Cells for tissue engineering of cardiac valves.
Jana, Soumen; Tranquillo, Robert T; Lerman, Amir
2016-10-01
Heart valve tissue engineering is a promising alternative to prostheses for the replacement of diseased or damaged heart valves, because tissue-engineered valves have the ability to remodel, regenerate and grow. To engineer heart valves, cells are harvested, seeded onto or into a three-dimensional (3D) matrix platform to generate a tissue-engineered construct in vitro, and then implanted into a patient's body. Successful engineering of heart valves requires a thorough understanding of the different types of cells that can be used to obtain the essential phenotypes that are expressed in native heart valves. This article reviews different cell types that have been used in heart valve engineering, cell sources for harvesting, phenotypic expression in constructs and suitability in heart valve tissue engineering. Natural and synthetic biomaterials that have been applied as scaffold systems or cell-delivery platforms are discussed with each cell type. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve
VeDepo, Mitchell C; Detamore, Michael S; Hopkins, Richard A; Converse, Gabriel L
2017-01-01
The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered heart valve: assuring consistent recellularization of the entire valve leaflets by phenotypically appropriate cells. Many creative strategies have pursued complete biological valve recellularization; however, identifying the optimal recellularization method, including in situ or in vitro recellularization and chemical and/or mechanical conditioning, has proven difficult. Furthermore, while many studies have focused on individual parameters for increasing valve interstitial recellularization, a general understanding of the interacting dynamics is likely necessary to achieve success. Therefore, the purpose of this review is to explore and compare the various processing strategies used for the decellularization and subsequent recellularization of tissue-engineered heart valves. PMID:28890780
Loger, K; Engel, A; Haupt, J; Lima de Miranda, R; Lutter, G; Quandt, E
2016-03-01
Heart valves are constantly exposed to high dynamic loading and are prone to degeneration. Therefore, it is a challenge to develop a durable heart valve substitute. A promising approach in heart valve engineering is the development of hybrid scaffolds which are composed of a mechanically strong inorganic mesh enclosed by valvular tissue. In order to engineer an efficient, durable and very thin heart valve for transcatheter implantations, we developed a fabrication process for microstructured heart valve leaflets made from a nickel-titanium (NiTi) thin film shape memory alloy. To examine the capability of microstructured NiTi thin film as a matrix scaffold for tissue engineered hybrid heart valves, leaflets were successfully seeded with smooth muscle cells (SMCs). In vitro pulsatile hydrodynamic testing of the NiTi thin film valve leaflets demonstrated that the SMC layer significantly improved the diastolic sufficiency of the microstructured leaflets, without affecting the systolic efficiency. Compared to an established porcine reference valve model, magnetron sputtered NiTi thin film material demonstrated its suitability for hybrid tissue engineered heart valves.
Jana, Soumen; Lerman, Amir
2015-12-01
Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.
Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T
2017-03-15
Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the matrix shrinkage, which is major problem that causes the failure of TEHV, and better maintained physiological fibroblastic phenotype in both normal and diseased HAVIC. This work marks the first report of a combination composite scaffold using 3D hydrogel enhanced by nano-micro fibrous woven fabric, and represents a promising tissue engineering strategy to treat heart valve injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions.
Cheung, Daniel Y; Duan, Bin; Butcher, Jonathan T
2015-01-01
Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.
Current Progress in Tissue Engineering of Heart Valves: Multiscale Problems, Multiscale Solutions
Cheung, Daniel Y; Duan, Bin; Butcher, Jonathan T.
2016-01-01
Introduction Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. Areas covered This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally-derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. Expert opinion While much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells. PMID:26027436
Tissue engineering of heart valves: in vitro experiences.
Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E
2000-07-01
Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced after pulsatile flow exposure.
FLUID MECHANICS OF ARTIFICIAL HEART VALVES
Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P
2009-01-01
SUMMARY 1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird’s-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10–15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage. PMID:19220329
Fluid mechanics of artificial heart valves.
Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P
2009-02-01
1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird's-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10-15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage.
Huang, Hsiao-Ying S; Balhouse, Brittany N; Huang, Siyao
2012-11-01
A simple biomechanical test with real-time displacement and strain mapping is reported, which provides displacement vectors and principal strain directions during the mechanical characterization of heart valve tissues. The maps reported in the current study allow us to quickly identify the approximate strain imposed on a location in the samples. The biomechanical results show that the aortic valves exhibit stronger anisotropic mechanical behavior than that of the pulmonary valves before 18% strain equibiaxial stretching. In contrast, the pulmonary valves exhibit stronger anisotropic mechanical behavior than aortic valves beyond 28% strain equibiaxial stretching. Simple biochemical tests are also conducted. Collagens are extracted at different time points (24, 48, 72, and 120 h) at different locations in the samples. The results show that extraction time plays an important role in determining collagen concentration, in which a minimum of 72 h of extraction is required to obtain saturated collagen concentration. This work provides an easy approach for quantifying biomechanical and biochemical properties of semilunar heart valve tissues, and potentially facilitates the development of tissue engineered heart valves.
Pediatric Tubular Pulmonary Heart Valve from Decellularized Engineered Tissue Tubes
Reimer, Jay M.; Syedain, Zeeshan H.; Haynie, Bee H.T.; Tranquillo, Robert T.
2015-01-01
Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in principle. Engineered tissue tubes were fabricated by allowing ovine dermal fibroblasts to replace a sacrificial fibrin gel with an aligned, cell-produced collagenous matrix, which was subsequently decellularized. Previously, these engineered tubes became extensively recellularized following implantation into the sheep femoral artery. Thus, a tubular valve made from these tubes may be amenable to recellularization and, ideally, somatic growth. The suture line pattern generated three equi-spaced “leaflets” in the inner tube, which collapsed inward when exposed to back pressure, per tubular valve design. Valve testing was performed in a pulse duplicator system equipped with a secondary flow loop to allow for root distention. All tissue-engineered valves exhibited full leaflet opening and closing, minimal regurgitation (< 5%), and low systolic pressure gradients (< 2.5 mmHg) under pulmonary conditions. Valve performance was maintained under various trans-root pressure gradients and no tissue damage was evident after 2 million cycles of fatigue testing. PMID:26036175
Brody, Sarah; Anilkumar, Thapasimuthu; Liliensiek, Sara; Last, Julie A; Murphy, Christopher J; Pandit, Abhay
2006-02-01
A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.
BRODY, SARAH; ANILKUMAR, THAPASIMUTHU; LILIENSIEK, SARA; LAST, JULIE A.; MURPHY, CHRISTOPHER J.; PANDIT, ABHAY
2016-01-01
A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane. PMID:16548699
Knitting for heart valve tissue engineering
Ayad, Nadia; Wojciechowska, Dorota; Zielińska, Dorota; Struszczyk, Marcin H.; Latif, Najma; Yacoub, Magdi
Knitting is a versatile technology which offers a large portfolio of products and solutions of interest in heart valve (HV) tissue engineering (TE). One of the main advantages of knitting is its ability to construct complex shapes and structures by precisely assembling the yarns in the desired position. With this in mind, knitting could be employed to construct a HV scaffold that closely resembles the authentic valve. This has the potential to reproduce the anisotropic structure that is characteristic of the heart valve with the yarns, in particular the 3-layered architecture of the leaflets. These yarns can provide oriented growth of cells lengthwise and consequently enable the deposition of extracellular matrix (ECM) proteins in an oriented manner. This technique, therefore, has a potential to provide a functional knitted scaffold, but to achieve that textile engineers need to gain a basic understanding of structural and mechanical aspects of the heart valve and in addition, tissue engineers must acquire the knowledge of tools and capacities that are essential in knitting technology. The aim of this review is to provide a platform to consolidate these two fields as well as to enable an efficient communication and cooperation among these two research areas. PMID:29043276
Design and efficacy of a single-use bioreactor for heart valve tissue engineering.
Converse, Gabriel L; Buse, Eric E; Neill, Kari R; McFall, Christopher R; Lewis, Holley N; VeDepo, Mitchell C; Quinn, Rachael W; Hopkins, Richard A
2017-02-01
Heart valve tissue engineering offers the promise of improved treatments for congenital heart disorders; however, widespread clinical availability of a tissue engineered heart valve (TEHV) has been hindered by scientific and regulatory concerns, including the lack of a disposable, bioreactor system for nondestructive valve seeding and mechanical conditioning. Here we report the design for manufacture and the production of full scale, functional prototypes of such a system. To evaluate the efficacy of this bioreactor as a tool for seeding, ovine aortic valves were decellularized and subjected to seeding with human mesenchymal stem cells (hMSC). The effects of pulsatile conditioning using cyclic waveforms tuned to various negative and positive chamber pressures were evaluated, with respect to the seeding of cells on the decellularized leaflet and the infiltration of seeded cells into the interstitium of the leaflet. Infiltration of hMSCs into the aortic valve leaflet was observed following 72 h of conditioning under negative chamber pressure. Additional conditioning under positive pressure improved cellular infiltration, while retaining gene expression within the MSC-valve interstitial cell phenotype lineage. This protocol resulted in a subsurface pilot population of cells, not full tissue recellularization. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 249-259, 2017. © 2015 Wiley Periodicals, Inc.
D'Amore, Antonio; Luketich, Samuel K; Raffa, Giuseppe M; Olia, Salim; Menallo, Giorgio; Mazzola, Antonino; D'Accardi, Flavio; Grunberg, Tamir; Gu, Xinzhu; Pilato, Michele; Kameneva, Marina V; Badhwar, Vinay; Wagner, William R
2018-01-01
Valvular heart disease is currently treated with mechanical valves, which benefit from longevity, but are burdened by chronic anticoagulation therapy, or with bioprosthetic valves, which have reduced thromboembolic risk, but limited durability. Tissue engineered heart valves have been proposed to resolve these issues by implanting a scaffold that is replaced by endogenous growth, leaving autologous, functional leaflets that would putatively eliminate the need for anticoagulation and avoid calcification. Despite the diversity in fabrication strategies and encouraging results in large animal models, control over engineered valve structure-function remains at best partial. This study aimed to overcome these limitations by introducing double component deposition (DCD), an electrodeposition technique that employs multi-phase electrodes to dictate valve macro and microstructure and resultant function. Results in this report demonstrate the capacity of the DCD method to simultaneously control scaffold macro-scale morphology, mechanics and microstructure while producing fully assembled stent-less multi-leaflet valves composed of microscopic fibers. DCD engineered valve characterization included: leaflet thickness, biaxial properties, bending properties, and quantitative structural analysis of multi-photon and scanning electron micrographs. Quasi-static ex-vivo valve coaptation testing and dynamic organ level functional assessment in a pressure pulse duplicating device demonstrated appropriate acute valve functionality. Copyright © 2017. Published by Elsevier Ltd.
Endothelial Progenitor Cells as a Sole Source for Ex Vivo Seeding of Tissue-Engineered Heart Valves
Mettler, Bret A.; Engelmayr, George C.; Aikawa, Elena; Bischoff, Joyce; Martin, David P.; Exarhopoulos, Alexis; Moses, Marsha A.; Schoen, Frederick J.; Sacks, Michael S.
2010-01-01
Purposes: We investigated whether circulating endothelial progenitor cells (EPCs) can be used as a cell source for the creation of a tissue-engineered heart valve (TEHV). Methods: Trileaflet valved conduits were fabricated using nonwoven polyglycolic acid/poly-4-hydroxybutyrate polymer. Ovine peripheral blood EPCs were dynamically seeded onto a valved conduit and incubated for 7, 14, and 21 days. Results: Before seeding, EPCs were shown to express CD31+, eNOS+, and VE-Cadherin+ but not α-smooth muscle actin. Histological analysis demonstrated relatively homogenous cellular ingrowth throughout the valved conduit. TEHV constructs revealed the presence of endothelial cell (EC) markers and α-smooth muscle actin+ cells comparable with native valves. Protein levels were comparable with native valves and exceeded those in unseeded controls. EPC-TEHV demonstrated a temporal pattern of matrix metalloproteinases-2/9 expression and tissue inhibitors of metalloproteinase activities comparable to that of native valves. Mechanical properties of EPC-TEHV demonstrated significantly greater stiffness than that of the unseeded scaffolds and native valves. Conclusions: Circulating EPC appears to have the potential to provide both interstitial and endothelial functions and could potentially serve as a single-cell source for construction of autologous heart valves. PMID:19698056
NASA Astrophysics Data System (ADS)
Du, Juan; Zhu, Tonghe; Yu, Haiyan; Zhu, Jingjing; Sun, Changbing; Wang, Jincheng; Chen, Sihao; Wang, Jihu; Guo, Xuran
2018-07-01
Tissue engineering heart valves (TEHV) are thought to have many advantages in low immunogenicity, good histocompatibility, excellent mechanical properties. In this paper, we reported the fabrication and characterization of a novel composite nanofibrous scaffold consisting of silk fibroin (SF) and poly(ester-urethane) urea (LDI-PEUU) by using electrospinning. Chemical and physical properties of scaffolds were evaluated using scanning electron microscopy, attenuated total reflectance Fourier transform infrared, X-ray diffraction, contact angle measurement, thermogravimetric analysis, biodegradation test and tensile strength analysis. We determined that the composite scaffolds supported the growth of human umbilical vein endothelial cell (HUVEC). The results of cell proliferation and cell morphology indicate that SF/LDI-PEUU nanofibers promoted cell viability, which supporting the application in tissue engineering. All results clarified that SF/LDI-PEUU (40:60) nanofibrous scaffolds meet the required specifications for tissue engineering and could be used as a promising construct for heart valve tissue engineering.
Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve.
Jiang, Hongjun; Campbell, Gord; Xi, Fengfeng
2005-03-01
This paper describes the measurement and reconstruction of the leaflet geometry for a pericardial heart valve. Tasks involved include mapping the leaflet geometries by laser digitizing and reconstructing the 3D freeform leaflet surface based on a laser scanned profile. The challenge is to design a prosthetic valve that maximizes the benefits offered to the recipient as compared to the normally operating naturally-occurring valve. This research was prompted by the fact that artificial heart valve bioprostheses do not provide long life durability comparable to the natural heart valve, together with the anticipated benefits associated with defining the valve geometries, especially the leaflet geometries for the bioprosthetic and human valves, in order to create a replicate valve fabricated from synthetic materials. Our method applies the concept of reverse engineering in order to reconstruct the freeform surface geometry. A Brown & Shape coordinate measuring machine (CMM) equipped with a HyMARC laser-digitizing system was used to measure the leaflet profiles of a Baxter Carpentier-Edwards pericardial heart valve. The computer software, Polyworks was used to pre-process the raw data obtained from the scanning, which included merging images, eliminating duplicate points, and adding interpolated points. Three methods, creating a mesh model from cloud points, creating a freeform surface from cloud points, and generating a freeform surface by B-splines are presented in this paper to reconstruct the freeform leaflet surface. The mesh model created using Polyworks can be used for rapid prototyping and visualization. To fit a freeform surface to cloud points is straightforward but the rendering of a smooth surface is usually unpredictable. A surface fitted by a group of B-splines fitted to cloud points was found to be much smoother. This method offers the possibility of manually adjusting the surface curvature, locally. However, the process is complex and requires additional manipulation. Finally, this paper presents a reverse engineered design for the pericardial heart valve which contains three identical leaflets with reconstructed geometry.
Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves
Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J.
2015-01-01
Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels. PMID:25654448
Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves.
Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J; Jockenhoevel, Stefan; Mela, Petra
2015-08-01
Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels.
Tissue-Engineered Fibrin-Based Heart Valve with a Tubular Leaflet Design
Weber, Miriam; Heta, Eriona; Moreira, Ricardo; Gesche, Valentine N.; Schermer, Thomas; Frese, Julia
2014-01-01
The general approach in heart valve tissue engineering is to mimic the shape of the native valve in the attempt to recreate the natural haemodynamics. In this article, we report the fabrication of the first tissue-engineered heart valve (TEHV) based on a tubular leaflet design, where the function of the leaflets of semilunar heart valves is performed by a simple tubular construct sutured along a circumferential line at the root and at three single points at the sinotubular junction. The tubular design is a recent development in pericardial (nonviable) bioprostheses, which has attracted interest because of the simplicity of the construction and the reliability of the implantation technique. Here we push the potential of the concept further from the fabrication and material point of view to realize the tube-in-tube valve: an autologous, living HV with remodelling and growing capability, physiological haemocompatibility, simple to construct and fast to implant. We developed two different fabrication/conditioning procedures and produced fibrin-based constructs embedding cells from the ovine umbilical cord artery according to the two different approaches. Tissue formation was confirmed by histology and immunohistology. The design of the tube-in-tube foresees the possibility of using a textile coscaffold (here demonstrated with a warp-knitted mesh) to achieve enhanced mechanical properties in vision of implantation in the aortic position. The tube-in-tube represents an attractive alternative to the conventional design of TEHVs aiming at reproducing the valvular geometry. PMID:23829551
Moreira, Ricardo; Velz, Thaddaeus; Alves, Nuno; Gesche, Valentine N.; Malischewski, Axel; Schmitz-Rode, Thomas; Frese, Julia
2015-01-01
Transcatheter aortic valve implantation of (nonviable) bioprosthetic valves has been proven a valid alternative to conventional surgical implantation in patients at high or prohibitive mortality risk. In this study we present the in vitro proof-of-principle of a newly developed tissue-engineered heart valve for minimally invasive implantation, with the ultimate aim of adding the unique advantages of a living tissue with regeneration capabilities to the continuously developing transcatheter technologies. The tube-in-stent is a fibrin-based tissue-engineered valve with a tubular leaflet design. It consists of a tubular construct sewn into a self-expandable nitinol stent at three commissural attachment points and along a circumferential line so that it forms three coaptating leaflets by collapsing under diastolic back pressure. The tubular constructs were molded with fibrin and human umbilical vein cells. After 3 weeks of conditioning in a bioreactor, the valves were fully functional with unobstructed opening (systolic phase) and complete closure (diastolic phase). Tissue analysis showed a homogeneous cell distribution throughout the valve's thickness and deposition of collagen types I and III oriented along the longitudinal direction. Immunohistochemical staining against CD31 and scanning electron microscopy revealed a confluent endothelial cell layer on the surface of the valves. After harvesting, the valves underwent crimping for 20 min to simulate the catheter-based delivery. This procedure did not affect the valvular functionality in terms of orifice area during systole and complete closure during diastole. No influence on the extracellular matrix organization, as assessed by immunohistochemistry, nor on the mechanical properties was observed. These results show the potential of combining tissue engineering and minimally invasive implantation technology to obtain a living heart valve with a simple and robust tubular design for transcatheter delivery. The effect of the in vivo remodeling on the functionality of the tube-in-stent valve remains to be tested. PMID:25380414
Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S
2017-04-01
Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of the Pressure and Velocity Across the Aortic Valve
NASA Astrophysics Data System (ADS)
Kyung, Seo Young; Chung, Erica Soyun; Lee, Joo Hee; Kyung, Hayoung; Choi, Si Young
Biomechanics of the heart, requiring an extensive understanding of the complexity of the heart, have become the interests of many biomedical engineers in cardiology today. In order to study aortic valve disease, engineers have focused on the data obtained through bio-fluid flow analysis. To further this study, physical and computational analysis on the biomechanical determinants of blood flow in the stenosed aortic valve have been examined. These observations, along with the principles of cardiovascular physiology, confirm that when blood flows through the valve opening, pressure gradient across the valve is produced as a result of stenosis of the aortic valve. The aortic valve gradient is used to interpret the increase and decrease on each side of the defective valve. To compute different pressure gradients across the aortic valve, this paper analyzes Aortic Valve Areas (AVA) using simulations based on the continuity equation and Gorlin equation. The data obtained from such analysis consist of patients in the AS category that display mild Aortic Valve Velocity (AVV) and pressure gradient. Such correlation results in the construction of a dependent relationship between severe AS causing LV systolic dysfunction and the transaortic velocity.
Micro and nanotechnologies in heart valve tissue engineering.
Hasan, Anwarul; Saliba, John; Pezeshgi Modarres, Hassan; Bakhaty, Ahmed; Nasajpour, Amir; Mofrad, Mohammad R K; Sanati-Nezhad, Amir
2016-10-01
Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane
2015-03-01
The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Application of Hydrogels in Heart Valve Tissue Engineering
Zhang, Xing; Xu, Bin; Puperi, Daniel S.; Wu, Yan; West, Jennifer L.; Grande-Allen, K. Jane
2015-01-01
With an increasing number of patients requiring valve replacement, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity, but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve. PMID:25955010
Assessment of Parylene C Thin Films for Heart Valve Tissue Engineering
Marei, Isra; Chester, Adrian; Carubelli, Ivan; Prodromakis, Themistoklis; Trantidou, Tatiana
2015-01-01
Background: Scaffolds are a key component of tissue-engineered heart valves (TEHVs). Several approaches had been adopted in the design of scaffolds using both natural and synthetic resources. We have investigated the suitability of parylene C (PC), a vapor deposited polymeric material, for the use as a scaffold in TEHV. Aims: To evaluate the adsorption of extracellular matrix components onto plasma-activated PC and study the biocompatibility of PC by measuring cellular adhesion, viability, apoptosis, and phenotypic expression of valve endothelial and interstitial cells. Finally, the mechanical properties of PC were compared with those of native aortic valve cusp tissue. Methods: PC slides were plasma activated and then coated with gelatin, type I collagen, or fibronectin. Porcine pulmonary valve endothelial and interstitial cells were then grown on plasma oxidized PC with different types of coatings and their adhesion was observed after 20 h of incubation. Cell viability was tested using the MTS assay, and apoptosis was estimated using TUNEL staining. The mechanical properties of PC and valve tissue were measured using a Bose Mechanical Tester. Finally, cell-seeded PC films were exposed to pulsatile pressure and aortic shear stress, respectively, to test their durability in a dynamic environment. Results: Our findings show that collagen and fibronectin could bind to plasma oxidized PC. Both valve endothelial and interstitial cells adhered to protein-coated ECM. PC had a profile of mechanical stiffness and ultimate tensile strength that were comparable with or in excess of those seen in porcine aortic valve cusps. Cells were still attached to PC films after 3 days of exposure to up to 50 mmHg pulsatile pressure or aortic levels of shear stress. Conclusion: PC is a promising candidate for use as a scaffold in tissue engineering heart valves. Additional studies are required to determine both the durability and long-term performance of cell-seeded PC when in a similar hemodynamic environment to that of the aortic valve. PMID:26101808
NASA Astrophysics Data System (ADS)
Masoumi, Nafiseh
There are several disadvantages correlated with current heart valve replacement, including anticoagulation therapy for patients with mechanical valves and the low durability of bioprosthetic valves. The non-viable nature of such devices is a critical drawback especially for pediatric cases due to the inability of the graft to grow in vivo with the patients. A tissue engineered heart valve (TEHV) with remodeling and growth ability, is conceptually appealing to use in the surgical repair and could serve as a permanent replacements when operating for pediatric valvular lesions. It is critical that scaffolds for functional heart valve tissue engineering, be capable of mimicking the native leaflet's structure and mechanical properties at the time of implantation. Meanwhile, the scaffolds should be able to support cellular proliferation and native-like tissue formation as the TEHV remodels toward a scaffold-free state. Our overall hypothesis is that an "ideal" engineered construct, designed based on native leaflet's structure and mechanics, will complement a native heart valve leaflet in providing benchmarks for use in the design of clinically-applicable TEHV. This hypothesis was addressed through several experiments conducted in the present study. To establish a functional biomimetic TEHV, we developed scaffolds capable of matching the anisotropic stiffness of native leaflet while promoting native-like cell and collagen content and supporting the ECM generation. Scaffolds with various polymer contents (e.g., poly (glycerol sebacate) (PGS) and poly (epsilon-caprolactone) (PCL)) and structural designs (e.g., microfabricated and microfibrous scaffolds), were fabricated based on native leaflet's structure and mechanics. It was found that the tri-layered scaffold, designed with assembly of microfabricated PGS and microfibrous PGS/PCL was a functional leaflet capable of promoting tissue formation. Furthermore, to investigate the effect of cyclic stress and flexure individually on the TEHV development, we designed a simple and novel stretch-flexure bioreactor in which samples were subjected to well-defined stimulations with a controlled strain-rate. The stretch and flexure was found to accelerate and increase tissue formation on the microfabricated PGS scaffolds cultivated in the bioreactors.
Weaving for heart valve tissue engineering.
Liberski, Albert; Ayad, Nadia; Wojciechowska, Dorota; Kot, Radoslaw; Vo, Duy M P; Aibibu, Dilibaier; Hoffmann, Gerald; Cherif, Chokri; Grobelny-Mayer, Katharina; Snycerski, Marek; Goldmann, Helmut
2017-11-01
Weaving is a resourceful technology which offers a large selection of solutions that are readily adaptable for tissue engineering (TE) of artificial heart valves (HV). The different ways that the yarns are interlaced in this technique could be used to produce complex architectures, such as the three-layer architecture of the leaflets. Once the assembly is complete, growth of cells in the scaffold would occur in the orientation of the yarn, enabling the deposition of extra cellular matrixes proteins in an oriented manner. Weaving technology is a rapidly evolving field that, first, needs to be understood, and then explored by tissue engineers, so that it could be used to create efficient scaffolds. Similarly, the textile engineers need to gain a basic understanding of key structural and mechanical aspects of the heart valve. The aim of this review is to provide the platform for joining these two fields and to enable cooperative research efforts. Moreover, examples of woven medical products and patents as well as related publication are discussed in this review, nevertheless due to the large, and continuously growing volume of data, only the aspects strictly associated with HVTE lay in the scope of this paper. Copyright © 2017 Elsevier Inc. All rights reserved.
Tissue engineering therapy for cardiovascular disease.
Nugent, Helen M; Edelman, Elazer R
2003-05-30
The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.
TexMi: Development of Tissue-Engineered Textile-Reinforced Mitral Valve Prosthesis
Moreira, Ricardo; Gesche, Valentine N.; Hurtado-Aguilar, Luis G.; Schmitz-Rode, Thomas; Frese, Julia
2014-01-01
Mitral valve regurgitation together with aortic stenosis is the most common valvular heart disease in Europe and North America. Mechanical and biological prostheses available for mitral valve replacement have significant limitations such as the need of a long-term anticoagulation therapy and failure by calcifications. Both types are unable to remodel, self-repair, and adapt to the changing hemodynamic conditions. Moreover, they are mostly designed for the aortic position and do not reproduce the native annular-ventricular continuity, resulting in suboptimal hemodynamics, limited durability, and gradually decreasing ventricular pumping efficiency. A tissue-engineered heart valve specifically designed for the mitral position has the potential to overcome the limitations of the commercially available substitutes. For this purpose, we developed the TexMi, a living textile-reinforced mitral valve, which recapitulates the key elements of the native one: annulus, asymmetric leaflets (anterior and posterior), and chordae tendineae to maintain the native annular-ventricular continuity. The tissue-engineered valve is based on a composite scaffold consisting of the fibrin gel as a cell carrier and a textile tubular structure with the twofold task of defining the gross three-dimensional (3D) geometry of the valve and conferring mechanical stability. The TexMi valves were molded with ovine umbilical vein cells and stimulated under dynamic conditions for 21 days in a custom-made bioreactor. Histological and immunohistological stainings showed remarkable tissue development with abundant aligned collagen fibers and elastin deposition. No cell-mediated tissue contraction occurred. This study presents the proof-of-principle for the realization of a tissue-engineered mitral valve with a simple and reliable injection molding process readily adaptable to the patient's anatomy and pathological situation by producing a patient-specific rapid prototyped mold. PMID:24665896
Cardiovascular tissue engineering: where we come from and where are we now?
Smit, Francis E; Dohmen, Pascal M
2015-01-27
Abstract Tissue engineering was introduced by Vacanti and Langer in the 80's, exploring the potential of this new technology starting with the well-known "human ear on the mouse back". The goal is to create a substitute which supplies an individual therapy for patients with regeneration, remodeling and growth potential. The growth potential of these subjects is of special interest in congenital cardiac surgery, avoiding repeated interventions and surgery. Initial applications of tissue engineered created substitutes were relatively simple cardiovascular grafts seeded initially by end-differentiated autologous endothelial cells. Important data were collected from these initial clinical autologous endothelial cell seeded grafts in peripheral and coronary vessel disease. After these initial successfully implantation bone marrow cell were used to seed patches and pulmonary conduits were implanted in patients. Driven by the positive results of tissue engineered material implanted under low pressure circumstances, first tissue engineered patches were implanted in the systemic circulation followed by the implantation of tissue engineered aortic heart valves. Tissue engineering is an extreme dynamic technology with continuously modifications and improvements to optimize clinical products. New technologies are unified and so this has also be done with tissue engineering and new application features, so called transcatheter valve intervention. First studies are initiated to apply tissue engineered heart valves with this new transcatheter delivery system less invasive. Simultaneously studies have been started on tissue engineering of so-called whole organs since organ transplantation is restricted due to donor shortage and tissue engineering could overcome this problem. Initial studies of whole heart engineering in the rat model are promising and larger size models are initiated.
NASA Astrophysics Data System (ADS)
Fix, Brandon R.; Popma, Christopher J.; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Each year, hundreds of thousands of aortic and mitral heart valves are replaced with prosthetic valves. In efforts to develop a valve that does not require lifelong anticoagulation therapy, previous experimental research has been devoted to analyzing the hemodynamics of various heart valve designs, limited to the flow up to only 2 diameters downstream of the valve. Two-component, two-dimensional (2C-2D) particle image velocimetry (PIV) was used in this study to examine secondary flow velocity fields in a curved tube modeling an aorta at five locations (0-, 45-, 90-, 135-, 180-degrees). A bileaflet valve, opened to 30-, 45-, and 59-degrees, and one (no-valve) baseline condition were examined under three steady flow inflows (Re = 218, 429, 634). In particular, variations in the two-dimensional turbulent shear stresses at each cross sectional plane were analyzed. The results suggest that bileaflet valves in the aortic model produce significant turbulence and vorticity up to 5.5 downstream diameters, i.e. up to the 90-degrees location. Expanding this research towards aortic heart valve hemodynamics highlights a need for additional studies extending beyond the typical few diameters downstream to fully characterize valvular function. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Schmidt, Dörthe; Achermann, Josef; Odermatt, Bernhard; Breymann, Christian; Mol, Anita; Genoni, Michele; Zund, Gregor; Hoerstrup, Simon P
2007-09-11
A novel concept providing prenatally tissue engineered human autologous heart valves based on routinely obtained fetal amniotic fluid progenitors as single cell source is introduced. Fetal human amniotic progenitors were isolated from routinely sampled amniotic fluid and sorted using CD133 magnetic beads. After expansion and differentiation, cell phenotypes of CD133- and CD133+ cells were analyzed by immunohistochemistry and flowcytometry. After characterization, CD133- derived cells were seeded onto heart valve leaflet scaffolds (n=18) fabricated from rapidly biodegradable polymers, conditioned in a pulse duplicator system, and subsequently coated with CD133+ derived cells. After in vitro maturation, opening and closing behavior of leaflets was investigated. Neo-tissues were analyzed by histology, immunohistochemistry, and scanning electron microscopy (SEM). Extracellular matrix (ECM) elements and cell numbers were quantified biochemically. Mechanical properties were assessed by tensile testing. CD133- derived cells demonstrated characteristics of mesenchymal progenitors expressing CD44 and CD105. Differentiated CD133+ cells showed features of functional endothelial cells by eNOS and CD141 expression. Engineered heart valve leaflets demonstrated endothelialized tissue formation with production of ECM elements (GAG 80%, HYP 5%, cell number 100% of native values). SEM showed intact endothelial surfaces. Opening and closing behavior was sufficient under half of systemic conditions. The use of amniotic fluid as single cell source is a promising low-risk approach enabling the prenatal fabrication of heart valves ready to use at birth. These living replacements with the potential of growth, remodeling, and regeneration may realize the early repair of congenital malformations.
Just, Steffen; Berger, Ina M; Meder, Benjamin; Backs, Johannes; Keller, Andreas; Marquart, Sabine; Frese, Karen; Patzel, Eva; Rauch, Gerd-Jörg; Katus, Hugo A; Rottbauer, Wolfgang
2011-07-19
The molecular mechanisms that guide heart valve formation are not well understood. However, elucidation of the genetic basis of congenital heart disease is one of the prerequisites for the development of tissue-engineered heart valves. We isolated here a mutation in zebrafish, bungee (bng(jh177)), which selectively perturbs valve formation in the embryonic heart by abrogating endocardial Notch signaling in cardiac cushions. We found by positional cloning that the bng phenotype is caused by a missense mutation (Y849N) in zebrafish protein kinase D2 (pkd2). The bng mutation selectively impairs PKD2 kinase activity and hence Histone deacetylase 5 phosphorylation, nuclear export, and inactivation. As a result, the expression of Histone deacetylase 5 target genes Krüppel-like factor 2a and 4a, transcription factors known to be pivotal for heart valve formation and to act upstream of Notch signaling, is severely downregulated in bungee (bng) mutant embryos. Accordingly, the expression of Notch target genes, such as Hey1, Hey2, and HeyL, is severely decreased in bng mutant embryos. Remarkably, downregulation of Histone deacetylase 5 activity in homozygous bng mutant embryos can rescue the mutant phenotype and reconstitutes notch1b expression in atrioventricular endocardial cells. We demonstrate for the first time that proper heart valve formation critically depends on Protein kinase D2-Histone deacetylase 5-Krüppel-like factor signaling.
Juthier, Francis; Vincentelli, André; Gaudric, Julien; Corseaux, Delphine; Fouquet, Olivier; Calet, Christine; Le Tourneau, Thierry; Soenen, Valérie; Zawadzki, Christophe; Fabre, Olivier; Susen, Sophie; Prat, Alain; Jude, Brigitte
2006-04-01
Autologous recellularization of decellularized heart valve scaffolds is a promising challenge in the field of tissue-engineered heart valves and could be boosted by bone marrow progenitor cell mobilization. The aim of this study was to examine the spontaneous in vivo recolonization potential of xenogeneic decellularized heart valves in a lamb model and the effects of granulocyte colony-stimulating factor mobilization of bone marrow cells on this process. Decellularized porcine aortic valves were implanted in 12 lambs. Six lambs received granulocyte colony-stimulating factor (10 microg x kg(-1) x d(-1) for 7 days, granulocyte colony-stimulating factor group), and 6 received no granulocyte colony-stimulating factor (control group). Additionally, nondecellularized porcine valves were implanted in 5 lambs (xenograft group). Angiographic and histologic evaluation was performed at 3, 6, 8, and 16 weeks. Few macroscopic modifications of leaflets and the aortic wall were observed in the control group, whereas progressive shrinkage and thickening of the leaflets appeared in the granulocyte colony-stimulating factor and xenograft groups. In the 3 groups progressive ovine cell infiltration (fluorescence in situ hybridization) was observed in the leaflets and in the adventitia and the intima of the aortic wall but not in the media. Neointimal proliferation of alpha-actin-positive cells, inflammatory infiltration, adventitial neovascularization, and calcifications were more important in the xenograft and the granulocyte colony-stimulating factor groups than in the control group. Continuous re-endothelialization appeared only in the control group. Decellularized xenogeneic heart valve scaffolds allowed partial autologous recellularization. Granulocyte colony-stimulating factor led to accelerated heart valve deterioration similar to that observed in nondecellularized xenogeneic cardiac bioprostheses.
Effects of bileaflet mechanical heart valve orientation on coronary flow
NASA Astrophysics Data System (ADS)
Haya, Laura; Tavoularis, Stavros
2015-11-01
The aortic sinus is approximately tri-radially symmetric, but bileaflet mechanical heart valves (BMHVs), which are commonly used to replace diseased aortic valves, are bilaterally symmetric. This mismatch in symmetry suggests that the orientation in which a BMHV is implanted within the aortic sinus affects the flow characteristics downstream of it. This study examines the effect of BMHV orientation on the flow in the coronary arteries, which originate in the aortic sinus and supply the heart tissue with blood. Planar particle image velocimetry measurements were made past a BMHV mounted at the inlet of an anatomical aorta model under physiological flow conditions. The complex interactions between the valve jets, the sinus vortex and the flow in the right coronary artery were elucidated for three valve orientations. The coronary flow rate was directly affected by the size, orientation, and time evolution of the vortex in the sinus, all of which were sensitive to the valve's orientation. The total flow through the artery was highest when the valve was oriented with its axis of symmetry intersecting the artery's opening. The findings of this research may assist surgeons in choosing the best orientation for BMHV implantation. The bileaflet valve was donated by St. Jude Medical. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada.
Del Gaudio, Costantino; Gasbarroni, Pier Luca; Romano, Giovanni Paolo
2016-12-01
End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure. This potential result is particularly critical if referred to the aortic valve, being the one mainly exposed to structural and functional degeneration. In this regard, the here proposed study presents the fabrication and in vitro characterization of a bioresorbable electrospun heart valve prosthesis using the particle image velocimetry technique either in physiological and pathological fluid dynamic conditions. The scaffold was designed to reproduce the aortic valve geometry, also mimicking the fibrous structure of the natural extracellular matrix. To evaluate its performances for possible implantation, the flow fields downstream the valve were accurately investigated and compared. The experimental results showed a correct functionality of the device, supported by the formation of vortex structures at the edge of the three cusps, with Reynolds stress values below the threshold for the risk of hemolysis (which can be comprised in the range 400-4000N/m(2) depending on the exposure period), and a good structural resistance to the mechanical loads generated by the driving pressure difference. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ethics in biomedical engineering.
Morsy, Ahmed; Flexman, Jennifer
2008-01-01
This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.
Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
Cao, H
1996-06-01
An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.
Simplified pulse reactor for real-time long-term in vitro testing of biological heart valves.
Schleicher, Martina; Sammler, Günther; Schmauder, Michael; Fritze, Olaf; Huber, Agnes J; Schenke-Layland, Katja; Ditze, Günter; Stock, Ulrich A
2010-05-01
Long-term function of biological heart valve prostheses (BHV) is limited by structural deterioration leading to failure with associated arterial hypertension. The objective of this work was development of an easy to handle real-time pulse reactor for evaluation of biological and tissue engineered heart valves under different pressures and long-term conditions. The pulse reactor was made of medical grade materials for placement in a 37 degrees C incubator. Heart valves were mounted in a housing disc moving horizontally in culture medium within a cylindrical culture reservoir. The microprocessor-controlled system was driven by pressure resulting in a cardiac-like cycle enabling competent opening and closing of the leaflets with adjustable pulse rates and pressures between 0.25 to 2 Hz and up to 180/80 mmHg, respectively. A custom-made imaging system with an integrated high-speed camera and image processing software allow calculation of effective orifice areas during cardiac cycle. This simple pulse reactor design allows reproducible generation of patient-like pressure conditions and data collection during long-term experiments.
NASA Astrophysics Data System (ADS)
Chiryatyeva, Aleksandra; Trebushat, Dmitry; Prokhorokhin, Aleksei; Khakhalkin, Vladimir; Andreev, Mark; Novokhreschenov, Aleksei; Kretov, Evgeny
2017-12-01
Cardiovascular diseases are the leading cause of death worldwide. Valvular heart disease often requires valve repair or replacement. Today, surgery uses xenograft—porcine or bovine pericardium. However, bioprosthetic valves do not ensure sufficient durability. We investigated 0.6% glutaraldehyde-treated porcine pericardium to define its properties. Using a tensile test stand, we studied characteristics of the polymeric material—expanded polytetrafluoroethylene (ePTFE)—and compared it to xenopericardium. The artificial material provides a better durability; it has higher elastic modulus and ultimate tensile strength. However, ePTFE samples demonstrated direction anisotropy due to extrusion features. It requires the enhancement of quality of the ePTFE sheet or investigation of other polymeric materials to find the adequate replacement for bioprosthetic heart valves.
Huygens, Simone A; Rutten-van Mölken, Maureen P M H; Bekkers, Jos A; Bogers, Ad J J C; Bouten, Carlijn V C; Chamuleau, Steven A J; de Jaegere, Peter P T; Kappetein, Arie Pieter; Kluin, Jolanda; van Mieghem, Nicolas M D A; Versteegh, Michel I M; Witsenburg, Maarten; Takkenberg, Johanna J M
2016-01-01
Objective The future promises many technological advances in the field of heart valve interventions, like tissue-engineered heart valves (TEHV). Prior to introduction in clinical practice, it is essential to perform early health technology assessment. We aim to develop a conceptual model (CM) that can be used to investigate the performance and costs requirements for TEHV to become cost-effective. Methods After scoping the decision problem, a workgroup developed the draft CM based on clinical guidelines. This model was compared with existing models for cost-effectiveness of heart valve interventions, identified by systematic literature search. Next, it was discussed with a Delphi panel of cardiothoracic surgeons, cardiologists and a biomedical scientist (n=10). Results The CM starts with the valve implantation. If patients survive the intervention, they can remain alive without complications, die from non-valve-related causes or experience a valve-related event. The events are separated in early and late events. After surviving an event, patients can experience another event or die due to non-valve-related causes. Predictors will include age, gender, NYHA class, left ventricular function and diabetes. Costs and quality adjusted life years are to be attached to health conditions to estimate long-term costs and health outcomes. Conclusions We developed a CM that will serve as foundation of a decision-analytic model that can estimate the potential cost-effectiveness of TEHV in early development stages. This supports developers in deciding about further development of TEHV and identifies promising interventions that may result in faster take-up in clinical practice by clinicians and reimbursement by payers. PMID:27843569
Translational Applications of Tissue Engineering in Cardiovascular Medicine.
Dogan, Arin; Elcin, A Eser; Elcin, Y Murat
2017-03-26
Cardiovascular diseases are the leading cause of global deaths. The current paradigm in medicine seeks novel approaches for the treatment of progressive or end-stage diseases. The organ transplantation option is limited in availability, and unfortunately, a significant number of patients are lost while waiting for donor organs. Animal studies have shown that upon myocardial infarction, it is possible to stop adverse remodeling in its tracks and reverse with tissue engineering methods. Regaining the myocardium function and avoiding further deterioration towards heart failure can benefit millions of people with a significantly lesser burden on healthcare systems worldwide. The advent of induced pluripotent stem cells brings the unique advantage of testing candidate drug molecules on organ-on-chip systems, which mimics human heart in vitro. Biomimetic three-dimensional constructs that contain disease-specific or normal cardiomyocytes derived from human induced pluripotent stem cells are a useful tool for screening drug molecules and studying dosage, mode of action and cardio-toxicity. Tissue engineering approach aims to develop the treatments for heart valve deficiency, ischemic heart disease and a wide range of vascular diseases. Translational research seeks to improve the patient's quality of life, progressing towards developing cures, rather than treatments. To this end, researchers are working on tissue engineered heart valves, blood vessels, cardiac patches, and injectable biomaterials, hence developing new ways for engineering bio-artificial organs or tissue parts that the body will adopt as its own. In this review, we summarize translational methods for cardiovascular tissue engineering and present useful tables on pre-clinical and clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cabrera, María Sol; Oomens, Cees W J; Baaijens, Frank P T
2017-04-01
A proper interpretation of the forces developed during stent crimping and deployment is of paramount importance for a better understanding of the requirements for successful heart valve replacement. The present study combines experimental and computational methods to assess the performance of a nitinol stent for tissue-engineered heart valve implantation. To validate the stent model, the mechanical response to parallel plate compression and radial crimping was evaluated experimentally. Finite element simulations showed good agreement with the experimental findings. The computational models were further used to determine the hoop force on the stent and radial force on a rigid tool during crimping and self-expansion. In addition, stent deployment against ovine and human pulmonary arteries was simulated to determine the hoop force on the stent-artery system and the equilibrium diameter for different degrees of oversizing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M
2003-11-01
Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.
Emmert, Maximilian Y; Weber, Benedikt; Behr, Luc; Sammut, Sebastien; Frauenfelder, Thomas; Wolint, Petra; Scherman, Jacques; Bettex, Dominique; Grünenfelder, Jürg; Falk, Volkmar; Hoerstrup, Simon P
2014-01-01
While transcatheter aortic valve implantation (TAVI) has rapidly evolved for the treatment of aortic valve disease, the currently used bioprostheses are prone to continuous calcific degeneration. Thus, autologous, cell-based, living, tissue-engineered heart valves (TEHVs) with regeneration potential have been suggested to overcome these limitations. We investigate the technical feasibility of combining the concept of TEHV with transapical implantation technology using a state-of-the-art transcatheter delivery system facilitating the exact anatomical position in the systemic circulation. Trileaflet TEHVs fabricated from biodegradable synthetic scaffolds were sewn onto self-expanding Nitinol stents seeded with autologous marrow stromal cells, crimped and transapically delivered into the orthotopic aortic valve position of adult sheep (n = 4) using the JenaValve transapical TAVI System (JenaValve, Munich, Germany). Delivery, positioning and functionality were assessed by angiography and echocardiography before the TEHV underwent post-mortem gross examination. For three-dimensional reconstruction of the stent position of the anatomically oriented system, a computed tomography analysis was performed post-mortem. Anatomically oriented, transapical delivery of marrow stromal cell-based TEHV into the orthotopic aortic valve position was successful in all animals (n = 4), with a duration from cell harvest to TEHV implantation of 101 ± 6 min. Fluoroscopy and echocardiography displayed sufficient positioning, thereby entirely excluding the native leaflets. There were no signs of coronary obstruction. All TEHV tolerated the loading pressure of the systemic circulation and no acute ruptures occurred. Animals displayed intact and mobile leaflets with an adequate functionality. The mean transvalvular gradient was 7.8 ± 0.9 mmHg, and the mean effective orifice area was 1.73 ± 0.02 cm(2). Paravalvular leakage was present in two animals, and central aortic regurgitation due to a single-leaflet prolapse was detected in two, which was primarily related to the leaflet design. No stent dislocation, migration or affection of the mitral valve was observed. For the first time, we demonstrate the technical feasibility of a transapical TEHV delivery into the aortic valve position using a commercially available and clinically applied transapical implantation system that allows for exact anatomical positioning. Our data indicate that the combination of TEHV and a state-of-the-art transapical delivery system is feasible, representing an important step towards translational, transcatheter-based TEHV concepts.
Lee, Chung-Hao; Amini, Rouzbeh; Gorman, Robert C.; Gorman, Joseph H.; Sacks, Michael S.
2013-01-01
Estimation of regional tissue stresses in the functioning heart valve remains an important goal in our understanding of normal valve function and in developing novel engineered tissue strategies for valvular repair and replacement. Methods to accurately estimate regional tissue stresses are thus needed for this purpose, and in particular to develop accurate, statistically informed means to validate computational models of valve function. Moreover, there exists no currently accepted method to evaluate engineered heart valve tissues and replacement heart valve biomaterials undergoing valvular stresses in blood contact. While we have utilized mitral valve anterior leaflet valvuloplasty as an experimental approach to address this limitation, robust computational techniques to estimate implant stresses are required. In the present study, we developed a novel numerical analysis approach for estimation of the in-vivo stresses of the central region of the mitral valve anterior leaflet (MVAL) delimited by a sonocrystal transducer array. The in-vivo material properties of the MVAL were simulated using an inverse FE modeling approach based on three pseudo-hyperelastic constitutive models: the neo-Hookean, exponential-type isotropic, and full collagen-fiber mapped transversely isotropic models. A series of numerical replications with varying structural configurations were developed by incorporating measured statistical variations in MVAL local preferred fiber directions and fiber splay. These model replications were then used to investigate how known variations in the valve tissue microstructure influence the estimated ROI stresses and its variation at each time point during a cardiac cycle. Simulations were also able to include estimates of the variation in tissue stresses for an individual specimen dataset over the cardiac cycle. Of the three material models, the transversely anisotropic model produced the most accurate results, with ROI averaged stresses at the fully-loaded state of 432.6±46.5 kPa and 241.4±40.5 kPa in the radial and circumferential directions, respectively. We conclude that the present approach can provide robust instantaneous mean and variation estimates of tissue stresses of the central regions of the MVAL. PMID:24275434
How to Make a Heart Valve: From Embryonic Development to Bioengineering of Living Valve Substitutes
MacGrogan, Donal; Luxán, Guillermo; Driessen-Mol, Anita; Bouten, Carlijn; Baaijens, Frank; de la Pompa, José Luis
2014-01-01
Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial–mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function. PMID:25368013
Merryman, W David
2008-03-01
The following hypothetical case study was developed for bioengineering students and is concerned with choosing between two devices used for development of a pediatric tissue engineered heart valve (TEHV). This case is intended to elicit assessment of the devices, possible future outcomes, and ramifications of the decision making. It is framed in light of two predominant ethical theories: utilitarianism and rights of persons. After the case was presented to bioengineering graduate students, they voted on which device should be released. The results revealed that these bioengineering students preferred the more reliable (and substantially more expensive) design, though this choice precludes the majority of the world from having access to this technology. This case is intended to examine and explore where the balance lies between design, cost, and adequate distribution of biomedical devices.
Hinderer, Svenja; Brauchle, Eva
2015-01-01
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713
Duan, B; Kapetanovic, E; Hockaday, L A; Butcher, J T
2014-05-01
Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach, however, is constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, 3-D printable formulations of hybrid hydrogels are developed, based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and used to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate understanding of physiological valve cell interactions and progress towards de novo living valve replacements. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
21 CFR 870.3935 - Prosthetic heart valve holder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...
21 CFR 870.3935 - Prosthetic heart valve holder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...
21 CFR 870.3935 - Prosthetic heart valve holder.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...
21 CFR 870.3935 - Prosthetic heart valve holder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...
21 CFR 870.3935 - Prosthetic heart valve holder.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Prosthetic heart valve holder. 870.3935 Section... heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a replacement heart valve while it is being sutured into place. (b) Classification. Class I. The device is...
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura
2016-01-01
Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146
A new paradigm for obtaining marketing approval for pediatric-sized prosthetic heart valves.
Yoganathan, Ajit P; Fogel, Mark; Gamble, Susan; Morton, Michael; Schmidt, Paul; Secunda, Jeff; Vidmar, Sara; Del Nido, Pedro
2013-10-01
Congenital heart valve disease is one of the most common abnormalities in children. There are limited technological solutions available for treating children with congenital heart valve diseases. The aim of this study is to provide the details of the consensus reached in terms of pediatric definitions, design approach, in vitro testing, and clinical trials, which may be used as guidance for developing prosthetic heart valves for the pediatric indication. In stark contrast to the various designs of adult-sized replacement valves available in the market, there are no Food and Drug Administration (FDA)-approved prosthetic heart valves available for use in the pediatric population. There is a pressing need for FDA-approved pediatric valve devices in the United States. The pediatric patient population has been typically excluded from replacement heart valve trials for several reasons. In January 2010, heart valve manufacturers and pediatric clinicians collaborated with academicians and FDA staff in a workshop to suggest ways to successfully evaluate pediatric prosthetic valves and conduct pediatric clinical trials to provide acceptable heart valve replacement options for this patient population. Recommendations, derived from ISO 5840:2005 and the 2010 FDA Draft Replacement Heart Valve Guidance, are provided for hydrodynamic, durability, and fatigue testing. The article specifically addresses in vitro and premarket and postmarket approval clinical studies that should be considered by a heart valve manufacturer for obtaining regulatory approval of pediatric sizes of prosthetic heart valve designs that are already approved for adult clinical use. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart.
Ott, Harald C; Matthiesen, Thomas S; Goh, Saik-Kia; Black, Lauren D; Kren, Stefan M; Netoff, Theoden I; Taylor, Doris A
2008-02-01
About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function. We decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent acellular valves and intact chamber geometry. To mimic cardiac cell composition, we reseeded these constructs with cardiac or endothelial cells. To establish function, we maintained eight constructs for up to 28 d by coronary perfusion in a bioreactor that simulated cardiac physiology. By day 4, we observed macroscopic contractions. By day 8, under physiological load and electrical stimulation, constructs could generate pump function (equivalent to about 2% of adult or 25% of 16-week fetal heart function) in a modified working heart preparation.
Dysfunction of an On-X Heart Valve by Pannus.
Abad, Cipriano; Urso, Stefano; Gomez, Elsa; De la Vega, Maria
2016-09-01
A 68-year-old woman with a history of previous double-valve replacement with On-X mechanical heart valves presented with clinical, echocardiographic and cardiac catheterization signs of obstruction of the On-X tricuspid heart valve prosthesis. The patient was successfully reoperated, but at surgery the valve was seen to be invaded by an abnormal overgrowth of pannus that blocked one of the leaflets. A small amount of non-obstructive fresh thrombus was also observed. The valve was successfully replaced with a biological heart valve prosthesis. The patient was discharged home, and is doing well four months after the operation, when echocardiography demonstrated normal function in the tricuspid valve. The present case represents the first ever report of pannus formation and subsequent dysfunction in an On-X heart valve, and also the first case of tricuspid valve malfunction and obstruction using this type of heart valve substitute.
Jahandardoost, Mehdi; Fradet, Guy; Mohammadi, Hadi
2016-03-01
To date, to the best of the authors' knowledge, in almost all of the studies performed around the hemodynamics of bileaflet mechanical heart valves, a heart rate of 70-72 beats/min has been considered. In fact, the heart rate of ~72 beats/min does not represent the entire normal physiological conditions under which the aortic or prosthetic valves function. The heart rates of 120 or 50 beats/min may lead to hemodynamic complications, such as plaque formation and/or thromboembolism in patients. In this study, the hemodynamic performance of the bileaflet mechanical heart valves in a wide range of normal and physiological heart rates, that is, 60-150 beats/min, was studied in the opening phase. The model considered in this study was a St. Jude Medical bileaflet mechanical heart valve with the inner diameter of 27 mm in the aortic position. The hemodynamics of the native valve and the St. Jude Medical valve were studied in a variety of heart rates in the opening phase and the results were carefully compared. The results indicate that peak values of the velocity profile downstream of the valve increase as heart rate increases, as well as the location of the maximum velocity changes with heart rate in the St. Jude Medical valve model. Also, the maximum values of shear stress and wall shear stresses downstream of the valve are proportional to heart rate in both models. Interestingly, the maximum shear stress and wall shear stress values in both models are in the same range when heart rate is <90 beats/min; however, these values significantly increase in the St. Jude Medical valve model when heart rate is >90 beats/min (up to ~40% growth compared to that of the native valve). The findings of this study may be of importance in the hemodynamic performance of bileaflet mechanical heart valves. They may also play an important role in design improvement of conventional prosthetic heart valves and the design of the next generation of prosthetic valves, such as percutaneous valves. © IMechE 2016.
Riki-Marishani, Mohsen; Gholoobi, Arash; Sazegar, Ghasem; Aazami, Mathias H; Hedjazi, Aria; Sajjadian, Maryam; Ebrahimi, Mahmoud; Aghaii-Zade Torabi, Ahmad
2017-09-01
A prosthetic system to repair secondary tricuspid valve regurgitation was developed. The conceptual engineering of the current device is based on 3D segmental remodelling of the tricuspid valve annulus in lieu of reductive annuloplasty. This study was designed to investigate the operational safety of the current prosthetic system with regard to the anatomical integrity of the right coronary artery (RCA) in fresh cadaveric human hearts. During the study period, from January to April 2016, the current prosthetic system was implanted on the tricuspid valve annulus in fresh cadaveric human hearts that met the study's inclusion criteria. The prepared specimens were investigated via selective coronary angiography of the RCA in the catheterization laboratory. The RCA angiographic anatomies were categorized as normal, distorted, kinked or occluded. Sixteen specimens underwent implantation of the current prosthetic system. The mean age of the cadaveric human hearts was 43.24 ± 15.79 years, with vehicle accident being the primary cause of death (59%). A dominant RCA was noticed in 62.5% of the specimens. None of the specimens displayed any injury, distortion, kinking or occlusion in the RCA due to the implantation of the prostheses. In light of the results of the present study, undertaken on fresh cadaveric human heart specimens, the current segmental prosthetic system for 3D remodelling of the tricuspid valve annulus seems to be safe vis-à-vis the anatomical integrity of the RCA. Further in vivo studies are needed to investigate the functional features of the current prosthetic system with a view to addressing the complex pathophysiology of secondary tricuspid valve regurgitation. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Observation of cavitation in a mechanical heart valve in a total artificial heart.
