Sample records for engineered liver tissue

  1. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    PubMed Central

    Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941

  2. MicroRNAs in liver tissue engineering - New promises for failing organs.

    PubMed

    Raschzok, Nathanael; Sallmon, Hannes; Pratschke, Johann; Sauer, Igor M

    2015-07-01

    miRNA-based technologies provide attractive tools for several liver tissue engineering approaches. Herein, we review the current state of miRNA applications in liver tissue engineering. Several miRNAs have been implicated in hepatic disease and proper hepatocyte function. However, the clinical translation of these findings into tissue engineering has just begun. miRNAs have been successfully used to induce proliferation of mature hepatocytes and improve the differentiation of hepatic precursor cells. Nonetheless, miRNA-based approaches beyond cell generation have not yet entered preclinical or clinical investigations. Moreover, miRNA-based concepts for the biliary tree have yet to be developed. Further research on miRNA based modifications, however, holds the promise of enabling significant improvements to liver tissue engineering approaches due to their ability to regulate and fine-tune all biological processes relevant to hepatic tissue engineering, such as proliferation, differentiation, growth, and cell function. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids.

    PubMed

    Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young

    2016-08-01

    While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future.

  4. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice.

    PubMed

    Zhang, Shichang; Zhang, Bo; Chen, Xia; Chen, Li; Wang, Zhengguo; Wang, Yingjie

    2014-12-01

    Tissue-engineered liver using primary hepatocytes has been considered a valuable new therapeutic modality as an alternative to whole organ liver transplantation for different liver diseases. The development of clinically feasible liver tissue engineering approaches, however, has been hampered by the poor engraftment efficiency of hepatocytes. We developed a three-dimensional (3D) culture system using a microgravity bioreactor (MB), biodegradable scaffolds and growth-factor-reduced Matrigel to construct a tissue-engineered liver for transplantation into the peritoneal cavity of non-obese diabetic severe combined immunodeficient mice. The number of viable cells in the hepatic tissue constructs was stably maintained in the 3D MB culture system. Hematoxylin-eosin staining and zonula occludens-1 expression revealed that neonatal mouse liver cells were reorganized to form tissue-like structures during MB culture. Significantly upregulated hepatic functions (albumin secretion, urea production and cytochrome P450 activity) were observed in the MB culture group. Post-transplantation analysis indicated that the engraftment efficiency of the hepatic tissue constructs prepared in MB cultures was higher than that of those prepared in the static cultures. Higher level of hepatic function in the implants was confirmed by the expression of albumin. These findings suggest that 3D MB culture systems may offer an improved method for creating tissue-engineered liver because of the higher engraftment efficiency and the reduction of the initial cell function loss.

  5. Cell and Tissue Engineering for Liver Disease

    PubMed Central

    Bhatia, Sangeeta N.; Underhill, Gregory H.; Zaret, Kenneth S.; Fox, Ira J.

    2015-01-01

    Despite the tremendous hurdles presented by the complexity of the liver’s structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near and long-term prospects for such cell-based therapies and the unique challenges for clinical translation. PMID:25031271

  6. A study of cryogenic tissue-engineered liver slices in calcium alginate gel for drug testing.

    PubMed

    Chen, Ruomeng; Wang, Bo; Liu, Yaxiong; Lin, Rong; He, Jiankang; Li, Dichen

    2018-06-01

    To address issues such as transportation and the time-consuming nature of tissue-engineered liver for use as an effective drug metabolism and toxicity testing model, "ready-to-use" cryogenic tissue-engineered liver needs to be studied. The research developed a cryogenic tissue-engineered liver slice (TELS), which comprised of HepG2 cells and calcium alginate gel. Cell viability and liver-specific functions were examined after different cryopreservation and recovery culture times. Then, cryogenic TELSs were used as a drug-testing model and treated with Gefitinib. Cryogenic TELSs were stored at -80 °C to ensure high cell viability. During recovery in culture, the cells in the cryogenic TELS were evenly distributed, massively proliferated, and then formed spheroid-like aggregates from day 1 to day 13. The liver-specific functions in the cryogenic TELS were closely related to cryopreservation time and cell proliferation. As a reproducible drug-testing model, the cryogenic TELS showed an obvious drug reaction after treatment with the Gefitinib. The present study shows that the cryopreservation techniques can be used in drug-testing models. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications.

    PubMed

    Grix, Tobias; Ruppelt, Alicia; Thomas, Alexander; Amler, Anna-Klara; Noichl, Benjamin P; Lauster, Roland; Kloke, Lutz

    2018-03-22

    Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P 450 3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments.

  8. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

    PubMed

    Lee, Jin Woo; Choi, Yeong-Jin; Yong, Woon-Jae; Pati, Falguni; Shim, Jin-Hyung; Kang, Kyung Shin; Kang, In-Hye; Park, Jaesung; Cho, Dong-Woo

    2016-01-12

    Several studies have focused on the regeneration of liver tissue in a two-dimensional (2D) planar environment, whereas actual liver tissue is three-dimensional (3D). Cell printing technology has been successfully utilized for building 3D structures; however, the poor mechanical properties of cell-laden hydrogels are a major concern. Here, we demonstrate the printing of a 3D cell-laden construct and its application to liver tissue engineering using 3D cell printing technology through a multi-head tissue/organ building system. Polycaprolactone (PCL) was used as a framework material because of its excellent mechanical properties. Collagen bioink containing three different types of cells-hepatocytes (HCs), human umbilical vein endothelial cells , and human lung fibroblasts--was infused into the canals of a PCL framework to induce the formation of capillary--like networks and liver cell growth. A co-cultured 3D microenvironment of the three types of cells was successfully established and maintained. The vascular formation and functional abilities of HCs (i.e., albumin secretion and urea synthesis) demonstrated that the heterotypic interaction among HCs and nonparenchymal cells increased the survivability and functionality of HCs within the collagen gel. Therefore, our results demonstrate the prospect of using cell printing technology for the creation of heterotypic cellular interaction within a structure for liver tissue engineering.

  9. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications.

    PubMed

    Zhang, Yi; Wang, Qiang-Song; Yan, Kuo; Qi, Yun; Wang, Gui-Fang; Cui, Yuan-Lu

    2016-08-01

    In liver tissue engineering, scaffolds with porous structure desgined to supply nutrient and oxygen exchange for three-dimensional (3-D) cells culture, and maintain liver functions. Meanwhile, genipin, as a natural crosslinker, is widely used to crosslink biomaterials in tissue engineering, with lower cytotoxicity and better biocompatibility. In present study, chitosan/gelatin 3-D scaffolds crosslinked by genipin, glutaraldehyde or 1-(3-dimethylaminopropyl)-3-ethyl-carbodimide hydrochloride (EDC) were prepared and characterized by Fourier-transform infrared (FT-IR) and scanning electron microscopy (SEM). The biocompatibility of chitosan/gelatin scaffolds corsslinked with different crosslinkers was investigated by cell viability, morphology and liver specific functions. The result showed that the 1% and 2% genipin crosslinked chitosan/gelatin scaffolds possess ideal porosity. The genipin crosslinked 3-D scaffolds possessed the best biocompatibility than that of the others, and maintained liver specific functions when HepG2 cells seeded on scaffolds. The cellular morphology of HepG2 cells seeded on scaffolds showed that cells could penetrate into the scaffolds and proliferate significantly. Therefore, genipin crosslinked chitosan/gelatin scaffolds could be a promising biomaterial used in liver tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1863-1870, 2016. © 2016 Wiley Periodicals, Inc.

  10. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    PubMed Central

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  11. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.

    PubMed

    Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P

    2010-05-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.

  12. A Drug-Induced Hybrid Electrospun Poly-Capro-Lactone: Cell-Derived Extracellular Matrix Scaffold for Liver Tissue Engineering.

    PubMed

    Grant, Rhiannon; Hay, David C; Callanan, Anthony

    2017-07-01

    Liver transplant is the only treatment option for patients with end-stage liver failure, however, there are too few donor livers available for transplant. Whole organ tissue engineering presents a potential solution to the problem of rapidly escalating donor liver shortages worldwide. A major challenge for liver tissue engineers is the creation of a hepatocyte microenvironment; a niche in which liver cells can survive and function optimally. While polymers and decellularized tissues pose an attractive option for scaffold manufacturing, neither alone has thus far proved sufficient. This study exploited cell's native extracellular matrix (ECM) producing capabilities using two different histone deacetylase inhibitors, and combined these with the customizability and reproducibility of electrospun polymer scaffolds to produce a "best of both worlds" niche microenvironment for hepatocytes. The resulting hybrid poly-capro-lactone (PCL)-ECM scaffolds were validated using HepG2 hepatocytes. The hybrid PCL-ECM scaffolds maintained hepatocyte growth and function, as evidenced by metabolic activity and DNA quantitation. Mechanical testing revealed little significant difference between scaffolds, indicating that cells were responding to a biochemical and topographical profile rather than mechanical changes. Immunohistochemistry showed that the biochemical profile of the drug-derived and nondrug-derived ECMs differed in ratio of Collagen I, Laminin, and Fibronectin. Furthermore, the hybrid PCL-ECM scaffolds influence the gene expression profile of the HepG2s drastically; with expression of Albumin, Cytochrome P450 Family 1 Subfamily A Polypeptide 1, Cytochrome P450 Family 1 Subfamily A Polypeptide 2, Cytochrome P450 Family 3 Subfamily A Polypeptide 4, Fibronectin, Collagen I, and Collagen IV undergoing significant changes. Our results demonstrate that drug-induced hybrid PCL-ECM scaffolds provide a viable, translatable platform for creating a niche microenvironment for hepatocytes, supporting in vivo phenotype and function. These scaffolds offer great potential for tissue engineering and regenerative medicine strategies for whole organ tissue engineering.

  13. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.

    PubMed

    Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric

    2007-06-01

    Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.

  14. Liver regenerative medicine: advances and challenges.

    PubMed

    Chistiakov, Dimitry A

    2012-01-01

    Liver transplantation is the standard care for many end-stage liver diseases. However, donor organs are scarce and some people succumb to liver failure before a donor is found. Liver regenerative medicine is a special interdisciplinary field of medicine focused on the development of new therapies incorporating stem cells, gene therapy and engineered tissues in order to repair or replace the damaged organ. In this review we consider the emerging progress achieved in the hepatic regenerative medicine within the last decade. The review starts with the characterization of liver organogenesis, fetal and adult stem/progenitor cells. Then, applications of primary hepatocytes, embryonic and adult (mesenchymal, hematopoietic and induced pluripotent) stem cells in cell therapy of liver diseases are considered. Current advances and challenges in producing mature hepatocytes from stem/progenitor cells are discussed. A section about hepatic tissue engineering includes consideration of synthetic and natural biomaterials in engineering scaffolds, strategies and achievements in the development of 3D bioactive matrices and 3D hepatocyte cultures, liver microengineering, generating bioartificial liver and prospects for fabrication of the bioengineered liver. Copyright © 2012 S. Karger AG, Basel.

  15. Integration of technologies for hepatic tissue engineering.

    PubMed

    Nahmias, Yaakov; Berthiaume, Francois; Yarmush, Martin L

    2007-01-01

    The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.

  16. Transport Advances in Disposable Bioreactors for Liver Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Catapano, Gerardo; Patzer, John F.; Gerlach, Jörg Christian

    Acute liver failure (ALF) is a devastating diagnosis with an overall survival of approximately 60%. Liver transplantation is the therapy of choice for ALF patients but is limited by the scarce availability of donor organs. The prognosis of ALF patients may improve if essential liver functions are restored during liver failure by means of auxiliary methods because liver tissue has the capability to regenerate and heal. Bioartificial liver (BAL) approaches use liver tissue or cells to provide ALF patients with liver-specific metabolism and synthesis products necessary to relieve some of the symptoms and to promote liver tissue regeneration. The most promising BAL treatments are based on the culture of tissue engineered (TE) liver constructs, with mature liver cells or cells that may differentiate into hepatocytes to perform liver-specific functions, in disposable continuous-flow bioreactors. In fact, adult hepatocytes perform all essential liver functions. Clinical evaluations of the proposed BALs show that they are safe but have not clearly proven the efficacy of treatment as compared to standard supportive treatments. Ambiguous clinical results, the time loss of cellular activity during treatment, and the presence of a necrotic core in the cell compartment of many bioreactors suggest that improvement of transport of nutrients, and metabolic wastes and products to or from the cells in the bioreactor is critical for the development of therapeutically effective BALs. In this chapter, advanced strategies that have been proposed over to improve mass transport in the bioreactors at the core of a BAL for the treatment of ALF patients are reviewed.

  17. Purpose-driven biomaterials research in liver-tissue engineering.

    PubMed

    Ananthanarayanan, Abhishek; Narmada, Balakrishnan Chakrapani; Mo, Xuejun; McMillian, Michael; Yu, Hanry

    2011-03-01

    Bottom-up engineering of microscale tissue ("microtissue") constructs to recapitulate partially the complex structure-function relationships of liver parenchyma has been realized through the development of sophisticated biomaterial scaffolds, liver-cell sources, and in vitro culture techniques. With regard to in vivo applications, the long-lived stem/progenitor cell constructs can improve cell engraftment, whereas the short-lived, but highly functional hepatocyte constructs stimulate host liver regeneration. With regard to in vitro applications, microtissue constructs are being adapted or custom-engineered into cell-based assays for testing acute, chronic and idiosyncratic toxicities of drugs or pathogens. Systems-level methods and computational models that represent quantitative relationships between biomaterial scaffolds, cells and microtissue constructs will further enable their rational design for optimal integration into specific biomedical applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Long-term culture of human liver tissue with advanced hepatic functions.

    PubMed

    Ng, Soon Seng; Xiong, Anming; Nguyen, Khanh; Masek, Marilyn; No, Da Yoon; Elazar, Menashe; Shteyer, Eyal; Winters, Mark A; Voedisch, Amy; Shaw, Kate; Rashid, Sheikh Tamir; Frank, Curtis W; Cho, Nam Joon; Glenn, Jeffrey S

    2017-06-02

    A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver's natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450-mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.

  19. Orchestrating liver development.

    PubMed

    Gordillo, Miriam; Evans, Todd; Gouon-Evans, Valerie

    2015-06-15

    The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis. © 2015. Published by The Company of Biologists Ltd.

  20. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  1. Liver cell therapy and tissue engineering for transplantation.

    PubMed

    Vacanti, Joseph P; Kulig, Katherine M

    2014-06-01

    Liver transplantation remains the only definitive treatment for liver failure and is available to only a tiny fraction of patients with end-stage liver diseases. Major limitations for the procedure include donor organ shortage, high cost, high level of required expertise, and long-term consequences of immune suppression. Alternative cell-based liver therapies could potentially greatly expand the number of patients provided with effective treatment. Investigative research into augmenting or replacing liver function extends into three general strategies. Bioartificial livers (BALs) are extracorporeal devices that utilize cartridges of primary hepatocytes or cell lines to process patient plasma. Injection of liver cell suspensions aims to foster organ regeneration or provide a missing metabolic function arising from a genetic defect. Tissue engineering recreates the organ in vitro for subsequent implantation to augment or replace patient liver function. Translational models and clinical trials have highlighted both the immense challenges involved and some striking examples of success. Copyright © 2014. Published by Elsevier Inc.

  2. Nano scaffolds and stem cell therapy in liver tissue engineering

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  3. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering.

    PubMed

    Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K

    2014-04-01

    Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enhanced Growth and Hepatic Differentiation of Fetal Liver Epithelial Cells through Combinational and Temporal Adjustment of Soluble Factors

    PubMed Central

    Qian, Lichuan; Krause, Diane S.; Saltzman, W. Mark

    2012-01-01

    Fetal liver epithelial cells (FLEC) are valuable for liver cell therapy and tissue engineering, but methods for culture and characterization of these cells are not well developed. This work explores the influence of multiple soluble factors on FLEC, with the long-term goal of developing an optimal culture system to generate functional liver tissue. Our comparative analysis suggests hepatocyte growth factor (HGF) is required throughout the culture period. In the presence of HGF, addition of oncostatin M (OSM) at culture initiation results in concurrent growth and maturation, while constant presence of protective agents like ascorbic acid enhances cell survival. Study observations led to the development of a culture medium that provided optimal growth and hepatic differentiation conditions. FLEC expansion was observed to be ~2 fold of that under standard conditions, albumin secretion rate was 2 – 3 times greater than maximal values obtained with other media, and the highest level of glycogen accumulation among all conditions was observed with the developed medium. Our findings serve to advance culture methods for liver progenitors in cell therapy and tissue engineering applications. PMID:21922669

  5. Improved human endometrial stem cells differentiation into functional hepatocyte-like cells on a glycosaminoglycan/collagen-grafted polyethersulfone nanofibrous scaffold.

    PubMed

    Khademi, Farzaneh; Ai, Jafar; Soleimani, Masoud; Verdi, Javad; Mohammad Tavangar, Seyed; Sadroddiny, Esmaeil; Massumi, Mohammad; Mahmoud Hashemi, Seyed

    2017-11-01

    Liver tissue engineering (TE) is rapidly emerging as an effective technique which combines engineering and biological processes to compensate for the shortage of damaged or destroyed liver tissues. We examined the viability, differentiation, and integration of hepatocyte-like cells on an electrospun polyethersulfone (PES) scaffold, derived from human endometrial stem cells (hEnSCs). Natural polymers were separately grafted on plasma-treated PES nanofibers, that is, collagen, heparan sulfate (HS) and collagen-HS. Galactosilated PES (PES-Gal) nanofibrous were created. The engineering and cell growth parameters were considered and compared with each sample. The cellular studies revealed increased cell survival, attachment, and normal morphology on the bioactive natural polymer-grafted scaffolds after 30 days of hepatic differentiation. The chemical and molecular assays displayed hepatocyte differentiation. These cells were also functional, showing glycogen storage, α-fetoprotein, and albumin secretion. The HS nanoparticle-grafted PES nanofibers demonstrated a high rate of cell proliferation, differentiation, and integration. Based on the observations mentioned above, engineered tissue is a good option in the future, for the commercial production of three-dimensional liver tissues for clinical purposes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2516-2529, 2017. © 2016 Wiley Periodicals, Inc.

  6. Bioengineered transplantable porcine livers with re-endothelialized vasculature.

    PubMed

    Ko, In Kap; Peng, Li; Peloso, Andrea; Smith, Charesa J; Dhal, Abritee; Deegan, Daniel B; Zimmerman, Cindy; Clouse, Cara; Zhao, Weixin; Shupe, Thomas D; Soker, Shay; Yoo, James J; Atala, Anthony

    2015-02-01

    Donor shortage remains a continued challenge in liver transplantation. Recent advances in tissue engineering have provided the possibility of creating functional liver tissues as an alternative to donor organ transplantation. Small bioengineered liver constructs have been developed, however a major challenge in achieving functional bioengineered liver in vivo is the establishment of a functional vasculature within the scaffolds. Our overall goal is to bioengineer intact livers, suitable for transplantation, using acellular porcine liver scaffolds. We developed an effective method for reestablishing the vascular network within decellularized liver scaffolds by conjugating anti-endothelial cell antibodies to maximize coverage of the vessel walls with endothelial cells. This procedure resulted in uniform endothelial attachment throughout the liver vasculature extending to the capillary bed of the liver scaffold and greatly reduced platelet adhesion upon blood perfusion in vitro. The re-endothelialized livers, when transplanted to recipient pigs, were able to withstand physiological blood flow and maintained for up to 24 h. This study demonstrates, for the first time, that vascularized bioengineered livers, of clinically relevant size, can be transplanted and maintained in vivo, and represents the first step towards generating engineered livers for transplantation to patients with end-stage liver failure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. European research and commercialisation activities in the field of tissue engineering and liver support in world wide competition.

    PubMed

    Marx, U; Bushnaq, H; Yalcin, E

    1998-02-01

    Tissue engineering is seen as an interesting field of technology which could improve medical therapy and could also be considered as a commercial opportunity for the European biotechnological industry. Research in the state of the art of science using the MedLine and the Science Citation Index databases, in the patent situation and of the industry dealing with tissue engineering was done. A special method, based on the Science Citation Index Journal Citation Report 1993, for evaluating scientific work was defined. The main countries working in the field of tissue engineering were evaluated in regard to their scientific performance and their patents. The R&D of German industry was investigated as an exemplary European country. Out of all activities, different tissues were rated with respect to the attention received from research and industry and with regard to the frequency in which patents were applied for. USA, Germany and Japan rank first in most tissues, especially liver. After comparing German patents with the German scientific and industrial work, it seems that the potential in German patents and research is underestimated by German industry and inefficiently exploited.

  8. Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering

    PubMed Central

    Fuller, Barry; Seldon, Clare; Davidson, Brian; Seifalian, Alexander

    2013-01-01

    Background: Although hepatocytes have a remarkable regenerative power, the rapidity of acute liver failure makes liver transplantation the only definitive treatment. Attempts to incorporate engineered three-dimensional liver tissue in bioartificial liver devices or in implantable tissue constructs, to treat or bridge patients to self-recovery, were met with many challenges, amongst which is to find suitable polymeric matrices. We studied the feasibility of utilising nanocomposite polymers in three-dimensional scaffolds for hepatocytes. Materials and methods: Hepatocytes (HepG2) were seeded on a flat sheet and in three-dimensional scaffolds made of a nanocomposite polymer (Polyhedral Oligomeric Silsesquioxane [POSS]-modified polycaprolactone urea urethane) alone as well as with porogen particles, i.e. glucose, sodium bicarbonate and sodium chloride. The scaffold architecture, cell attachment and morphology were studied with scanning electron microscopy, and we assessed cell viability and functionality. Results: Cell attachment to the scaffolds was demonstrated. The scaffold made with glucose particles as porogen showed a narrower range of pore size with higher porosity and better inter-pore communications and seemed to encourage near normal cell morphology. There was a steady increase of albumin secretion throughout the experiment while the control (monolayer cell culture) showed a steep decrease after day 7. At the end of the experiment, there was no significant difference in viability and functionality between the scaffolds and the control. Conclusion: In this initial study, porogen particles were used to modify the scaffolds produced from the novel polymer. Although there was no significance against the control in functionality and viability, the demonstrable attachment on scanning electron microscopy suggest potential roles for this polymer and in particular for scaffolds made with glucose particles in liver tissue engineering. PMID:22532408

  9. Hepatic differentiation potential of commercially available human mesenchymal stem cells.

    PubMed

    Ong, Shin-Yeu; Dai, Hui; Leong, Kam W

    2006-12-01

    The ready availability and low immunogenicity of commercially available mesenchymal stem cells (MSC) render them a potential cell source for the development of therapeutic products. With cell source a major bottleneck in hepatic tissue engineering, we investigated whether commercially available human MSC (hMSC) can transdifferentiate into the hepatic lineage. Based on previous studies that find rapid gain of hepatic genes in bone marrow-derived stem cells cocultured with liver tissue, we used a similar approach to drive hepatic differentiation by coculturing the hMSC with rat livers treated or untreated with gadolinium chloride (GdCl(3)). After a 24-hour coculture period with liver tissue injured by GdCl(3) in a Transwell configuration, approximately 34% of the cells differentiated into albumin-expressing cells. Cocultured cells were subsequently maintained with growth factors to complete the hepatic differentiation. Cocultured cells expressed more hepatic gene markers, and had higher metabolic functions and P450 activity than cells that were only differentiated with growth factors. In conclusion, commercially available hMSC do show hepatic differentiation potential, and a liver microenvironment in culture can provide potent cues to accelerate and deepen the differentiation. The ability to generate hepatocyte-like cells from a commercially available cell source would find interesting applications in liver tissue engineering.

  10. Programmable probiotics for detection of cancer in urine

    PubMed Central

    Danino, Tal; Prindle, Arthur; Kwong, Gabriel A.; Skalak, Matthew; Li, Howard; Allen, Kaitlin; Hasty, Jeff; Bhatia, Sangeeta N.

    2015-01-01

    Rapid advances in the forward engineering of genetic circuitry in living cells has positioned synthetic biology as a potential means to solve numerous biomedical problems, including disease diagnosis and therapy. One challenge in exploiting synthetic biology for translational applications is to engineer microbes that are well tolerated by patients and seamlessly integrate with existing clinical methods. We use the safe and widely used probiotic Escherichia coli Nissle 1917 to develop an orally administered diagnostic that can noninvasively indicate the presence of liver metastasis by producing easily detectable signals in urine. Our microbial diagnostic generated a high-contrast urine signal through selective expansion in liver metastases (106-fold enrichment) and high expression of a lacZ reporter maintained by engineering a stable plasmid system. The lacZ reporter cleaves a substrate to produce a small molecule that can be detected in urine. E. coli Nissle 1917 robustly colonized tumor tissue in rodent models of liver metastasis after oral delivery but did not colonize healthy organs or fibrotic liver tissue. We saw no deleterious health effects on the mice for more than 12 months after oral delivery. Our results demonstrate that probiotics can be programmed to safely and selectively deliver synthetic gene circuits to diseased tissue microenvironments in vivo. PMID:26019220

  11. Genetically-engineered pig-to-baboon liver xenotransplantation: histopathology of xenografts and native organs.

    PubMed

    Ekser, Burcin; Klein, Edwin; He, Jing; Stolz, Donna B; Echeverri, Gabriel J; Long, Cassandra; Lin, Chih Che; Ezzelarab, Mohamed; Hara, Hidetaka; Veroux, Massimiliano; Ayares, David; Cooper, David K C; Gridelli, Bruno

    2012-01-01

    Orthotopic liver transplantation was carried out in baboons using wild-type (WT, n = 1) or genetically-engineered pigs (α1,3-galactosyltransferase gene-knockout, GTKO), n = 1; GTKO pigs transgenic for human CD46, n = 7) and a clinically-acceptable immunosuppressive regimen. Biopsies were obtained from the WT pig liver pre-Tx and at 30 min, 1, 2, 3, 4 and 5 h post-transplantation. Biopsies of genetically-engineered livers were obtained pre-Tx, 2 h after reperfusion and at necropsy (4-7 days after transplantation). Tissues were examined by light, confocal, and electron microscopy. All major native organs were also examined. The WT pig liver underwent hyperacute rejection. After genetically-engineered pig liver transplantation, hyperacute rejection did not occur. Survival was limited to 4-7 days due to repeated spontaneous bleeding in the liver and native organs (as a result of profound thrombocytopenia) which necessitated euthanasia. At 2 h, graft histology was largely normal. At necropsy, genetically-engineered pig livers showed hemorrhagic necrosis, platelet aggregation, platelet-fibrin thrombi, monocyte/macrophage margination mainly in liver sinusoids, and vascular endothelial cell hypertrophy, confirmed by confocal and electron microscopy. Immunohistochemistry showed minimal deposition of IgM, and almost absence of IgG, C3, C4d, C5b-9, and of a cellular infiltrate, suggesting that neither antibody- nor cell-mediated rejection played a major role.

  12. 75 FR 39544 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... tissue stem-cell cell-lines for adult tissue regeneration such as Parkinson's disease, liver failure... to engineering. dAbs are bioactive as monomers or can be linked into larger molecules to create drugs...

  13. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    PubMed

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin.

    PubMed

    Rajendran, Divya; Hussain, Ali; Yip, Derek; Parekh, Amit; Shrirao, Anil; Cho, Cheul H

    2017-08-01

    In this study, a new 3D liver model was developed using biomimetic nanofiber scaffolds and co-culture system consisting of hepatocytes and fibroblasts for the maintenance of long-term liver functions. The chitosan nanofiber scaffolds were fabricated by the electrospinning technique. To enhance cellular adhesion and spreading, the surfaces of the chitosan scaffolds were coated with fibronectin (FN) by adsorption and evaluated for various cell types. Cellular phenotype, protein expression, and liver-specific functions were extensively characterized by immunofluorescent and histochemical stainings, albumin enzyme-linked immunosorbent assay and Cytochrome p450 detoxification assays, and scanning electron microscopy. The electrospun chitosan scaffolds exhibited a highly porous and randomly oriented nanofibrous structure. The FN coating on the surface of the chitosan nanofibers significantly enhanced cell attachment and spreading, as expected, as surface modification with this cell adhesion molecule on the chitosan surface is important for focal adhesion formation and integrin binding. Comparison of hepatocyte mono-cultures and co-cultures in 3D culture systems indicated that the hepatocytes in co-cultures formed colonies and maintained their morphologies and functions for prolonged periods of time. The 3D liver tissue model developed in this study will provide useful tools toward the development of engineered liver tissues for drug screening and tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2119-2128, 2017. © 2017 Wiley Periodicals, Inc.

  15. Bioprinting of Micro-Organ Tissue Analog for Drug Metabolism Study

    NASA Astrophysics Data System (ADS)

    Sun, Wei

    An evolving application of tissue engineering is to develop in vitro 3D cell/tissue models for drug screening and pharmacological study. In order to test in space, these in vitro models are mostly manufactured through micro-fabrication techniques and incorporate living cells with MEMS or microfluidic devices. These cell-integrated microfluidic devices, or referred as microorgans, are effective in furnishing reliable and inexpensive drug metabolism and toxicity studies [1-3]. This paper will present an on-going research collaborated between Drexel University and NASA JSC Radiation Physics Laboratory for applying a direct cell printing technique to freeform fabrication of 3D liver tissue analog in drug metabolism study. The paper will discuss modeling, design, and solid freeform fabrication of micro-fluidic flow patterns and bioprinting of 3D micro-liver chamber that biomimics liver physiological microenvironment for enhanced drug metabolization. Technical details to address bioprinting of 3D liver tissue analog, integration with a microfluidic device, and basic drug metabolism study for NASA's interests will presented. 1. Holtorf H. Leslie J. Chang R, Nam J, Culbertson C, Sun W, Gonda S, "Development of a Three-Dimensional Tissue-on-a-Chip Micro-Organ Device for Pharmacokinetic Analysis", the 47th Annual Meeting of the American Society for Cell Biology, Washington, DC, December 1-5, 2007. 2. Chang, R., Nam, J., Culbertson C., Holtorf, H., Jeevarajan, A., Gonda, S. and Sun, W., "Bio-printing and Modeling of Flow Patterns for Cell Encapsulated 3D Liver Chambers For Pharmacokinetic Study", TERMIS North America 2007 Conference and Exposition, Westin Harbour Castle, Toronto, Canada, June 13-16, 2007. 3.Starly, B., Chang, R., Sun, W., Culbertson, C., Holtorf, H. and Gonda, S., "Bioprinted Tissue-on-chip Application for Pharmacokinetic Studies", Proceedings of World Congress on Tissue Engineering and Regenerative Medicine, Pittsburgh, PA, USA, April 24-27, 2006.

  16. Tissue Engineering: Toward a New Era of Medicine.

    PubMed

    Shafiee, Ashkan; Atala, Anthony

    2017-01-14

    The goal of tissue engineering is to mitigate the critical shortage of donor organs via in vitro fabrication of functional biological structures. Tissue engineering is one of the most prominent examples of interdisciplinary fields, where scientists with different backgrounds work together to boost the quality of life by addressing critical health issues. Many different fields, such as developmental and molecular biology, as well as technologies, such as micro- and nanotechnologies and additive manufacturing, have been integral for advancing the field of tissue engineering. Over the past 20 years, spectacular advancements have been achieved to harness nature's ability to cure diseased tissues and organs. Patients have received laboratory-grown tissues and organs made out of their own cells, thus eliminating the risk of rejection. However, challenges remain when addressing more complex solid organs such as the heart, liver, and kidney. Herein, we review recent accomplishments as well as challenges that must be addressed in the field of tissue engineering and provide a perspective regarding strategies in further development.

