of chemical mutagenesis and genomic DNA mutagenesis-based genetic recombination method. The recombinant S. cerevisiae strain T44-2 could grow at 44 degrees C, 3 degrees C higher than that of the original strain CE6. The survival rate of T44-2 was 1.84 and 1.87-fold of that of CE6 when heat shock at 48 degrees C and 52 degrees C for 1 h respectively. At temperature higher than 37 degrees C, recombinant strain T44-2 always gave higher cell growth and ethanol production than those of strain CE6. Meanwhile, from 30 degrees C to 40 degrees C, recombinant strain T44-2 produces 91.2-83.8 g/L of ethanol from 200 g/L of glucose, which indicated that the recombinant strain T44-2 had both thermotolerance and broad thermal adaptability. The work offers a novel method, called genomic DNA mutagenesis-based genetic recombination, to improve the physiological functions of S. cerevisiae.

  5. Engineering antibodies by yeast display.

    PubMed

    Boder, Eric T; Raeeszadeh-Sarmazdeh, Maryam; Price, J Vincent

    2012-10-15

    Since its first application to antibody engineering 15 years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.

  6. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast.

    PubMed

    Wang, Xu; Liu, Z Lewis; Weber, Scott A; Zhang, Xiaoping

    2016-01-01

    Yeast strain Clavispora NRRL Y-50464 is able to produce cellulosic ethanol from lignocellulosic materials without addition of external β-glucosidase by simultaneous saccharification and fermentation. A β-glucosidase BGL1 protein from this strain was recently reported supporting its cellobiose utilization capability. Here, we report two additional new β-glucosidase genes encoding enzymes designated as BGL2 and BGL3 from strain NRRL Y-50464. Quantitative gene expression was analyzed and the gene function of BGL2 and BGL3 was confirmed by heterologous expression using cellobiose as a sole carbon source. Each gene was cloned and partially purified protein obtained separately for direct enzyme assay using varied substrates. Both proteins showed the highest specific activity at pH 5 and relatively strong affinity with a Km of 0.08 and 0.18 mM for BGL2 and BGL3, respectively. The optimum temperature was found to be 50°C for BGL2 and 55°C for BGL3. Both proteins were able to hydrolyze 1,4 oligosaccharides evaluated in this study. They also showed a strong resistance to glucose product inhibition with a Ki of 61.97 and 38.33 mM for BGL2 and BGL3, respectively. While BGL3 was sensitive showing a significantly reduced activity to 4% ethanol, BGL2 demonstrated tolerance to ethanol. Its activity was enhanced in the presence of ethanol but reduced at concentrations greater than 16%. The presence of the fermentation inhibitors furfural and HMF did not affect the enzyme activity. Our results suggest that a β-glucosidase gene family exists in Clavispora NRRL Y-50464 with at least three members in this group that validate its cellobiose hydrolysis functions for lower-cost cellulosic ethanol production. Results of this study confirmed the cellobiose hydrolysis function of strain NRRL Y-50464, and further supported this dual functional yeast as a candidate for lower-cost cellulosic ethanol production and next-generation biocatalyst development in potential industrial

  7. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast.

    PubMed

    Wang, Xu; Liu, Z Lewis; Weber, Scott A; Zhang, Xiaoping

    2016-01-01

    Yeast strain Clavispora NRRL Y-50464 is able to produce cellulosic ethanol from lignocellulosic materials without addition of external β-glucosidase by simultaneous saccharification and fermentation. A β-glucosidase BGL1 protein from this strain was recently reported supporting its cellobiose utilization capability. Here, we report two additional new β-glucosidase genes encoding enzymes designated as BGL2 and BGL3 from strain NRRL Y-50464. Quantitative gene expression was analyzed and the gene function of BGL2 and BGL3 was confirmed by heterologous expression using cellobiose as a sole carbon source. Each gene was cloned and partially purified protein obtained separately for direct enzyme assay using varied substrates. Both proteins showed the highest specific activity at pH 5 and relatively strong affinity with a Km of 0.08 and 0.18 mM for BGL2 and BGL3, respectively. The optimum temperature was found to be 50°C for BGL2 and 55°C for BGL3. Both proteins were able to hydrolyze 1,4 oligosaccharides evaluated in this study. They also showed a strong resistance to glucose product inhibition with a Ki of 61.97 and 38.33 mM for BGL2 and BGL3, respectively. While BGL3 was sensitive showing a significantly reduced activity to 4% ethanol, BGL2 demonstrated tolerance to ethanol. Its activity was enhanced in the presence of ethanol but reduced at concentrations greater than 16%. The presence of the fermentation inhibitors furfural and HMF did not affect the enzyme activity. Our results suggest that a β-glucosidase gene family exists in Clavispora NRRL Y-50464 with at least three members in this group that validate its cellobiose hydrolysis functions for lower-cost cellulosic ethanol production. Results of this study confirmed the cellobiose hydrolysis function of strain NRRL Y-50464, and further supported this dual functional yeast as a candidate for lower-cost cellulosic ethanol production and next-generation biocatalyst development in potential industrial

  8. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast

    PubMed Central

    Wang, Xu; Liu, Z. Lewis; Weber, Scott A.; Zhang, Xiaoping

    2016-01-01

    Yeast strain Clavispora NRRL Y-50464 is able to produce cellulosic ethanol from lignocellulosic materials without addition of external β-glucosidase by simultaneous saccharification and fermentation. A β-glucosidase BGL1 protein from this strain was recently reported supporting its cellobiose utilization capability. Here, we report two additional new β-glucosidase genes encoding enzymes designated as BGL2 and BGL3 from strain NRRL Y-50464. Quantitative gene expression was analyzed and the gene function of BGL2 and BGL3 was confirmed by heterologous expression using cellobiose as a sole carbon source. Each gene was cloned and partially purified protein obtained separately for direct enzyme assay using varied substrates. Both proteins showed the highest specific activity at pH 5 and relatively strong affinity with a Km of 0.08 and 0.18 mM for BGL2 and BGL3, respectively. The optimum temperature was found to be 50°C for BGL2 and 55°C for BGL3. Both proteins were able to hydrolyze 1,4 oligosaccharides evaluated in this study. They also showed a strong resistance to glucose product inhibition with a Ki of 61.97 and 38.33 mM for BGL2 and BGL3, respectively. While BGL3 was sensitive showing a significantly reduced activity to 4% ethanol, BGL2 demonstrated tolerance to ethanol. Its activity was enhanced in the presence of ethanol but reduced at concentrations greater than 16%. The presence of the fermentation inhibitors furfural and HMF did not affect the enzyme activity. Our results suggest that a β-glucosidase gene family exists in Clavispora NRRL Y-50464 with at least three members in this group that validate its cellobiose hydrolysis functions for lower-cost cellulosic ethanol production. Results of this study confirmed the cellobiose hydrolysis function of strain NRRL Y-50464, and further supported this dual functional yeast as a candidate for lower-cost cellulosic ethanol production and next-generation biocatalyst development in potential industrial

  9. Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery.

    PubMed

    Abdel-Fattah, W R; Fadil, M; Nigam, P; Banat, I M

    2000-06-01

    An enrichment and isolation program for new ethanol-producing thermotolerant yeasts as well as a screening program of some known thermotolerant strains resulted in the selection of several strains capable of growth at 40-43 degrees C. Among these strains four grew and fermented sugar cane molasses at 43 degrees C under batch conditions with sugar-conversion efficiencies >94% and ethanol concentrations 6.8-8.0% (w/v). The two best-performing strains, a Saccharomyces cerevisiae F111 and a Kluyveromyces marxianus WR12 were used in eight 87.5 m(3) fermentation runs (four using each strain) for industrial ethanol production in an Egyptian distillery using sugar cane molasses. Mean ethanol production was 7.7% and 7.4% (w/v), respectively, with an added advantage of cooling elimination during fermentation and higher ethanol yields compared to the distillery's S. cerevisiae SIIC (ATCC 24855) strain in use. The isolate S. cerevisiae F111 was subsequently adopted by the distillery for regular production with significant economical gains and water conservation.

  10. Progress in Yeast Glycosylation Engineering.

    PubMed

    Hamilton, Stephen R; Zha, Dongxing

    2015-01-01

    While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways. PMID:26082216

  11. Engineering yeasts for xylose metabolism.

    PubMed

    Jeffries, Thomas W

    2006-06-01

    Technologies for the production of alternative fuels are receiving increased attention owing to concerns over the rising cost of petrol and global warming. One such technology under development is the use of yeasts for the commercial fermentation of xylose to ethanol. Several approaches have been employed to engineer xylose metabolism. These involve modeling, flux analysis, and expression analysis followed by the targeted deletion or altered expression of key genes. Expression analysis is increasingly being used to target rate-limiting steps. Quantitative metabolic models have also proved extremely useful: they can be calculated from stoichiometric balances or inferred from the labeling of intermediate metabolites. The recent determination of the genome sequence for P. stipitis is important, as its genome characteristics and regulatory patterns could serve as guides for further development in this natural xylose-fermenting yeast or in engineered Saccharomyces cerevisiae. Lastly, strain selection through mutagenesis, adaptive evolution or from nature can also be employed to further improve activity.

  12. Enzyme Evolution by Yeast Cell Surface Engineering.

    PubMed

    Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-01-01

    Artificial evolution of proteins with the aim of acquiring novel or improved functionality is important for practical applications of the proteins. We have developed yeast cell surface engineering methods (or arming technology) for evolving enzymes. Here, we have described yeast cell surface engineering coupled with in vivo homologous recombination and library screening as a method for the artificial evolution of enzymes such as firefly luciferases. Using this method, novel luciferases with improved substrate specificity and substrate reactivity were engineered. PMID:26060078

  13. Yeast Oligo-mediated Genome Engineering (YOGE)

    PubMed Central

    DiCarlo, JE; Conley, AJ; Penttilä, M; Jäntti, J; Wang, HH; Church, GM

    2014-01-01

    High-frequency oligonucleotide-directed recombination engineering (recombineering) has enabled rapid modification of several prokaryotic genomes to date. Here, we present a method for oligonucleotide-mediated recombineering in the model eukaryote and industrial production host S. cerevisiae, which we call Yeast Oligo-mediated Genome Engineering (YOGE). Through a combination of overexpression and knockouts of relevant genes and optimization of transformation and oligonucleotide designs, we achieve high gene modification frequencies at levels that only require screening of dozens of cells. We demonstrate the robustness of our approach in three divergent yeast strains, including those involved in industrial production of bio-based chemicals. Furthermore, YOGE can be iteratively executed via cycling to generate genomic libraries up to 105 individuals at each round for diversity generation. YOGE cycling alone, or in combination with phenotypic selections or endonuclease-based negative genotypic selections, can be used to easily generate modified alleles in yeast populations with high frequencies. PMID:24160921

  14. Metabolic Engineering of Sesquiterpene Metabolism in Yeast

    PubMed Central

    Takahashi, Shunji; Yeo, Yunsoo; Greenhagen, Bryan T.; McMullin, Tom; Song, Linsheng; Maurina-Brunker, Julie; Rosson, Reinhardt; Noel, Joseph P.; Chappell, Joe

    2010-01-01

    Terpenes are structurally diverse compounds that are of interest because of their biological activities and industrial value. These compounds consist of chirally rich hydrocarbon backbones derived from terpene synthases, which are subsequently decorated with hydroxyl substituents catalyzed by terpene hydroxylases. Availability of these compounds is, however, limited by intractable synthetic means and because they are produced in low amounts and as complex mixtures by natural sources. We engineered yeast for sesquiterpene accumulation by introducing genetic modifications that enable the yeast to accumulate high levels of the key intermediate farnesyl diphosphate (FPP). Co-expression of terpene synthase genes diverted the enlarged FPP pool to greater than 80 mg/L of sesquiterpene. Efficient coupling of terpene production with hydroxylation was also demonstrated by coordinate expression of terpene hydroxylase activity, yielding 50 mg/L each of hydrocarbon and hydroxylated products. These yeast now provide a convenient format for investigating catalytic coupling between terpene synthases and hydroxylases, as well as a platform for the industrial production of high value, single-entity and stereochemically unique terpenes. PMID:17013941

  15. Applications of Yeast Surface Display for Protein Engineering.

    PubMed

    Cherf, Gerald M; Cochran, Jennifer R

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  16. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  17. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  18. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate.

    PubMed

    Fujii, Mari; Yoshida, Shiori; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Marine macroalgae is a promising carbon source that contains alginate and mannitol as major carbohydrates. A bioengineered ethanologenic strain of the bacterium Sphingomonas sp. A1 can produce ethanol from alginate, but not mannitol, whereas the yeast Saccharomyces paradoxus NBRC 0259-3 can produce ethanol from mannitol, but not alginate. Thus, one practical approach for converting both alginate and mannitol into ethanol would involve two-step fermentation, in which the ethanologenic bacterium initially converts alginate into ethanol, and then the yeast produces ethanol from mannitol. In this study, we found that, during fermentation from alginate, the ethanologenic bacterium lost viability and secreted toxic byproducts into the medium. These toxic byproducts inhibited bacterial growth and killed bacterial cells and also inhibited growth of S. paradoxus NBRC 0259-3. We discovered that adjusting the pH of the culture supernatant or the culture medium containing the toxic byproducts to 6.0 attenuated the toxicity toward both bacteria and yeast, and also extended the period of viability of the bacterium. Although continuous adjustment of pH to 6.0 failed to improve the ethanol productivity of this ethanologenic bacterium, this pH adjustment worked very well in the two-step fermentation due to the attenuation of toxicity toward S. paradoxus NBRC 0259-3. These findings provide information critical for establishment of a practical system for ethanol production from brown macroalgae.

  19. An engineered yeast efficiently secreting penicillin.

    PubMed

    Gidijala, Loknath; Kiel, Jan A K W; Douma, Rutger D; Seifar, Reza M; van Gulik, Walter M; Bovenberg, Roel A L; Veenhuis, Marten; van der Klei, Ida J

    2009-01-01

    This study aimed at developing an alternative host for the production of penicillin (PEN). As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS) delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT) and phenylacetyl CoA ligase (PCL) resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L). PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel) beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents), whose production involves NRPS's. PMID:20016817

  20. An Engineered Yeast Efficiently Secreting Penicillin

    PubMed Central

    Gidijala, Loknath; Kiel, Jan A. K. W.; Douma, Rutger D.; Seifar, Reza M.; van Gulik, Walter M.; Bovenberg, Roel A. L.; Veenhuis, Marten; van der Klei, Ida J.

    2009-01-01

    This study aimed at developing an alternative host for the production of penicillin (PEN). As yet, the industrial production of this β-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT) and phenylacetyl CoA ligase (PCL) resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L). PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel) β-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents), whose production involves NRPS's. PMID:20016817

  1. Engineered yeast for enhanced CO2 mineralization†

    PubMed Central

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2014-01-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  2. Engineering yeast for producing human glycoproteins: where are we now?

    PubMed

    Laukens, Bram; De Visscher, Charlotte; Callewaert, Nico

    2015-01-01

    Yeast has advanced as an alternative for mammalian cell culture for the production of recombinant therapeutic glycoproteins. Engineered yeast strains not only allow to mimic the human N-glycosylation pathway but also specific types of human O-glycosylation. This is of great value for therapeutic protein production and indispensable to determine the structure-function relationships of glycans on recombinant proteins. However, as the technology matures, some limitations have come up that may hamper biomedical applications and must be considered to exploit the full potential of the unprecedented glycan homogeneity obtained on relevant biopharmaceuticals. In this special report, we focus on the recent developments in N- and O-glycosylation engineering in yeasts of industrial importance, to produce recombinant therapeutics with customized glycans.

  3. Yeast Endoplasmic Reticulum Sequestration Screening for the Engineering of Proteases from Libraries Expressed in Yeast.

    PubMed

    Yi, Li; Taft, Joseph M; Li, Qing; Gebhard, Mark C; Georgiou, George; Iverson, Brent L

    2015-01-01

    There is significant interest in engineering proteases with desired proteolytic properties. We describe a high-throughput fluorescence-activated cell sorting (FACS) assay for detecting altered proteolytic activity of protease in yeast, at the single cell level. This assay relies on coupling yeast endoplasmic reticulum (ER) retention, yeast surface display, and FACS analysis. The method described here allows facile screening of large libraries, and of either protease or substrate variants, including the screening of protease libraries against substrate libraries. We demonstrate the application of this technique in the screening of libraries of Tobacco Etch Virus protease (TEV-P) for altered proteolytic activities. In addition, the generality of this method is also validated by other proteases such as human granzyme K and the hepatitis C virus protease, and the human Abelson tyrosine kinase. PMID:26060071

  4. Protein Engineering and Selection Using Yeast Surface Display.

    PubMed

    Angelini, Alessandro; Chen, Tiffany F; de Picciotto, Seymour; Yang, Nicole J; Tzeng, Alice; Santos, Michael S; Van Deventer, James A; Traxlmayr, Michael W; Wittrup, K Dane

    2015-01-01

    Yeast surface display is a powerful technology for engineering a broad range of protein scaffolds. This protocol describes the process for de novo isolation of protein binders from large combinatorial libraries displayed on yeast by using magnetic bead separation followed by flow cytometry-based selection. The biophysical properties of isolated single clones are subsequently characterized, and desired properties are further enhanced through successive rounds of mutagenesis and flow cytometry selections, resulting in protein binders with increased stability, affinity, and specificity for target proteins of interest. PMID:26060067

  5. Biofuels. Engineering alcohol tolerance in yeast.

    PubMed

    Lam, Felix H; Ghaderi, Adel; Fink, Gerald R; Stephanopoulos, Gregory

    2014-10-01

    Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.

  6. Metabolic engineering of yeast for production of fuels and chemicals.

    PubMed

    Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack

    2013-06-01

    Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. PMID:23611565

  7. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.

    PubMed

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  8. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    PubMed Central

    2012-01-01

    Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO), that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei), a beta-glucosidase (from a cow rumen fungus), a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools. PMID:22839502

  9. Systems-level engineering of nonfermentative metabolism in yeast.

    PubMed

    Kennedy, Caleb J; Boyle, Patrick M; Waks, Zeev; Silver, Pamela A

    2009-09-01

    We designed and experimentally validated an in silico gene deletion strategy for engineering endogenous one-carbon (C1) metabolism in yeast. We used constraint-based metabolic modeling and computer-aided gene knockout simulations to identify five genes (ALT2, FDH1, FDH2, FUM1, and ZWF1), which, when deleted in combination, predicted formic acid secretion in Saccharomyces cerevisiae under aerobic growth conditions. Once constructed, the quintuple mutant strain showed the predicted increase in formic acid secretion relative to a formate dehydrogenase mutant (fdh1 fdh2), while formic acid secretion in wild-type yeast was undetectable. Gene expression and physiological data generated post hoc identified a retrograde response to mitochondrial deficiency, which was confirmed by showing Rtg1-dependent NADH accumulation in the engineered yeast strain. Formal pathway analysis combined with gene expression data suggested specific modes of regulation that govern C1 metabolic flux in yeast. Specifically, we identified coordinated transcriptional regulation of C1 pathway enzymes and a positive flux control coefficient for the branch point enzyme 3-phosphoglycerate dehydrogenase (PGDH). Together, these results demonstrate that constraint-based models can identify seemingly unrelated mutations, which interact at a systems level across subcellular compartments to modulate flux through nonfermentative metabolic pathways. PMID:19564482

  10. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast

    PubMed Central

    Li, Yanran; Smolke, Christina D.

    2016-01-01

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4′-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery. PMID:27378283

  11. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast.

    PubMed

    Li, Yanran; Smolke, Christina D

    2016-01-01

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4'-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery. PMID:27378283

  12. Metabolic engineering for improved fermentation of pentoses by yeasts.

    PubMed

    Jeffries, T W; Jin, Y-S

    2004-02-01

    The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g(-1) sugar consumed, so commercialization seems feasible for some applications.

  13. Engineering of synthetic, stress-responsive yeast promoters

    PubMed Central

    Rajkumar, Arun S.; Liu, Guodong; Bergenholm, David; Arsovska, Dushica; Kristensen, Mette; Nielsen, Jens; Jensen, Michael K.; Keasling, Jay D.

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synthetic promoters for budding yeast Saccharomyces cerevisiae that are inducible under acidic conditions (pH ≤ 3). Using available expression and transcription factor binding data, literature on transcriptional regulation, and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low pH in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling ten-fold increased production of lactic acid compared to titres obtained with the commonly used, native TEF1 promoter. Our findings outline and validate a general strategy to iteratively design and engineer synthetic yeast promoters inducible to environmental conditions or stresses of interest. PMID:27325743

  14. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    PubMed

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production.

  15. Improvements In Ethanologenic Escherichia Coli and Klebsiella Oxytoca

    SciTech Connect

    Dr. David Nunn

    2010-09-30

    The current Verenium cellulosic ethanol process is based on the dilute-acid pretreatment of a biomass feedstock, followed by a two-stage fermentation of the pentose sugar-containing hydrolysate by a genetically modified ethanologenic Escherichia coli strain and a separate simultaneous saccharification-fermentation (SSF) of the cellulosic fraction by a genetically modified ethanologenic Klebsiella oxytoca strain and a fungal enzyme cocktail. In order to reduce unit operations and produce a fermentation beer with higher ethanol concentrations to reduce distillation costs, we have proposed to develop a simultaneous saccharification co-fermentation (SScF) process, where the fermentation of the pentose-containing hydrolysate and cellulosic fraction occurs within the same fermentation vessel. In order to accomplish this goal, improvements in the ethanologens must be made to address a number of issues that arise, including improved hydrolysate tolerance, co-fermentation of the pentose and hexose sugars and increased ethanol tolerance. Using a variety of approaches, including transcriptomics, strain adaptation, metagenomics and directed evolution, this work describes the efforts of a team of scientists from Verenium, University of Florida, Massachusetts Institute of Technology and Genomatica to improve the E. coli and K. oxytoca ethanologens to meet these requirements.

  16. Genetically Engineered Transvestites Reveal Novel Mating Genes in Budding Yeast

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2013-01-01

    Haploid budding yeast has two mating types, defined by the alleles of the MAT locus, MATa and MATα. Two haploid cells of opposite mating types mate by signaling to each other using reciprocal pheromones and receptors, polarizing and growing toward each other, and eventually fusing to form a single diploid cell. The pheromones and receptors are necessary and sufficient to define a mating type, but other mating-type-specific proteins make mating more efficient. We examined the role of these proteins by genetically engineering “transvestite” cells that swap the pheromone, pheromone receptor, and pheromone processing factors of one mating type for another. These cells mate with each other, but their mating is inefficient. By characterizing their mating defects and examining their transcriptomes, we found Afb1 (a-factor barrier), a novel MATα-specific protein that interferes with a-factor, the pheromone secreted by MATa cells. Strong pheromone secretion is essential for efficient mating, and the weak mating of transvestites can be improved by boosting their pheromone production. Synthetic biology can characterize the factors that control efficiency in biological processes. In yeast, selection for increased mating efficiency is likely to have continually boosted pheromone levels and the ability to discriminate between partners who make more and less pheromone. This discrimination comes at a cost: weak mating in situations where all potential partners make less pheromone. PMID:24121774

  17. Multiplex engineering of industrial yeast genomes using CRISPRm.

    PubMed

    Ryan, Owen W; Cate, Jamie H D

    2014-01-01

    Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.

  18. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  19. Molecular Adaptation Mechanisms Employed by Ethanologenic Bacteria in Response to Lignocellulose-derived Inhibitory Compounds

    PubMed Central

    Ibraheem, Omodele; Ndimba, Bongani K.

    2013-01-01

    Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains. PMID:23847442

  20. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds.

    PubMed

    Ibraheem, Omodele; Ndimba, Bongani K

    2013-01-01

    Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains. PMID:23847442

  1. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment.

    PubMed

    Wei, Pingying; Li, Zilong; Lin, Yuping; He, Peng; Jiang, Ning

    2007-10-01

    An effective, simple, and convenient method to improve yeast's multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H(2)O(2), and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 x 10(7) c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l(-1)) to SC521 at 30 degrees C with 200 g glucose l(-1), and was better than the parent strain at 37 degrees C (72.5 g ethanol l(-1)), with 300 (111 g ethanol l(-1)) or with 400 (85 g ethanol l(-1)) g glucose l(-1).

  2. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering.

    PubMed

    Wang, Yechun; Halls, Coralie; Zhang, Juan; Matsuno, Michiyo; Zhang, Yansheng; Yu, Oliver

    2011-09-01

    Resveratrol is a unique, natural polyphenolic compound with diverse health benefits. In the present study, we attempted to improve resveratrol biosynthesis in yeast by different methods of metabolic engineering. We first mutated and then re-synthesized tyrosine ammonia lyase (TAL) by replacing the bacteria codons with yeast-preferred codons, which increased translation and improved p-coumaric acid and resveratrol biosynthesis drastically. We then demonstrated that low-affinity, high-capacity bacterial araE transporter could enhance resveratrol accumulation, without transporting resveratrol directly. Yeast cells carrying the araE gene produced up to 2.44-fold higher resveratrol than control cells. For commercial applications, resveratrol biosynthesis was detected in sucrose medium and fresh grape juice using our engineered yeast cells. In collaboration with the Chaumette Winery of Missouri, we were able to produce resveratrol-containing white wines, with levels comparable to the resveratrol levels found in most red wines.

  3. Breeding of a new wastewater treatment yeast by genetic engineering

    PubMed Central

    2011-01-01

    We previously developed a host vector system for the wastewater treatment yeast Hansenula fabianii J640. The promoter and terminator regions of the gene encoding glucoamylase from H. fabianii J640 were used for a new expression vector, pHFGE-1. The performance of pHFGE-1 was compared with that of the widely used pG-1 transformant vector. H. fabianii J640 (HF-TAMY) cells were transformed with pHFGE-1, and Saccharomyces cerevisiae YPH-499 (SC-TAMY) cells were transformed with pG-1, both of which carried the Taka-amylase. Expression of Taka-amylase by HF-TAMY showed higher than that by SC-TAMY. By using this new system, we bred the new wastewater treatment yeast that shows α-amylase activity. This yeast appears to grow well under experimental wastewater conditions, and is effective in treating model wastewater containing soluble and insoluble starch. PMID:21906339

  4. Engineering industrial yeast for renewable advanced biofuels applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  5. Conversion of xylan to ethanol by ethanologenic strains of Escherichia coli and Klebsiella oxytoca

    SciTech Connect

    Burchhardt, G.; Ingram, L.O. )

    1992-04-01

    A two-stage process was evaluated for the fermentation of polymeric feedstocks to ethanol by a single, genetically engineered microorganism. The truncated xylanase gene (xynZ) from the thermophilic bacterium Clostridium thermocellum was fused with the N terminus of lacZ to eliminate secretory signals. This hybrid gene was expressed at high levels in ethanologenic strains of Escherichia coli KO11 and Klebsiella oxytoca M5A1(pLOI555). Large amounts of xylanase (25 to 93 mU/mg of cell protein) accumulated as intracellular products during ethanol production. Cells containing xylanase for saccharification. After cooling, the hydrolysate was fermented to ethanol with the same organism (30C), thereby replenishing the supply of xylanase for a subsequent saccharification. Recombinant E. coli metabolized only xylose, while recombinant K. oxytoca M5A1 metabolized xylose, xylobiose, and xylotriose but not xylotetrose. Derivatives of this latter organism produced large amounts of intracellular xylosidase, and the organism is presumed to transport both xylobiose and xylotriose for intracellular hydrolysis. By using recombinant M5A1, approximately 34% of the maximal theoretical yield of ethanol was obtained from xylan by this two-stage process. The yield appeared to be limited by the digestability of commercial xylan rather than by a lack of sufficient xylanase or by ethanol toxicity. In general form, this two-stage process, which uses a single, genetically engineered microorganism, should be applicable for the production of useful chemicals from a wide range of biomass polymers.

  6. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  7. Process development of fuel ethanol production from lignocellulosic sugars using gentically engineered yeasts

    SciTech Connect

    Krishnan, M.S.; Xia, Y.; Ho, N.W.Y.

    1996-10-01

    Lignocellulosic biomass is an ideal feedstock for the large scale manufacture of fuel ethanol. Glucose and xylose represent the two major fermentable sugars in lignocellulosic hydrolysates and efficient fermentation of both these sugars is essential for the economical production of fuel ethanol. In our laboratory, a genetically engineered yeast 1400 (pLNH33) has been developed which can ferment glucose and xylose simultaneously to ethanol. This recombinant yeast has a very high ethanol tolerance (13.6% w/v) which allows high ethanol concentrations to accumulate in the fermentation medium, thus reducing downstream processing mu significantly. For large scale application of this genetically engineered cell culture, the fermentation kinetics have been investigated. We have studied the effects of substrate and product inhibition for both the host post 1400 and the engineered yeast 1400 (pLNH33) during fermentation of glucose, xylose and mixtures of glucose and xylose. Plasmid instability is an important factor influencing cell culture scale up. This aspect w investigated in selective, non-selective and partially selective fermentation media and the results will be reported in this paper. Based on these kinetic studies, a model has been developed which can simulate the fermentation of glucose and xylose to ethanol using the genetically engineered yeast 1400 (pLNH33), in both batch and continuous cultures.

  8. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  9. Production of flavin mononucleotide by metabolically engineered yeast Candida famata.

    PubMed

    Yatsyshyn, Valentyna Y; Ishchuk, Olena P; Voronovsky, Andriy Y; Fedorovych, Daria V; Sibirny, Andriy A

    2009-05-01

    Recombinant strains of the flavinogenic yeast Candida famata able to overproduce flavin mononucleotide (FMN) that contain FMN1 gene encoding riboflavin (RF) kinase driven by the strong constitutive promoter TEF1 (translation elongation factor 1alpha) were constructed. Transformation of these strains with the additional plasmid containing the FMN1 gene under the TEF1 promoter resulted in the 200-fold increase in the riboflavin kinase activity and 100-fold increase in FMN production as compared to the wild-type strain (last feature was found only in iron-deficient medium). Overexpression of the FMN1 gene in the mutant that has deregulated riboflavin biosynthesis pathway and high level of riboflavin production in iron-sufficient medium led to the 30-fold increase in the riboflavin kinase activity and 400-fold increase in FMN production of the resulted transformants. The obtained C. famata recombinant strains can be used for the further construction of improved FMN overproducers. PMID:19558965

  10. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase.

    PubMed

    Ignea, Codruta; Trikka, Fotini A; Nikolaidis, Alexandros K; Georgantea, Panagiota; Ioannou, Efstathia; Loupassaki, Sofia; Kefalas, Panagiotis; Kanellis, Angelos K; Roussis, Vassilios; Makris, Antonios M; Kampranis, Sotirios C

    2015-01-01

    Terpenes have numerous applications, ranging from pharmaceuticals to fragrances and biofuels. With increasing interest in producing terpenes sustainably and economically, there has been significant progress in recent years in developing methods for their production in microorganisms. In Saccharomyces cerevisiae, production of the 20-carbon diterpenes has so far proven to be significantly less efficient than production of their 15-carbon sesquiterpene counterparts. In this report, we identify the modular structure of geranylgeranyl diphosphate synthesis in yeast to be a major limitation in diterpene yields, and we engineer the yeast farnesyl diphosphate synthase Erg20p to produce geranylgeranyl diphosphate. Using a combination of protein and genetic engineering, we achieve significant improvements in the production of sclareol and several other isoprenoids, including cis-abienol, abietadiene and β-carotene. We also report the development of yeast strains carrying the engineered Erg20p, which support efficient isoprenoid production and can be used as a dedicated chassis for diterpene production or biosynthetic pathway elucidation. The design developed here can be applied to the production of any GGPP-derived isoprenoid and is compatible with other yeast terpene production platforms.

  11. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions.

    PubMed

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  12. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-11-17

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  13. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions

    PubMed Central

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  14. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-01-01

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids. PMID:26573460

  15. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae

    PubMed Central

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-01-01

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids. PMID:26573460

  16. Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts.

    PubMed

    Motone, Keisuke; Takagi, Toshiyuki; Sasaki, Yusuke; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-08-10

    Laminarin is the algal storage glucan and represents up to 35% of the dry weight of brown macroalgae. In this study, a novel laminarinase, Gly5M, was first found using focused proteome analysis of a laminarin-assimilating marine bacterium, Saccharophagus degradans, and the encoding gene was isolated. A Gly5M-displaying yeast strain was prepared with the cell surface display system using Saccharomyces cerevisiae. It showed a laminarin-degrading activity on the cell surface and caused the dominant accumulation of gentiobiose. The obtained gentiobiose was converted into glucose and could be assimilated by an Aspergillus aculeatus β-glucosidase (BG)-displaying yeast strain. When Gly5M- and BG-displaying yeasts were anaerobically cultivated together in fermentation medium containing 20g/L laminarin as a sole carbon source, the coculture system with the combination of optimized ratios of the 2 yeast strains directly produced 5.2g/L ethanol. This coculture system of the 2 engineered yeast strains would be a platform for the use of laminarin and contribute to the complete utilization of brown macroalgae. PMID:27287535

  17. Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI (+)].

    PubMed

    Gasset-Rosa, Fátima; Giraldo, Rafael

    2015-01-01

    The yeast translation termination factor Sup35p, by aggregating as the [PSI (+)] prion, enables ribosomes to read-through stop codons, thus expanding the diversity of the Saccharomyces cerevisiae proteome. Yeast prions are functional amyloids that replicate by templating their conformation on native protein molecules, then assembling as large aggregates and fibers. Prions propagate epigenetically from mother to daughter cells by fragmentation of such assemblies. In the N-terminal prion-forming domain, Sup35p has glutamine/asparagine-rich oligopeptide repeats (OPRs), which enable propagation through chaperone-elicited shearing. We have engineered chimeras by replacing the polar OPRs in Sup35p by up to five repeats of a hydrophobic amyloidogenic sequence from the synthetic bacterial prionoid RepA-WH1. The resulting hybrid, [REP-PSI (+)], (i) was functional in a stop codon read-through assay in S. cerevisiae; (ii) generates weak phenotypic variants upon both its expression or transformation into [psi (-)] cells; (iii) these variants correlated with high molecular weight aggregates resistant to SDS during electrophoresis; and (iv) according to fluorescence microscopy, the fusion of the prion domains from the engineered chimeras to the reporter protein mCherry generated perivacuolar aggregate foci in yeast cells. All these are signatures of bona fide yeast prions. As assessed through biophysical approaches, the chimeras assembled as oligomers rather than as the fibers characteristic of [PSI (+)]. These results suggest that it is the balance between polar and hydrophobic residues in OPRs what determines prion conformational dynamics. In addition, our findings illustrate the feasibility of enabling new propagation traits in yeast prions by engineering OPRs with heterologous amyloidogenic sequence repeats.

  18. Industrial Saccharomyces cerevisiae Yeast Strain Engineered to Convert Glucose, Mannose, Arabinose, and Xylose (GMAX) to Ethanol Anaerobically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technology for engineering an industrial yeast strain for production of ethanol from glucose, mannose, arabinose, and xylose (GMAX-yeast) using both corn starch and cellulosic feedstocks with simultaneous production of valuable coproducts, including biodiesel, will be discussed. A stable industrial...

  19. Limitations of yeast surface display in engineering proteins of high thermostability.

    PubMed

    Park, Sheldon; Xu, Yao; Stowell, Xiaoran Fu; Gai, Feng; Saven, Jeffery G; Boder, Eric T

    2006-05-01

    Engineering proteins that can fold to unique structures remains a challenge. Protein stability has previously been engineered via the observed correlation between thermal stability and eukaryotic secretion level. To explore the limits of an expression-based approach, variants of the highly thermostable three-helix bundle protein alpha3D were studied using yeast surface display. A library of alpha3D mutants was created to explore the possible correlation of protein stability and fold with expression level. Five efficiently expressed mutants were then purified and further studied biochemically. Despite their differences in stability, most mutants expressed at levels comparable with that of wild-type alpha3D. Two other related sequences (alpha3A and alpha3B) that form collapsed, stable molten globules but lack a uniquely folded structure were similarly expressed at high levels by yeast display. Together these observations suggest that the quality control system in yeast is unable to discriminate between well-folded proteins of high stability and molten globules. The present study, therefore, suggests that an optimization of the surface display efficiency on yeast may yield proteins that are thermally and chemically stable yet are poorly folded.