Lee, Hwansung; Tsukiya, Tomonori; Homma, Akihiko; Kamimura, Tadayuki; Takewa, Yoshiaki; Nishinaka, Tomohiro; Tatsumi, Eisuke; Taenaka, Yoshiyuki; Takano, Hisateru; Kitamura, Soichiro
2004-01-01
Recently, cavitation on the surface of mechanical heart valves has been studied as a cause of fractures occurring in implanted mechanical heart valves. The cause of cavitation in mechanical heart valves was investigated using the 25 mm Medtronic Hall valve and the 23 mm Omnicarbon valve. Closing of these valves in the mitral position was simulated in an electrohydraulic totally artificial heart. Tests were conducted under physiologic pressures at heart rates from 60 to 100 beats per minute with cardiac outputs from 4.8 to 7.7 L/min. The disk closing motion was measured by a laser displacement sensor. A high-speed video camera was used to observe the cavitation bubbles in the mechanical heart valves. The maximum closing velocity of the Omnicarbon valve was faster than that of the Medtronic Hall valve. In both valves, the closing velocity of the leaflet, used as the cavitation threshold, was approximately 1.3-1.5 m/s. In the case of the Medtronic Hall valve, cavitation bubbles were generated by the squeeze flow and by the effects of the venturi and the water hammer. With the Omnicarbon valve, the cavitation bubbles were generated by the squeeze flow and the water hammer. The mechanism leading to the development of cavitation bubbles depended on the valve closing velocity and the valve stop geometry. Most of the cavitation bubbles were observed around the valve stop and were generated by the squeeze flow.
Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...
In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.
Nakayama, Yasuhide; Takewa, Yoshiaki; Sumikura, Hirohito; Yamanami, Masashi; Matsui, Yuichi; Oie, Tomonori; Kishimoto, Yuichiro; Arakawa, Mamoru; Ohmuma, Kentaro; Tajikawa, Tsutomu; Kanda, Keiichi; Tatsumi, Eisuke
2015-01-01
In-body tissue architecture--a novel and practical regeneration medicine technology--can be used to prepare a completely autologous heart valve, based on the shape of a mold. In this study, a three-dimensional (3D) printer was used to produce the molds. A 3D printer can easily reproduce the 3D-shape and size of native heart valves within several processing hours. For a tri-leaflet, valved conduit with a sinus of Valsalva (Biovalve type VII), the mold was assembled using two conduit parts and three sinus parts produced by the 3D printer. Biovalves were generated from completely autologous connective tissue, containing collagen and fibroblasts, within 2 months following the subcutaneous embedding of the molds (success rate, 27/30). In vitro evaluation, using a pulsatile circulation circuit, showed excellent valvular function with a durability of at least 10 days. Interposed between two expanded polytetrafluoroethylene grafts, the Biovalves (N = 3) were implanted in goats through an apico-aortic bypass procedure. Postoperative echocardiography showed smooth movement of the leaflets with minimal regurgitation under systemic circulation. After 1 month of implantation, smooth white leaflets were observed with minimal thrombus formation. Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer. © 2014 Wiley Periodicals, Inc.
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura
2015-11-01
Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.
Simulation of Blood flow in Artificial Heart Valve Design through Left heart
NASA Astrophysics Data System (ADS)
Hafizah Mokhtar, N.; Abas, Aizat
2018-05-01
In this work, an artificial heart valve is designed for use in real heart with further consideration on the effect of thrombosis, vorticity, and stress. The design of artificial heart valve model is constructed by Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. The effect of blood flow pattern, velocity and vorticity of the artificial heart valve design has been analysed in this research work. Based on the results, the artificial heart valve design shows that it has a Doppler velocity index that is less than the allowable standards for the left heart with values of more than 0.30 and less than 2.2. These values are safe to be used as replacement of the human heart valve.
Delmo Walter, E M; de By, T M M H; Meyer, R; Hetzer, R
2012-01-01
Ever since the early days of homograft implantation in 1956, and the introduction into clinical practice by Ross and Barrat Boyes, homograft heart valves have proven to have many advantages. Its disadvantages became evident during long-term follow up. Factors, such as donor and recipient morbidity, tissue banking techniques, and the often complex surgical technique required to implant, are of great influence on the long term results. Because of European Directives, legally binding quality assurance regulations have been introduced in homograft banks. However, still not all processing methods have been scientifically sub-structured on their effects on the final product and its durability. The donor shortage has stimulated researchers and industries to develop and improve mechanical and biological valve substitutes such as the stentless bioprostheses. In general, candidates for homograft valve implantation include patients with: endocarditis, congenital defects and women who wish to become pregnant. For each category of patients different implantation techniques are required. The results of homograft banking and homograft transplantation in the German Heart Institute Berlin are satisfactory. Freedom of re-infection rate after homograft implantation is 91.9% +/- 3.6% after 15 years. Current developments show an increased interest in tissue engineered as well as in de- and re-cellularization of heart valve homografts. The advantages and disadvantages of the several processing techniques have not yet been proven in long term clinical results. For homograft bankers these developments pose as a challenge to join forces and to initiate cooperate projects aimed at scientific and organizational development.
Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja
2015-11-18
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heart Valve Biomechanics and Underlying Mechanobiology
Ayoub, Salma; Ferrari, Giovanni; Gorman, Robert C.; Gorman, Joseph H.; Schoen, Frederick J.; Sacks, Michael S.
2017-01-01
Heart valves control unidirectional blood flow within the heart during the cardiac cycle. They have a remarkable ability to withstand the demanding mechanical environment of the heart, achieving lifetime durability by processes involving the ongoing remodeling of the extracellular matrix. The focus of this review is on heart valve functional physiology, with insights into the link between disease-induced alterations in valve geometry, tissue stress, and the subsequent cell mechanobiological responses and tissue remodeling. We begin with an overview of the fundamentals of heart valve physiology and the characteristics and functions of valve interstitial cells (VICs). We then provide an overview of current experimental and computational approaches that connect VIC mechanobiological response to organ- and tissue-level deformations and improve our understanding of the underlying functional physiology of heart valves. We conclude with a summary of future trends and offer an outlook for the future of heart valve mechanobiology, specifically, multiscale modeling approaches, and the potential directions and possible challenges of research development. PMID:27783858
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
21 CFR 870.3925 - Replacement heart valve.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Replacement heart valve. 870.3925 Section 870.3925...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3925 Replacement heart valve. (a) Identification. A replacement heart valve is a device intended to perform the function of any...
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
21 CFR 870.3925 - Replacement heart valve.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Replacement heart valve. 870.3925 Section 870.3925...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3925 Replacement heart valve. (a) Identification. A replacement heart valve is a device intended to perform the function of any...
21 CFR 870.3925 - Replacement heart valve.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Replacement heart valve. 870.3925 Section 870.3925...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3925 Replacement heart valve. (a) Identification. A replacement heart valve is a device intended to perform the function of any...
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
21 CFR 870.3925 - Replacement heart valve.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Replacement heart valve. 870.3925 Section 870.3925...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3925 Replacement heart valve. (a) Identification. A replacement heart valve is a device intended to perform the function of any...
21 CFR 870.3925 - Replacement heart valve.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Replacement heart valve. 870.3925 Section 870.3925...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3925 Replacement heart valve. (a) Identification. A replacement heart valve is a device intended to perform the function of any...
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
When a Heart Murmur Signals Valve Disease
... in adults may be related to: Valve calcification Endocarditis Rheumatic fever In children, abnormal heart murmurs may ... Problem: Pulmonary Valve Regurgitation Heart Valves and Infective Endocarditis Left Ventricular Hypertrophy • Risks, Signs and Symptoms • Accurate ...
Patient-specific pediatric silicone heart valve models based on 3D ultrasound
NASA Astrophysics Data System (ADS)
Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor
2017-03-01
PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.
Straka, Frantisek; Schornik, David; Masin, Jaroslav; Filova, Elena; Mirejovsky, Tomas; Burdikova, Zuzana; Svindrych, Zdenek; Chlup, Hynek; Horny, Lukas; Daniel, Matej; Machac, Jiri; Skibová, Jelena; Pirk, Jan; Bacakova, Lucie
2018-04-01
The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p < 0.001) higher collagen I content, a lower collagen III and elastin content, and a similar glycosaminoglycans (GAGs) content, in comparison with the NAV, as measured by ECM integrated density. However, the relative thickness of the main load-bearing structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p < 0.05) than in the longitudinal direction. This proved that both tissues were anisotropic. No statistically significant differences in UTS (ultimate tensile strength) values and in calculated bending stiffness values in the longitudinal or transversal direction were found between HP and NAV. Our study confirms that HP has an advantageous ECM biopolymeric structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.
... valve . Learn about the different types of stenosis: Aortic stenosis Tricuspid stenosis Pulmonary stenosis Mitral stenosis Outlook for ... Disease "Innocent" Heart Murmur Problem: Valve Stenosis - Problem: Aortic Valve Stenosis - Problem: Mitral Valve Stenosis - Problem: Tricuspid Valve Stenosis - ...
Recognizing the Symptoms of Worsening Heart Valve Disease
... heart valve disease. Support Network: You're Not Alone Valve Disease Resources Patient Guide: Understanding Your Heart ... Signs of a Heart Attack 5 How to Eat Healthy 6 What are the Symptoms of High ...
Angiogenesis and Tissue Engineering Research
2010-08-01
grafts were stained with hematoxylin and eosin for general morphology, Masson trichrome stain for collagen organization, and von Geison for elastin...autologous semilunar heart valve. Circulation 111, 2783, 2005. 21. Sodian, R., Hoerstrup, S.P., Sperling , J.S., Daebritz, S., Mar- tin, D.P., Moran, A.M
Fluid mechanics of heart valves.
Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S
2004-01-01
Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.
Heart valve surgery - series (image)
... heart valves are either natural (biologic) or artificial (mechanical). Natural valves are from human donors (cadavers), modified ... artificial valves will require anticoagulation. The advantage of mechanical valves is that they last longer-thus, the ...
Amstrup Funder, Jonas; Christian Danielsen, Carl; Baandrup, Ulrik; Martin Bibby, Bo; Carl Andelius, Ted; Toft Brøndum, Emil; Wang, Tobias; Michael Hasenkam, J
2017-01-01
Heart valves which exist naturally in an extreme-pressure system must have evolved in a way to resist the stresses of high pressure. Giraffes are interesting as they naturally have a blood pressure twice that of humans. Thus, knowledge regarding giraffe heart valves may aid in developing techniques to design improved pressure-resistant biological heart valves. Heart valves from 12 giraffes and 10 calves were explanted and subjected to either biomechanical or morphological examinations. Strips from the heart valves were subjected to cyclic loading tests, followed by failure tests. Thickness measurements and analyses of elastin and collagen content were also made. Valve specimens were stained with hematoxylin and eosin, elastic van Gieson stain, Masson's trichrome and Fraser-Lendrum stain, as well as immunohistochemical reactions for morphological examinations. The aortic valve was shown to be 70% (95% CI 42-103%) stronger in the giraffe than in its bovine counterpart (p <0.001). No significant difference was found between mitral or pulmonary valves. After normalization for collagen, no significant differences were found in strength between species. The giraffe aortic valve was found to be significantly stiffer than the bovine aortic valve (p <0.001), with no significant difference between mitral and pulmonary valves. On a dry weight basis, the aortic (10.9%), pulmonary (4.3%), and mitral valves (9.6%) of giraffes contained significantly more collagen than those of calves. The elastin contents of the pulmonary valves (2.5%) and aortic valves (1.5%) were also higher in giraffes. The greater strength of the giraffe aortic valve is most likely due to a compact collagen construction. Both, collagen and elastin contents were higher in giraffes than in calves, which would make giraffe valves more resistant to the high-pressure forces. However, collagen also stiffens and thickens the valves. The mitral leaflets showed similar (but mostly insignificant) trends in strength, stiffness, and collagen content.
Pucéat, Michel
2013-04-01
The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.
Failing stentless Bioprostheses in patients with carcinoid heart valve disease.
Schaefer, Andreas; Sill, Bjoern; Schoenebeck, Jeannette; Schneeberger, Yvonne; Reichenspurner, Hermann; Gulbins, Helmut
2015-03-27
Carcinoid tumor with consecutive endocardial fibroelastosis of the right heart, known as carcinoid heart valve disease (CHVD) or Hedinger's syndrome, is accompanied by combined right-sided valvular dysfunction with regurgitation and stenosis of the affected valves. Cardiac surgery with replacement of the tricuspid and/or pulmonary valve is an established therapeutic option for patients with Hedinger's syndrome. Little is known about the long term outcome and the choice of prosthesis for the pulmonal position is still a matter of debate. The authors report three cases of pulmonary valve replacement with stentless bioprostheses (Medtronic Freestyle, Medtronic PLC, Minneapolis, MN, USA) due to severe pulmonary valve degeneration in consequence of Hedinger's syndrome. All patients presented with re-stenosis of the pulmonal valve conduit at the height of the anastomoses in a premature fashion. Due to the increased risk for repeat surgical valve replacement, two patients were treated by transcatheter heart valves. We do not recommend the replacement of the pulmonary valve with stentless bioprostheses in patients with CHVD. These valves presented with an extreme premature degeneration and consecutive re-stenosis and heart failure.
Mitral valve-sparing procedures and prosthetic heart valve failure: A case report
Khan, Nasir A; Butany, Jagdish; Leong, Shaun W; Rao, Vivek; Cusimano, Robert J; Ross, Heather J
2009-01-01
Prosthetic heart valve dysfunction due to thrombus or pannus formation can be a life-threatening complication. The present report describes a 47-year-old woman who developed valvular cardiomyopathy after chorda-sparing mitral valve replacement, and subsequently underwent heart transplantation for progressive heart failure. The explanted mitral valve prosthesis showed significant thrombus and pannus leading to reduced leaflet mobility and valvular stenosis. The present report illustrates the role of the subvalvular apparatus and pannus in prosthesis dysfunction. PMID:19279993
Glutaraldehyde exposures among workers making bioprosthetic heart valves.
Sutton, Patrice M; Quint, Julia; Prudhomme, Janice; Flattery, Jennifer; Materna, Barbara; Harrison, Robert
2007-05-01
Exposure to glutaraldehyde is a recognized cause of work-related asthma. An investigation was undertaken to describe exposure to glutaraldehyde among workers making bioprosthetic heart valves and to make recommendations for prevention. At the two largest heart valve manufacturing facilities in California, the work process was observed; employer representatives and glutaraldehyde-exposed workers were interviewed; and employer written records, including company-generated industrial hygiene data, were analyzed. Approximately 600 female workers had continuous airborne exposure to glutaraldehyde over the course of every work shift and the routine potential for skin and eye contact with glutaraldehyde while making heart valves. Employee short-term (15-min) glutaraldehyde exposures were all well below the current regulatory ceiling level (0.20 ppm). Overall, approximately 40% of the glutaraldehyde-related job tasks involved exposures above the American Conference of Industrial Hygienists threshold limit value ceiling of 0.05 ppm; the majority (71.4% and 83.3%, depending on the company) involved exposures greater than 0.015 ppm. At one company, two cases of physician-diagnosed asthma were recorded by the employer in the previous 5-year period; these reports met the surveillance case definition for new-onset, work-related asthma associated with a known asthma inducer. Factors that contributed to worker exposure included large exposed surface areas of glutaraldehyde under agitation; working with glutaraldehyde-treated tissue in proximity to workers' breathing zones; manual pouring and disposal of glutaraldehyde solutions without local exhaust ventilation, eye protection, and waste neutralization; and prolonged use of latex gloves. Workers making bioprosthetic heart valves are at risk for occupationally acquired asthma. Employers should implement additional engineering controls to minimize workers' exposures to at least below a level of 0.015 ppm, an appropriate glove to prevent workers' skin exposure to glutaraldehyde, consistent and universal use of eye protection, and a medical surveillance program for glutaraldehyde-exposed workers.
Design of a Cyclic Pressure Bioreactor for the Ex Vivo Study of Aortic Heart Valves
Schipke, Kimberly J.; Filip To, S. D.; Warnock, James N.
2011-01-01
The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage1-3. Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease4. The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve5. Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves6-9. Pulsatile bioreactors have also been developed to study a range of tissues including cartilage10, bone11 and bladder12. The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment. PMID:21876532
Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves.
Schipke, Kimberly J; To, S D Filip; Warnock, James N
2011-08-23
The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage(1-3). Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease(4). The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve(5). Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves(6-9). Pulsatile bioreactors have also been developed to study a range of tissues including cartilage(10), bone(11) and bladder(12). The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment.
TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.
Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V
2017-08-01
Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.
Pfeil, Uwe; Bharathala, Subhashini; Murtaza, Ghulam; Mermer, Petra; Papadakis, Tamara; Boening, Andreas; Kummer, Wolfgang
2016-12-01
Heart valves are highly organized structures determining the direction of blood flow through the heart. Smooth muscle cells within the valve are thought to play an active role during the heart cycle, rather than being just passive flaps. The mature heart valve is composed of extracellular matrix (ECM), various differentiations of valvular interstitial cells (VIC), smooth muscle cells and overlying endothelium. VIC are important for maintaining the structural integrity of the valve, thereby affecting valve function and ECM remodelling. Accumulating evidence suggests an important role of calcitonin receptor-like receptor (CRL) signalling in preventing heart damage under several pathological conditions. Thus we investigate the existence of a putative CRL signalling system in mouse and human heart valves by real-time RT-PCR, laser-assisted microdissection, immunofluorescence and NADPH-diaphorase histochemistry. Mouse and human heart valves expressed mRNAs for the CRL ligands adrenomedullin (AM), adrenomedullin-2 (AM-2) and calcitonin gene-related peptide (CGRP) and for their receptor components, i.e., CRL and receptor-activity-modifying proteins 1-3. Immunofluorescence analysis revealed AM-, AM-2- and CRL-immunolabelling in endothelial cells and VIC, whereas CGRP immunoreactivity was restricted to nerve fibres and some endothelial cells. Nitric oxide synthase activity, as demonstrated by NADPH-diaphorase histochemistry, was shown mainly in valvular endothelial cells in mice, whereas in human aortic valves, VIC and smooth muscle cells were positive. Our results showed the presence of an intrinsic AM/AM-2/CGRP signalling system in murine and human heart valves with distinct cellular localization, suggesting its involvement in the regulation of valve stiffness and ECM production and turnover.
Non-Dimensional Formulation of Ventricular Work-Load Severity Under Concomitant Heart Valve Disease
NASA Astrophysics Data System (ADS)
Dong, Melody; Simon-Walker, Rachael; Dasi, Lakshmi
2012-11-01
Current guidelines on assessing the severity of heart valve disease rely on dimensional disease specific measures and are thus unable to capture severity under a concomitant heart valve disease scenario. Experiments were conducted to measure ventricular work-load in an in-house in-vitro left heart simulator. In-house tri-leaflet heart valves were built and parameterized to model concomitant heart valve disease. Measured ventricular power varied non-linearly with cardiac output and mean aortic pressure. Significant data collapse could be achieved by the non-dimensionalization of ventricular power with cardiac output, fluid density, and a length scale. The dimensionless power, Circulation Energy Dissipation Index (CEDI), indicates that concomitant conditions require a significant increase in the amount of work needed to sustain cardiac function. It predicts severity without the need to quantify individual disease severities. This indicates the need for new fluid-dynamics similitude based clinical guidelines to assist patients with multiple heart valve diseases. Funded by the American Heart Association.
Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavone, Luigi Michele; Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples; Spina, Anna
2008-12-12
Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT{sup Cre/+};ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventriclemore » and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.« less
Aortic valve cell seeding into decellularized animal pericardium by perfusion-assisted bioreactor.
Amadeo, Francesco; Boschetti, Federica; Polvani, Gianluca; Banfi, Cristina; Pesce, Maurizio; Santoro, Rosaria
2018-04-27
Animal-derived pericardium is the elective tissue employed in manufacturing heart valve prostheses. The preparation of this tissue for biological valve production consists of fixation with aldehydes, which reduces, but not eliminates, the xenoantigens and the donor cellular material. As a consequence, especially in patients below 65-70 years of age, the employment of valve substitutes contaning pericardium is not indicated due to progressive calcification that causes tissue degeneration and recurrence of valve insufficiency. Decellularization with ionic or nonionic detergents has been proposed as an alternative procedure to prepare aldehyde- or xenoantigen-free pericardium for biological valve manufacturing. In the present contribution, we optimized a decellularization procedure that is permissive for seeding and culturing valve competent cells able to colonize and reconstitute a valve-like tissue. A high-efficiency cellularization was achieved by forcing cell penetration inside the pericardium matrix using a perfusion bioreactor. Because the decellularization procedure was found not to alter the collagen composition of the pericardial matrix and cells seeded in the tissue constructs consistently grew and acquired the phenotype of "quiescent" valve interstitial cells, our investigation sets a novel standard in pericardium application for tissue engineering of "living" valve implants. Copyright © 2018 John Wiley & Sons, Ltd.
Three-dimentional simulation of flow-induced platelet activation in artificial heart valves
NASA Astrophysics Data System (ADS)
Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman
2015-11-01
Since the advent of heart valve, several valve types such as mechanical and bio-prosthetic valves have been designed. Mechanical Heart Valves (MHV) are durable but suffer from thromboembolic complications that caused by shear-induced platelet activation near the valve region. Bio-prosthetic Heart Valves (BHV) are known for better hemodynamics. However, they usually have a short average life time. Realistic simulations of heart valves in combination with platelet activation models can lead to a better understanding of the potential risk of thrombus formation in such devices. In this study, an Eulerian approach is developed to calculate the platelet activation in three-dimensional simulations of flow through MHV and BHV using a parallel overset-curvilinear immersed boundary technique. A curvilinear body-fitted grid is used for the flow simulation through the anatomic aorta, while the sharp-interface immersed boundary method is used for simulation of the Left Ventricle (LV) with prescribed motion. In addition, dynamics of valves were calculated numerically using under-relaxed strong-coupling algorithm. Finally, the platelet activation results for BMV and MHV are compared with each other.
Computed Flow Through An Artificial Heart Valve
NASA Technical Reports Server (NTRS)
Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee
1994-01-01
Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).
Guteta, Senbeta; Yadeta, Dejuma; Azazh, Aklilu; Mekonnen, Dufera
2016-04-01
Valvular heart disease has been a significant cause of heart disease worldwide. In Ethiopia, it particularly affects young individuals and constitutes the major cause of cardiovascular disease. Factors associated with choice of treatment for advanced valvular heart disease are variable. The objective of this study is to review surgery done for Ethiopian patients with valvular heart disease. We analyzed data on patients who had valve surgery and follow-up at the Tikur Anbessa Specialized Hospital cardiology unit. We collected data on sociodemographic characteristics, the pre-operative status of effected valves and co-morbidities, and assessed their associations with patient management options. A total of 157 valve surgeries were done from 1983 to 2013. Mean age at time of surgery was 26.7 years and females constituted 66% of the cases. Patients with rheumatic heart disease were younger, more likely to be female and have atrial fibrillation, but less likely to have impaired left ventricular systolic function when compared to patients with non-rheumatic heart disease. More than 75% of the surgical procedures done were mechanical valve replacement. Mechanical valves, compared with bioprosthetic valves, were more likely to be used in patients with rheumatic heart disease. The median age of those receiving mechanical valves, 24 (IQR 22-28) years, was lower than those receiving bioprosthetic valves, 31.5 (IQR 29.9-37.9) years. Mechanical valve replacement was significantly higher in those under the age of 20 years (Adjusted Odds Ratio 41.0, 95% CI: 3.0-557.2) and in those between 20 and 29 years of age (Adjusted Odds Ratio 14.3, 95% CI: 2.3-88.6). Valve surgery for valvular heart diseases has been more common performed for young and female patients. A great majority of the replacements done have been with mechanical valves. As many of the patients have been younger and female, the choice of valve surgery and the need for anticoagulation impacts subsequent management of rheumatic heart disease and associated morbidities, lifestyle plans and pregnancy.
Heart sounds as a result of acoustic dipole radiation of heart valves
NASA Astrophysics Data System (ADS)
Kasoev, S. G.
2005-11-01
Heart sounds are associated with impulses of force acting on heart valves at the moment they close under the action of blood-pressure difference. A unified model for all the valves represents this impulse as an acoustic dipole. The near pressure field of this dipole creates a distribution of the normal velocity on the breast surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas, an individual area for each of the valves, and a noncoincidence of these areas with the projections of the valves onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spectrum.
1982-06-02
simultaneous pleural anI mouth pressure data the distensibility of airway walls were computable also. In the absence of other non-invasive procedures for...measurement of airway distensions and distensibility , we have compared our results with data gathered from human autopsy material and found adequate...coupled equations of motion of the blood, the muscular heart wall, and the heart valve. The results of such a calculation constitute a prediction of
Cyganek-Niemiec, Aleksandra; Strzalka-Mrozik, Barbara; Pawlus-Lachecka, Lucyna; Wszolek, Jolanta; Adamska, Jolanta; Kudrjavtseva, Julia; Zhuravleva, Irina; Kimsa, Malgorzata; Okla, Hubert; Kimsa, Magdalena; Gudek, Agnieszka; Mazurek, Urszula
2012-01-01
Xenotransplantations of porcine cells, tissues, and organs involve a risk of zoonotic viral infections in recipients, including by porcine endogenous retroviruses (PERVs), which are embedded the genome of all pigs. An appropriate preparation of porcine heart valves for transplantation can prevent retroviral infection. Therefore, the present study focuses on the effect of epoxy compounds and glutaraldehyde on the PERV presence in porcine heart valves prepared for clinical use. Porcine aortic heart valves were fixed with ethylene glycol diglycidyl ether (EDGE) at 5 °C and 25 °C as well as with glutaraldehyde (GA) for 4 weeks. Salting out was used to isolate genomic DNA from native as well as EDGE- and GA-fixed fragments of valves every week. Quantification of PERV-A, PERV-B, and PERV-C DNA was performed by real-time quantitative polymerase chain reaction (QPCR). All subtypes of PERVs were detected in native porcine aortic heart valves. The reduction of the PERV-A, PERV-B, and PERV-C DNA copy numbers was observed in the heart valves which were EDGE-fixed at both temperatures, and in GA-fixed ones in the following weeks. After 7 and 14 days of EDGE cross-linking, significant differences between the investigated temperatures were found for the number of PERV-A and PERV-B copies. PERV DNA was completely degraded within the first week of EDGE fixation at 25 °C. EDGE fixation induces complete PERV genetic material degradation in porcine aortic heart valves. This suggests that epoxy compounds may be alternatively used in the preparation of bioprosthetic heart valves in future.
Lu, Qiyu; Sun, Yi; Duan, Yuyin; Li, Bin; Xia, Jianming; Yu, Songhua; Zhang, Guimin
2018-03-16
Valvular heart disease is a leading cause of cardiovascular mortality, especially in China. More than a half of valvular heart diseases are caused by acute rheumatic fever. microRNA is involved in many physiological and pathological processes. However, the miRNA profile of the rheumatic valvular heart disease is unknown. This research is to discuss microRNAs and their target gene pathways involved in rheumatic heart valve disease. Serum miRNA from one healthy individual and four rheumatic heart disease patients were sequenced. Specific differentially expressed miRNAs were quantified by Q-PCR in 40 patients, with 20 low-to-moderate rheumatic mitral valve stenosis patients and 20 severe mitral valve stenosis patients. The target relationship between certain miRNA and predicted target genes were analysis by Luciferase reporter assay. The IL-1β and IL1R1 expression levels were analyzed by immunohistochemistry and western blot in the mitral valve from surgery of mitral valve replacement. The results showed that 13 and 91 miRNAs were commonly upregulated or downregulated in all four patients. Nine miRNAs, 1 upregulated and 8 downregulated, that had a similar fold change in all 4 patients were selected for quantitative PCR verification. The results showed similar results from miRNA sequencing. Within these 9 tested miRNAs, hsa-miR-205-3p and hsa-miR-3909 showed a low degree of dispersion between the members of each group. Hsa miR-205-3p and hsa-miR-3909 were predicted to target the 3'UTR of IL-1β and IL1R1 respectively. This was verified by luciferase reporter assays. Immunohistochemistry and Western blot results showed that the mitral valve from rheumatic valve heart disease showed higher levels of IL- 1β and IL1R1 expression compared with congenital heart valve disease. This suggested a difference between rheumatic heart valve disease and other types of heart valve diseases, with more inflammatory responses in the former. In the present study, by next generation sequencing of miRNAs, it was revealed that interleukin 1β and interleukin 1 receptor 1 was involved in rheumatic heart diseases. And this is useful for diagnosis and understanding of mechanism of rheumatic heart disease.
Simulation of Blood flow in Different Configurations Design of Bi-leaflet Mechanical Heart Valve
NASA Astrophysics Data System (ADS)
Hafizah Mokhtar, N.; Abas, Aizat
2018-05-01
In this work, two different designs of artificial heart valve were devised and then compared by considering the thrombosis, wear and valve orifice to anatomical orifice ratio of each mechanical heart valve. These different design configurations of bi-leaflet mechanical heart valves model are created through the use of Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. Design 1 is based on existing conventional bi-leaflet valve and design 2 based on modified bi-leaflet respectively. The flow pattern, velocity, vorticity and stress analysis have been done to justify the best design. Based on results, both of the designs show a Doppler velocity index of less than the allowable standard of 2.2 which is safe to be used as replacement of the human heart valve. However, design 2 shows that it has a lower possibility of cavitation issue which will lead to lower thrombosis and provide good central flow area of blood as compared to design 1.
In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve
Claiborne, Thomas E.; Sheriff, Jawaad; Kuetting, Maximilian; Steinseifer, Ulrich; Slepian, Marvin J.; Bluestein, Danny
2013-01-01
Calcific aortic valve disease is the most common and life threatening form of valvular heart disease, characterized by stenosis and regurgitation, which is currently treated at the symptomatic end-stages via open-heart surgical replacement of the diseased valve with, typically, either a xenograft tissue valve or a pyrolytic carbon mechanical heart valve. These options offer the clinician a choice between structural valve deterioration and chronic anticoagulant therapy, respectively, effectively replacing one disease with another. Polymeric prosthetic heart valves (PHV) offer the promise of reducing or eliminating these complications, and they may be better suited for the new transcatheter aortic valve replacement (TAVR) procedure, which currently utilizes tissue valves. New evidence indicates that the latter may incur damage during implantation. Polymer PHVs may also be incorporated into pulsatile circulatory support devices such as total artificial heart and ventricular assist devices that currently employ mechanical PHVs. Development of polymer PHVs, however, has been slow due to the lack of sufficiently durable and biocompatible polymers. We have designed a new trileaflet polymer PHV for surgical implantation employing a novel polymer—xSIBS—that offers superior bio-stability and durability. The design of this polymer PHV was optimized for reduced stresses, improved hemodynamic performance, and reduced thrombogenicity using our device thrombogenicity emulation (DTE) methodology, the results of which have been published separately. Here we present our new design, prototype fabrication methods, hydrodynamics performance testing, and platelet activation measurements performed in the optimized valve prototype and compare it to the performance of a gold standard tissue valve. The hydrodynamic performance of the two valves was comparable in all measures, with a certain advantage to our valve during regurgitation. There was no significant difference between the platelet activation rates of our polymer valve and the tissue valve, indicating that similar to the latter, its recipients may not require anticoagulation. This work proves the feasibility of our optimized polymer PHV design and brings polymeric valves closer to clinical viability. PMID:23445066
Sritharan, Deepa; Fathi, Parinaz; Weaver, Jason D; Retta, Stephen M; Wu, Changfu; Duraiswamy, Nandini
2018-06-12
After implantation of a transcatheter bioprosthetic heart valve its original circular circumference may become distorted, which can lead to changes in leaflet coaptation and leaflets that are stretched or sagging. This may lead to early structural deterioration of the valve as seen in some explanted transcatheter heart valves. Our in vitro study evaluates the effect of leaflet deformations seen in elliptical configurations on the damage patterns of the leaflets, with circular valve deformation as the control. Bovine pericardial tissue heart valves were subjected to accelerated wear testing under both circular (N = 2) and elliptical (N = 4) configurations. The elliptical configurations were created by placing the valve inside custom-made elliptical holders, which caused the leaflets to sag or stretch. The hydrodynamic performance of the valves was monitored and high resolution images were acquired to evaluate leaflet damage patterns over time. In the elliptically deformed valves, sagging leaflets experienced more damage from wear compared to stretched leaflets; the undistorted leaflets of the circular valves experienced the least leaflet damage. Free-edge thinning and tearing were the primary modes of damage in the sagging leaflets. Belly region thinning was seen in the undistorted and stretched leaflets. Leaflet and fabric tears at the commissures were seen in all valve configurations. Free-edge tearing and commissure tears were the leading cause of valve hydrodynamic incompetence. Our study shows that mechanical wear affects heart valve pericardial leaflets differently based on whether they are undistorted, stretched, or sagging in a valve configuration. Sagging leaflets are more likely to be subjected to free-edge tear than stretched or undistorted leaflets. Reducing leaflet stress at the free edge of non-circular valve configurations should be an important factor to consider in the design and/or deployment of transcatheter bioprosthetic heart valves to improve their long-term performance.
Simulations of heart valves by thin shells with non-linear material properties
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Asgharzadeh, Hafez; Hedayat, Mohammadali
2016-11-01
The primary function of a heart valve is to allow blood to flow in only one direction through the heart. Triangular thin-shell finite element formulation is implemented, which considers only translational degrees of freedom, in three-dimensional domain to simulate heart valves undergoing large deformations. The formulation is based on the nonlinear Kirchhoff thin-shell theory. The developed method is intensively validated against numerical and analytical benchmarks. This method is added to previously developed membrane method to obtain more realistic results since ignoring bending forces can results in unrealistic wrinkling of heart valves. A nonlinear Fung-type constitutive relation, based on experimentally measured biaxial loading tests, is used to model the material properties for response of the in-plane motion in heart valves. Furthermore, the experimentally measured liner constitutive relation is used to model the material properties to capture the flexural motion of heart valves. The Fluid structure interaction solver adopts a strongly coupled partitioned approach that is stabilized with under-relaxation and the Aitken acceleration technique. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.
Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S.; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela
2015-01-01
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open–close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality. PMID:26467108
NASA Astrophysics Data System (ADS)
Kaiser, Alexander
2016-11-01
The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.
... of the heart Damaged or abnormal heart valve History of endocarditis New heart valve after surgery Parenteral (intravenous) drug addiction Endocarditis begins when germs enter the bloodstream and ...
Levay, Agata K; Peacock, Jacqueline D; Lu, Yinhui; Koch, Manuel; Hinton, Robert B; Kadler, Karl E; Lincoln, Joy
2008-10-24
Heart valve structures, derived from mesenchyme precursor cells, are composed of differentiated cell types and extracellular matrix arranged to facilitate valve function. Scleraxis (scx) is a transcription factor required for tendon cell differentiation and matrix organization. This study identified high levels of scx expression in remodeling heart valve structures at embryonic day 15.5 through postnatal stages using scx-GFP reporter mice and determined the in vivo function using mice null for scx. Scx(-/-) mice display significantly thickened heart valve structures from embryonic day 17.5, and valves from mutant mice show alterations in valve precursor cell differentiation and matrix organization. This is indicated by decreased expression of the tendon-related collagen type XIV, increased expression of cartilage-associated genes including sox9, as well as persistent expression of mesenchyme cell markers including msx1 and snai1. In addition, ultrastructure analysis reveals disarray of extracellular matrix and collagen fiber organization within the valve leaflet. Thickened valve structures and increased expression of matrix remodeling genes characteristic of human heart valve disease are observed in juvenile scx(-/-) mice. In addition, excessive collagen deposition in annular structures within the atrioventricular junction is observed. Collectively, our studies have identified an in vivo requirement for scx during valvulogenesis and demonstrate its role in cell lineage differentiation and matrix distribution in remodeling valve structures.
Seiffert, Moritz; Bader, Ralf; Kappert, Utz; Rastan, Ardawan; Krapf, Stephan; Bleiziffer, Sabine; Hofmann, Steffen; Arnold, Martin; Kallenbach, Klaus; Conradi, Lenard; Schlingloff, Friederike; Wilbring, Manuel; Schäfer, Ulrich; Diemert, Patrick; Treede, Hendrik
2014-10-01
This analysis reports on the initial German multicenter experience with the JenaValve (JenaValve Technology GmbH, Munich, Germany) transcatheter heart valve for the treatment of pure aortic regurgitation. Experience with transcatheter aortic valve implantation (TAVI) for severe aortic regurgitation is limited due to the risk of insufficient anchoring of the valve stent within the noncalcified aortic annulus. Transapical TAVI with a JenaValve for the treatment of severe aortic regurgitation was performed in 31 patients (age 73.8 ± 9.1 years) in 9 German centers. All patients were considered high risk for surgery (logistic EuroSCORE [European System for Cardiac Operative Risk Evaluation] 23.6 ± 14.5%) according to a local heart team consensus. Procedural results and clinical outcomes up to 6 months were analyzed. Implantation was successful in 30 of 31 cases (aortic annulus diameter 24.7 ± 1.5 mm); transcatheter heart valve dislodgement necessitated valve-in-valve implantation in 1 patient. Post-procedural aortic regurgitation was none/trace in 28 of 31 and mild in 3 of 31 patients. During follow-up, 2 patients underwent valvular reinterventions (surgical aortic valve replacement for endocarditis, valve-in-valve implantation for increasing paravalvular regurgitation). All-cause mortality was 12.9% and 19.3% at 30 days and 6 months, respectively. In the remaining patients, a significant improvement in New York Heart Association class was observed and persisted up to 6 months after TAVI. Aortic regurgitation remains a challenging pathology for TAVI. After initial demonstration of feasibility, this multicenter study revealed the JenaValve transcatheter heart valve as a reasonable option in this subset of patients. However, a significant early noncardiac mortality related to the high-risk population emphasizes the need for careful patient selection. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk
2016-11-01
The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.
Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G
2017-07-01
Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are necessary to further facilitate solubility and removal of nuclear-associated antigenic proteins from xenogeneic ECM scaffolds, in addition to an in vivo assessing of the material.
Update of transcatheter valve treatment
Liu, Xian-bao; Wang, Jian-an
2013-01-01
Transcatheter valve implantation or repair has been a very promising approach for the treatment of valvular heart diseases since transcatheter aortic valve implantation (TAVI) was successfully performed in 2002. Great achievements have been made in this field (especially TAVI and transcatheter mitral valve repair—MitraClip system) in recent years. Evidence from clinical trials or registry studies has proved that transcatheter valve treatment for valvular heart diseases is safe and effective in surgical high-risk or inoperable patients. As the evidence accumulates, transcatheter valve treatment might be an alterative surgery for younger patients with surgically low or intermediate risk valvular heart diseases in the near future. In this paper, the updates on transcatheter valve treatment are reviewed. PMID:23897785
Heart Conditions and Pregnancy: Know the Risks
... threatening infection of the lining of the heart (endocarditis) and heart valves. Mechanical artificial heart valves also ... your baby. If you're at risk of endocarditis, you might receive antibiotic treatment just before and ...
A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers.
Stasiak, Joanna; Brubert, Jacob; Serrani, Marta; Nair, Sukumaran; de Gaetano, Francesco; Costantino, Maria Laura; Moggridge, Geoff D
2014-08-28
It is well known that block copolymers with cylindrical morphology show alignment with shear, resulting in anisotropic mechanical properties. Here we show that well-ordered bi-directional orientation can be achieved in such materials by slow injection moulding. This results in a microstructure, and anisotropic mechanical properties, similar to many natural tissues, making this method attractive for engineering prosthetic fibrous tissues. An application of particular interest to us is prosthetic polymeric heart valve leaflets, mimicking the shape, microstructure and hence performance of the native valve. Anisotropic layers have been observed for cylinder-forming block copolymers centrally injected into thin circular discs. The skin layers exhibit orientation parallel to the flow direction, whilst the core layer shows perpendicularly oriented domains; the balance of skin to core layers can be controlled by processing parameters such as temperature and injection rate. Heart valve leaflets with a similar layered structure have been prepared by injection moulding. Numerical modelling demonstrates that such complex orientation can be explained and predicted by the balance of shear and extensional flow.
The role of flow in the morphodynamics of embryonic heart
NASA Astrophysics Data System (ADS)
Gharib, Morteza
2017-11-01
Nature has shown us that some hearts do not require valves to achieve unidirectional flow. In its earliest stages, the vertebrate heart consists of a primitive tube that drives blood through a simple vascular network nourishing tissues and other developing organ systems. We have shown that in the case of the embryonic zebrafish heart, an elastic wave resonance mechanism based on impedance mismatches at the boundaries of the heart tube is the likely mechanism responsible for the valveless pumping behavior. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop there is considerable regurgitation, resulting in oscillatory flow between the atrium and ventricle. We show that reversing flows are particularly strong stimuli to endothelial cells and that heart valves form as a developmental response to oscillatory blood flow through the maturing heart.
Computed Flow Through An Artificial Heart And Valve
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee
1994-01-01
NASA technical memorandum discusses computations of flow of blood through artificial heart and through tilting-disk artificial heart valve. Represents further progress in research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478). One purpose of research to exploit advanced techniques of computational fluid dynamics and capabilities of supercomputers to gain understanding of complicated internal flows of viscous, essentially incompressible fluids like blood. Another to use understanding to design better artificial hearts and valves.
... valve syndrome . What happens during MVP? Watch an animation of mitral valve prolapse When the heart pumps ( ... our brochures Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...
Waziri, Farhad; Lyager Nielsen, Sten; Michael Hasenkam, John
2016-09-01
Tricuspid regurgitation may be a precursor for heart failure, reduced functional capacity, and poor survival. A human compatible experimental model is required to understand the pathophysiology of the tricuspid valve disease as a basis for validating novel tricuspid valve interventions before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin-fixed porcine hearts obtained from Danish Landrace pigs (body weight 80 kg). All valvular dimensions were compared with human data acquired from literature sources. No difference was seen in the tricuspid annulus circumference between porcine and human hearts (13.0 ± 1.2 cm versus 13.5 ± 1.5 cm; p = NS), or in valve area (5.7 ± 1.6 cm2 versus 5.6 ± 1.0 cm2; p = NS). The majority of chordae types exhibited a larger chordal length and thickness in human hearts compared to porcine hearts. In both species, the anterior papillary muscle (PM) was larger than other PMs in the right ventricle, but muscle length varied greatly (range: 5.2-40.3 mm) and was significantly different in pigs and in humans (12.2 ± 3.2 mm versus 19.2 mm; p <0.001). The porcine tricuspid valve was determined to be a valid model for preclinical animal studies, despite various anatomic differences being noted between porcine and human hearts.
Problem: Heart Valve Regurgitation
... should be completely closed For example: Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...
[Aortic valve insufficiency due to rupture of the cusp in a patient with multiple trauma].
Vidmar, J; Brilej, D; Voga, G; Kovacic, N; Smrkolj, V
2003-06-01
Lesions of the heart valve caused by blunt chest trauma is rare, but when it does occur it can significantly injure the patient. On the basis of autopsy studies, research shows that heart valves are injured in less than 5% of patients who have died due to impact thoracic trauma. Among the heart valves, the aortic valve is the most often lacerated, which has been proved by relevant autopsy and clinical studies. Aortic valve lesions can be the only injury, but it is possible that additional heart or large vessel injuries are also present (myocardial contusion, rupture of the atrial septum, aortic rupture, rupture of the left common carotid artery). The force that causes such an injury is often great and often causes injuries to other organs and organ systems. In a multiple trauma patient, it is very important to specifically look for heart-related injuries because it is possible that they may be overlooked or missed by the surgeon, because of other obvious injuries. We describe the case of a 41-year-old man with multiple trauma who was diagnosed with aortic valve insufficiency due to rupture of the left coronary cusp 6 weeks after a road accident. Valvuloplasty was performed. Seven years later the patient is free of symptoms and is in good physical condition. Echocardiography showed normal dimensions of the heart chambers, a normal thickness of the heart walls, and normal systolic and diastolic function of the left ventricle. Heart valves are morphologically normal, and only an unimportant aortic insufficiency was noticed by echocardiography.
Conradi, Lenard; Kloth, Benjamin; Seiffert, Moritz; Schirmer, Johannes; Koschyk, Dietmar; Blankenberg, Stefan; Reichenspurner, Hermann; Diemert, Patrick; Treede, Hendrik
2014-12-01
Recently, the feasibility of valve-in-valve procedures using current first-generation transcatheter heart valves (THV) in cases of structural valve degeneration has been reported as an alternative to conventional open repeat valve replacement. By design, certain biological valve xenografts carry a high risk of coronary ostia occlusion due to lateral displacement of leaflets after valve-in-valve procedures. In the present report we aimed to prove feasibility and safety of transapical valve-in-valve implantation of the JenaValve THV in two cases of degenerated Mitroflow bioprostheses. We herein report two cases of successful transapical valve-in-valve procedures using a JenaValve THV implanted in Sorin Mitroflow bioprostheses for structural valve degeneration. Both patients were alive and in good clinical condition at 30 days from the procedure. However, increased transvalvular gradients were noted in both cases. Transcatheter valve-in-valve implantation of a JenaValve THV is a valid alternative for patients with degenerated Mitroflow bioprostheses of sufficient size and in the presence of short distances to the coronary ostia who are too ill for conventional repeat open heart surgery. Increased pressure gradients have to be expected and weighed against the disadvantages of other treatment options when planning such a procedure.
Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets.
van Loosdregt, Inge A E W; Dekker, Sylvia; Alford, Patrick W; Oomens, Cees W J; Loerakker, Sandra; Bouten, Carlijn V C
2018-06-01
Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue's mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves. Four different monolayer organizations were created via micro-contact printing of fibronectin lines on thin PDMS films, ranging from strongly anisotropic to isotropic. Thin film curvature, cell density, and actin stress fiber distribution were quantified, and subsequently, intrinsic stress and contractility of the monolayers were determined by incorporating these data into sample-specific finite element models. Our data indicate that the intrinsic stress exerted by the monolayers in each group correlates with cell density. Additionally, after normalizing for cell density and accounting for differences in alignment, no consistent differences in intrinsic contractility were found between the different monolayer organizations, suggesting that the intrinsic stress exerted by individual myofibroblasts is independent of the organization. Consequently, this study emphasizes the importance of choosing proper architectural properties for scaffolds in cardiovascular tissue engineering, as these directly affect the stresses in the tissue, which play a crucial role in both the functionality and remodeling of (engineered) cardiovascular tissues.
Radiation-induced valvular heart disease.
Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev
2016-02-15
Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Cardioscopic tricuspid valve repair in a beating ovine heart.
Umakanthan, Ramanan; Ghanta, Ravi K; Rangaraj, Aravind T; Lee, Lawrence S; Laurence, Rita G; Fox, John A; Mihaljevic, Tomislav; Bolman, Ralph M; Cohn, Lawrence H; Chen, Frederick Y
2009-04-01
Open heart surgery is commonly associated with cardiopulmonary bypass and cardioplegic arrest. The attendant risks of cardiopulmonary bypass may be prohibitive in high-risk patients. We present a novel endoscopic technique of performing tricuspid valve repair without cardiopulmonary bypass in a beating ovine heart. Six sheep underwent sternotomy and creation of a right heart shunt to eliminate right atrial and right ventricular blood for clear visualization. The superior vena cava, inferior vena cava, pulmonary artery, and coronary sinus were cannulated, and the blood flow from these vessels was shunted into the pulmonary artery via a roller pump. The posterior leaflet of the tricuspid valve was partially excised to create tricuspid regurgitation, which was confirmed by Doppler echocardiography. A 7.0-mm fiberoptic videoscope was inserted into the right atrium to visualize the tricuspid valve. Under cardioscopic vision, an endoscopic needle driver was inserted into the right atrium, and a concentric stitch was placed along the posterior annulus to bicuspidize the tricuspid valve. Doppler echocardiography confirmed reduction of tricuspid regurgitation. All animals successfully underwent and tolerated the surgical procedure. The right heart shunt generated a bloodless field, facilitating cardioscopic tricuspid valve visualization. The endoscopic stitch resulted in annular plication and functional tricuspid valve bicuspidization, significantly reducing the degree of tricuspid regurgitation. Cardioscopy enables less invasive, beating-heart tricuspid valve surgery in an ovine model. This technique may be useful in performing right heart surgery without cardiopulmonary bypass in high-risk patients.
Textile for heart valve prostheses: fabric long-term durability testing.
Heim, Frederic; Durand, Bernard; Chakfe, Nabil
2010-01-01
The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.
Serotonin produces monoamine oxidase-dependent oxidative stress in human heart valves.
Peña-Silva, Ricardo A; Miller, Jordan D; Chu, Yi; Heistad, Donald D
2009-10-01
Heart valve disease and pulmonary hypertension, in patients with carcinoid tumors and people who used the fenfluramine-phentermine combination for weight control, have been associated with high levels of serotonin in blood. The mechanism by which serotonin induces valvular changes is not well understood. We recently reported that increased oxidative stress is associated with valvular changes in aortic valve stenosis in humans and mice. In this study, we tested the hypothesis that serotonin induces oxidative stress in human heart valves, and examined mechanisms by which serotonin may increase reactive oxygen species. Superoxide (O2*.-) was measured in heart valves from explanted human hearts that were not used for transplantation. (O2*.-) levels (lucigenin-enhanced chemoluminescence) were increased in homogenates of cardiac valves and blood vessels after incubation with serotonin. A nonspecific inhibitor of flavin-oxidases (diphenyliodonium), or inhibitors of monoamine oxidase [MAO (tranylcypromine and clorgyline)], prevented the serotonin-induced increase in (O2*.-). Dopamine, another MAO substrate that is increased in patients with carcinoid syndrome, also increased (O2*.-) levels in heart valves, and this effect was attenuated by clorgyline. Apocynin [an inhibitor of NAD(P)H oxidase] did not prevent increases in (O2*.-) during serotonin treatment. Addition of serotonin to recombinant human MAO-A generated (O2*.-), and this effect was prevented by an MAO inhibitor. In conclusion, we have identified a novel mechanism whereby MAO-A can contribute to increased oxidative stress in human heart valves and pulmonary artery exposed to serotonin and dopamine.
Cost-effectiveness of homograft heart valve replacement surgery: an introductory study.
Yaghoubi, Mohsen; Aghayan, Hamid Reza; Arjmand, Babak; Emami-Razavi, Seyed Hassan
2011-05-01
The clinical effectiveness of heart valve replacement surgery has been well documented. Mechanical and homograft valves are used routinely for replacement of damaged heart valves. Homograft valves are produced in our country but we import the mechanical valves. To our knowledge the cost-effectiveness of homograft valve has not been assessed. The objective of the present study was to compare the cost-effectiveness of homograft valve replacement with mechanical valve replacement surgery. Our samples were selected from 200 patients that underwent homograft and mechanical heart valve replacement surgery in Imam-Khomeini hospital (2000-2005). In each group we enrolled 30 patients. Quality of life was measured using the SF-36 questionnaire and utility was measured in quality-adjusted life years (QALYs). For each group we calculated the price of heart valve and hospitalization charges. Finally the cost-effectiveness of each treatment modalities were summarized as costs per QALYs gained. Forty male and twenty female participated in the study. The mean score of quality of life was 66.06 (SD = 9.22) in homograft group and 57.85 (SD = 11.30) in mechanical group (P < 0.05). The mean QALYs gained in homograft group was 0.67 more than mechanical group. The incremental cost-effectiveness ratio (ICER) revealed a cost savings of 1,067 US$ for each QALY gained in homograft group. Despite limitation of this introductory study, we concluded that homograft valve replacement was more effective and less expensive than mechanical valve. These findings can encourage healthcare managers and policy makers to support the production of homograft valves and allocate more recourse for developing such activities.
Morphometric analysis of tricuspid valve: An Indian perspective
Kalyani, R.; Thej, M. J.; Prabhakar, K.; Venkatesh, T. K.; Thomas, A. K.; Kiran, J.
2012-01-01
Background: The morphometry of tricuspid valve complex is of clinical importance for cardiovascular surgeons and there is scarcity of such data in Indian literature. The study was conducted to record normal tricuspid valve measurements which would serve as baseline data for the Indian population. Material and Methods: The study was carried out on 100 formalin fixed hearts without any pathology from patients who had died of non-vascular causes and whose age ranged from 8 to 85 yrs. The hearts were grouped into three cohorts corresponding to age, 54 hearts aged between 8 to 40 yrs, 42 hearts aged between 41 to 64 yrs and 4 hearts aged 65 yrs and above. Dissection was performed according to standard autopsy techniques. The measurements were recorded using a flexible millimeter ruler and surgical suture material. The dimensions measured were the attachment lengths of anterior, posterior and septal leaflets. The circumference of the valve along with the frontal and sagittal dimensions was measured. Area of the valve expressed as a triangle and as an ellipse was calculated. Results: The measurements obtained were assessed using SPSS software. Statistically significant increase in tricuspid valve measurements were observed with advancing age both in men and women. In younger hearts the tricuspid valve resembled a triangle and with advancing age the tricuspid valve became more elliptical in shape. Conclusion: We hope this study will serve as baseline data for the tricuspid valve measurements in the Indian population and it will be of clinical use for patients with various tricuspid valve abnormalities. PMID:23225976
Potpara, Tatjana S; Lip, Gregory Y H; Larsen, Torben B; Madrid, Antonio; Dobreanu, Dan; Jędrzejczyk-Patej, Ewa; Dagres, Nikolaos
2016-10-01
The purpose of this European Heart Rhythm Association (EHRA) Survey was to assess the perceptions of 'valvular' atrial fibrillation (AF) and management of AF patients with various heart valve abnormalities in daily clinical practice in European electrophysiology (EP) centres. Questionnaire survey was sent via the Internet to the EHRA-EP Research Network Centres. Of the 52 responding centres, 42 (80.8%) were university hospitals. Choosing the most comprehensive definition of valvular AF, a total of 49 centres (94.2%) encountered a mechanical prosthetic heart valve and significant rheumatic mitral stenosis, 35 centres (67.3%) also considered bioprosthetic valves, and 25 centres (48.1%) included any significant valvular heart disease, requiring surgical repair in the definition of valvular AF. Only three centres (5.8%) would define valvular AF as the presence of any (even mild) valvular abnormality. None of the centres would use non-vitamin K antagonist oral anticoagulants (NOACs) in AF patients with mechanical prosthetic valves, only 5 centres (9.8%) would use NOACs in patients with significant mitral stenosis, 17 centres (32.7%) would consider the use of NOACs in patients with bioprosthetic valves, and 21 centres (41.2%) would use NOACs in patients with a non-recent transcatheter valve replacement/implantation, while 13 centres (25.5%) would never consider the use of NOACs in AF patients with even mild native heart valve abnormality. Our survey showed marked heterogeneity in the definition of valvular AF and thromboprophylactic treatments, with the use of variable NOACs in patients with valvular heart disease other than prosthetic heart valves or significant mitral stenosis, indicating that this term may be misleading and should not be used. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Inflammatory Regulation of Valvular Remodeling: The Good(?), the Bad, and the Ugly
Mahler, Gretchen J.; Butcher, Jonathan T.
2011-01-01
Heart valve disease is unique in that it affects both the very young and very old, and does not discriminate by financial affluence, social stratus, or global location. Research over the past decade has transformed our understanding of heart valve cell biology, yet still more remains unclear regarding how these cells respond and adapt to their local microenvironment. Recent studies have identified inflammatory signaling at nearly every point in the life cycle of heart valves, yet its role at each stage is unclear. While the vast majority of evidence points to inflammation as mediating pathological valve remodeling and eventual destruction, some studies suggest inflammation may provide key signals guiding transient adaptive remodeling. Though the mechanisms are far from clear, inflammatory signaling may be a previously unrecognized ally in the quest for controlled rapid tissue remodeling, a key requirement for regenerative medicine approaches for heart valve disease. This paper summarizes the current state of knowledge regarding inflammatory mediation of heart valve remodeling and suggests key questions moving forward. PMID:21792386
Prior oral conditions in patients undergoing heart valve surgery
Gil-Raga, Irene; Martinez-Herrera, Mayte; Lauritano, Dorina; Silvestre-Rangil, Javier
2017-01-01
Background Patients scheduled for heart valve surgery should be free of any oral infectious disorders that might pose a risk in the postoperative period. Few studies have been made on the dental conditions of such patients prior to surgery. The present study describes the most frequent prior oral diseases in this population group. Material and Methods A prospective, observational case-control study was designed involving 60 patients (30 with heart valve disease and 30 controls, with a mean age of 71 years in both groups). A dental exploration was carried out, with calculation of the DMFT (decayed, missing and filled teeth) index and recording of the periodontal parameters (plaque index, gingival bleeding index, periodontal pocket depth, and attachment loss). The oral mucosa was also examined, and panoramic X-rays were used to identify possible intrabony lesions. Results Significant differences in bacterial plaque index were observed between the two groups (p<0.05), with higher scores in the patients with valve disease. Probing depth and the presence of moderate pockets were also greater in the patients with valve disease than among the controls (p<0.01). Sixty percent of the patients with valve disease presented periodontitis. Conclusions Patients scheduled for heart valve surgery should be examined for possible active periodontitis before the operation. Those individuals found to have periodontal disease should receive adequate periodontal treatment before heart surgery. Key words:Valve disease, aortic, mitral, heart surgery, periodontitis. PMID:29302279
Prior oral conditions in patients undergoing heart valve surgery.