  17. Biomedical engineering for health research and development.

    PubMed

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  18. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function.

    PubMed

    Feng, Zhang-Qi; Chu, Xuehui; Huang, Ning-Ping; Wang, Tao; Wang, Yichun; Shi, Xiaolei; Ding, Yitao; Gu, Zhong-Ze

    2009-05-01

    Liver tissue engineering requires a perfect extracellular matrix (ECM) for primary hepatocytes culture to maintain high level of liver-specific functions and desirable mechanical stability. The aim of this study was to develop a novel natural nanofibrous scaffold with surface-galactose ligands to enhance the bioactivity and mechanical stability of primary hepatocytes in culture. The nanofibrous scaffold was fabricated by electrospinning a natural material, galactosylated chitosan (GC), into nanofibers with an average diameter of approximately 160 nm. The GC nanofibrous scaffolds displayed slow degradation and suitable mechanical properties as an ECM for hepatocytes according to the evaluation of disintegration and Young's modulus testing. The results of morphology characterization, double-staining fluorescence assay and function detection showed that hepatocytes cultured on GC nanofibrous scaffold formed stably immobilized 3D flat aggregates and exhibited superior cell bioactivity with higher levels of liver-specific function maintenance in terms of albumin secretion, urea synthesis and cytochrome P-450 enzyme than 3D spheroid aggregates formed on GC films. These spheroid aggregates could be detached easily during culture period from the flat GC films. We suggest such GC-based nanofibrous scaffolds could be useful for various applications such as bioartificial liver-assist devices and tissue engineering for liver regeneration as primary hepatocytes culture substrates.

  19. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.

    PubMed

    Naderi, Hojjat; Matin, Maryam M; Bahrami, Ahmad Reza

    2011-11-01

    Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.

  20. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds.

    PubMed

    Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong

    2017-01-01

    An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

    PubMed Central

    Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando

    2015-01-01

    Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833

  2. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells.

    PubMed

    Chen, Chen; Soto-Gutierrez, Alejandro; Baptista, Pedro M; Spee, Bart

    2018-04-01

    The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. The potential of tissue engineering for developing alternatives to animal experiments: a systematic review.

    PubMed

    de Vries, Rob B M; Leenaars, Marlies; Tra, Joppe; Huijbregtse, Robbertjan; Bongers, Erik; Jansen, John A; Gordijn, Bert; Ritskes-Hoitinga, Merel

    2015-07-01

    An underexposed ethical issue raised by tissue engineering is the use of laboratory animals in tissue engineering research. Even though this research results in suffering and loss of life in animals, tissue engineering also has great potential for the development of alternatives to animal experiments. With the objective of promoting a joint effort of tissue engineers and alternative experts to fully realise this potential, this study provides the first comprehensive overview of the possibilities of using tissue-engineered constructs as a replacement of laboratory animals. Through searches in two large biomedical databases (PubMed, Embase) and several specialised 3R databases, 244 relevant primary scientific articles, published between 1991 and 2011, were identified. By far most articles reviewed related to the use of tissue-engineered skin/epidermis for toxicological applications such as testing for skin irritation. This review article demonstrates, however, that the potential for the development of alternatives also extends to other tissues such as other epithelia and the liver, as well as to other fields of application such as drug screening and basic physiology. This review discusses which impediments need to be overcome to maximise the contributions that the field of tissue engineering can make, through the development of alternative methods, to the reduction of the use and suffering of laboratory animals. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood glucose and insulin sensitivity levels. Furthermore, soy scaffolds implanted in the intraperitoneal cavity attached to adjacent liver tissue with no abnormalities. In vitro, soy scaffolds supported hMSC viability and transdifferentiation into hepatocyte-like cells. These results support the use of soy scaffolds for liver tissue engineering and for treating metabolic diseases. Based on achievable structural and mechanical properties, as well as systemic effects of ingested and degraded soy proteins, soy protein scaffolds may serve as new multifunctional biomaterials for tissue engineering and regenerative medicine.

  5. Advances in tissue engineering through stem cell-based co-culture.

    PubMed

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Introduction to regenerative medicine and tissue engineering.

    PubMed

    Stoltz, J-F; Decot, V; Huseltein, C; He, X; Zhang, L; Magdalou, J; Li, Y P; Menu, P; Li, N; Wang, Y Y; de Isla, N; Bensoussan, D

    2012-01-01

    Human tissues don't regenerate spontaneously, explaining why regenerative medicine and cell therapy represent a promising alternative treatment (autologous cells or stem cells of different origins). The principle is simple: cells are collected, expanded and introduced with or without modification into injured tissues or organs. Among middle-term therapeutic applications, cartilage defects, bone repair, cardiac insufficiency, burns, liver or bladder, neurodegenerative disorders could be considered.

  7. Silk fibroin in tissue engineering.

    PubMed

    Kasoju, Naresh; Bora, Utpal

    2012-07-01

    Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Human hepatocytes loaded in 3D bioprinting generate mini-liver.

    PubMed

    Zhong, Cheng; Xie, Hai-Yang; Zhou, Lin; Xu, Xiao; Zheng, Shu-Sen

    2016-10-01

    Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. We fabricated 3D hydrogel scaffolds with a bioprinter. The biocompatibility of 3D hydrogel scaffolds was tested. Sixty nude mice were randomly divided into four groups, with 15 mice in each group: control, hydrogel, hydrogel with L02 (cell line HL-7702), and hydrogel with hepatocyte growth factor (HGF). Cells were cultured and deposited in scaffolds which were subsequently engrafted into livers after partial hepatectomy and radiation-induced liver damage (RILD). The engrafted tissues were examined after two weeks. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, total bilirubin, CYP1A2, CYP2C9, glutathione S-transferase (a-GST), and UDP-glucuronosyl transferase (UGT-2) were compared among the groups. Hematoxylin-eosin (HE) staining and immunohistochemistry of cKit and cytokeratin 18 (CK18) of engrafted tissues were evaluated. The survival time of the mice was also compared among the four groups. 3D hydrogel scaffolds did not impact the viability of cells. The levels of ALT, AST, albumin, total bilirubin, CYP1A2, CYP2C9, a-GST and UGT-2 were significantly improved in mice engrafted with 3D scaffold loaded with L02 compared with those in control and scaffold only (P<0.05). HE staining showed clear liver tissue and immunohistochemistry of cKit and CK18 were positive in the engrafted tissue. Mice treated with 3D scaffold+L02 cells had longer survival time compared with those in control and scaffold only (P<0.05). 3D scaffold has the potential of recreating liver tissue and partial liver functions and can be used in the reconstruction of liver tissues.

  9. Three-dimensional Cell Culture Devices for Cancer Migration and Drug Testing

    NASA Astrophysics Data System (ADS)

    Ma, Liang

    Porous polymeric materials are widely used to mimic the extracellular matrix (ECM) environment for applications such as 3D cell culturing and tissue engineering. A series of comparative experiments on 3D cell cultures both in PLA porous scaffolds and alginate gels were conducted to create an in vitro tumor model. A novel 3D cell culture device based on porous polymeric material was developed to study cancer migration. Significant cell migration was observed through the porous channel within 1--2 weeks induced by 20% fetal bovine serum (FBS). A three-dimensional micro-scale perfusion-based two-chamber (3D-muPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs by emulating liver metabolism effects in vitro. Hepatoma cells and glioblastoma multiforme (GBM) cancer cells were cultured in porous polymeric scaffolds in two separate chambers, representing the liver and tumor, respectively. The cytotoxic effect of temozolomide (TMZ) was first tested using this system. It was found that the GBM cells showed a much higher viability under the TMZ treatment with liver cells in the system, suggesting that the drug metabolism in liver is affecting the efficacy of the drug. The favorable metabolism effect of cytochrome P450 (CYP) was tested using a prodrug ifosfamide (IFO). Without the liver cells, IFO showed only slight toxicity to GBM cells. Moreover, it was shown that different expression levels of CYP 3A4, a major drug metabolizing enzyme, in liver cells caused significantly different levels of GBM cell viability. Simulation of the flow characteristics in the 3D-muPTC system was conducted using the finite-element analysis approach. The shear stress was predicted in the porous scaffolds under different flow rate conditions. The predicted shear stress effects agreed well with an experimental cell viability study. A low cost organic solvent free approach to fabricating tissue engineering scaffolds was developed by combining the twin-screw extrusion and particulate leaching. High porosity and interconnected porous PLA scaffolds with the pore size 50 to 200μm were fabricated with this immiscible polymer blending method. This combined extrusion and particulate leaching method provides a new technique to fabricate tissue engineering scaffolds that can be used in the 3D-muPTC device.

  10. An update to space biomedical research: tissue engineering in microgravity bioreactors.

    PubMed

    Barzegari, Abolfazl; Saei, Amir Ata

    2012-01-01

    The severe need for constructing replacement tissues in organ transplanta-tion has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV) bioreactors initially developed by NASA. In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Research is now focused on assembly of 3 dimensional (3D) tissue fragments from various cell types in human body such as chon-drocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of vari-ous cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Tissue engineering in (simulated) microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  11. A Review of Cellularization Strategies for Tissue Engineering of Whole Organs

    PubMed Central

    Scarritt, Michelle E.; Pashos, Nicholas C.; Bunnell, Bruce A.

    2015-01-01

    With the advent of whole organ decellularization, extracellular matrix scaffolds suitable for organ engineering were generated from numerous tissues, including the heart, lung, liver, kidney, and pancreas, for use as alternatives to traditional organ transplantation. Biomedical researchers now face the challenge of adequately and efficiently recellularizing these organ scaffolds. Herein, an overview of whole organ decellularization and a thorough review of the current literature for whole organ recellularization are presented. The cell types, delivery methods, and bioreactors employed for recellularization are discussed along with commercial and clinical considerations, such as immunogenicity, biocompatibility, and Food and Drug Administartion regulation. PMID:25870857

  12. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.

    PubMed

    Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho

    2017-01-15

    Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liverspecific markers was quantified on days 1, 7, 14, and 21. The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver.

  13. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs.

    PubMed

    Janani, G; Nandi, Samit K; Mandal, Biman B

    2018-02-01

    The creation of in vitro functional hepatic tissue simulating micro-environmental niche of native liver is a keen area of research due to its demand in bioartificial liver (BAL) and cell-based tissue engineering. Here, we investigated the potential of novel blend (BA) silk scaffold fabricated by blending mulberry (Bombyx mori, BM) silk fibroin with cell adhesion motif (RGD) rich non-mulberry (Antheraea assamensis, AA) silk fibroin, in generating a functional liver construct. Three-dimensional (3D) porous silk scaffolds (BM, AA and BA) were physico-chemically characterized and functionally evaluated using human hepatocarcinoma cells (HepG2) and primary neonatal rat hepatocytes. The growth and distribution of hepatocytes within the scaffolds were tracked by FESEM, alamar blue proliferation assay and live/dead staining. Hemocompatible BA scaffolds supported the formation of high density hepatocyte clusters, facilitating cell-matrix and cell-cell interactions. Blend scaffolds evinced enhanced liver-specific functions of cultured hepatocytes in terms of albumin synthesis, urea synthesis and cytochrome P450 enzyme activity over 21 days. Subcutaneous implantation of scaffolds demonstrated minimal macrophage infiltration in blend scaffolds. These findings substantiate that the integral property of blend (BA) scaffold offers a befitting environment by influencing spheroidal growth of hepatocytes with enhanced biological activity. Collectively, the present study provides a new 3D bio-matrix niche for growing functional liver cells that would have future prospects in BAL as well as regenerative medicine. An end stage liver disease called cirrhosis perturbs the self-healing ability and physiological functions of liver. Due to the scarcity of healthy donors, a functional in vitro hepatic construct retaining the liver-specific functions is in great demand for its prospects in bioartificial liver (BAL) and cell-based tissue engineering. Physicochemical attributes of a matrix influence the behavior of cultured hepatocytes in terms of attachment, morphology and functionality. Mulberry and non-mulberry silk fibroin presents unique amino acid sequence with difference in hydrophobicity and crystallinity. Considering this, the present study focuses on the development of a suitable three-dimensional (3D) bioactive matrix incorporating both mulberry silk fibroin and cell adhesion motif (RGD) rich non-mulberry silk fibroin. Porous silk blend scaffolds facilitated the formation of hepatocyte clusters with enhanced liver-specific functions emphasizing both cell-cell and cell-matrix interactions. Hemocompatibility and integral property of blend scaffolds offers a biological niche for seeding functional liver cells that would have future prospects in biohybrid devices. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter.

    PubMed

    Arai, Kenichi; Yoshida, Toshiko; Okabe, Motonori; Goto, Mitsuaki; Mir, Tanveer Ahmad; Soko, Chika; Tsukamoto, Yoshinari; Akaike, Toshihiro; Nikaido, Toshio; Zhou, Kaixuan; Nakamura, Makoto

    2017-06-01

    The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1583-1592, 2017. © 2017 Wiley Periodicals, Inc.

  15. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction.

    PubMed

    Bačáková, L; Novotná, K; Pařízek, M

    2014-01-01

    Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.

  16. Emerging Technologies for Assembly of Microscale Hydrogels

    PubMed Central

    Kavaz, Doga; Demirel, Melik C.; Demirci, Utkan

    2013-01-01

    Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications. PMID:23184717

  17. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization.

    PubMed

    Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan

    2018-04-27

    Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Dual-Purpose Bioreactors to Monitor Noninvasive Physical and Biochemical Markers of Kidney and Liver Scaffold Recellularization

    PubMed Central

    Uzarski, Joseph S.; Bijonowski, Brent M.; Wang, Bo; Ward, Heather H.; Wandinger-Ness, Angela

    2015-01-01

    Analysis of perfusion-based bioreactors for organ engineering and a detailed evaluation of physical and biochemical parameters that measure dynamic changes within maturing cell-laden scaffolds are critical components of ex vivo tissue development that remain understudied topics in the tissue and organ engineering literature. Intricately designed bioreactors that house developing tissue are critical to properly recapitulate the in vivo environment, deliver nutrients within perfused media, and monitor physiological parameters of tissue development. Herein, we provide an in-depth description and analysis of two dual-purpose perfusion bioreactors that improve upon current bioreactor designs and enable comparative analyses of ex vivo scaffold recellularization strategies and cell growth performance during long-term maintenance culture of engineered kidney or liver tissues. Both bioreactors are effective at maximizing cell seeding of small-animal organ scaffolds and maintaining cell survival in extended culture. We further demonstrate noninvasive monitoring capabilities for tracking dynamic changes within scaffolds as the native cellular component is removed during decellularization and model human cells are introduced into the scaffold during recellularization and proliferate in maintenance culture. We found that hydrodynamic pressure drop (ΔP) across the retained scaffold vasculature is a noninvasive measurement of scaffold integrity. We further show that ΔP, and thus resistance to fluid flow through the scaffold, decreases with cell loss during decellularization and correspondingly increases to near normal values for whole organs following recellularization of the kidney or liver scaffolds. Perfused media may be further sampled in real time to measure soluble biomarkers (e.g., resazurin, albumin, or kidney injury molecule-1) that indicate degree of cellular metabolic activity, synthetic function, or engraftment into the scaffold. Cell growth within bioreactors is validated for primary and immortalized cells, and the design of each bioreactor is scalable to accommodate any three-dimensional scaffold (e.g., synthetic or naturally derived matrix) that contains conduits for nutrient perfusion to deliver media to growing cells and monitor noninvasive parameters during scaffold repopulation, broadening the applicability of these bioreactor systems. PMID:25929317

  19. Dual-Purpose Bioreactors to Monitor Noninvasive Physical and Biochemical Markers of Kidney and Liver Scaffold Recellularization.

    PubMed

    Uzarski, Joseph S; Bijonowski, Brent M; Wang, Bo; Ward, Heather H; Wandinger-Ness, Angela; Miller, William M; Wertheim, Jason A

    2015-10-01

    Analysis of perfusion-based bioreactors for organ engineering and a detailed evaluation of physical and biochemical parameters that measure dynamic changes within maturing cell-laden scaffolds are critical components of ex vivo tissue development that remain understudied topics in the tissue and organ engineering literature. Intricately designed bioreactors that house developing tissue are critical to properly recapitulate the in vivo environment, deliver nutrients within perfused media, and monitor physiological parameters of tissue development. Herein, we provide an in-depth description and analysis of two dual-purpose perfusion bioreactors that improve upon current bioreactor designs and enable comparative analyses of ex vivo scaffold recellularization strategies and cell growth performance during long-term maintenance culture of engineered kidney or liver tissues. Both bioreactors are effective at maximizing cell seeding of small-animal organ scaffolds and maintaining cell survival in extended culture. We further demonstrate noninvasive monitoring capabilities for tracking dynamic changes within scaffolds as the native cellular component is removed during decellularization and model human cells are introduced into the scaffold during recellularization and proliferate in maintenance culture. We found that hydrodynamic pressure drop (ΔP) across the retained scaffold vasculature is a noninvasive measurement of scaffold integrity. We further show that ΔP, and thus resistance to fluid flow through the scaffold, decreases with cell loss during decellularization and correspondingly increases to near normal values for whole organs following recellularization of the kidney or liver scaffolds. Perfused media may be further sampled in real time to measure soluble biomarkers (e.g., resazurin, albumin, or kidney injury molecule-1) that indicate degree of cellular metabolic activity, synthetic function, or engraftment into the scaffold. Cell growth within bioreactors is validated for primary and immortalized cells, and the design of each bioreactor is scalable to accommodate any three-dimensional scaffold (e.g., synthetic or naturally derived matrix) that contains conduits for nutrient perfusion to deliver media to growing cells and monitor noninvasive parameters during scaffold repopulation, broadening the applicability of these bioreactor systems.

  20. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    PubMed Central

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  1. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    PubMed

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  2. Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel.

    PubMed

    Lee, Ho-Joon; Son, Myung Jin; Ahn, Jiwon; Oh, Soo Jin; Lee, Mihee; Kim, Ansoon; Jeung, Yun-Ji; Kim, Han-Gyeul; Won, Misun; Lim, Jung Hwa; Kim, Nam-Soon; Jung, Cho-Rock; Chung, Kyung-Sook

    2017-12-01

    Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    PubMed Central

    Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D

    2015-01-01

    Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that diminished Kupffer cell organelle motion correlated with ZnO ENP-induced liver injury. PMID:26170657

  4. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro.

    PubMed

    Loneker, Abigail E; Faulk, Denver M; Hussey, George S; D'Amore, Antonio; Badylak, Stephen F

    2016-04-01

    Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubilized, and then used as a media supplement for primary rat hepatocytes (PRH). The four species of LECM investigated were human, porcine, canine and rat. Cell morphology, albumin secretion, and ammonia metabolism were used to assess maintenance of hepatocyte phenotype. Biochemical and mechanical characterization of each LECM were also conducted. Results showed that PRH's supplemented with canine and porcine LECM maintained their phenotype to a greater extent compared to all other groups. PRH's supplemented with canine and porcine LECM showed increased bile production, increased albumin production, and the formation of multinucleate cells. The findings of the present study suggest that solubilized liver ECM can support in-vitro hepatocyte culture and should be considered for therapeutic and diagnostic techniques that utilize hepatocytes. © 2016 Wiley Periodicals, Inc.

  5. Menstrual blood-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells*

    PubMed Central

    Mou, Xiao-zhou; Lin, Jian; Chen, Jin-yang; Li, Yi-fei; Wu, Xiao-xing; Xiang, Bing-yu; Li, Cai-yun; Ma, Ju-ming; Xiang, Charlie

    2013-01-01

    Orthotopic liver transplantation (OLT) is the only proven effective treatment for both end-stage and metabolic liver diseases. Hepatocyte transplantation is a promising alternative for OLT, but the lack of available donor livers has hampered its clinical application. Hepatocyte-like cells (HLCs) differentiated from many multi-potential stem cells can help repair damaged liver tissue. Yet almost suitable cells currently identified for human use are difficult to harvest and involve invasive procedures. Recently, a novel mesenchymal stem cell derived from human menstrual blood (MenSC) has been discovered and obtained easily and repeatedly. In this study, we examined whether the MenSCs are able to differentiate into functional HLCs in vitro. After three weeks of incubation in hepatogenic differentiation medium containing hepatocyte growth factor (HGF), fibroblast growth factor-4 (FGF-4), and oncostain M (OSM), cuboidal HLCs were observed, and cells also expressed hepatocyte-specific marker genes including albumin (ALB), α-fetoprotein (AFP), cytokeratin 18/19 (CK18/19), and cytochrome P450 1A1/3A4 (CYP1A1/3A4). Differentiated cells further demonstrated in vitro mature hepatocyte functions such as urea synthesis, glycogen storage, and indocyanine green (ICG) uptake. After intrasplenic transplantation into mice with 2/3 partial hepatectomy, the MenSC-derived HLCs were detected in recipient livers and expressed human ALB protein. We also showed that MenSC-derived HLC transplantation could restore the serum ALB level and significantly suppressed transaminase activity of liver injury animals. In conclusion, MenSCs may serve as an ideal, easily accessible source of material for tissue engineering and cell therapy of liver tissues. PMID:24190442

  6. Current Strategies for Quantitating Fibrosis in Liver Biopsy

    PubMed Central

    Wang, Yan; Hou, Jin-Lin

    2015-01-01

    Objective: The present mini-review updated the progress in methodologies based on using liver biopsy. Data Sources: Articles for study of liver fibrosis, liver biopsy or fibrosis assessment published on high impact peer review journals from 1980 to 2014. Study Selection: Key articles were selected mainly according to their levels of relevance to this topic and citations. Results: With the recently mounting progress in chronic liver disease therapeutics, comes by a pressing need for precise, accurate, and dynamic assessment of hepatic fibrosis and cirrhosis in individual patients. Histopathological information is recognized as the most valuable data for fibrosis assessment. Conventional histology categorical systems describe the changes of fibrosis patterns in liver tissue; but the simplified ordinal digits assigned by these systems cannot reflect the fibrosis dynamics with sufficient precision and reproducibility. Morphometric assessment by computer assist digital image analysis, such as collagen proportionate area (CPA), detects change of fibrosis amount in tissue section in a continuous variable, and has shown its independent diagnostic value for assessment of advanced or late-stage of fibrosis. Due to its evident sensitivity to sampling variances, morphometric measurement is feasible to be taken as a reliable statistical parameter for the study of a large cohort. Combining state-of-art imaging technology and fundamental principle in Tissue Engineering, structure-based quantitation was recently initiated with a novel proof-of-concept tool, qFibrosis. qFibrosis showed not only the superior performance to CPA in accurately and reproducibly differentiating adjacent stages of fibrosis, but also the possibility for facilitating analysis of fibrotic regression and cirrhosis sub-staging. Conclusions: With input from multidisciplinary innovation, liver biopsy assessment as a new “gold standard” is anticipated to substantially support the accelerated progress of Hepatology medicine. PMID:25591571

  7. In Situ Tissue Engineering Using Magnetically Guided Three-Dimensional Cell Patterning

    PubMed Central

    Grogan, Shawn P.; Pauli, Chantal; Chen, Peter; Du, Jiang; Chung, Christine B.; Kong, Seong Deok; Colwell, Clifford W.; Lotz, Martin K.; Jin, Sungho

    2012-01-01

    Manipulation of cell patterns in three dimensions in a manner that mimics natural tissue organization and function is critical for cell biological studies and likely essential for successfully regenerating tissues—especially cells with high physiological demands, such as those of the heart, liver, lungs, and articular cartilage.1,2 In the present study, we report on the feasibility of arranging iron oxide-labeled cells in three-dimensional hydrogels using magnetic fields. By manipulating the strength, shape, and orientation of the magnetic field and using crosslinking gradients in hydrogels, multi-directional cell arrangements can be produced in vitro and even directly in situ. We show that these ferromagnetic particles are nontoxic between 0.1 and 10 mg/mL; certain species of particles can permit or even enhance tissue formation, and these particles can be tracked using magnetic resonance imaging. Taken together, this approach can be adapted for studying basic biological processes in vitro, for general tissue engineering approaches, and for producing organized repair tissues directly in situ. PMID:22224660

  8. In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering.

    PubMed

    Chang, Siou Han; Huang, Han Hsiang; Kang, Pei Leun; Wu, Yu Chian; Chang, Ming-Huang; Kuo, Shyh Ming

    2017-11-01

    Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl 4 -induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl 4 -induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting

    PubMed Central

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-01-01

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling. PMID:26858399

  10. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.

    PubMed

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-02-23

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling.

  11. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    PubMed

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Regenerative medicine as applied to solid organ transplantation: current status and future challenges

    PubMed Central

    Orlando, Giuseppe; Baptista, Pedro; Birchall, Martin; De Coppi, Paolo; Farney, Alan; Guimaraes-Souza, Nadia K.; Opara, Emmanuel; Rogers, Jeffrey; Seliktar, Dror; Shapira-Schweitzer, Keren; Stratta, Robert J.; Atala, Anthony; Wood, Kathryn J.; Soker, Shay

    2013-01-01

    Summary In the last two decades, regenerative medicine has shown the potential for “bench-to-bedside” translational research in specific clinical settings. Progress made in cell and stem cell biology, material sciences and tissue engineering enabled researchers to develop cutting-edge technology which has lead to the creation of nonmodular tissue constructs such as skin, bladders, vessels and upper airways. In all cases, autologous cells were seeded on either artificial or natural supporting scaffolds. However, such constructs were implanted without the reconstruction of the vascular supply, and the nutrients and oxygen were supplied by diffusion from adjacent tissues. Engineering of modular organs (namely, organs organized in functioning units referred to as modules and requiring the reconstruction of the vascular supply) is more complex and challenging. Models of functioning hearts and livers have been engineered using “natural tissue” scaffolds and efforts are underway to produce kidneys, pancreata and small intestine. Creation of custom-made bioengineered organs, where the cellular component is exquisitely autologous and have an internal vascular network, will theoretically overcome the two major hurdles in transplantation, namely the shortage of organs and the toxicity deriving from lifelong immuno-suppression. This review describes recent advances in the engineering of several key tissues and organs. PMID:21062367

  13. Roles of cell adhesion and cytoskeleton activity in Entamoeba histolytica pathogenesis: a delicate balance.

    PubMed

    Tavares, Paulo; Rigothier, Marie-Christine; Khun, Huot; Roux, Pascal; Huerre, Michel; Guillén, Nancy

    2005-03-01

    The protozoan parasite Entamoeba histolytica colonizes the human large bowel. Invasion of the intestinal epithelium causes amoebic colitis and opens the route for amoebic liver abscesses. The parasite relies on its dynamic actomyosin cytoskeleton and on surface adhesion molecules for dissemination in the human tissues. Here we show that the galactose/N-acetylgalactosamine (Gal/GalNAc) lectin clusters in focal structures localized in the region of E. histolytica that contacts monolayers of enterocytes. Disruption of myosin II activity impairs the formation of these structures and renders the trophozoites avirulent for liver abscess development. Production of the cytoplasmic domain of the E. histolytica Gal/GalNAc lectin in engineered trophozoites causes reduced adhesion to enterocytes. Intraportal delivery of these parasites to the liver leads to the formation of a large number of small abscesses with disorganized morphology that are localized in the vicinity of blood vessels. The data support a model for invasion in which parasite motility is essential for establishment of infectious foci, while the adhesion to host cells modulates the distribution of trophozoites in the liver and their capacity to migrate in the hepatic tissue.

  14. Roles of Cell Adhesion and Cytoskeleton Activity in Entamoeba histolytica Pathogenesis: a Delicate Balance

    PubMed Central

    Tavares, Paulo; Rigothier, Marie-Christine; Khun, Huot; Roux, Pascal; Huerre, Michel; Guillén, Nancy

    2005-01-01

    The protozoan parasite Entamoeba histolytica colonizes the human large bowel. Invasion of the intestinal epithelium causes amoebic colitis and opens the route for amoebic liver abscesses. The parasite relies on its dynamic actomyosin cytoskeleton and on surface adhesion molecules for dissemination in the human tissues. Here we show that the galactose/N-acetylgalactosamine (Gal/GalNAc) lectin clusters in focal structures localized in the region of E. histolytica that contacts monolayers of enterocytes. Disruption of myosin II activity impairs the formation of these structures and renders the trophozoites avirulent for liver abscess development. Production of the cytoplasmic domain of the E. histolytica Gal/GalNAc lectin in engineered trophozoites causes reduced adhesion to enterocytes. Intraportal delivery of these parasites to the liver leads to the formation of a large number of small abscesses with disorganized morphology that are localized in the vicinity of blood vessels. The data support a model for invasion in which parasite motility is essential for establishment of infectious foci, while the adhesion to host cells modulates the distribution of trophozoites in the liver and their capacity to migrate in the hepatic tissue. PMID:15731078

  15. Galactosylated electrospun membranes for hepatocyte sandwich culture.

    PubMed

    Chien, Hsiu-Wen; Lai, Juin-Yih; Tsai, Wei-Bor

    2014-04-01

    In this work, we developed a galactocylated electrospun polyurethane membrane for sandwich culture of hepatocyte sandwich culture. The electrospun fibrous membranes were bio-functionalized with galactose molecules by a UV-crosslinked layer-by-layer polyelectrolyte multilayer deposition technique. The galactosylated electrospun membranes were employed as a top support membrane for the sandwich culture of HepG2/C3A cells on a collagen substrate. Our results demonstrate that HepG2/C3A cells covered by the galactosylated PU membranes form multi-cellular aggregates and lead to improved albumin secretion ability compared to the control membranes (unmodified PU or poly(ethylene imine)-modified PU). Our study reveals the potential of galactosylated electrospun membranes in the application of liver tissue engineering and the regeneration of liver-tissue substitutes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells.

    PubMed

    Cawood, Ryan; Chen, Hannah H; Carroll, Fionnadh; Bazan-Peregrino, Miriam; van Rooijen, Nico; Seymour, Leonard W

    2009-05-01

    Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-122 within the 3' UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (5x10(10) viral particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4 microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for designing safe attenuated vaccines applied across a broad range of viral diseases.