  20. Engineering strategy of yeast metabolism for higher alcohol production

    PubMed Central

    2011-01-01

    Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols. PMID:21902829

  1. Process engineering for bioflavour production with metabolically active yeasts - a mini-review.

    PubMed

    Carlquist, Magnus; Gibson, Brian; Karagul Yuceer, Yonca; Paraskevopoulou, Adamantini; Sandell, Mari; Angelov, Angel I; Gotcheva, Velitchka; Angelov, Angel D; Etschmann, Marlene; de Billerbeck, Gustavo M; Lidén, Gunnar

    2015-01-01

    Flavours are biologically active molecules of large commercial interest in the food, cosmetics, detergent and pharmaceutical industries. The production of flavours can take place by either extraction from plant materials, chemical synthesis, biological conversion of precursor molecules or de novo biosynthesis. The latter alternatives are gaining importance through the rapidly growing fields of systems biology and metabolic engineering, giving efficient production hosts for the so-called 'bioflavours', which are natural flavour and/or fragrance compounds obtained with cell factories or enzymatic systems. Yeasts are potential production hosts for bioflavours. In this mini-review, we give an overview of bioflavour production in yeasts from the process-engineering perspective. Two specific examples, production of 2-phenylethanol and vanillin, are used to illustrate the process challenges and strategies used.

  2. A new beta-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional cellulose-to-ethanol conversion by simultaneous saccharification and fermentation (SSF)requires enzymatic saccharification using both cellulase and ß-glucosidase allowing cellulose utilization by common ethanologenic yeast. Here we report a new yeast strain of Clavispora NRRL Y-50464 th...

  3. Technical assessment of cellulosic ethanol production using ß-glucosidase producing yeast Clavispora NRRL Y-50464

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing the cost of cellulosic ethanol production, especially the use of expensive exogenous cellulose hydrolytic enzymes such as cellulase and ß-glucosidase, is a critical challenge and vital for a sustainable advanced biofuels industry. Here we report a novel ethanologenic yeast strain Clavispora...

  4. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors.

    PubMed

    Lu, Ying; Cheng, Yan-Fei; He, Xiu-Ping; Guo, Xue-Na; Zhang, Bo-Run

    2012-01-01

    Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.

  5. Engineering strategies for the fermentative production of plant alkaloids in yeast

    PubMed Central

    Trenchard, Isis J.; Smolke, Christina D.

    2015-01-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. PMID:25981946

  6. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.

    PubMed

    Hasunuma, Tomohisa; Kondo, Akihiko

    2012-01-01

    To build an energy and material secure future, a next generation of renewable fuels produced from lignocellulosic biomass is required. Although lignocellulosic biomass, which represents an abundant, inexpensive and renewable source for bioethanol production, is of great interest as a feedstock, the complicated ethanol production processes involved make the cost of producing bioethanol from it higher compared to corn starch and cane juice. Therefore, consolidated bioprocessing (CBP), which combines enzyme production, saccharification and fermentation in a single step, has gained increased recognition as a potential bioethanol production system. CBP requires a highly engineered microorganism developed for several different process-specific characteristics. The dominant strategy for engineering a CBP biocatalyst is to express multiple components of a cellulolytic system from either fungi or bacteria in the yeast Saccharomyces cerevisiae. The development of recombinant yeast strains displaying cellulases and hemicellulases on the cell surface represents significant progress toward realization of CBP. Regardless of the process used for biomass hydrolysis, CBP-enabling microorganisms encounter a variety of toxic compounds produced during biomass pretreatment that inhibit microbial growth and ethanol yield. Systems biology approaches including disruptome screening, transcriptomics, and metabolomics have been recently exploited to gain insight into the molecular and genetic traits involved in tolerance and adaptation to the fermentation inhibitors. In this review, we focus on recent advances in development of yeast strains with both the ability to directly convert lignocellulosic material to ethanol and tolerance in the harsh environments containing toxic compounds in the presence of ethanol.

  7. T Cell Receptor Engineering and Analysis Using the Yeast Display Platform.

    PubMed

    Smith, Sheena N; Harris, Daniel T; Kranz, David M

    2015-01-01

    The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g., a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g., T cell activation by as few as 1-3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with K D values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072

  8. The hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and similar anaerobic thermophiles. Annual technical progress report

    SciTech Connect

    Wiegel, J.

    1995-07-01

    A Xylanase was fractionated from Thermoanaerobacter ethanolicus, an ethanologenic thermophile, and the preparation so obtained was used to determined enzymatic parameters such as pH profile of enzyme activity. The ability of various mono- and di-saccharides as well as temperature variations to induce this enzyme activity were studied.

  9. Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening

    PubMed Central

    Choi, Hye-Ji; Kim, Ye-Jin; Choi, Dong-Ki; Kim, Yong-Sung

    2015-01-01

    Immunoglobulin Fc heterodimers, which are useful scaffolds for the generation of bispecific antibodies, have been mostly generated through structure-based rational design methods that introduce asymmetric mutations into the CH3 homodimeric interface to favor heterodimeric Fc formation. Here, we report an approach to generate heterodimeric Fc variants through directed evolution combined with yeast surface display. We developed a combinatorial heterodimeric Fc library display system by mating two haploid yeast cell lines, one haploid cell line displayed an Fc chain library (displayed FcCH3A) with mutations in one CH3 domain (CH3A) on the yeast cell surface, and the other cell line secreted an Fc chain library (secreted FcCH3B) with mutations in the other CH3 domain (CH3B). In the mated cells, secreted FcCH3B is displayed on the cell surface through heterodimerization with the displayed FcCH3A, the detection of which enabled us to screen the library for heterodimeric Fc variants. We constructed combinatorial heterodimeric Fc libraries with simultaneous mutations in the homodimer-favoring electrostatic interaction pairs K370-E357/S364 or D399-K392/K409 at the CH3 domain interface. High-throughput screening of the libraries using flow cytometry yielded heterodimeric Fc variants with heterodimer-favoring CH3 domain interface mutation pairs, some of them showed high heterodimerization yields (~80–90%) with previously unidentified CH3 domain interface mutation pairs, such as hydrogen bonds and cation-π interactions. Our study provides a new approach for engineering Fc heterodimers that could be used to engineer other heterodimeric protein-protein interactions through directed evolution combined with yeast surface display. PMID:26675656

  10. Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening.

    PubMed

    Choi, Hye-Ji; Kim, Ye-Jin; Choi, Dong-Ki; Kim, Yong-Sung

    2015-01-01

    Immunoglobulin Fc heterodimers, which are useful scaffolds for the generation of bispecific antibodies, have been mostly generated through structure-based rational design methods that introduce asymmetric mutations into the CH3 homodimeric interface to favor heterodimeric Fc formation. Here, we report an approach to generate heterodimeric Fc variants through directed evolution combined with yeast surface display. We developed a combinatorial heterodimeric Fc library display system by mating two haploid yeast cell lines, one haploid cell line displayed an Fc chain library (displayed FcCH3A) with mutations in one CH3 domain (CH3A) on the yeast cell surface, and the other cell line secreted an Fc chain library (secreted FcCH3B) with mutations in the other CH3 domain (CH3B). In the mated cells, secreted FcCH3B is displayed on the cell surface through heterodimerization with the displayed FcCH3A, the detection of which enabled us to screen the library for heterodimeric Fc variants. We constructed combinatorial heterodimeric Fc libraries with simultaneous mutations in the homodimer-favoring electrostatic interaction pairs K370-E357/S364 or D399-K392/K409 at the CH3 domain interface. High-throughput screening of the libraries using flow cytometry yielded heterodimeric Fc variants with heterodimer-favoring CH3 domain interface mutation pairs, some of them showed high heterodimerization yields (~80-90%) with previously unidentified CH3 domain interface mutation pairs, such as hydrogen bonds and cation-π interactions. Our study provides a new approach for engineering Fc heterodimers that could be used to engineer other heterodimeric protein-protein interactions through directed evolution combined with yeast surface display. PMID:26675656

  11. Fuzzy-decision-making problems of fuel ethanol production using a genetically engineered yeast

    SciTech Connect

    Wang, F.S.; Jing, C.H.; Tsao, G.T.

    1998-08-01

    A fuzzy-decision-making procedure is applied to find the optimal feed policy of a fed-batch fermentation process for fuel ethanol production using a genetically engineered Saccharomyces yeast 1400 (pLNH33). The policy consisted of feed flow rate, feed concentration, and fermentation time. The recombinant yeast 1400 (pLNH33) can utilize glucose and xylose simultaneously to produce ethanol. However, the parent yeast utilizes glucose only. A partially selective model is used to describe the kinetic behavior of the process. In this study, this partially selective fermentation process is formulated as a general multiple-objective optimal control problem. By using an assigned membership function for each of the objectives, the general multiple-objective optimization problem can be converted into a maximizing decision problem. In order to obtain a global solution, a hybrid method of differential evolution is introduced to solve the maximizing decision problem. A simple guideline is introduced in the interactive programming procedures to find a satisfactory solution to the general multiple-objective optimization problem.

  12. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    PubMed

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms. PMID:26580314

  13. Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain.

    PubMed

    Kamiya, Yukiko; Yamamoto, Sayoko; Chiba, Yasunori; Jigami, Yoshifumi; Kato, Koichi

    2011-08-01

    This report describes a novel method for overexpression of (13)C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly (13)C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man(8)GlcNAc(2) oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, (13)C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific (13)C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The (13)C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  14. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  15. Extracellular secretion of β-glucosidase in ethanologenic E. coli enhances ethanol fermentation of cellobiose.

    PubMed

    Luo, Zichen; Zhang, Yao; Bao, Jie

    2014-09-01

    Consolidated bioprocessing of lignocellulose for ethanol production is realized by expressing cellulase enzymes on ethanologenic strain. In this study, an ethanologenic Escherichia coli ZY81 was constructed by integrating pyruvate decarboxylase gene pdc and alcohol dehydrogenase gene adhB from Zymomonas mobilis into the genome of E. coli JM109 to obtain the capability of ethanol production. Then, the β-glucosidase gene bglB from Bacillus polymyxa was cloned and secretively expressed in E. coli ZY81. The recombinant strain E. coli ZY81/bglB showed an obvious activity of β-glucosidase in extracellular location with more than half in periplasmic space. EDTA was found to promote the release of the periplasmic proteins by approximately tenfold. E. coli ZY81/bglB utilized cellobiose as sole carbon source for ethanol production with 33.99 % of theoretical yield.

  16. [The Engineering of a Yarrowia lipolytica Yeast Strain Capable of Homologous Recombination of the Mitochondrial Genome].

    PubMed

    Isakova, E P; Epova, E Yu; Sekova, V Yu; Trubnikova, E V; Kudykina, Yu K; Zylkova, M V; Guseva, M A; Deryabina, Yu I

    2015-01-01

    None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5'-UTR and 3'-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones). PMID:26204776

  17. Engineered Cellulosic Yeast for Direct Production of Energy-Dense, Infrastructure-Compatible Fuels from CO2 and Cellulosic Sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strains of yeast expressing novel lipase will be engineered to produce two energy-dense liquid fuels using an improved column-based process for production of biodiesel and alcohol was developed using a column containing a strongly basic anion-exchange resin in sequence with a column containing a res...

  18. Bioethanol Production from Uncooked Raw Starch by Immobilized Surface-engineered Yeast Cells

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.

  19. Metabolic engineering of the non-conventional yeast Pichia ciferrii for production of rare sphingoid bases.

    PubMed

    Börgel, Daniel; van den Berg, Marco; Hüller, Thomas; Andrea, Heiko; Liebisch, Gerhard; Boles, Eckhard; Schorsch, Christoph; van der Pol, Ruud; Arink, Anne; Boogers, Ilco; van der Hoeven, Rob; Korevaar, Kees; Farwick, Mike; Köhler, Tim; Schaffer, Steffen

    2012-07-01

    The study describes the identification of sphingolipid biosynthesis genes in the non-conventional yeast Pichia ciferrii, the development of tools for its genetic modification as well as their application for metabolic engineering of P. ciferrii with the goal to generate strains capable of producing the rare sphingoid bases sphinganine and sphingosine. Several canonical genes encoding ceramide synthase (encoded by PcLAG1 and PcLAF1), alkaline ceramidase (PcYXC1) and sphingolipid C-4-hydroxylase(PcSYR2), as well as structural genes for dihydroceramide Δ(4)-desaturase (PcDES1) and sphingolipid Δ(8)-desaturase (PcSLD1) were identified, indicating that P. ciferrii would be capable of synthesizing desaturated sphingoid bases, a property not ubiquitously found in yeasts. In order to convert the phytosphingosine-producing P. ciferrii wildtype into a strain capable of producing predominantly sphinganine, Syringomycin E-resistant mutants were isolated. A stable mutant almost exclusively producing high levels of acetylated sphinganine was obtained and used as the base strain for further metabolic engineering. A metabolic pathway required for the three-step conversion of sphinganine to sphingosine was implemented in the sphinganine producing P. ciferrii strain and subsequently enhanced by screening for the appropriate heterologous enzymes, improvement of gene expression and codon optimization. These combined efforts led to a strain capable of producing 240mgL(-1) triacetyl sphingosine in shake flask, with tri- and diacetyl sphinganine being the main by-products. Lab-scale fermentation of this strain resulted in production of up to 890mgkg(-1) triacetyl sphingosine. A third by-product was unequivocally identified as triacetyl sphingadienine. It could be shown that inactivation of the SLD1 gene in P. ciferrii efficiently suppresses triacetyl sphingadienine formation. Further improvement of the described P. ciferrii strains will enable a biotechnological route to produce

  20. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production.

    PubMed

    Tai, Mitchell; Stephanopoulos, Gregory

    2013-01-01

    Microbial oil production by heterotrophic organisms is a promising path for the cost-effective production of biofuels from renewable resources provided high conversion yields can be achieved. To this end, we have engineered the oleaginous yeast Yarrowia lipolytica. We first established an expression platform for high expression using an intron-containing translation elongation factor-1α (TEF) promoter and showed that this expression system is capable of increasing gene expression 17-fold over the intronless TEF promoter. We then used this platform for the overexpression of diacylglycerol acyltransferase (DGA1), the final step of the triglyceride (TAG) synthesis pathway, which yielded a 4-fold increase in lipid production over control, to a lipid content of 33.8% of dry cell weight (DCW). We also show that the overexpression of acetyl-CoA carboxylase (ACC1), the first committed step of fatty acid synthesis, increased lipid content 2-fold over control, or 17.9% lipid content. Next we combined the two genes in a tandem gene construct for the simultaneous coexpression of ACC1 and DGA1, which further increased lipid content to 41.4%, demonstrating synergistic effects of ACC1+DGA1 coexpression. The lipid production characteristics of the ACC1+DGA1 transformant were explored in a 2-L bioreactor fermentation, achieving 61.7% lipid content after 120h. The overall yield and productivity were 0.195g/g and 0.143g/L/h, respectively, while the maximum yield and productivity were 0.270g/g and 0.253g/L/h during the lipid accumulation phase of the fermentation. This work demonstrates the excellent capacity for lipid production by the oleaginous yeast Y. lipolytica and the effects of metabolic engineering of two important steps of the lipid synthesis pathway, which acts to divert flux towards the lipid synthesis and creates driving force for TAG synthesis.

  1. Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast.

    PubMed

    Morris, J S; Dastmalchi, M; Li, J; Chang, L; Chen, X; Hagel, J M; Facchini, P J

    2016-01-01

    Benzylisoquinoline alkaloid (BIA) metabolism has been the focus of a considerable research effort over the past half-century, primarily because of the pharmaceutical importance of several compounds produced by opium poppy (Papaver somniferum). Advancements in genomics technologies have substantially accelerated the rate of gene discovery over the past decade, such that most biosynthetic enzymes involved in the formation of the major alkaloids of opium poppy have now been isolated and partially characterized. Not unexpectedly, the availability of all perceived biosynthetic genes has facilitated the reconstitution of several BIA pathways in microbial hosts, including yeast (Saccharomyces cerevisiae). Product yields are currently insufficient to consider the commercial production of high-value BIAs, such as morphine. However, the rudimentary success demonstrated by the uncomplicated and routine assembly of a multitude of characterized BIA biosynthetic genes provides a valuable gene discovery tool for the rapid functional identification of the plethora of gene candidates available through increasingly accessible genomic, transcriptomic, and proteomic databases. BIA biosynthetic gene discovery represents a substantial research opportunity largely owing to the wealth of existing enzyme data mostly obtained from a single plant species. Functionally novel enzymes and variants with potential metabolic engineering applications can be considered the primary targets. Selection of candidates from sequence repositories is facilitated by the monophyletic relationship among biosynthetic genes belonging to a wide range of enzyme families, such as the numerous cytochromes P450 and AdoMet-dependent O- and N-methyltransferases that operate in BIA metabolism. We describe methods for the rapid functional screening of uncharacterized gene candidates encoding potential BIA biosynthetic enzymes using yeast strains engineered to perform selected metabolic conversions. As an initial

  2. Genome and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial ethanologenic yeast Saccharomyces cerevisiae is a promising biocatalyst for next-generation advanced biofuels applications including lignocellulose-to-ethanol conversion. Here we present the first insight into the genomic background of NRRL Y-12632, a type strain from a worldwide coll...

  3. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    PubMed

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  4. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    PubMed

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering. PMID:26743658

  5. Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

    PubMed Central

    Jeandet, Philippe; Delaunois, Bertrand; Aziz, Aziz; Donnez, David; Vasserot, Yann; Cordelier, Sylvain; Courot, Eric

    2012-01-01

    Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines. PMID:22654481

  6. Application of cell-surface engineering for visualization of yeast in bread dough: development of a fluorescent bio-imaging technique in the mixing process of dough.

    PubMed

    Maeda, Tatsuro; Shiraga, Seizaburo; Araki, Tetsuya; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    Cell-surface engineering (Ueda et al., 2000) has been applied to develop a novel technique to visualize yeast in bread dough. Enhanced green fluorescent protein (EGFP) was bonded to the surface of yeast cells, and 0.5% EGFP yeasts were mixed into the dough samples at four different mixing stages. The samples were placed on a cryostat at -30 degrees C and sliced at 10 microm. The sliced samples were observed at an excitation wavelength of 480 nm and a fluorescent wavelength of 520 nm. The results indicated that the combination of the EGFP-displayed yeasts, rapid freezing, and cryo-sectioning made it possible to visualize 2-D distribution of yeast in bread dough to the extent that the EGFP yeasts could be clearly distinguished from the auto-fluorescent background of bread dough. PMID:19584550

  7. Engineering yeast consortia for surface-display of complex cellulosome structures

    SciTech Connect

    Chen, Wilfred

    2014-03-31

    As our society marches toward a more technologically advanced future, energy and environmental sustainability are some of the most challenging problems we face today. Biomass is one of the most abundant renewable-feedstock for sustainable production of biofuels. However, the main technological obstacle to more widespread uses of this resource is the lack of low-cost technologies to overcome the recalcitrant nature of the cellulosic structure, especially the hydrolysis step on highly ordered celluloses. In this proposal, we successfully engineered several efficient and inexpensive whole-cell biocatalysts in an effort to produce economically compatible and sustainable biofuels, namely cellulosic ethanol. Our approach was to display of a highly efficient cellulolytic enzyme complex, named cellulosome, on the surface of a historical ethanol producer Saccharomyces cerevisiae for the simultaneous and synergistic saccharification and fermentation of cellulose to ethanol. We first demonstrated the feasibility of assembling a mini-cellulosome by incubating E. coli lysates expressing three different cellulases. Resting cells displaying mini-cellulosomes produced 4-fold more ethanol from phosphoric acid-swollen cellulose (PASC) than cultures with only added enzymes. The flexibility to assemble the mini-cellulosome structure was further demonstrated using a synthetic yeast consortium through intracellular complementation. Direct ethanol production from PASC was demonstrated with resting cell cultures. To create a microorganism suitable for a more cost-effective process, called consolidated bioprocessing (CBP), a synthetic consortium capable of displaying mini-cellulosomes on the cell surface via intercellular complementation was created. To further improve the efficiency, a new adaptive strategy of employing anchoring and adaptor scaffoldins to amplify the number of enzymatic subunits was developed, resulting in the creation of an artificial tetravalent cellulosome on the

  8. Ethanol production using a soy hydrolysate-based medium or a yeast autolysate-based medium

    DOEpatents

    Ingram, Lonnie O.

    2000-01-01

    This invention presents a method for the production of ethanol that utilizes a soy hydrolysate-based nutrient medium or a yeast autolysate-based medium nutrient medium in conjunction with ethanologenic bacteria and a fermentable sugar for the cost-effective production of ethanol from lignocellulosic biomass. The invention offers several advantages over presently available media for use in ethanol production, including consistent quality, lack of toxins and wide availability.

  9. Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding.

    PubMed

    Vincent, S F; Bell, P J; Bissinger, P; Nevalainen, K M

    1999-02-01

    Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.

  10. [Engineering of a System for the Production of Mutant Human Alpha-Fetoprotein in the Methylotrophic Yeast Pichia pastoris].

    PubMed

    Morozkina, E V; Vavilova, E A; Zatsepin, S S; Klyachko, E V; Yagudin, T A; Chulkin, A M; Dudich, I V; Semenkova, L N; Churilova, I V; Benevolenskii, S V

    2016-01-01

    A system for the production of mutant recombinant human alpha-fetoprotein (rhAFPO) lacking the glycosylation site has been engineered in the yeast Pichia pastoris. A strain of the methylotrophic yeast Pichia pastoris GS 115/pPICZ?A/rhAFP0, which produces unglycosylated rhAFPO and secretes it to the culture medium, has been constructed. Optimization and scale-up of the fermentation technology have resulted in an increase in the rhAFP0 yield to 20 mg/L. A scheme of isolation and purification of biologically active rhAFP0 has been developed. The synthesized protein has the antitumor activity, which is analogous to the activity of natural human embryonic alpha-fetoprotein.

  11. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    SciTech Connect

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.

  12. Expression of Different Levels of Ethanologenic Enzymes from Zymomonas mobilis in Recombinant Strains of Escherichia coli†

    PubMed Central

    Ingram, L. O.; Conway, T.

    1988-01-01

    The expression of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II in Escherichia coli converted this organism from the production of organic acids to the production of ethanol. Ethanol was produced during both anaerobic and aerobic growth. The extent to which these ethanologenic enzymes were expressed correlated with the extent of ethanol production. The replacement of organic acids with ethanol as a metabolic product during aerobic and anaerobic growth resulted in dramatic increases in final cell density, indicating that these acids (and the associated decline in pH) are more damaging than the production of ethanol. Of the plasmids examined, the best plasmid for growth and ethanol production expressed pyruvate decarboxylase and alcohol dehydrogenase II at levels of 6.5 and 2.5 IU/mg of total cell protein, respectively. PMID:16347553

  13. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters. PMID:26150486

  14. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  15. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters

    PubMed Central

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F.

    2015-01-01

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this “dead” cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters. PMID:26150486

  16. Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering

    PubMed Central

    2012-01-01

    To permit direct cellulose degradation and ethanol fermentation, Saccharomyces cerevisiae BY4741 (Δsed1) codisplaying 3 cellulases (Trichoderma reesei endoglucanase II [EG], T. reesei cellobiohydrolase II [CBH], and Aspergillus aculeatus β-glucosidase I [BG]) was constructed by yeast cell-surface engineering. The EG used in this study consists of a family 1 carbohydrate-binding module (CBM) and a catalytic module. A comparison with family 1 CBMs revealed conserved amino acid residues and flexible amino acid residues. The flexible amino acid residues were at positions 18, 23, 26, and 27, through which the degrading activity for various cellulose structures in each biomass may have been optimized. To select the optimal combination of CBMs of EGs, a yeast mixture with comprehensively mutated CBM was constructed. The mixture consisted of yeasts codisplaying EG with mutated CBMs, in which 4 flexible residues were comprehensively mutated, CBH, and BG. The yeast mixture was inoculated in selection medium with newspaper as the sole carbon source. The surviving yeast consisted of RTSH yeast (the mutant sequence of CBM: N18R, S23T, S26S, and T27H) and wild-type yeast (CBM was the original) in a ratio of 1:46. The mixture (1 RTSH yeast and 46 wild-type yeasts) had a fermentation activity that was 1.5-fold higher than that of wild-type yeast alone in the early phase of saccharification and fermentation, which indicates that the yeast mixture with comprehensively mutated CBM could be used to select the optimal combination of CBMs suitable for the cellulose of each biomass. PMID:23092441

  17. Nanolaser Spectroscopy of Genetically Engineered Yeast: New Tool for a Better Brew?

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; Naviaux, Robert K.; Yaffe, Michael P.

    2006-03-01

    A basic function of the cell membrane is to selectively uptake ions or molecules from its environment to concentrate them into the interior. This concentration difference results in an osmostic pressure difference across the membrane. Ultimately, this pressure and its fluctuation from cell to cell will be limited by the availability and fluctuations of the solute concentrations in solution, the extent of inter-cell communication, and the state of respiring intracellular mitochondria that fuel the process. To measure these fluctuations, we have employed a high-speed nanolaser technique that samples the osmotic pressure in individual yeast cells and isolated mitochondria. We analyzed 2 yeast cell strains, normal baker’s yeast and a genetically-altered version, that differ only by the presence of mitochondrial DNA. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes. These cells have mitochondria, but the mitochondria lack most normal respiratory chain complexes. The frequency distributions in the nanolaser spectra produced by wild-type and modified cells and mitochondria show a striking shift from Gaussian to Poissonian distributions, revealing a powerful novel method for studying statistical physics of yeast.

  18. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  19. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  20. Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli Ethanologen

    PubMed Central

    Schwalbach, Michael S.; Tremaine, Mary; Marner, Wesley D.; Zhang, Yaoping; Bothfeld, William; Higbee, Alan; Grass, Jeffrey A.; Cotten, Cameron; Reed, Jennifer L.; da Costa Sousa, Leonardo; Jin, Mingjie; Balan, Venkatesh; Ellinger, James; Dale, Bruce; Kiley, Patricia J.

    2012-01-01

    The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates. PMID:22389370

  1. Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations.

    PubMed

    Taylor, Mark P; Mulako, Inonge; Tuffin, Marla; Cowan, Don

    2012-09-01

    Alcohol-based liquid fuels feature significantly in the political and social agendas of many countries, seeking energy sustainability. It is certain that ethanol will be the entry point for many sustainable processes. Conventional ethanol production using maize- and sugarcane-based carbohydrates with Saccharomyces cerevisiae is well established, while lignocellulose-based processes are receiving growing interest despite posing greater technical and scientific challenges. A significant challenge that arises from the chemical hydrolysis of lignocellulose is the generation of toxic compounds in parallel with the release of sugars. These compounds, collectively termed pre-treatment inhibitors, impair metabolic functionality and growth. Their removal, pre-fermentation or their abatement, via milder hydrolysis, are currently uneconomic options. It is widely acknowledged that a more cost effective strategy is to develop resistant process strains. Here we describe and classify common inhibitors and describe in detail the reported physiological responses that occur in second-generation strains, which include engineered yeast and mesophilic and thermophilic prokaryotes. It is suggested that a thorough understanding of tolerance to common pre-treatment inhibitors should be a major focus in ongoing strain engineering. This review is a useful resource for future metabolic engineering strategies. PMID:22331581

  2. Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones

    PubMed Central

    Hennig, Stefan; Rödel, Gerhard; Ostermann, Kai

    2016-01-01

    Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon functionalization of solid supports with a combination of hydrophobins either lacking or exposing the α-factor, pheromone-specific antibodies were bound to the surface. Increasing concentrations of the pheromone competitively detached the antibodies, thus allowing for quantification of the pheromone. By adjusting the percentage of pheromone-exposing hydrophobins, the sensitivity of the assay could be precisely predefined. The assay proved to be highly robust against changes in sample matrix composition. Due to the high stability of hydrophobin layers, the functionalized surfaces could be repeatedly used without affecting the sensitivity. Furthermore, by using an inverse setup, the sensitivity was increased by three orders of magnitude, yielding a novel kind of biosensor for the yeast pheromone with the lowest limit of detection reported so far. This assay was applied to study the pheromone secretion of diverse yeast strains including a whole-cell biosensor strain of Schizosaccharomyces pombe modulating α-factor secretion in response to an environmental signal. PMID:27128920

  3. Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones.

    PubMed

    Hennig, Stefan; Rödel, Gerhard; Ostermann, Kai

    2016-01-01

    Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon functionalization of solid supports with a combination of hydrophobins either lacking or exposing the α-factor, pheromone-specific antibodies were bound to the surface. Increasing concentrations of the pheromone competitively detached the antibodies, thus allowing for quantification of the pheromone. By adjusting the percentage of pheromone-exposing hydrophobins, the sensitivity of the assay could be precisely predefined. The assay proved to be highly robust against changes in sample matrix composition. Due to the high stability of hydrophobin layers, the functionalized surfaces could be repeatedly used without affecting the sensitivity. Furthermore, by using an inverse setup, the sensitivity was increased by three orders of magnitude, yielding a novel kind of biosensor for the yeast pheromone with the lowest limit of detection reported so far. This assay was applied to study the pheromone secretion of diverse yeast strains including a whole-cell biosensor strain of Schizosaccharomyces pombe modulating α-factor secretion in response to an environmental signal. PMID:27128920

  4. Highly Avid Magnetic Bead Capture: An Efficient Selection Method for de novo Protein Engineering Utilizing Yeast Surface Display

    PubMed Central

    Ackerman, Margaret; Levary, David; Tobon, Gabriel; Hackel, Benjamin; Davis Orcutt, Kelly; Wittrup, K. Dane

    2010-01-01

    Protein engineering relies on the selective capture of members of a protein library with desired properties. Yeast surface display technology routinely enables as much as million-fold improvements in binding affinity by alternating rounds of diversification and flow cytometry-based selection. However, flow cytometry is not well suited for isolating de novo binding clones from naïve libraries due to limitations in the size of the population that can be analyzed, the minimum binding affinity of clones that can be reliably captured, the amount of target antigen required, and the likelihood of capturing artifactual binders to the reagents. Here, we demonstrate a method for capturing rare clones that maintains the advantages of yeast as the expression host, while avoiding the disadvantages of FACS in isolating de novo binders from naïve libraries. The multivalency of yeast surface display is intentionally coupled with multivalent target presentation on magnetic beads—allowing isolation of extremely weak binders from billions of non-binding clones, and requiring far less target antigen for each selection, while minimizing the likelihood of isolating undesirable alternative solutions to the selective pressure. Multivalent surface selection allows 30,000-fold enrichment and almost quantitative capture of micromolar binders in a single pass using less than one microgram of target antigen. We further validate the robust nature of this selection method by isolation of de novo binders against lysozyme as well as its utility in negative selections by isolating binders to streptavidin-biotin that do not cross-react to streptavidin alone. PMID:19363813

  5. Genetic Engineering of an Unconventional Yeast for Renewable Biofuel and Biochemical Production.

    PubMed

    Yu, Ai-Qun; Pratomo, Nina; Ng, Tee-Kheang; Ling, Hua; Cho, Han-Saem; Leong, Susanna Su Jan; Chang, Matthew Wook

    2016-01-01

    Yarrowia lipolytica is a non-pathogenic, dimorphic and strictly aerobic yeast species. Owing to its distinctive physiological features and metabolic characteristics, this unconventional yeast is not only a good model for the study of the fundamental nature of fungal differentiation but is also a promising microbial platform for biochemical production and various biotechnological applications, which require extensive genetic manipulations. However, genetic manipulations of Y. lipolytica have been limited due to the lack of an efficient and stable genetic transformation system as well as very high rates of non-homologous recombination that can be mainly attributed to the KU70 gene. Here, we report an easy and rapid protocol for the efficient genetic transformation and for gene deletion in Y. lipolytica Po1g. First, a protocol for the efficient transformation of exogenous DNA into Y. lipolytica Po1g was established. Second, to achieve the enhanced double-crossover homologous recombination rate for further deletion of target genes, the KU70 gene was deleted by transforming a disruption cassette carrying 1 kb homology arms. Third, to demonstrate the enhanced gene deletion efficiency after deletion of the KU70 gene, we individually deleted 11 target genes encoding alcohol dehydrogenase and alcohol oxidase using the same procedures on the KU70 knockout platform strain. It was observed that the rate of precise homologous recombination increased substantially from less than 0.5% for deletion of the KU70 gene in Po1g to 33%-71% for the single gene deletion of the 11 target genes in Po1g KU70Δ. A replicative plasmid carrying the hygromycin B resistance marker and the Cre/LoxP system was constructed, and the selection marker gene in the yeast knockout strains was eventually removed by expression of Cre recombinase to facilitate multiple rounds of targeted genetic manipulations. The resulting single-gene deletion mutants have potential applications in biofuel and biochemical

  6. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism.

    PubMed

    Chen, Yun; Daviet, Laurent; Schalk, Michel; Siewers, Verena; Nielsen, Jens

    2013-01-01

    Production of fuels and chemicals by industrial biotechnology requires efficient, safe and flexible cell factory platforms that can be used for production of a wide range of compounds. Here we developed a platform yeast cell factory for efficient provision of acetyl-CoA that serves as precursor metabolite for a wide range of industrially interesting products. We demonstrate that the platform cell factory can be used to improve the production of α-santalene, a plant sesquiterpene that can be used as a perfume by four-fold. This strain would be a useful tool to produce a wide range of acetyl-CoA-derived products.

  7. [Construction of the flavinogenic yeast Candida famata strains with high riboflavin kinase activity using gene engineering].

    PubMed

    Ishchuk, O P; Iatsyshyn, V Iu; Dmytruk, K V; Voronovs'kyĭ, A Ia; Fedorovych, D V; Sybirnyĭ, A A

    2006-01-01

    The recombinant strains of the flavinogenic yeast Candida famata, which contain the DNA fragment consisting of the FMN1 gene (encoding the riboflavin kinase, enzyme that converts riboflavin to flavinmononucleotide) driven by the strong promoters (the regulated RIB1 or constitutive TEF1 promoter) were isolated. Riboflavin kinase activity in the isolated transformants was tested. The 6-8-fold increase of the riboflavin kinase activity was shown in the recombinant strains containing the integrated Debaryomyces hansenii FMN1 gene under the strong constitutive TEF1 promoter. The recombinant strains can be used for the following construction of flavinmononucleotide overproducers. PMID:17290783

  8. DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4.

    PubMed

    Kerr, Aidan L; Jeon, Young Jae; Svenson, Charles J; Rogers, Peter L; Neilan, Brett A

    2011-02-01

    To better understand the DNA restriction-modification (R-M) systems for more amenable strain development of the alternative industrial ethanologen, Zymomonas mobilis, three gene knockout mutants were constructed. The gene knockout mutants were tested for their DNA restriction activities by the determination of transformation efficiency using methylated and unmethylated foreign plasmid DNAs. Inactivation of a putative mrr gene encoded by ZMO0028 (zmrr) resulted in a 60-fold increase in the transformation efficiency when unmethylated plasmid DNA was used. This indicated that the putative mrr gene may serve as a type IV restriction-modification system in Z. mobilis ZM4. To assign the function of a putative type I DNA methyltransferase encoded by ZMO1933 (putative S subunit) and ZMO1934 (putative M subunit), the putative S subunit was inactivated. The gene inactivation of ZMO1933 resulted in a 30-fold increase in the transformation efficiency when methylated plasmid DNA was introduced, indicating that the putative S subunit possibly serves as a part of functional type I R-M system(s). Growth studies performed on the mutant strains indicate inactivation of the type I S subunit resulted in a lower maximum specific glucose consumption rate and biomass yield, while inactivation of the type IV Zmrr had the opposite effect, with an increase in the maximum specific growth rate and biomass yield.

  9. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae.

    PubMed

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi

    2012-11-01

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae.

  10. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.; Martinez, A. |

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  11. [Construction of an ethanologenic Escherichia coli strain expressing beta-glucosidase].

    PubMed

    Zhang, Yao; Luo, Zichen; Gao, Qiuqiang; Bao, Jie

    2013-09-01

    Constructing ethanologenic strains with cellulose activity is important to achieve consolidated bioprocessing of lignocellulose for ethanol production. In this study, we integrated the pyruvate decarboxylase gene pdc and alcohol dehydrogenase gene adhB from Zymomonas mobilis ZM4 into Escherichia coli JM109 by Red recombination method to generatea recombinant strain E. coli P81 that could produce ethanol from glucose. Abeta-glucosidase gene bglB from Bacillus polymyxa 1.794 was cloned into the recombinant E. coli P81 and beta-glucosidase was expressed to give a new recombinant strain E. coli P81 (pUC19-bglB) with dual functions of cellobiose degradation and ethanol production. The extracellular beta-glucosidaseactivity was 84.78 mU/mL broth and the extracellular cellobiase activity of E. coli P81 (pUC19-bglB) was 32.32 mU/mL broth. E. coli P81 (pUC19-bglB) fermented cellobiose to ethanol with a yield of 55.8% of the theoretical value, and when glucose and cellobiose were co-fermented, the ethanol yield reached 46.5% of thetheoretical value. The construction of consolidated bioprocessing strain opens the possibility to convert cellobiose to ethanol in a single bioprocess.

  12. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica.