Silvestre, Francisco-Javier; Gil-Raga, Irene; Martinez-Herrera, Mayte; Lauritano, Dorina; Silvestre-Rangil, Javier
2017-11-01
Patients scheduled for heart valve surgery should be free of any oral infectious disorders that might pose a risk in the postoperative period. Few studies have been made on the dental conditions of such patients prior to surgery. The present study describes the most frequent prior oral diseases in this population group. A prospective, observational case-control study was designed involving 60 patients (30 with heart valve disease and 30 controls, with a mean age of 71 years in both groups). A dental exploration was carried out, with calculation of the DMFT (decayed, missing and filled teeth) index and recording of the periodontal parameters (plaque index, gingival bleeding index, periodontal pocket depth, and attachment loss). The oral mucosa was also examined, and panoramic X-rays were used to identify possible intrabony lesions. Significant differences in bacterial plaque index were observed between the two groups ( p <0.05), with higher scores in the patients with valve disease. Probing depth and the presence of moderate pockets were also greater in the patients with valve disease than among the controls ( p <0.01). Sixty percent of the patients with valve disease presented periodontitis. Patients scheduled for heart valve surgery should be examined for possible active periodontitis before the operation. Those individuals found to have periodontal disease should receive adequate periodontal treatment before heart surgery. Key words: Valve disease, aortic, mitral, heart surgery, periodontitis.
van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M
2004-03-01
To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004
Wang, Lv; Lu, Fang-Lin; Wang, Chong; Tan, Meng-Wei; Xu, Zhi-yun
2014-12-01
The Society of Thoracic Surgeons 2008 cardiac surgery risk models have been developed for heart valve surgery with and without coronary artery bypass grafting. The aim of our study was to evaluate the performance of Society of Thoracic Surgeons 2008 cardiac risk models in Chinese patients undergoing single valve surgery and the predicted mortality rates of those undergoing multiple valve surgery derived from the Society of Thoracic Surgeons 2008 risk models. A total of 12,170 patients underwent heart valve surgery from January 2008 to December 2011. Combined congenital heart surgery and aortal surgery cases were excluded. A relatively small number of valve surgery combinations were excluded. The final research population included the following isolated heart valve surgery types: aortic valve replacement, mitral valve replacement, and mitral valve repair. The following combined valve surgery types were included: mitral valve replacement plus tricuspid valve repair, mitral valve replacement plus aortic valve replacement, and mitral valve replacement plus aortic valve replacement and tricuspid valve repair. Evaluation was performed by using the Hosmer-Lemeshow test and C-statistics. Data from 9846 patients were analyzed. The Society of Thoracic Surgeons 2008 cardiac risk models showed reasonable discrimination and poor calibration (C-statistic, 0.712; P = .00006 in Hosmer-Lemeshow test). Society of Thoracic Surgeons 2008 models had better discrimination (C-statistic, 0.734) and calibration (P = .5805) in patients undergoing isolated valve surgery than in patients undergoing multiple valve surgery (C-statistic, 0.694; P = .00002 in Hosmer-Lemeshow test). Estimates derived from the Society of Thoracic Surgeons 2008 models exceeded the mortality rates of multiple valve surgery (observed/expected ratios of 1.44 for multiple valve surgery and 1.17 for single valve surgery). The Society of Thoracic Surgeons 2008 cardiac surgery risk models performed well when predicting the mortality for Chinese patients undergoing valve surgery. The Society of Thoracic Surgeons 2008 models were suitable for single valve surgery in a Chinese population; estimates of mortality for multiple valve surgery derived from the Society of Thoracic Surgeons 2008 models were less accurate. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Clinical Application of Stem Cells in the Cardiovascular System
NASA Astrophysics Data System (ADS)
Stamm, Christof; Klose, Kristin; Choi, Yeong-Hoon
Regenerative medicine encompasses "tissue engineering" - the in vitro fabrication of tissues and/or organs using scaffold material and viable cells - and "cell therapy" - the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.
Wei, Zhenglun Alan; Sonntag, Simon Johannes; Toma, Milan; Singh-Gryzbon, Shelly; Sun, Wei
2018-04-19
The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.
Linke, Axel; Walther, Thomas; Schuler, Gerhard
2010-03-01
Treatment of aortic stenosis remains challenging in older individuals, as their perioperative mortality for open heart surgery is increased due to comorbidities. Transcatheter aortic valve implantation using the CoreValve ReValving System (Medtronic, Minneapolis, USA) and the Edwards SAPIEN transcatheter heart valve (THV; Edwards Lifescience, Irvine, California, USA) represents an alternative to conventional valve replacement in elderly patients that have a high risk for conventional surgery. This article summarizes the evidence-base from recent clinical trials. The early results of these landmark studies suggest that transcatheter aortic valve implantation with either one of the prosthesis is feasible, safe, improves hemodynamics and, therefore, might be an alternative to conventional aortic valve replacement in very high-risk patients. However, all of the available transcatheter heart valves have certain disadvantages, limiting their use in daily clinical practice. The process of decision making, which valve to use and which access route to choose is illustrated in this article through clinical case scenarios. Additionally, the lessons learned thus far from the European perspective and the potential impact on the future use in the US are discussed. Despite of the progress in this field, we are still lacking an optimal transcatheter heart valve. Once it is available, we can take the plunge to compare transcatheter valve implantation with convention surgery in severe aortic stenosis!
Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease.
Hulin, Alexia; Moore, Vicky; James, Jeanne M; Yutzey, Katherine E
2017-01-01
Myxomatous valve disease (MVD) is the most common aetiology of primary mitral regurgitation. Recent studies suggest that defects in heart valve development can lead to heart valve disease in adults. Wnt/β-catenin signalling is active during heart valve development and has been reported in human MVD. The consequences of increased Wnt/β-catenin signalling due to Axin2 deficiency in postnatal valve remodelling and pathogenesis of MVD were determined. To investigate the role of Wnt/β-catenin signalling, we analysed heart valves from mice deficient in Axin2 (KO), a negative regulator of Wnt/β-catenin signalling. Axin2 KO mice display enlarged mitral and aortic valves (AoV) after birth with increased Wnt/β-catenin signalling and cell proliferation, whereas Sox9 expression and collagen deposition are decreased. At 2 months in Axin2 KO mice, the valve extracellular matrix (ECM) is stratified but distal AoV leaflets remain thickened and develop aortic insufficiency. Progressive myxomatous degeneration is apparent at 4 months with extensive ECM remodelling and focal aggrecan-rich areas, along with increased BMP signalling. Infiltration of inflammatory cells is also observed in Axin2 KO AoV prior to ECM remodelling. Overall, these features are consistent with the progression of human MVD. Finally, Axin2 expression is decreased and Wnt/β-catenin signalling is increased in myxomatous mitral valves in a murine model of Marfan syndrome, supporting the importance of Wnt/β-catenin signalling in the development of MVD. Altogether, these data indicate that Axin2 limits Wnt/β-catenin signalling after birth and allows proper heart valve maturation. Moreover, dysregulation of Wnt/β-catenin signalling resulting from loss of Axin2 leads to progressive MVD. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Q Fever: Statistics and Epidemiology
... severe with complications requiring hospitalization that may include endocarditis (infection of the heart tissue), encephalitis (inflammation of ... people with a history of heart valve defects, endocarditis, or heart valve implants may increase the risk ...
Topography of aortic heart valves. [applied to the development of a prosthetic heart valve
NASA Technical Reports Server (NTRS)
Karara, H. M.
1974-01-01
The cooperative effort towards the development of a tri-leaflet prosthetic heart valve is described. The photogrammetric studies were conducted on silicone rubber molds. Information on data acquisition and data reduction phases is given, and certain accuracy aspects of the project are explained. The various outputs which are discussed include digital models, profiles, and contour maps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, D.D.; Jones, H.E.
1994-05-06
Prosthetic heart valves have increased the life span of many patients with life threatening heart conditions. These valves have proven extremely reliable adding years to what would have been weeks to a patient`s life. Prosthetic valves, like the heart however, can suffer from this constant work load. A small number of valves have experienced structural fractures of the outlet strut due to fatigue. To study this problem a non-intrusive method to classify valves has been developed. By extracting from an acoustic signal the opening sounds which directly contain information from the outlet strut and then developing features which are suppliedmore » to an adaptive classification scheme (neural network) the condition of the valve can be determined. The opening sound extraction process has proved to be a classification problem itself. Due to the uniqueness of each heart and the occasional irregularity of the acoustic pattern it is often questionable as to the integrity of a given signal (beat), especially one occurring during an irregular beat pattern. A common cause of these irregular patterns is a condition known as atrial fibrillation, a prevalent arrhythmia among patients with prosthetic hear valves. Atrial fibrillation is suspected when the ECG shows no obvious P-waves. The atria do not contract and relax correctly to help contribute to ventricular filling during a normal cardiac cycle. Sometimes this leads to irregular patterns in the acoustic data. This study compares normal beat patterns to irregular patterns of the same heart. By analyzing the spectral content of the beats it can be determined whether or not these irregular patterns can contribute to the classification of a heart valve or if they should be avoided. The results have shown that the opening sounds which occur during irregular beat patterns contain the same spectral information as the opening which occur during a normal beat pattern of the same heart and these beats can be used for classification.« less
Goffin, Y; Grandmougin, D; Van Hoeck, B
1996-01-01
The heart valve bank of the European Homograft Bank has been set up in 1988 to meet the growing demand of cardiac surgeons for various sized and quality controlled cryopreserved homografts. Heart valve donors less than 60 years of age were classified in 3 categories: multiorgan donors with non transplantable hearts, recipients of cardiac transplantation and non beating heart cadavers with a warm ischemic time of less than 6 hours. Past history and biology were checked for transmissible diseases. Preparation, progressive freezing and storage in liquid nitrogen vapors, and quality control were according to the standards of the Belgian Ministry of Health. From end January 1989 to end May 1994, 989 homograft valves were cryopreserved (514 pulmonary, 475 aortic and 3 mitral) whereas 962 valves were discarded. The first cause of rejection being a major macroscopic lesion (41.48%). 138 hearts accepted at inspection were contaminated and 43 cases remained so after antibiotics. 38 cases were positive for hepatitis B or C. Complication at distribution and thawing included 10 instances of bag rupture and 15 of transversal fracture through the wall of the conduit. 477 aortic, 474 pulmonary valves as well as one mitral were implanted between May 1989 and May 1994, either for left or right ventricular outflow tract reconstruction. In the left ventricular outflow tract series 111 aortic and 23 pulmonary homograft valves were used in cases of native endocarditis, prosthetic endocarditis or recurrent endocarditis after homograft implantation. 9.6% of the requests could no be satisfied. Regular follow up information was available from 382 implants-40.1% only. The assessment of 5 years operation of the heart valve bank indicates: 1) the efficiency of selecting, cryopreserving and allocating quality controlled homograft valves from a large pool of donor hearts provided by a network of hospitals; 2) the difficulty of obtaining regular follow up information on the implants.
Reynolds Shear Stress for Textile Prosthetic Heart Valves in Relation to Fabric Design
Bark, David L.; Koupei, Atieh Yousefi; Forleo, Marcio; Vaesken, Antoine; Heim, Frederic; Dasi, Lakshmi P.
2016-01-01
The most widely implanted prosthetic heart valves are either mechanical or bioprosthetic. While the former suffers from thrombotic risks, the latter suffers from a lack of durability. Textile valves, alternatively, can be designed with durability and to exhibit hemodynamics similar to the native valve, lowering the risk for thrombosis. Deviations from native valve hemodynamics can result in an increased Reynolds Shear Stress (RSS), which has the potential to instigate hemolysis or shear-induced thrombosis. This study is aimed at characterizing flow in multiple textile valve designs with an aim of developing a low profile valve. Valves were created using a shaping process based on heating a textile membrane and placed within a left heart simulator. Turbulence and bulk hemodynamics were assessed through particle imaging velocimetry (PIV), along with flow and pressure measurements. Overall, RSS was reduced for low profile valves relative to high profile valves, but was otherwise similar among low profile valves. However, leakage was found in 3 of the 4 low profile valve designs driving the fabric design for low profile valves. Through textile design, low profile valves can be created with favorable hemodynamics. PMID:26919564
... and into a large blood vessel called the aorta. The aortic valve separates the heart and aorta. The aortic valve opens so blood can flow ... to be able to see your heart and aorta. You may need to be connected to a ...
Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L
2014-01-01
A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.
Martins, Carlo de Oliveira; Demarchi, Lea; Ferreira, Frederico Moraes; Pomerantzeff, Pablo Maria Alberto; Brandao, Carlos; Sampaio, Roney Orismar; Spina, Guilherme Sobreira; Kalil, Jorge; Cunha-Neto, Edecio; Guilherme, Luiza
2017-01-01
Autoimmune inflammatory reactions leading to rheumatic fever (RF) and rheumatic heart disease (RHD) result from untreated Streptococcus pyogenes throat infections in individuals who exhibit genetic susceptibility. Immune effector mechanisms have been described that lead to heart tissue damage culminating in mitral and aortic valve dysfunctions. In myxomatous valve degeneration (MXD), the mitral valve is also damaged due to non-inflammatory mechanisms. Both diseases are characterized by structural valve disarray and a previous proteomic analysis of them has disclosed a distinct profile of matrix/structural proteins differentially expressed. Given their relevance in organizing valve tissue, we quantitatively evaluated the expression of vimentin, collagen VI, lumican, and vitronectin as well as performed immunohistochemical analysis of their distribution in valve tissue lesions of patients in both diseases. We identified abundant expression of two isoforms of vimentin (45 kDa, 42 kDa) with reduced expression of the full-size protein (54 kDa) in RHD valves. We also found increased vitronectin expression, reduced collagen VI expression and similar lumican expression between RHD and MXD valves. Immunohistochemical analysis indicated disrupted patterns of these proteins in myxomatous degeneration valves and disorganized distribution in rheumatic heart disease valves that correlated with clinical manifestations such as valve regurgitation or stenosis. Confocal microscopy analysis revealed a diverse pattern of distribution of collagen VI and lumican into RHD and MXD valves. Altogether, these results demonstrated distinct patterns of altered valve expression and tissue distribution/organization of structural/matrix proteins that play important pathophysiological roles in both valve diseases.
Make Your Own Working Models of Heart Valves!
ERIC Educational Resources Information Center
Hudson, Margaret L.
2014-01-01
Heart valves play a vital role in efficient circulation of the blood, and the details of their physical structure are related crucially to their function. However, it can be challenging for the learner to make the mental connection between anatomical structures of valves and the changing pressure gradients that the valves experience and come to an…
Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality
Claiborne, Thomas E; Slepian, Marvin J; Hossainy, Syed; Bluestein, Danny
2013-01-01
Present prosthetic heart valves, while hemodynamically effective, remain limited by progressive structural deterioration of tissue valves or the burden of chronic anticoagulation for mechanical valves. An idealized valve prosthesis would eliminate these limitations. Polymeric heart valves (PHVs), fabricated from advanced polymeric materials, offer the potential of durability and hemocompatibility. Unfortunately, the clinical realization of PHVs to date has been hampered by findings of in vivo calcification, degradation and thrombosis. Here, the authors review the evolution of PHVs, evaluate the state of the art of this technology and propose a pathway towards clinical reality. In particular, the authors discuss the development of a novel aortic PHV that may be deployed via transcatheter implantation, as well as its optimization via device thrombogenicity emulation. PMID:23249154
dos Anjos, Daniela Brianne Martins; Rodrigues, Roberta Cunha Matheus; Padilha, Kátia Melissa; Pedrosa, Rafaela Batista dos Santos; Gallani, Maria Cecília Bueno Jayme
2016-01-01
ABSTRACT Objective: evaluate the practicality, acceptability and the floor and ceiling effects, estimate the reliability and verify the convergent construct's validity with the instrument called the Heart Valve Disease Impact on daily life (IDCV) of the valve disease in patients with mitral and or aortic heart valve disease. Method: data was obtained from 86 heart valve disease patients through 3 phases: a face to face interview for a socio-demographic and clinic characterization and then other two done through phone calls of the interviewed patients for application of the instrument (test and repeat test). Results: as for the practicality and acceptability, the instrument was applied with an average time of 9,9 minutes and with 110% of responses, respectively. Ceiling and floor effects observed for all domains, especially floor effect. Reliability was tested using the test - repeating pattern to give evidence of temporal stability of the measurement. Significant negative correlations with moderate to strong magnitude were found between the score of the generic question about the impact of the disease and the scores of IDCV, which points to the validity of the instrument convergent construct. Conclusion: the instrument to measure the impact of valve heart disease on the patient's daily life showed evidence of reliability and validity when applied to patients with heart valve disease. PMID:27992024
Provision, organization and models of heart valve clinics within The United Kingdom.
Bhattacharyya, S; Pavitt, C; Lloyd, G; Chambers, J B
2015-02-01
Specialist clinics are recommended for the assessment and follow-up of patients with heart valve disease. We sought to identify the current provision of specialist valve clinics in UK. A database of all UK National Health Service hospitals was created. An online survey was distributed to each hospital to examine the model of heart valve clinic, patient population, provision of advanced imaging modalities and biochemical markers and provision of patient information services. Valve clinics were run in 48/228 (21%) hospitals, in 27/45 (60%) tertiary centres and 21/183 (11%) district hospitals. The survey was completed by 34 (71%). A consultant cardiologist ran the clinic in 19 (56%), a cardiac sonographer in 8 (24%), a nurse specialist in 3 (9%) and a hybrid model was used in 4 (12%). Patients with native valve disease were seen in 32 (94%), after heart valve surgery in 19 (56%), pre-/post-transcatheter valve intervention in 10 (29%) and with Marfan syndrome in 9(26%). Stress echocardiography, cardiac magnetic resonance imaging, computed tomography and positron emission tomography were available in 21 (62%), 19 (56%), 22 (65%) and 6 (18%) hospitals, respectively. There is an underprovision of specialist heart valve clinics within the UK, and there is a 5-fold difference between cardiac centres and district general hospitals. © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mitroflow DL Post Approval Study- North America
2017-12-04
Aortic Stenosis; Aortic Regurgitation; Aortic Valve Insufficiency; Heart Valve Diseases; Cardiovascular Abnormalities; Cardiovascular Diseases; Congenital Abnormalities; Heart Diseases; Pathological Conditions, Anatomical
Bouma, Wobbe; Jainandunsing, Jayant S; Khamooshian, Arash; van der Harst, Pim; Mariani, Massimo A; Natour, Ehsan
2017-02-01
A thorough understanding of mitral and aortic valve motion dynamics is essential in mastering the skills necessary for performing successful valve intervention (open or transcatheter repair or replacement). We describe a reproducible and versatile beating-heart mitral and aortic valve assessment and valve intervention training model in human cadavers. The model is constructed by bilateral ligation of the pulmonary veins, ligation of the supra-aortic arteries, creating a shunt between the descending thoracic aorta and the left atrial appendage with a vascular prosthesis, anastomizing a vascular prosthesis to the apex and positioning an intra-aortic balloon pump (IABP) in the vascular prosthesis, cross-clamping the descending thoracic aorta, and finally placing a fluid line in the shunt prosthesis. The left ventricle is filled with saline to the desired pressure through the fluid line, and the IABP is switched on and set to a desired frequency (usually 60-80 bpm). Prerepair valve dynamic motion can be studied under direct endoscopic visualization. After assessment, the IABP is switched off, and valve intervention training can be performed using standard techniques. This high-fidelity simulation model has known limitations, but provides a realistic environment with an actual beating (human) heart, which is of incremental value. The model provides a unique opportunity to fill a beating heart with saline and to study prerepair mitral and aortic valve dynamic motion under direct endoscopic visualization. The entire set-up provides a versatile beating-heart mitral and aortic valve assessment model, which may have important implications for future valve intervention training. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Medications for Heart Valve Symptoms
... on the heart Vasodilators Can lower the heart's work by opening and relaxing the blood vessels; reduced pressure may encourage blood to flow in a forward direction, rather than being forced backward through a leaky valve Additional resources: Print ...
A thin film nitinol heart valve.
Stepan, Lenka L; Levi, Daniel S; Carman, Gregory P
2005-11-01
In order to create a less thrombogenic heart valve with improved longevity, a prosthetic heart valve was developed using thin film nitinol (NiTi). A "butterfly" valve was constructed using a single, elliptical piece of thin film NiTi and a scaffold made from Teflon tubing and NiTi wire. Flow tests and pressure readings across the valve were performed in vitro in a pulsatile flow loop. Bio-corrosion experiments were conducted on untreated and passivated thin film nitinol. To determine the material's in vivo biocompatibility, thin film nitinol was implanted in pigs using stents covered with thin film NiTi. Flow rates and pressure tracings across the valve were comparable to those through a commercially available 19 mm Perimount Edwards tissue valve. No signs of corrosion were present on thin film nitinol samples after immersion in Hank's solution for one month. Finally, organ and tissue samples explanted from four pigs at 2, 3, 4, and 6 weeks after thin film NiTi implantation appeared without disease, and the thin film nitinol itself was without thrombus formation. Although long term testing is still necessary, thin film NiTi may be very well suited for use in artificial heart valves.
Fluid Dynamics of the Heart and its Valves
NASA Astrophysics Data System (ADS)
Peskin, Charles S.
1997-11-01
The fluid dynamics of the heart involve the interaction of blood, a viscous incompressible fluid, with the flexible, elastic, fiber-reinforced heart valve leaflets that are immersed in that fluid. Neither the fluid motion nor the valve leaflet motion are known in advance: both must be computed simultaneously by solving their coupled equations of motion. This can be done by the immersed boundary method(Peskin CS and McQueen DM: A general method for the computer simulation of biological systems interacting with fluids. In: Biological Fluid Dynamics (Ellington CP and Pedley TJ, eds.), The Company of Biologists Limited, Cambridge UK, 1995, pp. 265-276.), which can be extended to incorporate the contractile fiber architecture of the muscular heart walls as well as the valve leaflets and the blood. In this way we arrive at a three-dimensional computer model of the heart(Peskin CS and McQueen DM: Fluid dynamics of the heart and its valves. In: Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology (Othmer HG, Adler FR, Lewis MA, and Dallon JC, eds.), Prentice-Hall, Englewood Cliffs NJ, 1996, pp. 309-337.), which can be used as a test chamber for the design of prosthetic cardiac valves, and also to study the function of the heart in health and in disease. Numerical solutions of the equations of cardiac fluid dynamics obtained by the immersed boundary method will be presented in the form of a video animation of the beating heart.
Ferreira, Claudia Natália; Vieira, Lauro Mello; Dusse, Luci Maria Sant'Ana; Amaral, Carlos Faria Santos; de Magalhães Esteves, William Antônio; Fenelon, Lúcia Maria Amorim; das Graças Carvalho, Maria
2002-11-01
To investigate whether patients with heart valve prostheses and similar International Normalized Ratios (INR) have the same level of protection against thromboembolic events, that is, whether the anticoagulation intensity is related to the intensity of hypercoagulability suppression. INR and plasma levels of prothrombin fragment 1+2 (F1+2) were assessed in blood samples of 27 patients (7 with mechanical heart valves and 20 with biological heart valves) and 27 blood samples from healthy donors that were not taking any medication. Increased levels of F1+2 were observed in blood samples of 5 patients with heart valve prostheses taking warfarin. These findings reinforce the idea that even though patients may have INRs, within the therapeutic spectrum, they are not free from new thromboembolic events. Determination of the hypercoagulability marker F1+2 might result in greater efficacy and safety for the use of oral anticoagulants, resulting in improved quality of life for patients.
Behr, Luc; Chetboul, Valérie; Sampedrano, Carolina Carlos; Vassiliki, Gouni; Pouchelon, Jean-Louis; Laborde, François; Borenstein, Nicolas
2007-04-01
To describe an open, beating heart surgical technique and use of a bovine pericardial prosthetic valve for mitral valve replacement (MVR) in the dog. Clinical case report. Male Bull Terrier (17-month-old, 26 kg) with mitral valve dysplasia and severe regurgitation. A bovine pericardial bioprosthesis was used to replace the mitral valve using an open beating heart surgical technique and cardiopulmonary bypass. Successful MVR was achieved using a beating heart technique. Mitral regurgitation resolved and cardiac performances improved (left ventricular end-diastolic diameter decreased from 57.6 to 48.7 mm, and left atrium/aorta ratio returned to almost normal, from 1.62 to 1.19). Cardiopulmonary by-pass time and total surgical duration were decreased compared with standard cardioplegic techniques. Surgical recovery was uneventful and on echocardiography 6 months later valve function was excellent. Considering the technique advantages (no cardiac arrest, ischemic reperfusion injury, and hypothermia, or the need for aortic dissection and cannulation for administration of cardioplegic solution), short-term mortality and morbidity may be reduced compared with standard cardioplegic techniques. Based on experience in this dog, beating heart mitral valvular replacement is a seemingly safe and viable option for the dog and bovine pericardial prosthesis may provide better long-term survival than mechanical prostheses.
van Gils, Lennart; Tchetche, Didier; Lhermusier, Thibault; Abawi, Masieh; Dumonteil, Nicolas; Rodriguez Olivares, Ramón; Molina-Martin de Nicolas, Javier; Stella, Pieter R; Carrié, Didier; De Jaegere, Peter P; Van Mieghem, Nicolas M
2017-03-03
Right bundle branch block is an established predictor for new conduction disturbances and need for a permanent pacemaker (PPM) after transcatheter aortic valve replacement. The aim of the study was to evaluate the absolute rates of transcatheter aortic valve replacement related PPM implantations in patients with pre-existent right bundle branch block and categorize for different transcatheter heart valves. We pooled data on 306 transcatheter aortic valve replacement patients from 4 high-volume centers in Europe and selected those with right bundle branch block at baseline without a previously implanted PPM. Logistic regression was used to evaluate whether PPM rate differed among transcatheter heart valves after adjustment for confounders. Mean age was 83±7 years and 63% were male. Median Society of Thoracic Surgeons score was 6.3 (interquartile range, 4.1-10.2). The following transcatheter valve designs were used: Medtronic CoreValve (n=130; Medtronic, Minneapolis, MN); Edwards Sapien XT (ES-XT; n=124) and Edwards Sapien 3 (ES-3; n=32; Edwards Lifesciences, Irvine, CA); and Boston Scientific Lotus (n=20; Boston Scientific Corporation, Marlborough, MA). Overall permanent pacemaker implantation rate post-transcatheter aortic valve replacement was 41%, and per valve design: 75% with Lotus, 46% with CoreValve, 32% with ES-XT, and 34% with ES-3. The indication for PPM implantation was total atrioventricular block in 98% of the cases. Lotus was associated with a higher PPM rate than all other valves. PPM rate did not differ between ES-XT and ES-3. Ventricular paced rhythm at 30-day and 1-year follow-up was present in 81% at 89%, respectively. Right bundle branch block at baseline is associated with a high incidence of PPM implantation for all transcatheter heart valves. PPM rate was highest for Lotus and lowest for ES-XT and ES-3. Pacemaker dependency remained high during follow-up. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Schoonbeek, R C; Pieper, P G; van Slooten, Y J; Freling, H G; Sieswerda, G T; van Dijk, A P J; Jongbloed, M R M; Post, M C; Bouma, B J; Berger, R M F; Ebels, T; van Melle, J P
2016-11-01
N-terminal B‑type natriuretic peptide (NT-proBNP) is an important biomarker for the detection of heart failure. Adults with congenital heart disease (ACHD) and a prosthetic heart valve are at risk for heart failure. This study aimed to determine the value of NT-proBNP in ACHD patients with a prosthetic valve and investigate its relationship with cardiac function and exercise capacity. In this multi-centre cross-sectional observational study, data regarding medical history, echocardiography, exercise testing (VO 2 peak) and laboratory blood evaluation (including NT-proBNP) were collected in ACHD patients with a single prosthetic valve (either homografts, heterografts or mechanical valves). A total of 306 ACHD patients with pulmonary valve replacement (PVR, n = 139), aortic valve replacement (n = 141), mitral valve replacement (n = 21) or tricuspid valve replacement (n = 5) were investigated. The majority of patients (77 %) were in NYHA class I or II. Elevated NT-proBNP levels (cut-off ≥125 pg/ml) were found in 50 % of the patients, with the highest levels in patients with mitral valve replacements. In this study population, NT-proBNP levels were associated with gender (p = 0.029) and VO 2 max (p < 0.001). In PVR patients, NT-proBNP levels were associated with lower VO 2 peak, also after adjustment for age, gender and age at valve replacement in a multivariate model (p = 0.015). In patients with ACHD and a prosthetic valve, elevated NT-proBNP levels are frequently observed despite preserved NYHA class. In PVR patients, a higher NT-proBNP level was associated with a lower VO 2 peak. These results may be of importance in the ongoing discussion about the timing of valve replacement in patients with CHD.
Strut fracture in a Bjork-Shiley aortic valve prosthesis.
Lifschultz, B D; Donoghue, E R
1985-10-01
Strut fracture can be a life-threatening adverse effect of mechanical prosthetic heart valves. This complication has occurred in the DeBakey, the Beall, the Cooley-Cutter and, most recently, the Bjork-Shiley valves. We report the case of a 35-year-old man who died suddenly 16 months after a 60 degree Bjork-Shiley Convexo-Concave heart valve prosthesis was inserted in the aortic position. At autopsy, the two welded attachments of the valve's outlet strut had fractured. The valve's tilting disc was found in his abdominal aorta.
Valve replacement in children: a challenge for a whole life.
Henaine, Roland; Roubertie, François; Vergnat, Mathieu; Ninet, Jean
2012-10-01
Valvular pathology in infants and children poses numerous challenges to the paediatric cardiac surgeon. Without question, valvular repair is the goal of intervention because restoration of valvular anatomy and physiology using native tissue allows for growth and a potentially better long-term outcome. When reconstruction fails or is not feasible, valve replacement becomes inevitable. Which valve for which position is controversial. Homograft and bioprosthetic valves achieve superior haemodynamic results initially but at the cost of accelerated degeneration. Small patient size and the risk of thromboembolism limit the usefulness of mechanical valves, and somatic outgrowth is an universal problem with all available prostheses. The goal of this article is to address valve replacement options for all four valve positions within the paediatric population. We review current literature and our practice to support our preferences. To summarize, a multitude of opinions and surgical experiences exist. Today, the valve choices that seem without controversy are bioprosthetic replacement of the tricuspid valve and Ross or Ross-Konno procedures when necessary for the aortic valve. On the other hand, bioprostheses may be implanted when annular pulmonary diameter is adequate; if not or in case of right ventricular outflow tract discontinuity, it is better to use a pulmonary homograft with the Ross procedure. Otherwise, a valved conduit. Mitral valve replacement remains the most problematic; the mechanical prosthesis must be placed in the annular position, avoiding oversizing. Future advances with tissue-engineered heart valves for all positions and new anticoagulants may change the landscape for valve replacement in the paediatric population. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Quantification and comparison of the mechanical properties of four human cardiac valves.
Pham, Thuy; Sulejmani, Fatiesa; Shin, Erica; Wang, Di; Sun, Wei
2017-05-01
Although having the same ability to permit unidirectional flow within the heart, the four main valves-the mitral valve (MV), aortic (AV), tricuspid (TV) and pulmonary (PV) valves-experience different loading conditions; thus, they exhibit different structural integrity from one another. Most research on heart valve mechanics have been conducted mainly on MV and AV or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same aged patient population whose death was unrelated to cardiovascular disease. A total of 114 valve leaflet samples were excised from 12 human cadavers whose death was unrelated to cardiovascular disease (70.1±3.7years old). Tissue mechanical and structural properties were characterized by planar biaxial mechanical testing and histological methods. The experimental data were then fitted with a Fung-type constitutive model. The four valves differed substantially in thickness, degree of anisotropy, and stiffness. The leaflets of the left heart (the AV leaflets and the anterior mitral leaflets, AML) were significantly stiffer and less compliant than their counterparts in the right heart. TV leaflets were the most extensible and isotropic, while AML and AV leaflets were the least extensible and the most anisotropic. Age plays a significant role in the reduction of leaflet stiffness and extensibility with nearly straightened collagen fibers observed in the leaflet samples from elderly groups (65years and older). Results from 114 human leaflet samples not only provided a baseline quantification of the mechanical properties of aged human cardiac valves, but also offered a better understanding of the age-dependent differences among the four valves. It is hoped that the experimental data collected and the associated constitutive models in this study can facilitate future studies of valve diseases, treatments and the development of interventional devices. Most research on heart valve mechanics have been conducted mainly on mitral and aortic valves or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same relatively healthy elderly patient population. In this study, the mechanical and microstructural properties of 114 leaflets of aortic, mitral, pulmonary and tricuspid valves from 12 human cadaver hearts were mechanically tested, analyzed and compared. Our results not only provided a baseline quantification of the mechanical properties of aged human valves, but a age range between patients (51-87years) also offers a better understanding of the age-dependent differences among the four valves. It is hoped that the obtained experimental data and associated constitutive parameters can facilitate studies of valve diseases, treatments and the development of interventional devices. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Goffin, Y A; Van Hoeck, B; Jashari, R; Soots, G; Kalmar, P
2000-03-01
The preparation, banking and distribution of cryopreserved heart valves has been carried out at the European Homograft Bank (EHB) in Brussels without interruption since January 1989. We present an assessment of the Bank's activities during this 10-year period. Heart valve donors aged <62 years form three categories: multiorgan donors with non-transplantable hearts; recipients of cardiac transplantation; and non-beating heart cadavers with a warm ischemia time of less than 6 h. Past history and biology are checked for transmissible diseases. Dissection, incubation in antibiotics and cryopreservation in 10% dimethylsulfoxide with storage in liquid nitrogen vapors (about -150 degrees C), and quality control are according to the standards of the Belgian Ministry of Health. Cryopreserved valves are shipped to the implantation centers in a dry shipper at about -150 degrees C. Between January 30th 1989 and December 31st 1998, 1,817 non-transplantable hearts and 12 excised semilunar valves were obtained. In total, 2,077 valves (1,032 pulmonary, 931 aortic and 13 mitral) were decontaminated, cryopreserved and stored in liquid nitrogen vapor (six more valves were refrigerated). In total, 1,515 valves were discarded at different stages of the protocol, the main causes of rejection being significant macroscopic lesions (68.2% aortic and 26.67% pulmonary). Inadequate excision at procurement (10.37% pulmonary), persistent contamination after antibiotics (5.6%) and positive serology for hepatitis B and C and Q fever (5.4%) were other frequent causes for rejection. Among the 2,117 accepted valves, 1,398 were graded first and 719 second choice, mainly on the basis of morphology. In total, 2,090 cryopreserved valves and one refrigerated valve were implanted in 39 institutions between May 1989 and December 1998. Of requests, 10.02% could not be satisfied. In total, 967 pulmonary valves were implanted in the right ventricular outflow tract (RVOT); 424 during a Ross procedure, and 76 in the left ventricular outflow tract (LVOT). Of the aortic valves, 732 were implanted in the LVOT and 266 in the RVOT. Mitral homografts were used for tricuspid valve replacement in two cases, and in the mitral position in seven. Complications at distribution and thawing included 10 bag ruptures and 16 transversal conduit wall fractures. Of the valves shipped, 317 (13.16%) were not used and were returned safely in the dry shipper. Comparison of distribution rates in the first 5.5 and last 4.5 years of EHB activity shows: (i) a significant increase in pulmonary valve implantations in the RVOT (from 71.95% to 81.95%); and (ii) a marked increase (265%) in pulmonary homograft implantations as part of a Ross operation, and a significant decrease (28%) in aortic homograft implantation in the LVOT. While macroscopic lesions of procured aortic valves remain the most frequent and unavoidable cause of homograft rejection during quality control, the high percentage of inadequate surgical heart valve excision should be corrected. The rates of bacterial contamination and positive serology seem acceptable. Storage and shipping of cryopreserved homografts in liquid nitrogen vapor permits them to be spared very efficiently. The increasing use of pulmonary valves for RVOT reconstruction either in congenital heart disease or as part of the Ross procedure compensates for the limited availability of good quality aortic valves.
A 3D velocimetry study of the flow through prosthetic heart valves
NASA Astrophysics Data System (ADS)
Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.
2006-11-01
Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.
30. Engine controls and valve gear, looking aft on main ...
30. Engine controls and valve gear, looking aft on main (promenade) deck level. Threaded admission valve lift rods (two at immediate left of chronometer) permit adjustment of valve timing in lower and upper admission valves of cylinder (left rod controls lower valve, right rod upper valve). Valve rods are lifted by jaw-like "wipers" during operation. Exhaust valve lift rods and wipers are located to right of chronometer. Crank at extreme right drives valve wiper shaft when engaged to end of eccentric rod, shown under "Crank Indicator" dial. Pair of handles to immediate left of admission valve rods control condenser water valves; handles to right of exhaust valve rods control feedwater flow to boilers from pumps. Gauges indicate boiler pressure (left) and condenser vacuum (right); "Crank Indicator" on wall aids engineer in keeping engine crank off "dead-center" at stop so that engine may be easily restarted. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...
... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...
Adapting to living with a mechanical aortic heart valve: a phenomenographic study.
Oterhals, Kjersti; Fridlund, Bengt; Nordrehaug, Jan Erik; Haaverstad, Rune; Norekvål, Tone M
2013-09-01
To describe how patients adapt to living with a mechanical aortic heart valve. Aortic valve replacement with a mechanical prosthesis is preferred for patients with life expectancy of more than 10 years as they are more durable than bioprosthetic valves. Mechanical valves have some disadvantages, such as higher risk of thrombosis and embolism, increased risk of bleeding related to lifelong oral anticoagulation treatment and noise from the valve. An explorative design with a phenomenographic approach was employed. An explorative design with a phenomenographic approach was applied. Interviews were conducted over 4 months during 2010-2011 with 20 strategically sampled patients, aged 24-74 years having undergone aortic valve replacement with mechanical prosthesis during the last 10 years. Patients adapted to living with a mechanical aortic heart valve in four ways: 'The competent patient' wanted to stay in control of his/her life. 'The adjusted patient' considered the implications of having a mechanical aortic valve as part of his/her daily life. 'The unaware patient' was not aware of warfarin-diet-medication interactions. 'The worried patient' was bothered with the oral anticoagulation and annoyed by the sound of the valve. Patients moved between the different ways of adapting. The oral anticoagulation therapy was considered the most troublesome consequence, but also the sound of the valve was difficult to accept. Patient counselling and adequate follow-up can make patients with mechanical aortic heart valves more confident and competent to manage their own health. We recommend that patients should participate in a rehabilitation programme following cardiac surgery. © 2013 Blackwell Publishing Ltd.
Bezuidenhout, Deon; Williams, David F; Zilla, Peter
2015-01-01
Efficient function and long-term durability without the need for anticoagulation, coupled with the ability to be accommodated in many different types of patient, are the principal requirements of replacement heart valves. Although the clinical use of valves appeared to have remained steady for several decades, the evolving demands for the elderly and frail patients typically encountered in the developed world, and the needs of much younger and poorer rheumatic heart disease patients in the developing world have now necessitated new paradigms for heart valve technologies and associated materials. This includes further consideration of durable elastomeric materials. The use of polymers to produce flexible leaflet valves that have the benefits of current commercial bioprosthetic and mechanical valves without any of their deficiencies has been held desirable since the mid 1950s. Much attention has been focused on thermoplastic polyurethanes in view of their generally good physico-chemical properties and versatility in processing, coupled with the improving biocompatibility and stability of recent formulations. Accelerated in vitro durability of between 600 and 1000 million cycles has been achieved using polycarbonate urethanes, and good resistance to degradation, calcification and thrombosis in vivo has been shown with some polysiloxane-based polyurethanes. Nevertheless, polymeric valves have remained relegated to use in temporary ventricular assist devices for bridging heart failure patients to transplantation. Some recent studies suggest that there is a greater degree of instability in thermoplastic materials than hitherto believed so that significant challenges remain in the search for the combination of durability and biocompatibility that would allow polymeric valves to become a clinical reality for surgical implantation. Perhaps more importantly, they could become candidates for use in situations where minimally invasive transcatheter procedures are used to replace diseased valves. Being amenable to relatively inexpensive mass production techniques, the attainment of this goal could benefit very large numbers of patients in developing and emerging countries who currently have no access to treatment for rheumatic heart disease that is so prevalent in these areas. This review discusses the evolution and current status of polymeric valves in wide-ranging circumstances.
[Ebstein's "like" anomaly ventricular double inlet. A rare association].
Muñoz Castellanos, Luis; Kuri Nivon, Magdalena
The association of univentricular heart with double inlet and Ebstein's "like" anomaly of the common atrioventricular valve is extremely rare. Two hearts with this association are described with the segmental sequential system which determine the atrial situs, the types of atrioventricular and ventriculoarterial connections and associated anomalies. Both hearts had atrial situs solitus, and a univentricular heart with common atrioventricular valve, a foramen primum and double outlet ventricle with normal crossed great arteries. In the fiefirst heart the four leaflets of the atrioventricular valve were displaced and fused to the ventricular walls, from the atrioventricular union roward the apex with atrialization of the inlet and trabecular zones and there was stenosis in the infundibulum and in the pulmonary valve. In the second heart the proximal segment of the atrioventricular valve was displaced and fused to the ventricular whith shot atrialization and the distal segment was dysplastic with fibromixoid nodules and tendinous cords short and thick; the pulmonary artery was dilate. Both hearts are grouped in the atrioventricular univentricular connection in the segmental sequential system. The application of this method in the diagnosis of congenital heart disease demonstrates its usefulness. The associations of complex anomalies in these hearts show us the infinite spectrum of presentation of congenital heart disease which expands our knowledge of pediatric cardiology. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.
Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony
2015-09-03
The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.
[Tricuspid valve insufficiency: what should be done?].
von Segesser, L K; Stauffer, J C; Delabays, A; Chassot, P G
1998-12-01
Tricuspid regurgitation is relatively common. Due to the progress made in echocardiography, its diagnosis is in general made readily and in reliable fashion. Basically one has to distinguish between functional tricuspid valve regurgitation due to volume and/or pressure overload of the right ventricle with intact valve structures versus tricuspid valve regurgitation due to pathologic valve structures. The clear identification of the regurgitation mechanism is of prime importance for the treatment. Functional tricuspid valve regurgitation can often be improved by medical treatment of heart failure, and eventually a tricuspid valve plasty can solve the problem. However, the presence of pathologic tricuspid valve structures makes in general more specific plastic surgical procedures and even prosthetic valve replacements necessary. A typical example for a structural tricuspid valve regurgitation is the case of a traumatic papillary muscle rupture. Due to the sudden onset, this pathology is not well tolerated and requires in general surgical reinsertion of the papillary muscle. In contrast, tricuspid valve regurgitation resulting from chronic pulmonary embolism with pulmonary artery hypertension, can be improved by pulmonary artery thrombendarteriectomy and even completely cured with an additional tricuspid annuloplasty. However, tricuspid regurgitations due to terminal heart failure are not be addressed with surgery directed to tricuspid valve repair or replacement. Heart transplantation, dynamic cardiomyoplasty or mechanical circulatory support should be evaluated instead.
Intraoperative measurements on the mitral apparatus using optical tracking: a feasibility study
NASA Astrophysics Data System (ADS)
Engelhardt, Sandy; De Simone, Raffaele; Wald, Diana; Zimmermann, Norbert; Al Maisary, Sameer; Beller, Carsten J.; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo
2014-03-01
Mitral valve reconstruction is a widespread surgical method to repair incompetent mitral valves. During reconstructive surgery the judgement of mitral valve geometry and subvalvular apparatus is mandatory in order to choose for the appropriate repair strategy. To date, intraoperative analysis of mitral valve is merely based on visual assessment and inaccurate sizer devices, which do not allow for any accurate and standardized measurement of the complex three-dimensional anatomy. We propose a new intraoperative computer-assisted method for mitral valve measurements using a pointing instrument together with an optical tracking system. Sixteen anatomical points were defined on the mitral apparatus. The feasibility and the reproducibility of the measurements have been tested on a rapid prototyping (RP) heart model and a freshly exercised porcine heart. Four heart surgeons repeated the measurements three times on each heart. Morphologically important distances between the measured points are calculated. We achieved an interexpert variability mean of 2.28 +/- 1:13 mm for the 3D-printed heart and 2.45 +/- 0:75 mm for the porcine heart. The overall time to perform a complete measurement is 1-2 minutes, which makes the method viable for virtual annuloplasty during an intervention.
Profile of Heart Donors from the Human Valve Bank of the Santa Casa de Misericórdia de Curitiba.
Ferreira, Renata Maria; da Costa, Marise Teresinha Brenner Affonso; Canciglieri Junior, Osiris; Sant'Anna, Ângelo Márcio Oliveira
2016-04-01
Human heart valves are used as replacement valves and have satisfactory functional results compared with conventional prostheses. Characterize the profile of effective heart donors from the human valve bank of the santa casa de misericórdia de curitiba and analyze the association between the profile variables. It consists of a retrospective and quantitative study of electronic medical records from heart donors for heart valves. every heart donation made to the bank between january 2004 and december 2014 was studied. 2,149 donations were analyzed, from donors aged 0 to 71 years old, with an average of 34.9 ± 15.03 years old. most donors were male 65.7% (n=1,411) and 34.3% (n=738) were female. among the most frequent causes of the donors' death are trauma at 53% (n=1,139) and cerebral vascular accident at 34.2% (n=735). there was significant statistical association between the analyzed variables. There has been an improvement in brazil's donation rate, being essential that the tissue banks work together with the state and federal district centers for notification, procurement and distribution of organs in order to increase the number of donors.
Papp, Lajos
2008-08-03
For hundreds of years, universal medical practice has depicted the heart to be the central organ, showing the heart's function as the primary source of energy for blood circulation, paying particular importance to the role of the heart valves. At present the generally accepted paradigm: the main force component of blood circulation is the pressure-gradient generated by the working heart. In serious combined illnesses of heart valves, the function of the valve is almost nonexistent. Based on the value of pressure in the chambers of the heart and in the great arteries and veins, blood flows from a place of high pressure to lower pressure, and should work the other way around as well. It is a fact, however, that even in such cases the circulation of blood is directed from the main arteries towards the veins: without the function of the valves--seemingly opposing the basic laws of physics--it keeps its original direction. Therefore we can justifiably infer that it isn't the work of the heart muscle that provides the source of energy for blood circulation. The heart has an essential function in the maintenance of blood circulation: pulse generation. The principal role of the heart is to generate pulses and not pressure.
Bacterial DNA detected on pathologically changed heart valves using 16S rRNA gene amplification.
Chalupova, Miroslava; Skalova, Anna; Hajek, Tomas; Geigerova, Lenka; Kralova, Dana; Liska, Pavel; Hecova, Hana; Molacek, Jiri; Hrabak, Jaroslav
2018-05-22
Nowadays, dental diseases are one of the most common illnesses in the world. Some of them can lead to translocation of oral bacteria to the bloodstream causing intermittent bacteraemia. Therefore, a potential association between oral infection and cardiovascular diseases has been discussed in recent years as a result of adhesion of oral microbes to the heart valves. The aim of this study was to detect oral bacteria on pathologically changed heart valves not caused by infective endocarditis. In the study, patients with pathologically changed heart valves were involved. Samples of heart valves removed during heart valve replacement surgery were cut into two parts. One aliquot was cultivated aerobically and anaerobically. Bacterial DNA was extracted using Ultra-Deep Microbiome Prep (Molzym GmbH, Bremen, Germany) followed by a 16S rRNA gene PCR amplification using Mastermix 16S Complete kit (Molzym GmbH, Bremen, Germany). Positive PCR products were sequenced and the sequences were analyzed using BLAST database ( http://www.ncbi.nlm.nih/BLAST ). During the study period, 41 samples were processed. Bacterial DNA of the following bacteria was detected in 21 samples: Cutibacterium acnes (formerly Propionibacterium acnes) (n = 11; 52.38% of patients with positive bacterial DNA detection), Staphylococcus sp. (n = 9; 42.86%), Streptococcus sp. (n = 1; 4.76%), Streptococcus sanguinis (n = 4; 19.05%), Streptococcus oralis (n = 1; 4.76%), Carnobacterium sp. (n = 1; 4.76%), Bacillus sp. (n = 2; 9.52%), and Bergeyella sp. (n = 1; 4.76%). In nine samples, multiple bacteria were found. Our results showed significant appearance of bacteria on pathologically changed heart valves in patients with no symptoms of infective endocarditis.
Application of stem cells for cardiovascular grafts tissue engineering.
Wu, Kaihong; Liu, Ying Long; Cui, Bin; Han, Zhongchao
2006-06-01
Congenital and acquired heart diseases are leading causes of morbidity and mortality world-wide. Currently, the synthetic materials or bioprosthetic replacement devices for cardiovascular surgery are imperfect and subject patients to one or more ongoing risks including thrombosis, limited durability and need for reoperations due to lack of growth in children and young adults. Suitable replacement grafts should have appropriate characteristics, including resistance to infection, low immunogenicity, good biocompatability and thromboresistance, with appropriate mechanical and physiological properties. Tissue engineering is a new scientific field aiming at fabrication of living, autologous grafts having structure or function properties that can be used to restore, maintain or improve tissue function. The use of autologous stem cells in cardiovascular tissue engineering is quite promising due to their capacity of self-renewal, high proliferation, and differentiation into specialized progeny. Progress has been made in engineering the various components of the cardiovascular system, including myocardial constructs, heart valves, and vascular patches or conduits with autologous stem cells. This paper will review the current achievements in stem cell-based cardiovascular grafts tissue engineering, with an emphasis on its clinical or possible clinical use in cardiovascular surgery.
Pulsatile flow in the aorta of the LVAD supported heart studied using particle image velocimetry
NASA Astrophysics Data System (ADS)
Moyedi, Zahra
Currently many patients die because of the end-stage heart failure, mainly due to the reduced number of donor heart transplant organs. Studies show that a permanent left ventricular assist device (LVAD), a battery driven pump which is surgically implanted, increased the survival rate of patients with end-stage heart failure and improved considerably their quality of life. The inlet conduit of the LVAD is attached to the left ventricle and the outflow conduit anastomosed to the ascending aorta. The purpose of LVAD support is to help a weakened heart to pump blood to the rest of the body. However LVAD can cause some alterations of the natural blood flow. When your blood comes in contact with something that isn't a natural part of your body blood clots can occur and disrupt blood flow. Aortic valve integrity is vital for optimal support of left ventricular assist LVAD. Due to the existence of high continuous transvalvular pressure on the aortic valve, the opening frequency of the valve is reduced. To prevent the development of aortic insufficiency, aortic valve closure during LVAD implantation has been performed. However, the closed aortic valve reduces wash out of the aortic root, which causes blood stagnation and potential thrombus formation. So for this reason, there is a need to minimize the risks of occurring blood clot, by having more knowledge about the flow structure in the aorta during LVAD use. The current study focuses on measuring the flow field in the aorta of the LVAD assisted heart with two different types of aortic valve (Flat and Finned) using the SDSU cardiac simulator. The pulsatile pump that mimics the natural pulsing action of the heart also added to the system. The flow field is visualized using Particle Image Velocimetry (PIV). Furthermore, The fluid mechanics of aorta has been studied when LVAD conduit attached to two different locations (proximal and distal to the aortic valve) with pump speeds of 8,000 to 10,000 revolutions per minute (RPM). As LVAD speed increases, the velocity of the defined area (close to the proximal anastomosis) increases linearly but inversely the stagnation index decreases. We observed that with Finned valve attachment, the stagnation value is lower than the flat valve so the results suggest that D1 valve has lower risk of thrombosis close to the aortic valve.
Kim, Young-Seop; Kim, Myoung-Jin; Koo, Tae-Hee; Kim, Jun-Dae; Koun, Soonil; Ham, Hyung Jin; Lee, You Mie; Rhee, Myungchull; Yeo, Sang-Yeob; Huh, Tae-Lin
2012-06-22
During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Comparing Usual Care With a Warfarin Initiation Protocol After Mechanical Heart Valve Replacement.
Roberts, Gregory; Razooqi, Rasha; Quinn, Stephen
2017-03-01
The immediate postoperative warfarin sensitivity for patients receiving heart valve prostheses is increased. Established warfarin initiation protocols may lack clinical applicability, resulting in dosing based on clinical judgment. To compare current practice for warfarin initiation with a known warfarin initiation protocol, with doses proportionally reduced to account for the increased postoperative sensitivity. We compared the Mechanical Heart Valve Warfarin Initiation Protocol (Protocol group) with current practice (clinical judgment-Empirical group) for patients receiving mechanical heart valves in an observational before-and-after format. End points were the time to achieve a stable therapeutic international normalized ratio (INR), doses held in the first 6 days, and overanticoagulation in the first 6 days. The Protocol group (n = 37) achieved a stable INR more rapidly than the Empirical group (n = 77; median times 5.1 and 8.7 days, respectively; P = 0.002). Multivariable analysis indicated that the Protocol group (hazard ratio [HR] = 2.22; P = 0.005) and men (HR = 1.76; P = 0.043) more rapidly achieved a stable therapeutic INR. Age, serum albumin, amiodarone, presence of severe heart failure, and surgery type had no impact. Protocol patients had fewer doses held (1.1% vs 10.1%, P < 0.001) and no difference in overanticoagulation (2.7% vs 9.1%, P = 0.27). The Mechanical Heart Valve Warfarin Initiation Protocol provided a reliable approach to initiating warfarin in patients receiving mechanical aortic or mitral valves.
van Vlimmeren, Marijke A A; Driessen-Mol, Anita; Oomens, Cees W J; Baaijens, Frank P T
2013-03-01
In tissue-engineered (TE) heart valves, cell-mediated processes cause tissue compaction during culture and leaflet retraction at time of implantation. We have quantified and correlated stress generation, compaction, retraction, and tissue quality during a prolonged culture period of 8 weeks. Polyglycolic acid/poly-4-hydroxybutyrate strips were seeded with vascular-derived cells and cultured for 4-8 weeks. Compaction in width, generated force, and stress was measured during culture. Retraction in length, generated force, and stress was measured after release of constraints at weeks 4, 6, and 8. Further, the amount of DNA, glycosaminoglycans (GAGs), collagen, and collagen cross-links was assessed. During culture, compaction and force generation increased to, respectively, 63.9% ± 0.8% and 43.7 ± 4.3 mN at week 4, after which they remained stable. Stress generation reached 27.7 ± 3.2 kPa at week 4, after which it decreased to ∼8.5 kPa. At release of constraints, tissue retraction was 44.0% ± 3.7% at week 4 and decreased to 29.2% ± 2.8% and 26.1% ± 2.2% at, respectively, 6 and 8 weeks. Generated force (8-16 mN) was lower at week 6 than at weeks 4 and 8. Generated stress decreased from 11.8 ± 0.9 kPa at week 4 to 1.4 ± 0.3 and 2.4 ± 0.4 kPa at, respectively, weeks 6 and 8. The amount of GAGs increased at weeks 6 and 8 compared to week 4 and correlated to the reduced stress and retraction. In summary, prolonged culture resulted in decreased stress generation and retraction, likely as a result of the increased amount of GAGs. These results demonstrate the potential of prolonged tissue culture in developing functional, nonretracting, TE heart valves.