  17. Consideration Of The Toxicity of Manufactured Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haasch, Mary L.; McClellan-Green, Patricia; Oberdörster, Eva

    2005-09-01

    Fullerene (C60 and single- and multi-wall carbon nanotubes, SWCNT and MWCNT, respectively) is engineered to be redox active and it is thought that the potential toxicity of fullerene exposure is related to the formation of reactive oxygen species. During manufacture, transport or during scientific investigation, there is a potential for human or environmental exposure to nanoparticles. Several studies regarding human exposure have indicated reasons for concern. There is a lack of studies addressing the toxicity of engineered nanoparticles in aquatic species but one study using the fish, largemouth bass, exposed to fullerene has shown increased (10-17-fold) lipid peroxidation (LPO) in the brain. It is likely that repair enzymes or anti-oxidants may have been induced in gill and liver tissues that had reduced LPO compared to control tissues (Oberdörster, 2004). In support of that hypothesis, suppressive subtractive hybridization was used with liver tissue and the biotransformation enzyme, cytochrome P450, specifically CYP2K4, and other oxidoreductases related to metabolism, along with repair enzymes, were increased while proteins related to normal physiological homeostasis were decreased in fullerene-exposed fish. In a new study involving the exposure of a toxicological model fish species, the fathead minnow (Pimephales promelas) to water-soluble fullerene (nC60), uptake and distribution indicated that nC60 elevated LPO in the brain and induced expression of CYP2 family isozymes in the liver. In an in vitro study, BSA-coated SWCNT interfered with biotransformation enzyme activity. These studies taken together provide support to the hypothesis that the toxicity of manufactured nanoparticles is related to oxidative stress and provide insight into possible mechanisms of toxicity as well as providing information for evaluating the risk to aquatic organisms exposed to manufactured nanoparticles.

  18. In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device

    PubMed Central

    Skardal, Aleksander; Devarasetty, Mahesh; Soker, Shay; Hall, Adam R

    2017-01-01

    3D tissue models are increasingly being implemented for drug and toxicology testing. However, the creation of tissue-engineered constructs for this purpose often relies on complex biofabrication techniques that are time consuming, expensive, and difficult to scale up. Here, we describe a strategy for realizing multiple tissue constructs in a parallel microfluidic platform using an approach that is simple and can be easily scaled for high-throughput formats. Liver cells mixed with a UV-crosslinkable hydrogel solution are introduced into parallel channels of a sealed microfluidic device and photopatterned to produce stable tissue constructs in situ. The remaining uncrosslinked material is washed away, leaving the structures in place. By using a hydrogel that specifically mimics the properties of the natural extracellular matrix, we closely emulate native tissue, resulting in constructs that remain stable and functional in the device during a 7-day culture time course under recirculating media flow. As proof of principle for toxicology analysis, we expose the constructs to ethyl alcohol (0–500 mM) and show that the cell viability and the secretion of urea and albumin decrease with increasing alcohol exposure, while markers for cell damage increase. PMID:26355538

  19. In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device.

    PubMed

    Skardal, Aleksander; Devarasetty, Mahesh; Soker, Shay; Hall, Adam R

    2015-09-10

    3D tissue models are increasingly being implemented for drug and toxicology testing. However, the creation of tissue-engineered constructs for this purpose often relies on complex biofabrication techniques that are time consuming, expensive, and difficult to scale up. Here, we describe a strategy for realizing multiple tissue constructs in a parallel microfluidic platform using an approach that is simple and can be easily scaled for high-throughput formats. Liver cells mixed with a UV-crosslinkable hydrogel solution are introduced into parallel channels of a sealed microfluidic device and photopatterned to produce stable tissue constructs in situ. The remaining uncrosslinked material is washed away, leaving the structures in place. By using a hydrogel that specifically mimics the properties of the natural extracellular matrix, we closely emulate native tissue, resulting in constructs that remain stable and functional in the device during a 7-day culture time course under recirculating media flow. As proof of principle for toxicology analysis, we expose the constructs to ethyl alcohol (0-500 mM) and show that the cell viability and the secretion of urea and albumin decrease with increasing alcohol exposure, while markers for cell damage increase.

  20. Design of liver functional reserve monitor based on three-wavelength from IR to NIR.

    PubMed

    Ye, Fuli; Zhan, Huimiao; Shi, Guilian

    2018-05-04

    The preoperative evaluation of liver functional reserve is very important to determine the excision of liver lobe for the patients with liver cancer. There already exist many effective evaluation methods, but these ones have many disadvantages such as large trauma, complicated process and so on. Therefore, it is essential to develop a fast, accurate and simple detection method of liver functional reserve for the practical application in the clinical engineering field. According to the principle of spectrophotometry, this paper proposes a detection method of liver functional reserve based on three-wavelength from infrared light (IR) to near-infrared light (NIR), in which the artery pulse, the vein pulse and the move of tissue are taken into account. By using near-infrared photoelectric sensor technology and excreting experiment of indocyanine green, a minimally invasive, fast and simple testing equipment is designed in this paper. The testing result shows this equipment can greatly reduce the interference from human body and ambient, realize continuous and real-time detection of arterial degree of blood oxygen saturation and liver functional reserve.

  1. The enhancement of differentiating adipose derived mesenchymal stem cells toward hepatocyte like cells using gelatin cryogel scaffold.

    PubMed

    Ghaderi Gandomani, Maryam; Sahebghadam Lotfi, Abbas; Kordi Tamandani, Dormohammad; Arjmand, Sareh; Alizadeh, Shaban

    2017-09-30

    Liver tissue engineering creates a promising methodology for developing functional tissue to restore or improve the function of lost or damaged liver by using appropriate cells and biologically compatible scaffolds. The present paper aims to study the hepatogenic potential of human adipose derived mesenchymal stem cells (hADSCs) on a 3D gelatin scaffold in vitro. For this purpose, mesenchymal stem cells were isolated from human adipose tissue and characterized by flowcytometry analysis and mesodermal lineage differentiation capacity. Then, porous cryogel scaffolds were fabricated by cryogelating the gelatin using glutaraldehyde as the crosslinking agent. The structure of the scaffolds as well as the adhesion and proliferation of the cells were then determined by Scanning Electron Microscopy (SEM) analysis and MTT assay, respectively. The efficiency of hepatic differentiation of hADSCs on 2D and 3D culture systems has been assessed by means of morphological, cytological, molecular and biochemical approaches. Based on the results of flowcytometry, the isolated cells were positive for hMSC specific markers and negative for hematopoietic markers. Further, the multipotency of these cells was confirmed by adipogenic and osteogenic differentiation and the highly porous structure of scaffolds was characterized by SEM images. Biocompatibility was observed in the fabricated gelatin scaffolds and the adhesion and proliferation of hADSCs were promoted without any cytotoxicity effects. In addition, compared to 2D TCPS, the fabricated scaffolds provided more appropriate microenvironment resulting in promoting the differentiation of hADSCs toward hepatocyte-like cells with higher expression of hepatocyte-specific markers and appropriate functional characteristics such as increased levels of urea biosynthesis and glycogen storage. Finally, the created 3D gelatin scaffold could provide an appropriate matrix for hepatogenic differentiation of hADSCs, which could be considered for liver tissue engineering applications. Copyright © 2017. Published by Elsevier Inc.

  2. Characterization of a Liver Organoid Tissue Composed of Hepatocytes and Fibroblasts in Dense Collagen Fibrils

    PubMed Central

    Tamai, Miho; Adachi, Eijiro

    2013-01-01

    The adult liver is wrapped in a connective tissue sheet called the liver capsule, which consists of collagen fibrils and fibroblasts. In this study, we set out to construct a liver organoid tissue that would be comparable to the endogenous liver, using a bioreactor. In vitro liver organoid tissue was generated by combining collagen fibrils, fibroblasts, and primary murine hepatocytes or Hep G2 on a mesh of poly-lactic acid fabric using a bioreactor. Then, the suitability of this liver organoid tissue for transplantation was tested by implanting the constructs into partially hepatectomized BALB/cA-nu/nu mice. As determined by using scanning and transmission electron microscopes, the liver organoid tissues were composed of densely packed collagen fibrils with fibroblasts and aggregates of oval or spherical hepatocytes. Angiogenesis was induced after the transplantation, and blood vessels connected the liver organoid tissue with the surrounding tissue. Thus, a novel approach was applied to generate transplantable liver organoid tissue within a condensed collagen fibril matrix. These results suggested that a dense collagen network populated with fibroblasts can hold a layer of concentrated hepatocytes, providing a three-dimensional microenvrionment suitable for the reestablishment of cell–cell and cell–extracellular matrix (ECM) interactions, and resulting in the maintenance of their liver-specific functions. This liver organoid tissue may be useful for the study of intrahepatic functions of various cells, cytokines, and ECMs, and may fulfill the fundamental requirements of a donor tissue. PMID:23815236

  3. Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine.

    PubMed

    Skeldon, Gregor; Lucendo-Villarin, Baltasar; Shu, Wenmiao

    2018-07-05

    Stem cell technology in regenerative medicine has the potential to provide an unlimited supply of cells for drug testing, medical transplantation and academic research. In order to engineer a realistic tissue model using stem cells as an alternative to human tissue, it is essential to create artificial stem cell microenvironment or niches. Three-dimensional (3D) bioprinting is a promising tissue engineering field that offers new opportunities to precisely place stem cells within their niches layer-by-layer. This review covers bioprinting technologies, the current development of 'bio-inks' and how bioprinting has already been applied to stem-cell culture, as well as their applications for human regenerative medicine. The key considerations for bioink properties such as stiffness, stability and biodegradation, biocompatibility and printability are highlighted. Bioprinting of both adult and pluriopotent stem cells for various types of artificial tissues from liver to brain has been reviewed. 3D bioprinting of stem-cell derived tissues for human regenerative medicine is an exciting emerging area that represents opportunities for new research, industries and products as well as future challenges in clinical translation.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).

  4. Microgravity

    NASA Image and Video Library

    2000-12-15

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  5. Laser-guided direct writing for three-dimensional tissue engineering: Analysis and application of radiation forces

    NASA Astrophysics Data System (ADS)

    Nahmias, Yaakov Koby

    Tissue Engineering aims for the creation of functional tissues or organs using a combination of biomaterials and living cells. Artificial tissues can be implanted in patients to restore tissue function that was lost due to trauma, disease, or genetic disorder. Tissue equivalents may also be used to screen the effects of drugs and toxins, reducing the use of animals in research. One of the principle limitations to the size of engineered tissue is oxygen and nutrient transport. Lacking their own vascular bed, cells embedded in the engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. Establishing capillaries within the tissue prior to implantation can potentially eliminate this limitation. One approach to establishing capillaries within the tissue is to directly write endothelial cells with micrometer accuracy as it is being built. The patterned endothelial cells will then self-assemble into vascular structures within the engineering tissue. The cell patterning technique known as laser-guided direct writing can confine multiple cells in a laser beam and deposit them as a steady stream on any non-absorbing surface with micrometer scale accuracy. By applying the generalized Lorenz-Mie theory for light scattering on laser-guided direct writing we were able to accurately predict the behavior of with various cells and particles in the focused laser. In addition, two dimensionless parameters were identified for general radiation-force based system design. Using laser-guided direct writing we were able to direct the assembly of endothelial vascular structures with micrometer accuracy in two and three dimensions. The patterned vascular structures provided the backbone for subsequent in vitro liver morphogenesis. Our studies show that hepatocytes migrate toward and adhere to endothelial vascular structures in response to endothelial-secreted hepatocyte growth factor (HGF). Our approach has the advantage of retaining the natural heterotypic cell-cell interaction and spatial arrangement of native tissue, which is important for proper tissue function.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Microsoft Office; Windows MediaPlayer or RealPlayer.

  6. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models

    PubMed Central

    Caddeo, Silvia; Boffito, Monica; Sartori, Susanna

    2017-01-01

    In the tissue engineering (TE) paradigm, engineering and life sciences tools are combined to develop bioartificial substitutes for organs and tissues, which can in turn be applied in regenerative medicine, pharmaceutical, diagnostic, and basic research to elucidate fundamental aspects of cell functions in vivo or to identify mechanisms involved in aging processes and disease onset and progression. The complex three-dimensional (3D) microenvironment in which cells are organized in vivo allows the interaction between different cell types and between cells and the extracellular matrix, the composition of which varies as a function of the tissue, the degree of maturation, and health conditions. In this context, 3D in vitro models can more realistically reproduce a tissue or organ than two-dimensional (2D) models. Moreover, they can overcome the limitations of animal models and reduce the need for in vivo tests, according to the “3Rs” guiding principles for a more ethical research. The design of 3D engineered tissue models is currently in its development stage, showing high potential in overcoming the limitations of already available models. However, many issues are still opened, concerning the identification of the optimal scaffold-forming materials, cell source and biofabrication technology, and the best cell culture conditions (biochemical and physical cues) to finely replicate the native tissue and the surrounding environment. In the near future, 3D tissue-engineered models are expected to become useful tools in the preliminary testing and screening of drugs and therapies and in the investigation of the molecular mechanisms underpinning disease onset and progression. In this review, the application of TE principles to the design of in vitro 3D models will be surveyed, with a focus on the strengths and weaknesses of this emerging approach. In addition, a brief overview on the development of in vitro models of healthy and pathological bone, heart, pancreas, and liver will be presented. PMID:28798911

  7. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models.

    PubMed

    Caddeo, Silvia; Boffito, Monica; Sartori, Susanna

    2017-01-01

    In the tissue engineering (TE) paradigm, engineering and life sciences tools are combined to develop bioartificial substitutes for organs and tissues, which can in turn be applied in regenerative medicine, pharmaceutical, diagnostic, and basic research to elucidate fundamental aspects of cell functions in vivo or to identify mechanisms involved in aging processes and disease onset and progression. The complex three-dimensional (3D) microenvironment in which cells are organized in vivo allows the interaction between different cell types and between cells and the extracellular matrix, the composition of which varies as a function of the tissue, the degree of maturation, and health conditions. In this context, 3D in vitro models can more realistically reproduce a tissue or organ than two-dimensional (2D) models. Moreover, they can overcome the limitations of animal models and reduce the need for in vivo tests, according to the "3Rs" guiding principles for a more ethical research. The design of 3D engineered tissue models is currently in its development stage, showing high potential in overcoming the limitations of already available models. However, many issues are still opened, concerning the identification of the optimal scaffold-forming materials, cell source and biofabrication technology, and the best cell culture conditions (biochemical and physical cues) to finely replicate the native tissue and the surrounding environment. In the near future, 3D tissue-engineered models are expected to become useful tools in the preliminary testing and screening of drugs and therapies and in the investigation of the molecular mechanisms underpinning disease onset and progression. In this review, the application of TE principles to the design of in vitro 3D models will be surveyed, with a focus on the strengths and weaknesses of this emerging approach. In addition, a brief overview on the development of in vitro models of healthy and pathological bone, heart, pancreas, and liver will be presented.

  8. Engineering extracellular matrix through nanotechnology.

    PubMed

    Kelleher, Cassandra M; Vacanti, Joseph P

    2010-12-06

    The goal of tissue engineering is the creation of a living device that can restore, maintain or improve tissue function. Behind this goal is a new idea that has emerged from twentieth century medicine, science and engineering. It is preceded by centuries of human repair and replacement with non-living materials adapted to restore function and cosmetic appearance to patients whose tissues have been destroyed by disease, trauma or congenital abnormality. The nineteenth century advanced replacement and repair strategies based on moving living structures from a site of normal tissue into a site of defects created by the same processes. Donor skin into burn wounds, tendon transfers, intestinal replacements into the urinary tract, toes to replace fingers are all examples. The most radical application is that of vital organ transplantation in which a vital part such as heart, lung or liver is removed from one donor, preserved for transfer and implanted into a patient dying of end-stage organ failure. Tissue engineering and regenerative medicine have advanced a general strategy combining the cellular elements of living tissue with sophisticated biomaterials to produce living structures of sufficient size and function to improve patients' lives. Multiple strategies have evolved and the application of nanotechnology can only improve the field. In our era, by necessity, any medical advance must be successfully commercialized to allow widespread application to help the greatest number of patients. It follows that business models and regulatory agencies must adapt and change to enable these new technologies to emerge. This brief review will discuss the science of nanotechnology and how it has been applied to this evolving field. We will then briefly summarize the history of commercialization of tissue engineering and suggest that nanotechnology may be of use in breeching the barriers to commercialization although its primary mission is to improve the technology by solving some remaining and vexing problems in its science and engineering aspects.

  9. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery.

    PubMed

    Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi

    2017-07-01

    The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.

  10. Recent Progress in Hepatocyte Culture Models and Their Application to the Assessment of Drug Metabolism, Transport, and Toxicity in Drug Discovery: The Value of Tissue Engineering for the Successful Development of a Microphysiological System.

    PubMed

    Tetsuka, Kazuhiro; Ohbuchi, Masato; Tabata, Kenji

    2017-09-01

    Tissue engineering technology has provided many useful culture models. This article reviews the merits of this technology in a hepatocyte culture system and describes the applications of the sandwich-cultured hepatocyte model in drug discovery. In addition, we also review recent investigations of the utility of the 3-dimensional bioprinted human liver tissue model and spheroid model. Finally, we present the future direction and developmental challenges of a hepatocyte culture model for the successful establishment of a microphysiological system, represented as an organ-on-a-chip and even as a human-on-a-chip. A merit of advanced culture models is their potential use for detecting hepatotoxicity through repeated exposure to chemicals as they allow long-term culture while maintaining hepatocyte functionality. As a future direction, such advanced hepatocyte culture systems can be connected to other tissue models for evaluating tissue-to-tissue interaction beyond cell-to-cell interaction. This combination of culture models could represent parts of the human body in a microphysiological system. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  12. Shared liver-like transcriptional characteristics in liver metastases and corresponding primary colorectal tumors.

    PubMed

    Cheng, Jun; Song, Xuekun; Ao, Lu; Chen, Rou; Chi, Meirong; Guo, You; Zhang, Jiahui; Li, Hongdong; Zhao, Wenyuan; Guo, Zheng; Wang, Xianlong

    2018-01-01

    Background & Aims : Primary tumors of colorectal carcinoma (CRC) with liver metastasis might gain some liver-specific characteristics to adapt the liver micro-environment. This study aims to reveal potential liver-like transcriptional characteristics associated with the liver metastasis in primary colorectal carcinoma. Methods: Among the genes up-regulated in normal liver tissues versus normal colorectal tissues, we identified "liver-specific" genes whose expression levels ranked among the bottom 10% ("unexpressed") of all measured genes in both normal colorectal tissues and primary colorectal tumors without metastasis. These liver-specific genes were investigated for their expressions in both the primary tumors and the corresponding liver metastases of seven primary CRC patients with liver metastasis using microdissected samples. Results: Among the 3958 genes detected to be up-regulated in normal liver tissues versus normal colorectal tissues, we identified 12 liver-specific genes and found two of them, ANGPTL3 and CFHR5 , were unexpressed in microdissected primary colorectal tumors without metastasis but expressed in both microdissected liver metastases and corresponding primary colorectal tumors (Fisher's exact test, P < 0.05). Genes co-expressed with ANGPTL3 and CFHR5 were significantly enriched in metabolism pathways characterizing liver tissues, including "starch and sucrose metabolism" and "drug metabolism-cytochrome P450". Conclusions: For primary CRC with liver metastasis, both the liver metastases and corresponding primary colorectal tumors may express some liver-specific genes which may help the tumor cells adapt the liver micro-environment.

  13. Rotating microgravity-bioreactor cultivation enhances the hepatic differentiation of mouse embryonic stem cells on biodegradable polymer scaffolds.

    PubMed

    Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian

    2012-11-01

    Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.

  14. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  15. Determination of the electrical conductivity of human liver metastases: impact on therapy planning in the radiofrequency ablation of liver tumors.

    PubMed

    Zurbuchen, Urte; Poch, Franz; Gemeinhardt, Ole; Kreis, Martin E; Niehues, Stefan M; Vahldieck, Janis L; Lehmann, Kai S

    2017-02-01

    Background Radiofrequency ablation is used to induce thermal necrosis in the treatment of liver metastases. The specific electrical conductivity of a liver metastasis has a distinct influence on the heat formation and resulting tumor ablation within the tissue. Purpose To examine the electrical conductivity σ of human colorectal liver metastases and of tumor-free liver tissue in surgical specimens. Material and Methods Surgical specimens from patients with resectable colorectal liver metastases were used for measurements (size of metastases <30 mm). A four-needle measuring probe was used to determine the electrical conductivity σ of human colorectal liver metastasis (n = 8) and tumor-free liver tissue (n = 5) in a total of five patients. All measurements were performed at 470 kHz, which is the relevant frequency for radiofrequency ablation. The tissue temperature was also measured. Hepatic resections were performed in accordance with common surgical standards. Measurements were performed in the operating theater immediately after resection. Results The median electrical conductivity σ was 0.57 S/m in human colorectal liver metastases at a median temperature of 35.1℃ and 0.35 S/m in tumor-free liver tissue at a median temperature of 34.9℃. The electrical conductivity was significantly higher in tumor tissue than in tumor-free liver tissue ( P = 0.005). There were no differences in tissue temperature between the two groups ( P = 0.883). Conclusion The electrical conductivity is significantly higher in human colorectal liver metastases than in tumor-free liver tissue at a frequency of 470 kHz.

  16. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice

    PubMed Central

    Yang, Hao; Wang, Shu Pei; Mitchell, Grant A.

    2017-01-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency. PMID:29232702

  17. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    PubMed

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  18. Comparative studies on the distribution of rhodanese in different tissues of domestic animals.

    PubMed

    Aminlari, M; Gilanpour, H

    1991-01-01

    1. The activity of rhodanese in different tissues of some domestic animals was measured. 2. Rhodanese was present in all tissues studied. 3. The activity of rhodanese in most tissues of sheep was higher than other animals studied. 4. In sheep and cattle the epithelium of rumen, omasum and reticulum were the richest sources of rhodanese. Significant activity of rhodanese was also present in liver and kidney. 5. In camel the liver contained the highest level of rhodanese followed by lung and rumen epithelium. Camel liver contained a third of the activity of sheep liver. 6. Equine liver had a third of the activity of sheep liver. Other tissues showed low levels of rhodanese activity. 7. Dog liver contained only 4% of the activity of sheep liver. In this animal, brain was the richest source of rhodanese. 8. The results are discussed in terms of efficacy of different tissues of animals in cyanide detoxification.

  19. Accuracy of real-time shear wave elastography in the assessment of normal liver tissue in the guinea pig (cavia porcellus).

    PubMed

    Glińska-Suchocka, K; Kubiak, K; Spużak, J; Jankowski, M; Borusewicz, P

    2017-03-28

    Shear wave elastography is a novel technique enabling real-time measurement of the elasticity of liver tissue. The color map is superimposed on the classic ultrasound image of the assessed tissue, which enables a precise evaluation of the stiffness of the liver tissue. The aim of the study was to assess the stiffness of normal liver tissue in the guinea pig using shear wave elastography. The study was carried out on 36 guinea pigs using the SuperSonic Imagine Aixplorer scanner, and a 1 to 6 MH convex SC6-1 transducer. An ultrasound guided Try-Cut liver core needle biopsy was carried out in all the studied animals and the collected samples were examined to exclude pathological lesions. The mean liver tissue stiffness ranged from 0.89 to 5.40 kPa. We found that shear wave elastography is an easy, non-invasive technique that can be used to assess the stiffness of liver tissue. The obtained results can be used in future studies to assess the types and changes of liver tissue in the course of various types of liver disease.

  20. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma.

    PubMed

    Engelholm, Lars H; Riaz, Anjum; Serra, Denise; Dagnæs-Hansen, Frederik; Johansen, Jens V; Santoni-Rugiu, Eric; Hansen, Steen H; Niola, Francesco; Frödin, Morten

    2017-12-01

    Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8 to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein injection to livers of 8-week-old female FVB/N mice. These mice did not have any other engineered genetic alterations and were not exposed to liver toxins or carcinogens. Liver tissues were collected 14 months after delivery; genomic DNA was analyzed by PCR to detect the Dnajb1-Prkaca fusion, and tissues were characterized by histology, immunohistochemistry, RNA sequencing, and whole-exome sequencing. Livers from 12 of the 15 mice given the vectors to induce the Dnajb1-Prkaca gene fusion, but none of the 11 mice given the control vector, developed neoplasms. The tumors contained the Dnajb1-Prkaca gene fusion and had histologic and cytologic features of human FL-HCCs: large polygonal cells with granular, eosinophilic, and mitochondria-rich cytoplasm, prominent nucleoli, and markers of hepatocytes and cholangiocytes. In comparing expression levels of genes between the mouse tumor and non-tumor liver cells, we identified changes similar to those detected in human FL-HCC, which included genes that affect cell cycle and mitosis regulation. Genomic analysis of mouse neoplasms induced by the Dnajb1-Prkaca fusion revealed a lack of mutations in genes commonly associated with liver cancers, as observed in human FL-HCC. Using CRISPR/Cas9 technology, we found generation of the Dnajb1-Prkaca fusion gene in wild-type mice to be sufficient to initiate formation of tumors that have many features of human FL-HCC. Strategies to block DNAJB1-PRKACA might be developed as therapeutics for this form of liver cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of Hepatoprotective Effect of Curcumin on Liver Cirrhosis Using a Combination of Biochemical Analysis and Magnetic Resonance-Based Electrical Conductivity Imaging

    PubMed Central

    Kyung, Eun Jung; Kim, Hyun Bum; Hwang, Eun Sang; Lee, Seok; Choi, Bup Kyung; Lim, Sang Moo; Kwon, Oh In

    2018-01-01

    In oriental medicine, curcumin is used to treat inflammatory diseases, and its anti-inflammatory effect has been reported in recent research. In this feasibility study, the hepatoprotective effect of curcumin was investigated using a rat liver cirrhosis model, which was induced with dimethylnitrosamine (DMN). Together with biochemical analysis, we used a magnetic resonance-based electrical conductivity imaging method to evaluate tissue conditions associated with a protective effect. The effects of curcumin treatment and lactulose treatment on liver cirrhosis were compared. Electrical conductivity images indicated that liver tissues damaged by DMN showed decreased conductivity compared with normal liver tissues. In contrast, cirrhotic liver tissues treated with curcumin or lactulose showed increased conductivity than tissues in the DMN-only group. Specifically, conductivity of cirrhotic liver after curcumin treatment was similar to that of normal liver tissues. Histological staining and immunohistochemical examination showed significant levels of attenuated fibrosis and decreased inflammatory response after both curcumin and lactulose treatments compared with damaged liver tissues by DMN. The conductivity imaging and biochemical examination results indicate that curcumin's anti-inflammatory effect can prevent the progression of irreversible liver dysfunction. PMID:29887757

  2. Development of scaffold architectures and heterotypic cell systems for hepatocyte transplantation

    NASA Astrophysics Data System (ADS)

    Alzebdeh, Dalia Abdelrahim

    In vitro assembly of functional liver tissue is needed to enable the transplantation of tissue-engineered livers. In addition, there is an increasing demand for in vitro models that replicate complex events occurring in the liver. However, tissue engineering of sizable implantable liver systems is currently limited by the difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is closely related to the high metabolic rate of hepatocytes. In this study, we first compared two designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic perfusion bioreactor systems. The aim was to promote cell seeding efficiency by effectively entrapping 100 million hepatocytes at high density. We found that scaffolds with radially tapering pore architecture had highly efficient cell entrapment that maximized donor hepatocyte utilization, compared to alternate pore structures. Hepatocytes showed higher seeding efficiency and metabolic function when seeded as single cell suspensions as opposed to pre-formed, 100microm aggregates. Seeding efficiency was found to increase with flow rate, with single cell and aggregate suspension exhibiting different optimal flow rates. However, metabolic performance results indicated significant shear damage to cells at high efficiency flow rates. To better maintain hepatocyte basement membrane and cell polarity, spheroid co-cultures with mesenchymal stem cells (MSC) were investigated. Hepatocytes and MSCs were seeded in three different architectures in an effort to optimize the spatial arrangement of the two cell types. MSC co-culture greatly enhanced hepatocyte metabolic function in agitated cultures. Interestingly, the effects of diffusion limitations in spheroid culture, coupled with shear damage and subsequent removal of outer hepatocyte layers produced a defined oscillation of urea production rates in certain co-culture arrangements. A mathematical model of urea synthesis in shear-exposed, co-culture spheroids reproduced the metabolic oscillations observed. This result together with culture observations suggests that MSCs can provide both physiological support and some direct shear protection to hepatocytes in perfused or shear-exposed culture environments. Finally, in order to reduce hepatocyte exposure to excessive shear forces in perfused scaffolds, a modular scaffold design based on polyelectrolyte fiber encapsulation was explored. Scaffolds with uniformly distributed, shear protected cells were achieved.

  3. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  4. Organ engineering--combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation.

    PubMed

    Murphy, Sean Vincent; Atala, Anthony

    2013-03-01

    Often the only treatment available for patients suffering from diseased and injured organs is whole organ transplant. However, there is a severe shortage of donor organs for transplantation. The goal of organ engineering is to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Recent progress in stem cell biology, biomaterials, and processes such as organ decellularization and electrospinning has resulted in the generation of bioengineered blood vessels, heart valves, livers, kidneys, bladders, and airways. Future advances that may have a significant impact for the field include safe methods to reprogram a patient's own cells to directly differentiate into functional replacement cell types. The subsequent combination of these cells with natural, synthetic and/or decellularized organ materials to generate functional tissue substitutes is a real possibility. This essay reviews the current progress, developments, and challenges facing researchers in their goal to create replacement tissues and organs for patients. Copyright © 2013 WILEY Periodicals, Inc.

  5. 3D Bioprinting for Organ Regeneration

    PubMed Central

    Cui, Haitao; Nowicki, Margaret; Fisher, John P.; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled bio-manufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. PMID:27995751

  6. 3D Bioprinting for Organ Regeneration.

    PubMed

    Cui, Haitao; Nowicki, Margaret; Fisher, John P; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    PubMed

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  8. The classification of secondary colorectal liver cancer in human biopsy samples using angular dispersive x-ray diffraction and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Theodorakou, Chrysoula; Farquharson, Michael J.

    2009-08-01

    The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.

  9. A New Modeling for the Changes in the Distribution of Scatterers in Cirrhotic Liver

    NASA Astrophysics Data System (ADS)

    Hara, Takashi; Hachiya, Hiroyuki

    2000-05-01

    The human liver is composed of small hexagonal structures called liver lobules. Cirrhosis destroys these liver lobules and replaces them with permanent connective tissue referred to as regenerative nodules. In this paper, we propose a new modeling technique for changes in the scatterer distribution in liver tissue considering the structure of liver lobules to obtain images of the cirrhotic liver over continuous stages. Using these images, we analyze the relationship between changes in characteristics of biological tissue and changes in B-mode images during progressive liver cirrhosis.

  10. Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system

    PubMed Central

    Ma, Liang; Barker, Jeremy; Zhou, Changchun; Li, Wei; Zhang, Jing; Lin, Biaoyang; Foltz, Gregory; Küblbeck, Jenni; Honkakoski, Paavo

    2013-01-01

    A three-dimensional micro-scale perfusion-based two-chamber (3D-μPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs in conjunction with liver metabolism. Liver cells with different cytochrome P450 (CYP) subtypes and glioblastoma multiforme (GBM) brain cancer cells were cultured in two separate chambers connected in tandem. Both chambers contained a 3D tissue engineering scaffold fabricated with biodegradable poly(lactic acid) (PLA) using a solvent-free approach. We used this model system to test the cytotoxicity of anticancer drugs, including temozolomide (TMZ) and ifosfamide (IFO). With the liver cells, TMZ showed a much lower toxicity to GBM cells under both 2D and 3D cell culture conditions. Comparing 2D, GBM cells cultured in 3D had much high viability under TMZ treatment. IFO was used to test the CYP-related metabolic effects. Cells with different expression levels of CYP3A4 differed dramatically in their ability to activate IFO, which led to strong metabolism-dependent cytotoxicity to GBM cells. These results demonstrate that our 3D-μPTC system could provide a more physiologically realistic in vitro environment than the current 2D monolayers for testing metabolism-dependent toxicity of anticancer drugs. It could therefore be used as an important platform for better prediction of drug dosing and schedule towards personalized medicine. PMID:22429982

  11. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows.