    PubMed

    Gao, Cuijuan; Qi, Qingsheng; Madzak, Catherine; Lin, Carol Sze Ki

    2015-09-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients. PMID:26153503

  13. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica.

    PubMed

    Gao, Cuijuan; Qi, Qingsheng; Madzak, Catherine; Lin, Carol Sze Ki

    2015-09-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients.

  14. Summary of clinical findings on Engerix-B, a genetically engineered yeast derived hepatitis B vaccine.

    PubMed

    André, F E; Safary, A

    1987-01-01

    Between February 1984 and August 1986 results have been obtained in 58 completed or ongoing clinical studies by 33 investigators in 19 countries on a yeast-derived recombinant DNA hepatitis B vaccine (Engerix-B). Among the 6100 subjects enrolled in these studies, 5664 subjects (150 normal neonates, 178 neonates of hepatitis B carrier mothers, 330 children aged 3-10 years, 3697 young healthy adults, 438 homosexual males, 110 older healthy adults, 139 drug addicts, 262 institutionalized mentally retarded patients, 59 thalassaemics, 25 sicklaemics, 270 patients on chronic haemodialysis and 6 haemophiliacs) received one or more (up to 4) injections of different doses of the yeast-derived vaccine according to either a 0, 1, 2, and 12 month or a 0, 1, and 6 month vaccination schedule. In randomized comparative studies 436 subjects received either one of two commercially available plasma-derived vaccines. The results reviewed in the present summary have shown that Engerix-B is safe, clinically well tolerated, gives an anti-HBs response which is qualitatively and quantitatively similar to that obtained with plasma-derived vaccines and confers protection against infection and disease. Engerix-B can be considered as a valid alternative to existing hepatitis B vaccines. PMID:3317357

  15. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene.

    PubMed Central

    Kitamoto, K; Oda, K; Gomi, K; Takahashi, K

    1991-01-01

    Urea is reported to be a main precursor of ethyl carbamate (ECA), which is suspected to be a carcinogen, in wine and sake. In order to minimize production of urea, arginase-deficient mutants (delta car1/delta car1) were constructed from a diploid sake yeast, Kyokai no. 9, by successive disruption of the two copies of the CAR1 gene. First, the yeast strain was transformed with plasmid pCAT2 (delta car1 SMR1), and strains heterozygous for CAR1 gene were isolated on sulfometuron methyl plates. Successively, the other CAR1 gene was disrupted by transformation with plasmid pCAT1 (delta car1 G418r) and the resulting car1 mutants were isolated on a G418 plate. Arginase assay of the total cell lysate of the mutants showed that 70% of transformants isolated on G418 plates had no detectable enzyme activity, possibly as a result of the disruption of the two copies of the CAR1 gene. Further genomic Southern analysis confirmed this result. We could brew sake containing no urea with the delta car1/delta car1 homozygous mutant. It is of additional interest that no ECA was detected in the resulting sake, even after storage for 5 months at 30 degrees C. This molecular biological study suggests that ECA in sake originates mainly from urea that is produced by the arginase. Images PMID:2036017

  16. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Butanol is an attractive alternative energy fuel owing to several advantages over ethanol. Among the microbial hosts for biobutanol production, yeast Saccharomyces cerevisiae has a great potential as a microbial host due to its powerful genetic tools, a history of successful industrial use, and its inherent tolerance to higher alcohols. Butanol production by S. cerevisiae was first attempted by transferring the 1-butanol-producing metabolic pathway from native microorganisms or using the endogenous Ehrlich pathway for isobutanol synthesis. Utilizing alternative enzymes with higher activity, eliminating competitive pathways, and maintaining cofactor balance achieved significant improvements in butanol production. Meeting future challenges, such as enhancing butanol tolerance and implementing a comprehensive strategy by high-throughput screening, would further elevate the biobutanol-producing ability of S. cerevisiae toward an ideal microbial cell factory exhibiting high productivity of biobutanol. PMID:26712533

  17. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Butanol is an attractive alternative energy fuel owing to several advantages over ethanol. Among the microbial hosts for biobutanol production, yeast Saccharomyces cerevisiae has a great potential as a microbial host due to its powerful genetic tools, a history of successful industrial use, and its inherent tolerance to higher alcohols. Butanol production by S. cerevisiae was first attempted by transferring the 1-butanol-producing metabolic pathway from native microorganisms or using the endogenous Ehrlich pathway for isobutanol synthesis. Utilizing alternative enzymes with higher activity, eliminating competitive pathways, and maintaining cofactor balance achieved significant improvements in butanol production. Meeting future challenges, such as enhancing butanol tolerance and implementing a comprehensive strategy by high-throughput screening, would further elevate the biobutanol-producing ability of S. cerevisiae toward an ideal microbial cell factory exhibiting high productivity of biobutanol.

  18. Discovery of Unclustered Fungal Indole Diterpene Biosynthetic Pathways through Combinatorial Pathway Reassembly in Engineered Yeast.

    PubMed

    Tang, Man-Cheng; Lin, Hsiao-Ching; Li, Dehai; Zou, Yi; Li, Jian; Xu, Wei; Cacho, Ralph A; Hillenmeyer, Maureen E; Garg, Neil K; Tang, Yi

    2015-11-01

    The structural diversity and biological activities of fungal indole diterpenes (IDTs) are generated in large part by the IDT cyclases (IDTCs). Identifying different IDTCs from IDT biosynthetic pathways is therefore important toward understanding how these enzymes introduce chemical diversity from a common linear precursor. However, IDTCs involved in the cyclization of the well-known aflavinine subgroup of IDTs have not been discovered. Here, using Saccharomyces cerevisiae as a heterologous host and a phylogenetically guided enzyme mining approach, we combinatorially assembled IDT biosynthetic pathways using IDTCs homologues identified from different fungal hosts. We identified the genetically standalone IDTCs involved in the cyclization of aflavinine and anominine and produced new IDTs not previously isolated. The cyclization mechanisms of the new IDTCs were proposed based on the yeast reconstitution results. Our studies demonstrate heterologous pathway assembly is a useful tool in the reconstitution of unclustered biosynthetic pathways.

  19. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase.

    PubMed

    Singh, Shailendra; Lee, Wonkyu; Dasilva, Nancy A; Mulchandani, Ashok; Chen, Wilfred

    2008-02-01

    Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.

  20. Metabolic and bioprocess engineering of the yeast Candida famata for FAD production.

    PubMed

    Yatsyshyn, Valentyna Y; Fedorovych, Dariya V; Sibirny, Andriy A

    2014-05-01

    Flavins in the form of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) play an important role in metabolism as cofactors for oxidoreductases and other enzymes. Flavin nucleotides have applications in the food industry and medicine; FAD supplements have been efficiently used for treatment of some inheritable diseases. FAD is produced biotechnologically; however, this compound is much more expensive than riboflavin. Flavinogenic yeast Candida famata synthesizes FAD from FMN and ATP in the reaction catalyzed by FAD synthetase, a product of the FAD1 gene. Expression of FAD1 from the strong constitutive promoter TEF1 resulted in 7- to 15-fold increase in FAD synthetase activity, FAD overproduction, and secretion to the culture medium. The effectiveness of FAD production under different growth conditions by one of these recombinant strains, C. famata T-FD-FM 27, was evaluated. First, the two-level Plackett-Burman design was performed to screen medium components that significantly influence FAD production. Second, central composite design was adopted to investigate the optimum value of the selected factors for achieving maximum FAD yield. FAD production varied most significantly in response to concentrations of adenine, KH2PO4, glycine, and (NH4)2SO4. Implementation of these optimization strategies resulted in 65-fold increase in FAD production when compared to the non-optimized control conditions. Recombinant strain that has been cultivated for 40 h under optimized conditions achieved a FAD accumulation of 451 mg/l. So, for the first time yeast strains overproducing FAD were obtained, and the growth media composition for maximum production of this nucleotide was designed. PMID:24595668

  1. Whole recombinant yeast vaccine induces antitumor immunity and improves survival in a genetically engineered mouse model of melanoma

    PubMed Central

    Tanaka, A; Jensen, JD; Prado, R; Riemann, H; Shellman, YG; Norris, DA; Chin, L; Yee, C; Fujita, M

    2015-01-01

    Malignant melanoma is one of the deadliest forms of skin cancer and its incidence is expected to rise over the next two decades. At present, there are no effective therapies for advanced melanoma. We have previously shown that administration of whole recombinant yeast expressing human MART-1 (hMART-IT) induces protective antimelanoma immunity in a B16F10 transplantable mouse model. In this study, we examine the effectiveness of the hMART-IT vaccine in a congenic strain of genetically engineered mouse model of melanoma, which recapitulates both the underlying genetics and the proper tumor microenvironment of naturally occurring melanoma. Subcutaneous administration of hMART-IT induced cytotoxicity against melanoma cells and antigen-specific production of Th1-specific cytokines by splenocytes. Weekly administration of hMART-IT significantly delayed the development of melanoma and prolonged the survival of mice compared with controls. Although histological analysis demonstrated diffuse infiltration of CD4+ T cells and CD8+ T cells, no reduction of regulatory T cells was observed, suggesting that hMART-IT cannot prevent immunotolerance in the tumor microenvironment. This study provides a proof of concept that genetically engineered mouse models lend valuable insights into immunotherapeutics being tested in the preclinical setting. PMID:21390072

  2. A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display

    PubMed Central

    Schröter, Christian; Günther, Ralf; Rhiel, Laura; Becker, Stefan; Toleikis, Lars; Doerner, Achim; Becker, Janine; Schönemann, Andreas; Nasu, Daichi; Neuteboom, Berend; Kolmar, Harald; Hock, Björn

    2015-01-01

    There is growing interest in the fast and robust engineering of protein pH-sensitivity that aims to reduce binding at acidic pH, compared to neutral pH. Here, we describe a novel strategy for the incorporation of pH-sensitive antigen binding functions into antibody variable domains using combinatorial histidine scanning libraries and yeast surface display. The strategy allows simultaneous screening for both, high affinity binding at pH 7.4 and pH-sensitivity, and excludes conventional negative selection steps. As proof of concept, we applied this strategy to incorporate pH-dependent antigen binding into the complementary-determining regions of adalimumab. After 3 consecutive rounds of separate heavy and light chain library screening, pH-sensitive variants could be isolated. Heavy and light chain mutations were combined, resulting in 3 full-length antibody variants that revealed sharp, reversible pH-dependent binding profiles. Dissociation rate constants at pH 6.0 increased 230- to 780-fold, while high affinity binding at pH 7.4 in the sub-nanomolar range was retained. Furthermore, binding to huFcRn and thermal stability were not affected by histidine substitutions. Overall, this study emphasizes a generalizable strategy for engineering pH-switch functions potentially applicable to a variety of antibodies and further proteins-based therapeutics. PMID:25523975

  3. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production.

    PubMed

    Dmytruk, Kostyantyn V; Yatsyshyn, Valentyna Y; Sybirna, Natalia O; Fedorovych, Daria V; Sibirny, Andriy A

    2011-01-01

    Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata. PMID:21040798

  4. Comparative energetics of glucose and xylose metabolism in ethanologenic recombinant Escherichia coli B

    SciTech Connect

    Lawford, H.G.; Rousseau, J.D.

    1995-12-31

    This study compared the anaerobic catabolism of glucose and xylose by a patented, recombinant ethanologenic Escherichia coli B 11303:pLOI297 in terms of overall yields of cell mass (growth), energy (ATP), and end product (ethanol). Batch cultivations were conducted with pH-controlled stirred-tank bioreactors using both a nutritionally rich, complex medium (Luria broth) and a defined salts minimal medium and growth-limiting concentrations of glucose or xylose. The value of {Upsilon}{sub ATP} was determined to be 9.28 and 8.19 g dry wt cells/mol ATP in complex and minimal media, respectively. Assuming that the nongrowth-associated energy demand is similar for glucose and xylose, the mass-based growth yield ({Upsilon}{sub x/s}, g dry wt cells/g sugar) should be proportional to the net energy yield from sugar metabolism. The value of {Upsilon}{sub x/s} was reduced, on average, by about 50% (from 0.096 g/g glu to 0.051 g/g xyl) when xylose replaced glucose as the growth-limiting carbon and energy source. It was concluded that this observation is consistent with the theoretical difference in net energy (ATP) yield associated with anaerobic catabolism of glucose and xylose when differences in the mechanisms of energy-coupled transport of each sugar are taken into account. In a defined salts medium, the net ATP yield was determined to be 2.0 and 0.92 for glucose and xylose, respectively.

  5. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system

    PubMed Central

    Enkler, Ludovic; Richer, Delphine; Marchand, Anthony L.; Ferrandon, Dominique; Jossinet, Fabrice

    2016-01-01

    Among Candida species, the opportunistic fungal pathogen Candida glabrata has become the second most common causative agent of candidiasis in the world and a major public health concern. Yet, few molecular tools and resources are available to explore the biology of C. glabrata and to better understand its virulence during infection. In this study, we describe a robust experimental strategy to generate loss-of-function mutants in C. glabrata. The procedure is based on the development of three main tools: (i) a recombinant strain of C. glabrata constitutively expressing the CRISPR-Cas9 system, (ii) an online program facilitating the selection of the most efficient guide RNAs for a given C. glabrata gene, and (iii) the identification of mutant strains by the Surveyor technique and sequencing. As a proof-of-concept, we have tested the virulence of some mutants in vivo in a Drosophila melanogaster infection model. Our results suggest that yps11 and a previously uncharacterized serine/threonine kinase are involved, directly or indirectly, in the ability of the pathogenic yeast to infect this model host organism. PMID:27767081

  6. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    PubMed

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  7. Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. Since S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI...

  8. Protein engineering of alcohol dehydrogenase--1. Effects of two amino acid changes in the active site of yeast ADH-1.

    PubMed

    Murali, C; Creaser, E H

    1986-01-01

    One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.

  9. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    PubMed Central

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, Lihui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-01-01

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts. PMID:25956650

  10. Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a differ...

  11. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    PubMed

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  12. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites

    PubMed Central

    Husseneder, Claudia; Donaldson, Jennifer R.; Foil, Lane D.

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival. PMID:26985663

  13. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    PubMed

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival. PMID:26985663

  14. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei.

    PubMed

    Saxena, Jyotisna; Tanner, Ralph S

    2011-04-01

    The effect of trace metal ions (Co²+, Cu²+, Fe²+, Mn²+, Mo⁶+, Ni²+, Zn²+, SeO₄⁻ and WO₄⁻) on growth and ethanol production by an ethanologenic acetogen, Clostridium ragsdalei was investigated in CO:CO₂-grown cells. A standard acetogen medium (ATCC medium no. 1754) was manipulated by varying the concentrations of trace metals in the media. Increasing the individual concentrations of Ni²+, Zn²+, SeO₄⁻ and WO₄⁻ from 0.84, 6.96, 1.06, and 0.68 μM in the standard trace metals solution to 8.4, 34.8, 5.3, and 6.8 μM, respectively, increased ethanol production from 35.73 mM under standard metals concentration to 176.5, 187.8, 54.4, and 72.3 mM, respectively. Nickel was necessary for growth of C. ragsdalei. Growth rate (μ) of C. ragsdalei improved from 0.34 to 0.49 (day⁻¹), and carbon monoxide dehydrogenase (CODH) and hydrogenase (H₂ase)-specific activities improved from 38.45 and 0.35 to 48.5 and 1.66 U/mg protein, respectively, at optimum concentration of Ni²+. At optimum concentrations of WO₄⁻ and SeO₄⁻, formate dehydrogenase (FDH) activity improved from 32.3 to 42.6 and 45.4 U/mg protein, respectively. Ethanol production and the activity of FDH reduced from 35 mM and 32.3 U/mg protein to 1.14 mM and 8.79 U/mg protein, respectively, upon elimination of WO₄⁻ from the medium. Although increased concentration of Zn²+ enhanced growth and ethanol production, the activities of CODH, FDH, H₂ase and alcohol dehydrogenase (ADH) were not affected by varying the Zn²+ concentration. Omitting Fe²+ from the medium decreased ethanol production from 35.7 to 6.30 mM and decreased activities of CODH, FDH, H₂ase and ADH from 38.5, 32.3, 0.35, and 0.68 U/mg protein to 9.07, 7.01, 0.10, and 0.24 U/mg protein, respectively. Ethanol production improved from 35 to 54 mM when Cu²+ was removed from the medium. The optimization of trace metals concentration in the fermentation medium improved enzyme activities (CODH, FDH, and H

  15. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  16. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  17. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    PubMed

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. PMID:27491712

  18. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    PubMed

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given.

  19. Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli.

    PubMed Central

    Barbosa, M F; Beck, M J; Fein, J E; Potts, D; Ingram, L O

    1992-01-01

    Process conditions for the acid hydrolysis of pine hemicellulose and cellulose have been described which provide a biocompatible sugar solution. By using an improved strain of recombinant Escherichia coli, strain KO11, hydrolysates supplemented with yeast extract and tryptone nutrients were converted to ethanol with an efficiency of 85% to over 100% on the basis of monomer sugar content (approximately 72 g/liter) and with the production of 35 g of ethanol per liter in 48 h. In the process described, approximately 347 liters of ethanol could be produced per dry metric ton of lignocellulose. PMID:1599258

  20. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.

    PubMed

    Cheng, Hairong; Lv, Jiyang; Wang, Hengwei; Wang, Ben; Li, Zilong; Deng, Zixin

    2014-04-01

    Xylitol is industrially synthesized by chemical reduction of D-xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce D-arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of D-arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the D-xylulose-forming D-arabitol dehydrogenase (DalD) gene from Klebsiella pneumoniae and the xylitol dehydrogenase (XDH) gene from Gluconobacter oxydans. Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose-D-arabitol-D-xylulose-xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.

  1. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.

  2. Hemicellulases from the ethanologenic thermophile Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect

    Wiegel, J.

    1998-05-01

    The SHORT TERM GOALS of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following TASKS: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-0-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium (one of our long term goals).

  3. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  4. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.

    PubMed

    Wei, Wei; Wang, Pingping; Wei, Yongjun; Liu, Qunfang; Yang, Chengshuai; Zhao, Guoping; Yue, Jianmin; Yan, Xing; Zhou, Zhihua

    2015-09-01

    Ginsenosides, the main pharmacologically active natural compounds in ginseng (Panax ginseng), are mostly the glycosylated products of protopanaxadiol (PPD) and protopanaxatriol (PPT). No uridine diphosphate glycosyltransferase (UGT), which catalyzes PPT to produce PPT-type ginsenosides, has yet been reported. Here, we show that UGTPg1, which has been demonstrated to regio-specifically glycosylate the C20-OH of PPD, also specifically glycosylates the C20-OH of PPT to produce bioactive ginsenoside F1. We report the characterization of four novel UGT genes isolated from P. ginseng, sharing high deduced amino acid identity (>84%) with UGTPg1. We demonstrate that UGTPg100 specifically glycosylates the C6-OH of PPT to produce bioactive ginsenoside Rh1, and UGTPg101 catalyzes PPT to produce F1, followed by the generation of ginsenoside Rg1 from F1. However, UGTPg102 and UGTPg103 were found to have no detectable activity on PPT. Through structural modeling and site-directed mutagenesis, we identified several key amino acids of these UGTs that may play important roles in determining their activities and substrate regio-specificities. Moreover, we constructed yeast recombinants to biosynthesize F1 and Rh1 by introducing the genetically engineered PPT-producing pathway and UGTPg1 or UGTPg100. Our study reveals the possible biosynthetic pathways of PPT-type ginsenosides in Panax plants, and provides a sound manufacturing approach for bioactive PPT-type ginsenosides in yeast via synthetic biology strategies.

  5. Pilot studies on scale-up biocatalysis of 7-β-xylosyl-10-deacetyltaxol and its analogues by an engineered yeast.

    PubMed

    Liu, Wan-Cang; Zhu, Ping

    2015-06-01

    Paclitaxel content in yew tree is extremely low, causing a worldwide shortage of this important anticancer drug. Yew tree can also produce abundant 7-β-xylosyl-10-deacetyltaxol that can be bio-converted into 10-deacetyltaxol for semi-synthesis of paclitaxel. However, the bio-conversion by the screened natural microorganisms was inefficient. We have constructed the recombinant yeast with a glycoside hydrolase gene from Lentinula edodes and explored the bioconversion. Based on previously established reaction conditions, the bioconversion of 7-β-xylosyl-10-deacetyltaxol or its extract was further optimized and scaled up with the engineered yeast harvested from 200-L scale high-cell-density fermentation. The optimization included the freeze-dried cell amount, dimethyl sulfoxide concentration, addition of 0.5% antifoam supplement, and substrate concentration. A 93-95% bioconversion and 83% bioconversion of 10 and 15 g/L 7-β-xylosyltaxanes in 10 L reaction volume were achieved, respectively. The yield of 10-deacetyltaxol reached 10.58 g/L in 1 L volume with 15 g/L 7-β-xylosyl-10-deacetyltaxol. The conversion efficiencies were not only much higher than those of other reports and our previous work, but also realized in 10 L reaction volume. A pilot-scale product purification was also established. Our study bridges the gap between the basic research and commercial utilization of 7-β-xylosyl-10-deacetyltaxol for the industrial production of semi-synthetic paclitaxel. PMID:25860125

  6. Wine yeasts for the future.

    PubMed

    Fleet, Graham H

    2008-11-01

    International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.

  7. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.

    PubMed

    Hasunuma, Tomohisa; Sakamoto, Takatoshi; Kondo, Akihiko

    2016-01-01

    Improving the production of ethanol from xylose is an important goal in metabolic engineering of Saccharomyces cerevisiae. Furthermore, S. cerevisiae must produce ethanol in the presence of weak acids (formate and acetate) generated during pre-treatment of lignocellulosic biomass. In this study, weak acid-containing xylose fermentation was significantly improved using cells that were acclimated to the weak acids during pre-cultivation. Transcriptome analyses showed that levels of transcripts for transcriptional/translational machinery-related genes (RTC3 and ANB1) were enhanced by formate and acetate acclimation. Recombinant yeast strains overexpressing RTC3 and ANB1 demonstrated improved ethanol production from xylose in the presence of the weak acids, along with improved tolerance to the acids. Novel metabolic engineering strategy based on the combination of short-term acclimation and system-wide analysis was developed, which can develop stress-tolerant strains in a short period of time, although conventional evolutionary engineering approach has required long periods of time to isolate inhibitor-adapted strains.

  8. Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Sitepu, Irnayuli R; Shi, Shuang; Simmons, Blake A; Singer, Steven W; Boundy-Mills, Kyria; Simmons, Christopher W

    2014-12-01

    Lignocellulosic plant biomass is the target feedstock for production of second-generation biofuels. Ionic liquid (IL) pretreatment can enhance deconstruction of lignocellulosic biomass into sugars that can be fermented to ethanol. Although biomass is typically washed following IL pretreatment, small quantities of residual IL can inhibit fermentative microorganisms downstream, such as the widely used ethanologenic yeast, Saccharomyces cerevisiae. The aim of this study was to identify yeasts tolerant to the IL 1-ethyl-3-methylimidazolium acetate, one of the top performing ILs known for biomass pretreatment. One hundred and sixty eight strains spanning the Ascomycota and Basidiomycota phyla were selected for screening, with emphasis on yeasts within or closely related to the Saccharomyces genus and those tolerant to saline environments. Based on growth in media containing 1-ethyl-3-methylimidazolium acetate, tolerance to IL levels ranging 1-5% was observed for 80 strains. The effect of 1-ethyl-3-methylimidazolium acetate concentration on maximum cell density and growth rate was quantified to rank tolerance. The most tolerant yeasts included strains from the genera Clavispora, Debaryomyces, Galactomyces, Hyphopichia, Kazachstania, Meyerozyma, Naumovozyma, Wickerhamomyces, Yarrowia, and Zygoascus. These yeasts included species known to degrade plant cell wall polysaccharides and those capable of ethanol fermentation. These yeasts warrant further investigation for use in saccharification and fermentation of IL-pretreated lignocellulosic biomass to ethanol or other products. PMID:25348480

  9. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production

    PubMed Central

    Gruchattka, Evamaria; Kayser, Oliver

    2015-01-01

    Background Engineering of the central carbon metabolism of Saccharomyces cerevisiae to redirect metabolic flux towards cytosolic acetyl-CoA has become a central topic in yeast biotechnology. A cell factory with increased flux into acetyl-CoA can be used for heterologous production of terpenoids for pharmaceuticals, biofuels, fragrances, or other acetyl-CoA derived compounds. In a previous study, we identified promising metabolic engineering targets in S. cerevisiae using an in silico stoichiometric metabolic network analysis. Here, we validate selected in silico strategies in vivo. Results Patchoulol was produced by yeast via a heterologous patchoulol synthase of Pogostemon cablin. To increase the metabolic flux from acetyl-CoA towards patchoulol, a truncated HMG-CoA reductase was overexpressed and farnesyl diphosphate synthase was fused with patchoulol synthase. The highest increase in production could be achieved by modifying the carbon source; sesquiterpenoid titer increased from glucose to ethanol by a factor of 8.4. Two strategies predicted in silico were chosen for validation in this work. Disruption of α-ketoglutarate dehydrogenase gene (KGD1) was predicted to redirect the metabolic flux via the pyruvate dehydrogenase bypass towards acetyl-CoA. The metabolic flux was redirected as predicted, however, the effect was dependent on cultivation conditions and the flux was interrupted at the level of acetate. High amounts of acetate were produced. As an alternative pathway to synthesize cytosolic acetyl-CoA, ATP-citrate lyase was expressed as a polycistronic construct, however, in vivo performance of the enzyme needs to be optimized to increase terpenoid production. Conclusions Stoichiometric metabolic network analysis can be used successfully as a metabolic prediction tool. However, this study highlights that kinetics, regulation and cultivation conditions may interfere, resulting in poor in vivo performance. Main sites of regulation need to be released and

  10. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  11. A rationally engineered yeast pyruvyltransferase Pvg1p introduces sialylation-like properties in neo-human-type complex oligosaccharide

    PubMed Central

    Higuchi, Yujiro; Yoshinaga, Sho; Yoritsune, Ken-ichi; Tateno, Hiroaki; Hirabayashi, Jun; Nakakita, Shin-ichi; Kanekiyo, Miho; Kakuta, Yoshimitsu; Takegawa, Kaoru

    2016-01-01

    Pyruvylation onto the terminus of oligosaccharide, widely seen from prokaryote to eukaryote, confers negative charges on the cell surface and seems to be functionally similar to sialylation, which is found at the end of human-type complex oligosaccharide. However, detailed molecular mechanisms underlying pyruvylation have not been clarified well. Here, we first determined the crystal structure of fission yeast pyruvyltransferase Pvg1p at a resolution of 2.46 Å. Subsequently, by combining molecular modeling with mutational analysis of active site residues, we obtained a Pvg1p mutant (Pvg1pH168C) that efficiently transferred pyruvyl moiety onto a human-type complex glycopeptide. The resultant pyruvylated human-type complex glycopeptide recognized similar lectins on lectin arrays as the α2,6-sialyl glycopeptides. This newly-generated pyruvylation of human-type complex oligosaccharides would provide a novel method for glyco-bioengineering. PMID:27194449

  12. GMAX Yeast Background Strain Made from Industrial Tolerant Saccharomyces Cerevisiae Engineered to Convert Pretreated Lignocellulosic Starch and Cellulosic Sugars Universally to Ethanol Anaerobically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tailored GMAX yeast background strain technology for universal ethanol production industrially: Production of the stable baseline glucose, mannose, arabinose, xylose-utilizing (GMAX) yeast will be evaluated by taking the genes identified in high-throughput screening for a plasmid-based yeast to util...

  13. GMAX Yeast Background Strain Made from Industrial Tolerant Saccharomyces cerevisiae Engineered to Convert Sucrose, Starch and Cellulosic Sugars Universally to Ethanol Anaerobically with Concurrent Coproduct Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tailored GMAX yeast background strain technology for universal ethanol production industrially. Production of the stable baseline glucose, mannose, arabinose, xylose-utilizing (GMAX) yeast will be evaluated by taking the genes identified in high-throughput screening for a plasmid-based yeast to uti...

  14. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants

    PubMed Central

    Khan, Muhammad Sarwar; Kanwal, Benish; Nazir, Shahid

    2015-01-01

    Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4–5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses. PMID:26442039

  15. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants.

    PubMed

    Khan, Muhammad Sarwar; Kanwal, Benish; Nazir, Shahid

    2015-01-01

    Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4-5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses. PMID:26442039

  16. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain.

    PubMed

    Hughes, Stephen R; Dowd, Patrick F; Hector, Ronald E; Panavas, Tadas; Sterner, David E; Qureshi, Nasib; Bischoff, Kenneth M; Bang, Sookie S; Mertens, Jeffrey A; Johnson, Eric T; Li, Xin-Liang; Jackson, John S; Caughey, Robert J; Riedmuller, Steven B; Bartolett, Scott; Liu, Siqing; Rich, Joseph O; Farrelly, Philip J; Butt, Tauseef R; Labaer, Joshua; Cotta, Michael A

    2008-09-01

    New methods of safe biological pest control are required as a result of evolution of insect resistance to current biopesticides. Yeast strains being developed for conversion of cellulosic biomass to ethanol are potential host systems for expression of commercially valuable peptides, such as bioinsecticides, to increase the cost-effectiveness of the process. Spider venom is one of many potential sources of novel insect-specific peptide toxins. Libraries of mutants of the small amphipathic peptide lycotoxin-1 from the wolf spider were produced in high throughput using an automated integrated plasmid-based functional proteomic platform and screened for ability to kill fall armyworms, a significant cause of damage to corn (maize) and other crops in the United States. Using amino acid scanning mutagenesis (AASM) we generated a library of mutagenized lycotoxin-1 open reading frames (ORF) in a novel small ubiquitin-like modifier (SUMO) yeast expression system. The SUMO technology enhanced expression and improved generation of active lycotoxins. The mutants were engineered to be expressed at high level inside the yeast and ingested by the insect before being cleaved to the active form (so-called Trojan horse strategy). These yeast strains expressing mutant toxin ORFs were also carrying the xylose isomerase (XI) gene and were capable of aerobic growth on xylose. Yeast cultures expressing the peptide toxins were prepared and fed to armyworm larvae to identify the mutant toxins with greatest lethality. The most lethal mutations appeared to increase the ability of the toxin alpha-helix to interact with insect cell membranes or to increase its pore-forming ability, leading to cell lysis. The toxin peptides have potential as value-added coproducts to increase the cost-effectiveness of fuel ethanol bioproduction.

  17. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

    PubMed

    Wei, Na; Oh, Eun Joong; Million, Gyver; Cate, Jamie H D; Jin, Yong-Su

    2015-06-19

    The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion.

  18. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.

    PubMed

    Jayakody, Lahiru N; Horie, Kenta; Hayashi, Nobuyuki; Kitagaki, Hiroshi

    2013-07-01

    Hot-compressed water treatment of lignocellulose liberates numerous inhibitors that prevent ethanol fermentation of yeast Saccharomyces cerevisiae. Glycolaldehyde is one of the strongest fermentation inhibitors and we developed a tolerant strain by overexpressing ADH1 encoding an NADH-dependent reductase; however, its recovery was partial. In this study, to overcome this technical barrier, redox cofactor preference of glycolaldehyde detoxification was investigated. Glycolaldehyde-reducing activity of the ADH1-overexpressing strain was NADH-dependent but not NADPH-dependent. Moreover, genes encoding components of the pentose phosphate pathway, which generates intracellular NADPH, was upregulated in response to high concentrations of glycolaldehyde. Mutants defective in pentose phosphate pathways were sensitive to glycolaldehyde. Genome-wide survey identified GRE2 encoding a NADPH-dependent reductase as the gene that confers tolerance to glycolaldehyde. Overexpression of GRE2 in addition to ADH1 further improved the tolerance to glycolaldehyde. NADPH-dependent glycolaldehyde conversion to ethylene glycol and NADP+ content of the strain overexpressing both ADH1 and GRE2 were increased at 5 mM glycolaldehyde. Expression of GRE2 was increased in response to glycolaldehyde. Carbon metabolism of the strain was rerouted from glycerol to ethanol. Thus, it was concluded that the overexpression of GRE2 together with ADH1 restores glycolaldehyde tolerance by augmenting the NADPH-dependent reduction pathway in addition to NADH-dependent reduction pathway. The redox cofactor control for detoxification of glycolaldehyde proposed in this study could influence strategies for improving the tolerance of other fermentation inhibitors.

  19. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  20. Yeast Infections

    MedlinePlus

    Candida is the scientific name for yeast. It is a fungus that lives almost everywhere, including in ... infection that causes white patches in your mouth Candida esophagitis is thrush that spreads to your esophagus, ...

  1. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate.

    PubMed

    Takagi, Toshiyuki; Yokoi, Takahiro; Shibata, Toshiyuki; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Alginate is a major component of brown macroalgae. In macroalgae, an endolytic alginate lyase first degrades alginate into oligosaccharides. These oligosaccharides are further broken down into monosaccharides by an exolytic alginate lyase. In this study, genes encoding various alginate lyases derived from alginate-assimilating marine bacterium Saccharophagus degradans were isolated, and their enzymes were displayed using the yeast cell surface display system. Alg7A-, Alg7D-, and Alg18J-displaying yeasts showed endolytic alginate lyase activity. On the other hand, Alg7K-displaying yeast showed exolytic alginate lyase activity. Alg7A, Alg7D, Alg7K, and Alg18J, when displayed on yeast cell surface, demonstrated both polyguluronate lyase and polymannuronate lyase activities. Additionally, polyguluronic acid could be much easily degraded by Alg7A, Alg7K, and Alg7D than polymannuronic acid. In contrast, polymannuronic acid could be much easily degraded by Alg18J than polyguluronic acid. We further constructed yeasts co-displaying endolytic and exolytic alginate lyases. Degradation efficiency by the co-displaying yeasts were significantly higher than single alginate lyase-displaying yeasts. Alg7A/Alg7K co-displaying yeast had maximum alginate degrading activity, with production of 1.98 g/L of reducing sugars in a 60-min reaction. This system developed, along with our findings, will contribute to the efficient utilization and production of useful and non-commercialized monosaccharides from alginate by Saccharomyces cerevisiae. PMID:26490549

  2. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  3. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations

    PubMed Central

    2011-01-01

    Background The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG) or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the simultaneous presence of different relevant stresses were identified as required for maximal fermentation performance under industrial conditions. Results Chemogenomics data were used to identify eight genes whose expression confers simultaneous resistance to high concentrations of glucose, acetic acid and ethanol, chemical stresses relevant for VHG fermentations; and eleven genes conferring simultaneous resistance to stresses relevant during lignocellulosic fermentations. These eleven genes were identified based on two different sets: one with five genes granting simultaneous resistance to ethanol, acetic acid and furfural, and the other with six genes providing simultaneous resistance to ethanol, acetic acid and vanillin. The expression of Bud31 and Hpr1 was found to lead to the increase of both ethanol yield and fermentation rate, while Pho85, Vrp1 and Ygl024w expression is required for maximal ethanol production in VHG fermentations. Five genes, Erg2, Prs3, Rav1, Rpb4 and Vma8, were found to contribute to the maintenance of cell viability in wheat straw hydrolysate and/or the maximal fermentation rate of this substrate. Conclusions The identified genes stand as preferential targets for genetic engineering manipulation in order to generate more robust industrial strains, able to cope with the most significant fermentation stresses and, thus, to increase ethanol production rate and final ethanol titers. PMID:22152034

  4. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.

    PubMed

    Saitoh, Satoshi; Tanaka, Tsutomu; Kondo, Akihiko

    2011-09-01

    We constructed a recombinant industrial Saccharomyces cerevisiae yeast strain OC2-AXYL2-ABGL2-Xyl2 by inserting two copies of the β-glucosidase (BGL) and β-xylosidase (XYL) genes, and a gene cassette for xylose assimilation in the genome of yeast strain OC-2HUT. Both BGL and XYL were expressed on the yeast cell surface with high enzyme activities. Using OC2-AXYL2-ABGL2-Xyl2, we performed ethanol fermentation from a mixture of powdered cellulose (KC-flock) and Birchwood xylan, with the additional supplementation of a 30-g/l Trichoderma reesei cellulase complex mixture. The ethanol yield (gram per gram of added cellulases) of the strain OC2-AXYL2-ABGL2-Xyl2 increased approximately 2.5-fold compared to that of strain OC2-Xyl2, which lacked β-glucosidase and β-xylosidase activities. Notably, the concentration of additional T. reesei cellulase was reduced from 30 to 24 g/l without affecting ethanol production. The BGL- and XYL-displaying industrial yeast of the strain OC2-AXYL2-ABGL2-Xyl2 represents a promising yeast for reducing cellulase consumption of ethanol fermentation from lignocellulosic biomass by compensating for the inherent weak BGL and XYL activities of T. reesei cellulase complexes. PMID:21643701

  5. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain.