Schenke-Layland, Katja; Riemann, Iris; Stock, Ulrich A; König, Karsten
2005-01-01
Multiphoton imaging represents a novel and very promising medical diagnostic technology for the high-resolution analysis of living biological tissues. We performed multiphoton imaging to analyzed structural features of extracellular matrix (ECM) components, e.g., collagen and elastin, of vital pulmonary and aortic heart valves. High-resolution autofluorescence images of collagenous and elastic fibers were demonstrated using multifluorophore, multiphoton excitation at two different wavelengths and optical sectioning, without the requirement of embedding, fixation, or staining. Collagenous structures were selectively imaged by detection of second harmonic generation (SHG). Additionally, routine histology and electron microscopy were integrated to verify the observed results. In comparison with pulmonary tissues, aortic heart valve specimens show very similar matrix formations. The quality of the resulting three-dimensional (3-D) images enabled the differentiation between collagenous and elastic fibers. These experimental results indicate that multiphoton imaging with near-infrared (NIR) femtosecond laser pulses may prove to be a useful tool for the nondestructive monitoring and characterization of cardiovascular structures. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.
Open-heart surgery using a centrifugal pump: a case of hereditary spherocytosis.
Matsuzaki, Yuichi; Tomioka, Hideyuki; Saso, Masaki; Azuma, Takashi; Saito, Satoshi; Aomi, Shigeyuki; Yamazaki, Kenji
2016-08-26
Hereditary spherocytosis is a genetic, frequently familial hemolytic blood disease characterized by varying degrees of hemolytic anemia, splenomegaly, and jaundice. There are few reports on adult open-heart surgery for patients with hereditary spherocytosis. We report a rare case of an adult open-heart surgery associated with hereditary spherocytosis. A 63-year-old man was admitted for congestive heart failure due to bicuspid aortic valve, aortic valve regurgitation, and sinus of subaortic aneurysm. The family history, the microscopic findings of the blood smear, and the characteristic osmotic fragility confirmed the diagnosis of hereditary spherocytosis. Furthermore, splenectomy had not been undertaken preoperatively. The patient underwent a successful operation by means of a centrifugal pump. Haptoglobin was used during the cardiopulmonary bypass, and a biological valve was selected to prevent hemolysis. No significant hemolysis occurred intraoperatively or postoperatively. There are no previous reports of patients with hereditary spherocytosis, and bicuspid aortic valve. We have successfully performed an adult open-heart surgery using a centrifugal pump in an adult patient suffering from hereditary spherocytosis and bicuspid aortic valve.
3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels
Duan, Bin; Hockaday, Laura A.; Kang, Kevin H.; Butcher, Jonathan T.
2013-01-01
Heart valve disease is a serious and growing public health problem for which prosthetic replacement is most commonly indicated. Current prosthetic devices are inadequate for younger adults and growing children. Tissue engineered living aortic valve conduits have potential for remodeling, regeneration, and growth, but fabricating natural anatomical complexity with cellular heterogeneity remain challenging. In the current study, we implement 3D bioprinting to fabricate living alginate/gelatin hydrogel valve conduits with anatomical architecture and direct incorporation of dual cell types in a regionally constrained manner. Encapsulated aortic root sinus smooth muscle cells (SMC) and aortic valve leaflet interstitial cells (VIC) were viable within alginate/gelatin hydrogel discs over 7 days in culture. Acellular 3D printed hydrogels exhibited reduced modulus, ultimate strength, and peak strain reducing slightly over 7-day culture, while the tensile biomechanics of cell-laden hydrogels were maintained. Aortic valve conduits were successfully bioprinted with direct encapsulation of SMC in the valve root and VIC in the leaflets. Both cell types were viable (81.4±3.4% for SMC and 83.2±4.0% for VIC) within 3D printed tissues. Encapsulated SMC expressed elevated alpha-smooth muscle actin when printed in stiff matrix, while VIC expressed elevated vimentin in soft matrix. These results demonstrate that anatomically complex, heterogeneously encapsulated aortic valve hydrogel conduits can be fabricated with 3D bioprinting. PMID:23015540
Volumetric velocimetry downstream of a percutaneous heart valve
NASA Astrophysics Data System (ADS)
Raghav, Vrishank; Clifford, Christopher; Midha, Prem; Okafor, Ikechukwu; Thurow, Brian; Yoganathan, Ajit; Auburn University Collaboration; Georgia Institute of Technology Collaboration
2017-11-01
Transcatheter aortic valve replacement has emerged as a safe and effective treatment for severe, symptomatic aortic stenosis in intermediate or greater surgical risk patients. However, despite excellent short-term outcomes, improved imaging and awareness has led to the identification of leaflet thrombosis on the aortic side of the prosthesis. Upon implantation, the transcatheter heart valve (THV) becomes enclosed in the native aortic valve leaflet tissue dividing the native sinus into two regions - a smaller anatomical sinus and a neo-sinus. To understand the causes for thrombosis, plenoptic Particle Image Velocimetry (PIV) is used to investigate the pulsatile three-dimensional flow in the sinus and neo-sinus region of the THV. Experiments are conducted on both a real and a transparent THV model in a pulsatile flow loop capable of replicating physiological hemodynamics. Comparisons with planar PIV results demonstrate the feasibility of using Plenoptic PIV to study heart valve fluid dynamics. Large three-dimensional regions of low velocity magnitude and low viscous shear stress were observed near the heart valve which could increase particle residence time potentially leading to formation of clots the THV leaflet.
Twist1 Transcriptional Targets in the Developing Atrio-Ventricular Canal of the Mouse
Vrljicak, Pavle; Cullum, Rebecca; Xu, Eric; Chang, Alex C. Y.; Wederell, Elizabeth D.; Bilenky, Mikhail; Jones, Steven J. M.; Marra, Marco A.; Karsan, Aly; Hoodless, Pamela A.
2012-01-01
Malformations of the cardiovascular system are the most common type of birth defect in humans, frequently affecting the formation of valves and septa. During heart valve and septa formation, cells from the atrio-ventricular canal (AVC) and outflow tract (OFT) regions of the heart undergo an epithelial-to-mesenchymal transformation (EMT) and invade the underlying extracellular matrix to give rise to endocardial cushions. Subsequent maturation of newly formed mesenchyme cells leads to thin stress-resistant leaflets. TWIST1 is a basic helix-loop-helix transcription factor expressed in newly formed mesenchyme cells of the AVC and OFT that has been shown to play roles in cell survival, cell proliferation and differentiation. However, the downstream targets of TWIST1 during heart valve formation remain unclear. To identify genes important for heart valve development downstream of TWIST1, we performed global gene expression profiling of AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq). Using this resource we identified a novel set of 939 genes, including 123 regulators of transcription, enriched in the valve forming regions of the heart. We compared these genes to a Tag-seq library from the Twist1 null developing valves revealing significant gene expression changes. These changes were consistent with a role of TWIST1 in controlling differentiation of mesenchymal cells following their transformation from endothelium in the mouse. To study the role of TWIST1 at the DNA level we performed chromatin immunoprecipitation and identified novel direct targets of TWIST1 in the developing heart valves. Our findings support a role for TWIST1 in the differentiation of AVC mesenchyme post-EMT in the mouse, and suggest that TWIST1 can exert its function by direct DNA binding to activate valve specific gene expression. PMID:22815831
... and valves (the endocardium). This is called infective endocarditis. Coronary artery disease Heart attack What are the ... of your heart. This infection is called infective endocarditis . Medicines Medicines are given to ease the pain ...
Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H
2008-01-01
Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.
Korteland, Nelleke M; Ahmed, Yunus; Koolbergen, David R; Brouwer, Marjan; de Heer, Frederiek; Kluin, Jolanda; Bruggemans, Eline F; Klautz, Robert J M; Stiggelbout, Anne M; Bucx, Jeroen J J; Roos-Hesselink, Jolien W; Polak, Peter; Markou, Thanasie; van den Broek, Inge; Ligthart, Rene; Bogers, Ad J J C; Takkenberg, Johanna J M
2017-02-01
A Dutch online patient decision aid to support prosthetic heart valve selection was recently developed. A multicenter randomized controlled trial was conducted to assess whether use of the patient decision aid results in optimization of shared decision making in prosthetic heart valve selection. In a 5-center randomized controlled trial, patients were allocated to receive either standard preoperative care (control group) or additional access to the patient decision aid (intervention group). Legally capable adult patients accepted for elective isolated or combined aortic and mitral valve replacement were included. Primary outcome was preoperative decisional conflict (Decisional Conflict Scale); secondary outcomes included patient knowledge, involvement in valve selection, anxiety and depression, (valve-specific) quality of life, and regret. Out of 306 eligible patients, 155 were randomized (78 control and 77 intervention). Preoperative decisional conflict did not differ between the groups (34% versus 33%; P =0.834). Intervention patients felt better informed (median Decisional Conflict Scale informed subscore: 8 versus 17; P =0.046) and had a better knowledge of prosthetic valves (85% versus 68%; P =0.004). Intervention patients experienced less anxiety and depression (median Hospital Anxiety and Depression Scale score: 6 versus 9; P =0.015) and better mental well-being (mean Short Form Health Survey score: 54 versus 50; P =0.032). Three months postoperatively, valve-specific quality of life and regret did not differ between the groups. A patient decision aid to support shared decision making in prosthetic heart valve selection does not lower decisional conflict. It does result in more knowledgeable, better informed, and less anxious and depressed patients, with a better mental well-being. http://www.trialregister.nl. Unique identifier: NTR4350. © 2017 American Heart Association, Inc.
Double-reed exhaust valve engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Charles L.
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.
... valve. MVP puts you at risk for infective endocarditis, a kind of heart infection. To prevent it, ... surgeries. Now, only people at high risk of endocarditis need the antibiotics. NIH: National Heart, Lung, and ...
Superhydrophobicity to minimize thrombogenic risk on mechanical heart valves
NASA Astrophysics Data System (ADS)
Bark, David; Vahabi, Hamed; Movafaghi, Sanli; Popat, Ketul; Kota, Arun K.; Dasi, Lakshmi Prasad
2017-11-01
A large number of prosthetic heart valves are implanted each year to treat heart valve disease, where half of the surgically replaced valves are mechanical heart valves (MHV)s. MHVs are at high risk for thrombosis and therefore require lifelong antithrombotic therapies, causing an increased bleeding risk that can lead to death. To alleviate this need, we investigate the potential of superhydrophobic surfaces in reducing the thrombotic risk. Particle imaging velocimetry and computational fluid dynamics are used to quantify shear stress in the presence of potential slip on the surface. Coagulation and cell adhesion are quantified by incubating blood under static conditions. We further evaluate a dynamic blood response in polydimethylsiloxane channels under complex shear conditions that mimic the hinge region of bileaflet mechanical heart valves, a region known to exhibit thrombosis. Overall, Shear stress is not reduced on a superhydrophobic bileaflet MHV. However, superhydrophobic surfaces significantly reduce the potential for platelet responses under static and dynamic blood flow conditions, a counterintuitive result when considering that hydrophobic surfaces are prone to protein and cell adhesion. The authors gratefully acknowledge funding from National Institutes of Health (NIH) under Award Number R01HL119824 and F32HL129730. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Bennett, Charles L.; Sewall, Noel; Boroa, Carl
2014-08-19
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.
Sibilitz, Kirstine Laerum; Berg, Selina Kikkenborg; Hansen, Tina Birgitte; Risom, Signe Stelling; Rasmussen, Trine Bernholdt; Hassager, Christian; Køber, Lars; Gluud, Christian; Thygesen, Lau Caspar; Lindschou, Jane; Schmid, Jean Paul; Taylor, Rod S; Zwisler, Ann-Dorthe
2015-02-05
Heart valve diseases are common with an estimated prevalence of 2.5% in the Western world. The number is rising because of an ageing population. Once symptomatic, heart valve diseases are potentially lethal, and heavily influence daily living and quality of life. Surgical treatment, either valve replacement or repair, remains the treatment of choice. However, post-surgery, the transition to daily living may become a physical, mental and social challenge. We hypothesize that a comprehensive cardiac rehabilitation program can improve physical capacity and self-assessed mental health and reduce hospitalization and healthcare costs after heart valve surgery. This randomized clinical trial, CopenHeartVR, aims to investigate whether cardiac rehabilitation in addition to usual care is superior to treatment as usual after heart valve surgery. The trial will randomly allocate 210 patients 1:1 to an intervention or a control group, using central randomization, and blinded outcome assessment and statistical analyses. The intervention consists of 12 weeks of physical exercise and a psycho-educational intervention comprising five consultations. The primary outcome is peak oxygen uptake (VO2 peak) measured by cardiopulmonary exercise testing with ventilatory gas analysis. The secondary outcome is self-assessed mental health measured by the standardized questionnaire Short Form-36. Long-term healthcare utilization and mortality as well as biochemistry, echocardiography and cost-benefit will be assessed. A mixed-method design will be used to evaluate qualitative and quantitative findings, encompassing a survey-based study before the trial and a qualitative pre- and post-intervention study. This randomized clinical trial will contribute with evidence of whether cardiac rehabilitation should be provided after heart valve surgery. The study is approved by the local regional Research Ethics Committee (H-1-2011-157), and the Danish Data Protection Agency (j.nr. 2007-58-0015). Trial registered 16 March 2012; ClinicalTrials.gov ( NCT01558765 ).
Lewis, Matthew J; Ginns, Jonathan N; Ye, Siqin; Chai, Paul; Quaegebeur, Jan M; Bacha, Emile; Rosenbaum, Marlon S
2016-02-01
Many patients with adult congenital heart disease will require cardiac surgery during their lifetime, and some will have concomitant tricuspid regurgitation. However, the optimal management of significant tricuspid regurgitation at the time of cardiac surgery remains unclear. We assessed the determinants of adverse outcomes in patients with adult congenital heart disease and moderate or greater tricuspid regurgitation undergoing cardiac surgery for non-tricuspid regurgitation-related indications. All adult patients with congenital heart disease and greater than moderate tricuspid regurgitation who underwent cardiac surgery for non-tricuspid regurgitation-related indications were included in a retrospective study at the Schneeweiss Adult Congenital Heart Center. Cohorts were defined by the type of tricuspid valve intervention at the time of surgery. The primary end point of interest was a composite of death, heart transplantation, and reoperation on the tricuspid valve. A total of 107 patients met inclusion criteria, and 17 patients (17%) reached the primary end point. A total of 68 patients (64%) underwent tricuspid valve repair, 8 patients (7%) underwent tricuspid valve replacement, and 31 patients (29%) did not have a tricuspid valve intervention. By multivariate analysis, moderate or greater postoperative tricuspid regurgitation was associated with a hazard ratio of 6.12 (1.84-20.3) for the primary end point (P = .003). In addition, failure to perform a tricuspid valve intervention at the time of surgery was associated with an odds ratio of 4.17 (1.26-14.3) for moderate or greater postoperative tricuspid regurgitation (P = .02). Moderate or greater postoperative tricuspid regurgitation was associated with an increased risk of death, transplant, or reoperation in adult patients with congenital heart disease undergoing cardiac surgery for non-tricuspid regurgitation-related indications. Concomitant tricuspid valve intervention at the time of cardiac surgery should be considered in patients with adult congenital heart disease with moderate or greater preoperative tricuspid regurgitation. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
... sudden blood loss, long-term diseases, kidney failure , aplastic anemia , or man-made heart valves). MCV above normal. ... sudden blood loss, long-term diseases, kidney failure, aplastic anemia, or man-made heart valves). MCH above normal. ...
Abdel-Wahab, Mohamed; Neumann, Franz-Josef; Mehilli, Julinda; Frerker, Christian; Richardt, Doreen; Landt, Martin; Jose, John; Toelg, Ralph; Kuck, Karl-Heinz; Massberg, Steffen; Robinson, Derek R; El-Mawardy, Mohamed; Richardt, Gert
2015-08-18
The use of a balloon-expandable transcatheter heart valve previously resulted in a greater rate of device success compared with a self-expandable transcatheter heart valve. The aim of this study was to evaluate clinical and echocardiographic outcome data at longer term follow-up. The investigator-initiated trial randomized 241 high-risk patients with symptomatic severe aortic stenosis and anatomy suitable for treatment with both balloon- and self-expandable transcatheter heart valves to transfemoral transcatheter aortic valve replacement with either device. Patients were followed-up for 1 year, with assessment of clinical outcomes and echocardiographic evaluation of valve function. At 1 year, the rates of death of any cause (17.4% vs. 12.8%; relative risk [RR]: 1.35; 95% confidence interval [CI]: 0.73 to 2.50; p = 0.37) and of cardiovascular causes (12.4% vs. 9.4%; RR: 1.32; 95% CI: 0.63 to 2.75; p = 0.54) were not statistically significantly different in the balloon- and self-expandable groups, respectively. The frequencies of all strokes (9.1% vs. 3.4%; RR: 2.66; 95% CI: 0.87 to 8.12; p = 0.11) and repeat hospitalization for heart failure (7.4% vs. 12.8%; RR: 0.58; 95% CI: 0.26 to 1.27; p = 0.19) did not statistically significantly differ between the 2 groups. Elevated transvalvular gradients during follow-up were observed in 4 patients in the balloon-expandable group (3.4% vs. 0%; p = 0.12); all were resolved with anticoagulant therapy, suggesting a thrombotic etiology. More than mild paravalvular regurgitation was more frequent in the self-expandable group (1.1% vs. 12.1%; p = 0.005). Despite the higher device success rate with the balloon-expandable valve, 1-year follow-up of patients in CHOICE (Randomized Comparison of Transcatheter Heart Valves in High Risk Patients With Severe Aortic Stenosis: Medtronic CoreValve Versus Edwards SAPIEN XT Trial), with limited statistical power, revealed clinical outcomes after transfemoral transcatheter aortic valve replacement with both balloon- and self-expandable prostheses that were not statistically significantly different. (A Comparison of Transcatheter Heart Valves in High Risk Patients With Severe Aortic Stenosis: The CHOICE Trial; NCT01645202). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Recent progress in heart valve surgery: innovation or evolution?
Lausberg, H; Schäfers, H J
2004-08-01
Although heart valve surgery continues to evolve in a dynamic fashion, there is still no optimal solution for all patients. Minimally invasive surgery currently receives considerable attention but its value still needs to be determined. Progress has been made in valve repair, which now allows reconstruction in most patients with mitral valve disease. Reconstruction of the aortic valve is now also possible with results that are now comparable to those of mitral repair. In the future a wider application of repair procedures and further improvements of biologic valves can be anticipated not only to influence long-term results, but also the decision making process for conservative or surgical treatment.
[Tricuspid valve regurgitation : Indications and operative techniques].
Lange, R; Piazza, N; Günther, T
2017-11-01
Functional tricuspid valve (TV) regurgitation secondary to left heart disease (e.g. mitral insufficiency and stenosis) is observed in 75% of the patients with TV regurgitation and is thus the most common etiology; therefore, the majority of patients who require TV surgery, undergo concomitant mitral and/or aortic valve surgery. Uncorrected moderate and severe TV regurgitation may persist or even worsen after mitral valve surgery, leading to progressive heart failure and death. Patients with moderate to severe TV regurgitation show a 3-year survival rate of 40%. Surgery is indicated in patients with severe TV regurgitation undergoing left-sided valve surgery and in patients with severe isolated primary regurgitation without severe right ventricular (RV) dysfunction. For patients requiring mitral valve surgery, tricuspid valve annuloplasty should be considered even in the absence of significant regurgitation, when severe annular dilatation (≥40 mm or >21 mm/m 2 ) is present. Functional TV regurgitation is primarily treated with valve reconstruction which carries a lower perioperative risk than valve replacement. Valve replacement is rarely required. Tricuspid valve repair with ring annuloplasty is associated with better survival and a lower reoperation rate than suture annuloplasty. Long-term results are not available. The severity of the heart insufficiency and comorbidities (e.g. renal failure and liver dysfunction) are the essential determinants of operative mortality and long-term survival. Tricuspid valve reoperations are rarely necessary and associated with a considerable mortality.
Total Artificial Heart Implantation After Undifferentiated High-Grade Sarcoma Excision
Kremer, Jamila; Farag, Mina; Arif, Rawa; Brcic, Andreas; Sabashnikov, Anton; Schmack, Bastian; Popov, Aron-Frederik; Karck, Matthias; Dohmen, Pascal M.; Ruhparwar, Arjang; Weymann, Alexander
2016-01-01
Background Total artificial heart (TAH) implantation in patients with aggressive tumor infiltration of the heart can be challenging. Case Report We report on a patient with a rare primary undifferentiated high-grade spindle cell sarcoma of the mitral valve and in the left atrium, first diagnosed in 2014. The referring center did a first resection in 2014. In the course of 17 months, computer tomography (CT) scan again showed massive invasion of the mitral valve and left atrium. Partial resection and mitral valve replacement was not an option. We did a subtotal heart excision with total artificial heart implantation. In this report we discuss complications, risk factors, and perioperative management of this patient. Conclusions Patients with aggressive tumors of the heart can be considered for TAH implantation. PMID:27803495
Total Artificial Heart Implantation After Undifferentiated High-Grade Sarcoma Excision.
Kremer, Jamila; Farag, Mina; Arif, Rawa; Brcic, Andreas; Sabashnikov, Anton; Schmack, Bastian; Popov, Aron-Frederik; Karck, Matthias; Dohmen, Pascal M; Ruhparwar, Arjang; Weymann, Alexander
2016-11-02
BACKGROUND Total artificial heart (TAH) implantation in patients with aggressive tumor infiltration of the heart can be challenging. CASE REPORT We report on a patient with a rare primary undifferentiated high-grade spindle cell sarcoma of the mitral valve and in the left atrium, first diagnosed in 2014. The referring center did a first resection in 2014. In the course of 17 months, computer tomography (CT) scan again showed massive invasion of the mitral valve and left atrium. Partial resection and mitral valve replacement was not an option. We did a subtotal heart excision with total artificial heart implantation. In this report we discuss complications, risk factors, and perioperative management of this patient. CONCLUSIONS Patients with aggressive tumors of the heart can be considered for TAH implantation.
Mitral Valve Prolapse (For Parents)
... develops after some sort of inflammatory condition, like endocarditis (infection of the inner lining of the heart) ... a bacterial infection of the heart valve (infective endocarditis). It very rarely happens during childhood. Many times ...
Testing of RPMI-1640 as a Nutrient Medium for Fresh Semilunar Valve Storage.
1979-01-01
familiarization with cage life, canine distemper and hepatitis vaccinations, worming for internal parasites, and obtain one normal complete blood count. Atropine...human valves. If these results are similar to this canine study, a more realistic evaluation can be made as to whether the best tissue for heart valve...replacement is from live tissue of human allografts or dead tissue of procine xenografts. I SUMMARY The medium selected to store canine heart valves
Open heart surgery after renal transplantation.
Yamamura, Mitsuhiro; Miyamoto, Yuji; Mitsuno, Masataka; Tanaka, Hiroe; Ryomoto, Masaaki; Fukui, Shinya; Tsujiya, Noriko; Kajiyama, Tetsuya; Nojima, Michio
2014-09-01
to evaluate the strategy for open heart surgery after renal transplantation performed in a single institution in Japan. we reviewed 6 open heart surgeries after renal transplantation in 5 patients, performed between January 1992 and December 2012. The patients were 3 men and 2 women with a mean age of 60 ± 11 years (range 46-68 years). They had old myocardial infarction and unstable angina, aortic and mitral stenosis, left arterial myxoma, aortic stenosis, and native valve endocarditis followed by prosthetic valve endocarditis. Operative procedures included coronary artery bypass grafting, double-valve replacement, resection of left arterial myxoma, 2 aortic valve replacements, and a double-valve replacement. Renal protection consisted of steroid cover (hydrocortisone 100-500 mg or methylprednisolone 1000 mg) and intravenous immunosuppressant infusion (cyclosporine 30-40 mg day(-1) or tacrolimus 1.0 mg day(-1)). 5 cases were uneventful and good renal graft function was maintained at discharge (serum creatinine 2.1 ± 0.5 mg dL(-1)). There was one operative death after emergency double-valve replacement for methicillin-resistant Staphylococcus aureus-associated prosthetic valve endocarditis. Although the endocarditis improved after valve replacement, the patient died of postoperative pneumonia on postoperative day 45. careful perioperative management can allow successful open heart surgery after renal transplantation. However, severe complications, especially methicillin-resistant Staphylococcus aureus infection, may cause renal graft loss. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Blot, W J; Omar, R Z; Kallewaard, M; Morton, L S; Fryzek, J P; Ibrahim, M A; Acheson, D; Taylor, K M; van der Graaf, Y
2001-03-01
Approximately 82,000 Björk-Shiley convexo-concave (BSCC) 60 degree prosthetic heart valves were implanted in patients worldwide between 1979 and 1986. Outlet strut fractures (OSF) of some of the valves were first reported shortly after their introduction. Here, the determinants of OSF are examined, and the between-country variation and long-term risk are assessed. Cohorts of patients in the UK, Netherlands and USA with 15,770 BSCC 60 degree heart valves were followed up to 18 years for the occurrence of OSF. Crude rates of OSF were highest in the UK (0.18% per year), intermediate in the Netherlands (0.13%), and lowest in the USA (0.06%), although risk factor adjustment reduced the inter-country differences. Furthermore, in the UK and Netherlands, OSF rates (particularly for mitral valves) declined with time since implantation, and between-country differences were considerably diminished 10 or more years post implantation. The risk of OSF decreased steadily with advancing patient age. Fracture rates were lower among women than men, and also varied significantly with valve size and position and OSF status of other valves in the same shoporder. This long-term follow up of BSCC 60 degree heart valve patients indicates that risk factors for valve fracture are generally similar in the UK, Netherlands and USA. It also identifies a strong association between fracture risk and age, newly reveals gender-related differences, and shows that the risk of valve fracture persisted, albeit at a reduced rate, into the 1990s.
Profile of Heart Donors from the Human Valve Bank of the Santa Casa de Misericórdia de Curitiba
Ferreira, Renata Maria; da Costa, Marise Teresinha Brenner Affonso; Canciglieri Junior, Osiris; Sant'Anna, Ângelo Márcio Oliveira
2016-01-01
Introduction Human heart valves are used as replacement valves and have satisfactory functional results compared with conventional prostheses. Objective Characterize the profile of effective heart donors from the human valve bank of the santa casa de misericórdia de curitiba and analyze the association between the profile variables. Methods It consists of a retrospective and quantitative study of electronic medical records from heart donors for heart valves. every heart donation made to the bank between january 2004 and december 2014 was studied. Results 2,149 donations were analyzed, from donors aged 0 to 71 years old, with an average of 34.9 ± 15.03 years old. most donors were male 65.7% (n=1,411) and 34.3% (n=738) were female. among the most frequent causes of the donors' death are trauma at 53% (n=1,139) and cerebral vascular accident at 34.2% (n=735). there was significant statistical association between the analyzed variables. Conclusion There has been an improvement in brazil's donation rate, being essential that the tissue banks work together with the state and federal district centers for notification, procurement and distribution of organs in order to increase the number of donors. PMID:27556322
21 CFR 868.1965 - Switching valve (ploss).
Code of Federal Regulations, 2010 CFR
2010-04-01
... heart, a blood pressure cuff, and an earpiece. The valve allows the user to eliminate one sound channel and listen only to a patient's heart or korotkoff (blood pressure) sounds through the other channel...
21 CFR 868.1965 - Switching valve (ploss).
Code of Federal Regulations, 2011 CFR
2011-04-01
... heart, a blood pressure cuff, and an earpiece. The valve allows the user to eliminate one sound channel and listen only to a patient's heart or korotkoff (blood pressure) sounds through the other channel...
21 CFR 868.1965 - Switching valve (ploss).
Code of Federal Regulations, 2013 CFR
2013-04-01
... heart, a blood pressure cuff, and an earpiece. The valve allows the user to eliminate one sound channel and listen only to a patient's heart or korotkoff (blood pressure) sounds through the other channel...
21 CFR 868.1965 - Switching valve (ploss).
Code of Federal Regulations, 2014 CFR
2014-04-01
... heart, a blood pressure cuff, and an earpiece. The valve allows the user to eliminate one sound channel and listen only to a patient's heart or korotkoff (blood pressure) sounds through the other channel...
21 CFR 868.1965 - Switching valve (ploss).
Code of Federal Regulations, 2012 CFR
2012-04-01
... heart, a blood pressure cuff, and an earpiece. The valve allows the user to eliminate one sound channel and listen only to a patient's heart or korotkoff (blood pressure) sounds through the other channel...
Oliveira, Francisco Artur Forte; Forte, Clarissa Pessoa Fernandes; Silva, Paulo Goberlânio de Barros; Lopes, Camile B.; Montenegro, Raquel Carvalho; dos Santos, Ândrea Kely Campos Ribeiro; Sobrinho, Carlos Roberto Martins Rodrigues; Mota, Mário Rogério Lima; Sousa, Fabrício Bitu; Alves, Ana Paula Negreiros Nunes
2015-01-01
Abstract Structural deficiencies and functional abnormalities of heart valves represent an important cause of cardiovascular morbidity and mortality, and a number of diseases, such as aortic stenosis, have been recently associated with infectious agents. This study aimed to analyze oral bacteria in dental plaque, saliva, and cardiac valves of patients with cardiovascular disease. Samples of supragingival plaque, subgingival plaque, saliva, and cardiac valve tissue were collected from 42 patients with heart valve disease. Molecular analysis of Streptococcus mutans, Prevotella intermedia, Porphyromonas gingivalis, and Treponema denticola was performed through real-time PCR. The micro-organism most frequently detected in heart valve samples was the S. mutans (89.3%), followed by P. intermedia (19.1%), P. gingivalis (4.2%), and T. denticola (2.1%). The mean decayed, missing, filled teeth (DMFT) was 26.4 ± 6.9 (mean ± SD), and according to the highest score of periodontal disease observed for each patient, periodontal pockets > 4 mm and dental calculus were detected in 43.4% and 34.7% of patients, respectively. In conclusion, oral bacteria, especially S. mutans, were found in the cardiac valve samples of patients with a high rate of caries and gingivitis/periodontitis. PMID:26632711
Optimal Elastomeric Scaffold Leaflet Shape for Pulmonary Heart Valve Leaflet Replacement
Fan, Rong; Bayoumi, Ahmed S.; Chen, Peter; Hobson, Christopher M.; Wagner, William R.; Mayer, John E.; Sacks, Michael S.
2012-01-01
Surgical replacement of the pulmonary valve (PV) is a common treatment option for congenital pulmonary valve defects. Engineered tissue approaches to develop novel PV replacements are intrinsically complex, and will require methodical approaches for their development. Single leaflet replacement utilizing an ovine model is an attractive approach in that candidate materials can be evaluated under valve level stresses in blood contact without the confounding effects of a particular valve design. In the present study an approach for optimal leaflet shape design based on finite element (FE) simulation of a mechanically anisotropic, elastomeric scaffold for PV replacement is presented. The scaffold was modeled as an orthotropic hyperelastic material using a generalized Fung-type constitutive model. The optimal shape of the fully loaded PV replacement leaflet was systematically determined by minimizing the difference between the deformed shape obtained from FE simulation and an ex-vivo microCT scan of a native ovine PV leaflet. Effects of material anisotropy, dimensional changes of PV root, and fiber orientation on the resulting leaflet deformation were investigated. In-situ validation demonstrated that the approach could guide the design of the leaflet shape for PV replacement surgery. PMID:23294966
Ruivo, Catarina; Guardado, Joana; Montenegro Sá, Fernando; Saraiva, Fátima; Antunes, Alexandre; Correia, Joana; Morais, João
2017-07-01
We report a clinical case of a 40-year-old male with surgically corrected congenital heart disease (CHD) 10 years earlier: closure of ostium primum, mitral annuloplasty, and aortic valve and root surgery. The patient was admitted with acute heart failure. Transesophageal echocardiography (TEE) revealed a dysmorphic and severely incompetent aortic valve, a partial tear of the mitral valve cleft repair and annuloplasty ring dehiscence. A true left ventricular-to-right atrial shunt confirmed a direct Gerbode defect. The authors aim to discuss the diagnostic challenge of adult CHD, namely the key role of TEE on septal defects and valve regurgitations description. © 2017, Wiley Periodicals, Inc.
Theodoridis, Karolina; Müller, Janina; Ramm, Robert; Findeisen, Katja; Andrée, Birgit; Korossis, Sotirios; Haverich, Axel; Hilfiker, Andres
2016-10-01
Non-fixed, decellularized allogeneic heart valve scaffolds seem to be the best choice for heart valve replacement, their availability, however, is quite limited. Cryopreservation could prolong their shelf-life, allowing for their ideal match to a recipient. In this study, porcine pulmonary valves were decellularized using detergents, either prior or after cryopreservation, and analyzed. Mechanical integrity was analyzed by uniaxial tensile testing, histoarchitecture by histological staining, and composition by DNA, collagen (hydroxyproline) and GAG (chondroitin sulfate) quantification. Residual sodium dodecyl sulfate (SDS) in the scaffold was quantified by applying a methylene blue activation assay (MBAS). Cryopreserved decellularized scaffolds (DC) and scaffolds that were decellularized after cryopreservation (CD) were compared to fresh valves (F), cryopreserved native valves (C), and decellularized only scaffolds (D). The E-modulus and tensile strength of decellularized (D) tissue showed no significant difference compared to DC and CD. The decellularization resulted in an overall reduction of DNA and GAG, with DC containing the lowest amount of GAGs. The DNA content in the valvular wall of the CD group was higher than in the D and DC groups. CD valves showed slightly more residual SDS than DC valves, which might be harmful to recipient cells. In conclusion, cryopreservation after decellularization was shown to be preferable over cryopreservation before decellularization. However, in vivo testing would be necessary to determine whether these differences are significant in biocompatibility or immunogenicity of the scaffolds. Absence of adverse effects on biomechanical stability of acellular heart valve grafts by cryopreservation, neither before nor after decellularization, allows the identification of best matching patients in a less time pressure dictated process, and therefore to an optimized use of a very limited, but best-suited heart valve prosthesis. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems
Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James
2014-09-23
A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.
Hillebrand, Julia; Hoffmeier, Andreas; Djie Tiong Tjan, Tonny; Sindermann, Juergen R; Schmidt, Christoph; Martens, Sven; Scherer, Mirela
2017-05-01
Left ventricular assist device (LVAD) implantation is a well-established therapy to support patients with end-stage heart failure. However, the operative procedure is associated with severe trauma. Third generation LVADs like the HeartWare assist device (HeartWare, Inc., Framingham, MA, USA) are characterized by enhanced technology despite smaller size. These devices offer new minimally invasive surgical options. Tricuspid regurgitation requiring valve repair is frequent in patients with the need for mechanical circulatory support as it is strongly associated with ischemic and nonischemic cardiomyopathy. We report on HeartWare LVAD implantation and simultaneous tricuspid valve reconstruction through minimally invasive access by partial upper sternotomy to the fifth left intercostal space. Four male patients (mean age 51.72 ± 11.95 years) suffering from chronic heart failure due to dilative (three patients) and ischemic (one patient) cardiomyopathy and also exhibiting concomitant tricuspid valve insufficiency due to annular dilation underwent VAD implantation and tricuspid valve annuloplasty. Extracorporeal circulation was established via the ascending aorta, superior vena cava, and right atrium. In all four cases the LVAD implantation and tricuspid valve repair via partial median sternotomy was successful. During the operative procedure, no conversion to full sternotomy was necessary. One patient needed postoperative re-exploration because of pericardial effusion. No postoperative focal neurologic injury was observed. New generation VADs are advantageous because of the possibility of minimally invasive implantation procedure which can therefore minimize surgical trauma. Concomitant tricuspid valve reconstruction can also be performed simultaneously through partial upper sternotomy. Nevertheless, minimally invasive LVAD implantation is a challenging operative technique. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications
Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali
2013-01-01
Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771
Echocardiographic assessment of cardiac disease
NASA Technical Reports Server (NTRS)
Popp, R. L.
1976-01-01
The physical principles and current applications of echocardiography in assessment of heart diseases are reviewed. Technical considerations and unresolved points relative to the use of echocardiography in various disease states are stressed. The discussion covers normal mitral valve motion, mitral stenosis, aortic regurgitation, atrial masses, mitral valve prolapse, and idiopathic hypertrophic subaortic stenosis. Other topics concern tricuspic valve abnormalities, aortic valve disease, pulmonic valve, pericardial effusion, intraventricular septal motion, and left ventricular function. The application of echocardiography to congenital heart disease diagnosis is discussed along with promising ultrasonic imaging systems. The utility of echocardiography in quantitative evaluation of cardiac disease is demonstrated.
Further evidence of gaseous embolic material in patients with artificial heart valves.
Georgiadis, D; Baumgartner, R W; Karatschai, R; Lindner, A; Zerkowski, H R
1998-04-01
We undertook this study to evaluate the hypothesis that most microemboli signals in patients with artificial heart valves are gaseous, assuming that microemboli counts in cerebral arteries would progressively decline with increasing distance from the generating heart valve. A total of 10 outpatients with CarboMedics (Sulzer Carbomedics Inc., n = 5) and ATS prosthetic heart valves (n = 5) in the aortic (n = 8), mitral (n = 1), or both aortic and mitral positions (n = 1) were recruited. Monitoring was performed simultaneously over the middle and anterior cerebral arteries and the common carotid artery for 30 minutes with the 2 MHZ transducers of a color duplex scanner (common carotid artery) and pulsed-wave Doppler ultrasonography (intracranial arteries). All data were harvested in an eight-channel digital audio tape recorder, and microembolic signal counts were evaluated online by two separate observers. Significantly higher microembolic signal counts were recorded in the common carotid artery (112 [75 to 175]) compared with the middle and anterior cerebral arteries (30 [18 to 36], p < 0.0001). Interobserver variability was satisfactory (k = 0.81). Our results strongly argue for gaseous underlying embolic material in patients with artificial heart valves because bubbles are bound to implode with time.
Surgical access via right thoracotomy facilitates tricuspid valve surgery in sheep
Bothe, Wolfgang; Diab, Mahmoud; Ostermann, Romanus; Schwarzer, Michael; Woelfel, Luisa; Bischoff, Sabine; Schubert, Harald
2017-01-01
In quadrupeds, the three-dimensional orientation of the heart with respect to the thorax is fundamentally different from that in humans. In this study, we assessed the best surgical approach to the tricuspid valve in sheep. Firstly, different surgical access sites to the tricuspid valve were tested in sheep cadavers, the anatomy was analyzed, and the optimal surgical approach to the tricuspid valve was determined. Secondly - along with cardiopulmonary bypass and cardioplegic arrest -the chosen approach was tested in six adult sheep in vivo. Anatomical analyses revealed that a left thoracotomy provided optimal access to the aorta and left heart. However, visualization of the right heart was significantly impaired. In contrast, a right thoracotomy provided good access to the right heart, but the ascending aorta was difficult to approach. Therefore, in the in vivo studies, arterial cannulation was performed through a carotid (n = 4) or femoral (n = 2) artery. In conclusion, a right-sided thoracotomy allows good visualization of all components of the tricuspid valve complex in sheep, but not of the ascending aorta. Consequently, peripheral vessels are preferred for arterial cannulation. This work may stimulate the investigation of pathomechanisms and/or novel treatment options for tricuspid valve pathologies. PMID:27456775
Tricuspid valve replacement with mechanical prostheses: Short and long-term outcomes.
Rossello, Xavier; Muñoz-Guijosa, Christian; Mena, Elisabet; Camprecios, Marta; Mendez, Ana B; Borras, Xavier; Padro, Josep M
2017-09-01
Tricuspid valve replacement has been associated with high mortality and poor long-term outcomes. We report the preoperative risk factors associated with short and long-term outcomes following tricuspid valve replacement with mechanical prostheses. In 62 patients who underwent mechanical tricuspid valve replacement, clinical, laboratory, and echocardiographic findings were analyzed using both univariate and multivariate analyses to describe operative and long-term mortality. In our population (mean age 59 ± 9.7 years, 82.3% female), most common causes of tricuspid valve disease were rheumatic fever (69.4%) and functional regurgitation (19.4%). Operative and long-term mortality were 17.7 and 33.9%, respectively. Age, diabetes mellitus, and coronary artery disease were independently associated with increased long-term mortality. New York Heart Association (NYHA) class and right heart failure symptoms significantly improved during follow-up. In this series of mechanical tricuspid valve replacements in patients with predominately rheumatic heart disease, operative and long-term mortality were increased; however, survivors had significant improvement in their NYHA class and freedom from right heart failure symptoms. Three preoperative factors (age, diabetes mellitus, and coronary artery disease) were independently associated with long-term mortality. © 2017 Wiley Periodicals, Inc.
4D optical coherence tomography of aortic valve dynamics in a murine mouse model ex vivo
NASA Astrophysics Data System (ADS)
Schnabel, Christian; Jannasch, Anett; Faak, Saskia; Waldow, Thomas; Koch, Edmund
2015-07-01
The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain during lifetime. Like all highly stressed materials, also these biological components undergo fatigue and signs of wear, which impinge upon cardiac output and in the end on health and living comfort of affected patients. Thereby pathophysiological changes of the aortic valve leading to calcific aortic valve stenosis (AVS) as most frequent heart valve disease in humans are of particular interest. The knowledge about changes of the dynamic behavior during the course of this disease and the possibility of early stage diagnosis could lead to the development of new treatment strategies and drug-based options of prevention or therapy. ApoE-/- mice as established model of AVS versus wildtype mice were introduced in an ex vivo artificially stimulated heart model. 4D optical coherence tomography (OCT) in combination with high-speed video microscopy were applied to characterize dynamic behavior of the murine aortic valve and to characterize dynamic properties during artificial stimulation. OCT and high-speed video microscopy with high spatial and temporal resolution represent promising tools for the investigation of dynamic behavior and their changes in calcific aortic stenosis disease models in mice.
ON THE BIOMECHANICS OF HEART VALVE FUNCTION
Sacks, Michael S.; Merryman, W. David; Schmidt, David E.
2009-01-01
Heart valves (HVs) are fluidic control components of the heart that ensure unidirectional blood flow during the cardiac cycle. However, this description does not adequately describe the biomechanical ramifications of their function in that their mechanics are multi-modal. Moreover, they must replicate their cyclic function over an entire lifetime, with an estimated total functional demand of least 3×109 cycles. The focus of the present review is on the functional biomechanics of heart valves. Thus, the focus of the present review is on functional biomechanics, referring primarily to biosolid as well as several key biofluid mechanical aspects underlying heart valve physiological function. Specifically, we refer to the mechanical behaviors of the extra-cellular matrix structural proteins, underlying cellular function, and their integrated relation to the major aspects of valvular hemodynamic function. While we focus on the work from the author’s laboratories, relevant works of other investigators have been included whenever appropriate. We conclude with a summary of important future trends. PMID:19540499
Severe right heart failure in a patient with Grave's disease.
Xenopoulos, N P; Braden, G A; Applegate, R J
1996-11-01
This brief report presents a patient with isolated right heart failure and two rare underlying causes, hyperthyroidism and dysplastic tricuspid valve. Repair of the tricuspid valve and treatment of the hyperthyroidism were both essential for successful treatment of the right heart failure. Most important, recrudescence of hyperthyroidism in this patient was associated with reappearance of florid right heart failure. This report provides further information about a potential linkage of hyperthyroidism and severe right heart failure.
New Technologies for Surgery of the Congenital Cardiac Defect
Kalfa, David; Bacha, Emile
2013-01-01
The surgical repair of complex congenital heart defects frequently requires additional tissue in various forms, such as patches, conduits, and valves. These devices often require replacement over a patient’s lifetime because of degeneration, calcification, or lack of growth. The main new technologies in congenital cardiac surgery aim at, on the one hand, avoiding such reoperations and, on the other hand, improving long-term outcomes of devices used to repair or replace diseased structural malformations. These technologies are: 1) new patches: CorMatrix® patches made of decellularized porcine small intestinal submucosa extracellular matrix; 2) new devices: the Melody® valve (for percutaneous pulmonary valve implantation) and tissue-engineered valved conduits (either decellularized scaffolds or polymeric scaffolds); and 3) new emerging fields, such as antenatal corrective cardiac surgery or robotically assisted congenital cardiac surgical procedures. These new technologies for structural malformation surgery are still in their infancy but certainly present great promise for the future. But the translation of these emerging technologies to routine health care and public health policy will also largely depend on economic considerations, value judgments, and political factors. PMID:23908869
Modification and performance evaluation of a mono-valve engine
NASA Astrophysics Data System (ADS)
Behrens, Justin W.
A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.
Lester, Patrick A; Coleman, Dawn M; Diaz, Jose A; Jackson, Tatum O; Hawley, Angela E; Mathues, Angela R; Grant, Brandon T; Knabb, Robert M; Ramacciotti, Eduardo; Frost, Charles E; Song, Yan; Wakefield, Thomas W; Myers, Daniel D
2017-05-01
Warfarin is the current standard for oral anticoagulation therapy in patients with mechanical heart valves, yet optimal therapy to maximize anticoagulation and minimize bleeding complications requires routine coagulation monitoring, possible dietary restrictions, and drug interaction monitoring. As alternatives to warfarin, oral direct acting factor Xa inhibitors are currently approved for the prophylaxis and treatment of venous thromboembolism and reduction of stroke and systemic embolization. However, no in vivo preclinical or clinical studies have been performed directly comparing oral factor Xa inhibitors such as apixaban to warfarin, the current standard of therapy. A well-documented heterotopic aortic valve porcine model was used to test the hypothesis that apixaban has comparable efficacy to warfarin for thromboprophylaxis of mechanical heart valves. Sixteen swine were implanted with a bileaflet mechanical aortic valve that bypassed the ligated descending thoracic aorta. Animals were randomized to 4 groups: control (no anticoagulation; n=4), apixaban oral 1 mg/kg twice a day (n=5), warfarin oral 0.04 to 0.08 mg/kg daily (international normalized ratio 2-3; n=3), and apixaban infusion (n=4). Postmortem valve thrombus was measured 30 days post-surgery for control-oral groups and 14 days post-surgery for the apixaban infusion group. Control thrombus weight (mean) was significantly different (1422.9 mg) compared with apixaban oral (357.5 mg), warfarin (247.1 mg), and apixiban 14-day infusion (61.1 mg; P <0.05). Apixaban is a promising candidate and may be a useful alternative to warfarin for thromboprophylaxis of mechanical heart valves. Unlike warfarin, no adverse bleeding events were observed in any apixaban groups. © 2017 American Heart Association, Inc.
Mitral valve surgery - minimally invasive
... flow. Your valve has developed an infection (infectious endocarditis). You have severe mitral valve prolapse that is ... function. Damage to your heart valve from infection (endocarditis). A minimally invasive procedure has many benefits. There ...
[Valvular heart disease associated with coronary artery disease].
Yildirir, Aylin
2009-07-01
Nowadays, age-related degenerative etiologies have largely replaced the rheumatic ones and as a natural result of this etiologic change, coronary artery disease has become associated with valvular heart disease to a greater extent. Degenerative aortic valve disease has an important pathophysiological similarity to atherosclerosis and is the leader in this association. There is a general consensus that severely stenotic aortic valve should be replaced during bypass surgery for severe coronary artery disease. For moderate degree aortic stenosis, aortic valve replacement is usually performed during coronary bypass surgery. Ischemic mitral regurgitation has recently received great attention from both diagnostic and therapeutic points of view. Ischemic mitral regurgitation significantly alters the prognosis of the patient with coronary artery disease. Severe ischemic mitral regurgitation should be corrected during coronary bypass surgery and mitral valve repair should be preferred to valve replacement. For moderate degree ischemic mitral regurgitation, many authors prefer valve surgery with coronary bypass surgery. In this review, the main characteristics of patients with coronary artery disease accompanying valvular heart disease and the therapeutic options based on individual valve pathology are discussed.
2013-01-01
Background Heart valve diseases are common with an estimated prevalence of 2.5% in the Western world. The number is rising due to an ageing population. Once symptomatic, heart valve diseases are potentially lethal, and heavily influence daily living and quality of life. Surgical treatment, either valve replacement or repair, remains the treatment of choice. However, post surgery, the transition to daily living may become a physical, mental and social challenge. We hypothesise that a comprehensive cardiac rehabilitation programme can improve physical capacity and self-assessed mental health and reduce hospitalisation and healthcare costs after heart valve surgery. Methods A randomised clinical trial, CopenHeartVR, aims to investigate whether cardiac rehabilitation in addition to usual care is superior to treatment as usual after heart valve surgery. The trial will randomly allocate 210 patients, 1:1 intervention to control group, using central randomisation, and blinded outcome assessment and statistical analyses. The intervention consists of 12 weeks of physical exercise, and a psycho-educational intervention comprising five consultations. Primary outcome is peak oxygen uptake (VO2 peak) measured by cardiopulmonary exercise testing with ventilatory gas analysis. Secondary outcome is self-assessed mental health measured by the standardised questionnaire Short Form 36. Also, long-term healthcare utilisation and mortality as well as biochemistry, echocardiography and cost-benefit will be assessed. A mixed-method design is used to evaluate qualitative and quantitative findings encompassing a survey-based study before the trial and a qualitative pre- and post-intervention study. Discussion The study is approved by the local regional Research Ethics Committee (H-1-2011-157), and the Danish Data Protection Agency (j.nr. 2007-58-0015). Trial registration ClinicalTrials.gov (http://NCT01558765). PMID:23782510
Sibilitz, Kirstine Laerum; Berg, Selina Kikkenborg; Hansen, Tina Birgitte; Risom, Signe Stelling; Rasmussen, Trine Bernholdt; Hassager, Christian; Køber, Lars; Steinbrüchel, Daniel; Gluud, Christian; Winkel, Per; Thygesen, Lau Caspar; Hansen, Jane Lindschou; Schmid, Jean Paul; Conraads, Viviane; Brocki, Barbara Christina; Zwisler, Ann-Dorthe
2013-04-22
Heart valve diseases are common with an estimated prevalence of 2.5% in the Western world. The number is rising due to an ageing population. Once symptomatic, heart valve diseases are potentially lethal, and heavily influence daily living and quality of life. Surgical treatment, either valve replacement or repair, remains the treatment of choice. However, post surgery, the transition to daily living may become a physical, mental and social challenge. We hypothesise that a comprehensive cardiac rehabilitation programme can improve physical capacity and self-assessed mental health and reduce hospitalisation and healthcare costs after heart valve surgery. A randomised clinical trial, CopenHeartVR, aims to investigate whether cardiac rehabilitation in addition to usual care is superior to treatment as usual after heart valve surgery. The trial will randomly allocate 210 patients, 1:1 intervention to control group, using central randomisation, and blinded outcome assessment and statistical analyses. The intervention consists of 12 weeks of physical exercise, and a psycho-educational intervention comprising five consultations. Primary outcome is peak oxygen uptake (VO2 peak) measured by cardiopulmonary exercise testing with ventilatory gas analysis. Secondary outcome is self-assessed mental health measured by the standardised questionnaire Short Form 36. Also, long-term healthcare utilisation and mortality as well as biochemistry, echocardiography and cost-benefit will be assessed. A mixed-method design is used to evaluate qualitative and quantitative findings encompassing a survey-based study before the trial and a qualitative pre- and post-intervention study. The study is approved by the local regional Research Ethics Committee (H-1-2011-157), and the Danish Data Protection Agency (j.nr. 2007-58-0015). ClinicalTrials.gov (http://NCT01558765).
klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis
Steed, Emily; Faggianelli, Nathalie; Roth, Stéphane; Ramspacher, Caroline; Concordet, Jean-Paul; Vermot, Julien
2016-01-01
The heartbeat and blood flow signal to endocardial cell progenitors through mechanosensitive proteins that modulate the genetic program controlling heart valve morphogenesis. To date, the mechanism by which mechanical forces coordinate tissue morphogenesis is poorly understood. Here we use high-resolution imaging to uncover the coordinated cell behaviours leading to heart valve formation. We find that heart valves originate from progenitors located in the ventricle and atrium that generate the valve leaflets through a coordinated set of endocardial tissue movements. Gene profiling analyses and live imaging reveal that this reorganization is dependent on extracellular matrix proteins, in particular on the expression of fibronectin1b. We show that blood flow and klf2a, a major endocardial flow-responsive gene, control these cell behaviours and fibronectin1b synthesis. Our results uncover a unique multicellular layering process leading to leaflet formation and demonstrate that endocardial mechanotransduction and valve morphogenesis are coupled via cellular rearrangements mediated by fibronectin synthesis. PMID:27221222
Options for Heart Valve Replacement
... which may include human or animal donor tissue) Ross Procedure — “Borrowing” your healthy valve and moving it ... Considerations for Surgery Medications Valve Repair Valve Replacement - Ross Procedure - Newer Surgery Options - What is TAVR? - Types ...
System and method for controlling engine knock using electro-hydraulic valve actuation
Brennan, Daniel G
2013-12-10
A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.
Design and CFD analysis of intake port and exhaust port for a 4 valve cylinder head engine
NASA Astrophysics Data System (ADS)
Latheesh, V. M.; Parthasarathy, P.; Baskaran, V.; Karthikeyan, S.
2018-02-01
In cylinder air motion in a compression ignition engine effects mixing of air-fuel, quality of combustion and emission produced. The primary objective is to design and analyze intake and the exhaust port for a four valve cylinder head to meet higher emission norms for a given diesel engine with two valves. In this work, an existing cylinder head designed for two valves was redesigned with 4 valves. The modern trend also confirms this approach. This is being followed in the design and development of new generation engines to meet the stringent environment norms, competition in market and demand for more fuel-efficient engines. The swirl ratio and flow coefficient were measured for different valve lifts using STAR CCM+. CFD results were validated with the two-valve cylinder experimental results. After validation, a comparison between two-valve and four-valve cylinder head was done. The conversion of two valve cylinder head to 4 valves may not support modern high swirl generating port layout and requires a trade-off between many design parameters.
[Medicinal treatment of tricuspid valve regurgitation].
Lankeit, M; Keller, K; Tschöpe, C; Pieske, B
2017-11-01
The vast majority of tricuspid valve regurgitations are of low degree without prognostic relevance in healthy individuals; however, morbidity and mortality increase with the degree of regurgitation, which can be secondary to either primary (structural) or secondary (functional) alterations of the valve. Due to the frequent lack of symptoms, echocardiographic examinations should be annually performed in patients with higher degree (at least moderate) tricuspid valve regurgitation, in particular in the presence of risk factors. Individual therapeutic management strategies should consider the etiology of the tricuspid valve regurgitation, the degree of regurgitation, the valve pathology and the risk-to-benefit ratio of the envisaged therapeutic procedure. Medicinal treatment options for tricuspid valve regurgitation are limited and generalized recommendations cannot be provided due to the lack of conclusive clinical trials. Symptomatic therapeutic measures encompass especially (loop) diuretics for the reduction of preload and afterload of the right ventricle. Pharmaceutical reduction of the heart rate should be avoided in patients with right heart insufficiency. While symptomatic therapeutic measures are often associated with only moderate effects, the most effective therapy of tricuspid valve regurgitation consists in the treatment of underlying illnesses, in most cases pulmonary hypertension due to pulmonary arterial hypertension (PAH), left heart disease or acute pulmonary embolism. Based on a number of published clinical studies and licensing of new drugs, treatment options for patients with PAH and heart failure with reduced ejection fraction (HFrEF) have substantially improved during the past years allowing for a differentiated, individualized management.
Collagen birefringence assessment in heart chordae tendineae through PS-OCT
NASA Astrophysics Data System (ADS)
Real, Eusebio; Revuelta, José M.; González-Vargas, Nieves; Pontón, Alejandro; Calvo-Díez, Marta; López-Higuera, José M.; Conde, Olga M.
2017-02-01
Degenerative mitral regurgitation is a serious and frequent human heart valve disease. Malfunctioning of this valve brings the left-sided heart through a significant increase of pressure and volume overload. Severe degenerative mitral incompetence generally requires surgical repair or valve replacement with a bioprosthesis or mechanical heart valve. Degenerative disease affects the leaflets or/and the chordae tendineae, which link both leaflets to the papillary muscles. During mitral valve surgical repair, reconstruction of the valve leaflets, annulus and chordae are provided to prevent postoperative recurrence of valve regurgitation. The operative evaluation of the diseased and apparently normal chordae tendineae mainly depends of the surgeońs experience, without any other objective diagnosis tool. In this work, PS-OCT (Polarization Sensitive-Optical Coherence Tomography) is applied for the first time to evaluate the pathological condition of human chordae coming from the mitral valve. It consists on a prospective study to test the viability of this technique for the evaluation of the collagen core of chords. This core presents a strong birefringence due to the longitudinal and organized arrangement of its collagen bundles. Different densities and organizations of the collagen core translate into different birefringence indicators whose measurement become an objective marker of the core structure. Ex-vivo mitral degenerative chordae tendineae have been analyzed with PS-OCT. Intensity OCT is used to obtain complementary morphological information of the chords. Birefringence results correlate with the previously reported values for human tendinous tissue.