    PubMed

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules.

  12. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows

    PubMed Central

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules. PMID:28291785

  13. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.

    PubMed

    O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M

    2007-08-07

    Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.

  14. Development of decellularized scaffolds for stem cell-driven tissue engineering.

    PubMed

    Rana, Deepti; Zreiqat, Hala; Benkirane-Jessel, Nadia; Ramakrishna, Seeram; Ramalingam, Murugan

    2017-04-01

    Organ transplantation is an effective treatment for chronic organ dysfunctioning conditions. However, a dearth of available donor organs for transplantation leads to the death of numerous patients waiting for a suitable organ donor. The potential of decellularized scaffolds, derived from native tissues or organs in the form of scaffolds has been evolved as a promising approach in tissue-regenerative medicine for translating functional organ replacements. In recent years, donor organs, such as heart, liver, lung and kidneys, have been reported to provide acellular extracellular matrix (ECM)-based scaffolds through the process called 'decellularization' and proved to show the potential of recellularization with selected cell populations, particularly with stem cells. In fact, decellularized stem cell matrix (DSCM) has also emerged as a potent biological scaffold for controlling stem cell fate and function during tissue organization. Despite the proven potential of decellularized scaffolds in tissue engineering, the molecular mechanism responsible for stem cell interactions with decellularized scaffolds is still unclear. Stem cells interact with, and respond to, various signals/cues emanating from their ECM. The ability to harness the regenerative potential of stem cells via decellularized ECM-based scaffolds has promising implications for tissue-regenerative medicine. Keeping these points in view, this article reviews the current status of decellularized scaffolds for stem cells, with particular focus on: (a) concept and various methods of decellularization; (b) interaction of stem cells with decellularized scaffolds; (c) current recellularization strategies, with associated challenges; and (iv) applications of the decellularized scaffolds in stem cell-driven tissue engineering and regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.

    PubMed

    Xue, Shuai; Yin, Jianli; Shao, Jiawei; Yu, Yuanhuan; Yang, Linfeng; Wang, Yidan; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-02-01

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  16. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    PubMed

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  17. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease

    PubMed Central

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-01-01

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease. PMID:27409675

  18. In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Phillips, Paul J.

    2002-03-01

    Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.

  19. New advances in MR-compatible bioartificial liver

    PubMed Central

    Jeffries, Rex E.; Macdonald, Jeffrey M.

    2015-01-01

    MR-compatible bioartificial liver (BAL) studies have been performed for 30 years and are reviewed. There are two types of study: (i) metabolism and drug studies using multinuclear MRS; primarily short-term (< 8 h) studies; (ii) the use of multinuclear MRS and MRI to noninvasively define the features and functions of BAL systems for long-term liver tissue engineering. In the latter, these systems often undergo not only modification of the perfusion system, but also the construction of MR radiofrequency probes around the bioreactor. We present novel MR-compatible BALs and the use of multinuclear MRS (13C, 19F, 31P) for the noninvasive monitoring of their growth, metabolism and viability, as well as 1H MRI methods for the determination of flow profiles, diffusion, cell distribution, quality assurance and bioreactor integrity. Finally, a simple flexible coil design and circuit, and life support system, are described that can make almost any BAL MR-compatible. PMID:22351642

  20. Diffuse reflectance spectroscopy of liver tissue

    NASA Astrophysics Data System (ADS)

    Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan

    2015-06-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.

  1. Generation, characterization and potential therapeutic applications of mature and functional hepatocytes from stem cells.

    PubMed

    Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2013-02-01

    Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.

  2. [Expression of ATAD2 in different liver lesions and its clinical significance].

    PubMed

    Liu, F; Zhou, X; Ji, H H; Li, H; Xiang, F G

    2017-05-20

    Objective: To examine the expression of ATAD2 in different liver lesions and its clinical significance. Methods: ATAD2 expression in 60 hepatocellular carcinoma (HCC) surgical specimens (49 of which have concurrent liver cirrhosis), 43 HCC biopsy specimens, 2 high-grade liver dysplastic nodule specimens, 3 low-grade liver dysplastic nodule specimens, 50 liver cirrhosis tissue samples, and 20 normal liver tissue samples were measured using immunohistochemistry. The F-test, q-test, t-test, and chi-square test were used for statistical analysis of data. Results: ATAD2 was expressed in 56 HCC surgical specimens (93.33%), 35 HCC biopsy specimens (81.40%), and 2 high-grade liver dysplastic nodule specimens (2/2), but not in the low-grade liver dysplastic nodule, liver cirrhosis tissue, and normal liver tissue samples. The mean expression of ATAD2 was significantly higher in HCC tissues than in high-grade and low-grade liver dysplastic nodule tissues, liver cirrhosis tissue, and normal liver tissue ( F = 22.96, q = 3.138, 3.972, 12.272, and 9.101, respectively, all P < 0.01). There were no significant differences in the mean expression and positive expression rate of ATAD2 between HCC surgical and biopsy specimens ( t = 1.40, P > 0.05; χ ² = 3.47, P >0.05). Of the 35 HCC biopsy specimens that expressed ATAD2, the mean ATAD2 expression was ≥1% in 35 specimens (100%), ≥3% in 27 specimens (77.14%), and ≥5 % in 23 specimens (65.71%). In addition, among the pathological grade I-II HCC biopsy specimens, the mean ATAD2 expression was ≥1% in 28 specimens (100%), ≥3% in 22 specimens (62.86%), and ≥5% in 19 specimens (54.29%). Moreover, ATAD2 expression in HCC was associated with serum alpha-fetoprotein level, presence of hepatitis B virus surface antigen (HBsAg), and presence of concurrent liver cirrhosis ( t = 2.09, 2.30, and 2.18, respectively, all P < 0.05). Conclusion: ATAD2 may play an important role in HCC tumorigenesis, and may be involved in malignant transformation of cells. ATAD2 expression can be a valuable marker for differentiating the nature of lesions in liver biopsy tissues during clinical practice.

  3. Quantification of total mercury in liver and heart tissue of Harbor Seals (Phoca vitulina) from Alaska USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Kady B.; Hoover-Miller, Anne; Conlon, Suzanne

    This study quantified the Hg levels in the liver (n=98) and heart (n=43) tissues of Harbor Seals (Phoca vitulina) (n=102) harvested from Prince William Sound and Kodiak Island Alaska. Mercury tissue dry weight (dw) concentrations in the liver ranged from 1.7 to 393 ppm dw, and in the heart from 0.19 to 4.99 ppm dw. Results of this study indicate liver and heart tissues' Hg ppm dw concentrations significantly increase with age. Male Harbor Seals bioaccumulated Hg in both their liver and heart tissues at a significantly faster rate than females. The liver Hg bioaccumulation rates between the harvest locationsmore » Kodiak Island and Prince William Sound were not found to be significantly different. On adsorption Hg is transported throughout the Harbor Seal's body with the partition coefficient higher for the liver than the heart. No significant differences in the bio-distribution (liver:heart Hg ppm dw ratios (n=38)) values were found with respect to either age, sex or geographic harvest location. In this study the age at which Hg liver and heart bioaccumulation levels become significantly distinct in male and female Harbor Seals were identified through a Tukey's analysis. Of notably concern to human health was a male Harbor Seal's liver tissue harvested from Kodiak Island region. Mercury accumulation in this sample tissue was determined through a Q-test to be an outlier, having far higher Hg concentrarion (liver 392 Hg ppm dw) than the general population sampled. - Highlights: Black-Right-Pointing-Pointer Mercury accumulation in the liver and heart of seals exceed food safety guidelines. Black-Right-Pointing-Pointer Accumulation rate is greater in males than females with age. Black-Right-Pointing-Pointer Liver mercury accumulation is greater than in the heart tissues. Black-Right-Pointing-Pointer Mercury determination by USA EPA Method 7473 using thermal decomposition.« less

  4. Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies.

    PubMed

    Love, Ryan J; Jones, Kim S

    2009-01-01

    All biomaterials, when implanted into the body, elicit an inflammatory response that evolves into fibrovascular tissue formation on and around the material. As a result, material scientists and tissue engineers should be concerned about host response to tissue-engineered constructs that have a biomaterial component, because the host response to this component will interfere with device function and reduce the lifespan of tissue engineering devices in vivo. The fibrotic response to biomaterials is not unlike pathological fibrosis of the liver, lung, kidney, and peritoneum in many ways: i) the presence of mononuclear leukocytes are common in the local environment of both pathological fibrosis and biomaterial-induced fibrosis even though cells of mesenchymal origin are responsible for laying the majority of the extracellular matrix; ii) paracrine-signaling molecules, such as transforming growth factor beta;1, are essential mediators of fibrosis, whether it is pathological or biomaterial induced; and iii) injury and/or the presence of foreign materials (including bacterial components, toxins, or man-made objects) are essential initiators for the development of the fibrotic response. This review discusses mechanisms and research methodology related to pathological fibrosis that is of interest to researchers focused on biomaterials. Potential research models for the study of fibrosis from the fields of biomaterials and drug delivery are also discussed, which may be of interest to scientists working on the pathology of fibrotic disease.

  5. Recent advances in bioprinting techniques: approaches, applications and future prospects.

    PubMed

    Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang

    2016-09-20

    Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.

  6. 3D Bioprinting for Tissue and Organ Fabrication

    PubMed Central

    Zhang, Yu Shrike; Yang, Jingzhou; Jia, Weitao; Dell’Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali

    2016-01-01

    The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development. PMID:27126775

  7. 3D Bioprinting for Tissue and Organ Fabrication.

    PubMed

    Zhang, Yu Shrike; Yue, Kan; Aleman, Julio; Moghaddam, Kamyar Mollazadeh; Bakht, Syeda Mahwish; Yang, Jingzhou; Jia, Weitao; Dell'Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali

    2017-01-01

    The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.

  8. The isolation of primary hepatocytes from human tissue: optimising the use of small non-encapsulated liver resection surplus.

    PubMed

    Green, Charlotte J; Charlton, Catriona A; Wang, Lai-Mun; Silva, Michael; Morten, Karl J; Hodson, Leanne

    2017-12-01

    Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.

  9. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus.

    PubMed

    Tunçsoy, Mustafa; Duran, Servet; Ay, Özcan; Cicik, Bedii; Erdem, Cahit

    2017-09-01

    Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.

  10. Testosterone differentially regulates targets of lipid and glucose metabolism in liver, muscle and adipose tissues of the testicular feminised mouse.

    PubMed

    Kelly, Daniel M; Akhtar, Samia; Sellers, Donna J; Muraleedharan, Vakkat; Channer, Kevin S; Jones, T Hugh

    2016-11-01

    Testosterone deficiency is commonly associated with obesity, metabolic syndrome, type 2 diabetes and their clinical consequences-hepatic steatosis and atherosclerosis. The testicular feminised mouse (non-functional androgen receptor and low testosterone) develops fatty liver and aortic lipid streaks on a high-fat diet, whereas androgen-replete XY littermate controls do not. Testosterone treatment ameliorates these effects, although the underlying mechanisms remain unknown. We compared the influence of testosterone on the expression of regulatory targets of glucose, cholesterol and lipid metabolism in muscle, liver, abdominal subcutaneous and visceral adipose tissue. Testicular feminised mice displayed significantly reduced GLUT4 in muscle and glycolytic enzymes in muscle, liver and abdominal subcutaneous but not visceral adipose tissue. Lipoprotein lipase required for fatty acid uptake was only reduced in subcutaneous adipose tissue; enzymes of fatty acid synthesis were increased in liver and subcutaneous tissue. Stearoyl-CoA desaturase-1 that catalyses oleic acid synthesis and is associated with insulin resistance was increased in visceral adipose tissue and cholesterol efflux components (ABCA1, apoE) were decreased in subcutaneous and liver tissue. Master regulator nuclear receptors involved in metabolism-Liver X receptor expression was suppressed in all tissues except visceral adipose tissue, whereas PPARγ was lower in abdominal subcutaneous and visceral adipose tissue and PPARα only in abdominal subcutaneous. Testosterone treatment improved the expression (androgen receptor independent) of some targets but not all. These exploratory data suggest that androgen deficiency may reduce the buffering capability for glucose uptake and utilisation in abdominal subcutaneous and muscle and fatty acids in abdominal subcutaneous. This would lead to an overspill and uptake of excess glucose and triglycerides into visceral adipose tissue, liver and arterial walls.

  11. Unique activation of matrix metalloproteinase-9 within human liver metastasis from colorectal cancer.

    PubMed Central

    Zeng, Z. S.; Guillem, J. G.

    1998-01-01

    Experimental in vitro and animal data support an important role for matrix metalloproteinases (MMPs) in cancer invasion and metastasis via proteolytic degradation of the extracellular matrix (ECM). Our previous data have shown that MMP-9 mRNA is localized to the interface between liver metastasis and normal liver tissue, indicating that MMP-9 may play an important role in liver metastasis formation. In the present study, we analysed the cellular enzymatic expression of MMP-9 in 18 human colorectal cancer (CRC) liver metastasis specimens by enzyme-linked immunosorbent assay (ELISA) and zymography. ELISA analysis reveals that the latent form of MMP-9 is present in both liver metastasis and paired adjacent normal liver tissue. The mean level of the latent form of MMP-9 is 580+/-270 ng per mg total tissue protein (mean+/-s.e.) in liver metastasis vs 220+/-90 in normal liver tissue. However, this difference is not significantly different (P = 0.26). Using gelatin zymography, the 92-kDa band representative of the latent form is present in both liver metastasis and normal liver tissue. However, the 82 kDa band, representative of the active form of MMP-9, was seen only in liver metastasis. This was confirmed by Western blot analysis. Our observation of the unique presence of the active form of MMP-9 within liver metastasis suggests that proMMP-9 activation may be a pivotal event during CRC liver metastasis formation. Images Figure 3 Figure 4 PMID:9703281

  12. Characterization of the liver tissue interstitial fluid (TIF) proteome indicates potential for application in liver disease biomarker discovery.

    PubMed

    Sun, Wei; Ma, Jie; Wu, Songfeng; Yang, Dong; Yan, Yujuan; Liu, Kehui; Wang, Jinglan; Sun, Longqin; Chen, Ning; Wei, Handong; Zhu, Yunping; Xing, Baocai; Zhao, Xiaohang; Qian, Xiaohong; Jiang, Ying; He, Fuchu

    2010-02-05

    Tissue interstitial fluid (TIF) forms the interface between circulating body fluids and intracellular fluid. Pathological alterations of liver cells could be reflected in TIF, making it a promising source of liver disease biomarkers. Mouse liver TIF was extracted, separated by SDS-PAGE, analyzed by linear ion trap mass spectrometer, and 1450 proteins were identified. These proteins may be secreted, shed from membrane vesicles, or represent cellular breakdown products. They show different profiling patterns, quantities, and possibly modification/cleavage of intracellular proteins. The high solubility and even distribution of liver TIF supports its suitability for proteome analysis. Comparison of mouse liver TIF data with liver tissue and plasma proteome data identified major proteins that might be released from liver to plasma and serve as blood biomarkers of liver origin. This result was partially supported by comparison of human liver TIF data with human liver and plasma proteome data. Paired TIFs from tumor and nontumor liver tissues of a hepatocellular carcinoma patient were analyzed and the profile of subtracted differential proteins supports the potential for biomarker discovery in TIF. This study is the first analysis of the liver TIF proteome and provides a foundation for further application of TIF in liver disease biomarker discovery.

  13. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations.

    PubMed

    Hunter, Stuart; Willcox, Carrie R; Davey, Martin S; Kasatskaya, Sofya A; Jeffery, Hannah C; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E

    2018-05-18

    γδ T-cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T-cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear. To address this, we characterised the TCR diversity, immunophenotype and function of human liver infiltrating γδ T-cells, focussing on the predominant tissue-associated Vδ2 neg γδ subset, which is implicated in liver immunopathology. Intrahepatic Vδ2 neg γδ T-cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T-cells were predominantly CD27 lo/neg effector lymphocytes, whereas naïve CD27 hi , TCR diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RA hi Vδ2 neg γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2 neg γδ T-cell pool also included a phenotypically distinct CD45RA lo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2 neg γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli. These findings suggest the ability of Vδ2 neg γδ T-cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues such as the liver, and can result in functionally distinct peripheral and liver-resident memory γδ T-cell subsets. They highlight the inherent functional plasticity within the Vδ2 neg γδ T-cell compartment, and may inform design of cellular therapies involving intrahepatic trafficking of γδ T-cells to suppress liver inflammation or combat liver cancer. γδ T cells are frequently enriched in many solid tissues, however the immunobiology of such tissue-associated subsets in humans has remained unclear. We show that intrahepatic γδ T cells are enriched for clonally expanded effector T cells, whereas naïve γδ T cells are largely excluded; moreover, whereas a distinct proportion of circulating T cell clonotypes was present in both the liver tissue and peripheral blood, a functionally and clonotypically distinct population of liver-resident γδ T cells was also evident. Our findings suggest that factors triggering γδ T cell clonal selection and differentiation, such as infection, can drive enrichment of γδ T cells into liver tissue, allowing the development of functionally distinct tissue-restricted memory populations specialised in local hepatic immunosurveillance. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Mechanics of fresh, frozen-thawed and heated porcine liver tissue.

    PubMed

    Wex, Cora; Stoll, Anke; Fröhlich, Marlen; Arndt, Susann; Lippert, Hans

    2014-06-01

    For a better understanding of the effects of thermally altered soft tissue, the biothermomechanics of these tissues need to be studied. Without the knowledge of the underlying physical processes and the parameters that can be controlled clinically, thermal treatment of cancerous hepatic tissue or the preservation of liver grafts are based primarily on trial and error. Thus, this study is concerned with the investigation of the influence of temperature on the rheological properties and the histological properties of porcine liver. Heating previously cooled porcine liver tissue above 40 °C leads to significant, irreversible stiffness changes observed in the amplitude sweep. The increase of the complex shear module of healthy porcine liver from room temperature to 70 °C is approximately 9-fold. Comparing the temperatures -20 °C and 20 °C, no significant difference of the mechanical properties was observed. Furthermore, there is a strong relation between the mechanical and histological properties of the porcine liver. Temperatures above 40 °C destroy the collagen matrix within the liver tissue. This results in the alteration of the biomechanical properties. The time-temperature superposition principle is applied to generate temperature-dependent shift factors that can be described by a two-part exponential function model with an inflection temperature of 45 °C. Tumor ablation techniques such as heating or freezing have a significant influence on the histology of liver tissue. However, only for temperatures above body temperature an influence on the mechanical properties of hepatic tissues was noticeable. Freezing up to -20 °C did not affect the liver mechanics.

  15. Detection of hepatitis "C" virus in formalin-fixed liver tissue by nested polymerase chain reaction.

    PubMed

    Sallie, R; Rayner, A; Portmann, B; Eddleston, A L; Williams, R

    1992-08-01

    Interpretation of antibody to hepatitis C virus (HCV) in patients with liver disease is difficult due to false-positive reactivity in some conditions. To evaluate the feasibility of HCV in archival material, HCV was sought in formalin-fixed, paraffin-embedded liver biopsy specimens. Nested polymerase chain reaction was used to detect hepatitis C virus in formalin-fixed, paraffin-embedded liver biopsy specimens after total RNA was extracted from tissue by proteinase K digestion and phenol/chloroform purification. The relative efficiency of amplification of HCV RNA from formalin-fixed material was estimated semiquantitatively by serial dilution of cDNA synthesised from RNA extracted from fresh and formalin-fixed sections from the same liver. Although HCV RNA could be detected in formalin-fixed liver tissue by nested PCR in 5/5 cases in which HCV was detected in serum, amplification was approximately 5-fold less efficient than when HCV was amplified from fresh tissue. Nevertheless, nested PCR of HCV from formalin-fixed liver tissue represents a useful technique in addressing some important questions related to the pathogenesis of liver disease.

  16. Relationship Between Speed of Sound in and Density of Normal and Diseased Rat Livers

    NASA Astrophysics Data System (ADS)

    Hachiya, Hiroyuki; Ohtsuki, Shigeo; Tanaka, Motonao

    1994-05-01

    Speed of sound is an important acoustic parameter for quantitative characterization of living tissues. In this paper, the relationship between speed of sound in and density of rat liver tissues are investigated. The speed of sound was measured by the nondeformable technique based on frequency-time analysis of a 3.5 MHz pulse response. The speed of sound in normal livers varied minimally between individuals and was not related to body weight or age. In liver tissues which were administered CCl4, the speed of sound was lower than the speed of sound in normal tissues. The relationship between speed of sound and density in normal, fatty and cirrhotic livers can be fitted well on the line which is estimated using the immiscible liquid model assuming a mixture of normal liver and fat tissues. For 3.5 MHz ultrasound, it is considered that the speed of sound in fresh liver with fatty degeneration is responsible for the fat content and is not strongly dependent on the degree of fibrosis.

  17. Printing Technologies for Medical Applications.

    PubMed

    Shafiee, Ashkan; Atala, Anthony

    2016-03-01

    Over the past 15 years, printers have been increasingly utilized for biomedical applications in various areas of medicine and tissue engineering. This review discusses the current and future applications of 3D bioprinting. Several 3D printing tools with broad applications from surgical planning to 3D models are being created, such as liver replicas and intermediate splints. Numerous researchers are exploring this technique to pattern cells or fabricate several different tissues and organs, such as blood vessels or cardiac patches. Current investigations in bioprinting applications are yielding further advances. As one of the fastest areas of industry expansion, 3D additive manufacturing will change techniques across biomedical applications, from research and testing models to surgical planning, device manufacturing, and tissue or organ replacement. Copyright © 2016. Published by Elsevier Ltd.

  18. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications.

    PubMed

    Li, Yang; Li, Ling; Chen, Zhi-Nan; Gao, Ge; Yao, Rui; Sun, Wei

    2017-07-31

    Remarkable achievements have been made since induced pluripotent stem cells (iPSCs) were first introduced in 2006. Compared with non-pluripotent stem cells, iPSC research faces several additional complexities, such as the choice of extracellular matrix proteins, growth and differentiation factors, as well as technical challenges related to self-renewal and directed differentiation. Overcoming these challenges requires the integration of knowledge and technologies from multiple fields including cell biology, biomaterial science, engineering, physics and medicine. Here, engineering-derived iPSC approaches are reviewed according to three aspects of iPSC studies: preparation, expansion, differentiation and applications. Engineering strategies, such as 3D systems establishment, cell-matrix mechanics and the regulation of biophysical and biochemical cues, together with engineering techniques, such as 3D scaffolds, cell microspheres and bioreactors, have been applied to iPSC studies and have generated insightful results and even mini-organs such as retinas, livers and intestines. Specific results are given to demonstrate how these approaches impact iPSC behavior, and related mechanisms are discussed. In addition, cell printing technologies are presented as an advanced engineering-derived approach since they have been applied in both iPSC studies and the construction of diverse tissues and organs. Further development and possible innovations of cell printing technologies are presented in terms of creating complex and functional iPSC-derived living tissues and organs.

  19. A pilot systematic genomic comparison of recurrence risks of hepatitis B virus-associated hepatocellular carcinoma with low- and high-degree liver fibrosis.

    PubMed

    Yoo, Seungyeul; Wang, Wenhui; Wang, Qin; Fiel, M Isabel; Lee, Eunjee; Hiotis, Spiros P; Zhu, Jun

    2017-12-07

    Chronic hepatitis B virus (HBV) infection leads to liver fibrosis, which is a major risk factor in hepatocellular carcinoma (HCC) and an independent risk factor of recurrence after HCC tumor resection. The HBV genome can be inserted into the human genome, and chronic inflammation may trigger somatic mutations. However, how HBV integration and other genomic changes contribute to the risk of tumor recurrence with regards to the different degree of liver fibrosis is not clearly understood. We sequenced mRNAs of 21 pairs of tumor and distant non-neoplastic liver tissues of HBV-HCC patients and performed comprehensive genomic analyses of our RNAseq data and public available HBV-HCC sequencing data. We developed a robust pipeline for sensitively identifying HBV integration sites based on sequencing data. Simulations showed that our method outperformed existing methods. Applying it to our data, 374 and 106 HBV host genes were identified in non-neoplastic liver and tumor tissues, respectively. When applying it to other RNA sequencing datasets, consistently more HBV integrations were identified in non-neoplastic liver than in tumor tissues. HBV host genes identified in non-neoplastic liver samples significantly overlapped with known tumor suppressor genes. More significant enrichment of tumor suppressor genes was observed among HBV host genes identified from patients with tumor recurrence, indicating the potential risk of tumor recurrence driven by HBV integration in non-neoplastic liver tissues. We also compared SNPs of each sample with SNPs in a cancer census database and inferred samples' pathogenic SNP loads. Pathogenic SNP loads in non-neoplastic liver tissues were consistently higher than those in normal liver tissues. Additionally, HBV host genes identified in non-neoplastic liver tissues significantly overlapped with pathogenic somatic mutations, suggesting that HBV integration and somatic mutations targeting the same set of genes are important to tumorigenesis. HBV integrations and pathogenic mutations showed distinct patterns between low and high liver fibrosis patients with regards to tumor recurrence. The results suggest that HBV integrations and pathogenic SNPs in non-neoplastic tissues are important for tumorigenesis and different recurrence risk models are needed for patients with low and high degrees of liver fibrosis.

  20. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase

    PubMed Central

    Puzzo, Francesco; Colella, Pasqualina; Biferi, Maria G.; Bali, Deeksha; Paulk, Nicole K.; Vidal, Patrice; Collaud, Fanny; Simon-Sola, Marcelo; Charles, Severine; Hardet, Romain; Leborgne, Christian; Meliani, Amine; Cohen-Tannoudji, Mathilde; Astord, Stephanie; Gjata, Bernard; Sellier, Pauline; van Wittenberghe, Laetitia; Vignaud, Alban; Boisgerault, Florence; Barkats, Martine; Laforet, Pascal; Kay, Mark A.; Koeberl, Dwight D.; Ronzitti, Giuseppe; Mingozzi, Federico

    2018-01-01

    Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa−/−) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa−/− mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector–mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease. PMID:29187643

  1. Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice

    PubMed Central

    Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao

    2016-01-01

    Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931

  2. Distribution of bemitil in organs and tissues of rats after single or repeated administration.

    PubMed

    Sergeeva, S A; Gulyaeva, I L

    2006-05-01

    After single and repeated peroral administration of bemitil to rats this drug was found in the liver, brain, kidneys, spleen, heart, skeletal muscles, lungs, adipose tissue, and testicles. After single treatment accumulation of bemitil was most pronounced in the liver. After repeated treatment the decrease in bemitil concentration in the liver was probably associated with increased elimination of the drug from liver tissue due to intensification of its biotransformation. We conclude that bemitil can accumulate in the blood, but not in tissues.

  3. Comparison of labeled acetate and glucose incorporations into lipids in the liver and adipose tissue after intravenous injection in rats.

    PubMed

    Iritani, Nobuko; Hirakawa, Tomoe; Fukuda, Hitomi; Katsukawa, Michiko; Kouno, Mika

    2014-01-01

    To compare incorporations of acetate and glucose in tissue total lipids and triacylglycerols (TAG), incorporations of labeled acetate and glucose in livers and epididymal adipose tissues (adipose tissue) were followed after their intravenous injection in the tail vein of individual rat fed a fat-free or 10% corn oil diet. The incorporation of acetate into total lipids (mostly TAG) in the liver reached maximum 2 h after the injection, while the incorporation of glucose decreased more quickly. Incorporation of glucose into total lipids and TAG was more greatly suppressed by dietary corn oil than that of acetate in the liver. In the adipose tissues, the incorporation of labeled acetate or glucose into total lipids was maximum 2-8 h after the injection, while the incorporation of glucose was very low, especially in rats fed the corn oil diet. Moreover, the time courses for labeled acetate and glucose incorporations into total lipids in the liver were parallel to those in plasma, but opposite to those in adipose tissue. TAG synthesized from acetate and glucose in the liver appeared to be mostly transported to adipose tissue. Thus, it is suggested that as the labeled glucose rapidly decreased in the liver, plasma and adipose tissue, TAG should be less derived from dietary carbohydrate than from dietary fat.

  4. Genome‑wide identification of long noncoding RNAs in CCl4‑induced liver fibrosis via RNA sequencing.

    PubMed

    Gong, Zhenghua; Tang, Jialin; Xiang, Tianxin; Lin, Jiayu; Deng, Chaowen; Peng, Yanzhong; Zheng, Jie; Hu, Guoxin

    2018-05-07

    Liver fibrosis occurs as a result of chronic liver lesions, which may subsequently develop into liver cirrhosis and hepatocellular carcinoma. The involvement of long noncoding RNAs (lncRNAs) in liver fibrosis is being increasingly recognized. However, the exact mechanisms and functions of the majority of lncRNAs are poorly characterized. In the present study, the hepatotoxic substance carbon tetrachloride (CCl4) was employed to induce liver fibrosis in an animal model and agenome‑wide identification of lncRNAs in fibrotic liver tissues compared with CCl4 untreated liver tissues was performed using RNA sequencing. Sprague‑Dawley rats were treated with CCl4 for 8 weeks. Histopathogical alterations were observed in liver tissues, and serum levels of alanine aminotransferase, aspartate aminotransferase, transforming growth factor‑β1 and tumor necrosis factor‑α were significantly higher, in the CCl4‑treated group compared with the CCl4 untreated group. RNA sequencing of liver tissues demonstrated that 231 lncRNAs and 1,036 mRNAs were differentially expressed between the two groups. Furthermore, bioinformatics analysis demonstrated that the differentially expressed mRNAs were predominantly enriched in 'ECM‑receptor interaction', 'PI3K‑Akt signaling pathway' and 'focal adhesion' pathways, all of which are essential for liver fibrosis development. Validation of 12 significantly aberrant lncRNAs by reverse transcription‑quantitative polymerase chain reaction indicated that the expression patterns of 11 lncRNAs were consistent with the sequencing data. Furthermore, overexpression of lncRNA NR_002155.1, which was markedly downregulated in CCl4‑treated liver tissues, was demonstrated to inhibit HSC‑T6 cell proliferation in vitro. In conclusion, the present study determined the expression patterns of mRNAs and lncRNAs in fibrotic liver tissue induced by CCl4. The identified differentially expressed lncRNAs may serve as novel diagnostic biomarkers and therapeutic targets for liver fibrosis.