    PubMed

    Matano, Yuki; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-03-01

    Enzymatic hydrolysis of cellulosic material is an essential step in the bioethanol production process. However, complete cellulose hydrolysis by cellulase is difficult due to the irreversible adsorption of cellulase onto cellulose. Thus, part of the cellulose remains in crystalline form after hydrolysis. In this study, after 96-h hydrolysis of Avicel crystalline cellulose, 47.1 % of the cellulase was adsorbed on the cellulose surface with 10.8 % crystalline cellulose remaining. In simultaneous saccharification and fermentation of 100 g/L Avicel with 1.0 filter paper unit/mL cellulase, a wild-type yeast strain produced 44.7 g/L ethanol after 96 h. The yield of ethanol was 79.7 % of the theoretical yield. On the other hand, a recombinant yeast strain displaying various cellulases, such as β-glucosidase, cellobiohydrolase, and endoglucanase, produced 48.9 g/L ethanol, which corresponds to 87.3 % of the theoretical yield. Higher ethanol production appears to be attributable to higher efficiency of cellulase displayed on the cell surface. These results suggest that cellulases displayed on the yeast cell surface improve hydrolysis of Avicel crystalline cellulose. Indeed, after the 96-h simultaneous saccharification and fermentation using the cellulase-displaying yeast, the amount of residual cellulose was 1.5 g/L, one quarter of the cellulose remaining using the wild-type strain, a result of the alleviation of irreversible adsorption of cellulases on the crystalline cellulose.

  6. Screening of novel yeast inulinases and further application to bioprocesses.

    PubMed

    Paixão, Susana M; Teixeira, Pedro D; Silva, Tiago P; Teixeira, Alexandra V; Alves, Luís

    2013-09-25

    Inulin is a carbohydrate composed of linear chains of β-2,1-linked D-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. Jerusalem artichoke (JA) is one of the most interesting materials among unconventional and renewable raw materials, with levels of inulin reaching 50-80% of dry matter. Inulin or inulin-rich materials can be actively hydrolyzed by microbial inulinases to produce glucose and fructose syrups that can be used in bioprocesses. In this study, several microbial strains were isolated and their ability to inulinase biosynthesis was evaluated. The novel yeast strain Talf1, identified as Zygosaccharomyces bailii, was the best inulinase producer, attaining 8.67 U/ml of inulinase activity when JA juice was used as the inducer substrate. Z. bailii strain Talf1 and/or its enzymatic crude extract were further applied for bioethanol production and biodesulfurization (BDS) processes, using inulin and JA juice as carbon source. In a consolidated bioprocessing for ethanol production from 200 g/l inulin, Z. bailii strain Talf1 was able to produce 67 g/l of ethanol. This ethanol yield was improved in a simultaneous saccharification and fermentation (SSF) process, with the ethanologenic yeast Saccharomyces cerevisiae CCMI 885 and the Talf1 inulinases, achieving a production of 78 g/l ethanol. However, the highest ethanol yield (∼48%) was obtained in a SSF process from JA juice (∼130 g/l fermentable sugars), where the S. cerevisiae produced 63 g/l ethanol. Relatively to the dibenzothiophene BDS tests, the Gordonia alkanivorans strain 1B achieved a desulfurization rate of 4.8 μM/h within a SSF process using Talf1 inulinases and JA juice, highlighting the potential of JA as a less expensive alternative carbon source. These results showed the high potential of Z. bailii strain Talf1 inulinases as a versatile tool for bioprocesses using inulin-rich materials.

  7. Screening of novel yeast inulinases and further application to bioprocesses.

    PubMed

    Paixão, Susana M; Teixeira, Pedro D; Silva, Tiago P; Teixeira, Alexandra V; Alves, Luís

    2013-09-25

    Inulin is a carbohydrate composed of linear chains of β-2,1-linked D-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. Jerusalem artichoke (JA) is one of the most interesting materials among unconventional and renewable raw materials, with levels of inulin reaching 50-80% of dry matter. Inulin or inulin-rich materials can be actively hydrolyzed by microbial inulinases to produce glucose and fructose syrups that can be used in bioprocesses. In this study, several microbial strains were isolated and their ability to inulinase biosynthesis was evaluated. The novel yeast strain Talf1, identified as Zygosaccharomyces bailii, was the best inulinase producer, attaining 8.67 U/ml of inulinase activity when JA juice was used as the inducer substrate. Z. bailii strain Talf1 and/or its enzymatic crude extract were further applied for bioethanol production and biodesulfurization (BDS) processes, using inulin and JA juice as carbon source. In a consolidated bioprocessing for ethanol production from 200 g/l inulin, Z. bailii strain Talf1 was able to produce 67 g/l of ethanol. This ethanol yield was improved in a simultaneous saccharification and fermentation (SSF) process, with the ethanologenic yeast Saccharomyces cerevisiae CCMI 885 and the Talf1 inulinases, achieving a production of 78 g/l ethanol. However, the highest ethanol yield (∼48%) was obtained in a SSF process from JA juice (∼130 g/l fermentable sugars), where the S. cerevisiae produced 63 g/l ethanol. Relatively to the dibenzothiophene BDS tests, the Gordonia alkanivorans strain 1B achieved a desulfurization rate of 4.8 μM/h within a SSF process using Talf1 inulinases and JA juice, highlighting the potential of JA as a less expensive alternative carbon source. These results showed the high potential of Z. bailii strain Talf1 inulinases as a versatile tool for bioprocesses using inulin-rich materials. PMID:23419675

  8. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  9. Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli.

    PubMed

    Miller, E N; Jarboe, L R; Yomano, L P; York, S W; Shanmugam, K T; Ingram, L O

    2009-07-01

    Low concentrations of furfural are formed as a side product during the dilute acid hydrolysis of hemicellulose. Growth is inhibited by exposure to furfural but resumes after the complete reduction of furfural to the less toxic furfuryl alcohol. Growth-based selection was used to isolate a furfural-resistant mutant of ethanologenic Escherichia coli LY180, designated strain EMFR9. Based on mRNA expression levels in the parent and mutant in response to furfural challenge, genes encoding 12 oxidoreductases were found to vary by more than twofold (eight were higher in EMFR9; four were higher in the parent). All 12 genes were cloned. When expressed from plasmids, none of the eight genes in the first group increased furfural tolerance in the parent (LY180). Expression of three of the silenced genes (yqhD, dkgA, and yqfA) in EMFR9 was found to decrease furfural tolerance compared to that in the parent. Purified enzymes encoded by yqhD and dkgA were shown to have NADPH-dependent furfural reductase activity. Both exhibited low K(m) values for NADPH (8 microM and 23 microM, respectively), similar to those of biosynthetic reactions. Furfural reductase activity was not associated with yqfA. Deleting yqhD and dkgA in the parent (LY180) increased furfural tolerance, but not to the same extent observed in the mutant EMFR9. Together, these results suggest that the process of reducing furfural by using an enzyme with a low K(m) for NADPH rather than a direct inhibitory action is the primary cause for growth inhibition by low concentrations of furfural.

  10. Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA.

    PubMed

    Zheng, Huabao; Wang, Xuan; Yomano, Lorraine P; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2012-06-01

    Furfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilis YB886, Escherichia coli NC3, and Zymomonas mobilis CP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing the thyA gene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in the de novo pathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression of thyA was no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA in E. coli and to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA in E. coli would be expected to increase the cellular requirement for dTMP. Increased expression of thyA (E. coli, B. subtilis, or Z. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair.

  11. Vaginal Yeast Infections (For Parents)

    MedlinePlus

    ... Can I Help a Friend Who Cuts? Vaginal Yeast Infections KidsHealth > For Teens > Vaginal Yeast Infections Print ... side effect of taking antibiotics. What Is a Yeast Infection? A yeast infection is a common infection ...

  12. Vaginal Yeast Infection

    MedlinePlus

    ... t diagnose this condition by a person’s medical history and physical examination. They usually diagnose yeast infection by examining vaginal secretions under a microscope for evidence of yeast. Treatment Various antifungal vaginal ...

  13. Inventions on baker's yeast strains and specialty ingredients.

    PubMed

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications. PMID:20653532

  14. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    PubMed Central

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  15. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  16. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  17. Complete biosynthesis of opioids in yeast

    PubMed Central

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J.; Interrante, Maria Filsinger; Smolke, Christina D.

    2016-01-01

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. Here, we engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof-of-principle, and major hurdles remain before optimization and scale up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds. PMID:26272907

  18. Complete biosynthesis of opioids in yeast.

    PubMed

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J; Filsinger Interrante, Maria; Smolke, Christina D

    2015-09-01

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines, despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. We engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required the expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof of principle, and major hurdles remain before optimization and scale-up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds. PMID:26272907

  19. The role of the C-terminus of the human hydroxycarboxylic acid receptors 2 and 3 in G protein activation using Gα-engineered yeast cells.

    PubMed

    Liu, Rongfang; van Veldhoven, Jacobus P D; IJzerman, Adriaan P

    2016-01-01

    In the present study we focused our attention on the family of hydroxycarboxylic acid (HCA) receptors, a GPCR family of three members, of which the HCA2 and HCA3 receptors share 95% high sequence identity but differ considerably in C-terminus length with HCA3 having the longest tail. The two receptors were expressed and analysed for their activation profile in Saccharomyces cerevisiae MMY yeast strains that have different G protein Gα subunits. The hHCA2 receptor was promiscuous in its G protein coupling preference. In the presence of nicotinic acid the hHCA2 receptor activated almost all G protein pathways except Gαq (MMY14). However, the Gα protein coupling profile of the hHCA3 receptor was less promiscuous, as the receptor only activated Gαi1 (MMY23) and Gαi3 (MMY24) pathways. We then constructed two mutant receptors by 'swapping' the short (HCA2) and long (HCA3) C-terminus. The differences in HCA2 and HCA3 receptor activation and G protein selectivity were not controlled, however, by their C-terminal tails, as we observed only minor differences between mutant and corresponding wild-type receptor. This study provides new insights into the G protein coupling profiles of the HCA receptors and the function of the receptor's C terminus, which may be extended to other GPCRs.

  20. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.

    PubMed

    Katzberg, Michael; Skorupa-Parachin, Nàdia; Gorwa-Grauslund, Marie-Françoise; Bertau, Martin

    2010-01-01

    The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the gamma-diketone 2,5-hexanedione furnishing the diol (2S,5S)-hexanediol and the gamma-hydroxyketone (5S)-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%). This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  1. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  2. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. PMID:25630239

  3. Synthetic Yeast Cooperation

    NASA Astrophysics Data System (ADS)

    Shou, Wenying; Burton, Justin

    2010-03-01

    Cooperation is wide-spread and has been postulated to drive major transitions in evolution. However, Darwinian selection favors ``cheaters'' that consume benefits without paying a fair cost. How did cooperation evolve against the threat of cheaters? To investigate the evolutionary trajectories of cooperation, we created a genetically tractable system that can be observed as it evolves from inception. The system consists of two engineered yeast strains -- a red-fluorescent strain that requires adenine and releases lysine and a yellow-fluorescent strain that requires lysine and releases adenine. Cells that consume but not supply metabolites would be cheaters. From the properties of two cooperating strains, we calculated and experimentally verified the minimal initial cell densities required for the viability of the cooperative system in the absence of exogenously added adenine and lysine. Strikingly, evolved cooperative systems were viable at 100-fold lower initial cell densities than their ancestors. We are investigating the nature and diversity of pro-cooperation changes, the dynamics of cooperator-cheater cocultures, and the effects of spatial environment on cooperation and cheating.

  4. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene.

    PubMed

    Lasanajak, Yi; Minocha, Rakesh; Minocha, Subhash C; Goyal, Ravinder; Fatima, Tahira; Handa, Avtar K; Mattoo, Autar K

    2014-03-01

    S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in plants has not yet been characterized. We used radiolabeled (14)C-Arg, (14)C-Orn, L-[U-(14)C]Met, (14)C-SAM and (14)C-Put to quantify flux through these pathways in tomato fruit and evaluate the effects of perturbing these pathways via transgenic expression of a yeast SAM decarboxylase (ySAMDC) gene using the fruit ripening-specific promoter E8. We show that polyamines in tomato fruit are synthesized both from Arg and Orn; however, the relative contribution of Orn pathway declines in the later stages of ripening. Expression of ySAMDC reversed the ripening associated decline in spermidine (Spd) and spermine (Spm) levels observed in the azygous control fruit. About 2- to 3-fold higher levels of labeled-Spd in transgenic fruit (556HO and 579HO lines) expressing ySAMDC confirmed the enzymatic function of the introduced gene. The incorporation of L-[U-(14)C]Met into Spd, Spm, ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) was used to determine Met-flux into these metabolites. The incorporation of (14)C-Met into Spd/Spm declined during ripening of the control azygous fruit but this was reversed in fruits expressing ySAMDC. However, incorporation of (14)C-Met into ethylene or ACC during ripening was not altered by the expression of ySAMDC in the fruit. Taken together these results show that: (1) There is an inverse relationship between the production of higher polyamines and ethylene during fruit ripening, (2) the inverse relationship between higher polyamines and ethylene is modulated by ySAMDC expression in that the decline in Spd/Spm during fruit ripening can be reversed without significantly altering ethylene

  5. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  6. A decade of yeast surface display technology: where are we now?

    PubMed

    Pepper, Lauren R; Cho, Yong Ku; Boder, Eric T; Shusta, Eric V

    2008-02-01

    Yeast surface display has become an increasingly popular tool for protein engineering and library screening applications. Recent advances have greatly expanded the capability of yeast surface display, and are highlighted by cell-based selections, epitope mapping, cDNA library screening, and cell adhesion engineering. In this review, we discuss the state-of-the-art yeast display methodologies and the rapidly expanding set of applications afforded by this technology.

  7. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.

    PubMed

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting. PMID:26060080

  8. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.

    PubMed

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting.

  9. Ethanologenic Enzymes of Zymomonas mobilis

    SciTech Connect

    Ingram, Lonnie O'Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  10. Yeast cell factories for fine chemical and API production

    PubMed Central

    Pscheidt, Beate; Glieder, Anton

    2008-01-01

    This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii. PMID:18684335

  11. Epitope-Specific Binder Design by Yeast Surface Display.

    PubMed

    Mann, Jasdeep K; Park, Sheldon

    2015-01-01

    Yeast surface display is commonly used to engineer affinity and design novel molecular interaction. By alternating positive and negative selections, yeast display can be used to engineer binders that specifically interact with the target protein at a defined site. Epitope-specific binders can be useful as inhibitors if they bind the target molecule at functionally important sites. Therefore, an efficient method of engineering epitope specificity should help with the engineering of inhibitors. We describe the use of yeast surface display to design single domain monobodies that bind and inhibit the activity of the kinase Erk-2 by targeting a conserved surface patch involved in protein-protein interaction. The designed binders can be used to disrupt signaling in the cell and investigate Erk-2 function in vivo. The described protocol is general and can be used to design epitope-specific binders of an arbitrary protein. PMID:26060073

  12. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    PubMed

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  13. Vaginal yeast infection

    MedlinePlus

    Medicines to treat vaginal yeast infections are available as creams, ointments, vaginal tablets or suppositories and oral tablets. Most can be bought without needing to see your provider. Treating yourself at home is probably OK if: Your ...

  14. Single yeast cell imaging.

    PubMed

    Wolinski, Heimo; Kohlwein, Sepp D

    2014-01-01

    Microscopic imaging techniques play a pivotal role in the life sciences. Here we describe labeling and imaging methods for live yeast cell imaging. Yeast is an excellent reference organism for biomedical research to investigate fundamental cellular processes, and has gained great popularity also for large-scale imaging-based screens. Methods are described to label live yeast cells with organelle-specific fluorescent dyes or GFP-tagged proteins, and how cells are maintained viable over extended periods of time during microscopy. We point out common pitfalls and potential microscopy artifacts arising from inhomogeneous labeling and depending on cellular physiology. Application and limitation of bleaching techniques to address dynamic processes in the yeast cell are described.

  15. Yeast biotechnology: teaching the old dog new tricks.

    PubMed

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  16. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  17. Modeling brewers' yeast flocculation

    PubMed

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  18. Improving industrial yeast strains: exploiting natural and artificial diversity.

    PubMed

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.

  19. Improving industrial yeast strains: exploiting natural and artificial diversity.

    PubMed

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  20. Forces in yeast flocculation.

    PubMed

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  1. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  2. Stubborn vaginal yeast infections.

    PubMed

    1994-01-01

    Fungi, which along with plants and animals comprise a distinct group in the classification of living things, break down and recycle organic matter. One sub-group with over 600 varieties consists of microscopic, single-celled yeasts. Of the genus Candida, the species Candida albicans accounts for 94% of all cases of fungal vaginitis. Yeasts thrive in human bodies as either beneficial or pathogenic agents. Even when they are an innocuous presence in a healthy human body, they are always poised to create opportunistic infections in susceptible individuals. Candida has been known to infect every organ of the body, but its ability to cause infection depends upon the presence of a sufficient amount of fungal organisms or generally reduced resistance or both. Often use of modern medical drugs such as oral contraceptives, antibiotics, or immunosuppressant drugs can trigger an infection. The symptoms of vaginal infection are vaginal itching, inflammation, and swelling; a burning sensation; and a white, cheesy discharge. Yeast infections can occur in females of all ages (although they are most common in women of child-bearing age) and prompt a large percentage of trips to the gynecologist. Recurrence is common, and each occurrence is harder to eradicate. Often frustrated women turn to alternative therapies. Successful treatment depends upon reducing the yeast population in the body, building up the beneficial bacteria population, limiting and controlling yeast triggers, and strengthening overall health. PMID:12318962

  3. Yeasts in spa establishments.

    PubMed

    Svorcová, L

    1982-05-01

    It was investigated occurrence of yeasts on bathsurfaces, in sauna rooms, in swimming and therapeutic pool water. The number of yeasts decreased depending on patients age, if the rooms were furnished with bath. The lowest contamination was found after bath of 40-60 years-old women. In the saunas were yeasts not found on the upper benches with temperature above 55 degrees C. Much higher counts on lower benches and wood mats with temperature 35-40 degrees C, on basin walls and bottom-up to 10(4)-10(6)/100 cm2. It was isolated 172 yeast strains. The occurrence of some selected strains is given in Table 7, with the toxic effect of disinfectants. The most strains were resistant to Peracetic acid and Chloramin B. Since most of the isolated and determinated strains were found in contaminated environment or during various diseases, the yeasts of the genus Cryptococcus, Candida, Rhodotorula, Torulopsis and Metschnikowia should not occur in bath establishment, and should be classified among indicators of contamination of environment including water. PMID:7124167

  4. Structure-Function Analysis of Yeast Tubulin

    PubMed Central

    Luchniak, Anna; Fukuda, Yusuke; Gupta, Mohan L.

    2014-01-01

    Microtubules play essential roles in a wide variety of cellular processes including cell division, motility, and vesicular transport. Microtubule function depends on the polymerization dynamics of tubulin, and specific interactions between tubulin and diverse microtubule-associated proteins. To date, investigation of the structural and functional properties of tubulin and tubulin mutants has been limited by the inability to obtain functional protein from overexpression systems, and by the heterogeneous mixture of tubulin isotypes typically isolated from higher eukaryotes. The budding yeast, Saccharomyces cerevisiae, has emerged as a leading system for tubulin structure-function analysis. Yeast cells encode a single beta-tubulin gene and can be engineered to express just one, of two, alpha isotypes. Moreover, yeast allows site-directed modification of tubulin genes at the endogenous loci expressed under the native promoter and regulatory elements. These advantageous features provide a homogeneous and controlled environment for analysis of the functional consequences of specific mutations. Here we present techniques to generate site-specific tubulin mutations in diploid and haploid cells, assess the ability of the mutated protein to support cell viability, measure overall microtubule stability, and define changes in the specific parameters of microtubule dynamic instability. We also outline strategies to determine whether mutations disrupt interactions with microtubule-associated proteins. Microtubule-based functions in yeast are well defined, which allows the observed changes in microtubule properties to be related to the role of microtubules in specific cellular processes. PMID:23973083

  5. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  6. Genetics of Yeasts

    NASA Astrophysics Data System (ADS)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  7. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  8. Conversion of pentoses by yeasts

    SciTech Connect

    Gong, C.S.; Claypool, T.A.; Maun, C.M.; Mccracken, L.D.; Tsao, G.T.; Ueng, P.P.

    1983-01-01

    The utilization and conversion of D-xylose, D-xyulose, L-arabinose, and xylitol by yeast strains have been investigated with the following results: 1) The majority of yeasts tested utilize D-xylose and produce polyols, ethanol, and organic acids. The type and amount of products formed varies with the yeast strains used. The most commonly detected product is xylitol. 2) The majority of yeasts tested utilize D-xylulose aerobically and fermentatively to produce ethanol, xylitol D-arabitol, and organic acids. The type and amount of products varies depending upon the yeast strains used. 3) Xylitol is a poor carbon and energy source for most yeasts tested. Some yeast strains produce small amounts of ethanol from xylitol. 4) Most yeast strains utilize L-arabinose, and L-arabitol is the common product. Small amounts of ethanol are also produced by some yeast strains. 5) Of the four substrates examined, D-xylulose was the preferred substrate, followed by D-xylose, L-arabinose, and xylitol. 6) Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp. Saccharomyces cerevisiae, and other yeasts. These mutant strains can be used for ethanol production from D-xylose as well as for the study of metabolic regulation of pentose utilization in yeasts.

  9. The Red and White Yeast Lab: An Introduction to Science as a Process.

    ERIC Educational Resources Information Center

    White, Brian T.

    1999-01-01

    Describes an experimental system based on an engineered strain of bakers' yeast that is designed to involve students in the process by which scientific knowledge is generated. Students are asked to determine why the yeast grow to form a reproducible pattern of red and white. (WRM)

  10. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  11. Evaluation of a recombinant insect-derived amylase performance in simultaneous saccharification and fermentation process with industrial yeasts.

    PubMed

    Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech

    2016-03-01

    Starch is the dominant feedstock consumed for the bioethanol production, accounting for 60 % of its global production. Considering the significant contribution of bioethanol to the global fuel market, any improvement in its major operating technologies is economically very attractive. It was estimated that up to 40 % of the final ethanol unit price is derived from the energy input required for the substrate pre-treatment. Application of raw starch hydrolyzing enzymes (RSHE), combined with operation of the process according to a simultaneous saccharification and fermentation (SSF) strategy, constitutes the most promising solutions to the current technologies limitations. In this study, we expressed the novel RSHE derived from an insect in Saccharomyces cerevisiae strain dedicated for the protein overexpression. Afterwards, the enzyme performance was assessed in SSF process conducted by industrial ethanologenic or thermotolerant yeast species. Comparison of the insect-derived RSHE preparation with commercially available amylolytic RSH preparation was conducted. Our results demonstrate that the recombinant alpha-amylase from rice weevil can be efficiently expressed and secreted with its native signal peptide in S. cerevisiae INVSc-pYES2-Amy1 expression system (accounting for nearly 72 % of the strain's secretome). Application of the recombinant enzyme-based preparation in SSF process secured sufficient amylolytic activity for the yeast cell propagation and ethanol formation from raw starch. (Oligo)saccharide profiles generated by the compared preparations differed with respect to homogeneity of the sugar mixtures. Concomitantly, as demonstrated by a kinetic model developed in this study, the kinetic parameters describing activity of the compared preparations were different. PMID:26545757

  12. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    PubMed Central

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  13. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  14. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  15. Glutathione Production in Yeast

    NASA Astrophysics Data System (ADS)

    Bachhawat, Anand K.; Ganguli, Dwaipayan; Kaur, Jaspreet; Kasturia, Neha; Thakur, Anil; Kaur, Hardeep; Kumar, Akhilesh; Yadav, Amit

    Glutathione, γ -glutamyl-cysteinyl-glycine, is the most abundant non-protein thiol found in almost all eukaryotic cells (and in some prokaryotes). The tripeptide, which is synthesized non-ribosomally by the consecutive action of two soluble enzymes, is needed for carrying out numerous functions in the cell, most important of which is the maintenance of the redox buffer. The cycle of glutathione biosynthesis and degradation forms part of the γ -glutamyl cycle in most organisms although the latter half of the pathway has not been demonstrated in yeasts. Our current understanding of how glutathione levels are controlled at different levels in the cell is described. Several different routes and processes have been attempted to increase commercial production of glutathione using both yeast and bacteria. In this article we discuss the history of glutathione production in yeast. The current bottlenecks for increased glutathione production are presented based on our current understanding of the regulation of glutathione homeostasis, and possible strategies for overcoming these limitations for further enhancing and improving glutathione production are discussed

  16. Plasmidic Expression of nemA and yafC* Increased Resistance of Ethanologenic Escherichia coli LY180 to Nonvolatile Side Products from Dilute Acid Treatment of Sugarcane Bagasse and Artificial Hydrolysate

    PubMed Central

    Shi, Aiqin; Zheng, Huabao; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham T.

    2016-01-01

    Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural. Two new resistance genes were discovered from Sau3A1 libraries of SL100 genomic DNA: nemA (N-ethylmaleimide reductase) and a putative regulatory gene containing a mutation in the coding region, yafC*. The presence of these mutations in SL100 was confirmed by sequencing. A single mutation was found in the upstream regulatory region of nemR (nemRA operon) in SL100. This mutation increased nemA activity 20-fold over that of the parent organism (LY180) in AM1 medium without hydrolysate and increased nemA mRNA levels >200-fold. Addition of hydrolysates induced nemA expression (mRNA and activity), in agreement with transcriptional control. NemA activity was stable in cell extracts (9 h, 37°C), eliminating a role for proteinase in regulation. LY180 with a plasmid expressing nemA or yafC* was more resistant to a vacuum-treated sugarcane bagasse hydrolysate and to a vacuum-treated artificial hydrolysate than LY180 with an empty-vector control. Neither gene affected furfural tolerance. The vacuum-treated hydrolysates inhibited the reduction of N-ethylmaleimide by NemA while also serving as substrates. Expression of the nemA or yafC* plasmid in LY180 doubled the rate of ethanol production from the vacuum-treated sugarcane bagasse hydrolysate. PMID:26826228

  17. New yeast study finds strength in numbers

    SciTech Connect

    Kaiser, J.

    1996-06-07

    This article reports on the debate about whether the modern industrial society is producing hormonelike pollutants that can interfere with human reproductions, including pesticides, the plastic ingredient bisphenol-A and some polychlorinated biphenyls. A recent article has added fuel to the debate by presenting results that indicate a mixture of two weakly estrogenic chemicals can be far more potent than individual compounds, using a screening system based on genetically engineered yeast cells. The debate may need to be taken into account by a USEPA advisory panel now being formed to come up with in vitro tests to screen for environmental estrogens.

  18. Oleaginous yeasts from Ethiopia.

    PubMed

    Jiru, Tamene Milkessa; Abate, Dawit; Kiggundu, Nicholas; Pohl, Carolina; Groenewald, Marizeth

    2016-12-01

    Oleaginous microorganisms can produce high amounts of oil (>20 % of their biomass) under suitable cultivation conditions. In this research work 200 samples were collected from soil, plant surfaces (leaves, flowers and fruits), waste oils from traditional oil milling houses and dairy products (cheese, milk and yoghurt) in Ethiopia. Three hundred and forty yeast colonies were isolated from these samples. By applying Sudan III staining tests, 18 strains were selected as possible oleaginous yeasts. The 18 strains were identified and characterized for their lipid production as a feedstock for biodiesel production in the future. They were identified using morphological and physiological methods as well as sequencing the 3'end of the small-subunit rRNA gene, the internal transcribed spacer regions (ITS; ITS 1, ITS 2 and the intervening 5.8S rRNA gene), and the D1/D2 domain of the 26S rRNA gene. The 18 yeasts were identified as Cutaneotrichosporon curvatus (syn, Cryptococcus curvatus) (PY39), Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) (SY89), Rhodotorula dairenensis (SY94) and Rhodotourula mucilaginosa (SY09, SY18, SY20, PY21, PY23, PY25, SY30, PY32, SY43, PY44, SY52, PY55, PY61, SY75 and PY86). Under nitrogen-limited cultivation conditions, R. mucilaginosa PY44 produced the highest biomass (15.10 ± 0.54 g/L), while R. mucilaginosa PY32 produced the lowest biomass (10.32 ± 0.18 g/L). The highest lipid yield of 6.87 ± 0.62 g/L and lipid content of 46.51 ± 0.70 % were attained by C. curvatus (syn, C. curvatus) PY39. On the other hand, R. mucilaginosa PY61 gave the lowest lipid yield (2.06 ± 0.52 g/L) and R. mucilaginosa SY52 gave the lowest lipid content of 16.99 ± 0.85 %. The results in this research work suggest that much more oleaginous yeasts can be isolated from Ethiopian environment. On the basis of their substantial lipid production abilities, the three oleaginous yeast strains PY39, SY89 and SY18 were selected and

  19. Oleaginous yeasts from Ethiopia.

    PubMed

    Jiru, Tamene Milkessa; Abate, Dawit; Kiggundu, Nicholas; Pohl, Carolina; Groenewald, Marizeth

    2016-12-01

    Oleaginous microorganisms can produce high amounts of oil (>20 % of their biomass) under suitable cultivation conditions. In this research work 200 samples were collected from soil, plant surfaces (leaves, flowers and fruits), waste oils from traditional oil milling houses and dairy products (cheese, milk and yoghurt) in Ethiopia. Three hundred and forty yeast colonies were isolated from these samples. By applying Sudan III staining tests, 18 strains were selected as possible oleaginous yeasts. The 18 strains were identified and characterized for their lipid production as a feedstock for biodiesel production in the future. They were identified using morphological and physiological methods as well as sequencing the 3'end of the small-subunit rRNA gene, the internal transcribed spacer regions (ITS; ITS 1, ITS 2 and the intervening 5.8S rRNA gene), and the D1/D2 domain of the 26S rRNA gene. The 18 yeasts were identified as Cutaneotrichosporon curvatus (syn, Cryptococcus curvatus) (PY39), Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) (SY89), Rhodotorula dairenensis (SY94) and Rhodotourula mucilaginosa (SY09, SY18, SY20, PY21, PY23, PY25, SY30, PY32, SY43, PY44, SY52, PY55, PY61, SY75 and PY86). Under nitrogen-limited cultivation conditions, R. mucilaginosa PY44 produced the highest biomass (15.10 ± 0.54 g/L), while R. mucilaginosa PY32 produced the lowest biomass (10.32 ± 0.18 g/L). The highest lipid yield of 6.87 ± 0.62 g/L and lipid content of 46.51 ± 0.70 % were attained by C. curvatus (syn, C. curvatus) PY39. On the other hand, R. mucilaginosa PY61 gave the lowest lipid yield (2.06 ± 0.52 g/L) and R. mucilaginosa SY52 gave the lowest lipid content of 16.99 ± 0.85 %. The results in this research work suggest that much more oleaginous yeasts can be isolated from Ethiopian environment. On the basis of their substantial lipid production abilities, the three oleaginous yeast strains PY39, SY89 and SY18 were selected and

  20. Production of recombinant proteins by yeast cells.

    PubMed

    Celik, Eda; Calık, Pınar

    2012-01-01

    Yeasts are widely used in production of recombinant proteins of medical or industrial interest. For each individual product, the most suitable expression system has to be identified and optimized, both on the genetic and fermentative level, by taking into account the properties of the product, the organism and the expression cassette. There is a wide range of important yeast expression hosts including the species Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe, Yarrowia lipolytica and Arxula adeninivorans, with various characteristics such as being thermo-tolerant or halo-tolerant, rapidly reaching high cell densities or utilizing unusual carbon sources. Several strains were also engineered to have further advantages, such as humanized glycosylation pathways or lack of proteases. Additionally, with a large variety of vectors, promoters and selection markers to choose from, combined with the accumulated knowledge on industrial-scale fermentation techniques and the current advances in the post-genomic technology, it is possible to design more cost-effective expression systems in order to meet the increasing demand for recombinant proteins and glycoproteins. In this review, the present status of the main and most promising yeast expression systems is discussed. PMID:21964262

  1. Comparative genomics of biotechnologically important yeasts.

    PubMed

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.

  2. Comparative genomics of biotechnologically important yeasts.

    PubMed

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  3. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) may be safely used in food provided the total folic acid content of the yeast does not exceed 0.04 milligram per gram of yeast (approximately 0.008 milligram of pteroyglutamic acid per gram of yeast)....

  4. Genomics and the making of yeast biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  5. A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly.

    PubMed

    Lee, Michael E; DeLoache, William C; Cervantes, Bernardo; Dueber, John E

    2015-09-18

    Saccharomyces cerevisiae is an increasingly attractive host for synthetic biology because of its long history in industrial fermentations. However, until recently, most synthetic biology systems have focused on bacteria. While there is a wealth of resources and literature about the biology of yeast, it can be daunting to navigate and extract the tools needed for engineering applications. Here we present a versatile engineering platform for yeast, which contains both a rapid, modular assembly method and a basic set of characterized parts. This platform provides a framework in which to create new designs, as well as data on promoters, terminators, degradation tags, and copy number to inform those designs. Additionally, we describe genome-editing tools for making modifications directly to the yeast chromosomes, which we find preferable to plasmids due to reduced variability in expression. With this toolkit, we strive to simplify the process of engineering yeast by standardizing the physical manipulations and suggesting best practices that together will enable more straightforward translation of materials and data from one group to another. Additionally, by relieving researchers of the burden of technical details, they can focus on higher-level aspects of experimental design.

  6. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    PubMed

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    Sake is an alcoholic beverage of Japan, with a tradition lasting more than 1,300 years; it is produced from rice and water by fermenting with the koji mold Aspergillus oryzae and sake yeast Saccharomyces cerevisiae. Breeding research on sake yeasts was originally developed in Japan by incorporating microbiological and genetic research methodologies adopted in other scientific areas. Since the advent of a genetic paradigm, isolation of yeast mutants has been a dominant approach for the breeding of favorable sake yeasts. These sake yeasts include (a) those that do not form foams (produced by isolating a mutant that does not stick to foams, thus decreasing the cost of sake production); (b) those that do not produce urea, which leads to the formation of ethyl carbamate, a possible carcinogen (isolated by positive selection in a canavanine-, arginine-, and ornithine-containing medium); (c) those that produce an increased amount of ethyl caproate, an apple-like flavor (produced by isolating a mutant resistant to cerulenin, an inhibitor of fatty-acid synthesis); and (d) those that produce a decreased amount of pyruvate (produced by isolating a mutant resistant to an inhibitor of mitochondrial transport, thus decreasing the amount of diacetyl). Given that sake yeasts perform sexual reproduction, sporulation and mating are potent approaches for their breeding. Recently, the genome sequences of sake yeasts have been determined and made publicly accessible. By utilizing this information, the quantitative trait loci (QTLs) for the brewing characteristics of sake yeasts have been identified, which paves a way to DNA marker-assisted selection of the mated strains. Genetic engineering technologies for experimental yeast strains have recently been established by academic groups, and these technologies have also been applied to the breeding of sake yeasts. Sake yeasts whose genomes have been modified with these technologies correspond to genetically modified organisms (GMOs

  7. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    PubMed

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    Sake is an alcoholic beverage of Japan, with a tradition lasting more than 1,300 years; it is produced from rice and water by fermenting with the koji mold Aspergillus oryzae and sake yeast Saccharomyces cerevisiae. Breeding research on sake yeasts was originally developed in Japan by incorporating microbiological and genetic research methodologies adopted in other scientific areas. Since the advent of a genetic paradigm, isolation of yeast mutants has been a dominant approach for the breeding of favorable sake yeasts. These sake yeasts include (a) those that do not form foams (produced by isolating a mutant that does not stick to foams, thus decreasing the cost of sake production); (b) those that do not produce urea, which leads to the formation of ethyl carbamate, a possible carcinogen (isolated by positive selection in a canavanine-, arginine-, and ornithine-containing medium); (c) those that produce an increased amount of ethyl caproate, an apple-like flavor (produced by isolating a mutant resistant to cerulenin, an inhibitor of fatty-acid synthesis); and (d) those that produce a decreased amount of pyruvate (produced by isolating a mutant resistant to an inhibitor of mitochondrial transport, thus decreasing the amount of diacetyl). Given that sake yeasts perform sexual reproduction, sporulation and mating are potent approaches for their breeding. Recently, the genome sequences of sake yeasts have been determined and made publicly accessible. By utilizing this information, the quantitative trait loci (QTLs) for the brewing characteristics of sake yeasts have been identified, which paves a way to DNA marker-assisted selection of the mated strains. Genetic engineering technologies for experimental yeast strains have recently been established by academic groups, and these technologies have also been applied to the breeding of sake yeasts. Sake yeasts whose genomes have been modified with these technologies correspond to genetically modified organisms (GMOs

  8. New and emerging yeast pathogens.

    PubMed Central

    Hazen, K C

    1995-01-01

    The most common yeast species that act as agents of human disease are Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans. The incidence of infections by other yeasts has increased during the past decade. The most evident emerging pathogens are Malassezia furfur, Trichosporon beigelii, Rhodotorula species, Hansenula anomala, Candida lusitaniae, and Candida krusei. Organisms once considered environmental contaminants or only industrially important, such as Candida utilis and Candida lipolytica, have now been implicated as agents of fungemia, onychomycosis, and systemic disease. The unusual yeasts primarily infect immunocompromised patients, newborns, and the elderly. The role of central venous catheter removal and antifungal therapy in patient management is controversial. The antibiograms of the unusual yeasts range from resistant to the most recent azoles and amphotericin B to highly susceptible to all antifungal agents. Current routine methods for yeast identification may be insufficient to identify the unusual yeasts within 2 days after isolation. The recognition of unusual yeasts as agents of sometimes life-threatening infection and their unpredictable antifungal susceptibilities increase the burden on the clinical mycology laboratory to pursue complete species identification and MIC determinations. Given the current and evolving medical practices for management of seriously ill patients, further evaluations of the clinically important data about these yeasts are needed. PMID:8665465

  9. Phage and Yeast Display.

    PubMed

    Sheehan, Jared; Marasco, Wayne A

    2015-02-01

    Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases. PMID:26104550

  10. A Method of Visualizing Three-Dimensional Distribution of Yeast in Bread Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Shiraga, Seizaburou; Ueda, Mitsuyoshi; Takeya, Koji; Endo, Shigeru

    A novel technique was developed to monitor the change in three-dimensional (3D) distribution of yeast in frozen bread dough samples in accordance with the progress of mixing process. Application of a surface engineering technology allowed the identification of yeast in bread dough by bonding EGFP (Enhanced Green Fluorescent Protein) to the surface of yeast cells. The fluorescent yeast (a biomarker) was recognized as bright spots at the wavelength of 520 nm. A Micro-Slicer Image Processing System (MSIPS) with a fluorescence microscope was utilized to acquire cross-sectional images of frozen dough samples sliced at intervals of 1 μm. A set of successive two-dimensional images was reconstructed to analyze 3D distribution of yeast. Samples were taken from each of four normal mixing stages (i.e., pick up, clean up, development, and final stages) and also from over mixing stage. In the pick up stage yeast distribution was uneven with local areas of dense yeast. As the mixing progressed from clean up to final stages, the yeast became more evenly distributed throughout the dough sample. However, the uniformity in yeast distribution was lost in the over mixing stage possibly due to the breakdown of gluten structure within the dough sample.