Dedicated EGR engine with dynamic load control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayman, Alan W.; McAlpine, Robert S.; Keating, Edward J.
An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.
2013-01-01
Background Chronic mitral valve disease is frequently seen in the Dachshund. Dachshunds (n=207) made up 11.73% of the dogs admitted to the Cardiology Service at the Small Animal Clinic, Warsaw University of Life Sciences, Poland (first visits only). Results Of these, 35 dogs had no clinically detectable heart disease while 172 had chronic valve disease with the mitral valve affected most often (130 dogs), both mitral and tricuspid valves infrequently (39 dogs) and rarely the tricuspid valve (3 dogs). Males were affected more frequently than females and the average age of dogs with chronic valve disease was 11.9 years for females and 11.3 years for males. A majority of the diseased Dachshunds were classified as ISACHC 2 (79), followed by ISACHC 1 (60). Most frequent clinical signs noted by owners included coughing, exercise intolerance, dyspnea and tachypnea. Heart murmurs were generally louder with increased disease severity; however there were 20 dogs in the ISACHC 1 group with no audible heart murmurs. The most frequent electrocardiographic abnormalities included an increased P wave and QRS complex duration, increased R wave amplitude and tachycardia. With increased disease severity, echocardiography revealed an increase in heart size. A higher ISACHC class was related to increased heart size (based on echocardiography) and increased percentage of patients exhibiting enlargement of both left atrium and left ventricle (based on radiography). Conclusions The Dachshund is often affected by chronic mitral valvular disease with a late onset of associated clinical signs and few cardiac complications. PMID:23844824
The work by Giulio Ceradini in explaining the mechanism of semilunar cardiac valve function.
Troiani, Diana; Manni, Ermanno
2011-06-01
Using an excised pig heart preparation with tubes, a manometer, and a visualizing apparatus, Giulio Ceradini, an Italian physiologist working in the years of 1871-1872 in Carl Ludwig's famous laboratory in Leipzig, Germany, illustrated the mechanism of closure of the semilunar valves. He was the first to conceive that the closure of the heart valves depends not on a static back pressure nor upon eddies but is primarily the consequence of the decelerated systolic efflux. This pioneer research of Ceradini was first published in German in 1872 (4). The purpose of the present report is to revisit Ceradini's pioneering experiments and his interpretation of heart valve closure, which remains as true as it was in 1872.
Gościcka, D; Krakowiak, E
1988-01-01
Resorting to anatomical and radiological methods we have examined the position of the heart and the projection of the heart valves. The costotopy and the ortodiagram of the heart was analyzed. Special attention was paid to the difference between the position of the heart in female and male minks. We have found that in the majority of minks the heart is enclosed between 5 and 8 rib; it is situated with is greater part on the left side of the chest, especially in females.
Characterization of Fluid Flow through a Simplified Heart Valve Model
NASA Astrophysics Data System (ADS)
Katija, Kakani
2005-11-01
Research has shown that the leading vortex of a starting jet makes a larger contribution to mass transport than a straight jet. Physical processes terminate growth of the leading vortex ring at a stroke ratio (L/D) between 3.5 and 4.5. This has enhanced the idea that biological systems optimize vortex formation for fluid transport. Of present interest is how fluid transport through a heart valve induces flutter of the valve leaflets. An attempt to characterize the fluid flow through a heart valve was made using a simplified cylinder-string system. Experiments were conducted in a water tank where a piston pushed fluid out of a cylinder (of diameter D) into surrounding fluid. A latex string was attached to the end of the cylinder to simulate a heart valve leaflet. The FFT of the string motion was computed to quantify the flutter behavior observed in the cylinder-string system. By increasing the stroke ratio, the amplitude of transverse oscillations for all string lengths increases. For the string length D/2, the occurrence of flutter coincides with the formation of the vortex ring trailing jet.
What about My Child and Rheumatic Fever?
... damaged heart valves. This infection is called “infective endocarditis.”You can help reduce the risk for this ... clean and cavities filled can help prevent infective endocarditis. • a history of endocarditis. • an artificial heart valve. • ...
A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing.
Jansen-Park, So-Hyun; Hsu, Po-Lin; Müller, Indra; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas
2017-04-01
Mock heart circulation loops (MHCLs) serve as in-vitro platforms to investigate the physiological interaction between circulatory systems and cardiovascular devices. A mock heart (MH) engineered with silicone walls and helical aramid fibers, to mimic the complex contraction of a natural heart, has been developed to advance the MHCL previously developed in our group. A mock aorta with an anatomical shape enables the evaluation of a cannulation method for ventricular assist devices (VADs) and investigation of the usage of clinical measurement systems like pressure-volume catheters. Ventricle and aorta molds were produced based on MRI data and cast with silicone. Aramid fibers were layered in the silicone ventricle to reproduce ventricle torsion. A rotating hollow shaft was connected to the apex enabling the rotation of the MH and the connection of a VAD. Silicone wall thickness, aramid fiber angle and fiber pitch were varied to generate different MH models. All MH models were placed in a tank filled with variable amounts of water and air simulating the compliance. In this work, physiological ventricular torsion angles (15°-26°) and physiological pressure-volume loops were achieved. This MHCL can serve as a comprehensive testing platform for cardiovascular devices, such as artificial heart valves and cannulation of VADs.
Carcinoid heart disease: Diagnosis and management.
Luis, Sushil A; Pellikka, Patricia A
2016-01-01
Hedinger syndrome refers to carcinoid valvular heart disease. The disease is believed to be triggered by vasoactive substances that result in valvular fibrosis. It classically occurs in patients with metastatic carcinoid and preferentially involves the right sided cardiac valves. Affected valves become thickened and retracted, exhibiting regurgitation and sometimes, stenosis. Echocardiography is recommended in patients with carcinoid syndrome and a follow up study is advisable in those who develop a murmur or other symptoms or signs of valvular heart disease. For appropriately selected patients, valve replacement surgery appears to improve outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Panholzer, Bernd; Cremer, Jochen; Haneya, Assad
2018-01-01
Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed. PMID:29552039
Huenges, Katharina; Panholzer, Bernd; Cremer, Jochen; Haneya, Assad
2018-01-01
Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed.
Non-cardiac surgery in patients with prosthetic heart valves: a 12 years experience.
Akhtar, Raja Parvez; Abid, Abdul Rehman; Zafar, Hasnain; Gardezi, Syed Javed Raza; Waheed, Abdul; Khan, Jawad Sajid
2007-10-01
To study patients with mechanical heart valves undergoing non-cardiac surgery and their anticoagulation management during these procedures. It was a cohort study. The study was conducted at the Department of Cardiac Surgery, Punjab Institute of Cardiology, Lahore and Department of Surgery, Services Institute of Medical Sciences, Lahore, from September 1994 to June 2006. Patients with mechanical heart valves undergoing non-cardiac surgical operation during this period, were included. Their anticoagulation was monitored and anticoagulation related complications were recorded. In this study, 507 consecutive patients with a mechanical heart valve replacement were followed-up. Forty two (8.28%) patients underwent non-cardiac surgical operations of which 24 (57.1%) were for abdominal and non-abdominal surgeries, 5 (20.8%) were emergency and 19 (79.2%) were planned. There were 18 (42.9%) caesarean sections for pregnancies. Among the 24 procedures, there were 7(29.1%) laparotomies, 7(29.1%) hernia repairs, 2 (8.3%) cholecystectomies, 2 (8.3%) hysterectomies, 1(4.1%) craniotomy, 1(4.1%) spinal surgery for neuroblastoma, 1(4.1%) ankle fracture and 1(4.1%) carbuncle. No untoward valve or anticoagulation related complication was seen during this period. Patients with mechanical valve prosthesis on life-long anticoagulation, if managed properly, can undergo any type of non-cardiac surgical operation with minimal risk.
Simultaneously firing two cylinders of an even firing camless engine
Brennan, Daniel G
2014-03-11
A valve control system includes an engine speed control module that determines an engine speed and a desired engine stop position. A piston position module determines a desired stopping position of a first piston based on the desired engine stop position. A valve control module receives the desired stopping position, commands a set of valves to close at the desired stopping position if the engine speed is less than a predetermined shutdown threshold, and commands the set of valves to reduce the engine speed if the engine speed is greater than the predetermined shutdown threshold.
Schofer, Joachim; Nietlispach, Fabian; Bijuklic, Klaudija; Colombo, Antonio; Gatto, Fernando; De Marco, Federico; Mangieri, Antonio; Hansen, Lorenz; Bruschi, Giuseppe; Ruparelia, Neil; Rieß, Friedrich-Christian; Maisano, Franscesco; Latib, Azeem
2015-12-21
This study sought to evaluate the use of the Direct Flow Medical (DFM) transcatheter heart valve (Direct Flow Medical, Santa Rosa, California) for the treatment of noncalcific pure aortic regurgitation (AR). The treatment of noncalcific AR has remained a relative contraindication with transcatheter heart valves due to challenges in anchoring devices in the absence of calcium, concerns of valve embolization, and the high risk of significant residual paravalvular leak. The study population consisted of patients treated for severe noncalcific pure AR with transfemoral implantation of a DFM transcatheter heart valve at 6 European centers. The primary endpoint was the composite endpoint of device success and the secondary endpoint was the composite early safety endpoint (according to the VARC-2 criteria). Eleven high-risk (STS score 8.84 ± 8.9, Logistic EuroSCORE 19.9 ± 7.1) patients (mean age 74.7 ± 12.9 years) were included. Device success was achieved in all patients. In 1 patient, the initial valve prosthesis was retrieved after pull-through, and a second valve was successfully deployed. The early safety endpoint was reached in 91% of the patients, with 1 patient requiring surgical aortic valve replacement secondary to downward dislocation of the prosthesis that was successfully managed with surgical aortic valve replacement. DFM implantation resulted in excellent hemodynamics with none or trivial paravalvular regurgitation in 9 patients and a transprosthetic gradient of 7.7 ± 5.1 mm Hg at 30-day follow up. All patients derived symptomatic benefit following the procedure, with 72% in New York Heart Association functional class I or II. This study reports the feasibility of treating severe noncalcific AR with the Direct Flow prosthesis via the transfemoral route. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.
Duan, Bin
2017-01-01
3D bioprinting is a group of rapidly growing techniques that allows building engineered tissue constructs with complex and hierarchical structures, mechanical and biological heterogeneity. It enables implementation of various bioinks through different printing mechanisms and precise deposition of cell and/or biomolecule laden biomaterials in predefined locations. This review briefly summarizes applicable bioink materials and various bioprinting techniques, and presents the recent advances in bioprinting of cardiovascular tissues, with focusing on vascularized constructs, myocardium and heart valve conduits. Current challenges and further perspectives are also discussed to help guide the bioink and bioprinter development, improve bioprinting strategies and direct future organ bioprinting and translational applications.
Bioreactor Technology in Cardiovascular Tissue Engineering
NASA Astrophysics Data System (ADS)
Mertsching, H.; Hansmann, J.
Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.
Reul, Ross M.; Ramchandani, Mahesh K.; Reardon, Michael J.
2017-01-01
Surgical aortic valve replacement is the gold standard procedure to treat patients with severe, symptomatic aortic valve stenosis or insufficiency. Bioprosthetic valves are used for surgical aortic valve replacement with a much greater prevalence than mechanical valves. However, bioprosthetic valves may fail over time because of structural valve deterioration; this often requires intervention due to severe bioprosthetic valve stenosis or regurgitation or a combination of both. In select patients, transcatheter aortic valve replacement is an alternative to surgical aortic valve replacement. Transcatheter valve-in-valve (ViV) replacement is performed by implanting a transcatheter heart valve within a failing bioprosthetic valve. The transcatheter ViV operation is a less invasive procedure compared with reoperative surgical aortic valve replacement, but it has been associated with specific complications and requires extensive preoperative work-up and planning by the heart team. Data from experimental studies and analyses of results from clinical procedures have led to strategies to improve outcomes of these procedures. The type, size, and implant position of the transcatheter valve can be optimized for individual patients with knowledge of detailed dimensions of the surgical valve and radiographic and echocardiographic measurements of the patient's anatomy. Understanding the complexities of the ViV procedure can lead surgeons to make choices during the original surgical valve implantation that can make a future ViV operation more technically feasible years before it is required. PMID:29743998
Aggarwal, Sanjeev; Delius, Ralph E; Walters, Henry L; L'Ecuyer, Thomas J
2012-01-01
This case report describes a toddler who developed a protein-losing enteropathy (PLE) 4 years after orthotopic heart transplantation (OHT). He was born with a hypoplastic left heart syndrome for which he underwent a successful Norwood procedure, a Hemi-Fontan palliation, and a Fontan palliation at 18 months of age. Fifteen months following the Fontan operation, he developed a PLE and Fontan failure requiring OHT. Four years after OHT, he developed a severe tricuspid regurgitation and a PLE. His PLE improved after tricuspid valve replacement. It is now 2 years since his tricuspid valve replacement and he remains clinically free of ascites and peripheral edema with a normal serum albumin level. His prosthetic tricuspid valve is functioning normally. © 2011 Wiley Periodicals, Inc.
Increased dietary intake of vitamin A promotes aortic valve calcification in vivo.
Huk, Danielle J; Hammond, Harriet L; Kegechika, Hiroyuki; Lincoln, Joy
2013-02-01
Calcific aortic valve disease (CAVD) is a major public health problem with no effective treatment available other than surgery. We previously showed that mature heart valves calcify in response to retinoic acid (RA) treatment through downregulation of the SRY transcription factor Sox9. In this study, we investigated the effects of excess vitamin A and its metabolite RA on heart valve structure and function in vivo and examined the molecular mechanisms of RA signaling during the calcification process in vitro. Using a combination of approaches, we defined calcific aortic valve disease pathogenesis in mice fed 200 IU/g and 20 IU/g of retinyl palmitate for 12 months at molecular, cellular, and functional levels. We show that mice fed excess vitamin A develop aortic valve stenosis and leaflet calcification associated with increased expression of osteogenic genes and decreased expression of cartilaginous markers. Using a pharmacological approach, we show that RA-mediated Sox9 repression and calcification is regulated by classical RA signaling and requires both RA and retinoid X receptors. Our studies demonstrate that excess vitamin A dietary intake promotes heart valve calcification in vivo. Therefore suggesting that hypervitaminosis A could serve as a new risk factor of calcific aortic valve disease in the human population.
Cardiac Hemodynamics in the Pathogenesis of Congenital Heart Disease and Aortic Valve Calcification
NASA Astrophysics Data System (ADS)
Nigam, Vishal
2011-11-01
An improved understanding of the roles of hemodynamic forces play in cardiac development and the pathogenesis of cardiac disease will have significant scientific and clinical impact. I will focus on the role of fluid dynamics in congenital heart disease and aortic valve calcification. Congenital heart defects are the most common form of birth defect. Aortic valve calcification/stenosis is the third leading cause of adult heart disease and the most common form of acquired valvular disease in developed countries. Given the high incidence of these diseases and their associated morbidity and mortality, the potential translational impact of an improved understanding of cardiac hemodynamic forces is very large. Division of Pediatric Cardiology, Rady Children's Hospital, San Diego
Transcatheter heart valves for the treatment of aortic stenosis: state-of-the-art.
Del Valle-Fernández, R; Ruiz, C E
2008-10-01
Degenerative aortic stenosis is the most frequent heart valve disease. As an alternative to surgical aortic valve replacement, several companies are working on the development of new prosthesis designed to be deployed by transcatheter approaches. Both transfemoral and transapical techniques are feasible, and initial trials in high-risk patients show good procedural outcomes and mid-term (up to 2 years) functionality. Two first-generation prosthesis (Edwards-SAPIEN and CoreValve Revalving System) are commercially available in Europe, and a number of other second-generation valves (with the capabilities of repositioning and retrievability) are under evaluation. Among them, the Sadra-Lotus Valve, The Direct Flow Medical valve and the Paniagua Heart Valve have published first-in-man results; the JenaValve and AorTx devices have also been temporarily implanted in humans. The development of repositionable and retrievable prosthesis with improved profile is mandatory, and it is the main focus of current projects. Not only technical improvements but also operators specialization and an optimal patient selection are essential to improve these initial Some procedural challenges need to be overcome prior to the expansion of these techniques to lower risk groups, and time is needed for detailed long-term outcomes and risk estimations. Only with a close collaboration among different specialists, basic researchers and the industry will the future development of transcatheter aortic implantation techniques be ensured.
Cazelli, José Guilherme; Camargo, Gabriel Cordeiro; Kruczan, Dany David; Weksler, Clara; Felipe, Alexandre Rouge; Gottlieb, Ilan
2017-10-01
The prevalence of coronary artery disease (CAD) in valvular patients is similar to that of the general population, with the usual association with traditional risk factors. Nevertheless, the search for obstructive CAD is more aggressive in the preoperative period of patients with valvular heart disease, resulting in the indication of invasive coronary angiography (ICA) to almost all adult patients, because it is believed that coronary artery bypass surgery should be associated with valve replacement. To evaluate the prevalence of obstructive CAD and factors associated with it in adult candidates for primary heart valve surgery between 2001 and 2014 at the National Institute of Cardiology (INC) and, thus, derive and validate a predictive obstructive CAD score. Cross-sectional study evaluating 2898 patients with indication for heart surgery of any etiology. Of those, 712 patients, who had valvular heart disease and underwent ICA in the 12 months prior to surgery, were included. The P value < 0.05 was adopted as statistical significance. The prevalence of obstructive CAD was 20%. A predictive model of obstructive CAD was created from multivariate logistic regression, using the variables age, chest pain, family history of CAD, systemic arterial hypertension, diabetes mellitus, dyslipidemia, smoking, and male gender. The model showed excellent correlation and calibration (R² = 0.98), as well as excellent accuracy (ROC of 0.848; 95%CI: 0.817-0.879) and validation (ROC of 0.877; 95%CI: 0.830 - 0.923) in different valve populations. Obstructive CAD can be estimated from clinical data of adult candidates for valve repair surgery, using a simple, accurate and validated score, easy to apply in clinical practice, which may contribute to changes in the preoperative strategy of acquired heart valve surgery in patients with a lower probability of obstructive disease.
Percutaneous Dual-valve Intervention in a High-risk Patient with Severe Aortic and Mitral Stenosis
Mrevlje, Blaz; Aboukura, Mohamad; Nienaber, Christoph A.
2016-01-01
Aortic stenosis is the most frequent and mitral stenosis is the least frequent native single-sided valve disease in Europe. Patients with the combination of severe symptomatic degenerative aortic and mitral stenosis are very rare. Guidelines for the treatment of heart valve diseases are clear for single-valve situations. However, there is no common agreement or recommendation for the best treatment strategy in patients with multiple valve disease and severe concomitant comorbidities. A 76-year-old female patient with the combination of severe degenerative symptomatic aortic and mitral stenosis and several comorbidities including severe obesity, who was found unsuitable surgical candidate by the heart team and unsuitable for two-time general anesthesia in the case of two-step single-valve percutaneous approach by anesthesiologists, underwent successful percutaneous dual-valve single-intervention (transcatheter aortic valve implantation and percutaneous mitral balloon commissurotomy). Percutaneous dual-valve single-intervention is feasible in selected symptomatic high-risk patients. PMID:27867460
Swirling flow in bileaflet mechanical heart valve
NASA Astrophysics Data System (ADS)
Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.
2018-05-01
Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.
Computational Modeling of Blood Flow and Valve Dynamics in Hearts with Hypertrophic Cardiomyopathy
NASA Astrophysics Data System (ADS)
Zheng, Xudong; Mittal, Rajat; Abraham, Theodore; Pinheiro, Aurelio
2010-11-01
Hypertrophic Cardiomyopathy (HCM) is a cardiovascular disease manifested by the thickening of the ventricular wall and often leads to a partial obstruction to the blood flow out of the left ventricle. HCM is recognized as one of the most common causes of sudden cardiac death in athletes. In a heart with HCM, the hypertrophy usually narrows the blood flow pathway to the aorta and produces a low pressure zone between the mitral valve and the hypertrophy during systole. This low pressure can suck the mitral valve leaflet back and completely block the blood flow into the aorta. In the current study, a sharp interface immersed boundary method flow solver is employed to study the hemodynamics and valve dynamics inside a heart with HCM. The three-dimensional motion and configuration of the left ventricle including mitral valve leaflets and aortic valves are reconstructed based on echo-cardio data sets. The mechanisms of aortic obstruction associated with HCM are investigated. The long term objective of this study is to develop a computational tool to aid in the assessment and surgical management of HCM.
Sibilitz, Kirstine L; Berg, Selina K; Rasmussen, Trine B; Risom, Signe Stelling; Thygesen, Lau C; Tang, Lars; Hansen, Tina B; Johansen, Pernille Palm; Gluud, Christian; Lindschou, Jane; Schmid, Jean Paul; Hassager, Christian; Køber, Lars; Taylor, Rod S; Zwisler, Ann-Dorthe
2016-12-15
The evidence for cardiac rehabilitation after valve surgery remains sparse. Current recommendations are therefore based on patients with ischaemic heart disease. The aim of this randomised clinical trial was to assess the effects of cardiac rehabilitation versus usual care after heart valve surgery. The trial was an investigator-initiated, randomised superiority trial (The CopenHeart VR trial, VR; valve replacement or repair). We randomised 147 patients after heart valve surgery 1:1 to 12 weeks of cardiac rehabilitation consisting of physical exercise and monthly psycho-educational consultations (intervention) versus usual care without structured physical exercise or psycho-educational consultations (control). Primary outcome was physical capacity measured by VO 2 peak and secondary outcome was self-reported mental health measured by Short Form-36. 76% were men, mean age 62 years, with aortic (62%), mitral (36%) or tricuspid/pulmonary valve surgery (2%). Cardiac rehabilitation compared with control had a beneficial effect on VO 2 peak at 4 months (24.8 mL/kg/min vs 22.5 mL/kg/min, p=0.045) but did not affect Short Form-36 Mental Component Scale at 6 months (53.7 vs 55.2 points, p=0.40) or the exploratory physical and mental outcomes. Cardiac rehabilitation increased the occurrence of self-reported non-serious adverse events (11/72 vs 3/75, p=0.02). Cardiac rehabilitation after heart valve surgery significantly improves VO 2 peak at 4 months but has no effect on mental health and other measures of exercise capacity and self-reported outcomes. Further research is needed to justify cardiac rehabilitation in this patient group. NCT01558765, Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Ananthakrishna Pillai, Ajith; Ramasamy, Chandramohan; V, Saranya Gousy; Kottyath, Harichandrakumar
2018-03-11
Mitral stenosis may present with decompensated heart failure during pregnancy. Many patients do have advanced sub valve disease and present late with decompensated state. The outcomes of balloon mitral valvuloplasty (BMV) in such advanced sub valve disease with severe heart failure in pregnancy has not been specifically studied till now. A descriptive study looking at the immediate and long-term outcomes of pregnant patients with MS who presented with severe heart failure and sub valve disease who had undergone BMV. Ninety-six patients were studied. The mean gestational age was 23.4 ± 10.9 weeks .Mean SpO2 was 89% at admission,17% were in cardiogenic shock and 33.33 were on mechanical ventilation. The mean Wilkin's score was 9.71 ± 2.1 and sub valve score was 3.3 ± 0.12. BMV was successful in 77 (80.2%) patients and failed in 19. In 5.2% cases, acute severe MR occurred. There were 11 maternal deaths (six in failed and five in success group). A successful obstetric outcome was seen in 71 patients in success (92%) and 11/19 (57%) in failed (P < 0.001). The obstetric outcomes were better in success versus failure group. Anova post hoc analysis showed sustained gradient reductions at 1 and 5 year follow-up (P = 0.03) in success group. BMV offers substantial improvement in clinical outcomes among pregnant patients with MS and heart failure even with severe sub valve disease. The morality rate among failed was high at 31%. The obstetric outcomes were poor after a failed BMV. Outcomes following balloon mitral valvuloplasty in pregnant females with mitral stenosis and significant sub valve disease with severe decompensated heart failure. © 2018, Wiley Periodicals, Inc.
2012-01-01
Background Functional tricuspid regurgitation (TR) occurs in patients with rheumatic mitral valve disease even after mitral valve surgery. The aim of this study was to analyze surgical results of TR after previous successful mitral valve surgery. Methods From September 1996 to September 2008, 45 patients with TR after previous mitral valve replacement underwent second operation for TR. In those, 43 patients (95.6%) had right heart failure symptoms (edema of lower extremities, ascites, hepatic congestion, etc.) and 40 patients (88.9%) had atrial fibrillation. Twenty-six patients (57.8%) were in New York Heart Association (NYHA) functional class III, and 19 (42.2%) in class IV. Previous operations included: 41 for mechanical mitral valve replacement (91.1%), 4 for bioprosthetic mitral valve replacement (8.9%), and 7 for tricuspid annuloplasty (15.6%). Results The tricuspid valves were repaired with Kay's (7 cases, 15.6%) or De Vega technique (4 cases, 8.9%). Tricuspid valve replacement was performed in 34 cases (75.6%). One patient (2.2%) died. Postoperative low cardiac output (LCO) occurred in 5 patients and treated successfully. Postoperative echocardiography showed obvious reduction of right atrium and ventricle. The anterioposterior diameter of the right ventricle decreased to 25.5 ± 7.1 mm from 33.7 ± 6.2 mm preoperatively (P < 0. 05). Conclusion TR after mitral valve replacement in rheumatic heart disease is a serious clinical problem. If it occurs or progresses late after mitral valve surgery, tricuspid valve annuloplasty or replacement may be performed with satisfactory results. Due to the serious consequence of untreated TR, aggressive treatment of existing TR during mitral valve surgery is recommended. PMID:22490269
Single leg separation prevalence among explanted Björk-Shiley prosthetic heart valves.
Blot, William J; Signorello, Lisa B; Cohen, Sarah S; Ibrahim, Michel A
2007-11-01
Björk-Shiley convexo-concave (BSCC) prosthetic heart valves are believed to have been implanted in over 86,000 patients worldwide. Limited data are available on the prevalence of single leg separations (SLS) of the valves' outlet struts, a potential precursor to complete valve fracture. Data maintained by the manufacturer, including results of examinations for SLS in explanted valves, were merged with available information on the characteristics of the valve. The prevalence of SLS in the examined valves was calculated according to valve angle, size, position, and study. Among 343 examined valves, the overall prevalence of SLS was 8.2%, but this varied significantly by valve size, being three-fold higher among 29+ mm valves than among smaller valves, with statistically non-significantly higher prevalences among mitral than aortic, and among 70 degrees than 60 degrees valves. By applying the size, position and angle-specific SLS prevalences to the worldwide valve distribution, it is estimated that SLS may be present in 6.8% (95% confidence limits 4.1-9.4%) of all BSCC valves. These findings suggest that SLS may affect between 820 and 1,880 of the almost 20,000 BSCC valves among surviving patients worldwide. Such estimates help frame the context for potential patient screenings, should imaging and acoustic techniques to detect SLS become available.
Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.
Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik
2017-10-13
Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.
Bennett, Charles L.
2016-03-22
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Friedman, Morton H; Krams, Rob; Chandran, Krishnan B
2010-03-01
Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid-structure interaction analysis to arterial flows and the dynamics of heart valves.
Exercise-based cardiac rehabilitation for adults after heart valve surgery.
Sibilitz, Kirstine L; Berg, Selina K; Tang, Lars H; Risom, Signe S; Gluud, Christian; Lindschou, Jane; Kober, Lars; Hassager, Christian; Taylor, Rod S; Zwisler, Ann-Dorthe
2016-03-21
Exercise-based cardiac rehabilitation may benefit heart valve surgery patients. We conducted a systematic review to assess the evidence for the use of exercise-based intervention programmes following heart valve surgery. To assess the benefits and harms of exercise-based cardiac rehabilitation compared with no exercise training intervention, or treatment as usual, in adults following heart valve surgery. We considered programmes including exercise training with or without another intervention (such as a psycho-educational component). We searched: the Cochrane Central Register of Controlled Trials (CENTRAL); the Database of Abstracts of Reviews of Effects (DARE); MEDLINE (Ovid); EMBASE (Ovid); CINAHL (EBSCO); PsycINFO (Ovid); LILACS (Bireme); and Conference Proceedings Citation Index-S (CPCI-S) on Web of Science (Thomson Reuters) on 23 March 2015. We handsearched Web of Science, bibliographies of systematic reviews and trial registers (ClinicalTrials.gov, Controlled-trials.com, and The World Health Organization International Clinical Trials Registry Platform). We included randomised clinical trials that investigated exercise-based interventions compared with no exercise intervention control. The trial participants comprised adults aged 18 years or older who had undergone heart valve surgery for heart valve disease (from any cause) and received either heart valve replacement, or heart valve repair. Two authors independently extracted data. We assessed the risk of systematic errors ('bias') by evaluation of bias risk domains. Clinical and statistical heterogeneity were assessed. Meta-analyses were undertaken using both fixed-effect and random-effects models. We used the GRADE approach to assess the quality of evidence. We sought to assess the risk of random errors with trial sequential analysis. We included two trials from 1987 and 2004 with a total 148 participants who have had heart valve surgery. Both trials had a high risk of bias.There was insufficient evidence at 3 to 6 months follow-up to judge the effect of exercise-based cardiac rehabilitation compared to no exercise on mortality (RR 4.46 (95% confidence interval (CI) 0.22 to 90.78); participants = 104; studies = 1; quality of evidence: very low) and on serious adverse events (RR 1.15 (95% CI 0.37 to 3.62); participants = 148; studies = 2; quality of evidence: very low). Included trials did not report on health-related quality of life (HRQoL), and the secondary outcomes of New York Heart Association class, left ventricular ejection fraction and cost. We did find that, compared with control (no exercise), exercise-based rehabilitation may increase exercise capacity (SMD -0.47, 95% CI -0.81 to -0.13; participants = 140; studies = 2, quality of evidence: moderate). There was insufficient evidence at 12 months follow-up for the return to work outcome (RR 0.55 (95% CI 0.19 to 1.56); participants = 44; studies = 1; quality of evidence: low). Due to limited information, trial sequential analysis could not be performed as planned. Our findings suggest that exercise-based rehabilitation for adults after heart valve surgery, compared with no exercise, may improve exercise capacity. Due to a lack of evidence, we cannot evaluate the impact on other outcomes. Further high-quality randomised clinical trials are needed in order to assess the impact of exercise-based rehabilitation on patient-relevant outcomes, including mortality and quality of life.
Intracranial Hypertension: Medication and Surgery
... the atrium (heart). Many shunts used today have programmable valves, which means that the valves are externally adjustable. The advantage of a programmable valve is that after surgery, a physician can ...
Leopaldi, Alberto M; Wrobel, Krzysztof; Speziali, Giovanni; van Tuijl, Sjoerd; Drasutiene, Agne; Chitwood, W Randolph
2018-01-01
Previously, cardiac surgeons and cardiologists learned to operate new clinical devices for the first time in the operating room or catheterization laboratory. We describe a biosimulator that recapitulates normal heart valve physiology with associated real-time hemodynamic performance. To highlight the advantages of this simulation platform, transventricular extruded polytetrafluoroethylene artificial chordae were attached to repair flail or prolapsing mitral valve leaflets. Guidance for key repair steps was by 2-dimensional/3-dimensional echocardiography and simultaneous intracardiac videoscopy. Multiple surgeons have assessed the use of this biosimulator during artificial chordae implantations. This simulation platform recapitulates normal and pathologic mitral valve function with associated hemodynamic changes. Clinical situations were replicated in the simulator and echocardiography was used for navigation, followed by videoscopic confirmation. This beating heart biosimulator reproduces prolapsing mitral leaflet pathology. It may be the ideal platform for surgeon and cardiologist training on many transcatheter and beating heart procedures. Copyright © 2017 The American Association for Thoracic Surgery. All rights reserved.
Pediatric heart surgery - discharge
... of the aorta repair - discharge; Heart surgery for children - discharge; Atrial septal defect repair - discharge; Ventricular septal ... discharge; Acquired heart disease - discharge; Heart valve surgery - ... Heart surgery - pediatric - discharge; Heart transplant - pediatric - ...
2013 update on congenital heart disease, clinical cardiology, heart failure, and heart transplant.
Subirana, M Teresa; Barón-Esquivias, Gonzalo; Manito, Nicolás; Oliver, José M; Ripoll, Tomás; Lambert, Jose Luis; Zunzunegui, José L; Bover, Ramon; García-Pinilla, José Manuel
2014-03-01
This article presents the most relevant developments in 2013 in 3 key areas of cardiology: congenital heart disease, clinical cardiology, and heart failure and transplant. Within the area of congenital heart disease, we reviewed contributions related to sudden death in adult congenital heart disease, the importance of specific echocardiographic parameters in assessing the systemic right ventricle, problems in patients with repaired tetralogy of Fallot and indication for pulmonary valve replacement, and confirmation of the role of specific factors in the selection of candidates for Fontan surgery. The most recent publications in clinical cardiology include a study by a European working group on correct diagnostic work-up in cardiomyopathies, studies on the cost-effectiveness of percutaneous aortic valve implantation, a consensus document on the management of type B aortic dissection, and guidelines on aortic valve and ascending aortic disease. The most noteworthy developments in heart failure and transplantation include new American guidelines on heart failure, therapeutic advances in acute heart failure (serelaxin), the management of comorbidities such as iron deficiency, risk assessment using new biomarkers, and advances in ventricular assist devices. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Mellwig, Klaus Peter; van Buuren, Frank; Gohlke-Baerwolf, Christa; Bjørnstad, Hans Halvor
2008-02-01
Physical check-ups among athletes with valvular heart disease are of significant relevance. In athletes with mitral valve stenosis the extent of allowed physical activity is dependant on the size of the left atrium and the severity of the valve defect. Patients with mild-to-moderate mitral valve regurgitation can participate in all types of sport associated with low and moderate isometric stress and moderate dynamic stress. Patients under anticoagulation should not participate in any type of contact sport. Asymptomatic athletes with mild aortic valve stenosis can take part in all types of sport, as long as left ventricular function and size are normal, a normal response to exercise at the level performed during athletic activities is present and there are no arrhythmias. Asymptomatic athletes with moderate aortic valve stenosis should only take part in sports with low dynamic and static stress. Aortic valve regurgitation is often present due to connective tissue disease of a bicuspid valve. Athletes with mild aortic valve regurgitation, with normal end diastolic left ventricular size and systolic function can participate in all types of sport. A mitral valve prolapse is often associated with structural diseases of the myocardium and endocardium. In patients with mitral valve prolapse Holter-ECG monitoring should also be performed to detect significant arrhythmias. All athletes with known valvular heart disease, a previous history of infective endocarditis and valve surgery should receive endocarditis prophylaxis before dental, oral, respiratory, intestinal and genitourinary procedures associated with bacteraemia. Sport activities have to be avoided during active infection with fever.
Transcatheter Aortic Valve Replacement for Native Aortic Valve Regurgitation
Spina, Roberto; Anthony, Chris; Muller, David WM
2015-01-01
Transcatheter aortic valve replacement with either the balloon-expandable Edwards SAPIEN XT valve, or the self-expandable CoreValve prosthesis has become the established therapeutic modality for severe aortic valve stenosis in patients who are not deemed suitable for surgical intervention due to excessively high operative risk. Native aortic valve regurgitation, defined as primary aortic incompetence not associated with aortic stenosis or failed valve replacement, on the other hand, is still considered a relative contraindication for transcatheter aortic valve therapies, because of the absence of annular or leaflet calcification required for secure anchoring of the transcatheter heart valve. In addition, severe aortic regurgitation often coexists with aortic root or ascending aorta dilatation, the treatment of which mandates operative intervention. For these reasons, transcatheter aortic valve replacement has been only sporadically used to treat pure aortic incompetence, typically on a compassionate basis and in surgically inoperable patients. More recently, however, transcatheter aortic valve replacement for native aortic valve regurgitation has been trialled with newer-generation heart valves, with encouraging results, and new ancillary devices have emerged that are designed to stabilize the annulus–root complex. In this paper we review the clinical context, technical characteristics and outcomes associated with transcatheter treatment of native aortic valve regurgitation. PMID:29588674
... with an artificial valve (this is called the Ross Procedure). This procedure may be useful for people ... valve that does not close all the way will allow blood to leak backwards. This is called ...
Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... The heart has 4 chambers: Two upper chambers (atria) Two lower chambers (ventricles) The heart has valves that close ...
Internal combustion engine and method for control
Brennan, Daniel G
2013-05-21
In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.
NASA Astrophysics Data System (ADS)
Kamili Zahidi, M.; Razali Hanipah, M.
2017-10-01
A two-stroke poppet valve engine is developed to overcome the common problems in conventional two-stroke engine designs. However, replacing piston control port with poppet valve will resulted different flow behaviour. This paper presents the model and simulation result of three-dimensional (3D) port flow investigation of a two-stroke poppet valve engine. The objective of the investigation is to conduct a numerical investigation on port flow performance of two-stroke poppet valve engine and compare the results obtained from the experimental investigation. The model is to be used for the future numerical study of the engine. The volume flow rate results have been compared with the results obtained experimentally as presented in first part of this paper. The model has shown good agreement in terms of the flow rate at initial and final valve lifts but reduced by about 50% during half-lift region.
Santoro, Rosaria; Consolo, Filippo; Spiccia, Marco; Piola, Marco; Kassem, Samer; Prandi, Francesca; Vinci, Maria Cristina; Forti, Elisa; Polvani, Gianluca; Fiore, Gianfranco Beniamino; Soncini, Monica; Pesce, Maurizio
2016-02-01
Glutaraldehyde-fixed pericardium of animal origin is the elective material for the fabrication of bio-prosthetic valves for surgical replacement of insufficient/stenotic cardiac valves. However, the pericardial tissue employed to this aim undergoes severe calcification due to chronic inflammation resulting from a non-complete immunological compatibility of the animal-derived pericardial tissue resulting from failure to remove animal-derived xeno-antigens. In the mid/long-term, this leads to structural deterioration, mechanical failure, and prosthesis leaflets rupture, with consequent need for re-intervention. In the search for novel procedures to maximize biological compatibility of the pericardial tissue into immunocompetent background, we have recently devised a procedure to decellularize the human pericardium as an alternative to fixation with aldehydes. In the present contribution, we used this procedure to derive sheets of decellularized pig pericardium. The decellularized tissue was first tested for the presence of 1,3 α-galactose (αGal), one of the main xenoantigens involved in prosthetic valve rejection, as well as for mechanical tensile behavior and distensibility, and finally seeded with pig- and human-derived aortic valve interstitial cells. We demonstrate that the decellularization procedure removed the αGAL antigen, maintained the mechanical characteristics of the native pig pericardium, and ensured an efficient surface colonization of the tissue by animal- and human-derived aortic valve interstitial cells. This establishes, for the first time, the feasibility of fixative-free pericardial tissue seeding with valve competent cells for derivation of tissue engineered heart valve leaflets. © 2015 Wiley Periodicals, Inc.
Problem: Mitral Valve Regurgitation
... each time the left ventricle contracts. Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...
... place. There are two types of mitral valves: Mechanical, made of man-made (synthetic) materials, such as ... Mechanical heart valves last a lifetime. However, blood clots may develop on them. This can cause them ...
Seiffert, Moritz; Diemert, Patrick; Koschyk, Dietmar; Schirmer, Johannes; Conradi, Lenard; Schnabel, Renate; Blankenberg, Stefan; Reichenspurner, Hermann; Baldus, Stephan; Treede, Hendrik
2013-06-01
This study sought to report on the feasibility and early results of transcatheter aortic valve implantation employing a second-generation device in a series of patients with pure aortic regurgitation. Efficacy and safety of transcatheter aortic valve implantation in patients with calcific aortic stenosis and high surgical risk has been demonstrated. However, experience with implantation for severe noncalcified aortic regurgitation has been limited due to increased risk for valve dislocation or annular rupture. Five patients (mean age: 66.6 ± 7 years) underwent transapical implantation of a JenaValve (JenaValve Technology GmbH, Munich, Germany) transcatheter heart valve for moderate to severe, noncalcified aortic regurgitation. All patients were considered high risk for surgical aortic valve replacement after evaluation by an interdisciplinary heart team (logistic EuroSCORE [European System for Cardiac Operative Risk Evaluation] range 3.1% to 38.9%). Procedural and acute clinical outcomes were analyzed. Implantation was successful in all cases without relevant remaining aortic regurgitation or signs of stenosis in any of the patients. No major device- or procedure-related adverse events occurred and all 5 patients were alive with improved exercise tolerance at 3-month follow-up. Noncalcified aortic regurgitation continues to be a challenging pathology for transcatheter aortic valve implantation due to the risk for insufficient anchoring of the valve stent within the aortic annulus. This report provides first evidence that the JenaValve prosthesis may be a reasonable option in these specific patients due to its unique stent design, clipping the native aortic valve leaflets, and offering promising early results. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...
[Preparation, storage, transportation and use of heart valves for allotransplantation].
Spatenka, J; Kostelka, M; Kobylka, P; Hucín, B; Honĕk, T; Lochmann, O; Hájek, T; Tláskal, T; Povýsilová, V; Fiser, B
1997-03-01
Thanks to the co-operation with Czech and Slovak Transplant Centres and with some of the Departments of Pathology and Forensic Medicine 274 hearts were collected for allograft heart valves (AHV) processing during 1992-1995. The Cardiac surgeon dissected the aortic valve with the root and the pulmonary artery trunk with the valve. Tissues were antibiotically (ATB) sterilised in cultivation medium E 199 (24 hours at 37 degrees C). ATB concentrations (mg/ml): Cepharin 0.2, Azlocilin 0.2, Tobramycin 0.08 and Amphotericin B 0.1 for harvesting at post-mortem (P) or Miconazol 0.05 for sterile retrieval during multiorgan harvesting (MOH). After sterilisation AHV were stored at 4 degrees C. 49 AHV were infected even after ATB treatment-15 of 35 collected at P (43%) and 35 of 218 procured during MOH (16%)-(p < 0.01-ch2 test). After serological screening of the donor and microbiological testing the AHV were released for clinical use. Most AHV were programmed cooled to the temperature of liquid nitrogen (-196 degrees C), in which they were stored at the Allograft Heart Valves Cryobank. Cryoprotection was achieved by 10% dimethylsulphidoxide. A technology of harvesting, processing, storage and transportation of AHV, was introduced. It enabled the routine use in many cardiac surgical units. The AHV Cryobank was established. 131 AHV were used clinically between 1992 and 1995 (transportation as far as 1300 km). 108 AHV (82.4%) were used for repair of complex congenital heart defects, while 23 (17.6%) were used for aortic valve and/or root replacement.
Recent clinical trials in valvular heart disease.
Kiss, Daniel; Anwaruddin, Saif
2017-07-01
With widespread adoption of transcatheter aortic valve replacement, there has been a change in the approach to management of valvular heart disease. New interest has taken hold in transcatheter therapies for valvular heart disease, as well as research into pathophysiology and progression of disease. Additionally, several key trials have further refined our understanding of surgical management of valvular heart disease. This review will elucidate recent clinical trial data leading to changes in practice. There have been several landmark trials expanding the indications for transcatheter aortic valve replacement. Additionally, although still early, trials are beginning to demonstrate the feasibility and safety of transcatheter mitral valves. Options for transcatheter management of right-sided valvular disease continue to evolve, and these are areas of active investigation. The emergence of novel therapies for valvular heart disease has expanded the management options available, allowing physicians to better individualize treatment of patients with valvular heart disease. This review will focus on the recent (within 2 years) trials in this field of interest.
Aortic valve surgery - minimally invasive
... There are two main types of new valves: Mechanical, made of man-made materials, such as titanium ... Mechanical heart valves do not fail often. However, blood clots can develop on them. If a blood ...
Current progress in 3D printing for cardiovascular tissue engineering.
Mosadegh, Bobak; Xiong, Guanglei; Dunham, Simon; Min, James K
2015-03-16
3D printing is a technology that allows the fabrication of structures with arbitrary geometries and heterogeneous material properties. The application of this technology to biological structures that match the complexity of native tissue is of great interest to researchers. This mini-review highlights the current progress of 3D printing for fabricating artificial tissues of the cardiovascular system, specifically the myocardium, heart valves, and coronary arteries. In addition, how 3D printed sensors and actuators can play a role in tissue engineering is discussed. To date, all the work with building 3D cardiac tissues have been proof-of-principle demonstrations, and in most cases, yielded products less effective than other traditional tissue engineering strategies. However, this technology is in its infancy and therefore there is much promise that through collaboration between biologists, engineers and material scientists, 3D bioprinting can make a significant impact on the field of cardiovascular tissue engineering.
Cardiac findings in Quarter Horses with heritable equine regional dermal asthenia.
Brinkman, Erin L; Weed, Benjamin C; Patnaik, Sourav S; Brazile, Bryn L; Centini, Ryan M; Wills, Robert W; Olivier, Bari; Sledge, Dodd G; Cooley, Jim; Liao, Jun; Rashmir-Raven, Ann M
2017-03-01
OBJECTIVE To compare biomechanical and histologic features of heart valves and echocardiographic findings between Quarter Horses with and without heritable equine regional dermal asthenia (HERDA). DESIGN Prospective case-control study. ANIMALS 41 Quarter Horses. PROCEDURES Ultimate tensile strength (UTS) of aortic and mitral valve leaflets was assessed by biomechanical testing in 5 horses with HERDA and 5 horses without HERDA (controls). Histologic evaluation of aortic and mitral valves was performed for 6 HERDA-affected and 3 control horses. Echocardiography was performed in 14 HERDA-affected and 11 control horses. Biomechanical data and echocardiographic variables of interest were compared between groups by statistical analyses, RESULTS Mean values for mean and maximum UTS of heart valves were significantly lower in HERDA-affected horses than in controls. Blood vessels were identified in aortic valve leaflets of HERDA-affected but not control horses. Most echocardiographic data did not differ between groups. When the statistical model for echocardiographic measures was controlled for body weight, mean and maximum height and width of the aorta at the valve annulus in short-axis images were significantly associated with HERDA status and were smaller for affected horses. CONCLUSIONS AND CLINICAL RELEVANCE Lower UTS of heart valves in HERDA-affected horses, compared with those of control horses, supported that tissues other than skin with high fibrillar collagen content are abnormal in horses with HERDA. Lack of significant differences in most echocardiographic variables between affected and control horses suggested that echocardiography may not be useful to detect a substantial loss of heart valve tensile strength. Further investigation is warranted to confirm these findings. Studies in horses with HERDA may provide insight into cardiac abnormalities in people with collagen disorders.
Echocardiographic Assessment of Heart Valve Prostheses
Sordelli, Chiara; Severino, Sergio; Ascione, Luigi; Coppolino, Pasquale; Caso, Pio
2014-01-01
Patients submitted to valve replacement with mechanical or biological prosthesis, may present symptoms related either to valvular malfunction or ventricular dysfunction from other causes. Because a clinical examination is not sufficient to evaluate a prosthetic valve, several diagnostic methods have been proposed to assess the functional status of a prosthetic valve. This review provides an overview of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. Compared to native valves, echocardiographic evaluation of prosthetic valves is certainly more complex, both for the examination and the interpretation. Echocardiography also allows discriminating between intra- and/or peri-prosthetic regurgitation, present in the majority of mechanical valves. Transthoracic echocardiography (TTE) requires different angles of the probe with unconventional views. Transesophageal echocardiography (TEE) is the method of choice in presence of technical difficulties. Three-dimensional (3D)-TEE seems to be superior to 2D-TEE, especially in the assessment of paravalvular leak regurgitation (PVL) that it provides improved localization and analysis of the PVL size and shape. PMID:28465917
Shi, Yubing; Yeo, Tony Joon Hock; Zhao, Yong; Hwang, Ned H C
2006-12-01
Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.2 l/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve closing process. After the valve was fully closed, local flow activities in the proximity of the valve region persisted for a certain time before slowly dying out. In both the valve opening and closing processes, maximum velocity always appeared near the leaflet trailing edges. The flow field features revealed in the present paper improved our understanding of valve motion mechanism under physiological conditions, and this knowledge is very helpful in designing the new generation of MHVs.
Application of several variable-valve-timing concepts to an LHR engine
NASA Technical Reports Server (NTRS)
Morel, T.; Keribar, R.; Sawlivala, M.; Hakim, N.
1987-01-01
The paper discusses advantages provided by electronically controlled hydraulically activated valves (ECVs) when applied to low heat rejection (LHR) engines. The ECV concept provides additional engine control flexibility by allowing for a variable valve timing as a function of speed and load, or for a given transient condition. The results of a study carried out to assess the benefits that this flexibility can offer to an LHR engine indicated that, when judged on the benefits to BSFC, volumetric efficiency, and peak firing pressure, ECVs would provide only modest benefits in comparison to conventional valve profiles. It is noted, however, that once installed on the engine, the ECVs would permit a whole range of certain more sophisticated variable valve timing strategies not otherwise possible, such as high compression cranking, engine braking, cylinder cutouts, and volumetric efficiency timing with engine speed.
Engine control system having pressure-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2011-10-04
A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.
Vafaee, Tayyebeh; Thomas, Daniel; Desai, Amisha; Jennings, Louise M.; Berry, Helen; Rooney, Paul; Kearney, John; Fisher, John
2017-01-01
Abstract The clinical use of decellularized cardiac valve allografts is increasing. Long‐term data will be required to determine whether they outperform conventional cryopreserved allografts. Valves decellularized using different processes may show varied long‐term outcomes. It is therefore important to understand the effects of specific decellularization technologies on the characteristics of donor heart valves. Human cryopreserved aortic and pulmonary valved conduits were decellularized using hypotonic buffer, 0.1% (w/v) sodium dodecyl sulfate and nuclease digestion. The decellularized tissues were compared to cellular cryopreserved valve tissues using histology, immunohistochemistry, quantitation of total deoxyribose nucleic acid, collagen and glycosaminoglycan content, in vitro cytotoxicity assays, uniaxial tensile testing and subcutaneous implantation in mice. The decellularized tissues showed no histological evidence of cells or cell remnants and >97% deoxyribose nucleic acid removal in all regions (arterial wall, muscle, leaflet and junction). The decellularized tissues retained collagen IV and von Willebrand factor staining with some loss of fibronectin, laminin and chondroitin sulfate staining. There was an absence of major histocompatibility complex Class I staining in decellularized pulmonary valve tissues, with only residual staining in isolated areas of decellularized aortic valve tissues. The collagen content of the tissues was not decreased following decellularization however the glycosaminoglycan content was reduced. Only moderate changes in the maximum load to failure of the tissues were recorded postdecellularization. The decellularized tissues were noncytotoxic in vitro, and were biocompatible in vivo in a mouse subcutaneous implant model. The decellularization process will now be translated into a good manufacturing practices‐compatible process for donor cryopreserved valves with a view to future clinical use. Copyright © 2016 The Authors Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd. PMID:27943656
Impact of Chronic Rheumatic Valve Diseases on Large Vessels.
Altunbas, Gokhan; Yuce, Murat; Ozer, Hasan O; Davutoglu, Vedat; Ercan, Suleyman; Kizilkan, Nese; Bilici, Muhammet
2016-01-01
BACKGROUND AND AIM OF STUDY: Rheumatic valvular heart disease, which remains a common health problem in developing countries, has numerous consequences on the heart chambers and circulation. The study aim was to investigate the effects of chronic rheumatic valve disease on the diameters of the descending aorta (DA) and inferior vena cava (IVC). METHODS: A total of 88 patients with echocardiographically documented rheumatic valvular heart disease and 112 healthy controls were enrolled into the study. All patients underwent detailed echocardiographic examinations, while their height and body weight were recorded and adjusted to their body surface area. RESULTS: The most common involvement was mitral valve disease, followed by aortic valve disease and tricuspid valve disease. The mean diameter of the DA (indexed to BSA) was 1.79 ± 0.49 cm for patients and 1.53 ± 0.41 for controls (p <0.001). The mean diameter of the IVC (indexed to BSA) was 1.69 ± 0.73 for patients and 1.38 ± 0.35 cm for controls (p <0.001). There was a significant positive correlation between mitral valve mean gradient and IVC diameter (p = 0.01, r = 0.18). There were also strong associations between the mitral valve area and the diameters of the DA (p = 0.001, r = -0.239) and IVC (p <0.001, r = -0.246). CONCLUSION: Rheumatic valve disease, especially mitral stenosis, was closely related to remodeling of the great vessels.
Economic burden of cardiovascular events and fractures among patients with end-stage renal disease.
Doan, Quan V; Gleeson, Michelle; Kim, John; Borker, Rohit; Griffiths, Robert; Dubois, Robert W
2007-07-01
To quantify direct medical costs of fractures and cardiovascular diseases among end-stage renal disease (ESRD) patients. Medicare claims data from year 2001 of the United States Renal Data System were used to quantify direct medical costs of acute episodic events (acute myocardial infarction (MI), stroke, heart valve repair, heart valve replacement, fractures) and chronic conditions (arrhythmia, peripheral vascular disease (PVD), heart valve disease (HVD), congestive heart failure (CHF), coronary heart disease, and non-acute stroke). Costs of hospitalized episodes of arrhythmia, PVD, CHF, and angina were also quantified. For acute events, costs were quantified using an episode-of-care approach. For chronic conditions, annualized costs were reported. Only costs specific to the events or conditions of interest were included and reported, in 2006 US dollars. Drug and dialysis-related costs were excluded. Diagnosis and procedure codes were used to identify these events and conditions. Among acute events analyzed as clinical episodes, PVD ($358 million) was associated with the greatest economic burden, followed by CHF, arrhythmia, angina, acute MI, heart valve replacement, hip fracture, acute stroke, heart valve repair, vertebral fracture, and pelvic fracture ($8.6 million). The cost per episode ranged from approximately $12,000 to 104,000. Among chronic conditions, CHF ($681 million) contributed the greatest economic burden; HVD ($100 million) contributed the least. The costs per patient-year ranged from $23,000 to 45,000 among chronic conditions. The costing methodology utilized could contribute to an underestimate of the economic impact of each condition; therefore these results are considered conservative. The economic burden of these selected conditions was substantial to health services payers who finance ESRD patient care. Episodic costs were high for most acute events.
Hypoplastic left heart syndrome (image)
Hypoplastic left heart syndrome is a congenital heart condition that occurs during the development of the heart in the ... womb. During the heart's development, parts of the left side of the heart (mitral valve, left ventricle ...
Dentigenous infectious foci – a risk factor of infective endocarditis
Wisniewska-Spychala, Beata; Sokalski, Jerzy; Grajek, Stefan; Jemielity, Marek; Trojnarska, Olga; Choroszy-Król, Irena; Sójka, Anna; Maksymiuk, Tomasz
2012-01-01
Summary Background Dentigenous, infectious foci are frequently associated with the development of various diseases. The role of such foci in the evolution of endocarditis still remains unclear. This article presents the concluding results of an interdisciplinary study verifying the influence of dentigenous, infectious foci on the development of infective endocarditis. Material/Methods The study subjects were 60 adult patients with history of infective endocarditis and coexistent acquired heart disease, along with the presence at least 2 odontogenic infectious foci (ie, 2 or more teeth with gangrenous pulp and periodontitis). The group had earlier been qualified for the procedure of heart valve replacement. Swabs of removed heart valve tissue with inflammatory lesions and blood were then examined microbiologically. Swabs of root canals and their periapical areas, of periodontal pockets, and of heart valves were also collected. Results Microbial flora, cultured from intradental foci, blood and heart valves, fully corresponded in 14 patients. This was accompanied in almost all cases by more advanced periodontitis (2nd degree, Scandinavian classification), irrespective of the bacterial co-occurrence mentioned. In the remaining patients, such consistency was not found. Conclusions Among various dentigenous, infectious foci, the intradental foci appear to constitute a risk factor for infective endocarditis. PMID:22293883
Role of modern 3D echocardiography in valvular heart disease
2014-01-01
Three-dimensional (3D) echocardiography has been conceived as one of the most promising methods for the diagnosis of valvular heart disease, and recently has become an integral clinical tool thanks to the development of high quality real-time transesophageal echocardiography (TEE). In particular, for mitral valve diseases, this new approach has proven to be the most unique, powerful, and convincing method for understanding the complicated anatomy of the mitral valve and its dynamism. The method has been useful for surgical management, including robotic mitral valve repair. Moreover, this method has become indispensable for nonsurgical mitral procedures such as edge to edge mitral repair and transcatheter closure of paravaluvular leaks. In addition, color Doppler 3D echo has been valuable to identify the location of the regurgitant orifice and the severity of the mitral regurgitation. For aortic and tricuspid valve diseases, this method may not be quite as valuable as for the mitral valve. However, the necessity of 3D echo is recognized for certain situations even for these valves, such as for evaluating the aortic annulus for transcatheter aortic valve implantation. It is now clear that this method, especially with the continued development of real-time 3D TEE technology, will enhance the diagnosis and management of patients with these valvular heart diseases. PMID:25378966
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.