  5. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  6. The nanomechanical signature of liver cancer tissues and its molecular origin

    NASA Astrophysics Data System (ADS)

    Tian, Mengxin; Li, Yiran; Liu, Weiren; Jin, Lei; Jiang, Xifei; Wang, Xinyan; Ding, Zhenbin; Peng, Yuanfei; Zhou, Jian; Fan, Jia; Cao, Yi; Wang, Wei; Shi, Yinghong

    2015-07-01

    Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC.Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC. Electronic supplementary information (ESI) available: Detailed experimental procedures and supplementary figures. See DOI: 10.1039/c5nr02192h

  7. Iron in spleen and liver: Some cases of normal tissues and tissues from patients with hematological malignancies

    NASA Astrophysics Data System (ADS)

    Alenkina, Irina V.; Oshtrakh, Michael I.; Felner, Israel; Vinogradov, Alexander V.; Konstantinova, Tatiana S.; Semionkin, Vladimir A.

    2016-10-01

    Iron deposits in spleen and liver tissues obtained from several healthy people and patients with mantle cell lymphoma, acute myeloid leukemia and primary myelofibrosis were studied using Mössbauer spectroscopy and magnetization measurements. The results obtained demonstrated differences in the iron content in tissues as well as some variations in the ferrihydrite-like iron core structure in the iron storage proteins in these tissues. The presence of tiny amount of magnetite and paramagnetic component in spleen and liver tissue was also detected in different quantities in the studied tissues.

  8. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less

  9. Percutaneous intraportal application of adipose tissue-derived mesenchymal stem cells using a balloon occlusion catheter in a porcine model of liver fibrosis.

    PubMed

    Avritscher, Rony; Abdelsalam, Mohamed E; Javadi, Sanaz; Ensor, Joe; Wallace, Michael J; Alt, Eckhard; Madoff, David C; Vykoukal, Jody V

    2013-12-01

    To investigate the safety and effectiveness of a novel endovascular approach for therapeutic cell delivery using a balloon occlusion catheter in a large animal model of liver fibrosis. Transcatheter arterial embolization with ethiodized oil (Ethiodol) and ethanol was used to induce liver damage in 11 pigs. Mesenchymal stem cells (MSCs) were harvested from adipose tissue and engineered to express green fluorescent protein (GFP). A balloon occlusion catheter was positioned in the bilateral first-order portal vein branches 2 weeks after embolization to allow intraportal application of MSCs in six experimental animals. MSCs were allowed to dwell for 10 minutes using prolonged balloon inflation. Five control animals received a sham injection of normal saline in a similar fashion. Hepatic venous pressure gradient (HVPG) was measured immediately before necropsy. Specimens from all accessible lobes were obtained with ultrasound-guided percutaneous 18-gauge biopsy 2 hours after cell application. All animals were euthanized within 4 weeks. Fluorescent microscopy was used to assess the presence and distribution of cells. Liver injury and fibrosis were successfully induced in all animals. MSCs (6-10 × 10(7)) were successfully delivered into the portal vein in the six experimental animals. Cell application was not associated with vascular complications. HVPG showed no instances of portal hypertension. GFP-expressing MSCs were visualized in biopsy specimens and were distributed primarily within the sinusoidal spaces; however, 4 weeks after implantation, MSCs could not be identified in histologic specimens. A percutaneous endovascular approach for cell delivery using a balloon occlusion catheter proved safe for intraportal MSC application in a large animal model of liver fibrosis. © 2013 SIR Published by SIR All rights reserved.

  10. High intensity interval training improves liver and adipose tissue insulin sensitivity.

    PubMed

    Marcinko, Katarina; Sikkema, Sarah R; Samaan, M Constantine; Kemp, Bruce E; Fullerton, Morgan D; Steinberg, Gregory R

    2015-12-01

    Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine-alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  11. A methodology for automated CPA extraction using liver biopsy image analysis and machine learning techniques.

    PubMed

    Tsipouras, Markos G; Giannakeas, Nikolaos; Tzallas, Alexandros T; Tsianou, Zoe E; Manousou, Pinelopi; Hall, Andrew; Tsoulos, Ioannis; Tsianos, Epameinondas

    2017-03-01

    Collagen proportional area (CPA) extraction in liver biopsy images provides the degree of fibrosis expansion in liver tissue, which is the most characteristic histological alteration in hepatitis C virus (HCV). Assessment of the fibrotic tissue is currently based on semiquantitative staging scores such as Ishak and Metavir. Since its introduction as a fibrotic tissue assessment technique, CPA calculation based on image analysis techniques has proven to be more accurate than semiquantitative scores. However, CPA has yet to reach everyday clinical practice, since the lack of standardized and robust methods for computerized image analysis for CPA assessment have proven to be a major limitation. The current work introduces a three-stage fully automated methodology for CPA extraction based on machine learning techniques. Specifically, clustering algorithms have been employed for background-tissue separation, as well as for fibrosis detection in liver tissue regions, in the first and the third stage of the methodology, respectively. Due to the existence of several types of tissue regions in the image (such as blood clots, muscle tissue, structural collagen, etc.), classification algorithms have been employed to identify liver tissue regions and exclude all other non-liver tissue regions from CPA computation. For the evaluation of the methodology, 79 liver biopsy images have been employed, obtaining 1.31% mean absolute CPA error, with 0.923 concordance correlation coefficient. The proposed methodology is designed to (i) avoid manual threshold-based and region selection processes, widely used in similar approaches presented in the literature, and (ii) minimize CPA calculation time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Molecular effects of leptin on peroxisome proliferator activated receptor gamma (PPAR-γ) mRNA expression in rat's adipose and liver tissue.

    PubMed

    Abbasi, A; Moghadam, A A; Kahrarian, Z; Abbsavaran, R; Yari, K; Alizadeh, E

    2017-08-15

    Leptin is a 16-kDa peptide hormone secreted by adipose tissue that participates in the regulation of energy homeostasis. The aim of this study was to determine the effect of leptin injection on mRNA expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and comparison of PPAR-γ mRNA expression in rat's adipose and liver tissue. Twenty adult male rats were divided into the following groups: Group 1asa control (n=10) that did not receive any treatment. Group 2as a treatment (n=10) that received leptin (30 µg ⁄ kg BW) intraperitoneally (ip) for two successive days. Blood samples were taken before and one day after second leptin injection for triglyceride (TG), Free Fatty Acid (FFA), HLD-cholesterol, and LDL-cholesterol measurement. Total RNA was extractedfrom the adipose tissue and liver tissues of rats.  Adipose and liver tissue cells' cDNA was synthesized to characterize the expression of PPAR-γ. Gene expression of PPAR-γ mRNA was tested by RT- PCR technique. Results show leptin decreases expression of PPAR-γ on rat. Low levels of PPAR-γ mRNA were detected in adipose and liver tissues of treatment rats in comparison to control group. In treatment group, the level of PPAR-γ mRNA in liver tissue was very lower than the adipose tissue. The levels of HDL and FFA in treatment rats were increased whereas serum levels TG, VLDL and LDL were not changed. It is concluded that leptin signal with suppressing of PPAR-γ mRNA expression in rat's adipose and liver tissues can result in lipolysis instead of lipogenesis.

  13. Generation of functional organs from stem cells.

    PubMed

    Liu, Yunying; Yang, Ru; He, Zuping; Gao, Wei-Qiang

    2013-01-01

    We are now well entering the exciting era of stem cells. Potential stem cell therapy holds great promise for the treatment of many diseases such as stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral-sclerosis, myocardial infarction, muscular dystrophy, diabetes, and etc. It is generally believed that transplantation of specific stem cells into the injured tissue to replace the lost cells is an effective way to repair the tissue. In fact, organ transplantation has been successfully practiced in clinics for liver or kidney failure. However, the severe shortage of donor organs has been a major obstacle for the expansion of organ transplantation programs. Toward that direction, generation of transplantable organs using stem cells is a desirable approach for organ replacement and would be of great interest for both basic and clinical scientists. Here we review recent progress in the field of organ generation using various methods including single adult tissue stem cells, a blastocyst complementation system, tissue decellularization/recellularization and a combination of stem cells and tissue engineering.

  14. Long survival and immunologic reconstitution following transplantation with syngeneic or allogeneic fetal liver and neonatal spleen cells. [X radiation, mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunis, E.J.; Fernandes, G.; Smith, J.

    1976-12-01

    Spleen cells from newborn syngeneic and allogeneic mice that lack fully differentiated T lymphocytes can be used as a hematopoietic source to reconstitute both hematopoietic and lymphoid systems of lethally irradiated mice without producing a GVHR. Fetal liver cells from syngeneic and allogeneic mice that lack postthymic T lymphocytes can also be used for hematopoietic and immunologic reconstitution of lethally irradiated mice without producing GVHR. Immunologic deficiency is observed in some experiments in mice given supralethal irradiation (1000 R) and fetal liver as reconstituting hematopoietic tissue. The findings suggest that T cells, at an early stage of differentiation, are moremore » susceptible to tolerance induction than are T lymphocytes at later stages of differentiation and do not, in general, produce GVHR. It is postulated that hematopoietic cells, free of postthymic lymphoid cells, can be used for hematopoietic or immunologic reconstitution and celular engineering without producing GVHD.« less

  15. Effect of Sea-Buckthorn (Hippophaë rhamnoides L.) Pulp Oil Consumption on Fatty Acids and Vitamin A and E Accumulation in Adipose Tissue and Liver of Rats.

    PubMed

    Czaplicki, Sylwester; Ogrodowska, Dorota; Zadernowski, Ryszard; Konopka, Iwona

    2017-06-01

    An in vivo experiment was conducted to determine the effect of sea-buckthorn pulp oil feeding on the fatty acid composition of liver and adipose tissue of Wistar rats and the liver accumulation of retinol, its esters and α-tocopherol. For a period of 28 days, rats were given a modified casein diet (AIN-93) in which sea-buckthorn pulp oil, soybean oil and pork lard were used as sources of fat. Compared to the other fat sources, sea-buckthorn pulp oil was the most abundant in C16 fatty acids, carotenoids (mainly β-carotene) and tocopherols (mainly α-tocopherol). Its consumption was reflected in an increased share of palmitoleic acid in adipose tissue and the liver and an increased level of retinol in liver tissues (this was not observed for its esters). Although the type of fat did not have a significant effect on the average content of α-tocopherol in the liver, the variation of saturation of this tissue with α-tocopherol was the lowest when rats were fed a diet containing sea-buckthorn oil. This experiment indicates the possibility of affecting adipose tissue and liver by a diet.

  16. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  17. Intelligent freeform manufacturing of complex organs.

    PubMed

    Wang, Xiaohong

    2012-11-01

    Different from the existing tissue engineering strategies, rapid prototyping (RP) techniques aim to automatically produce complex organs directly from computer-aided design freeform models with high resolution and sophistication. Analogous to building a nuclear power plant, cell biology (especially, renewable stem cells), implantable biomaterials, tissue engineering, and single/double/four nozzle RP techniques currently enable researchers in the field to realize a part of the task of complex organ manufacturing. To achieve this multifaceted undertaking, a multi-nozzle rapid prototyping system which can simultaneously integrate an anti-suture vascular system, multiple cell types, and a cocktail of growth factors in a construct should be developed. This article reviews the pros and cons of the existing cell-laden RP techniques for complex organ manufacturing. It is hoped that with the comprehensive multidisciplinary efforts, the implants can virtually replace the functions of a solid internal organ, such as the liver, heart, and kidney. © 2012, Copyright the Author. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression.

    PubMed

    Lewis, Phillip L; Green, Richard M; Shah, Ramille N

    2018-03-15

    Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries. However, hepatocyte specific functions (albumin secretion, CYP activity, and bile transport) increases in more interconnected 3D-printed gelatin cultures compared to a less interconnected geometry and to 2D controls. Additionally, we also illustrate the disparity between gene expression and protein function in simple 2D culture modes, and that recreation of a physiologically mimetic 3D environment is necessary to induce both expression and function of cultured hepatocytes. Three dimensional (3D) printing provides tissue engineers the ability spatially pattern cells and materials in precise geometries, however the biological effects of scaffold geometry on soft tissues such as the liver have not been rigorously investigated. In this manuscript, we describe a method to 3D print gelatin into well-defined repetitive geometries that show clear differences in biological effects on seeded hepatocytes. We show that a relatively simple and widely used biomaterial, such as gelatin, can significantly modulate biological processes when fabricated into specific 3D geometries. Furthermore, this study expands upon past research into hepatocyte aggregation by demonstrating how it can be manipulated to enhance protein function, and how function and expression may not precisely correlate in 2D models. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver.

    PubMed

    Kochan, K; Maslak, E; Chlopicki, S; Baranska, M

    2015-08-07

    In this work we apply FT-IR imaging of large areas of liver tissue cross-section samples (∼5 cm × 5 cm) for quantitative assessment of steatosis in murine model of Non-Alcoholic Fatty Liver (NAFLD). We quantified the area of liver tissue occupied by lipid droplets (LDs) by FT-IR imaging and Oil Red O (ORO) staining for comparison. Two alternative FT-IR based approaches are presented. The first, straightforward method, was based on average spectra from tissues and provided values of the fat content by using a PLS regression model and the reference method. The second one – the chemometric-based method – enabled us to determine the values of the fat content, independently of the reference method by means of k-means cluster (KMC) analysis. In summary, FT-IR images of large size liver sections may prove to be useful for quantifying liver steatosis without the need of tissue staining.

  20. TNFα-Mediated Liver Destruction by Kupffer Cells and Ly6Chi Monocytes during Entamoeba histolytica Infection

    PubMed Central

    Ernst, Thomas; Ittrich, Harald; Jacobs, Thomas; Heeren, Joerg; Tacke, Frank; Tannich, Egbert; Lotter, Hannelore

    2013-01-01

    Amebic liver abscess (ALA) is a focal destruction of liver tissue due to infection by the protozoan parasite Entamoeba histolytica (E. histolytica). Host tissue damage is attributed mainly to parasite pathogenicity factors, but massive early accumulation of mononuclear cells, including neutrophils, inflammatory monocytes and macrophages, at the site of infection raises the question of whether these cells also contribute to tissue damage. Using highly selective depletion strategies and cell-specific knockout mice, the relative contribution of innate immune cell populations to liver destruction during amebic infection was investigated. Neutrophils were not required for amebic infection nor did they appear to be substantially involved in tissue damage. In contrast, Kupffer cells and inflammatory monocytes contributed substantially to liver destruction during ALA, and tissue damage was mediated primarily by TNFα. These data indicate that besides direct antiparasitic drugs, modulating innate immune responses may potentially be beneficial in limiting ALA pathogenesis. PMID:23300453

  1. Multi-locus sequence subtypes of Campylobacter detected on the surface and from internal tissue of retail chicken livers

    USDA-ARS?s Scientific Manuscript database

    Foodborne campylobacteriosis has been traced to undercooked chicken liver. The objectives of this study were to measure prevalence of Campylobacter associated with chicken livers at retail and determine which subtypes are detected on the surface and inner tissue of livers. Fifteen packages of fres...

  2. [Prolyl hydroxylase activity in liver specimens in chronic liver diseases (author's transl)].

    PubMed

    Langness, U; Clausnitzer, H; Verspohl, M; Grasedyck, K

    1978-08-25

    100 patients were laparoscopied, liver tissue specimens taken from atypically altered areas. Prolyl hydroxylase was determined in the specimen, in parallel tissue was examined by light microscope. 8 groups of patients could be differentiated: Patients 1. with active, 2, with inactive cirrhosis, 3. with fatty infiltrations, 4. with fatty infiltration and mesenchymal reaction, 5. with aggressive, 6. with persistent, 7. with reactive hepatitis, 8. patients without histological changes. In the case of connective tissue increase in the liver prolyl hydroxylase activities were statistically significant above normal. In addition, there was a statistically significant difference between the enzyme activities of each group. A correlation could be found between prolyl hydroxylase activity and morphologically estimated connective tissue formation, but not the serum enzyme activities usually determined in liver diseases. Therefore, could be concluded that prolyl hydroxylase activity is an index of actual collagen biosynthesis in chronic liver diseases.

  3. Correlation of trace element concentrations between epidermis and internal organ tissues in Indo-Pacific humpback dolphins (Sousa chinensis).

    PubMed

    Sun, Xian; Yu, Ri-Qing; Zhang, Mei; Zhang, Xiyang; Chen, Xi; Xiao, Yousheng; Ding, Yulong; Wu, Yuping

    2017-12-15

    Trace element accumulation in the epidermis of cetaceans has been less studied. This study explored the feasibility of using epidermis as a surrogate tissue to evaluate internal contaminant burdens in Indo-Pacific humpback dolphin (Sousa chinensis). Eleven trace elements were analyzed in the epidermis, muscle and liver tissues from 46 individuals of dolphins stranded along the Pearl River Estuary (PRE) coast between 2007 and 2013. Trace elemental concentrations varied among the three tissues, generally with the highest concentrations found in liver tissues and lowest in the epidermis (except Zn, As, and Pb). Zn concentration in the epidermis was the highest among all tissues, indicating that Zn could be an important element for the epidermis physiology. High concentrations of Hg and Cr in liver were likely due to an excessive intake by dolphins which consumed high Hg and Cr contaminated fishes in the PRE. Hg concentrations in epidermis and muscle tissues were significantly higher in the females than in males. Concentrations of V and Pb in liver, Se and Cd in both muscle and liver, and As and Hg in all tissue samples showed significantly positive relationships with body length. Hepatic Cu concentrations were significantly negatively correlated with the body length. Hg and As concentrations in epidermis showed significantly positive correlations with those in liver tissues. Thus this study proposed that epidermis could be used as a non-invasive monitoring tissue to evaluate Hg and As bioaccumulation in internal tissues of Indo-Pacific humpback dolphins populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Deregulation of HIF1-alpha and hypoxia-regulated pathways in hepatocellular carcinoma and corresponding non-malignant liver tissue--influence of a modulated host stroma on the prognosis of HCC.

    PubMed

    Simon, Frank; Bockhorn, Maximilian; Praha, Christian; Baba, Hideo A; Broelsch, Christoph E; Frilling, Andrea; Weber, Frank

    2010-04-01

    The aim of this study was to elucidate the role of HIF1A expression in hepatocellular carcinoma (HCC) and the corresponding non-malignant liver tissue and to correlate it with the clinical outcome of HCC patients after curative liver resection. HIF1A expression was determined by quantitative RT-PCR in HCC and corresponding non-malignant liver tissue of 53 patients surgically treated for HCC. High-density gene expression analysis and pathway analysis was performed on a selected subset of patients with high and low HIF1A expression in the non-malignant liver tissue. HIF1A over-expression in the apparently non-malignant liver tissue was a predictor of tumor recurrence and survival. The estimated 1-year and 5-year disease-free survival was significantly better in patients with low HIF1A expression in the non-malignant liver tissue when compared to those patients with high HIF1 expression (88.9% vs. 67.9% and 61.0% vs. 22.6%, respectively, p = 0.008). Based on molecular pathway analysis utilizing high-density gene-expression profiling, HIF1A related molecular networks were identified that contained genes involved in cell migration, cell homing, and cell-cell interaction. Our study identified a potential novel mechanism contributing to prognosis of HCC. The deregulation of HIF1A and its related pathways in the apparently non-malignant liver tissue provides for a modulated environment that potentially enhances or allows for HCC recurrence after curative resection.

  5. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  6. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues

    NASA Astrophysics Data System (ADS)

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health. Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper, we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameters can provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  7. Isolation and Expansion of Hepatic Stem-like Cells from a Healthy Rat Liver and their Efficient Hepatic Differentiation of under Well-defined Vivo Hepatic like Microenvironment in a Multiwell Bioreactor

    PubMed Central

    Giri, Shibashish; Acikgöz, Ali; Bader, Augustinus

    2015-01-01

    Background Currently, undifferentiated cells are found in all tissue and term as local stem cells which are quiescent in nature and less in number under normal healthy conditions but activate upon injury and repair the tissue or organs via automated activating mechanism. Due to very scanty presence of local resident somatic local stem cells in healthy organs, isolation and expansion of these adult stems is an immense challenge for medical research and cell based therapy. Particularly organ like liver, there is an ongoing controversy about existence of liver stem cells. Methods Herein, Hepatic stem cells population was identified during culture of primary hepatocyte cells upon immediate isolation of primary hepatocyte cells. These liver stem cells has been expanded extensively and differentiated into primary hepatocytes under defined culture conditions in a nanostructured self assembling peptides modular bioreactor that mimic the state of art of liver microenvironment and compared with Matrigel as a positive control. Nanostructured self assembling peptides were used a defined extracellular matrix and Matrigel was used for undefined extracellular matrix. Proliferation of hepatic stem cells was investigated by two strategies. First strategy is to provide high concentration of hepatocyte growth factor (HGF) and second strategy is to evaluate the role of recombinant human erythropoietin (rHuEPO) in presence of trauma/ischemia cytokines (IL-6, TNF-α). Expansion to hepatic differentiation is observed by morphological analysis and was evaluated for the expression of hepatocyte-specific genes using RT-PCR and biochemical methods. Results Hepatocyte-specific genes are well expressed at final stage (day 21) of differentiation period. The differentiated hepatocytes exhibited functional hepatic characteristics such as albumin secretion, urea secretion and cytochrome P450 expression. Additionally, immunofluorescence analysis revealed that hepatic stem cells derived hepatocytes exhibited mature hepatocyte markers (albumin, CK-19, CPY3A1, alpha 1-antitrypsin). Expansion and hepatic differentiation was efficiently in nanostructured self assembling peptides without such batch to batch variation while there was much variation in Matrigel coated bioreactor. In conclusion, the results of the study suggest that the nanostructured self assembling peptides coated bioreactor supports expansion as well as hepatic differentiation of liver stem cells which is superior than Matrigel. Conclusion This defined microenvironment conditions in bioreactor module can be useful for research involving bioartificial liver system, stem cell research and engineered liver tissue which could contribute to regenerative cell therapies or drug discovery and development. PMID:26155038

  8. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics

    PubMed Central

    Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954

  9. Pre- vs. post-treatment with melatonin in CCl4-induced liver damage: Oxidative stress inferred from biochemical and pathohistological studies.

    PubMed

    Ničković, Vanja P; Novaković, Tatjana; Lazarević, Slavica; Šulović, Ljiljana; Živković, Zorica; Živković, Jovan; Mladenović, Bojan; Stojanović, Nikola M; Petrović, Vladmir; Sokolović, Dušan T

    2018-06-01

    The present study was designed to compare the ameliorating potential of pre- and post-treatments with melatonin, a potent natural antioxidant, in the carbon tetrachloride-induced rat liver damage model by tracking changes in enzymatic and non-enzymatic liver tissue defense parameters, as well as in the occurring pathohistological changes. Rats from two experimental groups were treated with melatonin before and after CCl 4 administration, while the controls, negative and positive, received vehicle/melatonin and CCl 4 , respectively. Serum levels of transaminases, alkaline phosphates, γ-GT, bilirubin, and albumin, as well as a wide panel of oxidative stress-related parameters in liver tissue, were determined in all experimental animals. Liver tissue specimens were stained with hematoxylin and eosin and further evaluated for morphological changes. Both pre- and post-treatment with melatonin prevented a CCl 4 -induced increase in serum (ALT, AST, and γ-GT) and tissue (MDA and XO) liver damage markers and a decrease in the tissue total antioxidant capacity, in both enzymatic and non-enzymatic systems. The intensity of pathological changes, hepatocyte vacuolar degeneration, necrosis and inflammatory cell infiltration, was suppressed by the treatment with melatonin. In conclusion, melatonin, especially as a post-intoxication treatment, attenuated CCl 4 -induced liver oxidative damage, increased liver antioxidant capacities and improved liver microscopic appearance. The results are of interest due to the great protective potential of melatonin that was even demonstrated to be stronger if applied after the tissue damage. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Evaluation of Ultrasonic Fiber Structure Extraction Technique Using Autopsy Specimens of Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hirai, Kazuki; Yamada, Hiroyuki; Ebara, Masaaki; Hachiya, Hiroyuki

    2005-06-01

    It is very important to diagnose liver cirrhosis noninvasively and correctly. In our previous studies, we proposed a processing technique to detect changes in liver tissue in vivo. In this paper, we propose the evaluation of the relationship between liver disease and echo information using autopsy specimens of a human liver in vitro. It is possible to verify the function of a processing parameter clearly and to compare the processing result and the actual human liver tissue structure by in vitro experiment. In the results of our processing technique, information that did not obey a Rayleigh distribution from the echo signal of the autopsy liver specimens was extracted depending on changes in a particular processing parameter. The fiber tissue structure of the same specimen was extracted from a number of histological images of stained tissue. We constructed 3D structures using the information extracted from the echo signal and the fiber structure of the stained tissue and compared the two. By comparing the 3D structures, it is possible to evaluate the relationship between the information that does not obey a Rayleigh distribution of the echo signal and the fibrosis structure.

  11. Fatty Acid Composition of Muscle, Adipose Tissue and Liver from Muskoxen (Ovibos moschatus) Living in West Greenland

    PubMed Central

    Alves, Susana P.; Raundrup, Katrine; Cabo, Ângelo; Bessa, Rui J. B.; Almeida, André M.

    2015-01-01

    Information about lipid content and fatty acid (FA) composition of muskoxen (Ovibos moschatos) edible tissues is very limited in comparison to other meat sources. Thus, this work aims to present the first in-depth characterization of the FA profile of meat, subcutaneous adipose tissue and liver of muskoxen living in West Greenland. Furthermore, we aim to evaluate the effect of sex in the FA composition of these edible tissues. Samples from muscle (Longissimus dorsi), subcutaneous adipose tissue and liver were collected from female and male muskoxen, which were delivered at the butchery in Kangerlussuaq (West Greenland) during the winter hunting season. The lipid content of muscle, adipose tissue and liver averaged 284, 846 and 173 mg/g of dry tissue, respectively. This large lipid contents confirms that in late winter, when forage availability is scarce, muskoxen from West Greenland still have high fat reserves, demonstrating that they are well adapted to seasonal feed restriction. A detailed characterization of FA and dimethylacetal composition of muskoxen muscle, subcutaneous adipose tissue and liver showed that there are little differences on FA composition between sexes. Nevertheless, the 18:1cis-9 was the most abundant FA in muscle and adipose tissue, reaching 43% of total FA in muscle. The high content of 18:1cis-9 suggests that it can be selectively stored in muskoxen tissues. Regarding the nutritional composition of muskoxen edible tissues, they are not a good source of polyunsaturated FA; however, they may contribute to a higher fat intake. Information about the FA composition of muskoxen meat and liver is scarce, so this work can contribute to the characterization of the nutritional fat properties of muskoxen edible tissues and can be also useful to update food composition databases. PMID:26678792

  12. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  13. Recent advances in 3D printing of biomaterials.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing.

  14. Liver Transplantation in the Mouse: Insights Into Liver Immunobiology, Tissue Injury and Allograft Tolerance

    PubMed Central

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.

    2016-01-01

    The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949

  15. Quantification of HCV RNA in Liver Tissue by bDNA Assay.

    PubMed

    Dailey, P J; Collins, M L; Urdea, M S; Wilber, J C

    1999-01-01

    With this statement, Sherlock and Dooley have described two of the three major challenges involved in quantitatively measuring any analyte in tissue samples: the distribution of the analyte in the tissue; and the standard of reference, or denominator, with which to make comparisons between tissue samples. The third challenge for quantitative measurement of an analyte in tissue is to ensure reproducible and quantitative recovery of the analyte on extraction from tissue samples. This chapter describes a method that can be used to measure HCV RNA quantitatively in liver biopsy and tissue samples using the bDNA assay. All three of these challenges-distribution, denominator, and recovery-apply to the measurement of HCV RNA in liver biopsies.

  16. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.

    PubMed

    Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.

  17. Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver

    PubMed Central

    Yildiz, Fahrettin; Coban, Sacit; Terzi, Alpaslan; Ates, Mustafa; Aksoy, Nurten; Cakir, Hale; Ocak, Ali Riza; Bitiren, Muharrem

    2008-01-01

    AIM: To determine whether Nigella sativa prevents hepatic ischemia-reperfusion injury to the liver. METHODS: Thirty rats were divided into three groups as sham (Group 1), control (Group 2), and Nigella sativa (NS) treatment group (Group 3). All rats underwent hepatic ischemia for 45 min followed by 60 min period of reperfusion. Rats were intraperitoneally infused with only 0.9% saline solution in group 2. Rats in group 3 received NS (0.2 mL/kg) intraperitoneally, before ischemia and before reperfusion. Blood samples and liver tissues were harvested from the rats, and then the rats were sacrificed. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels were determined. Total antioxidant capacity (TAC), catalase (CAT), total oxidative status (TOS), oxidative stress index (OSI) and myeloperoxidase (MPO) in hepatic tissue were measured. Also liver tissue histopathology was evaluated by light microscopy. RESULTS: The levels of liver enzymes in group 3 were significantly lower than those in the group 2. TAC in liver tissue was significantly higher in group 3 than in group 2. TOS, OSI and MPO in hepatic tissue were significantly lower in group 3 than the group 2. Histological tissue damage was milder in the NS treatment group than that in the control group. CONCLUSION: Our results suggest that Nigella sativa treatment protects the rat liver against to hepatic ischemia-reperfusion injury. PMID:18777598

  18. Polyethylene Glycol (PEG) Linked to Near Infrared (NIR) Dyes Conjugated to Chimeric Anti-Carcinoembryonic Antigen (CEA) Antibody Enhances Imaging of Liver Metastases in a Nude-Mouse Model of Human Colon Cancer

    PubMed Central

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-01-01

    We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases. PMID:24859320

  19. Deep residual networks for automatic segmentation of laparoscopic videos of the liver

    NASA Astrophysics Data System (ADS)

    Gibson, Eli; Robu, Maria R.; Thompson, Stephen; Edwards, P. Eddie; Schneider, Crispin; Gurusamy, Kurinchi; Davidson, Brian; Hawkes, David J.; Barratt, Dean C.; Clarkson, Matthew J.

    2017-03-01

    Motivation: For primary and metastatic liver cancer patients undergoing liver resection, a laparoscopic approach can reduce recovery times and morbidity while offering equivalent curative results; however, only about 10% of tumours reside in anatomical locations that are currently accessible for laparoscopic resection. Augmenting laparoscopic video with registered vascular anatomical models from pre-procedure imaging could support using laparoscopy in a wider population. Segmentation of liver tissue on laparoscopic video supports the robust registration of anatomical liver models by filtering out false anatomical correspondences between pre-procedure and intra-procedure images. In this paper, we present a convolutional neural network (CNN) approach to liver segmentation in laparoscopic liver procedure videos. Method: We defined a CNN architecture comprising fully-convolutional deep residual networks with multi-resolution loss functions. The CNN was trained in a leave-one-patient-out cross-validation on 2050 video frames from 6 liver resections and 7 laparoscopic staging procedures, and evaluated using the Dice score. Results: The CNN yielded segmentations with Dice scores >=0.95 for the majority of images; however, the inter-patient variability in median Dice score was substantial. Four failure modes were identified from low scoring segmentations: minimal visible liver tissue, inter-patient variability in liver appearance, automatic exposure correction, and pathological liver tissue that mimics non-liver tissue appearance. Conclusion: CNNs offer a feasible approach for accurately segmenting liver from other anatomy on laparoscopic video, but additional data or computational advances are necessary to address challenges due to the high inter-patient variability in liver appearance.