  11. Red yeast rice for dysipidemia.

    PubMed

    Shamim, Shariq; Al Badarin, Firas J; DiNicolantonio, James J; Lavie, Carl J; O'Keefe, James H

    2013-01-01

    Red yeast rice is an ancient Chinese food product that contains monacolins, chemical substances that are similar to statins in their mechanisms of action and lipid lowering properties. Several studies have found red yeast rice to be moderately effective at improving the lipid profile, particularly for lowering the low-density lipoprotein cholesterol levels. One large randomized controlled study from China found that red yeast rice significantly improved risk of major adverse cardiovascular events and overall survival in patients following myocardial infarction. Thus, red yeast rice is a potentially useful over-the-counter cholesterol-lowering agent. However, many red yeast rice formulations are non-standardized and unregulated food supplements, and there is a need for further research and regulation of production.

  12. Eighteen new oleaginous yeast species.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes.

  13. Eighteen new oleaginous yeast species.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes. PMID:27072563

  14. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes.

  15. Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin.

    PubMed

    Sumer, Fatma; Stark, Benjamin C; Yesilcimen Akbas, Meltem

    2015-01-01

    Engineering of ethanologenic E. coli to express the haemoglobin (VHb) from the bacterium Vitreoscilla has been shown to enhance ethanol production by fermentation of pure sugars, sugars from hydrolysis of lignocellulose, components of whey, and sugars from wastewater produced during potato processing. Here, these studies were extended to see whether the same effect could be seen when a mixture of waste materials from processing of potatoes and corn into potato and corn chips were used as sugar sources. Consistent increases in ethanol production coincident with VHb expression were seen in shake flasks at both low aeration and high aeration conditions. The ethanol increases were due almost entirely to increases in the amount of ethanol produced per unit of cell mass. The VHb strategy for increasing fermentation to ethanol (and perhaps other valuable fermentation products) may be of general use, particularly regarding conversion of otherwise discarded materials into valuable commodities.

  16. Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin.

    PubMed

    Sumer, Fatma; Stark, Benjamin C; Yesilcimen Akbas, Meltem

    2015-01-01

    Engineering of ethanologenic E. coli to express the haemoglobin (VHb) from the bacterium Vitreoscilla has been shown to enhance ethanol production by fermentation of pure sugars, sugars from hydrolysis of lignocellulose, components of whey, and sugars from wastewater produced during potato processing. Here, these studies were extended to see whether the same effect could be seen when a mixture of waste materials from processing of potatoes and corn into potato and corn chips were used as sugar sources. Consistent increases in ethanol production coincident with VHb expression were seen in shake flasks at both low aeration and high aeration conditions. The ethanol increases were due almost entirely to increases in the amount of ethanol produced per unit of cell mass. The VHb strategy for increasing fermentation to ethanol (and perhaps other valuable fermentation products) may be of general use, particularly regarding conversion of otherwise discarded materials into valuable commodities. PMID:25766084

  17. BIOSYNTHESIS OF YEAST CAROTENOIDS

    PubMed Central

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  18. Bioprotective Role of Yeasts

    PubMed Central

    Muccilli, Serena; Restuccia, Cristina

    2015-01-01

    The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance.

  19. Bioprotective Role of Yeasts

    PubMed Central

    Muccilli, Serena; Restuccia, Cristina

    2015-01-01

    The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance. PMID:27682107

  20. Fission yeast septation.

    PubMed

    Cortés, Juan C G; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow. PMID:27574536

  1. Fission yeast septation

    PubMed Central

    Cortés, Juan C. G.; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    ABSTRACT In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow. PMID:27574536

  2. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  3. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  4. Lager yeast comes of age.

    PubMed

    Wendland, Jürgen

    2014-10-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This "web of life" recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement.

  5. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  6. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  7. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  8. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  9. A numericlature of the yeasts.

    PubMed

    Griffiths, A J

    1981-01-01

    A numericlature, based on a descriptive numerical code has been compiled for the yeasts. A total of 429 yeast species are represented by 389 unique four-, six- or seven-digit numbers and of these 364 correspond to single species. It is suggested that the coding method is a valid alternative to binomial nomenclature based on a conventional hierarchical classification. It can serve as a simple reference system and can be used practically as a means of differentiating between large numbers of new isolates of yeasts. PMID:7337435

  10. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  11. The Yeast Sphingolipid Signaling Landscape

    PubMed Central

    Montefusco, David J.; Matmati, Nabil

    2014-01-01

    Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field. PMID:24220500

  12. The emergence of yeast lipidomics.

    PubMed

    Gaspar, Maria L; Aregullin, Manuel A; Jesch, Stephen A; Nunez, Lilia R; Villa-García, Manuel; Henry, Susan A

    2007-03-01

    The emerging field of lipidomics, driven by technological advances in lipid analysis, provides greatly enhanced opportunities to characterize, on a quantitative or semi-quantitative level, the entire spectrum of lipids, or lipidome, in specific cell types. When combined with advances in other high throughput technologies in genomics and proteomics, lipidomics offers the opportunity to analyze the unique roles of specific lipids in complex cellular processes such as signaling and membrane trafficking. The yeast system offers many advantages for such studies, including the relative simplicity of its lipidome as compared to mammalian cells, the relatively high proportion of structural and regulatory genes of lipid metabolism which have been assigned and the excellent tools for molecular genetic analysis that yeast affords. The current state of application of lipidomic approaches in yeast and the advantages and disadvantages of yeast for such studies are discussed in this report.

  13. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  14. Yeasts preservation: alternatives for lyophilisation.

    PubMed

    Nyanga, Loveness K; Nout, Martinus J R; Smid, Eddy J; Boekhout, Teun; Zwietering, Marcel H

    2012-11-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cakes. During storage at 25 °C in the dark, yeast cultures preserved in dry rice cakes, and lyophilised cultures of Saccharomyces cerevisiae and Issatchenkia orientalis showed no significant loss of viable cells up to 4 months of storage. Yeast cultures preserved in dry plant fibre strands had the greatest loss of viable count during the 6 months of storage at 25 °C. Preservation of yeasts cultures in dry rice cakes provided better survival during storage at 4 °C than lyophilisation. The current study demonstrated that traditional methods can be useful and effective for starter culture preservation in small-scale, low-tech applications.

  15. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  16. Yeast Mitochondrial Transcriptomics

    PubMed Central

    Garcia, Mathilde; Darzacq, Xavier; Devaux, Frederic; Singer, Robert H.; Jacq, Claude

    2016-01-01

    Although 30 years ago it was strongly suggested that some cytoplasmic ribosomes are bound to the surface of yeast mitochondria, the mechanisms and the raison d’ětre of this process are not understood. For instance, it is not perfectly known which of the several hundred nuclearly encoded genes have to be translated to the mitochondrial vicinity to guide the import of the corresponding proteins. One can take advantage of several modern methods to address a number of aspects of the site-specific translation process of messenger ribonucleic acid (mRNA) coding for proteins imported into mitochondria. Three complementary approaches are presented to analyze the spatial distribution of mRNAs coding for proteins imported into mitochondria. Starting from biochemical purifications of mitochondria-bound polysomes, we describe a genomewide approach to classify all the cellular mRNAs according to their physical proximity with mitochondria; we also present real-time quantitative reverse transcription polymerase chain reaction monitoring of mRNA distribution to provide a quantified description of this localization. Finally, a fluorescence microscopy approach on a single living cell is described to visualize the in vivo localization of mRNAs involved in mitochondria biogenesis. PMID:18314748

  17. Regulatory steps associated with use of value-added recombinant proteins and peptides screened in high-throughput for expression in genetically engineered starch and cellulosic fuel ethanol yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant proteins expressed in animals have been a public concern as a perceived risk to the consumer. Animals are currently being treated with genetically engineered biologicals, such as growth hormone, or fed genetically modified plants. Similarly, various commercially-valuable proteins or pe...

  18. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  19. Ethanologenic bacteria with increased resistance to furfural

    DOEpatents

    Miller, Elliot Norman; Jarboe, Laura R.; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham; Ingram, Lonnie O'Neal

    2015-10-06

    The invention relates to bacterium that have increased resistance to furfural and methods of preparation. The invention also relates to methods of producing ethanol using the bacterium and corresponding kits.

  20. Advances in mechanisms and modifications for rendering yeast thermotolerance.

    PubMed

    Gao, Liman; Liu, Yueqin; Sun, Hun; Li, Chun; Zhao, Zhiping; Liu, Guiyan

    2016-06-01

    Thermotolerant Saccharomyces cerevisiae is widely regarded as an attractive strain with which to accomplish the coupling of enzyme saccharification, ethanol fermentation and ethanol distillation in non-grain fuel bioethanol fermentation systems, and it has many advantages for increasing the ethanol yield and reducing production costs. This review provided an overview of the yeast heat-resistant mechanisms from six aspects, including gene expression responses, heat shock proteins, trehalose, ATPase, the ubiquitin-proteasome pathway and heat-induced antioxidant defenses. Innovative methods, such as random and rational strategies for improving yeast thermotolerance, were further discussed, and several special cases were provided. To rationally engineer thermotolerance in yeast, the advances in employing heat-resistant mechanisms of thermophiles were particularly discussed. By designing and constructing heat-resistant devices consists of heat-resistant parts from thermophiles to yeast, a superior thermotolerance of S. cerevisiae has been achieved, providing a new system with important applications for research regarding the improvement of the robustness of microbes. PMID:26685013

  1. Light-mediated control of DNA transcription in yeast.

    PubMed

    Hughes, Robert M; Bolger, Steven; Tapadia, Hersh; Tucker, Chandra L

    2012-12-01

    A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light/cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems. PMID:22922268

  2. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  3. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. PMID:25545362

  4. Heterologous expression of G-protein-coupled receptors in yeast.

    PubMed

    Bertheleme, Nicolas; Singh, Shweta; Dowell, Simon; Byrne, Bernadette

    2015-01-01

    Heterologous yeast expression systems have been successfully used for the production of G-protein-coupled receptors (GPCRs) for both structural and functional studies. Yeast combine comparatively low cost and short culture times with straightforward generation of expression clones. They also perform some key posttranslational modifications not possible in bacterial systems. There are two major yeast expression systems, Pichia pastoris and Saccharomyces cerevisiae, both of which have been used for the production of GPCRs. P. pastoris has a proven track record for the production of large amounts of GPCR for structural studies. High-resolution crystal structures of both the adenosine A2A and the histamine H1 receptors have been obtained using protein expressed in this system. S. cerevisiae is relatively easy to engineer and this has resulted in the development of sophisticated tools for the functional characterization of GPCRs. In this chapter, we provide protocols for both large-scale receptor expression in P. pastoris for structural studies and small-scale receptor expression in S. cerevisiae for functional characterization. In both cases, the receptor used is the human adenosine A2A receptor. The results that both we and others have obtained using these protocols show the wide utility of the yeast expression systems for the production of GPCRs.

  5. Protein targeting to yeast peroxisomes.

    PubMed

    van der Klei, Ida; Veenhuis, Marten

    2007-01-01

    Peroxisomes are important organelles of eukaryote cells. Although these structures are of relatively small size, they display an unprecedented functional versatility. The principles of their biogenesis and function are strongly conserved from very simple eukaryotes to humans. Peroxisome-borne proteins are synthesized in the cytosol and posttranslationally incorporated into the organelle. The protein-sorting signal for matrix proteins, peroxisomal targeting signal (PTS), and for membrane proteins (mPTS), are also conserved. Several genes involved in peroxisomal matrix protein import have been identified (PEX genes), but the details of the molecular mechanisms of this translocation process are still unclear. Here we describe procedures to study the subcellular location of peroxisomal matrix and membrane proteins in yeast and fungi. Emphasis is placed on protocols developed for the methylotrophic yeast Hansenula polymorpha, but very similar protocols can be applied for other yeast species and filamentous fungi. The described methods include cell fractionation procedures and subcellular localization studies using fluorescence microscopy and immunolabeling techniques.

  6. Yeast Can Affect Behavior and Learning.

    ERIC Educational Resources Information Center

    Crook, William G.

    1984-01-01

    A pediatrician recounts his experiences in diagnosing and treating allergies to common yeast germs that may result in behavior and learning problems. He lists characteristics that may predispose children to yeast-connected health problems. (CL)

  7. Genomic evolution of the ascomycetous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphr...

  8. Challenges to production of antibodies in bacteria and yeast.

    PubMed

    Lee, Yong Jae; Jeong, Ki Jun

    2015-11-01

    Currently, antibodies play major role in treating a wide variety of human diseases (e.g., cancer, viral infection, inflammation). Those pharmaceutic antibodies have become major therapeutic reagents in the pharmaceutical drug market. In addition to full-length antibodies, the market of antibody fragments, which offer potential advantages in clinical use as well as diagnostics, is gradually growing. As the demand for antibody therapeutics increase, the development of host systems for enhanced, and less expensive, production has also become more important. All therapeutic antibodies approved to date are predominantly produced in mammalian hosts, but due to drawbacks such as high production cost and long-term cultivation, the alternative use of bacteria and yeasts has been seriously considered. Recently, there have been reports of substantial progress in genetic engineering and systems biotechnology, results in development of potential hosts that overcame the critical limitations in bacterial and yeast cells, and much enhanced productivity of functional antibodies. In this review, we highlight recent, significant progress made in the engineering of bacterial and yeast cells for enhanced production of functional antibodies.

  9. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  10. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  11. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  12. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  13. Yeast as factory and factotum.

    PubMed

    Dixon, B

    2000-02-01

    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering.

  14. Saccharomyces Genome Database: the genomics resource of budding yeast

    PubMed Central

    Cherry, J. Michael; Hong, Eurie L.; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T.; Christie, Karen R.; Costanzo, Maria C.; Dwight, Selina S.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Karra, Kalpana; Krieger, Cynthia J.; Miyasato, Stuart R.; Nash, Rob S.; Park, Julie; Skrzypek, Marek S.; Simison, Matt; Weng, Shuai; Wong, Edith D.

    2012-01-01

    The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

  15. Saccharomyces Genome Database: the genomics resource of budding yeast.

    PubMed

    Cherry, J Michael; Hong, Eurie L; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T; Christie, Karen R; Costanzo, Maria C; Dwight, Selina S; Engel, Stacia R; Fisk, Dianna G; Hirschman, Jodi E; Hitz, Benjamin C; Karra, Kalpana; Krieger, Cynthia J; Miyasato, Stuart R; Nash, Rob S; Park, Julie; Skrzypek, Marek S; Simison, Matt; Weng, Shuai; Wong, Edith D

    2012-01-01

    The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

  16. Yeast DEL assay detects clastogens.

    PubMed

    Kirpnick, Zhanna; Homiski, Michael; Rubitski, Elizabeth; Repnevskaya, Marina; Howlett, Niall; Aubrecht, Jiri; Schiestl, Robert H

    2005-04-01

    Chromosomal rearrangements, including DNA deletions are involved in carcinogenesis. The deletion (DEL) assay scoring for DNA deletions in the yeast Saccharomyces cerevisiae is able to detect a wide range of carcinogens. Among approximately 60 compounds of known carcinogenic activity, the DEL assay detected 86% correctly whereas the Ames Salmonella assay detected only 30% correctly [R.J. Brennan, R.H. Schiestl, Detecting carcinogens with the yeast DEL assay, Methods Mol. Biol. 262 (2004) 111-124]. Since the DEL assay is highly inducible by DNA double strand breaks, this study examined the utility of the DEL assay for detecting clastogens. Ten model compounds, with varied mechanisms of genotoxicity, were examined for their effect on the frequency of DNA deletions with the DEL assay. The compounds tested were: actinomycin D, camptothecin, methotrexate and 5-fluorodeoxyuridine, which are anticancer agents, noscapine and furosemide are therapeutics, acridine, methyl acrylate and resorcinol are industrial chemicals and diazinon is an insecticide. The in vitro micronucleus assay (IVMN) in CHO cells, a commonly used tool for detection of clastogens, was performed on the same compounds and the results of the two assays were compared. The results of our study show that there is 70% concordance in the presence of metabolic activation (rat liver S9) and 80% concordance in the absence of metabolic activation between the DEL assay and the standard in vitro micronucleus assay. The lack of cytotoxicity observed for four of the ten compounds examined indicates limited diffusion of lipophilic compounds across the yeast cell wall. Thus, the development of a more permeable yeast tester strain is expected to greatly improve concordance of the DEL assay with the IVMN assay. The yeast DEL assay is inexpensive, amenable to automation and requires less expertise to perform than the IVMN. Thus, it has a strong potential as a robust, fast and economical screen for detecting clastogens in

  17. The wine and beer yeast Dekkera bruxellensis.

    PubMed

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history.

  18. Yeasts in an industrial malting ecosystem.

    PubMed

    Laitila, A; Wilhelmson, A; Kotaviita, E; Olkku, J; Home, S; Juvonen, R

    2006-11-01

    The malting ecosystem consists of two components: the germinating cereal grains and the complex microbial community. Yeasts and yeast-like fungi are an important part of this ecosystem, but the composition and the effects of this microbial group have been largely unknown. In this study we surveyed the development of yeasts and yeast-like fungi in four industrial scale malting processes. A total of 136 malting process samples were collected and examined for the presence of yeasts growing at 15, 25 and 37 degrees C. More than 700 colonies were isolated and characterized. The isolates were discriminated by PCR-fingerprinting with microsatellite primer (M13). Yeasts representing different fingerprint types were identified by sequence analysis of the D1/D2 domain of the 26S rRNA gene. Furthermore, identified yeasts were screened for the production of alpha-amylase, beta-glucanase, cellulase and xylanase. A numerous and diverse yeast community consisting of both ascomycetous (25) and basidiomycetous (18) species was detected in the various stages of the malting process. The most frequently isolated ascomycetous yeasts belonged to the genera Candida, Clavispora, Galactomyces, Hanseniaspora, Issatchenkia, Pichia, Saccharomyces and Williopsis and the basidiomycetous yeasts to Bulleromyces, Filobasidium, Cryptococcus, Rhodotorula, Sporobolomyces and Trichosporon. In addition, two ascomycetous yeast-like fungi (black yeasts) belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Knowledge of the microbial diversity provides a basis for microflora management and understanding of the role of microbes in the cereal germination process. PMID:16758169

  19. A Simple Laboratory Exercise for Ethanol Production by Immobilized Bakery Yeasts ("Saccharomyces Cerevisiae")

    ERIC Educational Resources Information Center

    Vullo, Diana L.; Wachsman, Monica B.

    2005-01-01

    This laboratory experiment was designed for Chemistry, Food Technology, Biology, and Chemical Engineering undergraduate students. This laboratory experience shows the advantages of immobilized bakery yeasts in ethanol production by alcoholic fermentation. The students were able to compare the ethanol production yields by free or calcium alginate…

  20. Draft Genome Sequence of the Oleaginous Yeast Cryptococcus albidus var. albidus

    PubMed Central

    2016-01-01

    We report the complete draft genome sequence of Cryptococcus albidus var. albidus, an oleaginous yeast, which can utilize various organic carbon sources for lipid synthesis. Availability of this genome will help elucidate factors driving lipid accumulation in C. albidus and contribute toward bioprocess development and optimization for engineered lipid production. PMID:27198024

  1. Overview of the yeast genome.

    PubMed

    Mewes, H W; Albermann, K; Bähr, M; Frishman, D; Gleissner, A; Hani, J; Heumann, K; Kleine, K; Maierl, A; Oliver, S G; Pfeiffer, F; Zollner, A

    1997-05-29

    The collaboration of more than 600 scientists from over 100 laboratories to sequence the Saccharomyces cerevisiae genome was the largest decentralised experiment in modern molecular biology and resulted in a unique data resource representing the first complete set of genes from a eukaryotic organism. 12 million bases were sequenced in a truly international effort involving European, US, Canadian and Japanese laboratories. While the yeast genome represents only a small fraction of the information in today's public sequence databases, the complete, ordered and non-redundant sequence provides an invaluable resource for the detailed analysis of cellular gene function and genome architecture. In terms of throughput, completeness and information content, yeast has always been the lead eukaryotic organism in genomics; it is still the largest genome to be completely sequenced.

  2. Mycotoxins - prevention and decontamination by yeasts.

    PubMed

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  3. Improved vanillin production in baker's yeast through in silico design

    PubMed Central

    2010-01-01

    Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories. PMID:21059201

  4. The birth of yeast peroxisomes.

    PubMed

    Yuan, Wei; Veenhuis, Marten; van der Klei, Ida J

    2016-05-01

    This contribution describes the phenotypic differences of yeast peroxisome-deficient mutants (pex mutants). In some cases different phenotypes were reported for yeast mutants deleted in the same PEX gene. These differences are most likely related to the marker proteins and methods used to detect peroxisomal remnants. This is especially evident for pex3 and pex19 mutants, where the localization of receptor docking proteins (Pex13, Pex14) resulted in the identification of peroxisomal membrane remnants, which do not contain other peroxisomal membrane proteins, such as the ring proteins Pex2, Pex10 and Pex12. These structures in pex3 and pex19 cells are the template for peroxisome formation upon introduction of the missing gene. Taken together, these data suggest that in all yeast pex mutants analyzed so far peroxisomes are not formed de novo but use membrane remnant structures as a template for peroxisome formation upon reintroduction of the missing gene. The relevance of this model for peroxisomal membrane protein and lipid sorting to peroxisomes is discussed.

  5. The birth of yeast peroxisomes.

    PubMed

    Yuan, Wei; Veenhuis, Marten; van der Klei, Ida J

    2016-05-01

    This contribution describes the phenotypic differences of yeast peroxisome-deficient mutants (pex mutants). In some cases different phenotypes were reported for yeast mutants deleted in the same PEX gene. These differences are most likely related to the marker proteins and methods used to detect peroxisomal remnants. This is especially evident for pex3 and pex19 mutants, where the localization of receptor docking proteins (Pex13, Pex14) resulted in the identification of peroxisomal membrane remnants, which do not contain other peroxisomal membrane proteins, such as the ring proteins Pex2, Pex10 and Pex12. These structures in pex3 and pex19 cells are the template for peroxisome formation upon introduction of the missing gene. Taken together, these data suggest that in all yeast pex mutants analyzed so far peroxisomes are not formed de novo but use membrane remnant structures as a template for peroxisome formation upon reintroduction of the missing gene. The relevance of this model for peroxisomal membrane protein and lipid sorting to peroxisomes is discussed. PMID:26367802

  6. Nuclear Import of Yeast Proteasomes

    PubMed Central

    Burcoglu, Julianne; Zhao, Liang; Enenkel, Cordula

    2015-01-01

    Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αβ. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence. PMID:26262643

  7. Yeasts colonizing the leaf surfaces.

    PubMed

    Sláviková, Elena; Vadkertiová, Renata; Vránová, Dana

    2007-08-01

    The yeasts were isolated from the leaf surfaces of ten species of trees. The study site was a forest park (Zelezná Studnicka) of the Small Carpathians mountain range. One hundred and thirty seven yeast strains belonging to 13 genera were isolated from 320 samples of leaves and needles. Seventeen yeast species were isolated, but only seven occurred regularly: Aureobasidium pullulans, Cryptococcus laurentii, Pichia anomala, Metschnikowia pulcherrima, Saccharomyces sp., Lachancea thermotolerans, and Rhodotorula glutinis. The remaining species were isolated from the leaves and needles of three or less tree species. A. pullulans, Cr. laurentii, and P. anomala were the most frequently found species and they occurred on leaves and needles of all ten tree species. Saccharomyces sp. occurred in leaf samples collected from eight kinds of trees. M. pulcherrima and L. thermotolerans were found in samples collected from six species of trees. Both these species occurred almost always on the leaves of deciduous trees. Rh. glutinis was the most frequently isolated carotenoids producing species. We have found out that the ascomycetous and basidiomycetous species were present in the leaf samples in approximately equal frequency, contrary to the soil samples taken from this forest park, where the ascomycetous species were found rarely.

  8. Visualization and quantification of three-dimensional distribution of yeast in bread dough.

    PubMed

    Maeda, Tatsuro; DO, Gab-Soo; Sugiyama, Junichi; Araki, Tetsuya; Tsuta, Mizuki; Shiraga, Seizaburo; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    A three-dimensional (3-D) bio-imaging technique was developed for visualizing and quantifying the 3-D distribution of yeast in frozen bread dough samples in accordance with the progress of the mixing process of the samples, applying cell-surface engineering to the surfaces of the yeast cells. The fluorescent yeast was recognized as bright spots at the wavelength of 520 nm. Frozen dough samples were sliced at intervals of 1 microm by an micro-slicer image processing system (MSIPS) equipped with a fluorescence microscope for acquiring cross-sectional images of the samples. A set of successive two-dimensional images was reconstructed to analyze the 3-D distribution of the yeast. The average shortest distance between centroids of enhanced green fluorescent protein (EGFP) yeasts was 10.7 microm at the pick-up stage, 9.7 microm at the clean-up stage, 9.0 microm at the final stage, and 10.2 microm at the over-mixing stage. The results indicated that the distribution of the yeast cells was the most uniform in the dough of white bread at the final stage, while the heterogeneous distribution at the over-mixing stage was possibly due to the destruction of the gluten network structure within the samples. PMID:19584545

  9. Carbohydrate and energy-yielding metabolism in non-conventional yeasts.

    PubMed

    Flores, C L; Rodríguez, C; Petit, T; Gancedo, C

    2000-10-01

    Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.

  10. Yeast surface display for screening combinatorial polypeptide libraries.

    PubMed

    Boder, E T; Wittrup, K D

    1997-06-01

    Display on the yeast cell wall is well suited for engineering mammalian cell-surface and secreted proteins (e.g., antibodies, receptors, cytokines) that require endoplasmic reticulum-specific post-translational processing for efficient folding and activity. C-terminal fusion to the Aga2p mating adhesion receptor of Saccharomyces cerevisiae has been used for the selection of scFv antibody fragments with threefold decreased antigen dissociation rate from a randomly mutated library. A eukaryotic host should alleviate expression biases present in bacterially propagated combinatorial libraries. Quantitative flow cytometric analysis enables fine discrimination of kinetic parameters for protein binding to soluble ligands.

  11. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  12. [Metabolomics analysis of taxadiene producing yeasts].

    PubMed

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin

    2014-02-01

    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  13. Nutrient supplements boost yeast transformation efficiency

    PubMed Central

    Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.

    2016-01-01

    Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994

  14. FACILE CHEMICAL FUNCTIONALIZATION OF PROTEINS THROUGH INTEIN-LINKED YEAST DISPLAY

    PubMed Central

    Marshall, Carrie J.; Agarwal, Nitin; Kalia, Jeet; Grosskopf, Vanessa A.; McGrath, Nicholas A.; Abbott, Nicholas L.; Raines, Ronald T.; Shusta, Eric V.

    2013-01-01

    Intein-mediated expressed protein ligation (EPL) permits the site-specific chemical customization of proteins. While traditional techniques have used purified, soluble proteins, we have extended these methods to release and modify intein fusion proteins expressed on the yeast surface, thereby eliminating the need for soluble protein expression and purification. To this end, we sought to simultaneously release yeast surface-displayed proteins and selectively conjugate with chemical functionalities compatible with EPL and click chemistry. Single-chain antibodies (scFv) and green fluorescent protein (GFP) were displayed on the yeast surface as fusions to the N-terminus of the Mxe GyrA intein. ScFv and GFP were released from the yeast surface with either a sulfur nucleophile (MESNA) or a nitrogen nucleophile (hydrazine) linked to an azido group. The hydrazine azide permitted the simultaneous release and azido functionalization of displayed proteins, but nonspecific reactions with other yeast proteins were detected, and cleavage efficiency was limited. In contrast, MESNA released significantly more protein from the yeast surface while also generating a unique thioester at the carboxy-terminus of the released protein. These protein thioesters were subsequently reacted with a cysteine alkyne in an EPL reaction and then employed in an azide–alkyne cycloaddition to immobilize the scFv and GFP on an azide-decorated surface with >90% site-specificity. Importantly, the immobilized proteins retained their activity. Since yeast surface display is also a protein engineering platform, these approaches provide a particularly powerful tool for the rapid assessment of engineered proteins. PMID:23924245

  15. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae.

    PubMed

    Franken, Jaco; Burger, Anita; Swiegers, Jan H; Bauer, Florian F

    2015-08-01

    Industrial synthesis of L-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly D-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, L-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to L-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of L-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains.

  16. Beer brewing using a fusant between a sake yeast and a brewer's yeast.

    PubMed

    Mukai, N; Nishimori, C; Fujishige, I W; Mizuno, A; Takahashi, T; Sato, K

    2001-01-01

    Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.

  17. Yeast metabolic state identification using micro-fiber optics spectroscopy

    NASA Astrophysics Data System (ADS)

    Silva, J. S.; Castro, C. C.; Vicente, A. A.; Tafulo, P.; Jorge, P. A. S.; Martins, R. C.

    2011-05-01

    Saccharomyces cerevisiae morphology is known to be dependent on the cell physiological state and environmental conditions. On their environment, wild yeasts tend to form complex colonies architectures, such as stress response and pseudohyphal filaments morphologies, far away from the ones found inside bioreactors, where the regular cell cycle is observed under controlled conditions (e.g. budding and flocculating colonies). In this work we explore the feasibility of using micro-fiber optics spectroscopy to classify Saccharomyces cerevisiae S288C colony structures in YPD media, under different growth conditions, such as: i) no alcohol; ii) 1 % (v/v) Ethanol; iii) 1 % (v/v) 1-butanol; iv) 1 % (v/v) Isopropanol; v) 1 % (v/v) Tert-Amyl alcohol (2 Methyl-2-butanol); vi) 0,2 % (v/v) 2-Furaldehyde; vii) 5 % (w/v) 5 (Hydroxymethyl)-furfural; and viii) 1 % (w/v) (-)-Adenosine3', 5'cyclic monophosphate. The microscopy system includes a hyperspectral camera apparatus and a micro fiber (sustained by micro manipulator) optics system for spectroscopy. Results show that micro fiber optics system spectroscopy has the potential for yeasts metabolic state identification once the spectral signatures of colonies differs from each others. This technique associated with others physico-chemical information can benefit the creation of an information system capable of providing extremely detailed information about yeast metabolic state that will aid both scientists and engineers to study and develop new biotechnological products.

  18. YTPdb: a wiki database of yeast membrane transporters.

    PubMed

    Brohée, Sylvain; Barriot, Roland; Moreau, Yves; André, Bruno

    2010-10-01

    Membrane transporters constitute one of the largest functional categories of proteins in all organisms. In the yeast Saccharomyces cerevisiae, this represents about 300 proteins ( approximately 5% of the proteome). We here present the Yeast Transport Protein database (YTPdb), a user-friendly collaborative resource dedicated to the precise classification and annotation of yeast transporters. YTPdb exploits an evolution of the MediaWiki web engine used for popular collaborative databases like Wikipedia, allowing every registered user to edit the data in a user-friendly manner. Proteins in YTPdb are classified on the basis of functional criteria such as subcellular location or their substrate compounds. These classifications are hierarchical, allowing queries to be performed at various levels, from highly specific (e.g. ammonium as a substrate or the vacuole as a location) to broader (e.g. cation as a substrate or inner membranes as location). Other resources accessible for each transporter via YTPdb include post-translational modifications, K(m) values, a permanently updated bibliography, and a hierarchical classification into families. The YTPdb concept can be extrapolated to other organisms and could even be applied for other functional categories of proteins. YTPdb is accessible at http://homes.esat.kuleuven.be/ytpdb/.

  19. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  20. Did Gause Have a Yeast Infection?

    PubMed

    Pritchard, Jonathon O; Porter, Alice H M; Montagnes, David J S

    2016-09-01

    We planned to develop predator-prey models using Paramecium and yeast, but they have not been empirically examined since work by Gause in the 1930s. Therefore, we evaluated if Paramecium aurelia ingests and grows on eight yeasts. Recognising that it ingested yeasts but could not grow, we assessed if it might grow on other yeasts, by empirically parameterising a predator-prey model that relies on ingestion, not growth. Simulations were compared to P. aurelia-yeast time-series data, from Gause. We hypothesised that if the model simulated predator-prey dynamics that mimicked the original data, then possibly P. aurelia could grow on yeast; simulations did not mimic the original data. Reviewing works by Gause exposed two issues: experiments were undoubtedly contaminated with bacteria, allowing growth on bacteria, not yeast; and the population cycle data cannot be considered a self-sustaining time series, as they were manipulated by adding yeast and ciliates. We conclude that past and future work should not rely on this system, for either empirical or theoretical evaluations. Finally, although we show that P. aurelia, P. caudatum, Euplotes patella, and Blepharisma sp. cannot grow on yeast, Tetrahymena pyriformis and Colpidium striatum can; these may provide models to explore predator-prey dynamics. PMID:27593699

  1. Producing aglycons of ginsenosides in bakers' yeast

    PubMed Central

    Dai, Zhubo; Wang, Beibei; Liu, Yi; Shi, Mingyu; Wang, Dong; Zhang, Xianan; Liu, Tao; Huang, Luqi; Zhang, Xueli

    2014-01-01

    Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal plant that exhibits diverse pharmacological activities. Protopanaxadiol, protopanaxatriol and oleanolic acid are three basic aglycons of ginsenosides. Producing aglycons of ginsenosides in Saccharomyces cerevisiae was realized in this work and provides an alternative route compared to traditional extraction methods. Synthetic pathways of these three aglycons were constructed in S. cerevisiae by introducing β-amyrin synthase, oleanolic acid synthase, dammarenediol-II synthase, protopanaxadiol synthase, protopanaxatriol synthase and NADPH-cytochrome P450 reductase from different plants. In addition, a truncated 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthase and 2,3-oxidosqualene synthase genes were overexpressed to increase the precursor supply for improving aglycon production. Strain GY-1 was obtained, which produced 17.2 mg/L protopanaxadiol, 15.9 mg/L protopanaxatriol and 21.4 mg/L oleanolic acid. The yeast strains engineered in this work can serve as the basis for creating an alternative way for producing ginsenosides in place of extractions from plant sources. PMID:24424342

  2. Development of yeasts for xylose fermentation

    SciTech Connect

    Jeffries, T.W.; Yang, V.; Marks, J.; Amartey, S.; Kenealy, W.R.; Cho, J.Y.; Dahn, K.; Davis, B.P.