1943-01-01
A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.
Moreno, Sandra; Parra, Beatriz; Botero, Javier E; Moreno, Freddy; Vásquez, Daniel; Fernández, Hugo; Alba, Sandra; Gallego, Sara; Castillo, Gilberto; Contreras, Adolfo
2017-12-01
Periodontitis is an infectious disease that affects the support tissue of the teeth and it is associated with different systemic diseases, including cardiovascular disease. Microbiological studies facilitate the detection of microorganisms from subgingival and cardiovascular samples. To describe the cultivable periodontal microbiota and the presence of microorganisms in heart valves from patients undergoing valve replacement surgery in a clinic in Cali. We analyzed 30 subgingival and valvular tissue samples by means of two-phase culture medium, supplemented blood agar and trypticase soy agar with antibiotics. Conventional PCR was performed on samples of valve tissue. The periodontal pathogens isolated from periodontal pockets were: Fusobacterium nucleatum (50%), Prevotella intermedia/ nigrescens (40%), Campylobacter rectus (40%), Eikenella corrodens (36.7%), Gram negative enteric bacilli (36.7%), Porphyromonas gingivalis (33.3%), and Eubacterium spp. (33.3%). The pathogens isolated from the aortic valve were Propionibacterium acnes (12%), Gram negative enteric bacilli (8%), Bacteroides merdae (4%), and Clostridium bifermentans (4%), and from the mitral valve we isolated P. acnes and Clostridium beijerinckii. Conventional PCR did not return positive results for oral pathogens and bacterial DNA was detected only in two samples. Periodontal microbiota of patients undergoing surgery for heart valve replacement consisted of species of Gram-negative bacteria that have been associated with infections in extraoral tissues. However, there is no evidence of the presence of periodontal pathogens in valve tissue, because even though there were valve and subgingival samples positive for Gram-negative enteric bacilli, it is not possible to maintain they corresponded to the same phylogenetic origin.
Hyde, Annastasia S.; Farmer, Erin L.; Easley, Katherine E.; van Lammeren, Kristy; Christoffels, Vincent M.; Barycki, Joseph J.; Bakkers, Jeroen; Simpson, Melanie A.
2012-01-01
Cardiac valve defects are a common congenital heart malformation and a significant clinical problem. Defining molecular factors in cardiac valve development has facilitated identification of underlying causes of valve malformation. Gene disruption in zebrafish revealed a critical role for UDP-glucose dehydrogenase (UGDH) in valve development, so this gene was screened for polymorphisms in a patient population suffering from cardiac valve defects. Two genetic substitutions were identified and predicted to encode missense mutations of arginine 141 to cysteine and glutamate 416 to aspartate, respectively. Using a zebrafish model of defective heart valve formation caused by morpholino oligonucleotide knockdown of UGDH, transcripts encoding the UGDH R141C or E416D mutant enzymes were unable to restore cardiac valve formation and could only partially rescue cardiac edema. Characterization of the mutant recombinant enzymes purified from Escherichia coli revealed modest alterations in the enzymatic activity of the mutants and a significant reduction in the half-life of enzyme activity at 37 °C. This reduction in activity could be propagated to the wild-type enzyme in a 1:1 mixed reaction. Furthermore, the quaternary structure of both mutants, normally hexameric, was destabilized to favor the dimeric species, and the intrinsic thermal stability of the R141C mutant was highly compromised. The results are consistent with the reduced function of both missense mutations significantly reducing the ability of UGDH to provide precursors for cardiac cushion formation, which is essential to subsequent valve formation. The identification of these polymorphisms in patient populations will help identify families genetically at risk for valve defects. PMID:22815472
Alskaf, Ebraham; McConkey, Hannah; Laskar, Nabila; Kardos, Attila
2016-06-20
The Medtronic ATS Open Pivot mechanical valve has been successfully used in heart valve surgery for more than two decades. We present the case of a patient who, 19 years following a tricuspid valve replacement with an ATS prosthesis as part of a triple valve operation following infective endocarditis, developed severe tricuspid regurgitation due to pannus formation.
Heart surgery - pediatric; Heart surgery for children; Acquired heart disease; Heart valve surgery - children ... There are many kinds of heart defects. Some are minor, and others are more serious. Defects can occur inside the heart or in the large blood vessels ...
Alavi, S. Hamed; Ruiz, Victor; Krasieva, Tatiana; Botvinick, Elliot L.; Kheradvar, Arash
2014-01-01
When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves’ behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space. PMID:23180029
What Is Transesophageal Echocardiography?
... disease Heart attack Aortic aneurysm (AN-u-rism) Endocarditis (EN-do-kar-DI-tis) Cardiomyopathy (KAR-de- ... disease Congenital heart disease Heart attack Aortic aneurysm Endocarditis Cardiomyopathy Heart valve disease Injury to the heart ...
NASA Astrophysics Data System (ADS)
Albanna, Mohammad Zaki
Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced heart valve leaflet scaffold achieved strength values comparable to the radial values of human pulmonary and aortic valves. Additionally, the effects of shorter fibers (2 mm) were found to be up to 3-fold greater than longer fibers (10 mm). Despite this reduction in fiber mechanical properties caused by heparin crosslinking, the heparin-modified fibers still improved the mechanical properties of the reinforced scaffolds, but to a lesser extent than the unmodified fibers. The results demonstrate that chitosan fiber-reinforcement can be used to generate tissue-matching mechanical properties in porous chitosan scaffolds and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement. We further studied various chemical and physical treatments to improve the mechanical properties of chitosan fibers. With combination of chemical and physical treatments, fiber stiffness improved 40fold compared to unmodified fibers. We also isolated ovine bone marrow-derived MSCs and evaluated their utility for cardiovascular tissue engineering applications. Moreover, we evaluated the effect of various glycosaminoglycans (GAGs) on MSCs morphology and proliferation. Lastly, we studied the effect of stiffness of mechanically improved chitosan fibers on MSCs viability, attachment and proliferation. Results showed that MSCs proliferation improved in proportion to fiber stiffness.
Scanlan, Adam B; Nguyen, Alex V; Ilina, Anna; Lasso, Andras; Cripe, Linnea; Jegatheeswaran, Anusha; Silvestro, Elizabeth; McGowan, Francis X; Mascio, Christopher E; Fuller, Stephanie; Spray, Thomas L; Cohen, Meryl S; Fichtinger, Gabor; Jolley, Matthew A
2018-03-01
Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed "negative" molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p < 0.01). Patient-specific, 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.
Infective endocarditis of native valve after anterior nasal packing.
Jayawardena, Suriya; Eisdorfer, Jacob; Indulkar, Shalaka; Zarkaria, Muhammad
2006-01-01
We present a case report of a patient who was previously treated for spontaneous epistaxis with a petroleum jelly gauze (0.5 in x 72 in) anterior nasal packing filled with an antibiotic ointment, along with prophylactic oral clindamycin. The patient presented with fever and hypotension 3 days after the nasal packing. Her blood cultures grew methicillin-resistant Staphylococcus aureus and the transesophageal echocardiography showed vegetation on the atrial surface of the posterior mitral valve leaflet, confirming the diagnosis of bacterial endocarditis attributable to nasal packing. Several case reports discuss toxic shock syndrome after nasal packing, but none describe endocarditis of the native heart valves subsequent to anterior nasal packing. Current guidelines on endocarditis prophylaxis produced by the American Heart Association, European Cardiac Society, and British Cardiac Society together with published evidence do not recommend endocarditis prophylaxis for patients with native heart valves undergoing anterior nasal packing.
Back table outflow graft anastomosis technique for HeartWare HVAD implantation.
Basher, S; Bick, J; Maltais, S
2015-12-01
The management of concomitant aortic and aortic valve disease with left ventricular assist device (LVAD) implantation for patients with severe cardiomyopathy is challenging, and has not been established given the complexity of LVAD surgery with concomitant aortic interventions. A 45-year-old patient presented to our institution with end-stage heart failure symptoms and non-ischemic cardiomyopathy. The patient was found to have a bicuspid aortic valve, severe native aortic regurgitation, a significant ascending aortic aneurysm, and severely depressed left ventricular (LV) function requiring two inotropes. He underwent a successful hemiarch repair of the ascending aortic aneurysm using a back table outflow graft anastomosis technique, and subsequent placement of a HeartWare Ventricular Assist Device (HVAD) with concomitant aortic valve closure with a modified Park's stitch. The patient did well postoperatively and is currently listed for heart transplantation.
Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals
NASA Technical Reports Server (NTRS)
Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)
1999-01-01
Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
NASA Technical Reports Server (NTRS)
Sanders, J C; Wilsted, H D; Mulcahy, B A
1943-01-01
Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear-spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.
Hydraulically actuated gas exchange valve assembly and engine using same
Carroll, Thomas S.; Taylor, Gregory O.
2002-09-03
An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.
Tricuspid valve dysplasia: A retrospective study of clinical features and outcome in dogs in the UK
Navarro-Cubas, Xavier; Palermo, Valentina; French, Anne; Sanchis-Mora, Sandra; Culshaw, Geoff
2017-01-01
The objective of this study was to determine the demographic, clinical and survival characteristics and to identify risk factors for mortality due to tricuspid valve dysplasia in UK dogs. Records of client-owned dogs diagnosed with tricuspid valve dysplasia at a referral centre were retrospectively reviewed. Only dogs diagnosed with tricuspid valve dysplasia based on the presence of a right-sided heart murmur identified prior to one year of age, and confirmed with Doppler echocardiography, were included. Dogs with concomitant cardiac diseases, pulmonary hypertension and/or trivial tricuspid regurgitation were excluded. Analysed data included signalment, reason for presentation, clinical signs, electrocardiographic and echocardiographic features, survival status and cause of death. Survival times and risk factors for mortality were evaluated using Kaplan-Meier curves and Cox regression. Eighteen dogs met inclusion criteria. Border collies were over-represented (p= 0.014). Dogs were most frequently referred for investigation of heart murmur. The most common arrhythmia was atrial fibrillation (n=3). Median survival time from diagnosis of tricuspid valve dysplasia was 2775 days (range 1-3696 days; 95% CI 1542.41-4007.59) and from onset of right-sided congestive heart failure was 181 days (range 1-2130 days; 95% CI 0-455.59). Syncope was the sole risk factor for cardiac death. In this population of UK dogs, tricuspid valve dysplasia was uncommon but, when severe, frequently led to right-sided congestive heart failure. Prognosis was favourable for mild and moderate tricuspid dysplasia. Survival time was reduced with right-sided congestive heart failure but varied widely. Risk of cardiac death was significantly increased if syncope had occurred. PMID:29296595
Evaluation of mitral valve replacement anchoring in a phantom
NASA Astrophysics Data System (ADS)
McLeod, A. Jonathan; Moore, John; Lang, Pencilla; Bainbridge, Dan; Campbell, Gordon; Jones, Doug L.; Guiraudon, Gerard M.; Peters, Terry M.
2012-02-01
Conventional mitral valve replacement requires a median sternotomy and cardio-pulmonary bypass with aortic crossclamping and is associated with significant mortality and morbidity which could be reduced by performing the procedure off-pump. Replacing the mitral valve in the closed, off-pump, beating heart requires extensive development and validation of surgical and imaging techniques. Image guidance systems and surgical access for off-pump mitral valve replacement have been previously developed, allowing the prosthetic valve to be safely introduced into the left atrium and inserted into the mitral annulus. The major remaining challenge is to design a method of securely anchoring the prosthetic valve inside the beating heart. The development of anchoring techniques has been hampered by the expense and difficulty in conducting large animal studies. In this paper, we demonstrate how prosthetic valve anchoring may be evaluated in a dynamic phantom. The phantom provides a consistent testing environment where pressure measurements and Doppler ultrasound can be used to monitor and assess the valve anchoring procedures, detecting pararvalvular leak when valve anchoring is inadequate. Minimally invasive anchoring techniques may be directly compared to the current gold standard of valves sutured under direct vision, providing a useful tool for the validation of new surgical instruments.
Bentata, Yassamine
2017-11-01
Infectious endocarditis (IE), a complication that is both cardiac and infectious, occurs frequently and is associated with a heavy burden of morbidity and mortality in chronic hemodialysis patients (CHD). About 2-6% of chronic hemodialysis patients develop IE and the incidence is 50-60 times higher among CHD patients than in the general population. The left heart is the most frequent location of IE in CHD and the different published series report a prevalence of left valve involvement varying from 80% to 100%. Valvular and perivalvular abnormalities, alteration of the immune system, and bacteremia associated with repeated manipulation of the vascular access, particularly central venous catheters, comprise the main factors explaining the left heart IE in CHD patients. While left-sided IE develops in altered valves in a high-pressure system, right-sided IE on the contrary, generally develops in healthy valves in a low-pressure system. Right-sided IE is rare, with its incidence varying from 0% to 26% depending on the study, and the tricuspid valve is the main location. Might the massive influx of pathogenic and virulent germs via the central venous catheter to the right heart, with the tricuspid being the first contact valve, have a role in the physiopathology of IE in CHD, thus facilitating bacterial adhesion? While the physiopathology of left-sided IE entails multiple and convincing mechanisms, it is not the case for right-sided IE, for which the physiopathological mechanism is only partially understood and remains shrouded in mystery.
[A case report of Ebstein's anomaly treated with Hetzer's procedure].
Sako, H; Hadama, T; Shigemitsu, O; Miyamoto, S; Anai, H; Wada, T; Iwata, E; Mori, Y; Soeda, T; Takakura, K
2001-02-01
A 27-year-old male who had been diagnosed with Ebstein's anomaly was admitted with uncontrollable congestive heart failure. The echocardiogram revealed severe tricuspid valve incompetence and the electrocardiogram showed atrial fibrillation. He underwent Hetzer's repair procedure for tricuspid valve incompetence and Minzioni's right atrial isolation technique to restore sinus rhythm. His congestive heart failure quickly disappeared and sinus rhythm was restored after operation. He was discharged 3 weeks postoperatively and remains well 22 months after his operation. Hetzer's technique for tricuspid valve repair in Ebstein's anomaly restructures the valve mechanism at the level of the true tricuspid anulus by using the most mobile leaflet for valve closure without plication of the atrialized chamber. We conclude that Hetzer's procedure is an effective operation for Ebstein's anomaly.
Beating heart mitral valve repair with integrated ultrasound imaging
NASA Astrophysics Data System (ADS)
McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.
2015-03-01
Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.
Next-Generation Transcatheter Heart Valves: Current Trials in Europe and the USA
Werner, Nikos; Nickenig, Georg
2012-01-01
Transcatheter aortic valve implantation (TAVI) has proven to be a viable alternative for patients with symptomatic severe aortic stenosis who are at high risk for surgical aortic valve replacement. At the same time, there is increasing evidence that moderate-to-severe periprosthetic aortic regurgitation after TAVI is associated with dramatically increased mortality and morbidity. The issue of proper positioning of the valve, including the ability to reposition and recapture the device, must be dealt with before the use of TAVI can be extended to younger, healthier patients. The next generation of transcatheter heart valves will most likely address repositionability to facilitate accurate placement with additional features that minimize paravalvular leakage. Upcoming devices promise to improve outcomes and usability of current TAVI systems. PMID:22891121
Cicekcioglu, Ferit; Ozen, Anil; Tuluce, Hicran; Tutun, Ufuk; Parlar, Ali Ihsan; Kervan, Umit; Karakas, Sirel; Katircioglu, Salih Fehmi
2008-01-01
Although neurologic outcome after cardiac surgery is well-established, neurocognitive functions after beating heart mitral valve replacement still needs to be elucidated. The aim of this study was to compare preoperative and postoperative neurocognitive functions in patients who underwent beating heart mitral valve replacement on cardiopulmonary bypass without cross-clamping the aorta. The prospective study included 25 consecutive patients who underwent mitral valve replacement. The operations were carried out on a beating heart method using normothermic cardiopulmonary bypass without cross-clamping the aorta. All patients were evaluated preoperatively (E1) and postoperatively (at sixth day [E2] and second month [E3]) for neurocognitive functions. Neurologic deficit was not observed in the postoperative period. Comparison of the neurocognitive test results, between the preoperative and postoperative assessment for both hemispheric cognitive functions, demonstrated that no deterioration occurred. In the three subsets of left hemispheric cognitive function test evaluation, total verbal learning, delayed recall, and recognition, significant improvements were detected at the postoperative second month (E3) compared to the preoperative results (p = 0.005, 0.01, and 0.047, respectively). Immediate recall and retention were significantly improved within the first postoperative week (E2) when compared to the preoperative results (p = 0.05 and 0.05, respectively). The technique of mitral valve replacement with normothermic cardiopulmonary bypass without cross-clamping of the aorta may be safely used for majority of patients requiring mitral valve replacement without causing deterioration in neurocognitive functions.
Chi, Hao; Zhou, Wen-Xiong; Wu, Yao-Yao; Chen, Tong-Yu; Ge, Wen; Yuan, Lan; Shen, Wei-Dong; Zhou, Jia
2014-02-01
To determine whether electroacupuncture (EA) intervention combined with general anesthesia (GA) strategy can reduce early post-operative morbidity and medical costs in patients undergoing heart valve replacement operation under cardiopulmonary bypass. A total of 160 heart valve replacement surgery patients undergoing cardiopulmonary bypass were randomly divided into GA and EA + GA groups (n = 80 in each group). Patients of the GA group were given with intravenous injection of Fentanyl, Midazolam, Vecuronium Bromide, etc. and routine tracheal intubation. EA (3-4 Hz, 2.0-2.2 mA) was applied to bilateral Zhongfu (LU 1), Chize (LU 5) and Ximen (PC 4) beginning about 20 mm before the surgery in the EA + GA group. Endotracheal intubation was not employed but only prepared as a standby for patients of the EA + GA group. The dosage of narcotic drugs, duration of surgery, duration of aertic blockage, rate of cardiac re-beating, volumes of post-operative blood transfusion, discharge volume, cases of post-operative pulmonary infection, vocal cord injury, and the time of first bed-off, first eating and duration in intensive care unit (IOU) residence. etc. were recorded. The successful rates of heart valve replacement surgery were similar in both GA and EA + GA groups. Compared with the GA group, the dosages of Fentanyl, Midazolam and Vecuronium of the EA + GA group were significantly lower (P < 0.05, P < 0.01), the numbers of patients needing blood-transfusion, antibiotics treatment, and suffering from pulmonary infection were fewer, the time of first bed-off and duration of hospitalizetion and IOU residence were considerably shorter (P < 0.05, P < 0.01) and the total medical cost was obviously lower (P < 0.05) in the EA + GA group. EA combined with general anesthesia strategy for heart valve replacement surgery without endotracheal intubation is safe and can reduce post-operative morbidity and medical costs in patients undergoing heart valve replacement surgery under cardiopulmonary bypass.
Gupta, Usha; Mir, Snober S; Srivastava, Apurva; Garg, Naveen; Agarwal, Surendra K; Pande, Shantanu; Mittal, Balraj
2014-09-01
Rheumatic heart disease (RHD) is the most serious complication of heart that comprises inflammatory reactions in heart valves. Cytokines play a critical role in triggering inflammatory reactions and they activate the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway. Altered signals of STATs play important roles in the balance between proinflammatory and anti-inflammatory cytokines in inflammatory diseases. The aim of the present study was to investigate for the association of polymorphisms related with STAT genes, i.e. STAT3 (rs4796793 C/G) and STAT5b (rs6503691 C/T) with the pathogenesis of RHD. This case-control association study involved 300 healthy controls and 400 RHD patients from North Indian Population. We categorized RHD patients into two subgroups based on involvement of heart valves, mitral valve lesion alone (MVL), and combined valve lesions including mitral valve (CVL). Genotyping was done by RFLP/Taqman probes. We observed that STAT3 CG and GG genotypes were significantly associated with RHD (p=0.030 and p=0.014 respectively), STAT5b CT and TT genotypes were also significantly associated with RHD (p≤0.001). Haplotype analysis revealed that minor alleles of both the variants (Grs4796793Trs6503691) were significantly associated (p<0.0001) with increased risk of the disease susceptibility irrespective of gender or age of onset of the disease. However, the polymorphisms were not involved in severity of RHD as both MVL and CVL patients were equally affected. STAT Grs4796793Trs6503691 carriers may have reduced production of STAT3 leading to damage of heart valves. Thus, STAT genes polymorphisms may be useful markers for the identification of individuals with high risk of RHD in the susceptible population. Copyright © 2014 Elsevier B.V. All rights reserved.
Identification of critical zones in the flow through prosthetic heart valves
NASA Astrophysics Data System (ADS)
Lopez, A.; Ledesma, R.; Zenit, R.; Pulos, G.
2008-11-01
The hemodynamic properties of prosthetic heart valves can cause blood damage and platelet activation due to the non- physiological flow patterns. Blood recirculation and elevated shear stresses are believed to be responsible for these complications. The objective of this study is to identify and quantify the conditions for which recirculation and high stress zones appear. We have performed a comparative study between a mechanical monoleaflet and biological valve. In order to generate the flow conditions to test the prosthesis, we have built a hydraulic circuit which reproduces the human systemic circulation, on the basis of the Windkessel model. This model is based on an electrical analogy which consists of an arterial resistance and compliance. Using PIV 3D- Stereo measurements, taken downstream from the prosthetic heart valves, we have reconstructed the full phase-averaged tridimensional velocity field. Preliminary results show that critical zones are more prominent in mechanical prosthesis, indicating that valves made with bio-materials are less likely to produce blood trauma. This is in accordance with what is generally found in the literature.
Fernández, Angel L; Varela, Eduardo; Martínez, Lucía; Martínez, Amparo; Sierra, Juan; González-Juanatey, José R; Regueiro, Benito
2010-10-01
With a novel real-time multiplex polymerase chain reaction test, the LightCycler SeptiFast® test, 25 bacterial and fungal species can be identified directly in blood. The SeptiFast® test has been used for rapid etiologic diagnosis in infectious endocarditis using blood samples but has not been evaluated directly on cardiac vegetations in patients being treated for infectious endocarditis. We prospectively analyzed 15 samples of heart valve tissue with active infectious endocarditis using the SeptiFast® test and compared the test's sensitivity with that of blood culture, valve tissue culture, and the SeptiFast® test in blood. The sensitivity of the SeptiFast test in heart valve tissue was 100%. The test results confirmed the diagnosis obtained using blood culture in 13 cases and identified the pathogen in 2 cases where blood culture tested negative. The sensitivity of the SeptiFast® test in heart valve tissue was greater than that obtained with conventional culture of vegetations or with the SeptiFast test in blood.
Frequency Dynamics of the First Heart Sound
NASA Astrophysics Data System (ADS)
Wood, John Charles
Cardiac auscultation is a fundamental clinical tool but first heart sound origins and significance remain controversial. Previous clinical studies have implicated resonant vibrations of both the myocardium and the valves. Accordingly, the goals of this thesis were threefold, (1) to characterize the frequency dynamics of the first heart sound, (2) to determine the relative contribution of the myocardium and the valves in determining first heart sound frequency, and (3) to develop new tools for non-stationary signal analysis. A resonant origin for first heart sound generation was tested through two studies in an open-chest canine preparation. Heart sounds were recorded using ultralight acceleration transducers cemented directly to the epicardium. The first heart sound was observed to be non-stationary and multicomponent. The most dominant feature was a powerful, rapidly-rising frequency component that preceded mitral valve closure. Two broadband components were observed; the first coincided with mitral valve closure while the second significantly preceded aortic valve opening. The spatial frequency of left ventricular vibrations was both high and non-stationary which indicated that the left ventricle was not vibrating passively in response to intracardiac pressure fluctuations but suggested instead that the first heart sound is a propagating transient. In the second study, regional myocardial ischemia was induced by left coronary circumflex arterial occlusion. Acceleration transducers were placed on the ischemic and non-ischemic myocardium to determine whether ischemia produced local or global changes in first heart sound amplitude and frequency. The two zones exhibited disparate amplitude and frequency behavior indicating that the first heart sound is not a resonant phenomenon. To objectively quantify the presence and orientation of signal components, Radon transformation of the time -frequency plane was performed and found to have considerable potential for pattern classification. Radon transformation of the Wigner spectrum (Radon-Wigner transform) was derived to be equivalent to dechirping in the time and frequency domains. Based upon this representation, an analogy between time-frequency estimation and computed tomography was drawn. Cohen's class of time-frequency representations was subsequently shown to result from simple changes in reconstruction filtering parameters. Time-varying filtering, adaptive time-frequency transformation and linear signal synthesis were also performed from the Radon-Wigner representation.
Time-frequency characterisation of paediatric heart sounds
NASA Astrophysics Data System (ADS)
Leung, Terence Sze-Tat
1998-08-01
The operation of the heart can be monitored by the sounds it emits. Structural defects or malfunction of the heart valves will cause additional abnormal sounds such as murmurs and ejection clicks. This thesis aims to characterise the heart sounds of three groups of children who either have an Atrial Septal Defect (ASD), a Ventricular Septal Defect (VSD), or are normal. Two aspects of heart sounds have been specifically investigated; the time-frequency analysis of systolic murmurs and the identification of splitting patterns in the second heart sound. The analysis is based on 42 paediatric heart sound recordings. Murmurs are sounds generated by turbulent flow of blood in the heart. They can be found in patients with both pathological and non-pathological conditions. The acoustic quality of the murmurs generated in each heart condition are different. The first aspect of this work is to characterise the three types of murmurs in the time- frequency domain. Modern time-frequency methods including, the Wigner-Ville Distribution, Smoothed Pseudo Wigner-Ville Distribution, Choi-Williams Distribution and spectrogram have been applied to characterise the murmurs. It was found that the three classes of murmurs exhibited different signatures in their time-frequency representations. By performing Discriminant Analysis, it was shown that spectral features extracted from the time- frequency representations can be used to distinguish between the three classes. The second aspect of the research is to identify splitting patterns in the second heart sound, which consists of two acoustic components due to the closure of the aortic valve and pulmonary valve. The aortic valve usually closes before the pulmonary valve, introducing a time delay known as 'split'. The split normally varies in duration over the respiratory cycle. In certain pathologies such as the ASD, the split becomes fixed over the respiration cycle. A technique based on adaptive signal decomposition is developed to measure the split and hence to identify the splitting pattern as either 'variable' or 'fixed'. This work has successfully characterised the murmurs and splitting patterns in the three groups of patients. Features extracted can be used for diagnostic purposes.
Engine Valve Actuation For Combustion Enhancement
Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul
2004-05-18
A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.
Engine valve actuation for combustion enhancement
Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI
2008-03-04
A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.
Two phase exhaust for internal combustion engine
Vuk, Carl T [Denver, IA
2011-11-29
An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.
Navia, José L; Elgharably, Haytham; Javadikasgari, Hoda; Ibrahim, Ahmed; Koprivanac, Marijan; Lowry, Ashley M; Blackstone, Eugene H; Klein, Allan L; Gillinov, A Marc; Roselli, Eric E; Svensson, Lars G
2017-08-01
Tricuspid regurgitation (TR) often accompanies ischemic mitral regurgitation and is generally assumed to be a secondary consequence of altered hemodynamics of the left-sided regurgitation. We hypothesized that it may also be a direct consequence of right-sided ischemic disease. Therefore, our objectives were to (1) characterize the nature of this TR and (2) describe its time course after mitral valve surgery for ischemic mitral regurgitation, with or without concomitant tricuspid valve repair. From 2001 to 2011, 568 patients with ischemic mitral regurgitation underwent mitral valve surgery. They had varying degrees of TR and altered right-side heart morphology and function; 131 had concomitant tricuspid valve repair. Postoperatively, 1,395 echocardiograms were available to assess residual and recurrent TR. Greater severity of preoperative TR was accompanied by larger tricuspid valve diameter, greater leaflet tethering, worse right ventricular function, and higher right ventricular pressure (all p [trend] ≤ 0.002). Without tricuspid valve repair, 31% of patients with no preoperative TR had moderate or greater TR by 5 years, as did 62% with moderate TR. With tricuspid valve repair, 25% with moderate preoperative TR remained in that grade at 5 years, but 11% had severe TR. Tricuspid regurgitation accompanying ischemic mitral regurgitation is associated with right-side heart remodeling and dysfunction often mirroring that occurring in the left side of the heart-ischemic TR. Tricuspid valve repair is effective initially, but as with mitral valve repair, TR progressively returns. Therefore, when the severity of TR and right-sided remodeling reaches the point of irreversibility, it may be an indication to eliminate the TR by replacing the tricuspid valve. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Infective endocarditis in the transesophageal echocardiographic era.
Hwang, J J; Shyu, K G; Chen, J J; Ko, Y L; Lin, J L; Tseng, Y Z; Kuan, P; Lien, W P
1993-01-01
During a 45-month period, 50 consecutive patients with infective endocarditis were evaluated at the National Taiwan University Hospital with emphasis on the role of transesophageal echocardiography (TEE) in the management of these patients. Among them, rheumatic heart disease was still the most common underlying cardiac disorder (10/50, 20%), while mitral valve prolapse (8/50, 16%) and congenital heart disease (8/50, 16%) were also frequently encountered. More than one third (19/50, 38%) had no underlying heart disease. Four intravenous drug abusers, quite rare previously in Taiwan, were found during the study period. Native valves involved were mostly mitral valve (n = 18), aortic valve (n = 15), and both mitral and aortic valves (n = 3). Tricuspid valve and pulmonic valve were involved in 3 and 2 patients, respectively. Streptococcus viridans was the leading microorganism isolated (21/50, 42%). Staphylococci and enterococci were found in 9 (18%) and 5 (10%) patients, respectively. Twelve patients (24%) were culture-negative in this series. Embolic complications occurred in 13 patients (26%), with a total of 17 episodes. No significant correlation was found between the occurrence of embolization and the vegetation size or the location of the vegetation, if patients with right-sided valvular vegetation and no identifiable vegetation were excluded. Surgery was needed by 25 patients (50%), and mortality occurred in 6 (12%). TEE was superior to transthoracic echocardiography in the detection of vegetations at the mitral or prosthetic valves. Concerning the associated complications with infective endocarditis, TEE was also superior in estimating the severity of mitral regurgitation, recognizing ruptured chordae tendineae and detecting subaortic complications such as valve ring abscess and mitral valve perforation.(ABSTRACT TRUNCATED AT 250 WORDS)
Boudoulas, Konstantinos Dean; Ravi, Yazhini; Garcia, Daniel; Saini, Uksha; Sofowora, Gbemiga G.; Gumina, Richard J.; Sai-Sudhakar, Chittoor B.
2013-01-01
Aim: While the incidence of rheumatic heart disease has declined dramatically over the last half-century, the number of valve surgeries has not changed. This study was undertaken to define the most common type of valvular heart disease requiring surgery today, and determine in-hospital surgical mortality and length-of-stay (LOS) for isolated aortic or mitral valve surgery in a United States tertiary-care hospital. Methods: Patients with valve surgery between January 2002 to June 2008 at The Ohio State University Medical Center were studied. Patients only with isolated aortic or mitral valve surgery were analyzed. Results: From 915 patients undergoing at least aortic or mitral valve surgery, the majority had concomitant cardiac proce-dures mostly coronary artery bypass grafting (CABG); only 340 patients had isolated aortic (n=204) or mitral (n=136) valve surgery. In-hospital surgical mortality for mitral regurgitation (n=119), aortic stenosis (n=151), aortic insufficiency (n=53) and mitral stenosis (n=17) was 2.5% (replacement 3.4%; repair 1.6%), 3.9%, 5.6% and 5.8%, respectively (p=NS). Median LOS for aortic insufficiency, aortic stenosis, mitral regurgitation, and mitral stenosis was 7, 8, 9 (replacement 11.5; repair 7) and 11 days, respectively (p<0.05 for group). In-hospital surgical mortality for single valve surgery plus CABG was 10.2% (p<0.005 compared to single valve surgery). Conclusions: Aortic stenosis and mitral regurgitation are the most common valvular lesions requiring surgery today. Surgery for isolated aortic or mitral valve disease has low in-hospital mortality with modest LOS. Concomitant CABG with valve surgery increases mortality substantially. Hospital analysis is needed to monitor quality and stimulate improvement among Institutions. PMID:24339838
Lindman, Brian R; Maniar, Hersh S; Jaber, Wael A; Lerakis, Stamatios; Mack, Michael J; Suri, Rakesh M; Thourani, Vinod H; Babaliaros, Vasilis; Kereiakes, Dean J; Whisenant, Brian; Miller, D Craig; Tuzcu, E Murat; Svensson, Lars G; Xu, Ke; Doshi, Darshan; Leon, Martin B; Zajarias, Alan
2015-04-01
Tricuspid regurgitation (TR) and right ventricular (RV) dysfunction adversely affect outcomes in patients with heart failure or mitral valve disease, but their impact on outcomes in patients with aortic stenosis treated with transcatheter aortic valve replacement has not been well characterized. Among 542 patients with symptomatic aortic stenosis treated in the Placement of Aortic Transcatheter Valves (PARTNER) II trial (inoperable cohort) with a Sapien or Sapien XT valve via a transfemoral approach, baseline TR severity, right atrial and RV size and RV function were evaluated by echocardiography according to established guidelines. One-year mortality was 16.9%, 17.2%, 32.6%, and 61.1% for patients with no/trace (n=167), mild (n=205), moderate (n=117), and severe (n=18) TR, respectively (P<0.001). Increasing severity of RV dysfunction as well as right atrial and RV enlargement were also associated with increased mortality (P<0.001). After multivariable adjustment, severe TR (hazard ratio, 3.20; 95% confidence interval, 1.50-6.82; P=0.003) and moderate TR (hazard ratio, 1.60; 95% confidence interval, 1.02-2.52; P=0.042) remained associated with increased mortality as did right atrial and RV enlargement, but not RV dysfunction. There was an interaction between TR and mitral regurgitation severity (P=0.04); the increased hazard of death associated with moderate/severe TR only occurred in those with no/trace/mild mitral regurgitation. In inoperable patients treated with transcatheter aortic valve replacement, moderate or severe TR and right heart enlargement are independently associated with increased 1-year mortality; however, the association between moderate or severe TR and an increased hazard of death was only found in those with minimal mitral regurgitation at baseline. These findings may improve our assessment of anticipated benefit from transcatheter aortic valve replacement and support the need for future studies on TR and the right heart, including whether concomitant treatment of TR in operable but high-risk patients with aortic stenosis is warranted. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01314313. © 2015 American Heart Association, Inc.
Tricuspid valve regurgitation after heart transplantation.
Kwon, Murray H; Shemin, Richard J
2017-05-01
Tricuspid valve regurgitation (TVR) in the orthotopic heart transplant (OHT) recipient is quite common and has varied clinical sequelae. In its severest forms, it can lead to right-sided failure symptoms indistinguishable from that seen in native heart TVR disease. While certain implantation techniques are widely recognized to reduce the risk of TVR in the cardiac allograft, concomitant tricuspid annuloplasty, while having advocates, is not currently accepted as a routinely established adjunct. Decisions to surgically correct TVR in the OHT recipient must be made carefully, as certain clinical scenarios have high risk of failure. Like in the native heart, anatomic etiologies typically have the greatest chances for success compared to functional etiologies. While repair options have been utilized, there is emerging data to support replacement as the more durable option. While mechanical prostheses are impractical in the heart transplant recipient, biologic valves offer the advantage of continued access to the right ventricle for biopsies in addition to acceptable durability in the low pressure system of the right side.
Liquid rocket valve assemblies
NASA Technical Reports Server (NTRS)
1973-01-01
The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.
A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns
Tan, Sean Guo-Dong; Kim, Sangho; Hon, Jimmy Kim Fatt; Leo, Hwa Liang
2016-01-01
Prior studies have shown that in a healthy heart, there exist a large asymmetric vortex structure that aids in establishing a steady flow field in the left ventricle. However, the implantation of existing artificial heart valves at the mitral position is found to have a negative effect on this physiological flow pattern. In light of this, a novel D-shaped bileaflet porcine bioprosthesis (GD valve) has been designed based on the native geometry mitral valve, with the hypothesis that biomimicry in valve design can restore physiological left ventricle flow patterns after valve implantation. An in-vitro experiment using two dimensional particle velocimetry imaging was carried out to determine the hemodynamic performance of the new bileaflet design and then compared to that of the well-established St. Jude Epic valve which functioned as a control in the experiment. Although both valves were found to have similar Reynolds shear stress and Turbulent Kinetic Energy levels, the novel D-shape valve was found to have lower turbulence intensity and greater mean kinetic energy conservation. PMID:27258099
A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves.
Sotiropoulos, Fotis; Borazjani, Iman
2009-03-01
In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid-structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment.
A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves
Borazjani, Iman
2009-01-01
In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid–structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment. PMID:19194734
Exercise echocardiography for structural heart disease.
Izumo, Masaki; Akashi, Yoshihiro J
2016-03-01
Since the introduction of transcatheter structural heart intervention, the term "structural heart disease" has been widely used in the field of cardiology. Structural heart disease refers to congenital heart disease, valvular heart disease, and cardiomyopathy. In structural heart disease, valvular heart disease is frequently identified in the elderly. Of note, the number of patients who suffer from aortic stenosis (AS) and mitral regurgitation (MR) is increasing in developed countries because of the aging of the populations. Transcatheter aortic valve replacement and percutaneous mitral valve repair has been widely used for AS and MR, individually. Echocardiography is the gold standard modality for initial diagnosis and subsequent evaluation of AS and MR, although the difficulties in assessing patients with these diseases still remain. Here, we review the clinical usefulness and prognostic impact of exercise echocardiography on structural heart disease, particularly on AS and MR.
Two-tank working gas storage system for heat engine
Hindes, Clyde J.
1987-01-01
A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.
The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock
NASA Technical Reports Server (NTRS)
Munger, Maurice; Wilsted, H D; Mulcahy, B A
1942-01-01
A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.
The two-stroke poppet valve engine. Part 1: Intake and exhaust ports flow experimental assessments
NASA Astrophysics Data System (ADS)
Kamili Zahidi, M.; Razali Hanipah, M.; Ramasamy, D.; Noor, M. M.; Kadirgama, K.; Rahman, M. M.
2017-10-01
A two-stroke poppet valve engine is developed to overcome the common problems in conventional two-stroke engine designs. However, replacing piston control port with poppet valve will resulted different flow behaviour. This paper is looking at experimental assessment on a two-stroke poppet valve engine configuration to investigate the port flow performance. The aims are to evaluate the intake and exhaust coefficient of discharge and assess the twostroke capability of the cylinder head. The results has shown comparable coefficient of discharge values as production engine for the intake while the exhaust has higher values which is favourable for the two-stroke cycle operation.
Yousry, Sherif M; Sedky, Yasser; Sobieh, Alaa
2016-10-01
Aim Rheumatic heart disease is an inflammatory disease of cardiac tissue. The underlying pathogenic mechanisms highlight a complex interplay of immunological, genetic, and environmental factors. The aim of the present study was to investigate whether IL-4 (intron 3) and IL-10 (-1082) gene polymorphisms could be associated with susceptibility and/or severity of rheumatic heart disease among patients from the Egyptian population. Materials and methods A cohort of 140 Egyptian children with rheumatic heart disease and 100 healthy controls were enrolled in this case-control study. Genotyping for IL-4 (intron 3) and IL-10 (-1082) gene polymorphisms was carried out for all patients using a polymerase chain reaction-based analysis. No significant difference in the distribution of genotypes and allelic frequencies between rheumatic heart disease cases and controls for IL-4 (intron 3) (p=0.17; OR 1.07, 95% CI 0.82-3.74) and IL-10 (-1082) (p=0.49; OR 1.03, 95% CI 0.65-2.71) gene polymorphisms was observed. Further categorisation of patients into mitral valve disease and combined valve disease subgroups showed that cases with mitral valve disease have significantly higher frequency of the RP2 allele of IL-4 (intron 3) (p=0.03; OR 2.98, 95% CI 1.93-6.15) and the G allele of IL-10 (-1082) (p=0.04; OR 2.14, 95% CI 1.62-4.95) when compared with controls. Discussion Our study shows that IL-4 (intron 3) and IL-10 (-1082) gene polymorphisms are not significantly associated with susceptibility to rheumatic heart disease, but they might play a role in the pathogenesis of patients with mitral valve disease.
Monovalve with integrated fuel injector and port control valve, and engine using same
Milam, David M.
2001-11-06
An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.
Bulur, Serkan; Hsiung, Ming C; Nanda, Navin C; Hardas, Shalaka; Mohamed, Ahmed; ElKaryoni, Ahmed; Srialluri, Swetha; Barssoum, Kirolos; Elsayed, Mahmoud; Wei, Jeng; Yin, Wei-Hsian
2016-11-01
We present a case of an adult with metastatic carcinoid heart disease, in whom live/real time three-dimensional transthoracic echocardiography provided incremental value over two-dimensional transthoracic echocardiography in assessing involvement of the aortic valve. © 2016, Wiley Periodicals, Inc.
Larrieu, A J; Puglia, E; Allen, P
1982-08-01
The case of a patient who survived strut fracture and embolization of a Björk-Shiley mitral prosthetic disc is presented. Prompt surgical treatment was directly responsible for survival. In addition, computerized axial tomography of the abdomen aided in localizing and retrieving the embolized disc, which was lodged at the origin of the superior mesenteric artery. A review of similar case reports from the literature supports our conclusions that the development of acute heart failure and absent or muffled prosthetic heart sounds in a patient with a Björk-Shiley prosthetic heart valve inserted prior to 1978 should raise the possibility of valve dysfunction and lead to early reoperation.
Assayag, P; Thuaire, C; Benamer, H; Sebbah, J; Leport, C; Brochet, E
1999-06-01
Traumatic lesions of the tricuspid valve complicating pacemaker lead extractions appear to be rare. We report two cases of partial rupture of the tricuspid valve, following apparently uneventful extraction of permanent ventricular leads, resulting in severe regurgitation and, in one case, chronic heart failure. TEE was useful to identify the traumatic mechanism of tricuspid regurgitation (TR) and the extent of valvular lesions in these patients. Such etiology should be suspected, and TEE performed, in patients developing TR or heart failure late after lead extraction.
Dynamic control of a homogeneous charge compression ignition engine
Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL
2008-06-03
A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.
Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Matsuo, Satoshi; Saiki, Yoshikatsu; Yamagishi, Masaaki
2015-01-01
Pulmonary conduit valves are used as one of the surgical treatment methods of congenital heart diseases. We have been designing a sophisticated pulmonary conduit valve for the right ventricular outflow tract reconstruction in pediatric patients. In this study, two types of polyester grafts with or without bulging structures for the conduit valves were used and evaluated from the hemodynamic point of view focusing on the application of these conduit valves in the grown-up congenital heart failure patients. We examined valvular function in the originally developed pulmonary mock circulatory system, which consisted of a pneumatic driven right ventricular model, a pulmonary valve chamber, and an elastic pulmonary compliance model with peripheral vascular resistance units. Prior to the measurement, a bileaflet valve was sutured in each conduit. Each conduit valve was installed in the mock right ventricular outflow portion, and its leaflet motion was obtained by using a high-speed camera synchronously with pressure and flow waveforms. As a result, we could obtain hemodynamic changes in two different types of conduits for pulmonary valves, and it was indicated that the presence of the Valsalva shape might be effective for promoting valvular response in the low cardiac output condition.
Mitral valve disease—morphology and mechanisms
Levine, Robert A.; Hagége, Albert A.; Judge, Daniel P.; Padala, Muralidhar; Dal-Bianco, Jacob P.; Aikawa, Elena; Beaudoin, Jonathan; Bischoff, Joyce; Bouatia-Naji, Nabila; Bruneval, Patrick; Butcher, Jonathan T.; Carpentier, Alain; Chaput, Miguel; Chester, Adrian H.; Clusel, Catherine; Delling, Francesca N.; Dietz, Harry C.; Dina, Christian; Durst, Ronen; Fernandez-Friera, Leticia; Handschumacher, Mark D.; Jensen, Morten O.; Jeunemaitre, Xavier P.; Le Marec, Hervé; Le Tourneau, Thierry; Markwald, Roger R.; Mérot, Jean; Messas, Emmanuel; Milan, David P.; Neri, Tui; Norris, Russell A.; Peal, David; Perrocheau, Maelle; Probst, Vincent; Pucéat, Michael; Rosenthal, Nadia; Solis, Jorge; Schott, Jean-Jacques; Schwammenthal, Ehud; Slaugenhaupt, Susan A.; Song, Jae-Kwan; Yacoub, Magdi H.
2016-01-01
Mitral valve disease is a frequent cause of heart failure and death. Emerging evidence indicates that the mitral valve is not a passive structure, but—even in adult life—remains dynamic and accessible for treatment. This concept motivates efforts to reduce the clinical progression of mitral valve disease through early detection and modification of underlying mechanisms. Discoveries of genetic mutations causing mitral valve elongation and prolapse have revealed that growth factor signalling and cell migration pathways are regulated by structural molecules in ways that can be modified to limit progression from developmental defects to valve degeneration with clinical complications. Mitral valve enlargement can determine left ventricular outflow tract obstruction in hypertrophic cardiomyopathy, and might be stimulated by potentially modifiable biological valvular–ventricular interactions. Mitral valve plasticity also allows adaptive growth in response to ventricular remodelling. However, adverse cellular and mechanobiological processes create relative leaflet deficiency in the ischaemic setting, leading to mitral regurgitation with increased heart failure and mortality. Our approach, which bridges clinicians and basic scientists, enables the correlation of observed disease with cellular and molecular mechanisms, leading to the discovery of new opportunities for improving the natural history of mitral valve disease. PMID:26483167
Tsai, I-Chen; Lin, Yung-Kai; Chang, Yen; Fu, Yun-Ching; Wang, Chung-Chi; Hsieh, Shih-Rong; Wei, Hao-Ji; Tsai, Hung-Wen; Jan, Sheng-Ling; Wang, Kuo-Yang; Chen, Min-Chi; Chen, Clayton Chi-Chang
2009-04-01
The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3-year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Björk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders.
The closing behavior of mechanical aortic heart valve prostheses.
Lu, Po-Chien; Liu, Jia-Shing; Huang, Ren-Hong; Lo, Chi-Wen; Lai, Ho-Cheng; Hwang, Ned H C
2004-01-01
Mechanical artificial heart valves rely on reverse flow to close their leaflets. This mechanism creates regurgitation and water hammer effects that may form cavitations, damage blood cells, and cause thromboembolism. This study analyzes closing mechanisms of monoleaflet (Medtronic Hall 27), bileaflet (Carbo-Medics 27; St. Jude Medical 27; Duromedics 29), and trileaflet valves in a circulatory mock loop, including an aortic root with three sinuses. Downstream flow field velocity was measured via digital particle image velocimetry (DPIV). A high speed camera (PIVCAM 10-30 CCD video camera) tracked leaflet movement at 1000 frames/s. All valves open in 40-50 msec, but monoleaflet and bileaflet valves close in much less time (< 35 msec) than the trileaflet valve (>75 msec). During acceleration phase of systole, the monoleaflet forms a major and minor flow, the bileaflet has three jet flows, and the trileaflet produces a single central flow like physiologic valves. In deceleration phase, the aortic sinus vortices hinder monoleaflet and bileaflet valve closure until reverse flows and high negative transvalvular pressure push the leaflets rapidly for a hard closure. Conversely, the vortices help close the trileaflet valve more softly, probably causing less damage, lessening back flow, and providing a washing effect that may prevent thrombosis formation.
Investigation of the effect of different carbon film thickness on the exhaust valve
NASA Astrophysics Data System (ADS)
Karamangil, M. I.; Avci, A.; Bilal, H.
2008-03-01
Valves working under different loads and temperatures are the mostly forced engine elements. In an internal combustion engine, pressures and temperatures affecting on the valves vary with fuel type and the combustion characteristics of the fuel. Consequently, valves are exposed to different dynamic and thermal stress. In this study, stress distributions and temperature profiles on exhaust valve are obtained depending on different carbon film thickness. It is concluded that heat losses and valve temperatures decrease and valve surfaces are exposed to less thermal shocks with increasing carbon film thickness.
Increased dietary intake of vitamin A promotes aortic valve calcification in vivo
Huk, Danielle J.; Hammond, Harriet L.; Kegechika, Hiroyuki; Lincoln, Joy
2013-01-01
Objective Calcific aortic valve disease (CAVD) is a major public health problem with no effective treatment available other than surgery. We previously showed that mature heart valves calcify in response to retinoic acid (RA) treatment through downregulation of the SRY-transcription factor Sox9. In this study, we investigated the effects of excess vitamin A and its metabolite RA on heart valve structure and function in vivo, and examined the molecular mechanisms of RA signaling during the calcification process in vitro. Methods and Results Using a combination of approaches, we defined CAVD pathogenesis in mice fed 200 IU/g and 20 IU/g of retinyl palmitate for 12 months at molecular, cellular and functional levels. We show that mice fed excess vitamin A develop aortic valve stenosis and leaflet calcification associated with increased expression of osteogenic genes and decreased expression of cartilaginous markers. Using a pharmacological approach, we show that RA-mediated Sox9 repression and calcification is regulated by classical RA signaling and requires both RAR and RXR receptors. Conclusions Our studies demonstrate that excess vitamin A dietary intake promotes heart valve calcification in vivo. Therefore suggesting that hypervitaminosis A could serve as a new risk factor of CAVD in the human population. PMID:23202364
Kochhar, Puneet K; Zutshi, V; Shamsunder, S; Batra, S; Ghosh, P
2011-01-01
Congenital bicuspid aortic valve with severe aortic stenosis (AS) is a rare condition (3-6% of patients with congenital heart disease). Pregnancy in these patients carries a high risk of maternal and fetal mortality. With advancing gestational age, these women may develop cardiac failure due to increased cardiorespiratory requirements. When medical therapy proves insufficient, cardiac surgery becomes mandatory to save the patient's life. Balloon valvuloplasty is only palliative treatment, the duration of benefit being only 6 months. Valve replacement is thus recommended. Cardiopulmonary bypass (CPB) surgery with valve replacement has been reported to carry a lower risk of maternal mortality (1.5-13%) but a very high fetal risk (16-40%). This paper reports the case of a 30-year-old primigravida with severe AS with bicuspid aortic valve and pulmonary congestion clinically uncontrolled, in whom CPB surgery and aortic valve replacement was performed as an emergency procedure, along with a lower segment Caesarian section. The outcome of unrelieved severe symptomatic AS in pregnancy is poor. Multidisciplinary management is important to avoid deterioration in cardiac performance in parturients with severe AS. CPB during pregnancy carries a high risk to the fetus. Therefore, open heart surgery during pregnancy should be advised only in extreme emergencies (ie, heart failure refractory to conventional therapy).
Bark, David L.; Vahabi, Hamed; Bui, Hieu; Movafaghi, Sanli; Moore, Brandon; Kota, Arun K.; Popat, Ketul; Dasi, Lakshmi P.
2016-01-01
In this study, we explore how blood-material interactions and hemodynamics are impacted by rendering a clinical quality 25 mm St. Jude Medical Bileaflet mechanical heart valve (BMHV) superhydrophobic (SH) with the aim of reducing thrombo-embolic complications associated with BMHVs. Basic cell adhesion is evaluated to assess blood-material interactions, while hemodynamic performance is analyzed with and without the SH coating. Results show that a SH coating with a receding contact angle (CA) of 160º strikingly eliminates platelet and leukocyte adhesion to the surface. Alternatively, many platelets attach to and activate on pyrolytic carbon (receding CA=47), the base material for BMHVs. We further show that the performance index increases by 2.5% for coated valve relative to an uncoated valve, with a maximum possible improved performance of 5%. Both valves exhibit instantaneous shear stress below 10 N/m2 and Reynolds Shear Stress below 100 N/m2. Therefore, a SH BMHV has the potential to relax the requirement for antiplatelet and anticoagulant drug regimens typically required for patients receiving MHVs by minimizing blood-material interactions, while having a minimal impact on hemodynamics. We show for the first time that SH-coated surfaces may be a promising direction to minimize thrombotic complications in complex devices such as heart valves. PMID:27098219
... to low blood pressure are an abnormally low heart rate ( bradycardia ), problems with heart valves , heart attack and ... occurred. Is low blood pressure related to low heart rate? Find out . This content was last reviewed October ...
Pregnancy-induced remodeling of heart valves.
Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M
2015-11-01
Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves. Copyright © 2015 the American Physiological Society.
Fault Study of Valve Based on Test Analysis and Comparison
NASA Astrophysics Data System (ADS)
Cheng, Li; Yang, Wukui; Liang, Tao; Xu, Yu; Chen, Chao
2017-10-01
The valve of a certain type of small engine often has the fault phenomenon of abnormal vibration noise and can’t close under the specified pressure, which may cause the engine automatic stop because of valve incomplete close leading to fuel leakage during test and startup on the bench. By test study compared to imported valve with the same use function and test condition valve, and put forward the thinking of improving valve structure, compared no-improved valve to improved valve by adopting Fluent field simulation software. As a result, improved valve can restore close pressure of valve, restrain abnormal vibration noise phenomenon, and effectively compensate compression value of spring because of steel ball contacting position downward with valve casing.
NASA Astrophysics Data System (ADS)
Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.
2017-10-01
Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.
Engine control system having speed-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2012-02-14
A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.
Fujita, Buntaro; Scholtz, Smita; Ensminger, Stephan
2016-04-01
Coronary obstruction during transcatheter aortic valve implantation is a potentially life-threatening complication. Most of the widely used transcatheter heart valves require a certain distance between the basal aortic annular plane and the origins of the coronary arteries. We report the case of a successful valve-in-valve procedure with an Edwards SAPIEN XT valve into a JenaValve as a bail-out procedure in a patient with a low originating left coronary artery and a heavily calcified aorta. © 2015 Wiley Periodicals, Inc.
Sandeep, Nefthi; Punn, Rajesh; Balasubramanian, Sowmya; Smith, Shea N; Reinhartz, Olaf; Zhang, Yulin; Wright, Gail E; Peng, Lynn F; Wise-Faberowski, Lisa; Hanley, Frank L; McElhinney, Doff B
2018-04-01
Palliation of hypoplastic left heart syndrome with a standard nonvalved right ventricle to pulmonary artery conduit results in an inefficient circulation in part due to diastolic regurgitation. A composite right ventricle pulmonary artery conduit with a homograft valve has a hypothetical advantage of reducing regurgitation, but may differ in the propensity for stenosis because of valve remodeling. This retrospective cohort study included 130 patients with hypoplastic left heart syndrome who underwent a modified stage 1 procedure with a right ventricle to pulmonary artery conduit from 2002 to 2015. A composite valved conduit (cryopreserved homograft valve anastomosed to a polytetrafluoroethylene tube) was placed in 100 patients (47 aortic, 32 pulmonary, 13 femoral/saphenous vein, 8 unknown), and a nonvalved conduit was used in 30 patients. Echocardiographic functional parameters were evaluated before and after stage 1 palliation and before the bidirectional Glenn procedure, and interstage interventions were assessed. On competing risk analysis, survival over time was better in the valved conduit group (P = .040), but this difference was no longer significant after adjustment for surgical era. There was no significant difference between groups in the cumulative incidence of bidirectional Glenn completion (P = .15). Patients with a valved conduit underwent more interventions for conduit obstruction in the interstage period, but this difference did not reach significance (P = .16). There were no differences between groups in echocardiographic parameters of right ventricle function at baseline or pre-Glenn. In this cohort of patients with hypoplastic left heart syndrome, inclusion of a valved right ventricle to pulmonary artery conduit was not associated with any difference in survival on adjusted analysis and did not confer an identifiable benefit on right ventricle function. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Anatomical Consideration and Potential Complications of Coronary Sinus Catheterisation.