  20. Separate physiological roles for two isozymes of pyridine nucleotide-linked glycerol-3-phosphate dehydrogenase in chicken.

    NASA Technical Reports Server (NTRS)

    White, H. B., III; Kaplan, N. O.

    1972-01-01

    The isozymes considered are designated 'liver type' and 'muscle type' based on the tissue of highest concentration. Electrophoretic analysis shows that the liver type is found in small amounts or is undetectable in all tissues studied except liver. The muscle type is found in skeletal muscles and kidney. Presumptive hybrid enzymes occur at low levels in chicken liver and kidney. The tissue distribution of glyceron-3-P dehydrogenase in several birds capable of sustained flight is different than in chicken.

  1. Deficient copper concentrations in dried-defatted hepatic tissue from ob/ob mice: A potential model for study of defective copper regulation in metabolic liver disease.

    PubMed

    Church, Stephanie J; Begley, Paul; Kureishy, Nina; McHarg, Selina; Bishop, Paul N; Bechtold, David A; Unwin, Richard D; Cooper, Garth J S

    2015-05-08

    Ob/ob mice provide an animal model for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) in patients with obesity and type-2 diabetes. Low liver copper has been linked to hepatic lipid build-up (steatosis) in animals with systemic copper deficiency caused by low-copper diets. However, hepatic copper status in patients with NAFLD or NASH is uncertain, and a validated animal model useful for the study of hepatic copper regulation in common forms of metabolic liver disease is lacking. Here, we report parallel measurements of essential metal levels in whole-liver tissue and defatted-dried liver tissue from ob/ob and non-obese control mice. Measurements in whole-liver tissue from ob/ob mice at an age when they have developed NAFLD/NASH, provide compelling evidence for factitious lowering of copper and all other essential metals by steatosis, and so cannot be used to study hepatic metal regulation in this model. By marked contrast, metal measurements in defatted-dried liver samples reveal that most essential metals were actually normal and indicate specific lowering of copper in ob/ob mice, consistent with hepatic copper deficiency. Thus ob/ob mice can provide a model useful for the study of copper regulation in NAFLD and NASH, provided levels are measured in defatted-dried liver tissue. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Development and validation of a UPLC-MS/MS method for the simultaneous determination of paritaprevir and ritonavir in rat liver.

    PubMed

    Ocque, Andrew J; Hagler, Colleen E; Difrancesco, Robin; Woolwine-Cunningham, Yvonne; Bednasz, Cindy J; Morse, Gene D; Talal, Andrew H

    2016-07-01

    Determination of paritaprevir and ritonavir in rat liver tissue samples. We successfully validated a UPLC-MS/MS method to measure paritaprevir and ritonavir in rat liver using deuterated internal standards (d8-paritapervir and d6-ritonavir). The method is linear from 20 to 20,000 and 5 to 10,000 pg on column for paritaprevir and ritonavir, respectively, and is normalized per milligram tissue. Interday and intraday variability ranged from 0.591 to 5.33% and accuracy ranged from -6.68 to 10.1% for quality control samples. The method was then applied to the measurement of paritaprevir and ritonavir in rat liver tissue samples from a pilot study. The validated method is suitable for measurement of paritaprevir and ritonavir within rat liver tissue samples for PK studies.

  3. Hyperspectral Stimulated Raman Scattering Microscopy Unravels Aberrant Accumulation of Saturated Fat in Human Liver Cancer.

    PubMed

    Yan, Shuai; Cui, Sishan; Ke, Kun; Zhao, Bixing; Liu, Xiaolong; Yue, Shuhua; Wang, Ping

    2018-06-05

    Lipid metabolism is dysregulated in human cancers. The analytical tools that could identify and quantitatively map metabolites in unprocessed human tissues with submicrometer resolution are highly desired. Here, we implemented analytical hyperspectral stimulated Raman scattering microscopy to map the lipid metabolites in situ in normal and cancerous liver tissues from 24 patients. In contrast to the conventional wisdom that unsaturated lipid accumulation enhances tumor cell survival and proliferation, we unexpectedly visualized substantial amount of saturated fat accumulated in cancerous liver tissues, which was not seen in majority of their adjacent normal tissues. Further analysis by mass spectrometry confirmed significant high levels of glyceryl tripalmitate specifically in cancerous liver. These findings suggest that the aberrantly accumulated saturated fat may have great potential to be a metabolic biomarker for liver cancer.

  4. Heavy metals in Franklin`s gull tissues: Age and tissue differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Gochfeld, M.

    1999-04-01

    The authors examined the concentrations of lead, cadmium, chromium, mercury, manganese, and selenium in feathers, liver, kidney, heart, brain, and breast muscle of Franklin`s gulls (Larus pipixcan) nesting in northwestern Minnesota, USA, in 1994. Between 16% (chromium) and 71% (selenium, manganese) of the variation in metal concentrations was explained by tissue and age, except for selenium and arsenic, which were only explained by tissue. Of 35 possible differences (seven metals in five tissues), 24 significant age-related differences were found in Franklin`s gulls, with young generally having lower concentrations of metals in all of their tissues than adults. A notable exceptionmore » was the liver; young had significantly higher concentrations of selenium, chromium, manganese, and arsenic than did adults. Three notable findings were the following: young had significantly higher concentrations of selenium, chromium, manganese, and arsenic in their liver than did adults; young had 30 times as much chromium in the liver than adults; and adults had greatly elevated concentrations of cadmium in feathers, kidney, and liver.« less

  5. Quantification of C4d deposition and hepatitis C virus RNA in tissue in cases of graft rejection and hepatitis C recurrence after liver transplantation

    PubMed Central

    Song, Alice Tung Wan; de Mello, Evandro Sobroza; Alves, Venâncio Avancini Ferreira; Cavalheiro, Norma de Paula; Melo, Carlos Eduardo; Bonazzi, Patricia Rodrigues; Tengan, Fatima Mitiko; Freire, Maristela Pinheiro; Barone, Antonio Alci; D'Albuquerque, Luiz Augusto Carneiro; Abdala, Edson

    2015-01-01

    Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+), acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-). All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection. PMID:25742264

  6. Increase of infiltrating monocytes in the livers of patients with chronic liver diseases.

    PubMed

    Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Pan, Zhiyun; Xia, Juan; Xiong, Yali; Wang, Guiyang; Sun, Zhenhua; Chen, Jun; Yan, Xiaomin; Zhang, Zhaoping; Wu, Chao

    2016-01-01

    Infiltrating monocytes have been demonstrated to contribute to tissue damage in experimental models of liver injury and fibrosis. However, less is known about monocyte infiltration in the livers of patients with chronic liver diseases (CLD). In the present study, we demonstrated that CD68+ hepatic macrophages and MAC387+ infiltrating monocytes were significantly increased in the livers of CLD patients with different etiologies as compared with normal liver tissue. In addition, CLD patients with higher inflammatory grading scores had more CD68+ macrophages and MAC387+ monocytes infiltration in their livers compared to those with lower scores. Significantly more MAC387+ infiltrating monocytes were found in the liver tissue of CLD patients with higher fibrotic staging scores compared to those with lower scores. Monocyte chemoattractant protein-1 (MCP-1) expression was significantly increased in the livers of CLD patients with different etiologies. MCP-1 staining scores were significantly positively associated with the numbers of MAC387+ infiltrating monocytes in CLD patients. Taken together, our results demonstrate that infiltrating monocytes may play a pathological role in exacerbating chronic liver inflammation and fibrosis in CLD. MCP-1 may be involved in the monocyte infiltration and progression of liver inflammation and fibrosis in CLD.

  7. Segmentation of liver region with tumorous tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Lee, Gobert; Tajima, Tetsuji; Kitagawa, Teruhiko; Kanematsu, Masayuki; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Hoshi, Hiroaki; Nawano, Shigeru; Shinozaki, Kenji

    2007-03-01

    Segmentation of an abnormal liver region based on CT or MR images is a crucial step in surgical planning. However, precisely carrying out this step remains a challenge due to either connectivities of the liver to other organs or the shape, internal texture, and homogeneity of liver that maybe extensively affected in case of liver diseases. Here, we propose a non-density based method for extracting the liver region containing tumor tissues by edge detection processing. False extracted regions are eliminated by a shape analysis method and thresholding processing. If the multi-phased images are available then the overall outcome of segmentation can be improved by subtracting two phase images, and the connectivities can be further eliminated by referring to the intensity on another phase image. Within an edge liver map, tumor candidates are identified by their different gray values relative to the liver. After elimination of the small and nonspherical over-extracted regions, the final liver region integrates the tumor region with the liver tissue. In our experiment, 40 cases of MDCT images were used and the result showed that our fully automatic method for the segmentation of liver region is effective and robust despite the presence of hepatic tumors within the liver.

  8. Correlation between acoustic radiation force impulse (ARFI)-based tissue elasticity measurements and perfusion parameters acquired by perfusion CT in cirrhotic livers: a proof of principle.

    PubMed

    Esser, Michael; Bitzer, Michael; Kolb, Manuel; Fritz, Jan; Kurucay, Mustafa; Ruff, Christer; Horger, Marius

    2018-06-13

    To investigate whether liver stiffness measured by acoustic radiation force impulse (ARFI) sonoelastography always correlates with the liver perfusion parameters quantified by perfusion CT in patients with known liver cirrhosis. Sonoelastography and perfusion CT were performed in 50 patients (mean age 65.5; range 45-87 years) with liver cirrhosis, who were classified according to Child-Pugh into class A (30/50, 60%), B (17/50, 34%), and C (3/50, 6%). For standardized ARFI measurements in the left liver lobe at a depth of 4 cm, a convex 6-MHz probe was used. CT examinations were performed using 80 kV, 100 mAs, and 50 ml of iodinated contrast agent injected at 5 ml/s. Using standardized region-of-interest measurements, we quantified arterial, portal venous, and total liver perfusion. There was a significant linear correlation between tissue stiffness and arterial liver perfusion (p = 0.015), and also when limiting the analysis to patients with histology (p = 0.019). In addition, there was a positive correlation between the total blood supply (arterial + portal-venous liver perfusion) to the liver and tissue stiffness (p = 0.001; with histology, p = 0.027). Shear wave velocity increased with higher Child-Pugh stages (p = 0.013). The degree of tissue stiffness in cirrhotic livers correlates expectedly-even if only moderately-with the magnitude of arterial liver perfusion and total liver perfusion. As such, liver elastography remains the leading imaging tool in assessing liver fibrosis.

  9. Bioavailability and tissue distribution of Dechloranes in wild frogs (Rana limnocharis) from an e-waste recycling area in Southeast China.

    PubMed

    Li, Long; Wang, Wenyue; Lv, Quanxia; Ben, Yujie; Li, Xinghong

    2014-03-01

    Dechlorane Plus (DP), a flame retardant used as an alternative to decabromodiphenylether, has been frequently detected in organisms, indicating its bioaccumulation and biomagnification potential in aquatic and terrestrial species. However, little data is available on the bioaccumulation of DP in amphibians. Dechlorane Plus and its analogs (DPs) were detected in the liver, muscle and brain tissues of wild frogs (Rana limnocharis), which were collected from an e-waste recycling site, Southeast China. DP, Mirex, Dec 602 and a dechlorinated compound of DP (anti-Cl11-DP) varied in the range of 2.01-291, 0.650-179, 0.260-12.4, and not detected (nd)-8.67 ng/g lipid weight, respectively. No difference of tissue distribution was found for syn-DP, Mirex and Dec 602 between the liver and muscle tissue (liver/muscle concentration ratio close to 1, p > 0.05). However, higher retention was observed for anti-DP and anti-Cl11-DP in the frog muscle relative to the liver tissue (liver/muscle concentration ratio < 1, p < 0.05). Additionally, the blood-brain barrier was found to work efficiently to suppress these compounds entering brain tissues in this species (liver/brain concentration ratio > 1, p < 0.05), and the molecular weight was a key factor impacting the extent of the blood-brain barrier. Compared to levels in the muscle and brain tissue, a preferential enrichment of syn-DP was observed in the liver tissue, suggesting the occurrence of stereo-selective bioaccumulation in the wild frog. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. The liver tissue bank and clinical database in China.

    PubMed

    Yang, Yuan; Liu, Yi-Min; Wei, Ming-Yue; Wu, Yi-Fei; Gao, Jun-Hui; Liu, Lei; Zhou, Wei-Ping; Wang, Hong-Yang; Wu, Meng-Chao

    2010-12-01

    To develop a standardized and well-rounded material available for hepatology research, the National Liver Tissue Bank (NLTB) Project began in 2008 in China to make well-characterized and optimally preserved liver tumor tissue and clinical database. From Dec 2008 to Jun 2010, over 3000 individuals have been enrolled as liver tumor donors to the NLTB, including 2317 cases of newly diagnosed hepatocellular carcinoma (HCC) and about 1000 cases of diagnosed benign or malignant liver tumors. The clinical database and sample store can be managed easily and correctly with the data management platform used. We believe that the high-quality samples with detailed information database will become the cornerstone of hepatology research especially in studies exploring the diagnosis and new treatments for HCC and other liver diseases.

  11. Quantitative imaging of fibrotic and morphological changes in liver of non-alcoholic steatohepatitis (NASH) model mice by second harmonic generation (SHG) and auto-fluorescence (AF) imaging using two-photon excitation microscopy (TPEM).

    PubMed

    Yamamoto, Shin; Oshima, Yusuke; Saitou, Takashi; Watanabe, Takao; Miyake, Teruki; Yoshida, Osamu; Tokumoto, Yoshio; Abe, Masanori; Matsuura, Bunzo; Hiasa, Yoichi; Imamura, Takeshi

    2016-12-01

    Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively.

  12. Effect of Topically Applied Diisopropylfluorophosphate on Glucose Metabolism in the Rat.

    DTIC Science & Technology

    1982-12-01

    intermediary metabolism, * liver , adipose tissue topical application. DFP - diisopropylfluorophosphate OL AIISTRACT’MOMNomrse sft NOMNY Ol~ dulp lekib) .1A...skin, liver and adipose tissue preparations were determined. DFP had no demonstratable effect on glucose oxidation. In contrast, DFP enhanced fatty...acid synthesis by 70% over the control values in the skin and by 56 and 92% in the liver and adipose tissue, respectively. DFP stimulated synthesis. of

  13. Multiresidue determination of ten nonsteroidal anti-inflammatory drugs in bovine, porcine, and chicken liver tissues by HPLC-MS/MS.

    PubMed

    Kang, JeongWoo; Park, Su-Jeong; Park, Hae-Chul; Gedi, Vinayakumar; So, ByungJae; Lee, Kwang-Jick

    2014-09-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the group of drugs having the therapeutic efficacy of analgesic and antipyretic. To detect health-threatening residues of NSAIDs, a fast and easy multiresidue method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) was described. Ten NSAIDs were extracted from the tissues using 2 mL of acetonitrile and 0.1 mL of 2 mM ammonium formate in distilled water. After clean-up using C18 sorbent, it was evaporated under nitrogen, reconstituted with 1 mL distilled water and analyzed by LC-MS/MS. The method was validated based on guideline for residue testing laboratory. Furthermore, the method has also been applied successfully to detect ten NSAIDs from bovine, porcine, and chicken liver tissues. In a total of 315 liver samples tested, acetylic salicylic acid was detected from 28 porcine and 2 chicken liver tissues at levels of 13 ∼ 576 and 50 ∼ 53 ng/g, respectively. Subsequently, paracetamol was detected in 15 porcine liver tissues with a detection levels of 28 ∼ 381 ng/g. Phenylbutazone and its metabolite, oxyphenylbutazone, were detected at 247 and 15 ng/g range in one of the bovine liver tissue, respectively.

  14. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.

    PubMed

    Nicolle, S; Vezin, P; Palierne, J-F

    2010-03-22

    Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Structural and quantitative expression analyses of HERV gene family in human tissues.

    PubMed

    Ahn, Kung; Kim, Heui-Soo

    2009-08-31

    Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.

  16. Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.

    PubMed

    Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong

    2015-12-01

    The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

  17. Tissue distribution comparison between healthy and fatty liver rats after oral administration of hawthorn leaf extract.

    PubMed

    Yin, Jingjing; Qu, Jianguo; Zhang, Wenjie; Lu, Dongrui; Gao, Yucong; Ying, Xixiang; Kang, Tingguo

    2014-05-01

    Hawthorn leaves, a well-known traditional Chinese medicine, have been widely used for treating cardiovascular and fatty liver diseases. The present study aimed to investigate the therapeutic basis treating fatty liver disease by comparing the tissue distribution of six compounds of hawthorn leaf extract (HLE) in fatty liver rats and healthy rats after oral administration at first day, half month and one month, separately. Therefore, a sensitive and specific HPLC method with internal standard was developed and validated to determine chlorogenic acid, vitexin-4''-O-glucoside, vitexin-2''-O-rhamnoside, vitexin, rutin and hyperoside in the tissues including heart, liver, spleen, kidney, stomach and intestine. The results indicated that the six compounds in HLE presented some bioactivity in treating rat fatty liver as the concentrations of the six compounds varied significantly in inter- and intragroup comparisons (healthy and/or fatty liver group). Copyright © 2013 John Wiley & Sons, Ltd.

  18. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues

    NASA Astrophysics Data System (ADS)

    Montgomery, Miles; Ahadian, Samad; Davenport Huyer, Locke; Lo Rito, Mauro; Civitarese, Robert A.; Vanderlaan, Rachel D.; Wu, Jun; Reis, Lewis A.; Momen, Abdul; Akbari, Saeed; Pahnke, Aric; Li, Ren-Ke; Caldarone, Christopher A.; Radisic, Milica

    2017-10-01

    Despite great progress in engineering functional tissues for organ repair, including the heart, an invasive surgical approach is still required for their implantation. Here, we designed an elastic and microfabricated scaffold using a biodegradable polymer (poly(octamethylene maleate (anhydride) citrate)) for functional tissue delivery via injection. The scaffold’s shape memory was due to the microfabricated lattice design. Scaffolds and cardiac patches (1 cm × 1 cm) were delivered through an orifice as small as 1 mm, recovering their initial shape following injection without affecting cardiomyocyte viability and function. In a subcutaneous syngeneic rat model, injection of cardiac patches was equivalent to open surgery when comparing vascularization, macrophage recruitment and cell survival. The patches significantly improved cardiac function following myocardial infarction in a rat, compared with the untreated controls. Successful minimally invasive delivery of human cell-derived patches to the epicardium, aorta and liver in a large-animal (porcine) model was achieved.

  19. Distribution of Ca, Fe, Cu and Zn in primary colorectal cancer and secondary colorectal liver metastases

    NASA Astrophysics Data System (ADS)

    Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M. J.

    2010-07-01

    A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe ( P=0.009) from independent T test.

  20. Immuno-proteomic discovery of tumor tissue autoantigens identifies olfactomedin 4, CD11b, and integrin alpha-2 as markers of colorectal cancer with liver metastases.

    PubMed

    Yang, Qian; Bavi, Prashant; Wang, Julia Y; Roehrl, Michael H

    2017-09-25

    Late-stage colorectal cancer with liver metastasis is common and affords poor prognosis, yet there is a dearth of reliable biomarkers. Cancer is often characterized by an increase in serologic autoantibodies. Hence, we embarked on an immuno-proteomic strategy by using autoantibodies to discover antigens in tumor tissue as potential cancer markers. Matched sets of tissues from primary colon cancer, liver metastases, and adjacent benign tissues were obtained from colon cancer patients. Tissue proteins were extracted, and autoantigens were uncovered by immunoblotting with autoantibodies and sequenced by mass spectrometry. Informatics analyses identified 48 proteins that were found in tumor only but were absent in normal tissue. Five of these were reproducibly found in two independent experiments, including olfactomedin 4 (OLFM4), CD11b, integrin α2 (ITGA2), periostin, and thrombospondin-2. Further confirmation with tissue from 43 patients by Western blotting, immunohistochemistry, and tissue microarray deemed OLFM4, CD11b, and ITGA2 to be significantly overexpressed in both primary colon tumors and liver metastases. These tumor tissue autoantigens may serve as promising markers for developing differential diagnostics and immunotherapies for colorectal cancers, in particular, those with tendency to progress to liver metastases. Late-stage colorectal cancer with liver metastasis is common and affords poor prognosis, yet there is a dearth of reliable biomarkers. Cancer is often characterized by an increase in serologic autoantibodies. Cancer tissue immunogens - antigens capable of inducing specific antibody production in patients - are promising targets for development of precision diagnostics and immunotherapies. In our manuscript, we describe on an immuno-proteomic strategy by using autoantibodies to discover antigens in tumor tissue as potential cancer markers. Matched sets of tissues from primary colon cancer, liver metastases, and adjacent benign tissues were analyzed. Putative autoantigens were first uncovered by immunoblotting with autoantibodies and sequenced by mass spectrometry. Informatics analyses identified 48 proteins that were found in tumor only but were absent in normal tissue. Using follow-up validation in two independent cohorts, we discovered that OLFM4, CD11b, and ITGA2 are proteins that are overexpressed in both primary colon tumors and liver metastases. We highlight the possible roles of these 3 proteins in carcinogenesis and tumor microenvironment and the implications for autoantigenic immune recognition. More generally, colon cancer biomarkers with autoantigenic properties, like the ones we describe in our manuscript, may open new opportunities for diagnosis, molecular classification, and therapy of colorectal cancer, particularly of aggressive tumors with tendency to progress to liver metastases. The autoantigenic properties of biomarkers are also expected to be of great relevance for immunotherapeutic development. Copyright © 2017. Published by Elsevier B.V.

  1. miR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity.

    PubMed

    Bofill-De Ros, Xavier; Gironella, Meritxell; Fillat, Cristina

    2014-09-01

    Oncolytic virotherapy shows promise for pancreatic ductal adenocarcinoma (PDAC) treatment, but there is the need to minimize associated-toxicities. In the current work, we engineered artificial target sites recognized by miR-216a and/or miR-148a to provide pancreatic tumor-selectivity to replication-competent adenoviruses (Ad-miRTs) and improve their safety profile. Expression analysis in PDAC patients identified miR-148a and miR-216a downregulated in resectable (FC(miR-148a) = 0.044, P < 0.05; FC(miR-216a) = 0.017, P < 0.05), locally advanced (FC(miR-148a) = 0.038, P < 0.001; FC(miR-216a) = 0.001, P < 0.001) and metastatic tumors (FC(miR-148a) = 0.041, P < 0.01; FC(miR-216a) = 0.002, P < 0.001). In mouse tissues, miR-216a was highly specific of the exocrine pancreas whereas miR-148a was abundant in the exocrine pancreas, Langerhans islets, and the liver. In line with the miRNA content and the miRNA target site design, we show E1A gene expression and viral propagation efficiently controlled in Ad-miRT-infected cells. Consequently, Ad-miRT-infected mice presented reduced pancreatic and liver damage without perturbation of the endogenous miRNAs and their targets. Interestingly, the 8-miR148aT design showed repressing activity by all miR-148/152 family members with significant detargeting effects in the pancreas and liver. Ad-miRTs preserved their oncolytic activity and triggered strong antitumoral responses. This study provides preclinical evidences of miR-148a and miR-216a target site insertions to confer adenoviral selectivity and proposes 8-miR148aT as an optimal detargeting strategy for genetically-engineered therapies against PDAC.

  2. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    PubMed Central

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes, such as GPC3 that are distinctly expressed in liver CD90+CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. PMID:22606345

  3. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  4. Effect of Non-speckle Echo Signals on Tissue Characteristics for Liver Fibrosis using Probability Density Function of Ultrasonic B-mode image

    NASA Astrophysics Data System (ADS)

    Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki

    To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.

  5. Simulating Microdosimetry of Environmental Chemicals for EPA’s Virtual Liver

    EPA Science Inventory

    US EPA Virtual Liver (v-Liver) is a cellular systems model of hepatic tissues aimed at predicting chemical-induced adverse effects through agent-based modeling. A primary objective of the project is to extrapolate in vitro data to in vivo outcomes. Agent-based approaches to tissu...

  6. [Effect of anti-ischemic protection on biochemical indices of the isolated perfused liver].

    PubMed

    Kozlov, S A; Kiselev, E N; Zinov'ev, Iu V

    1987-01-01

    alpha-Tocopherol and prednisolone exhibited the highest antiischemic activity, while lidocaine and sodium glutamate were less active after administration into isolated perfused rabbit liver tissue subjected to 60-min thermic ischemia. Chlorpromazine.HCl did not affect the biochemical patterns studied in isolated perfused liver tissue.

  7. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  8. Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery.

    PubMed

    Haouchine, Nazim; Cotin, Stephane; Peterlik, Igor; Dequidt, Jeremie; Lopez, Mario Sanz; Kerrien, Erwan; Berger, Marie-Odile

    2015-05-01

    This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery.

  9. Limited yield of diagnoses of intrahepatic infectious causes of canine granulomatous hepatitis from archival liver tissue.

    PubMed

    Hutchins, Rae G; Breitschwerdt, Edward B; Cullen, John M; Bissett, Sally A; Gookin, Jody L

    2012-09-01

    Canine granulomatous hepatitis is an uncommon morphologic diagnosis that has been associated with a variety of diseases, including a number of systemic infectious etiologies. Formalin-fixed, paraffin-embedded (FFPE) tissues are typically the only source of liver tissue remaining for additional testing for the presence of infectious disease within granulomas. It is unclear if the more common infectious culprits of granulomatous hepatitis can be identified from such specimens. The aim of the current study was to retrospectively investigate archival FFPE liver tissue from dogs with granulomatous hepatitis for the presence of infectious agents. Semiquantitative analysis of copper accumulation in liver specimens was also performed. Medical records were examined for recorded evidence of systemic infectious disease diagnosis. Formalin-fixed, paraffin-embedded liver was prospectively evaluated for infectious agents via differential staining techniques (n = 13), eubacterial fluorescent in situ hybridization (n = 11), and Bartonella polymerase chain reaction assays (n = 15). An infectious cause of granulomatous hepatitis was not identified within liver tissue from any dog using these diagnostic methodologies. Six out of 25 (24%) dogs were diagnosed with concurrent systemic or localized bacterial infections at the time of presentation. Nine out of 17 (53%) dogs had excessive hepatic copper accumulation when evaluated by a semiquantitative histologic grading scheme or quantitative copper analysis. As definitive infectious causes of granulomatous hepatitis were not identified within archival liver biopsy samples, it was concluded that investigation of infectious etiologies within FFPE liver specimens using these diagnostic approaches may be of low yield.

  10. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    PubMed Central

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID:24424052

  11. Mesenchymal stem cells support hepatocyte function in engineered liver grafts.

    PubMed

    Kadota, Yoshie; Yagi, Hiroshi; Inomata, Kenta; Matsubara, Kentaro; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Shinoda, Masahiro; Obara, Hideaki; Itano, Osamu; Kitagawa, Yuko

    2014-01-01

    Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.

  12. Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury.

    PubMed

    Wetmore, Barbara A; Brees, Dominique J; Singh, Reetu; Watkins, Paul B; Andersen, Melvin E; Loy, James; Thomas, Russell S

    2010-06-01

    Serum aminotransferases have been the clinical standard for evaluating liver injury for the past 50-60 years. These tissue enzymes lack specificity, also tracking injury to other tissues. New technologies assessing tissue-specific messenger RNA (mRNA) release into blood should provide greater specificity and permit indirect assessment of gene expression status of injured tissue. To evaluate the potential of circulating mRNAs as biomarkers of liver injury, rats were treated either with hepatotoxic doses of D-(+)-galactosamine (DGAL) or acetaminophen (APAP) or a myotoxic dose of bupivacaine HCl (BPVC). Plasma, serum, and liver samples were obtained from each rat. Serum alanine aminotransferase and aspartate aminotransferase were increased by all three compounds, whereas circulating liver-specific mRNAs were only increased by the hepatotoxicants. With APAP, liver-specific mRNAs were significantly increased in plasma at doses that had no effect on serum aminotransferases or liver histopathology. Characterization of the circulating mRNAs by sucrose density gradient centrifugation revealed that the liver-specific mRNAs were associated with both necrotic debris and microvesicles. DGAL treatment also induced a shift in the size of plasma microvesicles, consistent with active release of microvesicles following liver injury. Finally, gene expression microarray analysis of the plasma following DGAL and APAP treatment revealed chemical-specific profiles. The comparative analysis of circulating liver mRNAs with traditional serum transaminases and histopathology indicated that the circulating liver mRNAs were more specific and more sensitive biomarkers of liver injury. Further, the possibility of identifying chemical-specific transcriptional profiles from circulating mRNAs could open a range of possibilities for identifying the etiology of drug/chemical-induced liver injury.

  13. Digital quantification of fibrosis in liver biopsy sections: description of a new method by Photoshop software.

    PubMed

    Dahab, Gamal M; Kheriza, Mohamed M; El-Beltagi, Hussien M; Fouda, Abdel-Motaal M; El-Din, Osama A Sharaf

    2004-01-01

    The precise quantification of fibrous tissue in liver biopsy sections is extremely important in the classification, diagnosis and grading of chronic liver disease, as well as in evaluating the response to antifibrotic therapy. Because the recently described methods of digital image analysis of fibrosis in liver biopsy sections have major flaws, including the use of out-dated techniques in image processing, inadequate precision and inability to detect and quantify perisinusoidal fibrosis, we developed a new technique in computerized image analysis of liver biopsy sections based on Adobe Photoshop software. We prepared an experimental model of liver fibrosis involving treatment of rats with oral CCl4 for 6 weeks. After staining liver sections with Masson's trichrome, a series of computer operations were performed including (i) reconstitution of seamless widefield images from a number of acquired fields of liver sections; (ii) image size and solution adjustment; (iii) color correction; (iv) digital selection of a specified color range representing all fibrous tissue in the image and; (v) extraction and calculation. This technique is fully computerized with no manual interference at any step, and thus could be very reliable for objectively quantifying any pattern of fibrosis in liver biopsy sections and in assessing the response to antifibrotic therapy. It could also be a valuable tool in the precise assessment of antifibrotic therapy to other tissue regardless of the pattern of tissue or fibrosis.