    1993-12-31

    Xylose is an abundant sugar in hardwoods and agricultural residues. Its use is essential for any economical conversion of lignocellulose to ethanol. Only a few yeasts ferment xylose effectively. Our results show that the best strains are Candida shehatae ATCC 2984 and Pichia stipitis CBS 6054. Wild type strains of C. shehatae ATCC 22984 will produce 56 g/L of ethanol from xylose within 48 h in a fed batch fermentation. We have obtained improved mutants of P.stipitis by selecting for growth on L-xylose and L-arabinose. Mutant strains produce up to 55% more ethanol than the parent and exhibit higher specific fermentation rates. We have also developed an effective transformation system that enables the introduction and expression of heterologous DNA on integrating and autonomous vectors. The transformation system for P. stipitis is based on its URA3 gene as a selectable marker and an autonomous replication sequence (ARS) which we isolated from the parent. We are using integrating and ARS vectors to metabolically engineer P. stipitis by altering the regulation and expression of key enzymes. As model systems we are examining the expression of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) that are present in limiting amounts or induced only under non-growth conditions.

  3. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

  4. Rapid determination of yeast viability

    SciTech Connect

    Lee, S.S.; Robinson, F.M.; Wang, H.Y.

    1981-01-01

    A modified simple staining method using Methylene blue to distinguish between live and dead cells has been developed. Methylene blue (0.025%, w/v) in full strength Ringer solution with 1% glucose (w/v) added is used as the standard staining solution. Satisfactory and reproducible results can be obtained through microscopic examination using this staining method. The ratio of viable cells to nonviable cells is constant for at least two days if the proper environmental conditions are provided. This method was used to demonstrate the effects of various factors that influence yeast viability.

  5. Cell size control in yeast

    PubMed Central

    Turner, Jonathan J.; Ewald, Jennifer C.; Skotheim, Jan M.

    2012-01-01

    Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell cycle regulatory network, the molecular mechanismscoupling growth to division, and thereby controlling cell size, have remained elusive. Recent workin yeast has reinvigorated the size control field and suggested provocative mechanisms forthe distinct functions of setting and sensing cell size. Further examination of size sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control. PMID:22575477

  6. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  7. Advanced biofuel production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2013-06-01

    Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels. PMID:23628723

  8. Yeast: An Experimental Organism for Modern Biology.

    ERIC Educational Resources Information Center

    Botstein, David; Fink, Gerald R.

    1988-01-01

    Discusses the applicability and advantages of using yeasts as popular and ideal model systems for studying and understanding eukaryotic biology at the cellular and molecular levels. Cites experimental tractability and the cooperative tradition of the research community of yeast biologists as reasons for this success. (RT)

  9. Yeasts are essential for cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. PMID:24462702

  10. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  11. Fermentation studies using Saccharomyces diastaticus yeast strains

    SciTech Connect

    Erratt, J.A.; Stewart, G.G.

    1981-01-01

    The yeast species, Saccharomyces diastaticus, has the ability to ferment starch and dextrin, because of the extracellular enzyme, glucoamylase, which hydrolyzes the starch/dextrin to glucose. A number of nonallelic genes--DEX 1, DEX 2, and dextrinase B which is allelic to STA 3--have been isolated, which impart to the yeast the ability to ferment dextrin. Various diploid yeast strains were constructed, each being either heterozygous or homozygous for the individual dextrinase genes. Using 12 (sup 0) plato hopped wort (30% corn adjunct) under agitated conditions, the fermentation rates of the various diploid yeast strains were monitored. A gene-dosage effect was exhibited by yeast strains containing DEX 1 or DEX 2, however, not with yeast strains containing dextrinase B (STA 3). The fermentation and growth rates and extents were determined under static conditions at 14.4 C and 21 C. With all yeast strains containing the dextrinase genes, both fermentation and growth were increased at the higher incubation temperature. Using 30-liter fermentors, beer was produced with the various yeast strains containing the dextrinase genes and the physical and organoleptic characteristics of the products were determined. The concentration of glucose in the beer was found to increase during a 3-mo storage period at 21 C, indicating that the glucoamylase from Saccharomyces diastaticus is not inactivated by pasteurization. (Refs. 36).

  12. Comparative genomics of biotechnologically important yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  13. Yeasts are essential for cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics.

  14. Comparative genomics of biotechnologically important yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae, is used in the vast majority of the world’s bioprocesses, and its economic significance is unchallenged. It, however, represents only a small slice of yeast physiological diversity. Many other yeasts, are used in lesser known, but commercially important processes that take ...

  15. Antifungal resistance in yeast vaginitis.

    PubMed Central

    Dun, E.

    1999-01-01

    The increased number of vaginal yeast infections in the past few years has been a disturbing trend, and the scientific community has been searching for its etiology. Several theories have been put forth to explain the apparent increase. First, the recent widespread availability of low-dosage, azole-based over-the-counter antifungal medications for vaginal yeast infections encourages women to self-diagnose and treat, and women may be misdiagnosing themselves. Their vaginitis may be caused by bacteria, parasites or may be a symptom of another underlying health condition. As a result, they may be unnecessarily and chronically expose themselves to antifungal medications and encourage fungal resistance. Second, medical technology has increased the life span of seriously immune compromised individuals, yet these individuals are frequently plagued by opportunistic fungal infections. Long-term and intense azole-based antifungal treatment has been linked to an increase in resistant Candida and non-Candida species. Thus, the future of limiting antifungal resistance lies in identifying the factors promoting resistance and implementing policies to prevent it. PMID:10907778

  16. Growing yeast into cylindrical colonies.

    PubMed

    Vulin, Clément; Di Meglio, Jean-Marc; Lindner, Ariel B; Daerr, Adrian; Murray, Andrew; Hersen, Pascal

    2014-05-20

    Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes. PMID:24853750

  17. YCRD: Yeast Combinatorial Regulation Database

    PubMed Central

    Wu, Wei-Sheng; Hsieh, Yen-Chen; Lai, Fu-Jou

    2016-01-01

    In eukaryotes, the precise transcriptional control of gene expression is typically achieved through combinatorial regulation using cooperative transcription factors (TFs). Therefore, a database which provides regulatory associations between cooperative TFs and their target genes is helpful for biologists to study the molecular mechanisms of transcriptional regulation of gene expression. Because there is no such kind of databases in the public domain, this prompts us to construct a database, called Yeast Combinatorial Regulation Database (YCRD), which deposits 434,197 regulatory associations between 2535 cooperative TF pairs and 6243 genes. The comprehensive collection of more than 2500 cooperative TF pairs was retrieved from 17 existing algorithms in the literature. The target genes of a cooperative TF pair (e.g. TF1-TF2) are defined as the common target genes of TF1 and TF2, where a TF’s experimentally validated target genes were downloaded from YEASTRACT database. In YCRD, users can (i) search the target genes of a cooperative TF pair of interest, (ii) search the cooperative TF pairs which regulate a gene of interest and (iii) identify important cooperative TF pairs which regulate a given set of genes. We believe that YCRD will be a valuable resource for yeast biologists to study combinatorial regulation of gene expression. YCRD is available at http://cosbi.ee.ncku.edu.tw/YCRD/ or http://cosbi2.ee.ncku.edu.tw/YCRD/. PMID:27392072

  18. YCRD: Yeast Combinatorial Regulation Database.

    PubMed

    Wu, Wei-Sheng; Hsieh, Yen-Chen; Lai, Fu-Jou

    2016-01-01

    In eukaryotes, the precise transcriptional control of gene expression is typically achieved through combinatorial regulation using cooperative transcription factors (TFs). Therefore, a database which provides regulatory associations between cooperative TFs and their target genes is helpful for biologists to study the molecular mechanisms of transcriptional regulation of gene expression. Because there is no such kind of databases in the public domain, this prompts us to construct a database, called Yeast Combinatorial Regulation Database (YCRD), which deposits 434,197 regulatory associations between 2535 cooperative TF pairs and 6243 genes. The comprehensive collection of more than 2500 cooperative TF pairs was retrieved from 17 existing algorithms in the literature. The target genes of a cooperative TF pair (e.g. TF1-TF2) are defined as the common target genes of TF1 and TF2, where a TF's experimentally validated target genes were downloaded from YEASTRACT database. In YCRD, users can (i) search the target genes of a cooperative TF pair of interest, (ii) search the cooperative TF pairs which regulate a gene of interest and (iii) identify important cooperative TF pairs which regulate a given set of genes. We believe that YCRD will be a valuable resource for yeast biologists to study combinatorial regulation of gene expression. YCRD is available at http://cosbi.ee.ncku.edu.tw/YCRD/ or http://cosbi2.ee.ncku.edu.tw/YCRD/. PMID:27392072

  19. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  20. Yeasts that utilize lactose in sweet whey

    SciTech Connect

    Gholson, J.H.; Gough, R.H.

    1980-01-01

    Since processing costs are usually higher for whey than for other available food or feed nutrients, only about one-third of whey produced in the US is used by food and feed industries. As a result whey disposal costs are a problem. Further; when whey is disposed of through municipal sewerage systems, the lactose present is changed by bacteria to lactic acid which tends to act as a preservative and retards further oxidation of whey constituents. This article describes a method of utilizing lactose-fermenting yeasts to produce large quantities of yeast cells, single-cell protein. Kluveromyces fragilis was found to be the most effective yeast species and the yeast cells produced could be used as a natural food or feed additive. Results of this study determined that certain methods and yeast strains could reduce whey-related pollution and thus help reduce costs of whey disposal.

  1. Yeast community survey in the Tagus estuary.

    PubMed

    de Almeida, João M G C F

    2005-07-01

    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated. PMID:16329949

  2. Engineering yeast for the expression and secretion of cellulase cocktails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme systems that digest the cellulose in plant cell walls have potential value in the biorefining of renewable feedstocks such as crop residues, straws, and grasses to biofuels and other bioproducts. The bacterium Clostridium cellulovorans is a useful source of biomass-degrading enzymes because ...

  3. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast.

  4. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast. PMID:23800735

  5. Reconstruction and applications of consensus yeast metabolic network based on RNA sequencing.

    PubMed

    Zhao, Yuqi; Wang, Yanjie; Zou, Lei; Huang, Jingfei

    2016-04-01

    One practical application of genome-scale metabolic reconstructions is to interrogate multispecies relationships. Here, we report a consensus metabolic model in four yeast species (Saccharomyces cerevisiae, S. paradoxus, S. mikatae, and S. bayanus) by integrating metabolic network simulations with RNA sequencing (RNA-seq) datasets. We generated high-resolution transcriptome maps of four yeast species through de novo assembly and genome-guided approaches. The transcriptomes were annotated and applied to build the consensus metabolic network, which was verified using independent RNA-seq experiments. The expression profiles reveal that the genes involved in amino acid and lipid metabolism are highly coexpressed. The diverse phenotypic characteristics, such as cellular growth and gene deletions, can be simulated using the metabolic model. We also explored the applications of the consensus model in metabolic engineering using yeast-specific reactions and biofuel production as examples. Similar strategies will benefit communities studying genome-scale metabolic networks of other organisms. PMID:27239440

  6. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    NASA Astrophysics Data System (ADS)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  7. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  8. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference.

    PubMed

    Murphy, Katherine A; Tabuloc, Christine A; Cervantes, Kevin R; Chiu, Joanna C

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  9. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.

    PubMed

    Dakal, Tikam Chand; Solieri, Lisa; Giudici, Paolo

    2014-08-18

    The osmotolerant and halotolerant food yeast Zygosaccharomyces rouxii is known for its ability to grow and survive in the face of stress caused by high concentrations of non-ionic (sugars and polyols) and ionic (mainly Na(+) cations) solutes. This ability determines the success of fermentation on high osmolarity food matrices and leads to spoilage of high sugar and high salt foods. The knowledge about the genes, the metabolic pathways, and the regulatory circuits shaping the Z. rouxii sugar and salt-tolerance, is a prerequisite to develop effective strategies for fermentation control, optimization of food starter culture, and prevention of food spoilage. This review summarizes recent insights on the mechanisms used by Z. rouxii and other osmo and halotolerant food yeasts to endure salts and sugars stresses. Using the information gathered from S. cerevisiae as guide, we highlight how these non-conventional yeasts integrate general and osmoticum-specific adaptive responses under sugar and salts stresses, including regulation of Na(+) and K(+)-fluxes across the plasma membrane, modulation of cell wall properties, compatible osmolyte production and accumulation, and stress signalling pathways. We suggest how an integrated and system-based knowledge on these mechanisms may impact food and biotechnological industries, by improving the yeast spoilage control in food, enhancing the yeast-based bioprocess yields, and engineering the osmotolerance in other organisms.

  10. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications.

    PubMed

    Takagi, Hiroshi

    2008-11-01

    Proline is an important amino acid in terms of its biological functions and biotechnological applications. In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. However, it has been shown that proline levels are not increased under various stress conditions in the yeast Saccharomyces cerevisiae cells. Proline is believed to serve multiple functions in vitro such as protein and membrane stabilization, lowering the T (m) of DNA, and scavenging of reactive oxygen species, but the mechanisms of these functions in vivo are poorly understood. Yeast cells biosynthesize proline from glutamate in the cytoplasm via the same pathway found in bacteria and plants and also convert excess proline to glutamate in the mitochondria. Based on the fact that proline has stress-protective activity, S. cerevisiae cells that accumulate proline were constructed by disrupting the PUT1 gene involved in the degradation pathway and by expressing the mutant PRO1 gene encoding the feedback inhibition-less sensitive gamma-glutamate kinase to enhance the biosynthetic activity. The engineered yeast strains successfully showed enhanced tolerance to many stresses, including freezing, desiccation, oxidation, and ethanol. However, the appropriate cellular level and localization of proline play pivotal roles in the stress-protective effect. These results indicate that the increased stress protection is observed in yeast cells under the artificial condition of proline accumulation. Proline is expected to contribute to yeast-based industries by improving the production of frozen dough and alcoholic beverages or breakthroughs in bioethanol production. PMID:18802692

  11. Gateway Vectors for Efficient Artificial Gene Assembly In Vitro and Expression in Yeast Saccharomyces cerevisiae

    PubMed Central

    Giuraniuc, Claudiu V.; MacPherson, Murray; Saka, Yasushi

    2013-01-01

    Construction of synthetic genetic networks requires the assembly of DNA fragments encoding functional biological parts in a defined order. Yet this may become a time-consuming procedure. To address this technical bottleneck, we have created a series of Gateway shuttle vectors and an integration vector, which facilitate the assembly of artificial genes and their expression in the budding yeast Saccharomyces cerevisiae. Our method enables the rapid construction of an artificial gene from a promoter and an open reading frame (ORF) cassette by one-step recombination reaction in vitro. Furthermore, the plasmid thus created can readily be introduced into yeast cells to test the assembled gene’s functionality. As flexible regulatory components of a synthetic genetic network, we also created new versions of the tetracycline-regulated transactivators tTA and rtTA by fusing them to the auxin-inducible degron (AID). Using our gene assembly approach, we made yeast expression vectors of these engineered transactivators, AIDtTA and AIDrtTA and then tested their functions in yeast. We showed that these factors can be regulated by doxycycline and degraded rapidly after addition of auxin to the medium. Taken together, the method for combinatorial gene assembly described here is versatile and would be a valuable tool for yeast synthetic biology. PMID:23675537

  12. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  13. Analysis of Yeast Extracellular Vesicles.

    PubMed

    Rodrigues, Marcio L; Oliveira, Debora L; Vargas, Gabriele; Girard-Dias, Wendell; Franzen, Anderson J; Frasés, Susana; Miranda, Kildare; Nimrichter, Leonardo

    2016-01-01

    Extracellular vesicles (EV) are important carriers of biologically active components in a number of organisms, including fungal cells. Experimental characterization of fungal EVs suggested that these membranous compartments are likely involved in the regulation of several biological events. In fungal pathogens, these events include mechanisms of disease progression and/or control, suggesting potential targets for therapeutic intervention or disease prophylaxis. In this manuscript we describe methods that have been used in the last 10 years for the characterization of EVs produced by yeast forms of several fungal species. Experimental approaches detailed in this chapter include ultracentrifugation methods for EV fractionation, chromatographic approaches for analysis of EV lipids, microscopy techniques for analysis of both intracellular and extracellular vesicular compartments, interaction of EVs with host cells, and physical chemical analysis of EVs by dynamic light scattering. PMID:27665559

  14. Overview of fission yeast septation.

    PubMed

    Pérez, Pilar; Cortés, Juan C G; Martín-García, Rebeca; Ribas, Juan C

    2016-09-01

    Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins. PMID:27155541

  15. Analysis of Yeast Extracellular Vesicles.

    PubMed

    Rodrigues, Marcio L; Oliveira, Debora L; Vargas, Gabriele; Girard-Dias, Wendell; Franzen, Anderson J; Frasés, Susana; Miranda, Kildare; Nimrichter, Leonardo

    2016-01-01

    Extracellular vesicles (EV) are important carriers of biologically active components in a number of organisms, including fungal cells. Experimental characterization of fungal EVs suggested that these membranous compartments are likely involved in the regulation of several biological events. In fungal pathogens, these events include mechanisms of disease progression and/or control, suggesting potential targets for therapeutic intervention or disease prophylaxis. In this manuscript we describe methods that have been used in the last 10 years for the characterization of EVs produced by yeast forms of several fungal species. Experimental approaches detailed in this chapter include ultracentrifugation methods for EV fractionation, chromatographic approaches for analysis of EV lipids, microscopy techniques for analysis of both intracellular and extracellular vesicular compartments, interaction of EVs with host cells, and physical chemical analysis of EVs by dynamic light scattering.

  16. Modeling competition between yeast strains

    NASA Astrophysics Data System (ADS)

    de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap

    2016-04-01

    We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the strains. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.

  17. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  18. Studying Protein Ubiquitylation in Yeast.

    PubMed

    Hovsepian, Junie; Becuwe, Michel; Kleifeld, Oded; Glickman, Michael H; Léon, Sébastien

    2016-01-01

    Ubiquitylation is a reversible posttranslational modification that is critical for most, if not all, cellular processes and essential for viability. Ubiquitin conjugates to substrate proteins either as a single moiety (monoubiquitylation) or as polymers composed of ubiquitin molecules linked to each other with various topologies and structures (polyubiquitylation). This contributes to an elaborate ubiquitin code that is decrypted by specific ubiquitin-binding proteins. Indeed, these different types of ubiquitylation have different functional outcomes, notably affecting the stability of the substrate, its interactions, its activity, or its subcellular localization. In this chapter, we describe protocols to determine whether a protein is ubiquitylated, to identify the site that is ubiquitylated, and provide direction to study the topology of the ubiquitin modification, in the yeast Saccharomyces cerevisiae.

  19. Studying Protein Ubiquitylation in Yeast.

    PubMed

    Hovsepian, Junie; Becuwe, Michel; Kleifeld, Oded; Glickman, Michael H; Léon, Sébastien

    2016-01-01

    Ubiquitylation is a reversible posttranslational modification that is critical for most, if not all, cellular processes and essential for viability. Ubiquitin conjugates to substrate proteins either as a single moiety (monoubiquitylation) or as polymers composed of ubiquitin molecules linked to each other with various topologies and structures (polyubiquitylation). This contributes to an elaborate ubiquitin code that is decrypted by specific ubiquitin-binding proteins. Indeed, these different types of ubiquitylation have different functional outcomes, notably affecting the stability of the substrate, its interactions, its activity, or its subcellular localization. In this chapter, we describe protocols to determine whether a protein is ubiquitylated, to identify the site that is ubiquitylated, and provide direction to study the topology of the ubiquitin modification, in the yeast Saccharomyces cerevisiae. PMID:27613031

  20. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  1. Genomics and the making of yeast biodiversity.

    PubMed

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. PMID:26649756

  2. Engineer Sccharomyces cerevisiae for consolidated bioprocessing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current commercial biofuel production is based on a two-stage process of enzymatic treatment to degrade starch to fermentable sugar, followed by yeast fermentation of the sugar to ethanol. An attractive alternative would be to engineer Saccharomyces cerevisiae for cell-based saccharification an...

  3. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.

    PubMed

    Favaro, Lorenzo; Jooste, Tania; Basaglia, Marina; Rose, Shaunita H; Saayman, Maryna; Görgens, Johann F; Casella, Sergio; van Zyl, Willem H

    2013-01-01

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one step process, is a promising strategy for the effective ethanol production from cheap lignocellulosic and starchy materials. CBP requires a highly engineered microbial strain able to both hydrolyze biomass with enzymes produced on its own and convert the resulting simple sugars into high-titer ethanol. Recently, heterologous production of cellulose and starch-degrading enzymes has been achieved in yeast hosts, which has realized direct processing of biomass to ethanol. However, essentially all efforts aimed at the efficient heterologous expression of saccharolytic enzymes in yeast have involved laboratory strains and much of this work has to be transferred to industrial yeasts that provide the fermentation capacity and robustness desired for large scale bioethanol production. Specifically, the development of an industrial CBP amylolytic yeast would allow the one-step processing of low-cost starchy substrates into ethanol. This article gives insight in the current knowledge and achievements on bioethanol production from starchy materials with industrial engineered S. cerevisiae strains.

  4. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  5. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  6. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae,...

  7. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast,...

  8. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  9. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  10. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  11. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  12. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  13. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  14. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  15. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  16. Corning and Kroger turn whey to yeast

    SciTech Connect

    Not Available

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  17. Efforts to make and apply humanized yeast.

    PubMed

    Laurent, Jon M; Young, Jonathan H; Kachroo, Aashiq H; Marcotte, Edward M

    2016-03-01

    Despite a billion years of divergent evolution, the baker's yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism. PMID:26462863

  18. Pseudoporphyria associated with consumption of brewers' yeast.

    PubMed

    Lim, C K; Rideout, J M; Peters, T J

    1984-06-01

    A case of pseudoporphyria associated with excessive consumption of brewers ' yeast was studied. Detailed analysis of the yeast tablets by high performance liquid chromatography showed the presence of dicarboxylic deuteroporphyrin , mesoporphyrin, and protoporphyrin; coproporphyrin I and III isomers; and uroporphyrin I and III isomers. The faecal porphyrin concentration of the patient taking yeast tablets was significantly increased, resembling the excretion pattern in variegate porphyria. Any patient showing an unusual porphyrin excretion pattern on high performance liquid chromatography should be investigated for a possible dietary cause.

  19. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering.

    PubMed Central

    Deanda, K; Zhang, M; Eddy, C; Picataggio, S

    1996-01-01

    The substrate fermentation range of the ethanologenic bacterium Zymomonas mobilis was expanded to include the pentose sugar, L-arabinose, which is commonly found in agricultural residues and other lignocellulosic biomass. Five genes, encoding L-arabinose isomerase (araA), L-ribulokinase (araB), L-ribulose-5-phosphate-4-epimerase (araD), transaldolase (talB), and transketolase (tktA), were isolated from Escherichia coli and introduced into Z. mobilis under the control of constitutive promoters that permitted their expression even in the presence of glucose. The engineered strain grew on and produced ethanol from L-arabinose as a sole C source at 98% of the maximum theoretical ethanol yield, based on the amount of consumed sugar. This indicates that arabinose was metabolized almost exclusively to ethanol as the sole fermentation product, with little by-product formation. Although no diauxic growth pattern was evident, the microorganism preferentially utilized glucose before arabinose, apparently reflecting the specificity of the indigenous facilitated diffusion transport system. This microorganism may be useful, along with the previously developed xylose-fermenting Z. mobilis (M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio, Science 267:240-243, 1995), in a mixed culture for efficient fermentation of the predominant hexose and pentose sugars in agricultural residues and other lignocellulosic feedstocks to ethanol. PMID:8953718

  20. Mitigating health risks associated with alcoholic beverages through metabolic engineering.

    PubMed

    Jayakody, Lahiru N; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2016-02-01

    Epidemiological studies have established a positive relationship between the occurrence of cancer and consumption of alcoholic beverages. Metabolic engineering of brewing yeast to reduce potential carcinogenic compounds in alcoholic beverage is technically feasible as well as economically promising. This review presents the mechanisms of formation of potentially carcinogenic components in alcoholic beverages, such as formaldehyde, acetaldehyde, ethyl carbamate, acrylamide, and heavy metals, and introduces effective genetic perturbations to minimize the concentrations of these harmful components. As precise and effective genome editing tools for polyploid yeast are now available, we envision that yeast metabolic engineering might open up new research directions for improving brewing yeast in order to ensure product safety as well as to increase overall quality of alcoholic beverages.

  1. Mitigating health risks associated with alcoholic beverages through metabolic engineering.

    PubMed

    Jayakody, Lahiru N; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2016-02-01

    Epidemiological studies have established a positive relationship between the occurrence of cancer and consumption of alcoholic beverages. Metabolic engineering of brewing yeast to reduce potential carcinogenic compounds in alcoholic beverage is technically feasible as well as economically promising. This review presents the mechanisms of formation of potentially carcinogenic components in alcoholic beverages, such as formaldehyde, acetaldehyde, ethyl carbamate, acrylamide, and heavy metals, and introduces effective genetic perturbations to minimize the concentrations of these harmful components. As precise and effective genome editing tools for polyploid yeast are now available, we envision that yeast metabolic engineering might open up new research directions for improving brewing yeast in order to ensure product safety as well as to increase overall quality of alcoholic beverages. PMID:26760759

  2. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy).

    PubMed

    Branda, Eva; Turchetti, Benedetta; Diolaiuti, Guglielmina; Pecci, Massimo; Smiraglia, Claudio; Buzzini, Pietro

    2010-06-01

    The present study reports the characterization of psychrophilic yeast and yeast-like diversity in cold habitats (superficial and deep sediments, ice cores and meltwaters) of the Calderone Glacier (Italy), which is the southernmost glacier in Europe. After incubation at 4 and 20 degrees C, sediments contained about 10(2)-10(3) CFU of yeasts g(-1). The number of viable yeast cells in ice and meltwaters was several orders of magnitude lower. The concomitant presence of viable bacteria and filamentous fungi has also been observed. In all, 257 yeast strains were isolated and identified by 26S rRNA gene D1/D2 and internal transcribed spacers (1 and 2) sequencing as belonging to 28 ascomycetous and basidiomycetous species of 11 genera (Candida, Cystofilobasidium, Cryptococcus, Dioszegia, Erythrobasidium, Guehomyces, Mastigobasidium, Mrakia, Mrakiella, Rhodotorula and Sporobolomyces). Among them, the species Cryptococcus gastricus accounted for almost 40% of the total isolates. In addition, 12 strains were identified as belonging to the yeast-like species Aureobasidium pullulans and Exophiala dermatitidis, whereas 15 strains, presumably belonging to new species, yet to be described, were also isolated. Results herein reported indicate that the Calderone Glacier, although currently considered a vanishing ice body due to the ongoing global-warming phenomenon, still harbors viable psychrophilic yeast populations. Differences of yeast and yeast-like diversity between the glacier under study and other worldwide cold habitats are also discussed.

  3. Genomic Evolution of the Ascomycete Yeasts

    SciTech Connect

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  4. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  5. [Yeast Communities of Formica aquilonia Colonies].

    PubMed

    Maksimova, A; Glushakova, A M; Kachalkin, A V; Chernov, I Yu; Panteleeva, S N; Reznikova, Zh I

    2016-01-01

    Yeast abundance and species diversity in the colonies of Formica aquilonia ants in birch-pine forbs forest, Novosibirsk oblast, Russia, was studied. The average yeast number in the anthill material was 10³-10⁴CFU/g, reaching 10⁵ CFU/g in the hatching chambers. Typical litter species (Trichosporon monilfiforme and Cystofilobasidium capitatum) were predominant in soil and litter around the anthills. Apart from these species, ascomycete species of the family Debaryomycetaceae, Debaryomyces hansenii and Schwanniomyces vanrijiae, were predominant in the anthill material. Yeast population of the ants consisted exclusively of the members of these two species. Thus, highly specific yeast communities formed in the colonies of Formica aquilonia ants differ from the communities of surrounding soil. These differences are an instance of environment-forming activity of the ants. PMID:27301134

  6. [Malassezia yeasts and their significance in dermatology].

    PubMed

    Hort, W; Nilles, M; Mayser, P

    2006-07-01

    Yeasts of the genus Malassezia belong to the normal microflora of the human skin. In addition they are known to cause a variety of skin diseases; the most frequent of which is pityriasis versicolor. Malassezia yeasts are also thought to be associated with seborrheic dermatitis, dandruff and Malassezia folliculitis. Recently the significance of Malassezia yeasts as a trigger factor for atopic dermatitis of the head and neck region has been pointed out. The role of the Malassezia yeasts in these different diseases has been controversial in the past and remains an issue because of difficulties in isolation, culture and differentiation of the organism. Thanks to molecular techniques, 10 species can actually be differentiated. The article presents the different Malassezia-associated diseases, their clinical picture, diagnosis and appropriate therapy. In addition the speciation of Malassezia is reviewed. PMID:16758222

  7. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.

  8. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. PMID:24316480

  9. Featured Organism: Schizosaccharomyces pombe, The Fission Yeast

    PubMed Central

    2002-01-01

    Schizosaccharomyces pombe, the fission yeast, has long been a crucial model for the study of the eukaryote cell cycle. We take a look at this important yeast, whose genome has recently been completed, featuring comments from Valerie Wood, Jürg Bähler, Ramsay McFarlane, Susan Forsburg, Iain Hagan and Paul Nurse on the implications of having the complete sequence and future prospects for pombe genomics. PMID:18628834

  10. [Phenylalanine ammonia-lyase of pigmented yeasts].

    PubMed

    Mushi, N Iu; Kupletskaia, M B; Bab'eva, I P; Egorov, N S

    1980-01-01

    116 pigmented yeast cultures were tested for the presence of L-phenylalanine-ammonia lyase transforming L-phenylalanine into trans-cinnamic acid. The enzyme was found in 54 strains. Most of these strains belonged to the genera Rhodotorula and Sporobolomyces. Toluene, along with acetone, was successfully used to increase cellular permeability of the yeast cultures while determining the activity of phenylalanine-ammonia lyase.

  11. Production of serpins using yeast expression systems.

    PubMed

    Pemberton, Philip A; Bird, Phillip I

    2004-02-01

    Serpins occupy a unique niche in the field of biology. As more of them are discovered, the need to produce sufficient quantities of each to aid experimental and therapeutic research increases. Yeast expression systems are well suited for the production of recombinant serpins. The genetics of many yeast species is well understood and readily manipulated to induce the targeted over-production of many different serpins. In addition, protease-deficient strains of certain species are available and a few species carry out post-translational modifications resembling those of humans. Yeasts are easy to grow and multiply readily in simple culture media hence the cost of production is low, while the scale of production can be small or large. The disadvantages are the inability of most yeast(s) to perform complex post-translational modifications and a lower product yield of secreted protein compared to intracellular protein production. However, for the intracellular production of serpins, in particular the clade B serpins that do not have complex post-translational modifications, yeast expression systems should be among the first systems considered. PMID:14698631

  12. The growth of solar radiated yeast

    SciTech Connect

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  13. Flor Yeast: New Perspectives Beyond Wine Aging

    PubMed Central

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  14. Glutaraldehyde enhanced dielectrophoretic yeast cell separation

    PubMed Central

    Gagnon, Zachary; Mazur, Jill; Chang, Hsueh-Chia

    2009-01-01

    We introduce a method for improved dielectrophoretic (DEP) discrimination and separation of viable and nonviable yeast cells. Due to the higher cell wall permeability of nonviable yeast cells compared with their viable counterpart, the cross-linking agent glutaraldehyde (GLT) is shown to selectively cross-link nonviable cells to a much greater extent than viable yeast. The DEP crossover frequency (cof) of both viable and nonviable yeast cells was measured over a large range of buffer conductivities (22 μS∕cm–400 μS∕cm) in order to study this effect. The results indicate that due to selective nonviable cell cross-linking, GLT modifies the DEP cof of nonviable cells, while viable cell cof remains relatively unaffected. To investigate this in more detail, a dual-shelled oblate spheroid model was evoked and fitted to the cof data to study cell electrical properties. GLT treatment is shown to minimize ion leakage out of the nonviable yeast cells by minimizing changes in cytoplasm conductivity over a large range of ionic concentrations. This effect is only observable in nonviable cells where GLT treatment serves to stabilize the cell cytoplasm conductivity over a large range of buffer conductivity and allow for much greater differences between viable and nonviable cell cofs. As such, by taking advantage of differences in cell wall permeability GLT magnifies the effect DEP has on the field induced separation of viable and nonviable yeasts. PMID:20216970

  15. The growth of solar radiated yeast

    NASA Technical Reports Server (NTRS)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  16. Flor Yeast: New Perspectives Beyond Wine Aging.

    PubMed

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C; Mannazzu, Ilaria; Coi, Anna L; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air-liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  17. Yeast Display-Based Antibody Affinity Maturation Using Detergent-Solubilized Cell Lysates.

    PubMed

    Tillotson, Benjamin J; Lajoie, Jason M; Shusta, Eric V

    2015-01-01

    It is often desired to identify or engineer antibodies that target membrane proteins (MPs). However, due to their inherent insolubility in aqueous solutions, MPs are often incompatible with in vitro antibody discovery and optimization platforms. Recently, we adapted yeast display technology to accommodate detergent-solubilized cell lysates as sources of MP antigens. The following protocol details the incorporation of cell lysates into a kinetic screen designed to obtain antibodies with improved affinity via slowed dissociation from an MP antigen. PMID:26060070

  18. Yeast display-based antibody affinity maturation using detergent-solubilized cell lysates

    PubMed Central

    Tillotson, Benjamin J.; Lajoie, Jason M.; Shusta, Eric V.

    2016-01-01

    Summary It is often desired to identify or engineer antibodies that target membrane proteins (MPs). However, due to their inherent insolubility in aqueous solutions, MPs are often incompatible with in vitro antibody discovery and optimization platforms. Recently, we adapted yeast display technology to accommodate detergent-solubilized cell lysates as sources of MP antigens. The following protocol details the incorporation of cell lysates into a kinetic screen designed to obtain antibodies with improved affinity via slowed dissociation from an MP antigen. PMID:26060070

  19. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast

    PubMed Central

    Misra, Ashish; Conway, Matthew F.; Johnnie, Joseph; Qureshi, Tabish M.; Lige, Bao; Derrick, Anne M.; Agbo, Eddy C.; Sriram, Ganesh

    2013-01-01

    Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo 13C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast. PMID:23898325

  20. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast.

    PubMed

    Misra, Ashish; Conway, Matthew F; Johnnie, Joseph; Qureshi, Tabish M; Lige, Bao; Derrick, Anne M; Agbo, Eddy C; Sriram, Ganesh

    2013-01-01

    Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo (13)C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast.

  1. Next-generation biofuels: a new challenge for yeast.

    PubMed

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review. PMID:26108577

  2. Next-generation biofuels: a new challenge for yeast.

    PubMed

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review.

  3. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    PubMed Central

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.; Hallström, Björn M.; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N.; Andersson-Svahn, Helene; Nielsen, Jens

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories. PMID:26261321

  4. [Sorting oleaginous yeast by using optical manipulation and Raman spectroscopy].

    PubMed

    Li, Zi-Da; Chen, Liang; Meng, Ling-Jing; Liu, Jun-Xian; Wang, Gui-Wen

    2011-04-01

    Extensive research has been carried out in an effort to screen the oleaginous microorganisms. Here, Raman spectroscopy and laser tweezers were used to sort oleaginous yeast from mixed yeast cells. The preprocessing of subtracted background, 17 points S-G smoothing filter, polynomial fitting baseline correction and vector normalization were performed and the main features information of intracellular substances from the Raman spectroscopy of yeast cells was extracted by combining principal component analysis. Based on the distinguished composition of oleaginous yeast and non-oleaginous different yeast, a sorting model was established. The test yeast cell in optical trapping was distinguished real-time by the model referring to its Raman spectra. The cells distinguished as oleaginous yeast were collected by means of optical manipulation. The sorted oleaginous yeast cells were verified by microbial culture and Sudan black B test. The result illustrates that Raman spectroscopy combined with optical manipulation is an effective technique for sorting oleaginous yeast and other economic microorganisms.