Mehra, Lalit; Raheja, Shashi; Agarwal, Sneh; Rani, Yashoda; Kaur, Kulwinder; Tuli, Anita
2016-02-01
Coronary venous catheterisation has been used for performing various cardiologic interventions. The procedure might become complicated due to obstruction offered by the valve of coronary sinus (Thebesian valve) the acute bend of the Great Cardiac Vein (GCV). The present study sought to expound the anatomical considerations of coronary venous catheterization and to elucidate the potential causes of obstruction and the complications of this procedure. In this cross-sectional observational study, coronary sinus and GCV were dissected in 40, formalin fixed, adult cadaveric human hearts. Course, length, diameter and angle of bend of GCV, length of coronary sinus and its diameter at its ostium in right atrium were recorded. Thebesian valve morphology and percentage coverage of coronary sinus ostium was recorded. Relation of the coronary sinus and GCV with their neighbouring arteries was described. Coronary sinus: near its termination was directly related to the left atrium. Length: 35.35±4.43 mm (1 SD). Diameter: 11.75 ± 2.66mm. Diameter of CS ostium was more in hearts where Thebesian valve was absent. GCV travelled superficial or deep to the left diagonal artery and crossed circumflex artery superficially. Length: 96.23 ±22.52mm. Diameter: 5.99 ±1.02mm. Angle of bend: 107 ±6.74 degrees. Thebesian valve: Absent in 3 hearts. Various morphologies were observed: thin band, thin band with fenestrations, broad band with fenestrations, well developed semilunar valve (Thin/thick). In five hearts, valve covered more than 50% of coronary sinus ostium. Coronary sinus and GCV diameter will help cardiologists and cardiothoracic surgeons to choose an appropriate sized catheter and their length will decide the length of catheter advancement. Thebesian valve may cause obstruction to the catheter due to an extensive coverage of coronary sinus ostium, which is seen in 12.5% cases. The obtuse angle of GCV has to be negotiated in order to enter this vessel. Arteries lying deep to coronary sinus and GCV might be compressed leading to myocardial ischemia.
Turbulence downstream of subcoronary stentless and stented aortic valves.
Funder, Jonas Amstrup; Frost, Markus Winther; Wierup, Per; Klaaborg, Kaj-Erik; Hjortdal, Vibeke; Nygaard, Hans; Hasenkam, J Michael
2011-08-11
Regions of turbulence downstream of bioprosthetic heart valves may cause damage to blood components, vessel wall as well as to aortic valve leaflets. Stentless aortic heart valves are known to posses several hemodynamic benefits such as larger effective orifice areas, lower aortic transvalvular pressure difference and faster left ventricular mass regression compared with their stented counterpart. Whether this is reflected by diminished turbulence formation, remains to be shown. We implanted either stented pericardial valve prostheses (Mitroflow), stentless valve prostheses (Solo or Toronto SPV) in pigs or they preserved their native valves. Following surgery, blood velocity was measured in the cross sectional area downstream of the valves using 10MHz ultrasonic probes connected to a dedicated pulsed Doppler equipment. As a measure of turbulence, Reynolds normal stress (RNS) was calculated at two different blood pressures (baseline and 50% increase). We found no difference in maximum RNS measurements between any of the investigated valve groups. The native valve had significantly lower mean RNS values than the Mitroflow (p=0.004), Toronto SPV (p=0.008) and Solo valve (p=0.02). There were no statistically significant differences between the artificial valve groups (p=0.3). The mean RNS was significantly larger when increasing blood pressure (p=0.0006). We, thus, found no advantages for the stentless aortic valves compared with stented prosthesis in terms of lower maximum or mean RNS values. Native valves have a significantly lower mean RNS value than all investigated bioprostheses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Preliminary engineering study: Quick opening valve MSFC high Reynolds number wind tunnel
NASA Technical Reports Server (NTRS)
1983-01-01
FluiDyne Engineering Corporation has conducted a preliminary engineering study of a quick-opening valve for the MSFC High Reynolds Number Wind Tunnel under NASA Contract NAS8-35056. The subject valve is intended to replace the Mylar diaphragm system as the flow initiation device for the tunnel. Only valves capable of opening within 0.05 sec. and providing a minimum of 11.4 square feet of flow area were considered. Also, the study focused on valves which combined the quick-opening and tight shutoff features in a single unit. A ring sleeve valve concept was chosen for refinement and pricing. Sealing for tight shutoff, ring sleeve closure release and sleeve actuation were considered. The resulting cost estimate includes the valve and requisite modifications to the facility to accommodate the valve as well as the associated design and development work.
Development of a novel passive top-down uniflow scavenged two-stroke GDI engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciccarelli, G.; Reynolds, Steve; Oliver, Phillip
2010-02-15
The design and performance characteristics of a novel top-down uniflow scavenged gasoline direct-injection two-stroke engine are presented. The novelty of the engine lies in the cylinder head that contains multiple check valves that control scavenging airflow into the cylinder from a supercharged air plenum. When the cylinder pressure drops below the intake plenum pressure during the expansion stroke, air flows into the cylinder through the check valves. During compression the cylinder pressure increases to a level above the intake plenum pressure and the check valves close preventing back-flow into the intake plenum. The engine head design provides asymmetrical intake valvemore » timing without the use of poppet valves and the associated valve-train. In combination with an external Roots-type supercharger that supplies the plenum and exhaust ports at the bottom of the cylinder wall, the novel head provides top-down uniflow air scavenging. Motoring tests indicated that the check valves seal and the peak pressure is governed by the compression ratio. The only drawback observed is that valve closing is delayed as the engine speed increases. In order to investigate the valve dynamics, additional tests were performed in an optically-accessible cold flow test rig that enabled the direct measurement of valve opening and closing time under various conditions. (author)« less
Murmur intensity in small-breed dogs with myxomatous mitral valve disease reflects disease severity.
Ljungvall, I; Rishniw, M; Porciello, F; Ferasin, L; Ohad, D G
2014-11-01
To determine whether murmur intensity in small-breed dogs with myxomatous mitral valve disease reflects clinical and echocardiographic disease severity. Retrospective multi-investigator study. Records of adult dogs Ä20 kg with myxomatous mitral valve disease were examined. Murmur intensity and location were recorded and compared with echocardiographic variables and functional disease status. Murmur intensities in consecutive categories were compared for prevalences of congestive heart failure, pulmonary hypertension and cardiac remodelling. 578 dogs [107 with "soft" (30 Grade I/VI and 77 II/VI), 161 with "moderate" (Grade III/VI), 160 with "loud" (Grade IV/VI) and 150 with "thrilling" (Grade V/VI or VI/VI) murmurs] were studied. No dogs with soft murmurs had congestive heart failure, and 90% had no remodelling. However, 56% of dogs with "moderate", 29% of dogs with "loud" and 8% of dogs with "thrilling" murmurs and subclinical myxomatous mitral valve disease also had no remodelling. Probability of a dog having congestive heart failure or pulmonary hypertension increased with increasing murmur intensity. A 4-level murmur grading scheme separated clinically meaningful outcomes in small-breed dogs with myxomatous mitral valve disease. Soft murmurs in small-breed dogs are strongly indicative of subclinical heart disease. Thrilling murmurs are associated with more severe disease. Other murmurs are less informative on an individual basis. © 2014 British Small Animal Veterinary Association.
International Heart Valve Bank Survey: A Review of Processing Practices and Activity Outcomes
Albrecht, Helmi; Lim, Yeong Phang; Manning, Linda
2013-01-01
A survey of 24 international heart valve banks was conducted to acquire information on heart valve processing techniques used and outcomes achieved. The objective was to provide an overview of heart valve banking activities for tissue bankers, tissue banking associations, and regulatory bodies worldwide. Despite similarities found for basic manufacturing processes, distinct differences in procedural details were also identified. The similarities included (1) use of sterile culture media for procedures, (2) antibiotic decontamination, (3) use of dimethyl sulfoxide (DMSO) as a cryoprotectant, (4) controlled rate freezing for cryopreservation, and (5) storage at ultralow temperatures of below −135°C. Differences in procedures included (1) type of sterile media used, (2) antibiotics combination, (3) temperature and duration used for bioburden reduction, (4) concentration of DMSO used for cryopreservation, and (5) storage duration for released allografts. For most banks, the primary reasons why allografts failed to meet release criteria were positive microbiological culture and abnormal morphology. On average, 85% of allografts meeting release criteria were implanted, with valve size and type being the main reasons why released allografts were not used clinically. The wide variation in percentage of allografts meeting release requirements, despite undergoing validated manufacturing procedures, justifies the need for regular review of important outcomes as cited in this paper, in order to encourage comparison and improvements in the HVBs' processes. PMID:24163756
Soares, Joao S.; Feaver, Kristen R.; Zhang, Will; Kamensky, David; Aggarwal, Ankush; Sacks, Michael S.
2017-01-01
The use of replacement heart valves continues to grow due to the increased prevalence of valvular heart disease resulting from an ageing population. Since bioprosthetic heart valves (BHVs) continue to be the preferred replacement valve, there continues to be a strong need to develop better and more reliable BHVs through and improved the general understanding of BHV failure mechanisms. The major technological hurdle for the lifespan of the BHV implant continues to be the durability of the constituent leaflet biomaterials, which if improved can lead to substantial clinical impact. In order to develop improved solutions for BHV biomaterials, it is critical to have a better understanding of the inherent biomechanical behaviors of the leaflet biomaterials, including chemical treatment technologies, the impact of repetitive mechanical loading, and the inherent failure modes. This review seeks to provide a comprehensive overview of these issues, with a focus on developing insight on the mechanisms of BHV function and failure. Additionally, this review provides a detailed summary of the computational biomechanical simulations that have been used to inform and develop a higher level of understanding of BHV tissues and their failure modes. Collectively, this information should serve as a tool not only to infer reliable and dependable prosthesis function, but also to instigate and facilitate the design of future bioprosthetic valves and clinically impact cardiology. PMID:27507280
The automotive application of discontinuously reinforced TiB-Ti composites
NASA Astrophysics Data System (ADS)
Saito, Takashi
2004-05-01
In 1998, Toyota Motor Corporation adopted intake valves and exhaust valves made of titanium-based alloys for the engine of its Altezza. Both valves were manufactured via a newly developed cost-effective powder metallurgy process. The exhaust valve is made of a newly developed titanium metal-matrix composite (MMC). The valve has achieved sufficient durability and reliability with a manufacturing cost acceptable for the mass-produced automobile engine components.
Valve assembly for internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakeman, R.J.; Shea, S.F.
1989-09-05
This patent describes an improvement in a valve assembly for an internal combustion engine of the type including a valve having a valve stem, a valve guideway for mounting this valve for reciprocal strokes between opened and seated position, and spring means for biasing the valve into the seated position. The improvement comprising a valve spool of greater cross-sectional diameter as compared to the valve stem, and a valve spool guideway within which the valve spool is movable during the strokes of the valve, an upper surface of the valve spool and a portion of the spool guideway collectively establishingmore » a damper chamber which varies in volume during the valve strokes. a feed passage for introducing oil into the damper chamber, and a bleed passage for discharging oil from the damper chamber. The bleed passages each laterally opening into the valve spool guideway.« less
Obstructive Thebesian valve: anatomical study and implications for invasive cardiologic procedures.
Ghosh, Sanjib Kumar; Raheja, Shashi; Tuli, Anita
2014-03-01
Thebesian valve is the embryological remnant of the right sinoatrial valve, guarding the coronary sinus (CS) ostium. Advanced invasive and interventional cardiac diagnostic and management tools involve cannulation of the CS ostium. The presence of obstructive Thebesian valves has been reported to lead to unsuccessful cannulation of the CS. We studied the morphology of the Thebesian valve and CS ostium to assess the possible impact of these structures on invasive cardiological procedures. One hundred fifty randomly selected human cadaveric heart specimens fixed in 10% formalin were dissected in the customary routine manner. The Thebesian valves were classified according to their shape as semilunar/fenestrated/biconcave band like and according to their composition as membranous/fibromuscular/fibrous/muscular, and the extent to which the valve covered the CS ostium was also noted. An obstructive Thebesian valve that could interfere with the cannulation of the CS was defined as non-fenestrated (semilunar/biconcave band like) and non-membranous (fibromuscular/fibrous/muscular) valves covering >75% of the CS ostium. Thebesian valves were present in 118 (79%) heart specimens, of which 27 (18%) met the criteria of being obstructive. Semilunar was the most common type of Thebesian valve in terms of shape and was observed in 65 (65/118; 55%) hearts. This type was associated with the least mean craniocaudal (7.9±0.6 mm) and mean transverse (6.25±0.6 mm) diameters of the CS ostium. The mean craniocaudal diameter of the CS ostium (9.4±2.1 mm) was significantly larger (p=0.004) than the mean transverse diameter (7.15±1.5 mm) in specimens with Thebesian valves, and the cranial margin of the CS ostium was free from any attachment of the Thebesian valve in all the types observed (in terms of shape). Hence, attempts to direct the tip of the catheter toward the cranial margin of the CS ostium under direct vision may lead to successful cannulation of the same when conventional techniques have been unsuccessful because of the presence of an obstructive Thebesian valve.
Trauma: An Unusual Cause of Endocarditis.
Braga, Ana; Marques, Marta; Abecacis, Miguel; Neves, José Pedro
2017-01-01
Infective endocarditis (IE) remains a dangerous condition with considerable associated mortality. Usual risk factors for IE include the presence of a prosthetic heart valve, structural or congenital heart disease, intravenous drug use, and a recent history of invasive procedures. The authors describe the case report of a patient with IE having trauma as an unusual risk factor. A 33-year old male patient was referred to our department due to infective endocarditis. The patient had a fever of unknown origin for 15 days before going to the emergency department. After admission it was identified by transthoracic echocardiography a 14mm posterior abscess of the aortic valve provoking major aortic regurgitation with moderate LV dysfunction. After careful evaluation of the clinical history it was found that the patient had a known bicuspid aortic valve with follow-up since the age of 14. All other usual risk factors for IE were excluded, including intravenous drug use and recent history of invasive procedures. The only relevant previous event was a traumatic haemathoma in his left jaw caused by a working accident with an iron beam in a construction site as the patient is a civil engineer. Vancomycin plus gentamicin were empirically started after blood cultures taken. The isolated infective agent was Staphylococcus lugdunensis methicillin sensitive and the antibiotherapy was de-escalated to flucloxacilin plus gentamicin. Due to cardiac dysfunction the patient was submitted to cardiac surgery on the fourth day of directed antibiotic therapy and a replacement of the aortic valve by a mechanical prosthetic valve and closure of the abscess with bovine pericardial patch was performed. The valve sent to microbiology evaluation showed the same infective provocative agent. The patient had a good clinical and laboratorial recovery completing the 42-day antibiotic scheme. After antibiotherapy period completion, echocardiography was repeated and the abscess found was larger then the previous one, presenting itself like an aortic pseudo aneurysm. The patient was resubmitted to surgery with re-closure of the initial abscess with autologous pericardial patch and replacement of the prosthetic mechanical valve for an undersized one. The patient was discharger clinically well, having a complete normal life at the moment. This clinical case illustrates trauma as an unusual cause of endocarditis and emphasizes the importance of a detailed clinical history.
Rasmussen, V G; Poulsen, S H; Dupont, E; Østergaard, K; Safikhany, G; Egeblad, H
2008-01-01
To elucidate the association between treatment with ergot-derived dopamine agonists (EDDA) and valvular abnormalities amongst patients with idiopathic Parkinson's disease (IPD) and secondly, to analyse the yield of clinical screening for valvular heart disease. A cross-sectional controlled study. The cohort of IPD patients treated in the outpatient clinic, Department of Neurology, Aarhus University Hospital, Denmark. A total of 138 IPD patients [median age 64 (39-87) years, 62% men] treated with either EDDA (n = 85) or non-EDDA (n = 53) for at least 6 months. Interventions. Patients were screened for valvular heart disease by clinical means and by examiner-blinded echocardiography. Main outcome measure was valvular regurgitation revealed by echocardiography. Severe aortic regurgitation (n = 4) or moderate aortic (n = 12), mitral (n = 3) or tricuspidal valve regurgitation (n = 5) was found in 22 EDDA patients (25.9%). Two patients had coexistent moderate mitral and tricuspid valvular regurgitation. Two non-EDDA patients had moderate valve insufficiency (3.8%, P < 0.05). The adjusted relative risk for at least moderate valve insufficiency in the EDDA patients was 7.2% (P < 0.05). The sensitivity of detecting at least moderate valvular disease by cardiac murmur, dyspnoea, or the heart failure marker NT-proBNP (natriuretic peptide) was 62% for the neurologists and 93% for the cardiologist but with equally low specificity (30-35%). EDDA was associated with a clinically important and statistically significant risk of at least moderate valve regurgitation. Clinical screening for valve disease was inadequate and it seems advisable to offer EDDA patients control with echocardiography.
Hydraulic engine valve actuation system including independent feedback control
Marriott, Craig D
2013-06-04
A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.
Integrated hydraulic cooler and return rail in camless cylinder head
Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO
2011-12-13
An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.
Wilson, Carole L; Gough, Peter J; Chang, Cindy A; Chan, Christina K; Frey, Jeremy M; Liu, Yonggang; Braun, Kathleen R; Chin, Michael T; Wight, Thomas N; Raines, Elaine W
2013-01-01
Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valvular mesenchymal cells are largely derived from cardiac endothelial cells, we generated mice with a floxed Adam17 allele and crossed these animals with Tie2-Cre transgenics to focus on the role of endothelial ADAM17 in valvulogenesis. We find that although hearts from late-stage embryos with ablation of endothelial ADAM17 appear normal, an increase in valve size and cell number is evident, but only in the semilunar cusps. Unlike Hbegf(-/-) valves, ADAM17-null semilunar valves do not differ from controls in acute cell proliferation at embryonic day 14.5 (E14.5), suggesting compensatory processing of HB-EGF. However, levels of the proteoglycan versican are significantly reduced in mutant hearts early in valve remodeling (E12.5). After birth, aortic valve cusps from mutants are not only hyperplastic but also show expansion of the glycosaminoglycan-rich component, with the majority of adults exhibiting aberrant compartmentalization of versican and increased deposition of collagen. The inability of mutant outflow valve precursors to transition into fully mature cusps is associated with decreased postnatal viability, progressive cardiomegaly, and systolic dysfunction. Together, our data indicate that ADAM17 is required in valvular endothelial cells for regulating cell content as well as extracellular matrix composition and organization in semilunar valve remodeling and homeostasis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Nitric Oxide Synthase-3 Promotes Embryonic Development of Atrioventricular Valves
Liu, Yin; Lu, Xiangru; Xiang, Fu-Li; Lu, Man; Feng, Qingping
2013-01-01
Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3−/− mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3−/− compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3−/− mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1+ cells in the AV cushion were decreased in NOS3−/− compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3−/− compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency. PMID:24204893
Thermal and mechanical analysis of major components for the advanced adiabatic diesel engine
NASA Technical Reports Server (NTRS)
1983-01-01
The proposed design for the light duty diesel is an in-line four cylinder spark assisted diesel engine mounted transversely in the front of the vehicle. The engine has a one piece cylinder head, with one intake valve and one exhaust valve per cylinder. A flat topped piston is used with a cylindrical combustion chamber recessed into the cylinder head directly under the exhaust valve. A single ceramic insert is cast into the cylinder head to insulate both the combustion chamber and the exhaust port. A similar ceramic insert is cast into the head to insulate the intake port. A ceramic faceplate is pressed into the combustion face of the head to insulate the face of the head from hot combustion gas. The valve seats are machined directly into the ceramic faceplate for the intake valve and into the ceramic exhaust pot insert for the exhaust valve. Additional ceramic applications in the head are the use of ceramic valve guides and ceramic insulated valves. The ceramic valve guides are press fit into the head and are used for increased wear resistance. The ceramic insulated valves are conventional valves with the valve faces plasma spray coated with ceramic for insulation.
... possible, but depend on the extent of the heart abnormalities that accompany the pulmonary valve defect. Potential treatments include: A thin, flexible tube (heart catheterization) to repair the problem Open heart surgery ...
Tri atresia; Valve disorder - tricuspid atresia; Congenital heart - tricuspid atresia; Cyanotic heart disease - tricuspid atresia ... Tricuspid atresia is an uncommon form of congenital heart disease. It affects about 5 in every 100, ...
Patient perceptions of experience with cardiac rehabilitation after isolated heart valve surgery.
Hansen, Tina B; Berg, Selina K; Sibilitz, Kirstine L; Zwisler, Ann D; Norekvål, Tone M; Lee, Anne; Buus, Niels
2018-01-01
Little evidence exists on whether cardiac rehabilitation is effective for patients after heart valve surgery. Yet, accepted recommendations for patients with ischaemic heart disease continue to support it. To date, no studies have determined what heart valve surgery patients prefer in a cardiac rehabilitation programme, and none have analysed their experiences with it. The purpose of this qualitative analysis was to gain insight into patients' experiences in cardiac rehabilitation, the CopenHeart VR trial. This trial specifically assesses patients undergoing isolated heart valve surgery. Semi-structured interviews were conducted with nine patients recruited from the intervention arm of the trial. The intervention consisted of a physical training programme and a psycho-educational intervention. Participants were interviewed three times: 2-3 weeks, 3-4 months and 8-9 months after surgery between April 2013 and October 2014. Data were analysed using qualitative thematic analysis. Participants had diverse needs and preferences. Two overall themes emerged: cardiac rehabilitation played an important role in (i) reducing insecurity and (ii) helping participants to take active personal responsibility for their health. Despite these benefits, participants experienced existential and psychological challenges and musculoskeletal problems. Participants also sought additional advice from healthcare professionals both inside and outside the healthcare system. Even though the cardiac rehabilitation programme reduced insecurity and helped participants take active personal responsibility for their health, they experienced existential, psychological and physical challenges during recovery. The cardiac rehabilitation programme had several limitations, having implications for designing future programmes.
Reproduction and Survival After Cardiac Defect Repair
2016-02-17
Cardiovascular Diseases; Heart Diseases; Defect, Congenital Heart; Aortic Valve Stenosis; Transposition of Great Vessels; Ductus Arteriosus, Patent; Heart Septal Defects, Atrial; Heart Septal Defects, Ventricular; Down Syndrome; Tetralogy of Fallot; Pulmonic Stenosis; Coarctation of Aorta
If Your Child Has a Heart Defect (For Parents)
... congenital heart disease are at risk for bacterial endocarditis, an infection of the tissue that lines the ... who have artificial heart valves or have had endocarditis before. Most children with heart problems, however, do ...
Hahn, Rebecca T
2017-10-01
Functional or secondary tricuspid regurgitation (TR) is the most common etiology of severe TR in the western world. The presence of functional TR, either isolated or in combination with left heart disease is associated with unfavorable natural history however surgical mortality for isolated tricuspid valve interventions remain higher than for any other single valve surgery. Determining the severity of TR remains a controversial area and will continue to evolve as new techniques for assessing this valve as well as the right ventricle, are investigated. The following review will describe tricuspid anatomy, define echocardiographic views for evaluating tricuspid valve and right heart morphology and function, that are relevant to the pre-procedural assessment of functional TR.
Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B.
2017-01-01
This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench. PMID:29258270
Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B
2017-12-18
This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.
Blot, William J; Ibrahim, Michel A; Ivey, Tom D; Acheson, Donald E; Brookmeyer, Ron; Weyman, Arthur; Defauw, Joseph; Smith, J Kermit; Harrison, Donald
2005-05-31
The first Björk-Shiley convexoconcave (BSCC) prosthetic heart valves were implanted in 1978. The 25th anniversary provided a stimulus to summarize the research data relevant to BSCC valve fracture, patient management, and current clinical options. Published and unpublished data on the risks of BSCC valve fracture and replacement were compiled, and strategies for identifying candidates for prophylactic valve reoperation were summarized. By December 2003, outlet strut fractures (OSFs), often with fatal outcomes, had been reported in 633 BSCC valves (0.7% of 86,000 valves implanted). Fractures still continue to occur, but average rates of OSFs in 60 degrees valves are now <0.1% per year. OSF risk varies markedly by valve characteristics, especially valve angle and size, with weaker effects associated with other manufacturing variables. OSF risks are mildly lower among women than men but decline sharply with advancing age. The risks of valve replacement typically greatly exceed those of OSF. By comparing individualized estimated risks of OSF versus valve replacement, guidelines have been developed to identify the small percentage of BSCC patients (mostly younger men) who would be expected to have a gain in life expectancy should reoperative surgery be performed. Twenty-five years after the initial BSCC valve implants, fractures continue to occur. Continued monitoring of BSCC patients is needed to track and quantify risks and enable periodic updating of guidelines for patients and their physicians.
Three-dimensional echocardiographic evaluation of an incidental quadricuspid aortic valve.
Armen, Todd A; Vandse, Rashmi; Bickle, Katherine; Nathan, Nadia
2008-03-01
Quadricuspid aortic valve is one of the rare forms of congenital cardiac valvular disease. Its diagnosis is often missed, even with the transthoracic echocardiogram. Many of these patients progress to aortic incompetence later in life requiring surgical intervention. In addition, quadricuspid aortic valve can be associated with other congenital cardiac deformities. Hence early recognition and follow-up is critical in these patients. We report a patient with quadricuspid aortic valve identified on intraoperative transesophageal 3-D echocardiography. This 66-year-old male presented with the features of congestive heart failure. The preoperative transthoracic echocardiogram (TTE) disclosed, moderately severe aortic valve insufficiency along with severe mitral and tricuspid regurgitation, but failed to reveal the quadricuspid anomaly of the aortic valve. Interestingly, this patient had undergone transthoracic echocardiography on two previous occasions during the past seven years for the evaluation of his valvular heart disease, which all failed to document this anomaly. Intraoperatively, transesophageal echocardiography (TEE) displayed an aortic valve composed of three medium and one small cusps. Our patient's case demonstrates the usefulness of transesophageal echocardiography in detection of this uncommon congenital malformation.
Choe, Joshua A; Jana, Soumen; Tefft, Brandon J; Hennessy, Ryan S; Go, Jason; Morse, David; Lerman, Amir; Young, Melissa D
2018-05-10
Fixed pericardial tissue is commonly used for commercially available xenograft valve implants, and has proven durability, but lacks the capability to remodel and grow. Decellularized porcine pericardial tissue has the promise to outperform fixed tissue and remodel, but the decellularization process has been shown to damage the collagen structure and reduce mechanical integrity of the tissue. Therefore, a comparison of uniaxial tensile properties was performed on decellularized, decellularized-sterilized, fixed, and native porcine pericardial tissue, versus native valve leaflet cusps. The results of non-parametric analysis showed statistically significant differences (p<0.05) between the stiffness of 1) decellularized vs. native pericardium, and native cusps as well as fixed tissue respectively; however decellularized tissue showed large increases in elastic properties. Porosity testing of the tissues showed no statistical difference between decellularized or decell-sterilized tissue compared to native cusps (p>0.05). SEM confirmed that valvular endothelial and interstitial cells colonized the decellularized pericardial surface when seeded and grown for 30 days in static culture. Collagen assays and TEM analysis showed limited reductions in collagen with processing; yet, GAG assays showed great reductions in the processed pericardium relative to native cusps. Decellularized pericardium had comparatively lower mechanical properties amongst the groups studied; yet, the stiffness was comparatively similar to the native cusps and demonstrated a lack of cytotoxicity. Suture retention, accelerated wear, and hydrodynamic testing of prototype decellularized and decell-sterilized valves showed positive functionality. Sterilized tissue could mimic valvular mechanical environment in vitro, therefore making it a viable potential candidate for off-the-shelf tissue engineered valvular applications. KEYTERMS Decellularization, Sterilization, Pericardial Tissue, Heart Valves, Tissue Engineering, Biomechanics. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Spanogle, J A; Whitney, E G
1931-01-01
An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.
[Feasibility of sonography in the diagnosis of congenital heart diseases in dogs].
Schneider, M; Schneider, I; Neu, H
1998-05-01
In ultrasound examination of the heart it is useful to combine the following techniques: echocardiography (in 2D and M-mode) gives information about morphology and motion of the heart. By using Doppler echocardiography (black and white or preferably colour) it is possible to evaluate bloodstreams and with contrast echocardiography shunts in the heart can be demonstrated. In our study (1994-1996) the following congenital heart defects were the most common in dogs: subaortic stenosis (SAS, 41%), pulmonic stenosis (PS, 19%), patent ductus arteriosus (PDA, 11%) and the combination of subaortic stenosis with pulmonic stenosis (11%). Echocardiography allows the morphologic evaluation of the primary defect in detail, for example the differentiation between aortic valve stenosis and subaortic stenosis. However the exact identification of the patent ductus arterious and of the morphology in pulmonic stenosis can remain difficult, especially in patients showing dyspnoe. In heart sonography quantitative measurements are available to graduate the defects, but guidelines for these measurements are not yet defined. The demonstration of secondary and combined defects, which are important for therapy is easily possible with heart ultrasound examination. Secondary insufficiencies are often seen at the mitral valve because of primary subaortic stenosis or patent ductus arteriosus and at the tricuspid valve because of pulmonic stenosis. For differentiation of combined heart defects (SAS with PS; SAS with PDA; PS with atrium septum defect) heart ultrasound is extremely valuable.
Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves
Bazan, Ovandir; Ortiz, Jayme Pinto; Vieira Junior, Francisco Ubaldo; Vieira, Reinaldo Wilson; Antunes, Nilson; Tabacow, Fabio Bittencourt Dutra; Costa, Eduardo Tavares; Petrucci Junior, Orlando
2013-01-01
Introduction In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. Objective To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models) exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. Methods To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. ) and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. Results It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. Conclusions Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM) is superior to the 21 AJ - 501 model (Master Series). Based on the results, future studies can choose to focus on specific regions of the these valves. PMID:24598950
Text Message Intervention to Improve Cardiac Rehab Participation
2017-11-14
Myocardial Infarction; Percutaneous Coronary Intervention; Coronary Artery Bypass Surgery; Heart Valve Repair or Replacement; Heart Transplant; Left Ventricular Assist Device; Chronic Stable Angina; Chronic Stable Heart Failure
Greiten, Lawrence E; McKellar, Stephen H; Rysavy, Joseph; Schaff, Hartzell V
2014-05-01
Warfarin is used to reduce the risk of stroke and thromboembolic complications in patients with mechanical heart valves. Yet, despite frequent blood testing, its poor pharmacokinetic and pharmacodynamic profiles often result in variable therapeutic levels. Rivaroxaban is a direct competitive factor Xa inhibitor that is taken orally. It inhibits the active site of factor Xa without the need for the cofactor antithrombin, and thus, its mechanism of action is differentiated from that of the fractionated heparins and indirect factor Xa inhibitors. No in vivo data exist regarding the effectiveness of rivaroxaban in preventing thromboembolic complications of mechanical heart valves. We tested the hypothesis that rivaroxaban is as effective as enoxaparin for thromboprophylaxis of mechanical valves that use a previously described heterotopic aortic valve porcine model. A modified bileaflet mechanical valved conduit that bypassed the native, ligated descending thoracic aorta was implanted into 30 swine. Postoperatively, the animals were randomly assigned to groups receiving no anticoagulation (n = 10), enoxaparin at 2 mg/kg subcutaneously twice daily (n = 10) or rivaroxaban at 2 mg/kg orally twice daily (n = 10). The amount of valve thrombus was measured on post-implantation day 30 as the primary end point. Quantitative evaluation of radiolabelled platelet deposition on the valve prostheses was done and embolic and haemorrhagic events were measured as secondary end points. Animals with no anticoagulation had a thrombus mean of 759.9 mg compared with 716.8 mg with enoxaparin treatment and 209.6 mg with rivaroxaban treatment (P = 0.05 for enoxaparin vs rivaroxaban). Similarly, the mean number of platelets deposited on the valve prosthesis was lower in the rivaroxaban group (6.13 × 10(9)) than in the enoxaparin group (3.03 × 10(10)) (P = 0.03). In this study, rivaroxaban was more effective than enoxaparin for short-term thromboprophylaxis of mechanical valve prosthetics in the heterotopic aortic position. It reduced valve thrombus and platelet deposition on day 30 following implantation without increased adverse events. Future studies would provide additional support for clinical trials evaluating rivaroxaban as an alternative to warfarin for appropriately selected patients with prosthetic aortic valves.
Will Catheter Interventions Replace Surgery for Valve Abnormalities?
O’Byrne, Michael L; Gillespie, Matthew J
2015-01-01
Purpose of Review Catheter-based valve technologies have evolved rapidly over the last decade. Transcatheter aortic valve replacement (TAVR) has become a routine procedure in high-risk adult patients with calcific aortic stenosis. In patients with congenital heart disease (CHD), transcatheter pulmonary valve replacement represents a transformative technology for right ventricular outflow tract dysfunction with the potential to expand to other indications. This review aims to summarize 1) the current state of the art for transcatheter valve replacement (TVR) in CHD, 2) the expanding indications for TVR, and 3) the technological obstacles to optimizing TVR. Recent findings Multiple case series have demonstrated that TVR with the Melody transcatheter pulmonary valve in properly selected patients is safe, effective, and durable in short-term follow-up. The Sapien transcatheter heart valve represents an alternative device with similar safety and efficacy in limited studies. Innovative use of current valves has demonstrated the flexibility of TVR, while highlighting the need for devices to address the broad range of post-operative anatomies either with a single device or strategies to prepare the outflow tract for subsequent device deployment. Summary The potential of TVR has not been fully realized, but holds promise in treatment of CHD. PMID:24281347
Bmp2 and Notch cooperate to pattern the embryonic endocardium.
Papoutsi, T; Luna-Zurita, L; Prados, B; Zaffran, S; de la Pompa, J L
2018-05-31
Signaling interactions between myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects. © 2018. Published by The Company of Biologists Ltd.
Ceramic valve development for heavy-duty low heat rejection diesel engines
NASA Technical Reports Server (NTRS)
Weber, K. E.; Micu, C. J.
1989-01-01
Monolithic ceramic valves can be successfully operated in a heavy-duty diesel engine, even under extreme low heat rejection operating conditions. This paper describes the development of a silicon nitride valve from the initial design stage to actual engine testing. Supplier involvement, finite element analysis, and preliminary proof of concept demonstration testing played a significant role in this project's success.
Visualization of Heart Sounds and Motion Using Multichannel Sensor
NASA Astrophysics Data System (ADS)
Nogata, Fumio; Yokota, Yasunari; Kawamura, Yoko
2010-06-01
As there are various difficulties associated with auscultation techniques, we have devised a technique for visualizing heart motion in order to assist in the understanding of heartbeat for both doctors and patients. Auscultatory sounds were first visualized using FFT and Wavelet analysis to visualize heart sounds. Next, to show global and simultaneous heart motions, a new technique for visualization was established. The visualization system consists of a 64-channel unit (63 acceleration sensors and one ECG sensor) and a signal/image analysis unit. The acceleration sensors were arranged in a square array (8×8) with a 20-mm pitch interval, which was adhered to the chest surface. The heart motion of one cycle was visualized at a sampling frequency of 3 kHz and quantization of 12 bits. The visualized results showed a typical waveform motion of the strong pressure shock due to closing tricuspid valve and mitral valve of the cardiac apex (first sound), and the closing aortic and pulmonic valve (second sound) in sequence. To overcome difficulties in auscultation, the system can be applied to the detection of heart disease and to the digital database management of the auscultation examination in medical areas.
NASA Technical Reports Server (NTRS)
Srinivasan, K. V.
1986-01-01
The design and development of a large diameter high pressure quick acting propulsion valve and valve actuator is described. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing systems. The valve opens in less than 300 milliseconds releasing a 46-centimeter- (18-in.-) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.
NASA Technical Reports Server (NTRS)
Srinivasan, K. V.
1986-01-01
This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.
Results of Contemporary Valve Surgery in Patients with Carcinoid Heart Disease.
Kuntze, Thomas; Owais, Tamer; Secknus, Maria-Anna; Kaemmerer, Daniel; Baum, Richard; Girdauskas, Evaldas
2016-05-01
Carcinoid tumor is a slow-growing type of neuroendocrine tumor, originating from enterochromaffin cells and secreting mainly serotonin. The diagnosis is based on clinical symptoms, hormone blood levels, radiological and nuclear imaging, and histological confirmation. However, most patients have metastases at the time of diagnosis because the clinical signs often remain unnoticed or are attributed to other abdominal conditions. In up to 50% of patients the endocardium is affected due to a hormonally active tumor profile. The study aim was to report the outcome of surgical treatment in patients with carcinoid heart disease, including the data of radiological and nuclear imaging, histological diagnosis, and follow up information. Between 2008 and 2014, a total of 39 consecutive patients (28 males, 11 females; mean age 66 years; range: 28-84 years) with carcinoid heart syndrome were operated on at the authors' institution. Valvular heart disease was diagnosed with two-dimensional echocardiography. The study population included 26 patients (67%) with severe metastatic disease, who underwent radiotherapy preoperatively, and 13 patients (33%) who were metastasis-free and did not receive preoperative systemic therapy. Follow up was available for all hospital survivors, all of whom underwent serial echocardiographic follow up postoperatively. Adverse cardiac events were defined as cardiac-related death, a need for valvular reintervention, the occurrence of valve prosthesis-related complications, or echocardiographic evidence of new, high-degree valvular dysfunction during follow up. The majority of patients (n = 34; 87%) underwent isolated tricuspid valve replacement, while simultaneous pulmonary valve replacement was performed in five patients (13%). Postoperative complications included reoperation for bleeding in five patients (13%) and new heart block requiring pacemaker implantation in 10 (25%). The in-hospital mortality was 5% (n = 2). The overall survival was 43% at six years postoperatively. At the latest follow up, 12 of the 17 survivors were in NYHA class I, and five in NYHA class II. The adverse cardiac event rate was 71%. Echocardiographically, 46% of patients (6/13) showed at least stationary or mild improvement in the right ventricular ejection fraction at follow up, with no evidence of paravalvular leak, infective endocarditis, or progressive other native valvular carcinoid affection. Postoperatively, the right atrial dimensions were preserved as normal in 23 patients (59%), mildly dilated in six (15%), moderately dilated in three (8%), and severely dilated in seven (18%). Valve-in-valve transcatheter aortic valve implantation was performed in two patients (12%) due to structural degeneration of the valve bioprosthesis and native valve disease progression. Despite advanced systemic disease, the surgical treatment of patients with carcinoid heart syndrome is associated with an acceptable perioperative risk and satisfactory mid-term survival. Those patients who survived valve surgery benefited from a significant improvement in their functional capacity. Percutaneous procedures may represent a useful tool to reduce the risk of late valvular reinterventions.
Monovalve with integrated fuel injector and port control valve, and engine using same
Milam, David M.
2002-01-01
Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.
Clinical outcomes of tricuspid valve repair accompanying left-sided heart disease
Azarnoush, Kasra; Nadeemy, Ahmad S; Pereira, Bruno; Leesar, Massoud A; Lambert, Céline; Azhari, Alaa; Eljezi, Vedat; Dauphin, Nicolas; Geoffroy, Etienne; Camilleri, Lionel
2017-01-01
AIM To determine whether the need for additional tricuspid valve repair is an independent risk factor when surgery is required for a left-sided heart disease. METHODS One hundred and eighty patients (68 ± 12 years, 79 males) underwent tricuspid annuoplasty. Cox proportional-hazards regression model for multivariate analysis was performed for variables found significant in univariate analyses. RESULTS Tricuspid regurgitation etiology was functional in 154 cases (86%), organic in 16 cases (9%), and mixed in 10 cases (6%), respectively. Postoperative mortality at 30 days was 11.7%. Mean follow-up was 51.7 mo with survival at 5 years of 73.5%. Risk factors for mortality were acute endocarditis [hazard ratio (HR) = 9.22 (95%CI: 2.87-29.62), P < 0.001], ischemic heart disease requiring myocardial revascularization [HR = 2.79 (1.26-6.20), P = 0.012], and aortic valve stenosis [HR = 2.6 (1.15-5.85), P = 0.021]. Significant predictive factors from univariate analyses were double-valve replacement combined with tricuspid annuloplasty [HR = 2.21 (1.11-4.39), P = 0.003] and preoperatively impaired ejection fraction [HR = 1.98 (1.04-3.92), P = 0.044]. However, successful mitral valve repair showed a protective effect [HR = 0.32 (0.10-0.98), P = 0.046]. Additionally, in instances where tricuspid regurgitation required the need for concomitant tricuspid valve repair, mortality predictor scores such as Euroscore 2 could be shortened to a simple Euroscore-tricuspid comprised of only 7 inputs. The explanation may lie in the fact that significant tricuspid regurgitation following left-sided heart disease represents an independent risk factor encompassing several other factors such as pulmonary arterial hypertension and dyspnea. CONCLUSION Tricuspid annuloplasty should be used more often as a concomitant procedure in the presence of relevant tricuspid regurgitation, although it usually reveals an overly delayed correction of a left-sided heart disease. PMID:29104738
Presystolic tricuspid valve closure: an alternative mechanism of diastolic sound genesis.
Lee, C H; Xiao, H B; Gibson, D G
1990-01-01
We describe a previously unrecognised cause of an added diastolic heart sound. The patient had first-degree heart block and diastolic tricuspid regurgitation, leading to presystolic closure of the tricuspid valve and the production of a loud diastolic sound. Unlike previously described mechanisms for diastolic sounds, this sound was generated by the sudden acceleration of retrograde AV flow in late diastole.
Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
He, Z; Xi, B; Zhu, K; Hwang, N H
2001-09-01
The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.
Pathology of myxomatous mitral valve disease in the dog.
Fox, Philip R
2012-03-01
Mitral valve competence requires complex interplay between structures that comprise the mitral apparatus - the mitral annulus, mitral valve leaflets, chordae tendineae, papillary muscles, and left atrial and left ventricular myocardium. Myxomatous mitral valve degeneration is prevalent in the canine, and most adult dogs develop some degree of mitral valve disease as they age, highlighting the apparent vulnerability of canine heart valves to injury. Myxomatous valvular remodeling is associated with characteristic histopathologic features. Changes include expansion of extracellular matrix with glycosaminoglycans and proteoglycans; valvular interstitial cell alteration; and attenuation or loss of the collagen-laden fibrosa layer. These lead to malformation of the mitral apparatus, biomechanical dysfunction, and mitral incompetence. Mitral regurgitation is the most common manifestation of myxomatous valve disease and in advanced stages, associated volume overload promotes progressive valvular regurgitation, left atrial and left ventricular remodeling, atrial tears, chordal rupture, and congestive heart failure. Future studies are necessary to identify clinical-pathologic correlates that track disease severity and progression, detect valve dysfunction, and facilitate risk stratification. It remains unresolved whether, or to what extent, the pathobiology of myxomatous mitral valve degeneration is the same between breeds of dogs, between canines and humans, and how these features are related to aging and genetics. Copyright © 2012 Elsevier B.V. All rights reserved.
Yoon, Hakyoung; Kim, Jaehwan; Nahm, Sang-Soep; Eom, Kidong
2017-07-11
Congenital pulmonary valve stenosis and patent ductus arteriosus are common congenital heart defects in dogs. However, concurrence of atypical pulmonary valve stenosis and patent ductus arteriosus is uncommon. This report describes the anatomic, histopathologic, and echocardiographic features in a dog with concomitant pulmonary valve stenosis and patent ductus arteriosus with atypical pulmonary valve dysplasia that included a fibrous band of tissue. A 1.5-year-old intact female Chihuahua dog weighing 3.3 kg presented with a continuous grade VI cardiac murmur, poor exercise tolerance, and an intermittent cough. Echocardiography indicated pulmonary valve stenosis, a thickened dysplastic valve without annular hypoplasia, and a type IIA patent ductus arteriosus. The pulmonary valve was thick line-shaped in systole and dome-shaped towards the right ventricular outflow tract in diastole. The dog suffered a fatal cardiac arrest during an attempted balloon pulmonary valvuloplasty. Necropsy revealed pulmonary valve dysplasia, commissural fusion, and incomplete opening and closing of the pulmonary valve because of a fibrous band of tissue causing adhesion between the right ventricular outflow tract and the dysplastic intermediate cusp of the valve. A fibrous band of tissue between the right ventricular outflow track and the pulmonary valve should be considered as a cause of pulmonary valve stenosis. Pulmonary valve stenosis and patent ductus arteriosus can have conflicting effects on diastolic and systolic dysfunction, respectively. Therefore, beta-blockers should always be used carefully, particularly in patients with a heart defect where there is concern about left ventricular systolic function.
Fault detection and diagnosis of diesel engine valve trains
NASA Astrophysics Data System (ADS)
Flett, Justin; Bone, Gary M.
2016-05-01
This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.
... may shut down or be damaged. View an animation of arrhythmia . Types of Arrhythmias Atrial Fibrillation = upper ... learn about: S tructure of the heart Watch an animation of heart valve anatomy The heart: four chambers, ...
... arrhythmias) Infections that affect the heart, such as endocarditis Death Prevention Some possible ways to prevent aortic ... between infected gums (gingivitis) and infected heart tissue (endocarditis). Inflammation of heart tissue caused by infection can ...
... and lungs. The provider may feel a thrill (vibration) over the heart, and hear a heart murmur ( ... many heart medicines that may be used to control this condition. You may need surgery to repair ...
Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)
1999-01-01
A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.
Marom, Gil; Chiu, Wei-Che; Crosby, Jessica R.; DeCook, Katrina J.; Prabhakar, Saurabh; Horner, Marc; Slepian, Marvin J.; Bluestein, Danny
2014-01-01
The SynCardia total artificial heart (TAH) is the only FDA approved device for replacing hearts in patients with congestive heart failure. It pumps blood via pneumatically driven diaphragms and controls the flow with mechanical valves. While it has been successfully implanted in more than 1,300 patients, its size precludes implantation in smaller patients. This study’s aim was to evaluate the viability of scaled-down TAHs by quantifying thrombogenic potentials from flow patterns. Simulations of systole were first conducted with stationary valves, followed by an advanced full-cardiac-cycle model with moving valves. All the models included deforming diaphragms and platelet suspension in the blood flow. Flow stress-accumulations were computed for the platelet trajectories and thrombogenic potentials were assessed. The simulations successfully captured complex flow patterns during various phases of the cardiac-cycle. Increased stress-accumulations, but within the safety margin of acceptable thrombogenicity, were found in smaller TAHs, indicating that they are clinically viable. PMID:25354999
75 FR 51659 - Airworthiness Directives; Pratt & Whitney Canada Corp. PW617F-E Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... showed that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had... that the Fuel Filter Bypass Valve poppet in the FOHE on that engine had worn through the housing seat... an ASB No. PW600-72-A66021 that introduced a new fuel Filter Bypass Valve Assembly with an improved...
75 FR 27489 - Airworthiness Directives; Pratt & Whitney Canada Corp. PW615F-A Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
.... Investigation showed that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that...-A engine Fuel Filter Bypass Valve is very similar to that of PW617F-E, but so far there have been no... Fuel Filter Bypass Valve poppet in the FOHE on that engine had worn through the housing seat, allowing...
Wyller, Vegard Bruun; Aaberge, Lars; Thaulow, Erik; Døhlen, Gaute
2011-07-01
Percutaneous catheter-based implantation of artificial heart valves is a new technique that may supplement surgery and which may be used more in the future. We here report our first experience with implantation of artificial pulmonary valves in children with congenital heart defects. Eligible patients were those with symptoms of heart failure combined with stenosis and/or insufficiency in an established artificial right ventricular outflow tract. The valve was inserted through a catheter from a vein in the groin or neck. Symptoms, echocardiography, invasive measurements and angiography were assessed for evaluation of treatment effect. Our treatment results are reported for the period April 2007-September 2009. Ten patients (seven men and three women, median age 17 years) were assessed. The procedure reduced pressure in the right ventricle (p = 0.008) and resolved the pulmonary insufficiency in all patients. The median time in hospital was two days. No patients had complications that were directly associated with the implantation procedure. One patient developed a pseudoaneurysm in the femoral artery, another had a short-lasting fever two days after the procedure and one patient experienced a stent fracture that required surgery 9 months after the implantation. After 6 months all patients had a reduced pressure gradient in the right ventricular outflow tract (p = 0.008), the pulmonary insufficiency had improved (p = 0.006) and they all reported improval of symptoms. These results persisted for at least 24 months for the four patients who were monitored until then. Percutaneous catheter-based implantation of artificial pulmonary valves improves hemodynamics in the right ventricle of selected patients with congenital heart defects. A randomized controlled study should be undertaken to provide a stronger evidence-base for usefulness of this procedure.
Hansen, T B; Zwisler, A D; Berg, S K; Sibilitz, K L; Thygesen, L C; Doherty, P; Søgaard, R
2015-01-01
Owing to a lack of evidence, patients undergoing heart valve surgery have been offered exercise-based cardiac rehabilitation (CR) since 2009 based on recommendations for patients with ischaemic heart disease in Denmark. The aim of this study was to investigate the impact of CR on the costs of healthcare use and sick leave among heart valve surgery patients over 12 months post surgery. We conducted a nationwide survey on the CR participation of all patients having undergone valve surgery between 1 January 2011 and 30 June 2011 (n=667). Among the responders (n=500, 75%), the resource use categories of primary and secondary healthcare, prescription medication and sick leave were analysed for CR participants (n=277) and non-participants (n=223) over 12 months. A difference-in-difference analysis was undertaken. All estimates were presented as the means per patient (95% CI) based on non-parametric bootstrapping of SEs. Total costs during the 12 months following surgery were €16 065 per patient (95% CI 13 730 to 18 399) in the CR group and €15 182 (12 695 to 17 670) in the non-CR group. CR led to 5.6 (2.9 to 8.3, p<0.01) more outpatient visits per patient. No statistically significant differences in other cost categories or total costs €1330 (-4427 to 7086, p=0.65) were found between the groups. CR, as provided in Denmark, can be considered cost neutral. CR is associated with more outpatient visits, but CR participation potentially offsets more expensive outpatient visits. Further studies should investigate the benefits of CR to heart valve surgery patients as part of a formal cost-utility analysis.
Kano, Hiroya; Takahashi, Hiroaki; Inoue, Takeshi; Tanaka, Hiroshi; Okita, Yutaka
2017-04-01
Intestinal fatty acid-binding protein (I-FABP) is increasingly employed as a highly specific marker of intestinal necrosis. However, the value of this marker associated with cardiovascular surgery with hypothermic circulatory arrest is unclear. The aim of this study was to measure serum I-FABP levels and provide the transition of I-FABP levels with hypothermic circulatory arrest to help in the management of intestinal perfusion. From August 2011 to September 2013, 33 consecutive patients who had aortic arch surgery with hypothermic circulatory arrest or heart valve surgery performed were enrolled in the study. Twenty patients had aortic surgery with hypothermic (23-29°C) circulatory arrest and 13 patients had heart valve surgery with cardiopulmonary bypass (33°C). I-FABP levels increased, both in patients undergoing aortic surgery with hypothermic circulatory arrest and heart valve surgery with cardiopulmonary bypass, reaching peak levels shortly after the administration of protamine. I-FABP levels in patients with aortic surgery were significantly higher with circulatory arrest. They reached peak levels immediately after recirculation and there was a significant drop at the end of surgery (p<0.001). I-FABP levels in heart valve surgery were gradually increased, with the highest at the administration of protamine; they gradually decreased. Peak I-FABP levels were significantly higher in patients undergoing aortic surgery with hypothermic circulatory arrest than in patients with heart valve surgery. However, no postoperative reperfusion injury occurred in the intestinal tract due to the use of hypothermic organ protection. Plasma I-FABP monitoring could be a valuable method for finding an intestinal ischemia in patients with cardiovascular surgery.
Guidance for removal of fetal bovine serum from cryopreserved heart valve processing.
Brockbank, Kelvin G M; Heacox, Albert E; Schenke-Layland, Katja
2011-01-01
Bovine serum is commonly used in cryopreservation of allogeneic heart valves; however, bovine serum carries a risk of product adulteration by contamination with bovine-derived infectious agents. In this study, we compared fresh and cryopreserved porcine valves that were processed by 1 of 4 cryopreservation formulations, 3 of which were serum-free and 1 that utilized bovine serum with 1.4 M dimethylsulfoxide. In the first serum-free group, bovine serum was simply removed from the cryopreservation formulation. The second serum-free formulation had a higher cryoprotectant concentration, i.e. 2 M dimethylsulfoxide, in combination with a serum-free solution. A colloid, dextran 40, was added to the third serum-free group with 2 M dimethylsulfoxide due to theoretical concerns that removal of serum might increase the incidence of tissue cracking. Upon rewarming, the valves were inspected and subjected to a battery of tests. Gross pathology revealed conduit cracking in 1 of 98 frozen heart valves. Viability data for the cryopreserved groups versus the fresh group demonstrated a loss of viability in half of the comparisons (p < 0.05). No significant differences were observed between any of the cryopreserved groups, with or without bovine serum. Neither routine histology, autofluorescence-based multiphoton imaging nor semiquantitative second-harmonic generation microscopy of extracellular matrix components revealed any statistically significant differences. Biomechanics analyses also revealed no significant differences. Our results demonstrate that bovine serum can be safely removed from heart valve processing and that a colloid to prevent cracking was not required. This study provides guidance for the assessment of changes in cryopreservation procedures for tissues. Copyright © 2010 S. Karger AG, Basel.
... may be able to replace it with an artificial (man-made) valve. Cardiac size reduction . During this procedure, your doctor removes a piece of the heart muscle from an enlarged heart. This makes your ...
High prevalence of rheumatic heart disease detected by echocardiography in school children.
Bhaya, Maneesha; Panwar, Sadik; Beniwal, Rajesh; Panwar, Raja Babu
2010-04-01
It is fairly easy to detect advanced valve lesions of established rheumatic heart disease by echocardiography in the clinically identified cases of rheumatic heart disease. However, to diagnose a subclinical case of rheumatic heart disease, no uniform set of echocardiographic criteria exist. Moderate thickening of valve leaflets is considered an indicator of established rheumatic heart disease. World Health Organization criteria for diagnosing probable rheumatic heart disease are more sensitive and are based on the detection of significant regurgitation of mitral and/or aortic valves by color Doppler. We attempted diagnosing RHD in school children in Bikaner city by cardiac ultrasound. The stratified cluster sampling technique was employed to identify 31 random clusters in the coeducational schools of Bikaner city. We selected 1059 school children aged 6-15 years from these schools. An experienced operator did careful cardiac auscultation and echocardiographic study. A second expert confirmed the echocardiographic findings. The prevalence of lesions suggestive of rheumatic heart disease by echocardiography was 51 per 1,000 (denominator = 1059; 95% CI: 38-64 per 1,000). We were able to clinically diagnose RHD in one child. None of these children or their parents having echocardiographic evidence of RHD could provide a positive history of acute rheumatic fever. By echocardiographic screening, we found a high prevalence of rheumatic heart disease in the surveyed population. Clinical auscultation had much lower diagnostic efficacy.
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1971-01-01
The steady state thermodynamic cycle balance of the single preburner staged combustion engine, coupled with dynamic transient analyses, dictated in detail the location and requirements for each valve defined in this volume. Valve configuration selections were influenced by overall engine and vehicle system weight and failure mode determinations. Modulating valve actuators are external to the valve and are line replaceable. Development and satisfactory demonstration of a high pressure dynamic shaft seal has made this configuration practical. Pneumatic motor driven actuators that use engine pumped hydrogen gas as the working fluid are used. The helium control system is proposed as a module containing a cluster of solenoid actuated valves. The separable couplings and flanges are designed to assure minimum leakage with minimum coupling weight. The deflection of the seal surface in the flange is defined by finite element analysis that has been confirmed with test data. The seal design proposed has passed preliminary pressure cycling and thermal cycling tests.
Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves
Bharadwaj, Koonal N.; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C.; Butcher, Jonathan T.
2012-01-01
Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16 to 30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm2 at HH16 to 671.24 dynes/cm2 at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm2 at HH16 to 136.50 dynes/cm2 at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research. PMID:22535311
Flow in prosthetic heart valves: state-of-the-art and future directions.