  14. Absolute Quantification of Human Liver Phosphorus-Containing Metabolites In Vivo Using an Inhomogeneous Spoiling Magnetic Field Gradient

    PubMed Central

    Bashir, Adil; Gropler, Robert; Ackerman, Joseph

    2015-01-01

    Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549

  15. The Chinese Herb Jianpijiedu Contributes to the Regulation of OATP1B2 and ABCC2 in a Rat Model of Orthotopic Transplantation Liver Cancer Pretreated with Food Restriction and Diarrhea

    PubMed Central

    Sun, Baoguo; Chen, Yan; Xiang, Ting; Zhang, Lei; Chen, Zexiong; Zhang, Shijun; Zhou, Houming; Chen, Shuqing

    2015-01-01

    Traditional Chinese Medicine Jianpijiedu decoction (JPJD) could improve the general status of liver cancer patients in clinics, especially the symptoms of decreased food intake and diarrhea. In this study, our results showed that the survival rate of the liver cancer with food restriction and diarrhea (FRD-LC) rats was lower than the liver cancer (LC) rats, and the tumor volume of the FRD-LC rats was higher than the LC rats. It was also shown that the high dose of JPJD significantly improved the survival rate, weight, and organ weight when compared with FRD-LC-induced rats. Moreover, JPJD administration upregulated the mRNA and protein levels of ABCC2 and downregulated the mRNA and protein levels of OATP1B2 in liver tissues. However, opposite results were observed in the cancer tissues. In conclusion, the study indicated that the Chinese Medicine JPJD could contribute to the rats with liver cancer which were pretreated with food restriction and diarrhea by regulating the expression of ABCC2 and OATP1B2 in liver tissues and cancer tissues. PMID:26665149

  16. Liver attenuation, pericardial adipose tissue, obesity, and insulin resistance: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    McAuley, Paul A; Hsu, Fang-Chi; Loman, Kurt K; Carr, J Jeffrey; Budoff, Matthew J; Szklo, Moyses; Sharrett, A Richey; Ding, Jingzhong

    2011-09-01

    Insulin resistance is linked to general and abdominal obesity, but its relation to hepatic lipid content and pericardial adipose tissue is less clear. The purpose of this study was to examine cross-sectional associations of liver attenuation, pericardial adipose tissue, BMI, and waist circumference with insulin resistance. We measured liver attenuation and pericardial adipose tissue using the existing cardiac computed tomography scans in 5,291 individuals free of clinical cardiovascular disease and diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) during the study's baseline visit (2000-2002). Low liver attenuation was defined as the lowest quartile and high pericardial adipose tissue as the upper quartile of volume (cm(3)). We used standard clinical definitions for obesity and abdominal obesity. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA(IR)) index. In multivariate linear regression with all adiposity measures in the model simultaneously, all adiposity measures were significantly (P < 0.0001) associated with insulin resistance: regression coefficients (±s.e.) were 0.31 (±0.02) for low liver attenuation, 0.27 (±0.02) for high pericardial adipose tissue, 0.27 (±0.02) for obesity, and 0.32 (±0.02) for abdominal obesity. We found significant differences (P = 0.003) between standardized liver attenuation and insulin resistance by ethnicity: regression coefficients per 1 s.d. increment were 0.10 ± 0.01 for whites, 0.11 ± 0.02 for Chinese, 0.08 ± 0.2 for blacks, and 0.14 ± 0.01 for Hispanics. Liver attenuation and pericardial adipose tissue were associated with insulin resistance, independent of BMI and waist circumference.

  17. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks.

    PubMed

    Kettunen, H; Tiihonen, K; Peuranen, S; Saarinen, M T; Remus, J C

    2001-11-01

    The aim of this experiment was to study the patterns of betaine accumulation into intestinal tissue, liver and plasma of broiler chicks with or without coccidial infection. The chicks were raised on a corn-based, low-betaine diet with or without 1000 ppm betaine supplementation and with or without intestinal microparasite (Eimeria maxima) challenge to the age of 21 days. Plasma, liver, intestinal tissue and digesta of non-challenged (NC) birds and plasma and intestinal tissue of coccidiosis challenged (CC) birds were analysed for betaine content. NC birds were also analyzed for homocysteine in plasma and S-adenosylmethionine (S-AM) in liver. The jejunal epithelium was histologically examined for the presence of coccidia and the crypt-villus ratio was measured. Dietary betaine supplementation decreased the plasma homocysteine concentration but had no effect on liver S-AM of NC birds. The data suggest that chicks on a low-betaine diet accumulate betaine into the intestinal tissue. When the diet was supplemented with betaine, betaine accumulated heavily into liver and to a lesser degree into intestinal tissue. The concentration of betaine in jejunal and ileal digesta was low suggesting that dietary betaine was mainly absorbed from the proximal small intestine. The coccidial challenge decreased the concentration of betaine in the liver, but greatly increased that in the intestinal tissue. The crypt-villus ratio was decreased by the dietary betaine supplementation in healthy and challenged chicks, suggesting that dietary betaine both protects the jejunal villi against coccidial infection and also stabilizes the mucosal structure in healthy broiler chicks. These results support our earlier findings suggesting that betaine is likely to act as an important intestinal osmolyte in broiler chicks.

  18. [Regression and therapy-resistance of primary liver tumors and liver metastases after regional chemotherapy and local tumor ablation].

    PubMed

    Fischer, H-P

    2005-05-01

    High dosage regional chemotherapy, chemoembolization and other methods of regional treatment are commonly used to treat unresectable primary liver malignancies and liver metastases. In liver malignancies of childhood neoadjuvant chemotherapy is successfully combined with surgical treatment. Chemotherapy and local tumor ablation lead to characteristic histomorphologic changes: Complete destruction of the tumor tissue and its vascular bed is followed by encapsulated necroses. After selective eradication of the tumor cells under preservation of the fibrovasular bed the tumor is replaced by hypocellular edematous and fibrotic tissue. If completely damaged tumor tissue is absorbed quickly, the tumor area is replaced by regenerating liver tissue. Obliterating fibrohyalinosis of tumor vessels, and perivascular edema or necrosis indicate tissue damage along the vascular bed. Degenerative pleomorphism of tumor cells, steatosis, hydropic swelling and Malloryhyalin in HCC can represent cytologic findings of cytotoxic cellular damage. Macroscopic type of HCC influences significantly the response to treatment. Multinodular HCC often contain viable tumor nodules close to destroyed nodules after treatment. Encapsulated uninodular tumors undergo complete necrosis much easier. Large size and a tumor capsule limitate the effect of percutaneous injection of ethanol into HCC. In carcinomas with an infiltrating border, especially in metastases of adenocarcinomas and hepatic cholangiocarcinoma cytostatic treatment damages the tumor tissue mainly in the periphery. Nevertheless the infiltrating rim, portal veins, lymphatic spaces and bile ducts as well as the angle between liver capsule, tumor nodule and bordering parenchyma are the main refugees of viable tumor tissue even after high dosage regional chemotherapy. This local resistance is caused by special local conditions of vascularization and perfusion. These residues are the source of local tumor progression and distant metastases. Besides intrinsic cellular mechanisms architectural, and microenvironmental factors relevantly limitate the effect of intensive locoregional therapy.

  19. Intravital imaging of the immune responses during liver-stage malaria infection: An improved approach for fixing the liver.

    PubMed

    Akbari, Masoud; Kimura, Kazumi; Houts, James T; Yui, Katsuyuki

    2016-10-01

    The host-parasite relationship is one of the main themes of modern parasitology. Recent revolutions in science, including the development of various fluorescent proteins/probes and two-photon microscopy, have made it possible to directly visualize and study the mechanisms underlying the interaction between the host and pathogen. Here, we describe our method of preparing and setting-up the liver for our experimental approach of using intravital imaging to examine the interaction between Plasmodium berghei ANKA and antigen-specific CD8 + T cells during the liver-stage of the infection in four dimensions. Since the liver is positioned near the diaphragm, neutralization of respiratory movements is critical during the imaging process. In addition, blood circulation and temperature can be affected by the surgical exposure due to the anatomy and tissue structure of the liver. To control respiration, we recommend anesthesia with isoflurane inhalation at 1% during the surgery. In addition, our protocol introduces a cushion of gauze around the liver to avoid external pressure on the liver during intravital imaging using an inverted microscope, which makes it possible to image the liver tissue for long periods with minimal reduction in the blood circulation and with minimal displacement and tissue damage. The key point of this method is to reduce respiratory movements and external pressure on the liver tissue during intravital imaging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Difference in Uptake of Tetrodotoxin and Saxitoxins into Liver Tissue Slices among Pufferfish, Boxfish and Porcupinefish

    PubMed Central

    Nagashima, Yuji; Ohta, Akira; Yin, Xianzhe; Ishizaki, Shoichiro; Doi, Hiroyuki; Ishibashi, Toshiaki

    2018-01-01

    Although pufferfish of the family Tetraodontidae contain high levels of tetrodotoxin (TTX) mainly in the liver, some species of pufferfish, boxfish of the family Ostraciidae, and porcupinefish of the family Diodontidae do not. To clarify the mechanisms, uptake of TTX and saxitoxins (STXs) into liver tissue slices of pufferfish, boxfish and porcupinefish was examined. Liver tissue slices of the pufferfish (toxic species Takifugu rubripes and non-toxic species Lagocephalus spadiceus, L. cheesemanii and Sphoeroides pachygaster) incubated with 50 µM TTX accumulated TTX (0.99–1.55 µg TTX/mg protein) after 8 h, regardless of the toxicity of the species. In contrast, in liver tissue slices of boxfish (Ostracion immaculatus) and porcupinefish (Diodon holocanthus, D. liturosus, D. hystrix and Chilomycterus reticulatus), TTX content did not increase with incubation time, and was about 0.1 µg TTX/mg protein. When liver tissue slices were incubated with 50 µM STXs for 8 h, the STXs content was <0.1 µg STXs/mg protein, irrespective of the fish species. These findings indicate that, like the toxic species of pufferfish T. rubripes, non-toxic species such as L. spadiceus, L. cheesemanii and S. pachygaster, potentially take up TTX into the liver, while non-toxic boxfish and porcupinefish do not take up either TTX or STXs. PMID:29316695

  1. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. A Modified Protocol for the Isolation of Primary Human Hepatocytes with Improved Viability and Function from Normal and Diseased Human Liver.

    PubMed

    Bartlett, David C; Newsome, Philip N

    2017-01-01

    Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.

  3. The measurement of liver fat from single-energy quantitative computed tomography scans

    PubMed Central

    Cheng, Xiaoguang; Brown, J. Keenan; Guo, Zhe; Zhou, Jun; Wang, Fengzhe; Yang, Liqiang; Wang, Xiaohong; Xu, Li

    2017-01-01

    Background Studies of soft tissue composition using computed tomography (CT) scans are often semi-quantitative and based on Hounsfield units (HU) measurements that have not been calibrated with a quantitative CT (QCT) phantom. We describe a study to establish the water (H2O) and dipotassium hydrogen phosphate (K2HPO4) basis set equivalent densities of fat and fat-free liver tissue. With this information liver fat can be accurately measured from any abdominal CT scan calibrated with a suitable phantom. Methods Liver fat content was measured by comparing single-energy QCT (SEQCT) HU measurements of the liver with predicted HU values for fat and fat-free liver tissue calculated from their H2O and K2HPO4 equivalent densities and calibration data from a QCT phantom. The equivalent densities of fat were derived from a listing of its constituent fatty acids, and those of fat-free liver tissue from a dual-energy QCT (DEQCT) study performed in 14 healthy Chinese subjects. This information was used to calculate liver fat from abdominal SEQCT scans performed in a further 541 healthy Chinese subjects (mean age 62 years; range, 31–95 years) enrolled in the Prospective Urban Rural Epidemiology (PURE) Study. Results The equivalent densities of fat were 941.75 mg/cm3 H2O and –43.72 mg/cm3 K2HPO4, and for fat-free liver tissue 1,040.13 mg/cm3 H2O and 21.34 mg/cm3 K2HPO4. Liver fat in the 14 subjects in the DEQCT study varied from 0–17.9% [median: 4.5%; interquartile range (IQR): 3.0–7.9%]. Liver fat in the 541 PURE study subjects varied from –0.3–29.9% (median: 4.9%; IQR: 3.4–6.9%). Conclusions We have established H2O and K2HPO4 equivalent densities for fat and fat-free liver tissue that allow a measurement of liver fat to be obtained from any abdominal CT scan acquired with a QCT phantom. Although radiation dose considerations preclude the routine use of QCT to measure liver fat, the method described here facilitates its measurement in patients having CT scans performed for other purposes. Further studies comparing the results with magnetic resonance (MR) measurements of liver fat are required to validate the method as a useful clinical tool. PMID:28811994

  4. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  5. Palliative Care

    MedlinePlus

    ... Germ Cell Tumors Kidney/Wilms Tumor Liver Cancer Neuroblastoma Osteosarcoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma Thyroid ... Tumor Liver Cancer Lymphoma (Non-Hodgkin) Lymphoma (Hodgkin) Neuroblastoma Osteosarcoma Retinoblastoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma ...

  6. Simulation and performance evaluation of fiber optic sensor for detection of hepatic malignancies in human liver tissues

    NASA Astrophysics Data System (ADS)

    Sharma, Anuj K.; Gupta, Jyoti; Basu, Rikmantra

    2018-01-01

    A fiber optic sensor is proposed for the identification of healthy and cancerous liver tissues through determination of their corresponding refractive index values. Existing experimental results describing variation of complex refractive index of liver tissues in near infrared (NIR) spectral region are considered for theoretical calculations. The intensity interrogation method with chalcogenide fiber is considered. The sensor's performance is closely analyzed in terms of its sensitivity at multiple operating wavelengths falling in NIR region. Operating at shorter NIR wavelengths leads to greater sensitivity. The effect of design parameters (sensing region length and fiber core diameter), different launching conditions, and fiber glass materials on sensor's performance is examined. The proposed sensor has the potential to provide high sensitivity of liver tissue detection.

  7. Applying an analytical method to study neutron behavior for dosimetry

    NASA Astrophysics Data System (ADS)

    Shirazi, S. A. Mousavi

    2016-12-01

    In this investigation, a new dosimetry process is studied by applying an analytical method. This novel process is associated with a human liver tissue. The human liver tissue has compositions including water, glycogen and etc. In this study, organic compound materials of liver are decomposed into their constituent elements based upon mass percentage and density of every element. The absorbed doses are computed by analytical method in all constituent elements of liver tissue. This analytical method is introduced applying mathematical equations based on neutron behavior and neutron collision rules. The results show that the absorbed doses are converged for neutron energy below 15MeV. This method can be applied to study the interaction of neutrons in other tissues and estimating the absorbed dose for a wide range of neutron energy.

  8. Fixation methods for electron microscopy of human and other liver

    PubMed Central

    Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter

    2010-01-01

    For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830

  9. Structural and metabolic characterization of RNAs from rats with experimental Guerin tumor - II. metabolic peculiarities of RNAs from the liver and tumor tissues of rats.

    PubMed

    Ratkiewicz, A; Galasinski, W

    1976-01-01

    Metabolic peculiarities of RNAs in the liver of the tumor bearing and in the tumor tissue were found. The synthesis of nuclear RNA in liver of tumor bearing rats is distinctly disordered in comparison to that of control rats. The level of 14C-orotic acid incorporation into RNA of cancer tissue is manifold lower than that into the liver RNA. The studies on turnover rate showed the metabolic heterogeneity of the nuclear RNAs. The part of them showed a short turnover, the other RNAs were degraded much slower.

  10. Infrared spectroscopic imaging detects chemical modifications in liver fibrosis due to diabetes and disease

    PubMed Central

    Sreedhar, Hari; Varma, Vishal K.; Gambacorta, Francesca V.; Guzman, Grace; Walsh, Michael J.

    2016-01-01

    The importance of stroma as a rich diagnostic region in tissue biopsies is growing as there is an increasing understanding that disease processes in multiple organs can affect the composition of adjacent connective tissue regions. This may be especially true in the liver, since this organ’s central metabolic role exposes it to multiple disease processes. We use quantum cascade laser infrared spectroscopic imaging to study changes in the chemical status of hepatocytes and fibrotic regions of liver tissue that result from the progression of liver cirrhosis to hepatocellular carcinoma and the potentially confounding effects of diabetes mellitus. PMID:27375956

  11. Thermal Effect of J-Plasma® Energy in a Porcine Tissue Model: Implications for Minimally Invasive Surgery.

    PubMed

    Pedroso, Jasmine D; Gutierrez, Melissa M; Volker, K Warren; Howard, David L

    2017-07-25

    To evaluate tissue effect of J-Plasma® (Bovie Medical Corporation, Clearwater, Florida) in porcine liver, kidney, muscle, ovarian, and uterine tissue blocks. Prospective study utilizing porcine tissue blocks to evaluate the thermal spread of J-Plasma® device on liver, kidney, muscle, ovarian, and uterine tissue at various power settings, gas flow, and exposure times. J-Plasma® helium was used in porcine liver, kidney, and muscle tissue at 20%, 50%, and 100% power, and 1 L/min, 3 L/min, and 5 L/min gas flow at one, five, and 10-second intervals. J-Plasma® was then used in ovarian and uterine tissue at maximum power and gas flow settings in intervals of one, five, 10, and 30 seconds. Histologic evaluation of each tissue was then performed to measure thermal spread. Regardless of tissue type, increased power setting, gas flow rate, and exposure time correlated with greater depth of thermal spread in liver, kidney, and muscle tissue. J-Plasma® did not exceed 2 mm thermal spread on liver, kidney, muscle, ovarian, and uterine tissue, even at a maximum setting of 100% power and 5 L/min gas flow after five seconds. Prolonged exposure to J-Plasma® of up to 30 seconds resulted in increased length and width of thermal spread of up to 12 mm, but did not result in significantly increased depth at 2.84 mm. The J-Plasma® helium device has minimal lateral and depth of thermal spread in a variety of tissue types and can likely be used for a multitude of gynecologic surgical procedures. However, further studies are needed to demonstrate device safety in a clinical setting.

  12. Growth enhancement by embryonic fibroblasts upon cotransplantation of noncommitted pig embryonic tissues with fully committed organs.

    PubMed

    Cohen, Sivan; Tchorsh-Yutsis, Dalit; Aronovich, Anna; Tal, Orna; Eventov-Friedman, Smadar; Katchman, Helena; Klionsky, Yael; Shezen, Elias; Reisner, Yair

    2010-05-27

    We recently defined the optimal gestational time windows for the transplantation of several embryonic tissues. We showed that the liver and kidney obtained from E28 pig embryos can grow and differentiate normally after transplantation, whereas 1 week earlier in gestation, these tissues develop into teratoma-like structures or fibrotic mass. In this study, we investigated whether cotransplantation of E28 with E21 tissue could control its tumorogenic potential, or alternatively whether the stem cells derived from the earlier tissue contribute to the growth of the more committed one. Pig embryonic precursors from E21 and E28 gestational age were transplanted alone or together, into nonobese diabetic/severe combined immunodeficiency mice, and their growth and differentiation was evaluated by immunohistology. In situ analysis, based on sex disparity between the E21 and E28 tissues, was used to identify the tissue source. In some experiments, mouse embryonic fibroblasts (MEF) were cotransplanted with E28 liver, and their effect was evaluated. E28 tissues could not abrogate the propensity of the cells within the undifferentiated tissue to form teratoma-like structures. However, E21 kidney or liver tissue markedly enhanced the growth and function of E28 kidney, liver, and heart grafts. Moreover, similar growth enhancement was observed on coimplantation of E28 liver tissue with MEF or on infusion of MEF culture medium, indicating that this enhancement is likely mediated through soluble factors secreted by the fibroblasts. Our results suggest a novel approach for the enhancement of growth and differentiation of transplanted embryonic tissues by the use of soluble factors secreted by embryonic fibroblasts.

  13. The Osteopontin Level in Liver, Adipose Tissue and Serum Is Correlated with Fibrosis in Patients with Alcoholic Liver Disease

    PubMed Central

    Voican, Cosmin S.; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe

    2012-01-01

    Background Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. Methodology/Principal Findings OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F≥2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F≥2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. Conclusion/Significance OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the pathogenesis of this chronic liver disease. PMID:22530059

  14. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis

    PubMed Central

    Davies, Scott P.; Reynolds, Gary M.; Stamataki, Zania

    2018-01-01

    Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia. PMID:29422896

  15. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  16. The effect of riboflavin/UVA cross-linking on anti-degeneration and promoting angiogenic capability of decellularized liver matrix.

    PubMed

    Xiang, Junxi; Liu, Peng; Zheng, Xinglong; Dong, Dinghui; Fan, Shujuan; Dong, Jian; Zhang, Xufeng; Liu, Xuemin; Wang, Bo; Lv, Yi

    2017-10-01

    Weak mechanical property and unstable degradation rate limited the application of decellularized liver matrix in tissue engineering. The aim of this study was to explore a new method for improving the mechanical properties, anti-degeneration and angiogenic capability of decellularized liver matrix. This was achieved by a novel approach using riboflavin/ultraviolet A treatment to induce collagen cross-linking of decellularized matrix. Histological staining and scanning electron microscope showed that the diameter of cross-linked fibers significantly increased compared with the control group. The average peak load and Young's modulus of decellularized matrix were obviously improved after cross-linking. Then we implanted the modified matrix into the rat hepatic injury model to test the anti-degeneration and angiogenic capability of riboflavin/UVA cross-linked decellularized liver scaffolds in vivo. The results indicated that cross-linked scaffolds degrade more slowly than those in the control group. In the experiment group, average microvessel density in the implanted matrix was higher than that in the control group since the first week after implantation. In conclusion, we initiated the method to improve the biomechanical properties of decellularized liver scaffolds by riboflavin/UVA cross-linking, and more importantly, its improvement on anti-degeneration and angiogenesis was identified. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2662-2669, 2017. © 2017 Wiley Periodicals, Inc.

  17. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Hemorrhage-induced hepatic injury and hypoperfusion can be prevented by direct peritoneal resuscitation.

    PubMed

    Hurt, Ryan T; Zakaria, El Rasheid; Matheson, Paul J; Cobb, Mahoney E; Parker, John R; Garrison, R Neal

    2009-04-01

    Crystalloid fluid resuscitation after hemorrhagic shock (HS) that restores/maintains central hemodynamics often culminates in multi-system organ failure and death due to persistent/progressive splanchnic hypoperfusion and end-organ damage. Adjunctive direct peritoneal resuscitation (DPR) using peritoneal dialysis solution reverses HS-induced splanchnic hypoperfusion and improves survival. We examined HS-mediated hepatic perfusion (galactose clearance), tissue injury (histopathology), and dysfunction (liver enzymes). Anesthetized rats were randomly assigned (n = 8/group): (1) sham (no HS); (2) HS (40% mean arterial pressure for 60 min) plus conventional i.v. fluid resuscitation (CR; shed blood + 2 volumes saline); (3) HS + CR + 30 mL intraperitoneal (IP) DPR; or (4) HS + CR + 30 mL IP saline. Hemodynamics and hepatic blood flow were measured for 2 h after CR completion. In duplicate animals, liver and splanchnic tissues were harvested for histopathology (blinded, graded), hepatocellular function (liver enzymes), and tissue edema (wet-dry ratio). Group 2 decreased liver blood flow, caused liver injuries (focal to submassive necrosis, zones 2 and 3) and tissue edema, and elevated liver enzymes (alanine aminotransferase (ALT), 149 +/- 28 microg/mL and aspartate aminotransferase (AST), 234 +/- 24 microg/mL; p < 0.05) compared to group 1 (73 +/- 9 and 119 +/- 10 microg/mL, respectively). Minimal/no injuries were observed in group 3; enzymes were normalized (ALT 89 +/- 9 microg/mL and AST 150 +/- 17 microg/mL), and tissue edema was similar to sham. CR from HS restored and maintained central hemodynamics but did not restore or maintain liver perfusion and was associated with significant hepatocellular injury and dysfunction. DPR added to conventional resuscitation (blood and crystalloid) restored and maintained liver perfusion, prevented hepatocellular injury and edema, and preserved liver function.

  19. Relapse or Recurrence

    MedlinePlus

    ... Germ Cell Tumors Kidney/Wilms Tumor Liver Cancer Neuroblastoma Osteosarcoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma Thyroid ... Tumor Liver Cancer Lymphoma (Non-Hodgkin) Lymphoma (Hodgkin) Neuroblastoma Osteosarcoma Retinoblastoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma ...

  20. Tests and Procedures

    MedlinePlus

    ... Germ Cell Tumors Kidney/Wilms Tumor Liver Cancer Neuroblastoma Osteosarcoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma Thyroid ... Tumor Liver Cancer Lymphoma (Non-Hodgkin) Lymphoma (Hodgkin) Neuroblastoma Osteosarcoma Retinoblastoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma ...

  1. Base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering.

    PubMed

    Shirakigawa, Nana; Takei, Takayuki; Ijima, Hiroyuki

    2013-12-01

    Reconstructed liver has been desired as a liver substitute for transplantation. However, reconstruction of a whole liver has not been achieved because construction of a vascular network at an organ scale is very difficult. We focused on decellularized liver (DC-liver) as an artificial scaffold for the construction of a hierarchical vascular network. In this study, we obtained DC-liver and the tubular network structure in which both portal vein and hepatic vein systems remained intact. Furthermore, endothelialization of the tubular structure in DC-liver was achieved, which prevented blood leakage from the tubular structure. In addition, hepatocytes suspended in a collagen sol were injected from the surroundings using a syringe as a suitable procedure for liver cell inoculation. In summary, we developed a base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  2. Tissue distribution of metals in white-fronted geese and spot-billed ducks from Korea.

    PubMed

    Kim, Jungsoo; Oh, Jong-Min

    2013-07-01

    This study presents concentrations of Fe, Zn, Mn, Cu, Pb and Cd in livers, kidneys, muscles and bones of white-fronted geese Anser albifrons (geese) and spot-billed ducks Anas poecilorhyncha (ducks). Iron in livers, kidneys and muscles, Zn in muscles, Mn and Cd in every tissue, Cu in livers, muscles and bones and Pb in bones differed between species, and there were significant differences among tissues in both species. Essential elements such as Fe, Zn, Mn and Cu concentrations were within the background levels. Lead concentrations in livers of 7 of 14 geese and 7 of 19 ducks and in bones of 4 of 19 ducks exceeded background concentrations for waterfowl (5 μg/g dw for the liver, 10 μg/g dw for the bone). Almost all samples of both species had the background Cd concentrations in the liver (33 of 33 geese and ducks) and kidney (14 geese and 18 ducks). Tissue concentrations of Cd were greater in geese than ducks. In contrast, tissue concentrations of Pb in bones were greater in ducks than in geese. These different trends for Cd and Pb reflect a short and/or long term difference in exposure and degree of accumulation of these metals.

  3. High expression of 23 kDa protein of augmenter of liver regeneration (ALR) in human hepatocellular carcinoma

    PubMed Central

    Yu, Hai-Ying; Zhu, Man-Hua; Xiang, Dai-Rong; Li, Jun; Sheng, Ji-Fang

    2014-01-01

    Background Augmenter of liver regeneration (ALR) is an important polypeptide that participates in the process of liver regeneration. Two forms of ALR proteins are expressed in hepatocytes. Previous data have shown that ALR is essential for cell survival and has potential antimetastatic properties in hepatocellular carcinoma (HCC). Aims The study aimed to evaluate the expression levels of two forms of ALR proteins in HCC and their possible significance in HCC development. Methods Balb/c mouse monoclonal antibody against ALR protein was prepared in order to detect the ALR protein in HCC by Western blotting and immunohistochemistry. ALR mRNA expression levels were measured by real-time polymerase chain reaction in HCC tissues and compared to paracancerous liver tissues in 22 HCC patients. Results ALR mRNA expression in HCC liver tissues (1.51×106 copies/μL) was higher than in paracancerous tissues (1.04×104 copies/μL). ALR protein expression was also enhanced in HCC liver tissues. The enhanced ALR protein was shown to be 23 kDa by Western blotting. Immunohistochemical analysis showed that the 23 kDa ALR protein mainly existed in the hepatocyte cytosol. Conclusion The 23 kDa ALR protein was highly expressed in HCC and may play an important role in hepatocarcinogenesis. PMID:24940072

  4. Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells.

    PubMed

    Onaga, Masaaki; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Moriuchi, Akihiro; Nagata, Kenji; Hori, Takeshi; Hayash, Katsuhiro; Tsubouchi, Hirohito

    2003-11-01

    Hepatocellular carcinoma (HCC) is closely associated with chronic liver diseases, particularly cirrhosis. However, the genes involved in hepatocarcinogenesis in the context of developing cirrhosis remain unknown. This study aims to identify genes associated with early cirrhosis-associated hepatocarcinogenesis. We examined genes differentially expressed between the livers of normal rats and rats fed a choline-deficient, L-amino acid-defined (CDAA) diet using suppression subtractive hybridization. We examined both the expression in the liver and HCC tissues of osteoactivin (OA), isolated in this screen, and its effect on invasiveness and metastasis. OA mRNA was strongly expressed in the livers of rats fed the CDAA diet for 1-3 months. Moderate expression was sustained for 18 months. OA overexpression increased the invasiveness and metastasis of rat hepatoma cells in vitro and in vivo. In humans, OA expression was not detectable in normal liver tissues. While OA transcripts were detectable in cirrhotic nontumorous liver tissues surrounding HCCs, the majority of HCC tissue samples exhibited higher levels of OA expression than the surrounding normal tissue. These results indicate that OA is a novel factor involved in the progression of HCC via stimulation of tumor invasiveness and metastatic potential.

  5. Evaluation of S-values and dose distributions for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re in seven lobes of the rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Tianwu; Liu Qian; Zaidi, Habib

    2012-03-15

    Purpose: Rats have been widely used in radionuclide therapy research for the treatment of hepatocellular carcinoma (HCC). This has created the need to assess rat liver absorbed radiation dose. In most dose estimation studies, the rat liver is considered as a homogeneous integrated target organ with a tissue composition assumed to be similar to that of human liver tissue. However, the rat liver is composed of several lobes having different anatomical and chemical characteristics. To assess the overall impact on rat liver dose calculation, the authors use a new voxel-based rat model with identified suborgan regions of the liver. Methods:more » The liver in the original cryosectional color images was manually segmented into seven individual lobes and subsequently integrated into a voxel-based computational rat model. Photon and electron particle transport was simulated using the MCNPX Monte Carlo code to calculate absorbed fractions and S-values for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re for the seven liver lobes. The effect of chemical composition on organ-specific absorbed dose was investigated by changing the chemical composition of the voxel filling liver material. Radionuclide-specific absorbed doses at the voxel level were further assessed for a small spherical hepatic tumor. Results: The self-absorbed dose for different liver lobes varied depending on their respective masses. A maximum difference of 3.5% was observed for the liver self-absorbed fraction between rat and human tissues for photon energies below 100 keV. {sup 166}Ho and {sup 188}Re produce a uniformly distributed high dose in the tumor and relatively low absorbed dose for surrounding tissues. Conclusions: The authors evaluated rat liver radiation doses from various radionuclides used in HCC treatments using a realistic computational rat model. This work contributes to a better understanding of all aspects influencing radiation transport in organ-specific radiation dose evaluation for preclinical therapy studies, from tissue composition to organ morphology and activity distribution.« less

  6. STUDIES ON THE DISTRIBUTION AND PHOSPHATE TURNOVER OF THE ACID-SOLUBLE PHOSPHORUS COMPOUNDS IN VARIOUS NORMAL AND NEOPLASTIC TISSUES OF RATS. II. COMPARISON OF THE CHROMATOGRAMS OBTAINED WITH VARIOUS TISSUES INCLUDING TUMOURS (ENGLISH TEXT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, S.