  5. Functional adaptation between yeast actin and its cognate myosin motors.

    PubMed

    Stark, Benjamin C; Wen, Kuo-Kuang; Allingham, John S; Rubenstein, Peter A; Lord, Matthew

    2011-09-01

    We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins. PMID:21757693

  6. Production of Aromatic Plant Terpenoids in Recombinant Baker's Yeast.

    PubMed

    Emmerstorfer-Augustin, Anita; Pichler, Harald

    2016-01-01

    Plant terpenoids are high-value compounds broadly applied as food additives or fragrances in perfumes and cosmetics. Their biotechnological production in yeast offers an attractive alternative to extraction from plants. Here, we provide two optimized protocols for the production of the plant terpenoid trans-nootkatol with recombinant S. cerevisiae by either (I) converting externally added (+)-valencene with resting cells or (II) cultivating engineered self-sufficient production strains. By synthesis of the hydrophobic compounds in self-sufficient production cells, phase transfer issues can be avoided and the highly volatile products can be enriched in and easily purified from n-dodecane, which is added to the cell broth as second phase. PMID:26843167

  7. Oleaginous yeast: a value-added platform for renewable oils.

    PubMed

    Probst, Kyle V; Schulte, Leslie R; Durrett, Timothy P; Rezac, Mary E; Vadlani, Praveen V

    2016-10-01

    Yeast single cell oil (SCO) is a non-crop-based, renewable oil source that can be used for the production of bio-based oleochemicals. Stand-alone production of SCO for oleochemicals is currently not cost-competitive because lower-cost alternatives from petroleum and crop-based resources are available. Utilizing low-valued nutrient sources, implementing cost-efficient downstream processes and adopting biotechnological advancements such as systems biology and metabolic engineering could prove valuable in making an SCO platform a reality in the emerging bio-based economy. This review aims to consider key biochemical pathways for storage lipid synthesis, possible pathways for SCO yield improvement, previously used bioprocessing techniques for SCO production, challenges in SCO commercialization and advantages of adopting a renewable SCO platform.

  8. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  9. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    DOE PAGESBeta

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; Chou, Yat -Chen; Chen, Xiaowen; Dowe, Nancy; Himmel, Michael E.; Zhang, Min

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks formore » high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

  10. A study of ethanol tolerance in yeast.

    PubMed

    D'Amore, T; Panchal, C J; Russell, I; Stewart, G G

    1990-01-01

    The ethanol tolerance of yeast and other microorganisms has remained a controversial area despite the many years of study. The complex inhibition mechanism of ethanol and the lack of a universally accepted definition and method to measure ethanol tolerance have been prime reasons for the controversy. A number of factors such as plasma membrane composition, media composition, mode of substrate feeding, osmotic pressure, temperature, intracellular ethanol accumulation, and byproduct formation have been shown to influence the ethanol tolerance of yeast. Media composition was found to have a profound effect upon the ability of a yeast strain to ferment concentrated substrates (high osmotic pressure) and to ferment at higher temperatures. Supplementation with peptone-yeast extract, magnesium, or potassium salts has a significant and positive effect upon overall fermentation rates. An intracellular accumulation of ethanol was observed during the early stages of fermentation. As fermentation proceeds, the intracellular and extracellular ethanol concentrations become similar. In addition, increases in osmotic pressure are associated with increased intracellular accumulation of ethanol. However, it was observed that nutrient limitation, not increased intracellular accumulation of ethanol, is responsible to some extent for the decreases in growth and fermentation activity of yeast cells at higher osmotic pressure and temperature.

  11. Production of alpha-amylase by yeast

    SciTech Connect

    Thomse, K.K.

    1987-01-01

    The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

  12. Influence of pesticides on yeasts colonizing leaves.

    PubMed

    Vadkertiová, Renata; Sláviková, Elena

    2011-01-01

    The effect of nine different pesticides on the growth of yeasts isolated from the leaves of fruit and forest trees was investigated. Four insecticides (with the active ingredients: thiacloprid, deltamethrin, lambdacyhalothrin, and thiamethoxam) and five fungicides (with the effective substances: bitertanol, kresoxim-methyl, mancozeb, trifloxystrobin, and cupric oxychloride) were tested. The concentrations of chemicals were those recommended by the manufacturers for the spraying of trees. The yeast strains isolated from the leaves of fruit trees were not sensitive to any of the insecticides. The majority of yeast strains isolated from the leaves of forest trees were either not sensitive or only to a small extent. While Rhodotorula mucilaginosa and Pichia anomala were not affected by any insecticide, the strains of Cryptococcus laurentii and Rhodotorula glutinis showed the highest sensitivity. The effects of fungicides on the growth of isolated yeasts were more substantial. The fungicide Dithane DG (mancozeb) completely inhibited the growth of all yeasts. All strains isolated from fruit tree leaves were more resistant to the tested fungicides than those isolated from the leaves of forest trees. The most resistant strains from the leaves of fruit trees belonged to the species Metschnikowia pulcherrima, Pichia anomala, and Saccharomyces cerevisiae, whereas Cryptococcus albidus and C. laurentii, originating from the leaves of forest trees, showed the highest sensitivity to fungicides. PMID:22351984

  13. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  14. Anaerobic digestion of food waste using yeast.

    PubMed

    Suwannarat, Jutarat; Ritchie, Raymond J

    2015-08-01

    Fermentative breakdown of food waste seems a plausible alternative to feeding food waste to pigs, incineration or garbage disposal in tourist areas. We determined the optimal conditions for the fermentative breakdown of food waste using yeast (Saccharomyces cerevisiae) in incubations up to 30days. Yeast efficiently broke down food waste with food waste loadings as high as 700g FW/l. The optimum inoculation was ≈46×10(6)cells/l of culture with a 40°C optimum (25-40°C). COD and BOD were reduced by ≈30-50%. Yeast used practically all the available sugars and reduced proteins and lipids by ≈50%. Yeast was able to metabolize lipids much better than expected. Starch was mobilized after very long term incubations (>20days). Yeast was effective in breaking down the organic components of food waste but CO2 gas and ethanol production (≈1.5%) were only significant during the first 7days of incubations.

  15. Anaerobic digestion of food waste using yeast.

    PubMed

    Suwannarat, Jutarat; Ritchie, Raymond J

    2015-08-01

    Fermentative breakdown of food waste seems a plausible alternative to feeding food waste to pigs, incineration or garbage disposal in tourist areas. We determined the optimal conditions for the fermentative breakdown of food waste using yeast (Saccharomyces cerevisiae) in incubations up to 30days. Yeast efficiently broke down food waste with food waste loadings as high as 700g FW/l. The optimum inoculation was ≈46×10(6)cells/l of culture with a 40°C optimum (25-40°C). COD and BOD were reduced by ≈30-50%. Yeast used practically all the available sugars and reduced proteins and lipids by ≈50%. Yeast was able to metabolize lipids much better than expected. Starch was mobilized after very long term incubations (>20days). Yeast was effective in breaking down the organic components of food waste but CO2 gas and ethanol production (≈1.5%) were only significant during the first 7days of incubations. PMID:25987287

  16. Ecology of pathogenic yeasts in Amazonian soil.

    PubMed Central

    Mok, W Y; Luizão, R C; do Socorro Barreto da Silva, M; Teixeira, M F; Muniz, E G

    1984-01-01

    In an investigation of Amazonian soil as a natural reservoir for pathogenic fungi, 1,949 soil samples collected from diverse geographical and ecological settings of the Brazilian Amazon Basin were analyzed for the presence of non-keratinophilic fungi by the indirect mouse inoculation procedure and for the presence of keratinophilic fungi by the hair bait technique. All soil samples were acidic with low pH values. From 12% of the soil samples, 241 yeast and yeastlike isolates pertaining to six genera and 82 species were recovered, of which 63% were Torulopsis and 26% were Candida species. Nine fungi with known pathogenic potentials were encountered among 43% (104) of the isolates: T. glabrata, C. guilliermondii, C. albicans, C. pseudotropicalis, C. stellatoidea, C. tropicalis, Rhodotorula rubra, and Wangiella dermatitidis. The yeast flora was marked by species diversity, low frequency of each species, random geographical distribution, and an apparent lack of species clustering. The composition and distribution of the yeast flora in soil differed from those of the yeast flora harbored by bats, suggesting that the Amazonian external environment and internal bat organs act as independent natural habitats for yeasts. PMID:6538774

  17. Yeast flocculation: what brewers should know.

    PubMed

    Verstrepen, K J; Derdelinckx, G; Verachtert, H; Delvaux, F R

    2003-05-01

    For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.

  18. [Molecular mechanisms of peroxisome biogenesis in yeasts].

    PubMed

    Sibirnyĭ, A A

    2012-01-01

    Peroxisomes contain oxidases generating hydrogen peroxide, and catalase degrading this toxic compound. Another characteristic function of each eukaryotic peroxisome, from yeast to man, is fatty acid beta-oxidation. However, in peroxisomes a variety of other metabolic pathways are located. In fungi, peroxisomes contain enzymes involved in catabolism of unusual carbon and nitrogen sources (methanol, purines, D-amino acids, pipecolynic acid, sarcosine, glycolate, spermidine etc) as well as biosynthesis of lysine in yeasts and penicillin in mycelial fungi. Impairment of peroxisomal structure and functions causes many human disorders. The similar defects have been identified in yeast mutants defective in peroxisomal biogenesis. Peroxisomal biogenesis is actively studied during last two decades using uni- and multicellular model systems. It was observed that many aspects of peroxisomal biogenesis and proteins involved in this process display striking similarity between all eukaryotes, from yeasts to humans. Yeast is a convenient model system for this kind of research. Current review summarizes data on molecular events of peroxisomal biogenesis, functions of peroxine proteins, import of peroxisomal matrix and membrane proteins and on mechanisms of peroxisomedivision and inheritance. PMID:22642098

  19. Yeast cell surface display for lipase whole cell catalyst and its applications

    SciTech Connect

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  20. Post-translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display.

    PubMed

    Parthasarathy, Ranganath; Subramanian, Shyamsundar; Boder, Eric T; Discher, Dennis E

    2006-01-01

    Display of heterologous proteins on the surface of Saccharomyces cerevisiae is increasingly being exploited for directed evolution because of straightforward cell screens. However, yeast post-translationally modifies proteins in ways that must be factored into library engineering and refinement. Here, we express the extracellular immunoglobulin domain of an ubiquitous mammalian membrane protein, CD47, which is implicated in cancer, immunocompatibility, and motility. CD47 has multiple sites of glycosylation and a core disulfide bond. We assess the effects of both of these post-translational modifications on expression and antibody binding. CD47's extracellular domain is fused to the yeast mating protein Aga2p on the cell wall, and the resulting fusion protein binds several key antibodies, including a conformation-sensitive antibody. Site-by-site mutagenesis of CD47's five N-linked glycosylation sites progressively decreases expression levels on yeast, but folding appears stable. Cysteine mutations disrupt the expected core disulfide, and also decrease protein expression levels, though not to the extent seen with complete deglycosylation. However, with the core disulfide mutants, antibody binding proves to be lower than expected from expression levels and glycosylation is clearly reduced compared to wild-type. The results indicate that glycosylation regulates heterologous display on yeast more than core disulfides do and thus suggest bounds on directed evolution by post-translational processing.

  1. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide.

    PubMed

    Boder, Eric T; Bill, Jerome R; Nields, Andrew W; Marrack, Philippa C; Kappler, John W

    2005-11-20

    Microbial protein display technologies have enabled directed molecular evolution of binding and stability properties in numerous protein systems. In particular, dramatic improvements to antibody binding affinity and kinetics have been accomplished using these tools in recent years. Examples of successful application of display technologies to other immunological proteins have been limited to date. Herein, we describe the expression of human class II major histocompatibility complex allele (MHCII) HLA-DR4 on the surface of Saccharomyces cerevisiae as a noncovalently associated heterodimer. The yeast-displayed MHCII is fully native as assessed by binding of conformationally specific monoclonal antibodies; failure of antibodies specific for empty HLA-DR4 to bind yeast-displayed protein indicates antigenic peptide is bound. This report represents the first example of a noncovalent protein dimer displayed on yeast and of successful display of wild-type MHCII. Results further point to the potential for using yeast surface display for engineering and analyzing the antigen binding properties of MHCII.

  2. NY-ESO-1 protein glycosylated by yeast induces enhanced immune responses.

    PubMed

    Wadle, Andreas; Mischo, Axel; Strahl, Sabine; Nishikawa, Hiroyoshi; Held, Gerhard; Neumann, Frank; Wullner, Beate; Fischer, Eliane; Kleber, Sascha; Karbach, Julia; Jager, Elke; Shiku, Hiroshi; Odunsi, Kunle; Shrikant, Protul A; Knuth, Alexander; Cerundolo, Vincenzo; Renner, Christoph

    2010-11-01

    Vaccine strategies that target dendritic cells to elicit potent cellular immunity are the subject of intense research. Here we report that the genetically engineered yeast Saccharomyces cerevisiae, expressing the full-length tumour-associated antigen NY-ESO-1, is a versatile host for protein production. Exposing dendritic cells (DCs) to soluble NY-ESO-1 protein linked to the yeast a-agglutinin 2 protein (Aga2p) protein resulted in protein uptake, processing and MHC class I cross-presentation of NY-ESO-1-derived peptides. The process of antigen uptake and cross-presentation was dependent on the glycosylation pattern of NY-ESO-1-Aga2p protein and the presence of accessible mannose receptors. In addition, NY-ESO-1-Aga2p protein uptake by dendritic cells resulted in recognition by HLA-DP4 NY-ESO-1-specific CD4(+) T cells, indicating MHC class II presentation. Finally, vaccination of mice with yeast-derived NY-ESO-1-Aga2p protein led to an enhanced humoral and cellular immune response, when compared to the bacterially expressed NY-ESO-1 protein. Together, these data demonstrate that yeast-derived full-length NY-ESO-1-Aga2p protein is processed and presented efficiently by MHC class I and II complexes and warrants clinical trials to determine the potential value of S. cerevisiae as a host for cancer vaccine development.

  3. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities. PMID:23210991

  4. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  5. Biofuels. Altered sterol composition renders yeast thermotolerant.

    PubMed

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam; Feizi, Amir; Buskov, Steen; Hallström, Björn M; Petranovic, Dina; Nielsen, Jens

    2014-10-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype.

  6. Yeast Interactions in Inoculated Wine Fermentation

    PubMed Central

    Ciani, Maurizio; Capece, Angela; Comitini, Francesca; Canonico, Laura; Siesto, Gabriella; Romano, Patrizia

    2016-01-01

    The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process. PMID:27148235

  7. Membrane Transport in Yeast, An Introduction.

    PubMed

    Kschischo, Maik; Ramos, José; Sychrová, Hana

    2016-01-01

    Research on membrane transport has made continuous progress in the last decades and remains an active field of scientific investigation. In the case of yeast, most of the research has been conducted for the model organism Saccharomyces cerevisiae, but also the so-called non-conventional yeasts are being studied, especially because of their peculiarities and, in some cases, specific transport systems. This book is based on the experience of several experts summarizing the current knowledge about important substrate transport processes in yeast. Each chapter provides both a general overview of the main transport characteristics of a specific substrate or group of substrates and the unique details that only an expert working in the field is able to transmit to the reader.

  8. Role of live yeasts in rumen ecosystem.

    PubMed

    Oeztuerk, Hakan; Sagmanligil, Vedat

    2009-07-01

    For many years, ruminant nutritionists and microbiologists have been interested in manipulating the microbial ecosystem of the rumen to improve production efficiency by domestic ruminants. Antibiotic ionophores have been used successfully for this purpose. However, the use of antibiotics in animal feeds has been banned in the European Union since January 2006 due to the risk of spreading antibiotic resistance. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Dietary supplements of live yeast preparations, based on Saccharomyces cerevisiae, have been reported to improve health and productivity of ruminants. In contrast to antimicrobial agents, live yeasts offer a natural alternative to manipulate animal performance. This review discusses the modes of action of live yeasts in rumen ecosystem and their subsequent effects on animal performance. PMID:19753793

  9. Molecular control of fission yeast cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-05-01

    Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.

  10. Biofuels. Altered sterol composition renders yeast thermotolerant.

    PubMed

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam; Feizi, Amir; Buskov, Steen; Hallström, Björn M; Petranovic, Dina; Nielsen, Jens

    2014-10-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype. PMID:25278608

  11. Rapid methods for identification of yeasts.

    PubMed Central

    Huppert, M; Harper, G; Sun, S H; Delanerolle, V

    1975-01-01

    Opportunistic infections by yeasts have been implicated as one of the major causes of complications in the compromised patient. Rapid recognition and identification of these yeasts is essential for patient management, but conventional liquid medium methods for completing identification tests are cumbersome and time consuming. Rapid tests have been devised based on modifications of methods commonly used in bacteriology. These rapid methods included tests for carbohydrate and nitrate assimilation, fermentation, and urease production. These were compared with several current methods for accuracy of results, for time to final identification, and for economy of time and reagents. In addition, the usual tests for pseudogerm tube formation, for production of hyphae or pseudohyphae, and for growth temperatures were included. The rapid tests achieved 96% or better accuracy compared with expected results, and 46 species of yeasts were identified in 1 to 2 days compared with the 10 to 14 days required by conventional liquid culture methods. Images PMID:1241586

  12. Predicting the fission yeast protein interaction network.

    PubMed

    Pancaldi, Vera; Saraç, Omer S; Rallis, Charalampos; McLean, Janel R; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-04-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein-protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70-80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt).

  13. [The yeast biofilm in human medicine].

    PubMed

    Růzicka, Filip; Holá, Veronika; Votava, Miroslav

    2007-08-01

    In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to

  14. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper

  15. Biogenesis of extracellular vesicles in yeast

    PubMed Central

    Oliveira, Débora L; Nakayasu, Ernesto S; Joffe, Luna S; Guimarães, Allan J; Sobreira, Tiago JP; Nosanchuk, Joshua D; Cordero, Radames JB; Frases, Susana; Casadevall, Arturo; Almeida, Igor C; Nimrichter, Leonardo

    2010-01-01

    The cellular events required for unconventional protein secretion in eukaryotic pathogens are beginning to be revealed. In fungi, extracellular release of proteins involves passage through the cell wall by mechanisms that are poorly understood. In recent years, several studies demonstrated that yeast cells produce vesicles that traverse the cell wall to release a wide range of cellular components into the extracellular space. These studies suggested that extracellular vesicle release involves components of both conventional and unconventional secretory pathways, although the precise mechanisms required for this process are still unknown. We discuss here cellular events that are candidates for regulating this interesting but elusive event in the biology of yeast cells. PMID:21331232

  16. Expression of human. alpha. -fetoprotein in yeast

    SciTech Connect

    Yamamoto, Ritsu; Sakamoto, Takashi; Nishi, Shinzo; Sakai, Masaharu; Morinaga, Tomonori; Tamaoki, Taiki Univ. of Calgary, Alberta )

    1990-01-01

    Human {alpha}-fetoprotein (AFP) was expressed in Saccharomyces cerevisiae, with a plasmid containing the cDNA sequence for human AFP fused with the rat AFP signal peptide. The recombinant AFP was purified from the yeast lysate by DEAE-cellulose and immunoaffinity chromatography. The amino acid composition and the molecular weight of the recombinant AFP were similar to those of hepatoma AFP. N-terminal amino acids sequence analysis indicated that the signal peptide had been processed. The recombinant and hepatoma AFP reacted identically in Ouchterlony immunodiffusion and radioimmunoassay tests. These observations indicated that the yeast recombinant protein had the properties of native AFP.

  17. [Invasive yeast infections in neutropenic patients].

    PubMed

    Ruiz Camps, Isabel; Jarque, Isidro

    2016-01-01

    Invasive fungal diseases caused by yeasts still play an important role in the morbidity and mortality in neutropenic patients with haematological malignancies. Although the overall incidence of invasive candidiasis has decreased due to widespread use of antifungal prophylaxis, the incidence of non-Candida albicans Candida species is increasing compared with that of C.albicans, and mortality of invasive candidiasis continues to be high. In addition, there has been an increase in invasive infections caused by an array of uncommon yeasts, including species of the genus Malassezia, Rhodotorula, Trichosporon and Saprochaete, characterised by their resistance to echinocandins and poor prognosis.

  18. Three's company: the fission yeast actin cytoskeleton.

    PubMed

    Kovar, David R; Sirotkin, Vladimir; Lord, Matthew

    2011-03-01

    How the actin cytoskeleton assembles into different structures to drive diverse cellular processes is a fundamental cell biological question. In addition to orchestrating the appropriate combination of regulators and actin-binding proteins, different actin-based structures must insulate themselves from one another to maintain specificity within a crowded cytoplasm. Actin specification is particularly challenging in complex eukaryotes where a multitude of protein isoforms and actin structures operate within the same cell. Fission yeast Schizosaccharomyces pombe possesses a single actin isoform that functions in three distinct structures throughout the cell cycle. In this review we explore recent studies in fission yeast that help unravel how different actin structures operate in cells.

  19. Mitochondrial network size scaling in budding yeast.

    PubMed

    Rafelski, Susanne M; Viana, Matheus P; Zhang, Yi; Chan, Yee-Hung M; Thorn, Kurt S; Yam, Phoebe; Fung, Jennifer C; Li, Hao; Costa, Luciano da F; Marshall, Wallace F

    2012-11-01

    Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria-to-cell size ratio continually decreased in aging mothers over successive generations. However, regardless of the mother's age or mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.

  20. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines

    PubMed Central

    Sipiczki, Matthias

    2016-01-01

    The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility, that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia) in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological, and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae, and S. uvarum) were recovered from 13% of the samples. No Candida zemplinina was found. The isolates with Aureobasidium morphology

  1. Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Ostergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2000-01-01

    Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production. PMID:10704473

  2. Comparative Proteomics Profile of Lipid-Cumulating Oleaginous Yeast: An iTRAQ-Coupled 2-D LC-MS/MS Analysis

    PubMed Central

    Shi, Jiahua; Feng, Huixing; Lee, Jaslyn; Ning Chen, Wei

    2013-01-01

    Accumulation of intracellular lipid in oleaginous yeast cells has been studied for providing an alternative supply for energy, biofuel. Numerous studies have been conducted on increasing lipid content in oleaginous yeasts. However, few explore the mechanism of the high lipid accumulation ability of oleaginous yeast strains at the proteomics level. In this study, a time-course comparative proteomics analysis was introduced to compare the non-oleaginous yeast Saccharomyces cerevisiae, with two oleaginous yeast strains, Cryptococcus albidus and Rhodosporidium toruloides at different lipid accumulation stages. Two dimensional LC-MS/MS approach has been applied for protein profiling together with isobaric tag for relative and absolute quantitation (iTRAQ) labelling method. 132 proteins were identified when three yeast strains were all at early lipid accumulation stage; 122 and 116 proteins were found respectively within cells of three strains collected at middle and late lipid accumulation stages. Significantly up-regulation or down-regulation of proteins were experienced among comparison. Essential proteins correlated to lipid synthesis and regulation were detected. Our approach provides valuable indication and better understanding for lipid accumulation mechanism from proteomics level and would further contribute to genetic engineering of oleaginous yeasts. PMID:24386479

  3. Comparative proteomics profile of lipid-cumulating oleaginous yeast: an iTRAQ-coupled 2-D LC-MS/MS analysis.

    PubMed

    Shi, Jiahua; Feng, Huixing; Lee, Jaslyn; Ning Chen, Wei

    2013-01-01

    Accumulation of intracellular lipid in oleaginous yeast cells has been studied for providing an alternative supply for energy, biofuel. Numerous studies have been conducted on increasing lipid content in oleaginous yeasts. However, few explore the mechanism of the high lipid accumulation ability of oleaginous yeast strains at the proteomics level. In this study, a time-course comparative proteomics analysis was introduced to compare the non-oleaginous yeast Saccharomyces cerevisiae, with two oleaginous yeast strains, Cryptococcus albidus and Rhodosporidium toruloides at different lipid accumulation stages. Two dimensional LC-MS/MS approach has been applied for protein profiling together with isobaric tag for relative and absolute quantitation (iTRAQ) labelling method. 132 proteins were identified when three yeast strains were all at early lipid accumulation stage; 122 and 116 proteins were found respectively within cells of three strains collected at middle and late lipid accumulation stages. Significantly up-regulation or down-regulation of proteins were experienced among comparison. Essential proteins correlated to lipid synthesis and regulation were detected. Our approach provides valuable indication and better understanding for lipid accumulation mechanism from proteomics level and would further contribute to genetic engineering of oleaginous yeasts.

  4. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates.

    PubMed

    Oreb, Mislav; Dietz, Heiko; Farwick, Alexander; Boles, Eckhard

    2012-01-01

    Economically feasible production of second-generation biofuels requires efficient co-fermentation of pentose and hexose sugars in lignocellulosic hydrolysates under very harsh conditions. Baker's yeast is an excellent, traditionally used ethanol producer but is naturally not able to utilize pentoses. This is due to the lack of pentose-specific transporter proteins and enzymatic reactions. Thus, natural yeast strains must be modified by genetic engineering. Although the construction of various recombinant yeast strains able to ferment pentose sugars has been described during the last two decades, their rates of pentose utilization is still significantly lower than D-glucose fermentation. Moreover, pentoses are only fermented after D-glucose is exhausted, resulting in an uneconomical increase in the fermentation time. In this addendum, we discuss novel approaches to improve utilization of pentoses by development of specific transporters and substrate channeling in enzyme cascades. PMID:22892590

  5. Recombinant expression and phenotypic screening of a bioactive cyclotide against α-synuclein-induced cytotoxicity in baker’s yeast

    PubMed Central

    Jagadish, Krishnappa; Gould, Andrew; Borra, Radhika; Majumder, Subhabrata; Mushtaq, Zahid; Shekhtman, Alexander; Camarero, Julio A.

    2015-01-01

    We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans-splicing in combination with a highly efficient split-intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI-I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown reduce the toxicity of human α-synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI-I in a ratio of 1 to 5×104. This demonstrates the potential for using yeast to perform phenotypic screening of genetically-encoded cyclotide-based libraries in eukaryotic cells. PMID:26096948

  6. Recombinant Expression and Phenotypic Screening of a Bioactive Cyclotide Against α-Synuclein-Induced Cytotoxicity in Baker's Yeast.

    PubMed

    Jagadish, Krishnappa; Gould, Andrew; Borra, Radhika; Majumder, Subhabrata; Mushtaq, Zahid; Shekhtman, Alexander; Camarero, Julio A

    2015-07-13

    We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans-splicing in combination with a highly efficient split-intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI-I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown to reduce the toxicity of human α-synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI-I in a ratio of 1:5×10(4). This demonstrates the potential for using yeast to perform phenotypic screening of genetically encoded cyclotide-based libraries in eukaryotic cells. PMID:26096948

  7. Recombinant Expression and Phenotypic Screening of a Bioactive Cyclotide Against α-Synuclein-Induced Cytotoxicity in Baker's Yeast.

    PubMed

    Jagadish, Krishnappa; Gould, Andrew; Borra, Radhika; Majumder, Subhabrata; Mushtaq, Zahid; Shekhtman, Alexander; Camarero, Julio A

    2015-07-13

    We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans-splicing in combination with a highly efficient split-intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI-I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown to reduce the toxicity of human α-synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI-I in a ratio of 1:5×10(4). This demonstrates the potential for using yeast to perform phenotypic screening of genetically encoded cyclotide-based libraries in eukaryotic cells.

  8. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast

    PubMed Central

    Trenchard, Isis J.; Siddiqui, Michael S.; Thodey, Kate; Smolke, Christina D.

    2015-01-01

    Microbial biosynthesis for plant-based natural products, such as the benzylisoquinoline alkaloids (BIAs), has the potential to address limitations in plant-based supply of established drugs and make new molecules available for drug discovery. While yeast strains have been engineered to produce a variety of downstream BIAs including the opioids, these strains have relied on feeding an early BIA substrate. We describe the de novo synthesis of the major BIA branch point intermediate reticuline via norcoclaurine in Saccharomyces cerevisiae. Modifications were introduced into yeast central metabolism to increase supply of the BIA precursor tyrosine, allowing us to achieve a 60-fold increase in production of the early benzylisoquinoline scaffold from fed dopamine with no supply of exogenous tyrosine. Yeast strains further engineered to express a mammalian tyrosine hydroxylase, four mammalian tetrahydrobiopterin biosynthesis and recycling enzymes, and a bacterial DOPA decarboxylase produced norcoclaurine de novo. We further increased production of early benzylisoquinoline scaffolds by 160-fold through introducing mutant tyrosine hydroxylase enzymes, an optimized plant norcoclaurine synthase variant, and optimizing culture conditions. Finally, we incorporated five additional plant enzymes - three methyltransferases, a cytochrome P450, and its reductase partner - to achieve de novo production of the key branch point molecule reticuline with a titer of 19.2 μg/L. These strains and reconstructed pathways will serve as a platform for the biosynthesis of diverse natural and novel BIAs. PMID:26166409

  9. Yeast Surface Display of Trifunctional Minicellulosomes for Simultaneous Saccharification and Fermentation of Cellulose to Ethanol▿ †

    PubMed Central

    Wen, Fei; Sun, Jie; Zhao, Huimin

    2010-01-01

    By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a β-glucosidase, each bearing a C-terminal dockerin. Cell surface assembly of the minicellulosomes was dependent on expression of the miniscaffoldin, indicating that formation of the complex was dictated by the high-affinity interactions between cohesins and dockerins. Compared to the unifunctional and bifunctional minicellulosomes, the quaternary trifunctional complexes showed enhanced enzyme-enzyme synergy and enzyme proximity synergy. More importantly, surface display of the trifunctional minicellulosomes gave yeast cells the ability to simultaneously break down and ferment phosphoric acid-swollen cellulose to ethanol with a titer of ∼1.8 g/liter. To our knowledge, this is the first report of a recombinant yeast strain capable of producing cell-associated trifunctional minicellulosomes. The strain reported here represents a useful engineering platform for developing CBP-enabling microorganisms and elucidating principles of cellulosome construction and mode of action. PMID:20023102

  10. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  11. Drosophila-associated yeast species in vineyard ecosystems.

    PubMed

    Lam, Samuel S T H; Howell, Kate S

    2015-10-01

    Yeast activity during wine fermentation directly contributes to wine quality, but the source and movement of yeasts in vineyards and winery environments have not been resolved. Here, we investigate the yeast species associated with the Drosophila insect vector to help understand yeast dispersal and persistence. Drosophila are commonly found in vineyards and are known to have a mutualistic relationship with yeasts in other ecosystems. Drosophilids were collected from vineyards, grape waste (marc) piles and wineries during grape harvest. Captured flies were identified morphologically, and their associated yeasts were identified. Drosophila melanogaster/D. simulans, D. hydei and Scaptodrosophila lativittata were identified in 296 captured Drosophila flies. These flies were associated with Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii and H. valbyensis yeasts. Yeast and Drosophila species diversity differed between collection locations (vineyard and marc: R = 0.588 for Drosophila and R = 0.644 for yeasts). Surprisingly, the primary wine fermentation yeast, Saccharomyces cerevisiae, was not isolated. Drosophila flies are preferentially associated with different yeast species in the vineyard and winery environments, and this association may help the movement and dispersal of yeast species in the vineyard and winery ecosystem.

  12. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  13. Engineering Practice and Engineering Ethics.

    ERIC Educational Resources Information Center

    Lynch, William T.; Kline, Ronald

    2000-01-01

    Offers ways of applying science and technology studies to the teaching of engineering ethics. Suggests modifications of both detailed case studies on engineering disasters and hypothetical, ethical dilemmas employed in engineering ethics classes. (Author/CCM)

  14. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. PMID:24375690

  15. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display

    PubMed Central

    Wen, Fei; Sethi, Dhruv K.; Wucherpfennig, Kai W.; Zhao, Huimin

    2011-01-01

    Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2–MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs. PMID:21752831

  16. Optimizing pentose utilization in yeast: the need for novel tools and approaches.

    PubMed

    Young, Eric; Lee, Sun-Mi; Alper, Hal

    2010-11-16

    Hexose and pentose cofermentation is regarded as one of the chief obstacles impeding economical conversion of lignocellulosic biomass to biofuels. Over time, successful application of traditional metabolic engineering strategy has produced yeast strains capable of utilizing the pentose sugars (especially xylose and arabinose) as sole carbon sources, yet major difficulties still remain for engineering simultaneous, exogenous sugar metabolism. Beyond catabolic pathways, the focus must shift towards non-traditional aspects of cellular engineering such as host molecular transport capability, catabolite sensing and stress response mechanisms. This review highlights the need for an approach termed 'panmetabolic engineering', a new paradigm for integrating new carbon sources into host metabolic pathways. This approach will concurrently optimize the interdependent processes of transport and metabolism using novel combinatorial techniques and global cellular engineering. As a result, panmetabolic engineering is a whole pathway approach emphasizing better pathways, reduced glucose-induced repression and increased product tolerance. In this paper, recent publications are reviewed in light of this approach and their potential to expand metabolic engineering tools. Collectively, traditional approaches and panmetabolic engineering enable the reprogramming of extant biological complexity and incorporation of exogenous carbon catabolism.

  17. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  18. Microfermentation Test For Identification Of Yeast

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mishra, S. K.; Molina, Thomas C.

    1995-01-01

    Microfermentation test developed as supplementary method for use in identifying yeasts, especially in clinical and environmental studies. In comparison with traditional fermentation tests, simpler and easier, and requiries less equipment, material, and laboratory space. Results obtained in days instead of weeks.

  19. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  20. Degradation of 5-hydroxymethylfurfural during yeast fermentation.

    PubMed

    Akıllıoglu, Halise Gül; Mogol, Burçe Ataç; Gökmen, Vural

    2011-12-01

    5-Hydroxymethyl furfural (HMF) may occur in malt in high quantities depending on roasting conditions. However, the HMF content of different types of beers is relatively low, indicating its potential for degradation during fermentation. This study investigates the degradation kinetics of HMF in wort during fermentation by Saccharomyces cerevisiae. The results indicated that HMF decreased exponentially as fermentation progressed. The first-order degradation rate of HMF was 0.693 × 10(-2) and 1.397 × 10(-2)min(-1) for wort and sweet wort, respectively, indicating that sugar enhances the activity of yeasts. In wort, HMF was converted into hydroxymethyl furfuryl alcohol by yeasts with a high yield (79-84% conversion). Glucose and fructose were utilised more rapidly by the yeasts in dark roasted malt than in pale malt (p<0.05). The conversion of HMF into hydroxymethyl furfuryl alcohol seems to be a primary activity of yeast cells, and presence of sugars in the fermentation medium increases this activity.

  1. Chronological aging-induced apoptosis in yeast.

    PubMed

    Fabrizio, Paola; Longo, Valter D

    2008-07-01

    Saccharomyces cerevisiae is the simplest among the major eukaryotic model organisms for aging and diseases. Longevity in the chronological life span paradigm is measured as the mean and maximum survival period of populations of non-dividing yeast. This paradigm has been used successfully to identify several life-regulatory genes and three evolutionary conserved pro-aging pathways. More recently, Schizosaccharomyces pombe has been shown to age chronologically in a manner that resembles that of S. cerevisiae and that depends on the activity of the homologues of two pro-aging proteins previously identified in the budding yeast. Both yeast show features of apoptotic death during chronological aging. Here, we review some fundamental aspects of the genetics of chronological aging and the overlap between yeast aging and apoptotic processes with particular emphasis on the identification of an aging/death program that favors the dedifferentiation and regrowth of a few better adapted mutants generated within populations of aging S. cerevisiae. We also describe the use of a genome-wide screening technique to gain further insights into the mechanisms of programmed death in populations of chronologically aging S. cerevisiae.

  2. Yeast improves resistance to environmental challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alphamune™, a yeast extract antibiotic alternative, was added at either 1 lb/ton or 2 lb/ton to a turkey starter diet. Two trials were conducted to evaluate the effects of Alphamune™ on gut maturation of 7 and 21 day old poults. Sections from the mid-point of the duodenum, jejunum and ileum of each ...

  3. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... open container (established through generally accepted stability testing methods), other...

  4. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... open container (established through generally accepted stability testing methods), other...

  5. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  6. Carbon source dependent promoters in yeasts.

    PubMed

    Weinhandl, Katrin; Winkler, Margit; Glieder, Anton; Camattari, Andrea

    2014-01-01

    Budding yeasts are important expression hosts for the production of recombinant proteins.The choice of the right promoter is a crucial point for efficient gene expression, as most regulations take place at the transcriptional level. A wide and constantly increasing range of inducible, derepressed and constitutive promoters have been applied for gene expression in yeasts in the past; their different behaviours were a reflection of the different needs of individual processes.Within this review we summarize the majority of the large available set of carbon source dependent promoters for protein expression in yeasts, either induced or derepressed by the particular carbon source provided. We examined the most common derepressed promoters for Saccharomyces cerevisiae and other yeasts, and described carbon source inducible promoters and promoters induced by non-sugar carbon sources. A special focus is given to promoters that are activated as soon as glucose is depleted, since such promoters can be very effective and offer an uncomplicated and scalable cultivation procedure.