Yoganathan, Ajit P; Chandran, K B; Sotiropoulos, Fotis
2005-12-01
Since the first successful implantation of a prosthetic heart valve four decades ago, over 50 different designs have been developed including both mechanical and bioprosthetic valves. Today, the most widely implanted design is the mechanical bileaflet, with over 170,000 implants worldwide each year. Several different mechanical valves are currently available and many of them have good bulk forward flow hemodynamics, with lower transvalvular pressure drops, larger effective orifice areas, and fewer regions of forward flow stasis than their earlier-generation counterparts such as the ball-and-cage and tilting-disc valves. However, mechanical valve implants suffer from complications resulting from thrombus deposition and patients implanted with these valves need to be under long-term anti-coagulant therapy. In general, blood thinners are not needed with bioprosthetic implants, but tissue valves suffer from structural failure with, an average life-time of 10-12 years, before replacement is needed. Flow-induced stresses on the formed elements in blood have been implicated in thrombus initiation within the mechanical valve prostheses. Regions of stress concentration on the leaflets during the complex motion of the leaflets have been implicated with structural failure of the leaflets with bioprosthetic valves. In vivo and in vitro experimental studies have yielded valuable information on the relationship between hemodynamic stresses and the problems associated with the implants. More recently, Computational Fluid Dynamics (CFD) has emerged as a promising tool, which, alongside experimentation, can yield insights of unprecedented detail into the hemodynamics of prosthetic heart valves. For CFD to realize its full potential, however, it must rely on numerical techniques that can handle the enormous geometrical complexities of prosthetic devices with spatial and temporal resolution sufficiently high to accurately capture all hemodynamically relevant scales of motion. Such algorithms do not exist today and their development should be a major research priority. For CFD to further gain the confidence of valve designers and medical practitioners it must also undergo comprehensive validation with experimental data. Such validation requires the use of high-resolution flow measuring tools and techniques and the integration of experimental studies with CFD modeling.
Kumar, Gideon Praveen; Cui, Fangsen; Phang, Hui Qun; Su, Boyang; Leo, Hwa Liang; Hon, Jimmy Kim Fatt
2014-07-01
Percutaneous heart valve replacement is gaining popularity, as more positive reports of satisfactory early clinical experiences are published. However this technique is mostly used for the replacement of pulmonary and aortic valves and less often for the repair and replacement of atrioventricular valves mainly due to their anatomical complexity. While the challenges posed by the complexity of the mitral annulus anatomy cannot be mitigated, it is possible to design mitral stents that could offer good anchorage and support to the valve prosthesis. This paper describes four new Nitinol based mitral valve designs with specific features intended to address migration and paravalvular leaks associated with mitral valve designs. The paper also describes maximum possible crimpability assessment of these mitral stent designs using a crimpability index formulation based on the various stent design parameters. The actual crimpability of the designs was further evaluated using finite element analysis (FEA). Furthermore, fatigue modeling and analysis was also done on these designs. One of the models was then coated with polytetrafluoroethylene (PTFE) with leaflets sutured and put to: (i) leaflet functional tests to check for proper coaptation of the leaflet and regurgitation leakages on a phantom model and (ii) anchorage test where the stented valve was deployed in an explanted pig heart. Simulations results showed that all the stents designs could be crimped to 18F without mechanical failure. Leaflet functional test results showed that the valve leaflets in the fabricated stented valve coapted properly and the regurgitation leakage being within acceptable limits. Deployment of the stented valve in the explanted heart showed that it anchors well in the mitral annulus. Based on these promising results of the one design tested, the other stent models proposed here were also considered to be promising for percutaneous replacement of mitral valves for the treatment of mitral regurgitation, by virtue of their key features as well as effective crimping. These models will be fabricated and put to all the aforementioned tests before being taken for animal trials. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Exhaust gas bypass valve control for thermoelectric generator
Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan
2012-09-04
A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.
... Heart Disease Diseases of the arteries, valves, and aorta, as well as cardiac rhythm disturbances Aortic Valve ... Transposition of the Great Arteries Coarctation of the Aorta Truncus Arteriosus Single Ventricle Defects Patent Ductus Arteriosus ...
Cardiovascular manifestations of Alkaptonuria.
Pettit, Stephen J; Fisher, Michael; Gallagher, James A; Ranganath, Lakshminarayan R
2011-12-01
The cardiovascular manifestations of alkaptonuria relate to deposition of ochronotic pigment within heart valves, endocardium, aortic intima and coronary arteries. We assessed 16 individuals with alkaptonuria for cardiovascular disease, including full electrocardiographic and echocardiographic assessment. The self reported prevalence of valvular heart disease and coronary artery disease was low. There was a significant burden of previously undiagnosed aortic valve disease, reaching a prevalence of over 40% by the fifth decade of life. The aortic valve disease was found to increase in both prevalence and severity with advancing age. In contrast to previous reports, we did not find a significant burden of mitral valve disease or coronary artery disease. These findings are important for the clinical follow-up of patients with alkaptonuria and suggest a role for echocardiographic surveillance of patients above 40 years old.
Internal combustion engine with rotary valve assembly having variable intake valve timing
Hansen, Craig N.; Cross, Paul C.
1995-01-01
An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.
Schaefer, Andreas; Treede, Hendrik; Seiffert, Moritz; Deuschl, Florian; Schofer, Niklas; Schneeberger, Yvonne; Blankenberg, Stefan; Reichenspurner, Hermann; Schaefer, Ulrich; Conradi, Lenard
2016-01-15
Paravalvular leakage (PVL) is a known complication of transcatheter aortic valve implantation (TAVI) and is associated with poor outcome. Besides balloon-post-dilatation, valve-in-valve (ViV) procedures can be taken into consideration to control this complication. Herein we present initial experience with use of the latest generation balloon-expandable Edwards Sapien 3® (S3) transcatheter heart valve (THV) for treatment of failing THVs. Between 01/2014 and 12/2014 three patients (two male, age: 71-80 y, log EUROScore I: 11.89 - 32.63) with failing THVs were refered to our institution for further treatment. THV approach with secondary implantation of an S3 was chosen after mutual agreement of the local interdisciplinary heart team at an interval of 533-1119 days from the index procedure. The performed procedures consisted of: S3 in Sapien XT, JenaValve and CoreValve. Successful transfemoral implantation with significant reduction of PVL was achieved in all cases. No intraprocedural complications occurred regarding placement of the S3 with a postprocedural effective orifice area (EOA) of 1.5-2.5 cm(2) and pressure gradients of max/mean 14/6-36/16 mmHg. 30-day mortality was 0%. At the latest follow-up of 90-530 days, all patients are alive and well with satisfactory THV function. Regarding VARC-2 criteria one major bleeding and one TIA was reported. In the instance of moderate or severe aortic regurgitation after TAVI, S3 ViV deployment is an excellent option to reduce residual regurgitation to none or mild. For further assertions concerning functional outcomes long-term results have to be awaited.
A New, Highly Improved Two-Cycle Engine
NASA Technical Reports Server (NTRS)
Wiesen, Bernard
2008-01-01
The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.
Sandoval, Elena; Singh, Steve K; Carillo, Julius A; Baldwin, Andrew C W; Ono, Masahiro; Anand, Jatin; Frazier, O H; Mallidi, Hari R
2017-10-01
Mitral regurgitation (MR) is common in patients with end-stage heart failure. We assessed the effect of performing concomitant mitral valve repair during continuous-flow left ventricular assist device (CF-LVAD) implantation in patients with severe preoperative MR. We performed a single-centre, retrospective review of all patients who underwent CF-LVAD implantation between December 1999 and December 2013 (n = 469). Patients with severe preoperative MR (n = 78) were identified and then stratified according to whether they underwent concomitant valve repair. Univariate and survival analyses were performed, and multivariable regression was used to determine predictors of survival. Of the 78 patients with severe MR, 21 underwent valve repair at the time of CF-LVAD implantation (repair group) and 57 did not (non-repair group). A comparison of the 2 groups showed significant differences between groups: INTERMACS I 16.985 vs 9.52%, (P = 0.039), cardiopulmonary bypass time 82.09 vs 109.4 min (P = 0.0042) and the use of HeartMate II 63.16 vs 100% (P = 0.001). Survival analysis suggested trends towards improved survival and a lower incidence of heart failure-related readmissions in the repair group. Multivariable regression analysis showed no significant independent predictors of survival (mitral valve repair: odds ratio 0.4, 95% confidence interval 0.8-1.5; P = 0.2). Despite the lack of statistical significance, trends towards improved survival and a lower incidence of heart failure events suggest that mitral valve repair may be beneficial in patients undergoing CF-LVAD implantation. Given the known relationship between severe MR and mortality, further study is encouraged to confirm the value of mitral valve repair in these patients. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.
Lei, Ying; Ferdous, Zannatul
2016-05-01
With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.
Asada, Dai; Ikeda, Kazuyuki; Yamagishi, Masaaki
2017-04-01
There are a few reports of successful replacement of the left-sided systemic tricuspid valve with a mechanical valve in small infants with congenitally corrected transposition of the great arteries having Ebstein's anomaly. Tricuspid valve replacement is the preferred option when pulmonary artery banding, performed as a prelude to performing the double-switch operation, is not feasible because of severe heart failure caused by tricuspid regurgitation.
Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E
2014-04-01
Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.
Longitudinal Hemodynamics of Transcatheter and Surgical Aortic Valves in the PARTNER Trial.
Douglas, Pamela S; Leon, Martin B; Mack, Michael J; Svensson, Lars G; Webb, John G; Hahn, Rebecca T; Pibarot, Philippe; Weissman, Neil J; Miller, D Craig; Kapadia, Samir; Herrmann, Howard C; Kodali, Susheel K; Makkar, Raj R; Thourani, Vinod H; Lerakis, Stamatios; Lowry, Ashley M; Rajeswaran, Jeevanantham; Finn, Matthew T; Alu, Maria C; Smith, Craig R; Blackstone, Eugene H
2017-11-01
Use of transcatheter aortic valve replacement (TAVR) for severe aortic stenosis is growing rapidly. However, to our knowledge, the durability of these prostheses is incompletely defined. To determine the midterm hemodynamic performance of balloon-expandable transcatheter heart valves. In this study, we analyzed core laboratory-generated data from echocardiograms of all patients enrolled in the Placement of Aortic Transcatheter Valves (PARTNER) 1 Trial with successful TAVR or surgical AVR (SAVR) obtained preimplantation and at 7 days, 1 and 6 months, and 1, 2, 3, 4, and 5 years postimplantation. Patients from continued access observational studies were included for comparison. Successful implantation after randomization to TAVR vs SAVR (PARTNER 1A; TAVR, n = 321; SAVR, n = 313), TAVR vs medical treatment (PARTNER 1B; TAVR, n = 165), and continued access (TAVR, n = 1996). Five-year echocardiogram data were available for 424 patients after TAVR and 49 after SAVR. Death or reintervention for aortic valve structural indications, measured using aortic valve mean gradient, effective orifice area, Doppler velocity index, and evidence of hemodynamic deterioration by reintervention, adverse hemodynamics, or transvalvular regurgitation. Of 2795 included patients, the mean (SD) age was 84.5 (7.1) years, and 1313 (47.0%) were female. Population hemodynamic trends derived from nonlinear mixed-effects models showed small early favorable changes in the first few months post-TAVR, with a decrease of -2.9 mm Hg in aortic valve mean gradient, an increase of 0.028 in Doppler velocity index, and an increase of 0.09 cm2 in effective orifice area. There was relative stability at a median follow-up of 3.1 (maximum, 5) years. Moderate/severe transvalvular regurgitation was noted in 89 patients (3.7%) after TAVR and increased over time. Patients with SAVR showed no significant changes. In TAVR, death/reintervention was associated with lower ejection fraction, stroke volume index, and aortic valve mean gradient up to 3 years, with no association with Doppler velocity index or valve area. Reintervention occurred in 20 patients (0.8%) after TAVR and in 1 (0.3%) after SAVR and became less frequent over time. Reintervention was caused by structural deterioration of transcatheter heart valves in only 5 patients. Severely abnormal hemodynamics on echocardiograms were also infrequent and not associated with excess death or reintervention for either TAVR or SAVR. This large, core laboratory-based study of transcatheter heart valves revealed excellent durability of the transcatheter heart valves and SAVR. Abnormal findings in individual patients, suggestive of valve thrombosis or structural deterioration, were rare in this protocol-driven database and require further investigation. clinicaltrials.gov Identifier: NCT00530894.
Engine including hydraulically actuated valvetrain and method of valve overlap control
Cowgill, Joel [White Lake, MI
2012-05-08
An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.
NASA Technical Reports Server (NTRS)
Wiesen, Bernard (Inventor)
2008-01-01
This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.
Computer Simulations of Valveless Pumping using the Immersed Boundary Method
NASA Astrophysics Data System (ADS)
Jung, Eunok; Peskin, Charles
2000-03-01
Pumping blood in one direction is the main function of the heart, and the heart is equipped with valves that ensure unidirectional flow. Is it possible, though, to pump blood without valves? This report is intended to show by numerical simulation the possibility of a net flow which is generated by a valveless mechanism in a circulatory system. Simulations of valveless pumping are motivated by biomedical applications: cardiopulmonary resuscitation (CPR); and the human foetus before the development of the heart valves. The numerical method used in this work is immersed boundary method, which is applicable to problems involving an elastic structure interacting with a viscous incompressible fluid. This method has already been applied to blood flow in the heart, platelet aggregation during blood clotting, aquatic animal locomotion, and flow in collapsible tubes. The direction of flow inside a loop of tubing which consists of (almost) rigid and flexible parts is investigated when the boundary of one end of the flexible segment is forced periodically in time. Despite the absence of valves, net flow around the loop may appear in these simulations. Furthermore, we present the new, unexpected results that the direction of this flow is determined not only by the position of the periodic compression, but also by the frequency and amplitude of the driving force.
Successful surgical treatment of mitral valve stenosis in a dog.
Borenstein, N; Daniel, P; Behr, L; Pouchelon, J L; Carbognani, D; Pierrel, A; Macabet, V; Lacheze, A; Jamin, G; Carlos, C; Chetboul, V; Laborde, F
2004-01-01
To report the successful surgical management (open mitral commissurotomy, OMC) of mitral stenosis (MS), incorporating heart-beating cardiopulmonary bypass (CPB), in a 1-year-old dog. Clinical case. One-year-old Cairn Terrier with MS. Diagnosis of MS was confirmed by means of 2-dimensional, continuous-wave and color-flow Doppler echocardiography. Surgery was performed through a left intercostal thoracotomy. CPB was initiated and the heart was kept beating. The fused commissures of the mitral valve were incised to free the cusps of the valve. Left intercostal thoracotomy allowed easy observation of the mitral orifice during heart-beating OMC. Persistent bleeding from the atriotomy site required a second surgical procedure after which the dog had an uneventful recovery. Echocardiography at 2 weeks and 1 year postoperatively indicated substantial improvement in left ventricular filling (pressure half-time=187 ms before surgery, 105 ms [2 weeks] and 110 ms [1 year] after surgery). Enlargement of the left atrium resolved; however, moderate mitral valve regurgitation was still present. MS can be successfully treated by OMC, facilitated by use of CPB. Substantial improvement in cardiac function was evident by ultrasound and Doppler examination postoperatively. OMC under heart-beating CPB should be considered for the treatment of MS in the dog.
Liu, Fei; Xu, Dong; Zhang, Kefeng; Zhang, Jian
2016-01-01
This study aims to explore the effects of tranexamic acid on the coagulation indexes of patients undergoing heart valve replacement surgery under the condition of cardiopulmonary bypass (CPB). One hundred patients who conformed to the inclusive criteria were selected and divided into a tranexamic acid group and a non-tranexamic acid group. They all underwent heart valve replacement surgery under CPB. Patients in the tranexamic acid group were intravenously injected with 1 g of tranexamic acid (100 mL) at the time point after anesthesia induction and before skin incision and at the time point after the neutralization of heparin. Patients in the non-tranexamic acid group were given 100 mL of normal saline at corresponding time points, respectively. Then the coagulation indexes of the two groups were analyzed. The activated blood clotting time (ACT) of the two groups was within normal scope before CPB, while four coagulation indexes including prothrombin time (PT), activated partial thromboplastin time (APTT), international normalized ratio (INR), and fibrinogen (FIB) had significant increases after surgery; the PT and INR of the tranexamic acid group had a remarkable decline after surgery. All the findings suggest that the application of tranexamic acid in heart valve replacement surgery under CPB can effectively reduce intraoperative and postoperative blood loss. PMID:27694613
Combined PCI and minimally invasive heart valve surgery for high-risk patients.
Umakanthan, Ramanan; Leacche, Marzia; Petracek, Michael R; Zhao, David X; Byrne, John G
2009-12-01
Combined coronary artery valvular heart disease is a major cause of morbidity and mortality in the adult patient population. The standard treatment for such disease has been open heart surgery in which coronary artery bypass grafting (CABG) is performed concurrently with valve surgery using a median sternotomy and cardiopulmonary bypass. With the increasing complexity of patients referred to surgery, some patients may prove to be poor surgical candidates for combined valve and CABG surgery. In certain selected patients who fall into this category, valve surgery and percutaneous coronary intervention (PCI) have been considered a feasible alternative. Conventionally, valve surgery is performed in the cardiac surgical operating room, whereas PCI is carried out in the cardiac catheterization laboratory. Separation of these two procedural suites has presented a logistic limitation because it impedes the concomitant performance of both procedures in one setting. Hence, PCI and valve surgery usually have been performed as a "two-stage" procedure in two different operative suites, with the procedures being separated by hours, days, or weeks. Technologic advancements have made possible the construction of a "hybrid" procedural suite that combines the facilities of a cardiac surgical operating room with those of a cardiac catheterization laboratory. This design has enabled the concept of "one-stage" or "one-stop" PCI and valve surgery, allowing both procedures to be performed in a hybrid suite in one setting, separated by minutes. The advantages of such a method could prove to be multifold by enabling a less invasive surgical approach and improving logistics, patient satisfaction, and outcomes in selected patients.
Di Mauro, Michele; Dato, Guglielmo Mario Actis; Barili, Fabio; Gelsomino, Sandro; Santè, Pasquale; Corte, Alessandro Della; Carrozza, Antonio; Ratta, Ester Della; Cugola, Diego; Galletti, Lorenzo; Devotini, Roger; Casabona, Riccardo; Santini, Francesco; Salsano, Antonio; Scrofani, Roberto; Antona, Carlo; Botta, Luca; Russo, Claudio; Mancuso, Samuel; Rinaldi, Mauro; De Vincentiis, Carlo; Biondi, Andrea; Beghi, Cesare; Cappabianca, Giangiuseppe; Tarzia, Vincenzo; Gerosa, Gino; De Bonis, Michele; Pozzoli, Alberto; Nicolini, Francesco; Benassi, Filippo; Rosato, Francesco; Grasso, Elena; Livi, Ugolino; Sponga, Sandro; Pacini, Davide; Di Bartolomeo, Roberto; De Martino, Andrea; Bortolotti, Uberto; Onorati, Francesco; Faggian, Giuseppe; Lorusso, Roberto; Vizzardi, Enrico; Di Giammarco, Gabriele; Marinelli, Daniele; Villa, Emmanuel; Troise, Giovanni; Picichè, Marco; Musumeci, Francesco; Paparella, Domenico; Margari, Vito; Tritto, Francesco; Damiani, Girolamo; Scrascia, Giuseppe; Zaccaria, Salvatore; Renzulli, Attilio; Serraino, Giuseppe; Mariscalco, Giovanni; Maselli, Daniele; Foschi, Massimiliano; Parolari, Alessandro; Nappi, Giannantonio
2017-08-15
The aim of this large retrospective study was to provide a logistic risk model along an additive score to predict early mortality after surgical treatment of patients with heart valve or prosthesis infective endocarditis (IE). From 2000 to 2015, 2715 patients with native valve endocarditis (NVE) or prosthesis valve endocarditis (PVE) were operated on in 26 Italian Cardiac Surgery Centers. The relationship between early mortality and covariates was evaluated with logistic mixed effect models. Fixed effects are parameters associated with the entire population or with certain repeatable levels of experimental factors, while random effects are associated with individual experimental units (centers). Early mortality was 11.0% (298/2715); At mixed effect logistic regression the following variables were found associated with early mortality: age class, female gender, LVEF, preoperative shock, COPD, creatinine value above 2mg/dl, presence of abscess, number of treated valve/prosthesis (with respect to one treated valve/prosthesis) and the isolation of Staphylococcus aureus, Fungus spp., Pseudomonas Aeruginosa and other micro-organisms, while Streptococcus spp., Enterococcus spp. and other Staphylococci did not affect early mortality, as well as no micro-organisms isolation. LVEF was found linearly associated with outcomes while non-linear association between mortality and age was tested and the best model was found with a categorization into four classes (AUC=0.851). The following study provides a logistic risk model to predict early mortality in patients with heart valve or prosthesis infective endocarditis undergoing surgical treatment, called "The EndoSCORE". Copyright © 2017. Published by Elsevier B.V.
Ozkan, Mehmet; Gündüz, Sabahattin; Yildiz, Mustafa; Duran, Nilüfer Eksi
2010-05-01
Prosthetic heart valve obstruction (PHVO) caused by pannus formation is an uncommon but serious complication. Although two-dimensional transesophageal echocardiography (2D-TEE) is the method of choice in the evaluation of PHVO, visualization of pannus is almost impossible with 2D-TEE. While demonstrating the precise aetiology of PHVO is essential for guiding the therapy, either thrombolysis for valve thrombosis or surgery for pannus formation, more sophisticated imaging techniques are needed in patients with suspected pannus formation. We present real-time 3D-TEE imaging in a patient with mechanical mitral PHVO, clearly demonstrating pannus overgrowth.
Xu, Tong-yi; Zhang, Zhi-gang; Li, Xin; Han, Lin; Xu, Zhi-yun
2014-01-01
Background Since 2000, transcatheter pulmonary valve replacement has steadily advanced. However, the available prosthetic valves are restricted to bioprosthesis which have defects like poor durability. Polymeric heart valve is thought as a promising alternative to bioprosthesis. In this study, we introduced a novel polymeric transcatheter pulmonary valve and evaluated its feasibility and safety in sheep by a hybrid approach. Methods We designed a novel polymeric trileaflet transcatheter pulmonary valve with a balloon-expandable stent, and the valve leaflets were made of 0.1-mm expanded polytetrafluoroethylene (ePTFE) coated with phosphorylcholine. We chose glutaraldehyde-treated bovine pericardium valves as control. Pulmonary valve stents were implanted in situ by a hybrid transapical approach in 10 healthy sheep (8 for polymeric valve and 2 for bovine pericardium valve), weighing an average of 22.5±2.0 kg. Angiography and cardiac catheter examination were performed after implantation to assess immediate valvular functionality. After 4-week follow-up, angiography, echocardiography, computed tomography, and cardiac catheter examination were used to assess early valvular function. One randomly selected sheep with polymeric valve was euthanized and the explanted valved stent was analyzed macroscopically and microscopically. Findings Implantation was successful in 9 sheep. Angiography at implantation showed all 9 prosthetic valves demonstrated orthotopic position and normal functionality. All 9 sheep survived at 4-week follow-up. Four-week follow-up revealed no evidence of valve stent dislocation or deformation and normal valvular and cardiac functionality. The cardiac catheter examination showed the peak-peak transvalvular pressure gradient of the polymeric valves was 11.9±5.0 mmHg, while that of two bovine pericardium valves were 11 and 17 mmHg. Gross morphology demonstrated good opening and closure characteristics. No thrombus or calcification was seen macroscopically. Conclusions This design of the novel ePTFE transcatheter pulmonary valve is safe and effective to deploy in sheep by hybrid approach, and the early valvular functionality is good. PMID:24926892
Terminal echocardiographic findings during death process in man and dogs.
Wang, F S; Lien, W P; Fong, T E
1991-01-01
Serial echocardiographic imaging was performed to assess terminal mechanical changes of cardiac chambers and valves, as well as sequential echocardiographic features of blood stasis, inside the heart after mechanical asystole in 7 hospitalized adults who died without apparent cardiac disease and in 7 experimental dogs sacrificed by a means of asphyxia. Marked reduction of wall motion became manifest shortly after the electrocardiograms had generated into a slow junctional rhythm with intraventricular conduction defect, an idioventricular rhythm, or an extreme sinus bradycardia. Total cessation of cardiac wall and valve motion followed; the aortic valve remained closed, with mitral and tricuspid valves semiopen after total cardiac asystole. Liquid whole blood inside the heart became echogenic shortly before mechanical asystole had approached, and homogenous echogenicity usually first appeared on the right side of the heart. As the death process progressed and total asystole persisted, the acoustic intensity of the intracavitary echoes increased, tending to form amorphous masses, with some showing rather well-defined borders. Such echocardiographic features were noted to indicate red thrombi in experimental dogs. The cardiac dimensions (left ventricle and aorta) decreased after total cardiac asystole.
Retrospective study of congenital heart defects in 151 dogs.
Tidholm, A
1997-03-01
The case records of 151 dogs diagnosed with congenital heart disease were reviewed retrospectively. The most common defect was aortic stenosis, accounting for 35 per cent of all cases, followed by pulmonic stenosis (20 per cent), ventricular septal defect (12 per cent), patent ductus arteriosus (11 per cent), mitral valve dysplasia (8 per cent), tricuspid valve dysplasia (7 per cent), endocardial fibroelastosis (1.9 per cent) and tetralogy of Fallot (0.6 per cent). Fifty-one breeds were represented, with golden retrievers, German shepherd dogs and boxers predominating. No overall sex predilection was obvious. Seventy-five per cent of the dogs were asymptomatic at presentation. The defects most often associated with presenting symptoms, such as dyspnoea, syncope, ascites, failure to grow and depression, were mitral valve dysplasia, atrial septal defect, tricuspid valve dysplasia and endocardial fibroelastosis. The latter presented with the most severe signs of heart failure. In some cases of aortic stenosis and pulmonic stenosis, where the defect could not be accurately visualised with two-dimensional echocardiography, Doppler echocardiographic examination was needed for definitive diagnosis.
Heart valve surgery - discharge
... weeks, or when you can easily climb 2 flights of stairs or walk a half-mile (800 ... vomiting or diarrhea You become pregnant or are planning to become pregnant Alternative Names Aortic valve replacement - ...
MedlinePlus Videos and Cool Tools
... 2009) Mitral Valve Prolapse Minimally Invasive Heart Surgery: Robot Assisted Mitral Valve Repair (Baptist Health South Florida, ... Center, Merriam, KS, 05/04/2012) Kidney Cancer Robot Assisted Partial Nephrectomy Using Fluorescence (Shawnee Mission Medical ...
Prosthetic Aortic Valves: Challenges and Solutions
Musumeci, Lucia; Jacques, Nicolas; Hego, Alexandre; Nchimi, Alain; Lancellotti, Patrizio; Oury, Cécile
2018-01-01
Aortic Valve Disease (AVD) is the most common Valvular Heart Disease (VHD), affecting millions of people worldwide. Severe AVD is treated in most cases with prosthetic aortic valve replacement, which involves the substitution of the native aortic valve with a prosthetic one. In this review we will discuss the different types of prosthetic aortic valves available for implantation and the challenges faced by patients, medical doctors, researchers and manufacturers, as well as the approaches that are taken to overcome them. PMID:29868612
View forward from bulkhead no. 38 of compartment B126 crew ...
View forward from bulkhead no. 38 of compartment B-126 crew space. Note stop valves on bulkhead at right side of photograph; these steam control valves allowed remote activation of the main, auxiliary and safety valves for the port engine in the event that the engine room valves were disabled or unreachable. (044) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
Shiran, Avinoam; Sagie, Alex
2009-02-03
Tricuspid regurgitation (TR) in patients with mitral valve (MV) disease is associated with poor outcome and predicts poor survival, heart failure, and reduced functional capacity. It is common if left untreated after MV replacement mainly in rheumatic patients, but it is also common in patients with ischemic mitral regurgitation. It is less common, however, in those with degenerative mitral regurgitation. It might appear many years after surgery and might not resolve after correcting the MV lesion. Late TR might be caused by prosthetic valve dysfunction, left heart disease, right ventricular (RV) dysfunction and dilation, persistent pulmonary hypertension, chronic atrial fibrillation, or by organic (mainly rheumatic) tricuspid valve disease. Most commonly, late TR is functional and isolated, secondary to tricuspid annular dilation. Outcome of isolated tricuspid valve surgery is poor, because RV dysfunction has already occurred at that point in many patients. MV surgery or balloon valvotomy should be performed before RV dysfunction, severe TR, or advanced heart failure has occurred. Tricuspid annuloplasty with a ring should be performed at the initial MV surgery, and the tricuspid annulus diameter (>or=3.5 cm) is the best criterion for performing the annuloplasty. In this article we will review the current data available for understanding the prognostic implications, mechanism, and management of TR in patients with MV disease.
The emerging role of exercise testing and stress echocardiography in valvular heart disease.
Picano, Eugenio; Pibarot, Philippe; Lancellotti, Patrizio; Monin, Jean Luc; Bonow, Robert O
2009-12-08
Exercise testing has an established role in the evaluation of patients with valvular heart disease and can aid clinical decision making. Because symptoms may develop slowly and indolently in chronic valve diseases and are often not recognized by patients and their physicians, the symptomatic, blood pressure, and electrocardiographic responses to exercise can help identify patients who would benefit from early valve repair or replacement. In addition, stress echocardiography has emerged as an important component of stress testing in patients with valvular heart disease, with relevant established and potential applications. Stress echocardiography has the advantages of its wide availability, low cost, and versatility for the assessment of disease severity. The versatile applications of stress echocardiography can be tailored to the individual patient with aortic or mitral valve disease, both before and after valve replacement or repair. Hence, exercise-induced changes in valve hemodynamics, ventricular function, and pulmonary artery pressure, together with exercise capacity and symptomatic responses to exercise, provide the clinician with diagnostic and prognostic information that can contribute to subsequent clinical decisions. Nevertheless, there is a lack of convincing evidence that the results of stress echocardiography lead to clinical decisions that result in better outcomes, and therefore large-scale prospective randomized studies focusing on patient outcomes are needed in the future.
40 CFR 1054.230 - How do I select emission families?
Code of Federal Regulations, 2010 CFR
2010-07-01
...). (3) Valve configuration (for example, side-valve vs. overhead valve). (4) Method of air aspiration... configuration) and approximate total displacement. (7) Engine class, as defined in § 1054.801. (8) Method of control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of...
Engine control system having fuel-based adjustment
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2011-03-15
A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.
Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597
Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.
Flex Fuel Optimized SI and HCCI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guoming; Schock, Harold; Yang, Xiaojian
The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less
Lagrangian coherent structures in the left ventricle in the presence of aortic valve regurgitation
NASA Astrophysics Data System (ADS)
di Labbio, Giuseppe; Vetel, Jerome; Kadem, Lyes
2017-11-01
Aortic valve regurgitation is a rather prevalent condition where the aortic valve improperly closes, allowing filling of the left ventricle of the heart to occur partly from backflow through the aortic valve. Although studies of intraventricular flow are rapidly gaining popularity in the fluid dynamics research community, much attention has been given to the left ventricular vortex and its potential for early detection of disease, particularly in the case of dilated cardiomyopathy. Notably, the subsequent flow in the left ventricle in the presence of aortic valve regurgitation ought to be appreciably disturbed and has yet to be described. Aortic valve regurgitation was simulated in vitro in a double-activation left heart duplicator and the ensuing flow was captured using two-dimensional time-resolved particle image velocimetry. Further insight into the regurgitant flow is obtained by computing attracting and repelling Lagrangian coherent structures. An interesting interplay between the two inflowing jets and their shear layer roll-up is observed for various grades of regurgitation. This study highlights flow features which may find use in further assessing regurgitation severity.
Fluid-structure interaction in the left ventricle of the human heart coupled with mitral valve
NASA Astrophysics Data System (ADS)
Meschini, Valentina; de Tullio, Marco Donato; Querzoli, Giorgio; Verzicco, Roberto
2016-11-01
In this paper Direct Numerical Simulations (DNS), implemented using a fully fluid-structure interaction model for the left ventricle, the mitral valve and the flowing blood, and laboratory experiments are performed in order to cross validate the results. Moreover a parameter affecting the flow dynamics is the presence of a mitral valve. We model two cases, one with a natural mitral valve and another with a prosthetic mechanical one. Our aim is to understand their different effects on the flow inside the left ventricle in order to better investigate the process of valve replacement. We simulate two situations, one of a healthy left ventricle and another of a failing one. While in the first case the flow reaches the apex of the left ventricle and washout the stagnant fluid with both mechanical and natural valve, in the second case the disturbance generated by the mechanical leaflets destabilizes the mitral jet, thus further decreasing its capability to penetrate the ventricular region and originating heart attack or cardiac pathologies in general.
Kohlmann, Sebastian; Rimington, Helen; Weinman, John
2012-06-01
Identification of risk factors for decline in health status by profiling illness perceptions before and one year after heart valve replacement surgery. Prospective data from N=225 consecutively admitted first time valve replacement patients was assessed before and one year after surgery. Patients were asked about their illness perceptions (Illness Perception Questionnaire-Revised) and mood state (Hospital Anxiety and Depression Scale). Health status was defined by quality of life (Short-Form 36) and New York Heart Association (NYHA) class. Cluster analyses were conducted to identify illness perception profiles over time. Predictors of health status after surgery were analyzed with multivariate methods. Patients were grouped according to the stability and nature (positive, negative) of their illness perception profile over one year. One year after surgery patients holding a negative illness perception profile showed a lower physical quality of life and were diagnosed in a higher New York Heart Association class than patients changing to positive and patients with stable positive illness perceptions (P<.001). Over and above biological determinants, post-surgery physical quality of life and NYHA class were both predicted by pre-surgery illness perception profiles (P<.05). Patients going for heart valve replacement surgery can be easily categorized into illness perception profiles that predict health status one year after surgery. These patients could benefit from early screening as negative illness perceptions are modifiable risk factors. Copyright © 2012 Elsevier Inc. All rights reserved.
Echocardiographic Screening of Rheumatic Heart Disease in American Samoa.
Huang, Jennifer H; Favazza, Michael; Legg, Arthur; Holmes, Kathryn W; Armsby, Laurie; Eliapo-Unutoa, Ipuniuesea; Pilgrim, Thomas; Madriago, Erin J
2018-01-01
While rheumatic heart disease (RHD) is a treatable disease nearly eradicated in the United States, it remains the most common form of acquired heart disease in the developing world. This study used echocardiographic screening to determine the prevalence of RHD in children in American Samoa. Screening took place at a subset of local schools. Private schools were recruited and public schools underwent cluster randomization based on population density. We collected survey information and performed a limited physical examination and echocardiogram using the World Heart Federation protocol for consented school children aged 5-18 years old. Of 2200 students from two private high schools and two public primary schools, 1058 subjects consented and were screened. Overall, 133 (12.9%) children were identified as having either definite (3.5%) or borderline (9.4%) RHD. Of the patients with definitive RHD, 28 subjects had abnormal mitral valves with pathologic regurgitation, three mitral stenosis, three abnormal aortic valves with pathologic regurgitation, and seven borderline mitral and aortic valve disease. Of the subjects with borderline disease, 77 had pathologic mitral regurgitation, 12 pathologic aortic regurgitation, and 7 at least two features of mitral valve disease without pathologic regurgitation or stenosis. Rheumatic heart disease remains a major cause of morbidity and mortality worldwide. The prevalence of RHD in American Samoa (12.9%) is to date the highest reported in the world literature. Echocardiographic screening of school children is feasible, while reliance on murmur and Jones criteria is not helpful in identifying children with RHD.
What Is a Cardiothoracic Surgeon?
... Heart Disease Diseases of the arteries, valves, and aorta, as well as cardiac rhythm disturbances Aortic Valve ... Transposition of the Great Arteries Coarctation of the Aorta Truncus Arteriosus Single Ventricle Defects Patent Ductus Arteriosus ...
Mitral stenosis is a heart valve disorder that narrows or obstructs the mitral valve opening. Narrowing of the ... to the body. The main risk factor for mitral stenosis is a history of rheumatic fever but it ...
STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
Omura, Y
1987-01-01
Using microscopic slides of specific tissues from the human body or pure substances including neuro-transmitters such as serotonin, dopamine, norepinephrine, etc., as reference control substances in the Bi-Digital O-Ring Test Molecular Identification Method, the author was able to localize and image normal and abnormal internal organs, and to localize and trace the distribution of neurotransmitters in the different parts of the central nervous system. Using microscopic slides of different parts of the heart, we were able to image the outline of the heart as well as the SA node, AV node, tricuspid valve, mitral valve, aortic valve, pulmonary valve, coronary arteries, and aorta and its branches, including the vertebral arteries, without using any bulky or expensive imaging instruments. Using serotonin as a reference control substance on the different parts of the central nervous system, it was possible to demonstrate the 6 well-known raphe nuclei and the locus coeruleus (which contains serotonin & norepinephrine), as well as the distribution of serotonin in the cerebrum and the cerebellum, all of which closely resembled previously published well-known neuroanatomical structures and distributions of neurotransmitters. As an extension of this work, possible representations of different internal organs on the central nervous system were examined using microscopic slides of different internal organs as reference control substances. The results indicated that the entire heart is represented primarily in the medulla oblongata, and that the SA node and the upper half of the left atrium are represented in the caudal end of the pons; the right side of the heart (i.e. R-atrium, AV node, tricuspid valve, R-ventricle) is represented on the right side of the medulla oblongata, and the left side of the heart (i.e. lower half of the L-atrium, mitral valve, L-ventricle) is represented on the left side of the medulla oblongata, and the upper half of the left atrium is represented in the caudal end of the left side of the pons. The bottoms of the ventricles are located near the spinal cord. Furthermore, the right and the left sides of the heart are represented in specific areas of each side of the right and left hemispheres of the cerebral cortex, and there are connecting pathways between the representation areas of identical parts of the heart, through the corpus callosum and other neuro-pathways.
Piazza, Nicolo; Bleiziffer, Sabine; Brockmann, Gernot; Hendrick, Ruge; Deutsch, Marcus-André; Opitz, Anke; Mazzitelli, Domenico; Tassani-Prell, Peter; Schreiber, Christian; Lange, Rüdiger
2011-07-01
This study sought to review the acute procedural outcomes of patients who underwent transcatheter aortic valve (TAV)-in-surgical aortic valve (SAV) implantation at the German Heart Center, Munich, and to summarize the existing literature on TAV-in-SAV implantation (n = 47). There are several case reports and small case series describing transcatheter aortic valve implantation for a failing surgical aortic valve bioprosthesis (TAV-in-SAV implantation). From January 2007 to March 2011, 20 out of 556 patients underwent a TAV-in-SAV implantation at the German Heart Center Munich. Baseline characteristics and clinical outcome data were prospectively entered into a dedicated database. The mean patient age was 75 ± 13 years, and the mean logistic European System for Cardiac Operative Risk Evaluation and Society of Thoracic Surgeons' Risk Model scores were 27 ± 13% and 7 ± 4%, respectively. Of the 20 patients, 14 had stented and 6 had stentless surgical bioprostheses. Most cases (12 of 20) were performed via the transapical route using a 23-mm Edwards Sapien prosthesis (Edwards Lifesciences, Irvine, California). Successful implantation of a TAV in a SAV with the patient leaving the catheterization laboratory alive was achieved in 18 of 20 patients. The mean transaortic valve gradient was 20.0 ± 7.5 mm Hg. None-to-trivial, mild, and mild-to-moderate paravalvular aortic regurgitation was observed in 10, 6, and 2 patients, respectively. We experienced 1 intraprocedural death following pre-implant balloon aortic valvuloplasty ("stone heart") and 2 further in-hospital deaths due to myocardial infarction. TAV-in-SAV implantation is a safe and feasible treatment for high-risk patients with failing aortic bioprosthetic valves and should be considered as part of the armamentarium in the treatment of aortic bioprosthetic valve failure. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2010 CFR
2010-07-01
... pressure. 3. Valves (intake and exhaust). a. Head diameter dimension. b. Valve lifter or actuator type and... diameter dimension. b. Valve lifter or actuator type and valve lash dimension. 5. Camshaft timing. a. Valve... dimension. b. Valve lifter or actuator type and valve lash dimension. 5. Camshaft timing. a. Valve opening...
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
... pressure. 3. Valves (intake and exhaust). a. Head diameter dimension. b. Valve lifter or actuator type and... diameter dimension. b. Valve lifter or actuator type and valve lash dimension. 5. Camshaft timing. a. Valve... dimension. b. Valve lifter or actuator type and valve lash dimension. 5. Camshaft timing. a. Valve opening...
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Biermann, Arnold E
1932-01-01
This investigation was conducted to determine the comparative effects of valve timing on the performance of an unsupercharged engine at sea level and a supercharged engine at altitude. The tests were conducted on the NACA universal test engine. The timing of the four valve events was varied over a wide range; the engine speeds were varied between 1,050 and 1,500 r.p.m.; the compression ratios were varied between 4.35:1 and 7.35:1. The conditions of exhaust pressure and carburetor pressure of a supercharged engine were simulated for altitudes between 0 and 18,000 feet. The results show that optimum valve timing for a supercharged engine at an altitude of 18,000 feet differs slightly from that for an unsupercharged engine at sea level. A small increase in power is obtained by using the optimum timing for 18,000 feet for altitudes above 5,000 feet. The timing of the intake opening and exhaust closing becomes more critical as the compression ratio is increased.
Transposition of the Greater Arteries (TGA)
... Heart Disease Diseases of the arteries, valves, and aorta, as well as cardiac rhythm disturbances Aortic Valve ... Transposition of the Great Arteries Coarctation of the Aorta Truncus Arteriosus Single Ventricle Defects Patent Ductus Arteriosus ...
Understanding Heart Valve Problems and Causes
... and conditions that can cause valve problems: Infective endocarditis Injury Rheumatic fever These conditions can cause one ... Surgery? Recovery Milestones Checklist | Spanish What Is Infective Endocarditis? | Spanish Interactive Treatment Guide Infographic: What Everyone Should ...
Heart valve replacement with the Sorin tilting-disc prosthesis. A 10-year experience.
Milano, A; Bortolotti, U; Mazzucco, A; Mossuto, E; Testolin, L; Thiene, G; Gallucci, V
1992-02-01
From 1978 to 1988, 697 patients with a mean age of 48 +/- 11 years (range 5 to 75 years) received a Sorin tilting-disc prosthesis; 358 had had aortic valve replacement, 247 mitral valve replacement, and 92 mitral and aortic valve replacement. Operative mortality rates were 7.8%, 11.3%, and 10.8%, respectively, in the three groups. Cumulative duration of follow-up is 1650 patient-years for aortic valve replacement (maximum follow-up 11.4 years), 963 patient-years for mitral valve replacement (maximum follow-up 9.9 years) and 328 patient-years for mitral and aortic valve replacement (maximum follow-up 9.4 years). Actuarial survival at 9 years is 72% +/- 4% after mitral valve replacement, 70% +/- 3% after aortic valve replacement, and 50% +/- 12% after mitral and aortic valve replacement, and actuarial freedom from valve-related deaths is 97% +/- 2% after mitral valve replacement, 92% +/- 2% after aortic valve replacement, and 62% +/- 15% after mitral and aortic valve replacement. Thromboembolic events occurred in 21 patients with aortic valve replacement (1.3% +/- 0.2%/pt-yr), in 12 with mitral valve replacement (1.2% +/- 0.3% pt-yr), and in seven with mitral and aortic valve replacement (2.1% +/- 0.8%), with one case of prosthetic thrombosis in each group; actuarial freedom from thromboembolism at 9 years is 92% +/- 3% after mitral valve replacement, 91% +/- 3% after aortic valve replacement, and 74% +/- 16% after mitral and aortic valve replacement. Anticoagulant-related hemorrhage was observed in 15 patients after aortic valve replacement (0.9% +/- 0.2%/pt-yr), in 9 after mitral valve replacement (0.9% +/- 0.3%/pt-yr), and in 6 with mitral and aortic valve replacement (0.9% +/- 0.5%/pt-yr); actuarial freedom from this complication at 9 years is 94% +/- 2% after aortic valve replacement, 91% +/- 4% after mitral valve replacement, and 68% +/- 16% after mitral and aortic valve replacement. Actuarial freedom from reoperation at 9 years is 97% +/- 2% after mitral and aortic valve replacement, 92% +/- 4% after mitral valve replacement, and 89% +/- 3% after aortic valve replacement, with no cases of mechanical fracture. The Sorin valve has shown a satisfactory long-term overall performance, comparable with other mechanical prostheses, and an excellent durability that renders it a reliable heart valve substitute for the mitral and aortic positions.
Miles, Susan; Ahmad, Waheed; Bailey, Amy; Hatton, Rachael; Boyle, Andrew; Collins, Nicholas
2016-12-01
Long standing pulmonary regurgitation results in deleterious effects on right heart size and function with late consequences of right heart volume overload including ventricular dilatation, propensity to arrhythmia and right heart failure. As sleep disordered breathing may predispose to elevations in pulmonary vascular resistance and associated negative effects on right ventricular function, we sought to assess this in patients with underlying congenital heart disease. We performed a pilot study to evaluate the incidence of sleep-disordered breathing in a patient population with a history of long standing pulmonary valve incompetence in patients with congenital heart disease using overnight oximetry. Patients with a background of tetralogy of Fallot repair or residual pulmonary incompetence following previous pulmonary valve intervention for congenital pulmonary stenosis were included. Twenty-two patients underwent overnight oximetry. The mean age of the cohort was 34.3 ± 15.2 years with no patients observed to have severe underlying pulmonary hypertension. Abnormal overnight oximetry was seen in 13/22 patients (59.1%) with 2/22 (9.1%) patients considered to have severe abnormalities. An important proportion of patients with a background of pulmonary incompetence complicating congenital heart disease are prone to the development of sleep-disordered breathing as assessed by overnight oximetry. Further study into the prevalence and mechanisms of sleep-disordered breathing in a larger cohort are warranted. © 2016 Wiley Periodicals, Inc.
Minimally Invasive Mitral Valve Procedures: The Current State
Ritwick, Bhuyan; Chaudhuri, Krishanu; Crouch, Gareth; Edwards, James R. M.; Worthington, Michael; Stuklis, Robert G.
2013-01-01
Since its early days, cardiac surgery has typically involved large incisions with complete access to the heart and the great vessels. After the popularization of the minimally invasive techniques in general surgery, cardiac surgeons began to experiment with minimal access techniques in the early 1990s. Although the goals of minimally invasive cardiac surgery (MICS) are fairly well established as decreased pain, shorter hospital stay, accelerated recuperation, improved cosmesis, and cost effectiveness, a strict definition of minimally invasive cardiac surgery has been more elusive. Minimally invasive cardiac surgery started with mitral valve procedures and then gradually expanded towards other valve procedures, coronary artery bypass grafting, and various types of simple congenital heart procedures. In this paper, the authors attempt to focus on the evolution, techniques, results, and the future perspective of minimally invasive mitral valve surgery (MIMVS). PMID:24382998
Vent-induced prosthetic leaflet thrombosis treated by open-heart valve-in-valve implantation.
Stamm, Christof; Pasic, Miralem; Buz, Semih; Hetzer, Roland
2015-09-01
A patient required emergency mitral valve replacement and extracorporeal membrane oxygenation (ECMO) support for acute biventricular failure. The left ventricular (LV) vent inserted via the left upper pulmonary vein induced thrombotic immobilization of a prosthetic valve leaflet, with significant intra-prosthesis regurgitation after ECMO explantation. Therefore, the left atrium was opened on the beating heart during conventional extracorporeal circulation, all prosthesis leaflets were excised and a 29-mm expandable Edwards Sapien prosthesis was inserted within the scaffold of the original prosthesis under direct vision. This case illustrates the benefits and potential problems of LV venting on ECMO support, and a rapid and safe way of replacing the prosthesis leaflets in a critical situation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Arnáiz-García, María Elena; González-Santos, Jose María; Bueno-Codoñer, María E; López-Rodríguez, Javier; Dalmau-Sorlí, María José; Arévalo-Abascal, Adolfo; Arribas-Jiménez, Antonio; Diego-Nieto, Alejandro; Rodríguez-Collado, Javier; Rodríguez-López, Jose María
2015-02-01
A 78-year-old woman was admitted to our institution with progressive dyspnea. She had previously been diagnosed with rheumatic heart disease and had undergone cardiac surgery for mechanical mitral valve replacement ten years previously. Transesophageal echocardiography revealed blockage of the mechanical prosthesis and the patient was scheduled for surgery, in which a thrombus was removed from the left atrial appendage. A partial thrombosis of the mechanical prosthesis and circumferential pannus overgrowth were concomitantly detected. Prosthetic heart valve blockage is a rare but life-threatening complication, the main causes of which are thrombosis and pannus formation. The two conditions are different but both are usually misdiagnosed. Two concurrent mechanisms of prosthesis blockage were found in this patient. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Signorello, L B; Kennedy, J A; Richmond, R A; Sieu, K L; Blot, W J; Harrison, D C
2001-03-01
The risk of fracture of Björk-Shiley convexo-concave (BSCC) prosthetic heart valves has resulted in consideration of prophylactic explantation and replacement for patients with high-risk valves. Little information exists on perceived quality of life, health status, and serious morbidity among BSCC patients, including those who have undergone explantation. Self-administered questionnaires were completed by a cohort of 585 BSCC patients who participated in an X-ray imaging study to detect precursors to valve fracture up to seven years (average 3.9 years) previously. Responses from 31 explant patients were contrasted with those from 554 BSCC patients in whom explant surgery was not attempted. Perceived quality of life and health status and risk of hospitalization after participating in the imaging study varied considerably among patients, but on average tended not to differ significantly between those with and without explants. A slightly greater proportion of explantees tended to report both improved health status and high rates of heart attack and pacemaker implantation. The health status of these patients was, in general, considerably worse than previously reported among valve implant patients. Over half the cohort were hospitalized during follow up, and half were unable to walk up more than one flight of stairs without shortness of breath. The less than optimal health status of most BSCC patients and relatively high rates of morbidity should be taken into account when considering potential explantation of the valves.
Use of bovine pericardial tissue for aortic valve and aortic root replacement: long-term results.
Vrandecic, M; Gontijo Filho, B; Fantini, F; Barbosa, J; Martins, I; de Oliveira, O C; Martins, C; Max, R; Drumond, L; Oliveira, C; Ferrufino, A; Alcocer, E; Silva, J A; Vrandecic, E
1998-03-01
The study aimed to determine the clinical performance of bovine pericardial aldehyde-treated products alone or in combination with aortic leaflets of porcine origin. These included a composite porcine stentless aortic valve attached to a scalloped pericardial tube (BSAV), and valved and non-valved bovine pericardial conduits for use in left-sided heart lesions (BPG). For BSAV grafts, between January 1990 and August 1996, 163 patients (119 males) had their aortic valves replaced by SJM Biocor BASV. Mean age was 37.9 +/- 17.6 years (range: 1 to 76 years). Rheumatic heart disease sequelae (n = 72) and replacement of a prosthetic heart valve (n = 46) were predominant. Preoperative NYHA functional class showed 90 patients (55.2%) in class III and 50 (30.7%) in class IV. BPVC and NVPC grafts were used in 166 patients: acute aortic dissection was the main indication in 52 (31.3%) and chronic in 36 (21/7%). The ascending aorta was involved in 141 patients (84.9%); grafts were seldom used at other sites. In most patients the graft implanted was either a non-valved (n = 79) or a valved (n = 75) pericardial conduit. Twelve patients had a localized lesion and required a patch repair. For BASV grafts, the non-valve-related hospital mortality rate was 4.9%. There were 14.7% non-fatal complications with full recovery of all patients. Mean follow up in 141 patients was 3.0 +/- 1.4 years (range: 1 month to 7.2 years); 14 patients were lost to follow up. Late, non-conduit-related, mortality occurred in seven patients (4.9%). Eight patients underwent reoperation. The current clinical follow up of 127 patients has shown 118 (92.9%) with competent valves and nine (7.0%) with mild stable aortic insufficiency. For BPVC and NVPC grafts, hospital mortality rate was 16.9%, death being related to poor preoperative clinical condition. Postoperative follow up was accomplished in 125 patients; reoperation was necessary in seven patients. Histology showed good tissue preservation up to five years; echocardiography revealed satisfactory findings. No valved conduit had to be reoperated for valve or pericardial tissue wear. Clinical results of left-sided heterologous pericardial grafts have shown excellent performance over time. The BASV (over seven years) and BPVC and NVPC (eight years) have demonstrated superior results as aortic valves alone or in combination with a pericardial conduit.
The role of cardiac magnetic resonance in valvular heart disease.
Lopez-Mattei, Juan C; Shah, Dipan J
2013-01-01
The prevalence of valvular heart disease is increasing as the population ages. In diagnosing individuals with valve disease, echocardiography is the primary imaging modality used by clinicians both for initial assessment and for longitudinal evaluation. However, in some cases cardiovascular magnetic resonance has become a viable alternative in that it can obtain imaging data in any plane prescribed by the scan operator, which makes it ideal for accurate investigation of all cardiac valves: aortic, mitral, pulmonic, and tricuspid. In addition, CMR for valve assessment is noninvasive, free of ionizing radiation, and in most instances does not require contrast administration. The objectives of a comprehensive CMR study for evaluating valvular heart disease are threefold: (1) to provide insight into the mechanism of the valvular lesion (via anatomic assessment), (2) to quantify the severity of the valvular lesion, and (3) to discern the consequences of the valvular lesion.
Bartonella endocarditis in complex congenital heart disease.
Hoffman, Risa M; AboulHosn, Jamil; Child, John S; Pegues, David A
2007-01-01
Bartonella species are an important cause of culture-negative endocarditis, with recognized risk factors of alcoholism, homelessness, cat exposure, and pre-existing valvular disease. We report a case of Bartonella henselae endocarditis in a 36-year-old woman with complex congenital heart disease who presented with a 7-month history of hemolytic anemia, leukocytoclastic vasculitis, and recurrent fevers. Transesophageal echocardiogram revealed vegetations on the patient's native aortic valve and in the right ventricular to pulmonary artery conduit and associated bioprosthetic valve. Diagnosis of B. henselae was confirmed with serum antibody and polymerase chain reaction (PCR) testing and tissue stains. The patient was treated successfully with surgical resection and prolonged antimicrobial therapy with ceftriaxone, gentamicin, and doxycycline. A review of the literature suggests prosthetic valves and complex congenital heart disease are risk factors for Bartonella endocarditis, and a high index of suspicion with antibody and PCR testing can expedite diagnosis and improve outcomes.
Ritchie, R O; Dauskardt, R H; Pennisi, F J
1992-01-01
A scanning electron microscopy study is reported of the nature and morphology of fracture surfaces in pyrocarbons commonly used for the manufacture of mechanical heart-valve prostheses. Specifically, silicon-alloyed low-temperature-isotropic (LTI)-pyrolytic carbon is examined, both as a coating on graphite and as a monolithic material, following overload, stress corrosion (static fatigue), and cyclic fatigue failures in a simulated physiological environment of 37 degrees C Ringer's solution. It is found that, in contrast to most metallic materials yet in keeping with many ceramics, there are no distinct fracture morphologies in pyro-carbons which are characteristic of a specific mode of loading; fracture surfaces appear to be identical for both catastrophic and subcritical crack growth under either sustained or cyclic loading. We conclude that caution should be used in assigning the likely cause of failure of pyrolytic carbon heart-valve components using fractographic examination.
Hahn, Rebecca T
2016-12-01
Functional or secondary tricuspid regurgitation (TR) is the most common cause of severe TR in the Western world. The presence of functional TR, either isolated or in combination with left heart disease, is associated with unfavorable natural history. Surgical mortality for isolated tricuspid valve interventions remains higher than for any other single valve surgery, and surgical options for repair do not have consistent long-term durability. In addition, as more patients undergo transcatheter left valve interventions, developing transcatheter solutions for functional TR has gained greater momentum. Numerous transcatheter devices are currently in early clinical trials. All patients require an assessment of valve morphology and function, and transcatheter devices typically require intraprocedural guidance by echocardiography. The following review will describe tricuspid anatomy, define echocardiographic views for evaluating tricuspid valve morphology and function, and discuss imaging requirements for the current transcatheter devices under development for the treatment of functional TR. © 2016 American Heart Association, Inc.
Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1999-01-01
Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.