  7. Ethanol tolerance of immobilized brewers' yeast cells.

    PubMed

    Norton, S; Watson, K; D'Amore, T

    1995-04-01

    A method based on the survival of yeast cells subjected to an ethanol or heat shock was utilized to compare the stress resistance of free and carrageenan-immobilized yeast cells. Results demonstrated a significant increase of yeast survival against ethanol for immobilized cells as compared to free cells, while no marked difference in heat resistance was observed. When entrapped cells were released by mechanical disruption of the gel beads and submitted to the same ethanol stress, they exhibited a lower survival rate than entrapped cells, but a similar or slightly higher survival rate than free cells. The incidence of ethanol- or heat-induced respiratory-deficient mutants of entrapped cells was equivalent to that of control or non-stressed cells (1.3 +/- 0.5%) whereas ethanol- and heat-shocked free and released cells exhibited between 4.4% and 10.9% average incidence of respiration-deficient mutants. It was concluded that the carrageenan gel matrix provided a protection against ethanol, and that entrapped cells returned to normal physiological behaviour as soon as they were released. The cell growth rate was a significant factor in the resistance of yeast to high ethanol concentrations. The optimum conditions to obtain reliable and reproducible results involved the use of slow-growing cells after exhaustion of the sugar substrate.

  8. Copper transport in non-growing yeast

    SciTech Connect

    Turos, S.; Donahue, T.; Trent, C.; Connelly, J.L.

    1986-05-01

    The mandatory role of copper (Cu) proteins in cell metabolism and the speculation that Cu influences the production of porphyrins and hemoproteins prompted an examination of the regulatory features of, and the process by which Cu is taken up by yeast. Saccharomyces Cerevisiae was grown on glucose minimal media in the absence of added Cu at 29/sup 0/C, 200 rpm for 48-72 hrs. Cells were harvested and washed by centrifugation and resuspended at standardized mg dry weight/ml. The yeast was exposed to Cu under a variety of experimental conditions in 10 ml volume containing approximately 5 mg (dry wt.) yeast and Cu (0-10/sup -4/M). Reactions were stopped by microcentrifugation and Cu was determined, by difference, using atomic absorption spectrophotometry. The time course of Cu uptake reflected two phases; a rapid rate followed by a slow rate which varied according to conditions. Direct determination of Cu using washing (chelators) and ashing of washed yeast showed that the initial phase was indeed adsorption of Cu to cell exterior. While the relationship of adsorbed Cu to Cu uptake has not been evaluated the system nevertheless is being used for the determination of the effects of environmental factors (pH, (Cu), temperature, etc.) on the uptake process. Furthermore, this system provides a convenient method for characterizing the Cu-transport machinery in a static (non-growth) mode.

  9. Antarctic Yeasts: Biodiversity and Potential Applications

    NASA Astrophysics Data System (ADS)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  10. Gene Deletion by Synthesis in Yeast.

    PubMed

    Kim, Jinsil; Kim, Dong-Uk; Hoe, Kwang-Lae

    2017-01-01

    Targeted gene deletion is a useful tool for understanding the function of a gene and its protein product. We have developed an efficient and robust gene deletion approach in yeast that employs oligonucleotide-based gene synthesis. This approach requires a deletion cassette composed of three modules: a central 1397-bp KanMX4 selection marker module and two 366-bp gene-specific flanking modules. The invariable KanMX4 module can be used in combination with different pairs of flanking modules targeting different genes. The two flanking modules consist of both sequences unique to each cassette (chromosomal homologous regions and barcodes) and those common to all deletion constructs (artificial linkers and restriction enzyme sites). Oligonucleotides for each module and junction regions are designed using the BatchBlock2Oligo program and are synthesized on a 96-well basis. The oligonucleotides are ligated into a single deletion cassette by ligase chain reaction, which is then amplified through two rounds of nested PCR to obtain sufficient quantities for yeast transformation. After removal of the artificial linkers, the deletion cassettes are transformed into wild-type diploid fission yeast SP286 cells. Verification of correct clone and gene deletion is achieved by performing check PCR and tetrad analysis. This method with proven effectiveness, as evidenced by a high success rate of gene deletion, can be potentially applicable to create systematic gene deletion libraries in a variety of yeast species. PMID:27671940

  11. The use of scFv-displaying yeast in mammalian cell surface selections.

    PubMed

    Wang, Xin Xiang; Shusta, Eric V

    2005-09-01

    Yeast surface display has proven to be a powerful tool for the directed evolution of immunological proteins when soluble ligands are available (Cho, B.K., Kieke, M.C., Boder, E.T., Wittrup, K.D., Kranz, D.M., 1998. A yeast surface display system for the discovery of ligands that trigger cell activation. J. Immunol. Methods 220, 179; Boder, E.T., Midelfort, K.S., Wittrup, K.D., 2000. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. U. S. A. 97, 10701; Shusta, E.V., Holler, P.D., Kieke, M.C., Kranz, D.M., Wittrup, K.D., 2000. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat. Biotechnol. 18, 754; Esteban, O., Zhao, H., 2004. Directed evolution of soluble single-chain human class II MHC molecules. J. Mol. Biol. 340, 81). This investigation extends the utility of this display platform by demonstrating its capacity for use in cell panning selections. This was accomplished by employing a model single-chain antibody (scFv)-hapten system that allowed for detailed investigation of the factors governing panning success. Yeast displaying anti-fluorescein scFv (4-4-20) exhibited specific interactions with the fluoresceinated endothelial cells and could be recovered from large backgrounds of irrelevant yeast in just three rounds. Successful selections required as few as 1700 fluorescein ligands per cell, and a three-round enrichment ratio of 10(6) was possible. These results indicate that yeast surface display is a viable option for use in cell or tissue-based selections.

  12. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. PMID:27039354

  13. Incorporation of thymidine analogs for studying replication kinetics in fission yeast

    PubMed Central

    Rhind, Nicholas

    2016-01-01

    Labeling DNA during in vivo replication by the incorporation of exogenous thymidine and thymidine analogs has been a mainstay of DNA replication and repair studies for decades. Unfortunately, thymidine labeling does not work in fungi, because they lack the thymidine salvage pathway required for up take of exogenous thymidine. This obstacle to thymidine labeling has been overcome in yeast by engineering a minimal thymidine salvage pathway consisting of a nucleoside transporter to allow uptake of exogenous thymidine from the medium and a thymidine kinase to phosphorylate the thymidine into thymidine monophosphate, which can be used by the cell. This chapter describes the labeling of fission yeast, Schizosaccharomyces pombe, with the thymidine analog BrdU in order to identify sites and determine kinetics of DNA replication. PMID:25916707

  14. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology.

  15. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. PMID:27084693

  16. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned.

  17. Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers' yeast.

    PubMed

    Duong, C T; Strack, L; Futschik, M; Katou, Y; Nakao, Y; Fujimura, T; Shirahige, K; Kodama, Y; Nevoigt, E

    2011-11-01

    Diacetyl causes an unwanted buttery off-flavor in lager beer. It is spontaneously generated from α-acetolactate, an intermediate of yeast's valine biosynthesis released during the main beer fermentation. Green lager beer has to undergo a maturation process lasting two to three weeks in order to reduce the diacetyl level below its taste-threshold. Therefore, a reduction of yeast's α-acetolactate/diacetyl formation without negatively affecting other brewing relevant traits has been a long-term demand of brewing industry. Previous attempts to reduce diacetyl production by either traditional approaches or rational genetic engineering had different shortcomings. Here, three lager yeast strains with marked differences in diacetyl production were studied with regard to gene copy numbers as well as mRNA abundances under conditions relevant to industrial brewing. Evaluation of data for the genes directly involved in the valine biosynthetic pathway revealed a low expression level of Sc-ILV6 as a potential molecular determinant for low diacetyl formation. This hypothesis was verified by disrupting the two copies of Sc-ILV6 in a commercially used lager brewers' yeast strain, which resulted in 65% reduction of diacetyl concentration in green beer. The Sc-ILV6 deletions did not have any perceptible impact on beer taste. To our knowledge, this has been the first study exploiting natural diversity of lager brewers' yeast strains for strain optimization.

  18. The occurrence of yeasts in the forest soils.

    PubMed

    Sláviková, E; Vadkertiová, R

    2000-01-01

    One hundred and eighty one yeast strains were isolated from 180 soil samples collected in three types of forest. The samples were taken during one year. The yeast species found were similar in spite of distinct forest types. Cryptococcus laurentii, Cystofilobasidium capitatum, Leucosporidium scottii, Rhodotorula aurantiaca, and Trichosporon cutaneum were the predominant species in both deciduous and coniferous forests. The number of yeasts ranged from 1.5 x 10(3) to 1.1 x 10(4) CFU/g soil. We found that yeasts occurred unevenly in soils during the year. The lowest number of yeasts was ascertained in December and the highest one in May.

  19. Fractal analysis of yeast cell optical speckle

    NASA Astrophysics Data System (ADS)

    Flamholz, A.; Schneider, P. S.; Subramaniam, R.; Wong, P. K.; Lieberman, D. H.; Cheung, T. D.; Burgos, J.; Leon, K.; Romero, J.

    2006-02-01

    Steady state laser light propagation in diffuse media such as biological cells generally provide bulk parameter information, such as the mean free path and absorption, via the transmission profile. The accompanying optical speckle can be analyzed as a random spatial data series and its fractal dimension can be used to further classify biological media that show similar mean free path and absorption properties, such as those obtained from a single population. A population of yeast cells can be separated into different portions by centrifuge, and microscope analysis can be used to provide the population statistics. Fractal analysis of the speckle suggests that lower fractal dimension is associated with higher cell packing density. The spatial intensity correlation revealed that the higher cell packing gives rise to higher refractive index. A calibration sample system that behaves similar as the yeast samples in fractal dimension, spatial intensity correlation and diffusion was selected. Porous silicate slabs with different refractive index values controlled by water content were used for system calibration. The porous glass as well as the yeast random spatial data series fractal dimension was found to depend on the imaging resolution. The fractal method was also applied to fission yeast single cell fluorescent data as well as aging yeast optical data; and consistency was demonstrated. It is concluded that fractal analysis can be a high sensitivity tool for relative comparison of cell structure but that additional diffusion measurements are necessary for determining the optimal image resolution. Practical application to dental plaque bio-film and cam-pill endoscope images was also demonstrated.

  20. Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species

    DOE PAGESBeta

    Yang, Shihui; Wang, Wei; Wei, Hui; Van Wychen, Stefanie; Pienkos, Philip T.; Zhang, Min; Himmel, Michael E.

    2016-08-29

    Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG) biosynthesis pathway in Trichoderma reesei. Wemore » then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. In addition, while the overall fatty acid methyl ester (FAME) profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion

  1. Stirling engines

    SciTech Connect

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  2. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  3. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  4. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    PubMed

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  5. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    PubMed

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  6. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    PubMed Central

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  7. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

    PubMed

    Gombert, Andreas K; van Maris, Antonius J A

    2015-06-01

    Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness.

  8. Label-Free Quantitative Proteomics in Yeast.

    PubMed

    Léger, Thibaut; Garcia, Camille; Videlier, Mathieu; Camadro, Jean-Michel

    2016-01-01

    Label-free bottom-up shotgun MS-based proteomics is an extremely powerful and simple tool to provide high quality quantitative analyses of the yeast proteome with only microgram amounts of total protein. Although the experimental design of this approach is rather straightforward and does not require the modification of growth conditions, proteins or peptides, several factors must be taken into account to benefit fully from the power of this method. Key factors include the choice of an appropriate method for the preparation of protein extracts, careful evaluation of the instrument design and available analytical capabilities, the choice of the quantification method (intensity-based vs. spectral count), and the proper manipulation of the selected quantification algorithm. The elaboration of this robust workflow for data acquisition, processing, and analysis provides unprecedented insight into the dynamics of the yeast proteome. PMID:26483028

  9. Surface Spreading and Immunostaining of Yeast Chromosomes.

    PubMed

    Grubb, Jennifer; Brown, M Scott; Bishop, Douglas K

    2015-01-01

    The small size of nuclei of the budding yeast Saccharomyces cerevisiae limits the utility of light microscopy for analysis of the subnuclear distribution of chromatin-bound proteins. Surface spreading of yeast nuclei results in expansion of chromatin without loss of bound proteins. A method for surface spreading balances fixation of DNA bound proteins with detergent treatment. The method demonstrated is slightly modified from that described by Josef Loidl and Franz Klein. The method has been used to characterize the localization of many chromatin-bound proteins at various stages of the mitotic cell cycle, but is especially useful for the study of meiotic chromosome structures such as meiotic recombinosomes and the synaptonemal complex. We also describe a modification that does not require use of Lipsol, a proprietary detergent, which was called for in the original procedure, but no longer commercially available. An immunostaining protocol that is compatible with the chromosome spreading method is also described. PMID:26325523

  10. Yeast as Models of Mitotic Fidelity.

    PubMed

    Torres, Eduardo

    2015-01-01

    Chromosome missegregation leads to aneuploidy which is defined as the cellular state of having a chromosome count that is not an exact multiple of the haploid number. Aneuploidy is associated with human diseases including mental retardation, neurodegenerative diseases and cancer. In addition, aneuploidy is the major cause of spontaneous abortions and its occurrence increases with aging. Therefore, it is important to understand the molecular mechanisms by which cells respond and adapt to aneuploidy. Saccharomyces cerevisiae has proven to be a good model to study the effects aneuploidy elicits on cellular homeostasis and physiology. This chapter focuses on the current understanding of how the yeast S. cerevisiae responds to the acquisition of extra chromosomes and highlights how studies in aneuploid yeasts provide insights onto the effects of aneuploidy in human cells.

  11. Single-cell phenomics in budding yeast

    PubMed Central

    Ohya, Yoshikazu; Kimori, Yoshitaka; Okada, Hiroki; Ohnuki, Shinsuke

    2015-01-01

    The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast. PMID:26543200

  12. Mapping the functional yeast ABC transporter interactome

    PubMed Central

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R.; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D.; Luis, Bryan-Joseph San; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F.; Zhang, Zhaolei; Paumi, Christian M.; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-01-01

    ABC transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used Membrane Yeast Two-Hybrid (MYTH) technology to map the protein interactome of all non-mitochondrial ABC transporters in the model organism Saccharomy cescerevisiae, and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated interactome. We show that ABC transporters physically associate with proteins involved in a surprisingly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters. PMID:23831759

  13. Uncommon opportunistic yeast bloodstream infections from Qatar.

    PubMed

    Taj-Aldeen, Saad J; AbdulWahab, Atqah; Kolecka, Anna; Deshmukh, Anand; Meis, Jacques F; Boekhout, Teun

    2014-07-01

    Eleven uncommon yeast species that are associated with high mortality rates irrespective of antifungal therapy were isolated from 17/187 (201 episodes) pediatric and elderly patients with fungemia from Qatar. The samples were taken over a 6-year period (January 2004-December 2010). Isolated species included Kluyveromyces marxianus, Lodderomyces elongisporus, Lindnera fabianii, Candida dubliniensis, Meyerozyma guilliermondii, Candida intermedia, Pichia kudriavzevii, Yarrowia lipolytica, Clavispora lusitaniae, Candida pararugosa, and Wickerhamomyces anomalus. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry provided correct identifications compared with molecular analysis testing of the same isolates. Low minimal inhibitory concentrations were found when isavuconazole and voriconazole were used for all uncommon yeast species evaluated in this study. Resistance to antifungal drugs was low and remained restricted to a few species. PMID:24934803

  14. Nuclear organisation and RNAi in fission yeast.

    PubMed

    Woolcock, Katrina J; Bühler, Marc

    2013-06-01

    Over the last decade, the fission yeast Schizosaccharomyces pombe has been used extensively for investigating RNA interference (RNAi)-mediated heterochromatin assembly. However, only recently have studies begun to shed light on the 3D organisation of chromatin and the RNAi machinery in the fission yeast nucleus. These studies indicate association of repressive and active chromatin with different regions of the nuclear periphery, similar to other model organisms, and clustering of functionally related genomic features. Unexpectedly, RNAi factors were shown to associate with nuclear pores and were implicated in the regulation of genomic features outside of the well-studied heterochromatic regions. Nuclear organisation is likely to contribute to substrate specificity of the RNAi pathway. However, further studies are required to elucidate the exact mechanisms and functional importance of this nuclear organisation.

  15. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  16. Microcompartments within the yeast plasma membrane.

    PubMed

    Merzendorfer, Hans; Heinisch, Jürgen J

    2013-02-01

    Recent research in cell biology makes it increasingly clear that the classical concept of compartmentation of eukaryotic cells into different organelles performing distinct functions has to be extended by microcompartmentation, i.e., the dynamic interaction of proteins, sugars, and lipids at a suborganellar level, which contributes significantly to a proper physiology. As different membrane compartments (MCs) have been described in the yeast plasma membrane, such as those defined by Can1 and Pma1 (MCCs and MCPs), Saccharomyces cerevisiae can serve as a model organism, which is amenable to genetic, biochemical, and microscopic studies. In this review, we compare the specialized microcompartment of the yeast bud neck with other plasma membrane substructures, focusing on eisosomes, cell wall integrity-sensing units, and chitin-synthesizing complexes. Together, they ensure a proper cell division at the end of mitosis, an intricately regulated process, which is essential for the survival and proliferation not only of fungal, but of all eukaryotic cells.

  17. Stochasticity in the yeast mating pathway

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Li; Fu, Zheng-Ping; Xu, Xin-Hang; Ouyang, Qi

    2009-05-01

    We report stochastic simulations of the yeast mating signal transduction pathway. The effects of intrinsic and external noise, the influence of cell-to-cell difference in the pathway capacity, and noise propagation in the pathway have been examined. The stochastic temporal behaviour of the pathway is found to be robust to the influence of inherent fluctuations, and intrinsic noise propagates in the pathway in a uniform pattern when the yeasts are treated with pheromones of different stimulus strengths and of varied fluctuations. In agreement with recent experimental findings, extrinsic noise is found to play a more prominent role than intrinsic noise in the variability of proteins. The occurrence frequency for the reactions in the pathway are also examined and a more compact network is obtained by dropping most of the reactions of least occurrence.

  18. Label-Free Quantitative Proteomics in Yeast.

    PubMed

    Léger, Thibaut; Garcia, Camille; Videlier, Mathieu; Camadro, Jean-Michel

    2016-01-01

    Label-free bottom-up shotgun MS-based proteomics is an extremely powerful and simple tool to provide high quality quantitative analyses of the yeast proteome with only microgram amounts of total protein. Although the experimental design of this approach is rather straightforward and does not require the modification of growth conditions, proteins or peptides, several factors must be taken into account to benefit fully from the power of this method. Key factors include the choice of an appropriate method for the preparation of protein extracts, careful evaluation of the instrument design and available analytical capabilities, the choice of the quantification method (intensity-based vs. spectral count), and the proper manipulation of the selected quantification algorithm. The elaboration of this robust workflow for data acquisition, processing, and analysis provides unprecedented insight into the dynamics of the yeast proteome.

  19. Homocysteine thiolactone affects protein ubiquitination in yeast.

    PubMed

    Bretes, Ewa; Zimny, Jarosław

    2013-01-01

    The formation of homocysteine thiolactone (HcyTl) from homocysteine occurs in all examined so far organisms including bacteria, yeast, and humans. Protein N-homocysteinylation at the ε-amino group of lysine is an adverse result of HcyTl accumulation. Since tagging of proteins by ubiquitination before their proteasomal degradation takes place at the same residue, we wondered how N-homocysteinylation may affect the ubiquitination of proteins. We used different yeast strains carrying mutations in genes involved in the homocysteine metabolism. We found positive correlation between the concentration of endogenous HcyTl and the concentration of ubiquitinated proteins. This suggests that N-homocysteinylation of proteins apparently does not preclude but rather promotes their decomposition. PMID:24051443

  20. Aquaporins in Saccharomyces cerevisiae wine yeast.

    PubMed

    Karpel, Jonathan E; Bisson, Linda F

    2006-04-01

    AQY1 and AQY2 were sequenced from five commercial and five native wine yeasts. Of these, two AQY1 alleles from UCD 522 and UCD 932 were identified that encoded three or four amino-acid changes, respectively, compared with the Sigma1278b sequence. Oocytes expressing these AQY1 alleles individually exhibited increased water permeability vs. water-injected oocytes, whereas oocytes expressing the AQY2 allele from UCD 932 did not show an increase, as expected, owing to an 11 bp deletion. Wine strains lacking Aqy1p did not show a decrease in spore fitness or enological aptitude under stressful conditions, limited nitrogen, or increased temperature. The exact role of aquaporins in wine yeasts remains unclear.

  1. Surface Spreading and Immunostaining of Yeast Chromosomes

    PubMed Central

    Grubb, Jennifer; Brown, M. Scott; Bishop, Douglas K.

    2015-01-01

    The small size of nuclei of the budding yeast Saccharomyces cerevisiae limits the utility of light microscopy for analysis of the subnuclear distribution of chromatin-bound proteins. Surface spreading of yeast nuclei results in expansion of chromatin without loss of bound proteins. A method for surface spreading balances fixation of DNA bound proteins with detergent treatment. The method demonstrated is slightly modified from that described by Josef Loidl and Franz Klein1,2. The method has been used to characterize the localization of many chromatin-bound proteins at various stages of the mitotic cell cycle, but is especially useful for the study of meiotic chromosome structures such as meiotic recombinosomes and the synaptonemal complex. We also describe a modification that does not require use of Lipsol, a proprietary detergent, which was called for in the original procedure, but no longer commercially available. An immunostaining protocol that is compatible with the chromosome spreading method is also described. PMID:26325523

  2. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    PubMed

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  3. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast.

    PubMed

    Kurat, Christoph F; Natter, Klaus; Petschnigg, Julia; Wolinski, Heimo; Scheuringer, Kim; Scholz, Harald; Zimmermann, Robert; Leber, Regina; Zechner, Rudolf; Kohlwein, Sepp D

    2006-01-01

    Storage and degradation of triglycerides are essential processes to ensure energy homeostasis and availability of precursors for membrane lipid synthesis. Recent evidence suggests that an emerging class of enzymes containing a conserved patatin domain are centrally important players in lipid degradation. Here we describe the identification and characterization of a major triglyceride lipase of the adipose triglyceride lipase/Brummer family, Tgl4, in the yeast Saccharomyces cerevisiae. Elimination of Tgl4 in a tgl3 background led to fat yeast, rendering growing cells unable to degrade triglycerides. Tgl4 and Tgl3 lipases localized to lipid droplets, independent of each other. Serine 315 in the GXSXG lipase active site consensus sequence of the patatin domain of Tgl4 is essential for catalytic activity. Mouse adipose triglyceride lipase (which also contains a patatin domain but is otherwise highly divergent in primary structure from any yeast protein) localized to lipid droplets when expressed in yeast, and significantly restored triglyceride breakdown in tgl4 mutants in vivo. Our data identify yeast Tgl4 as a functional ortholog of mammalian adipose triglyceride lipase. PMID:16267052

  4. Complete DNA sequence of yeast chromosome XI.

    PubMed

    Dujon, B; Alexandraki, D; André, B; Ansorge, W; Baladron, V; Ballesta, J P; Banrevi, A; Bolle, P A; Bolotin-Fukuhara, M; Bossier, P; Bou, G; Boyer, J; Bultrago, M J; Cheret, G; Colleaux, L; Dalgnan-Fornler, B; del Rey, F; Dlon, C; Domdey, H; Düsterhoft, A; Düsterhus, S; Entlan, K D; Erfle, H; Esteban, P F; Feldmann, H; Fernandes, L; Robo, G M; Fritz, C; Fukuhara, H; Gabel, C; Gaillon, L; Carcia-Cantalejo, J M; Garcia-Ramirez, J J; Gent, N E; Ghazvini, M; Goffeau, A; Gonzaléz, A; Grothues, D; Guerreiro, P; Hegemann, J; Hewitt, N; Hilger, F; Hollenberg, C P; Horaitis, O; Indge, K J; Jacquier, A; James, C M; Jauniaux, C; Jimenez, A; Keuchel, H; Kirchrath, L; Kleine, K; Kötter, P; Legrain, P; Liebl, S; Louis, E J; Maia e Silva, A; Marck, C; Monnier, A L; Möstl, D; Müller, S; Obermaier, B; Oliver, S G; Pallier, C; Pascolo, S; Pfeiffer, F; Philippsen, P; Planta, R J; Pohl, F M; Pohl, T M; Pöhlmann, R; Portetelle, D; Purnelle, B; Puzos, V; Ramezani Rad, M; Rasmussen, S W; Remacha, M; Revuelta, J L; Richard, G F; Rieger, M; Rodrigues-Pousada, C; Rose, M; Rupp, T; Santos, M A; Schwager, C; Sensen, C; Skala, J; Soares, H; Sor, F; Stegemann, J; Tettelin, H; Thierry, A; Tzermia, M; Urrestarazu, L A; van Dyck, L; Van Vliet-Reedijk, J C; Valens, M; Vandenbo, M; Vilela, C; Vissers, S; von Wettstein, D; Voss, H; Wiemann, S; Xu, G; Zimmermann, J; Haasemann, M; Becker, I; Mewes, H W

    1994-06-01

    The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.

  5. New protein functions in yeast chromosome VIII.

    PubMed Central

    Ouzounis, C.; Bork, P.; Casari, G.; Sander, C.

    1995-01-01

    The analysis of the 269 open reading frames of yeast chromosome VIII by computational methods has yielded 24 new significant sequence similarities to proteins of known function. The resulting predicted functions include three particularly interesting cases of translation-associated proteins: peptidyl-tRNA hydrolase, a ribosome recycling factor homologue, and a protein similar to cytochrome b translational activator CBS2. The methodological limits of the meaningful transfer of functional information between distant homologues are discussed. PMID:8563640

  6. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9.

    PubMed

    EauClaire, Steve F; Zhang, Jianzhong; Rivera, Corban Gregory; Huang, Lixuan L

    2016-07-01

    The yeast Saccharomyces cerevisiae is an important industrial platform for the production of grain and cellulosic ethanol, isobutanol, butanediol, isoprenoids, and other chemicals. The construction of a successful production strain usually involves multiple gene knockouts and chromosomal integration of expression cassettes to redirect the metabolic fluxes for the conversion of sugars and other feed stocks into the desired product. RNA-guided Cas9 based genome editing has been demonstrated in many prokaryotic and eukaryotic hosts including S. cerevisiae, in which it has been additionally exploited as a tool for metabolic engineering. To extend the utilization of RNA-guided Cas9 as a metabolic pathway building tool, we demonstrated the direct assembly and chromosomal integration of up to 17 overlapping DNA fragments encoding the beta-carotene biosynthetic pathway. Furthermore, we generated a combinatorial strain library for the beta-carotene biosynthetic pathway, directly integrated into the yeast genome to create a diverse library of strains. This enabled the screening of combinatorial libraries in stable chromosomally integrated strains for rapid improvements of product titers. This combinatorial approach for pathway assembly will significantly accelerate the current speed of metabolic engineering for S. cerevisiae as an industrial platform, and increase the number of strains that can be simultaneously evaluated for enzyme screening, expression optimization and protein engineering to achieve the titer, rate and yield necessary for the commercialization of new industrial fermentation products. PMID:27138038

  7. Functional artificial free-standing yeast biofilms.

    PubMed

    Konnova, Svetlana A; Kahraman, Mehmet; Zamaleeva, Alsu I; Culha, Mustafa; Paunov, Vesselin N; Fakhrullin, Rawil F

    2011-12-01

    Here we report fabrication of artificial free-standing yeast biofilms built using sacrificial calcium carbonate-coated templates and layer-by-layer assembly of extracellular matrix-mimicking polyelectrolyte multilayers. The free-standing biofilms are freely floating multilayered films of oppositely charged polyelectrolytes and live cells incorporated in the polyelectrolyte layers. Such biofilms were initially formed on glass substrates of circular and ribbon-like shapes coated with thin layers of calcium carbonate microparticles. The templates were then coated with cationic and anionic polyelectrolytes to produce a supporting multilayered thin film. Then the yeast alone or mixed with various micro- and nanoparticle inclusions was deposited onto the multilayer composite films and further coated with outer polyelectrolyte multilayers. To detach the biofilms from the glass substrates the calcium carbonate layer was chemically dissolved yielding free-standing composite biofilms. These artificial biofilms to a certain degree mimic the primitive multicellular and colonial species. We have demonstrated the added functionality of the free-standing artificial biofilms containing magnetic, latex and silver micro- and nanoparticles. We have also developed "symbiotic" multicellular biofilms containing yeast and bacteria. This approach for fabrication of free-standing artificial biofilms can be potentially helpful in development of artificial colonial microorganisms composed of several different unicellular species and an important tool for growing cell cultures free of supporting substrates. PMID:21855301

  8. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  9. Studies on methanol - oxidizing yeast. III. Enzyme.

    PubMed

    Volfová, O

    1975-01-01

    Oxidation of methanol, formaldehyde and formic acid was studied in cells and cell-free extract of the yeast Candida boidinii No. 11Bh. Methanol oxidase, an enzyme oxidizing methanol to formaldehyde, was formed inducibly after the addition of methanol to yeast cells. The oxidation of methanol by cell-free extract was dependent on the presence of oxygen and independent of any addition of nicotine-amide nucleotides. Temperature optimum for the oxidation of methanol to formaldehyde was 35 degrees C, pH optimum was 8.5. The Km for methanol was 0.8mM. The cell-free extract exhibited a broad substrate specificity towards primary alcohols (C1--C6). The activity of methanol oxidase was not inhibited by 1mM KCN, EDTA or monoiodoacetic acid. The strongest inhibitory action was exerted by p-chloromercuribenzoate. Both the cells and the cell-free extract contained catalase which participated in the oxidation of methanol to formaldehyde; the enzyme was constitutively formed by the yeast. The pH optimum for the degradation of H2O2 was in the same range as the optimum for methanol oxidation, viz. at 8.5. Catalase was more resistant to high pH than methanol oxidase. The cell-free extract contained also GSH-dependent NAD-formaldehyde dehydrogenase with Km = 0.29mM and NAD-formate dehydrogenase with Km = 55mM. PMID:240764

  10. Wood impregnation of yeast lees for winemaking.

    PubMed

    Palomero, Felipe; Bertani, Paolo; Fernández de Simón, Brígida; Cadahía, Estrella; Benito, Santiago; Morata, Antonio; Suárez-Lepe, José A

    2015-03-15

    This study develops a new method to produce more complex wines by means of an indirect diffusion of wood aromas from yeast cell-walls. An exogenous lyophilized biomass was macerated with an ethanol wood extract solution and subsequently dried. Different times were used for the adsorption of polyphenols and volatile compounds to the yeast cell-walls. The analysis of polyphenols and volatile compounds (by HPLC/DAD and GC-MS, respectively) demonstrate that the adsorption/diffusion of these compounds from the wood to the yeast takes place. Red wines were also aged with Saccharomyces cerevisiae lees that had been impregnated with wood aromas and subsequently dried. Four different types of wood were used: chestnut, cherry, acacia and oak. Large differences were observed between the woods studied with regards to their volatile and polyphenolic profiles. Sensory evaluations confirmed large differences even with short-term contact between the wines and the lees, showing that the method could be of interest for red wine making. In addition, the results demonstrate the potential of using woods other than oak in cooperage.

  11. On the Modeling of Endocytosis in Yeast

    PubMed Central

    Zhang, Tao; Sknepnek, Rastko; Bowick, M.J.; Schwarz, J.M.

    2015-01-01

    The cell membrane deforms during endocytosis to surround extracellular material and draw it into the cell. Results of experiments on endocytosis in yeast show general agreement that 1) actin polymerizes into a network of filaments exerting active forces on the membrane to deform it, and 2) the large-scale membrane deformation is tubular in shape. In contrast, there are three competing proposals for precisely how the actin filament network organizes itself to drive the deformation. We use variational approaches and numerical simulations to address this competition by analyzing a meso-scale model of actin-mediated endocytosis in yeast. The meso-scale model breaks up the invagination process into three stages: 1) initiation, where clathrin interacts with the membrane via adaptor proteins; 2) elongation, where the membrane is then further deformed by polymerizing actin filaments; and 3) pinch-off. Our results suggest that the pinch-off mechanism may be assisted by a pearling-like instability. We rule out two of the three competing proposals for the organization of the actin filament network during the elongation stage. These two proposals could be important in the pinch-off stage, however, where additional actin polymerization helps break off the vesicle. Implications and comparisons with earlier modeling of endocytosis in yeast are discussed. PMID:25650919

  12. [Determination of riboflavin kinase activity in yeast].

    PubMed

    Shavlovsky, G M; Kashchenko, V E

    1975-01-01

    It is established that the main reason of the riboflavin kinase (RFK, EC 2.7.1.26) low specific activity in the cell-free extracts of the yeast Pichia guillermondii Wickerham ATCC 9058 is the presence of alkaline phosphatase (EC 3.1.3.1), effectively destructing flaven mononucleotide. By chromatography of the cell-free extracts of P. guillermondii on DEAE-Sephadex A-50, CM-Sphadex C-50, CM-cellulose, Sephadexes G-75 and G-100 RFK and alkaline phosphatase may be separated completely. Any of these procedures results in a several times increase of the RFK activity as compared with the initial preparation. One failed to obtain a similar effect by fractionation of the extracts with amminium sulphate and by hydroxylapatite chromatography. A simple method is developed for determining the activity of RFK in the cell-free extracts of yeast on the basis of negative adsorption of this enzyme on DEAE-Sephadex A-50. A selective inhibition of alkaline phosphatase by ions Be2+ and F- yields a less satisfactory result. The data are presented on the PFK activity of certain species of flavinogenic (Pichia guillermondii, Torulopsis camdida) and non-flavinogenic (Pichia ohmeri, Candida utilis, Saccharomyces cervisiae) yeast. PMID:174262

  13. Ribosome biogenesis in the yeast Saccharomyces cerevisiae.

    PubMed

    Woolford, John L; Baserga, Susan J

    2013-11-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  14. Strategies for identifying new prions in yeast.

    PubMed

    MacLea, Kyle S; Ross, Eric D

    2011-01-01

    The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology.

  15. Effects of yeast immobilization on bioethanol production.

    PubMed

    Borovikova, Diana; Scherbaka, Rita; Patmalnieks, Aloizijs; Rapoport, Alexander

    2014-01-01

    The current study evaluated a newer method, which includes a dehydration step, of immobilizing Saccharomyces cerevisiae L-77 and S. cerevisiae L-73 onto hydroxylapatite and chamotte ceramic supports. The efficiency of cell immobilization on chamotte was significantly higher than hydroxylapatite. Immobilized yeast preparations were investigated for their ethanol-producing capabilities. The glucose concentration in a fermentation medium was 100 mg/mL. Immobilized preparations produced the same amount of ethanol (48 ± 0.5 mg/mL) as free cells after 36 H of fermentation. During the early stages of fermentation, immobilized yeast cells produced ethanol at a higher rate than free cells. Yeast preparations immobilized on both supports (hydroxylapatite and chamotte) were successfully used in six sequential batch fermentations without any loss of activity. The chamotte support was more stable in the fermentation medium during these six cycles of ethanol production. In addition to the high level of ethanol produced by cells immobilized on chamotte, the stability of this support and its low cost make it a promising material for biotechnologies associated with ethanol production.

  16. In situ rheology of yeast biofilms.

    PubMed

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation. PMID:25428768

  17. Lipids and cell death in yeast

    PubMed Central

    Eisenberg, Tobias; Büttner, Sabrina

    2014-01-01

    Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction. PMID:24119111

  18. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes.

    PubMed

    Souza, Angelica Cristina de; Carvalho, Fernanda Paula; Silva e Batista, Cristina Ferreira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2013-10-28

    Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.

  19. Engineering Motion

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  20. Effects of MIG1, TUP1 and SSN6 deletion on maltose metabolism and leavening ability of baker’s yeast in lean dough

    PubMed Central

    2014-01-01

    Background Glucose repression is a global regulatory system in baker’s yeast. Maltose metabolism in baker’s yeast strains is negatively influenced by glucose, thereby affecting metabolite productivity (leavening ability in lean dough). Even if the general repression system constituted by MIG1, TUP1 and SSN6 factors has already been reported, the functions of these three genes in maltose metabolism remain unclear. In this work, we explored the effects of MIG1 and/or TUP1 and/or SSN6 deletion on the alleviation of glucose-repression to promote maltose metabolism and leavening ability of baker’s yeast. Results Results strongly suggest that the deletion of MIG1 and/or TUP1 and/or SSN6 can exert various effects on glucose repression for maltose metabolism. The deletion of TUP1 was negative for glucose derepression to facilitate the maltose metabolism. By contrast, the deletion of MIG1 and/or SSN6, rather than other double-gene or triple-gene mutations could partly relieve glucose repression, thereby promoting maltose metabolism and the leavening ability of baker’s yeast in lean dough. Conclusions The mutants of industrial baker’s yeast with enhanced maltose metabolism and leavening ability in lean dough were developed by genetic engineering. These baker’s yeast strains had excellent potential industrial applications. PMID:24993311