    Using a modified semi-micro gradient elution method of chromatography, the distribution of the acid-soluble nucleotides in various normal and neoplastic tissues of rats was compared and the variations of the distribution are described. The distribution and phosphate turnover of the acid-soluble phosphorus compounds were also studied by intraperitoneal injection of P/sup 32/ followed by the chromatographic analysis. The distribution patterns of nucleotides and radioactivity in liver, muscle, heart, lung, thymus, spleen, testicles, brain, fetal liver, and experimental hepatomas are illustrated and the differences between these tissues were pointed out. The characteristics of the experimental hepatoma tissue as compared with themore » normal liver tissue are as follows: The concentration of oxidized DPN was low; the incorporation of P/sup 32/ inorganic phosphate into glucose 6-phosphate and L- alpha -glycerophosphate was absent or, if any, very low; radioactivity of inorganic phosphate in the total acid-soluble radioactivity was extraordinarily high as compared with other tissues besides the liver tissue. (Abstr. Japan Med., 1: No. 9, 1961)« less

  7. Tissue refractometry using Hilbert phase microscopy.

    PubMed

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Popescu, Gabriel

    2007-12-15

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 mum thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development.

  8. Mercury concentrations in gonad, liver, and muscle of white sturgeon Acipenser transmontanus in the lower Columbia River.

    PubMed

    Webb, M A H; Feist, G W; Fitzpatrick, M S; Foster, E P; Schreck, C B; Plumlee, M; Wong, C; Gundersen, D T

    2006-04-01

    This study determined the partitioning of total mercury in liver, gonad, and cheek muscle of white sturgeon (Acipenser transmonatus) in the lower Columbia River. The relationship between tissue mercury concentrations and various physiologic parameters was assessed. White sturgeon were captured in commercial fisheries in the estuary and Bonneville, The Dalles, and John Day Reservoirs. Condition factor (CF), relative weight (Wr), and gonadosomatic index (GSI) were determined for each fish (n = 57). Gonadal tissue was examined histologically to determine sex and stage of maturity. Liver (n = 49), gonad (n = 49), and cheek muscle (n = 57) were analyzed for total mercury using cold-vapor atomic fluorescence spectrophotometry. Tissue protein concentrations were measured by ultraviolet-visible spectroscopy. Plasma was analyzed for testosterone (T), 11-ketotestosterone (KT), and 17ss-estradiol (E2) using radioimmunoassay. Mean tissue mercury concentrations were higher in muscle compared with liver and gonad at all sampling locations, except Bonneville Reservoir where mean liver mercury content was the highest tissue concentration observed in the study. Significant negative correlations between plasma androgens (T and KT) and muscle mercury content and plasma E2 and liver mercury content were found. A significant positive linear relationship between white sturgeon age and liver mercury concentrations was evident. Significant negative correlations between CF and relative weight and gonad and liver mercury content were found. In addition, immature male sturgeon with increased gonad mercury content had decreased GSIs. These results suggest that mercury, in the form of methylmercury, may have an effect on the reproductive potential of white sturgeon.

  9. Anxiety Around Medical Procedures

    MedlinePlus

    ... Germ Cell Tumors Kidney/Wilms Tumor Liver Cancer Neuroblastoma Osteosarcoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma Thyroid ... Tumor Liver Cancer Lymphoma (Non-Hodgkin) Lymphoma (Hodgkin) Neuroblastoma Osteosarcoma Retinoblastoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma ...

  10. Microgravity

    NASA Image and Video Library

    2001-05-15

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  11. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  12. Distribution of lead and mercury in tissues of raccoons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.T.; Thompson, S.J.; Mielke, H.W.

    1994-12-31

    Liver and kidney tissues of raccoons from Tuskegee, Alabama, were analyzed for Hg and Pb contents. The mean levels of Hg and Pb were 0.41 and 3.24 ppm in livers and 0.24 and 4.95 ppm in kidneys, respectively. These metal levels showed no significant differences between livers and kidneys or between males and females.

  13. Impaired TFEB-mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-induced Liver Injury and Steatosis in Mice.

    PubMed

    Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing

    2018-05-18

    Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues CONCLUSIONS: We found chronic ethanol feeding plus an acute binge to reduce hepatic expression of the transcription factor TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect liver from ethanol-induced damage. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Study of MicroRNAs Related to the Liver Regeneration of the Whitespotted Bamboo Shark, Chiloscyllium plagiosum

    PubMed Central

    Lu, Conger; Nie, Zuoming; Chen, Jian; Zhang, Wenping; Ren, Xiaoyuan; Yu, Wei; Liu, Lili; Jiang, Caiying; Zhang, Yaozhou; Guo, Jiangfeng; Wu, Wutong; Shu, Jianhong; Lv, Zhengbing

    2013-01-01

    To understand the mechanisms of liver regeneration better to promote research examining liver diseases and marine biology, normal and regenerative liver tissues of Chiloscyllium plagiosum were harvested 0 h and 24 h after partial hepatectomy (PH) and used to isolate small RNAs for miRNA sequencing. In total, 91 known miRNAs and 166 putative candidate (PC) miRNAs were identified for the first time in Chiloscyllium plagiosum. Through target prediction and GO analysis, 46 of 91 known miRNAs were screened specially for cellular proliferation and growth. Differential expression levels of three miRNAs (xtr-miR-125b, fru-miR-204, and hsa-miR-142-3p_R-1) related to cellular proliferation and apoptosis were measured in normal and regenerating liver tissues at 0 h, 6 h, 12 h, and 24 h using real-time PCR. The expression of these miRNAs showed a rising trend in regenerative liver tissues at 6 h and 12 h but exhibited a downward trend compared to normal levels at 24 h. Differentially expressed genes were screened in normal and regenerating liver tissues at 24 h by DDRT-PCR, and ten sequences were identified. This study provided information regarding the function of genes related to liver regeneration, deepened the understanding of mechanisms of liver regeneration, and resulted in the addition of a significant number of novel miRNAs sequences to GenBank. PMID:24151623

  15. Dendritic Cells Promote Macrophage Infiltration and Comprise a Substantial Proportion of Obesity-Associated Increases in CD11c+ Cells in Adipose Tissue and Liver

    PubMed Central

    Stefanovic-Racic, Maja; Yang, Xiao; Turner, Michael S.; Mantell, Benjamin S.; Stolz, Donna B.; Sumpter, Tina L.; Sipula, Ian J.; Dedousis, Nikolaos; Scott, Donald K.; Morel, Penelope A.; Thomson, Angus W.; O’Doherty, Robert M.

    2012-01-01

    Obesity-associated increases in adipose tissue (AT) CD11c+ cells suggest that dendritic cells (DC), which are involved in the tissue recruitment and activation of macrophages, may play a role in determining AT and liver immunophenotype in obesity. This study addressed this hypothesis. With the use of flow cytometry, electron microscopy, and loss-and-gain of function approaches, the contribution of DC to the pattern of immune cell alterations and recruitment in obesity was assessed. In AT and liver there was a substantial, high-fat diet (HFD)–induced increase in DC. In AT, these increases were associated with crown-like structures, whereas in liver the increase in DC constituted an early and reversible response to diet. Notably, mice lacking DC had reduced AT and liver macrophages, whereas DC replacement in DC-null mice increased liver and AT macrophage populations. Furthermore, delivery of bone marrow–derived DC to lean wild-type mice increased AT and liver macrophage infiltration. Finally, mice lacking DC were resistant to the weight gain and metabolic abnormalities of an HFD. Together, these data demonstrate that DC are elevated in obesity, promote macrophage infiltration of AT and liver, contribute to the determination of tissue immunophenotype, and play a role in systemic metabolic responses to an HFD. PMID:22851575

  16. Cirrhosis - discharge

    MedlinePlus

    Liver failure - discharge; Liver cirrhosis - discharge ... You have cirrhosis of the liver. Scar tissue forms and your liver gets smaller and harder. Most of the time, this damage cannot be undone. However, the ...

  17. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones

    PubMed Central

    Chao, Lily; Marcus-Samuels, Bernice; Mason, Mark M.; Moitra, Jaideep; Vinson, Charles; Arioglu, Elif; Gavrilova, Oksana; Reitman, Marc L.

    2000-01-01

    There is uncertainty about the site(s) of action of the antidiabetic thiazolidinediones (TZDs). These drugs are agonist ligands of the transcription factor PPARγ, which is abundant in adipose tissue but is normally present at very low levels in liver and muscle. We have studied the effects of TZDs in A-ZIP/F-1 mice, which lack white adipose tissue. The A-ZIP/F-1 phenotype strikingly resembles that of humans with severe lipoatrophic diabetes, including the lack of fat, marked insulin resistance and hyperglycemia, hyperlipidemia, and fatty liver. Rosiglitazone or troglitazone treatment did not reduce glucose or insulin levels, suggesting that white adipose tissue is required for the antidiabetic effects of TZDs. However, TZD treatment was effective in lowering circulating triglycerides and increasing whole body fatty acid oxidation in the A-ZIP/F-1 mice, indicating that this effect occurs via targets other than white adipose tissue. A-ZIP/F-1 mice have markedly increased liver PPARγ mRNA levels, which may be a general property of fatty livers. Rosiglitazone treatment increased the triglyceride content of the steatotic livers of A-ZIP/F-1 and ob/ob mice, but not the “lean” livers of fat-transplanted A-ZIP/F-1 mice. In light of this evidence that rosiglitazone acts differently in steatotic livers, the effects of rosiglitazone, particularly on hepatic triglyceride levels, should be examined in humans with hepatic steatosis. PMID:11086023

  18. GSK3β and aging liver

    PubMed Central

    Jin, Jingling; Wang, Guo-Li; Timchenko, Lubov; Timchenko, and Nikolai A

    2009-01-01

    The loss of regenerative capacity of tissues is one of the major characteristics of aging. Liver represents a powerful system for investigations of mechanisms by which aging reduces regenerative capacity of tissues. The studies within last five years revealed critical role of epigenetic silencing in the inhibition of liver proliferation in old mice. These studies have shown that a number of cell cycle proteins are silenced in livers of old mice by C/EBPα-HDAC1-Brm complex and that old liver fails to reduce the complex and activate these genes in response to proliferative stimulus such as partial hepatectomy. The complex modifies histone H3 on the promoters of c-myc and FoxM1B in the manner which prevents expression of these genes. Despite this progress, little is known about mechanisms by which aging causes this epigenetic silencing. We have recently discovered signal transduction pathways which operate upstream of the C/EBPα-HDAC1-Brm complex. These pathways involve communications of growth hormone, GSK3β and cyclin D3. In addition to the liver, GH-GSK3β-cyclin D3 pathway is also changed with age in lung, brain and adipose tissues. We suggest that other age-associated alterations in these tissues might be mediated by the reduced levels of GSK3β and by elevation of cyclin D3. In this review, we summarize these new data and discuss the role of such alterations in the development of aging phenotype in the liver and in other tissues. PMID:20157540

  19. Direct oxygen supply with polydimethylsiloxane (PDMS) membranes induces a spontaneous organization of thick heterogeneous liver tissues from rat fetal liver cells in vitro.

    PubMed

    Hamon, Morgan; Hanada, Sanshiro; Fujii, Teruo; Sakai, Yasuyuki

    2012-01-01

    Oxygen is a vital nutrient for growth and maturation of in vitro cells (e.g., adult hepatocytes). We previously demonstrated that direct oxygenation through a polydimethylsiloxane (PDMS) membrane increases the oxygen supply to cell cultures and improves hepatocyte functions. In this study, we removed limits on oxygen supply to fetal rat liver cells through the use of direct oxygenation through a PDMS membrane to investigate in vitro growth and maturation. We chose fetal liver cells because they are considered a feasible source of liver progenitor cells for regenerative medicine therapy due to their highly efficient maturation and proliferation. Cells from 17-day-old pregnant rats were cultured under 5% and 21% oxygen atmospheres. Some cells were first cultured under 5% oxygen, and then switched to a 21% oxygen atmosphere. When oxygen supply was enhanced by a PDMS membrane, the rat fetal liver cells organized into a complex tissue composed of an epithelium of hepatocytes above a mesenchyme-like tissue. The thickness of this supportive tissue was directly correlated to oxygen concentration and was thicker under 5% oxygen. When cultures were switched from 5% to 21% oxygen, lumen-containing structures were formed in the thick mesenchymal-like tissue and the albumin secretion rate increased. In addition, cells adapted their glycolytic activity to the oxygen concentrations. This system promoted the formation of a functional and organized thick tissue suitable for use in regenerative medicine.

  20. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  1. Quantification of tissue texture with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Meng, Zhuo-Xian; Lin, Jiandie; Carson, Paul

    2014-05-01

    Photoacoustic (PA) imaging is an emerging technology that could map the functional contrasts in deep biological tissues in high resolution by "listening" to the laser induced thermoelastic waves. Almost all of the current studies in PA imaging are focused on the intensity of the PA signals as an indication of the optical absorbance of the biological tissues. Our group has for the first time demonstrated that the frequency domain power distribution of the broadband PA signals encode the texture information within the regions-of-interest (ROI). Following the similar method of ultrasound spectral analysis (USSA), photoacoustic spectrum analysis (PASA) could evaluate the relative concentrations and, more importantly, the dimensions of microstructures of the optically absorbing materials in biological tissues, including lipid, collagen, water and hemoglobin. By providing valuable insights into tissue pathology, PASA should benefit basic research and clinical management of many diseases, and may help achieve eventual "noninvasive biopsy". In this work, taking advantage of the optical absorption contrasts contributed by lipid and hemoglobin at 1200-nm and 532-nm wavelengths respectively, we investigated the capability of PASA in identifying histological changes corresponding to fat accumulation livers through the study on ex vivo and in situ mouse models. The PA signals from the mouse livers were acquired using our PA and US dual-modality imaging system, and analyzed in the frequency domain. After quantifying the power spectrum by fitting it to a first order model, three spectral parameters, including the intercept, the midband fit and the slope, were extracted and used to differentiate fatty livers from normal livers. The comparison between the PASA parameters from the normal and the fatty livers supports our hypotheses that PASA can quantitatively identify the microstructure changes in liver tissues for differentiating normal and fatty livers.

  2. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    PubMed

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPAR{alpha} with clofibrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donthamsetty, Shashikiran; Bhave, Vishakha S.; Mitra, Mayurranjan S.

    2008-08-01

    The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPAR{alpha} via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived. {sup 14}C-APAP covalent binding, CYP2E1 protein, and enzyme activity did not differ from the controls, obviating increased APAP bioactivation as the cause of amplified APAPmore » hepatotoxicity. Liver injury progressed only in steatohepatitic livers between 6 and 24 h. Cell division and tissue repair assessed by {sup 3}H-thymidine incorporation and PCNA were inhibited only in the steatohepatitic mice given APAP suggesting that higher sensitivity of NASH liver to APAP-induced hepatotoxicity was due to lower tissue repair. The hypothesis that impeded liver tissue repair in steatohepatitic mice was due to downregulation of PPAR{alpha} was tested. PPAR{alpha} was downregulated in NASH. To investigate whether downregulation of PPAR{alpha} in NASH is the critical mechanism of compromised liver tissue repair, PPAR{alpha} was induced in steatohepatitic mice with clofibrate (250 mg/kg for 3 days, ip) before injecting APAP. All clofibrate pretreated steatohepatitic mice receiving APAP exhibited lower liver injury, which did not progress and the mice survived. The protection was not due to lower bioactivation of APAP but due to higher liver tissue repair. These findings suggest that inadequate PPAR{alpha} expression in steatohepatitic mice sensitizes them to APAP hepatotoxicity.« less

  4. Wilson disease

    MedlinePlus

    ... for themselves may need special protective measures. A liver transplant may be considered in cases where the liver ... anemia is rare) Central nervous system complications Cirrhosis Death of liver tissues Fatty liver Hepatitis Increased number ...

  5. DISTRIBUTION OF MERCURY IN THE TISSUES OF FIVE SPECIES OF FRESHWATER FISH FROM LAKE MEAD, USA

    EPA Science Inventory

    Total mercury (Hg) concentrations were determined in seven tissues (skeletal muscle, liver,
    blood, gonad, brain, gill, and heart) of 59 striped bass and four tissues (muscle, liver, blood, and
    gonad) of 69 largemouth bass, 76 channel catfish, 12 bluegill, and 22 blue tila...

  6. A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture

    PubMed Central

    Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis

    2015-01-01

    A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893

  7. Tissue refractometry using Hilbert phase microscopy

    PubMed Central

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D.; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.; Popescu, Gabriel

    2009-01-01

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 μm thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development. PMID:18087529

  8. Metallothionein as potential biomarker of cadmium exposure in Persian sturgeon (Acipenser persicus).

    PubMed

    Shariati, Fatemeh; Esaili Sari, Abbas; Mashinchian, Ali; Pourkazemi, Mohammad

    2011-10-01

    Metallothionein (MT) concentration in gills, liver, and kidney tissues of Persian sturgeon (Acipenser persicus) were determined following exposure to sublethal levels of waterborne cadmium (Cd) (50, 400, and 1,000 μg l(-1)) after 1, 2, 4, and 14 days. The increases of MT from background levels were 4.6-, 3-, and 2.8-fold for kidney, liver, and gills, respectively. The results showed that MT level change in the kidney is time and concentration dependent. Also, cortisol measurement revealed elevation at the day 1 of exposure and followed by MT increase in the liver. Cd concentrations in the cytosol of experimental tissues were measured, and the results indicated that Cd levels in the cytosol of liver, kidney, and gills increased 240.71-, 32.05-, and 40.16-fold, respectively, 14 days after exposure to 1,000 μg l(-1) Cd. The accumulation of Cd in cytosol of tissues is in the order of liver > gills > kidney. Pearson correlation coefficients showed that the MT content in kidney is correlated with Cd concentration, the value of which is more than in liver and gills. Thus, kidney can be considered as a tissue indicator in A. persicus for waterborne Cd contamination.

  9. Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets

    NASA Astrophysics Data System (ADS)

    Brackmann, Christian; Gabrielsson, Britt; Svedberg, Fredrik; Holmäng, Agneta; Sandberg, Ann-Sofie; Enejder, Annika

    2010-11-01

    Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.

  10. Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets.

    PubMed

    Brackmann, Christian; Gabrielsson, Britt; Svedberg, Fredrik; Holmaang, Agneta; Sandberg, Ann-Sofie; Enejder, Annika

    2010-01-01

    Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.

  11. 21 CFR 556.50 - Amprolium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... edible tissues and in eggs of chickens and turkeys: (1) 1 part per million in uncooked liver and kidney... in uncooked fat. (2) 0.5 part per million in uncooked muscle tissue, liver, and kidney. (c) In the...

  12. 21 CFR 556.50 - Amprolium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... edible tissues and in eggs of chickens and turkeys: (1) 1 part per million in uncooked liver and kidney... in uncooked fat. (2) 0.5 part per million in uncooked muscle tissue, liver, and kidney. (c) In the...

  13. Liver fat content is linked to inflammatory changes in subcutaneous adipose tissue in type 2 diabetes patients.

    PubMed

    Jansen, Henry J; Vervoort, Gerald M; van der Graaf, Marinette; Stienstra, Rinke; Tack, Cees J

    2013-11-01

    Patients with type 2 diabetes mellitus (T2DM) are typically overweight and have an increased liver fat content (LFAT). High LFAT may be explained by an increased efflux of free fatty acids from the adipose tissue, which is partly instigated by inflammatory changes. This would imply an association between inflammatory features of the adipose tissue and liver fat content. To analyse associations between inflammatory features of the adipose tissue and liver fat content. A cross-sectional study. Twenty-seven obese patients with insulin-treated T2DM were studied. LFAT content was measured by proton magnetic resonance spectroscopy. A subcutaneous (sc) fat biopsy was obtained to determine morphology and protein levels within adipose tissue. In addition to fat cell size, the percentage of macrophages and the presence of crown-like structures (CLSs) within sc fat were assessed by CD68-immunohistochemical staining. Mean LFAT percentage was 11·1 ± 1·7% (range: 0·75-32·9%); 63% of the patients were diagnosed with an elevated LFAT (upper range of normal ≤5·5%). Whereas adipocyte size did not correlate with LFAT, 3 of 4 subjects with CLSs in sc fat had elevated LFAT and the percentage of macrophages present in sc adipose tissue was positively associated with LFAT. Protein concentrations of adiponectin within adipose tissue negatively correlated with LFAT. Adipose tissue protein levels of the key inflammatory adipokine plasminogen activator inhibitor-1 (PAI-1) were positively associated with LFAT. Several pro-inflammatory changes in sc adipose tissue associate with increased LFAT content in obese insulin-treated patients with T2DM. These findings suggest that inflammatory changes at the level of the adipose tissue may drive liver fat accumulation. © 2012 John Wiley & Sons Ltd.

  14. Automatic 2D and 3D segmentation of liver from Computerised Tomography

    NASA Astrophysics Data System (ADS)

    Evans, Alun

    As part of the diagnosis of liver disease, a Computerised Tomography (CT) scan is taken of the patient, which the clinician then uses for assistance in determining the presence and extent of the disease. This thesis presents the background, methodology, results and future work of a project that employs automated methods to segment liver tissue. The clinical motivation behind this work is the desire to facilitate the diagnosis of liver disease such as cirrhosis or cancer, assist in volume determination for liver transplantation, and possibly assist in measuring the effect of any treatment given to the liver. Previous attempts at automatic segmentation of liver tissue have relied on 2D, low-level segmentation techniques, such as thresholding and mathematical morphology, to obtain the basic liver structure. The derived boundary can then be smoothed or refined using more advanced methods. The 2D results presented in this thesis improve greatly on this previous work by using a topology adaptive active contour model to accurately segment liver tissue from CT images. The use of conventional snakes for liver segmentation is difficult due to the presence of other organs closely surrounding the liver this new technique avoids this problem by adding an inflationary force to the basic snake equation, and initialising the snake inside the liver. The concepts underlying the 2D technique are extended to 3D, and results of full 3D segmentation of the liver are presented. The 3D technique makes use of an inflationary active surface model which is adaptively reparameterised, according to its size and local curvature, in order that it may more accurately segment the organ. Statistical analysis of the accuracy of the segmentation is presented for 18 healthy liver datasets, and results of the segmentation of unhealthy livers are also shown. The novel work developed during the course of this project has possibilities for use in other areas of medical imaging research, for example the segmentation of internal liver structures, and the segmentation and classification of unhealthy tissue. The possibilities of this future work are discussed towards the end of the report.

  15. Effect of low temperature on metabolism of rat liver slices and epididymal fat pads.

    NASA Technical Reports Server (NTRS)

    Hillyard, L. A.; Entenman, C.

    1973-01-01

    Study of low temperature effects on the metabolism of radioisotope-tagged glucose and palmitate in rat liver slices and epididymal fat pads. The obtained data suggest that the oxidative capacity of rat liver and adipose tissue is maintained at low temperatures to a greater degree than the synthetic capacity. It was concluded that sufficient energy can be produced at 17 C for maintenance of essential tissue functions by these two tissues but that the energy requirements may not be met at 7 C.

  16. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  17. Determination of aluminium induced metabolic changes in mice liver: a Fourier transform infrared spectroscopy study.

    PubMed

    Sivakumar, S; Sivasubramanian, J; Khatiwada, Chandra Prasad; Manivannan, J; Raja, B

    2013-06-01

    In this study, we made a new approach to evaluate aluminium induced metabolic changes in liver tissue of mice using Fourier transform infrared spectroscopy analysis taking one step further in correlation with strong biochemical evidence. This finding reveals the alterations on the major biochemical constituents, such as lipids, proteins, nucleic acids and glycogen of the liver tissues of mice. The peak area value of amide A significantly decrease from 288.278±3.121 to 189.872±2.012 between control and aluminium treated liver tissue respectively. Amide I and amide II peak area value also decrease from 40.749±2.052 to 21.170±1.311 and 13.167±1.441 to 8.953±0.548 in aluminium treated liver tissue respectively. This result suggests an alteration in the protein profile. The absence of olefinicCH stretching band and CO stretching of triglycerides in aluminium treated liver suggests an altered lipid levels due to aluminium exposure. Significant shift in the peak position of glycogen may be the interruption of aluminium in the calcium metabolism and the reduced level of calcium. The overall findings exhibit that the liver metabolic program is altered through increasing the structural modification in proteins, triglycerides and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected in desferrioxamine treated mice. Histopathological results also revealed impairment of aluminium induced alterations in liver tissue. The results of the FTIR study were found to be in agreement with biochemical studies and which demonstrate FTIR can be used successfully to indicate the molecular level changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Determination of aluminium induced metabolic changes in mice liver: A Fourier transform infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Sivasubramanian, J.; Khatiwada, Chandra Prasad; Manivannan, J.; Raja, B.

    2013-06-01

    In this study, we made a new approach to evaluate aluminium induced metabolic changes in liver tissue of mice using Fourier transform infrared spectroscopy analysis taking one step further in correlation with strong biochemical evidence. This finding reveals the alterations on the major biochemical constituents, such as lipids, proteins, nucleic acids and glycogen of the liver tissues of mice. The peak area value of amide A significantly decrease from 288.278 ± 3.121 to 189.872 ± 2.012 between control and aluminium treated liver tissue respectively. Amide I and amide II peak area value also decrease from 40.749 ± 2.052 to 21.170 ± 1.311 and 13.167 ± 1.441 to 8.953 ± 0.548 in aluminium treated liver tissue respectively. This result suggests an alteration in the protein profile. The absence of olefinicdbnd CH stretching band and Cdbnd O stretching of triglycerides in aluminium treated liver suggests an altered lipid levels due to aluminium exposure. Significant shift in the peak position of glycogen may be the interruption of aluminium in the calcium metabolism and the reduced level of calcium. The overall findings exhibit that the liver metabolic program is altered through increasing the structural modification in proteins, triglycerides and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected in desferrioxamine treated mice. Histopathological results also revealed impairment of aluminium induced alterations in liver tissue. The results of the FTIR study were found to be in agreement with biochemical studies and which demonstrate FTIR can be used successfully to indicate the molecular level changes.

  19. Replacement of soybean oil by fish oil increases cytosolic lipases activities in liver and adipose tissue from rats fed a high-carbohydrate diets.

    PubMed

    Rodrigues, Angélica Heringer; Moreira, Carolina Campos Lima; Neves, Maria José; Botion, Leida Maria; Chaves, Valéria Ernestânia

    2018-06-01

    Several studies have demonstrated that fish oil consumption improves metabolic syndrome and comorbidities, as insulin resistance, nonalcoholic fatty liver disease, dyslipidaemia and hypertension induced by high-fat diet ingestion. Previously, we demonstrated that administration of a fructose-rich diet to rats induces liver lipid accumulation, accompanied by a decrease in liver cytosolic lipases activities. In this study, the effect of replacement of soybean oil by fish oil in a high-fructose diet (FRUC, 60% fructose) for 8 weeks on lipid metabolism in liver and epididymal adipose tissue from rats was investigated. The interaction between fish oil and FRUC diet increased glucose tolerance and decreased serum levels of triacylglycerol (TAG), VLDL-TAG secretion and lipid droplet volume of hepatocytes. In addition, the fish oil supplementation increased the liver cytosolic lipases activities, independently of the type of carbohydrate ingested. Our results firmly establish the physiological regulation of liver cytosolic lipases to maintain lipid homeostasis in hepatocytes. In epididymal adipose tissue, the replacement of soybean oil by fish oil in FRUC diet did not change the tissue weight and lipoprotein lipase activity; however, there was increased basal and insulin-stimulated de novo lipogenesis and glucose uptake. Increased cytosolic lipases activities were observed, despite the decreased basal and isoproterenol-stimulated glycerol release to the incubation medium. These findings suggest that fish oil increases the glycerokinase activity and glycerol phosphorylation from endogenous TAG hydrolysis. Our findings are the first to show that the fish oil ingestion increases cytosolic lipases activities in liver and adipose tissue from rats treated with high-carbohydrate diets. Copyright © 2018. Published by Elsevier Inc.

  20. Ice formation in isolated human hepatocytes and human liver tissue.

    PubMed

    Bischof, J C; Ryan, C M; Tompkins, R G; Yarmush, M L; Toner, M

    1997-01-01

    Cryopreservation of isolated cells and tissue slices of human liver is required to furnish extracorporeal bioartificial liver devices with a ready supply of hepatocytes, and to create in vitro drug metabolism and toxicity models. Although both the bioartificial liver and many current biotoxicity models are based on reconstructing organ functions from single isolated hepatocytes, tissue slices offer an in vitro system that may more closely resemble the in vivo situation of the cells because of cell-cell and cell-extracellular matrix interactions. However, successful cryopreservation of both cellular and tissue level systems requires an increased understanding of the fundamental mechanisms involved in the response of the liver and its cells to freezing stress. This study investigates the biophysical mechanisms of water transport and intracellular ice formation during freezing in both isolated human hepatocytes and whole liver tissue. The effects of cooling rate on individual cells were measured using a cryomicroscope. Biophysical parameters governing water transport (Lpg = 2.8 microns/min-atm and ELp = 79 kcal/mole) and intracellular heterogeneous ice nucleation (omega het = 1.08 x 10(9) m-2s-1 and kappa het = 1.04 x 10(9) K5) were determined. These parameters were then incorporated into a theoretical Krogh cylinder model developed to simulate water transport and ice formation in intact liver tissue. Model simulations indicated that the cellular compartment of the Krogh model maintained more water than isolated cells under the same freezing conditions. As a result, intracellular ice nucleation occurred at lower cooling rates in the Krogh model than in isolated cells. Furthermore, very rapid cooling rates (1000 degrees C/min) showed a depression of heterogeneous nucleation and a shift toward homogeneous nucleation. The results of this study are in qualitative agreement with the findings of a previous experimental study of the response to freezing of intact human liver.

  1. Assessment of Hepatic Fibrosis with the Stiffness of Liver and the Dynamic of Blood in Liver

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Ye, Lihong; Li, Zhenyan; Jiang, Yi

    Cirrhosis affects liver functions, and is a significant public health problem. Early stages of liver fibrosis are difficult to diagnose. The mechanism of fibrosis changing the mechanical properties of the liver tissue and altering the dynamic of blood flow is still unclear. In collaboration with clinicians specialized in hepatic fibrosis, we have developed a mechanical model to integrate our empirical understanding of fibrosis development and connect the fibrosis stage to mechanical properties of tissue and the consequential blood flow pattern changes. We modeled toxin distribution in the liver that leads to tissue damage and collagen deposition. We showed that the excessive collagen forms polygonal patterns, resembling those found in pathology images. Treating the collagen bundles as elastic spring networks, we also showed a nonlinear relationship between liver stiffness and fibrosis stage, which is consistent with experimental observations. We further modeled the stiffness affecting the mechanical properties of the portal veins, resulting in altered blood flow pattern. These results are supported by ultrasound Doppler measurements from hepatic fibrosis patients. These results promise a new noninvasive diagnostic tool for early fibrosis.

  2. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury.

    PubMed

    Esch, Mandy B; Mahler, Gretchen J; Stokol, Tracy; Shuler, Michael L

    2014-08-21

    The use of nanoparticles in medical applications is highly anticipated, and at the same time little is known about how these nanoparticles affect human tissues. Here we have simulated the oral uptake of 50 nm carboxylated polystyrene nanoparticles with a microscale body-on-a-chip system (also referred to as multi-tissue microphysiological system or micro Cell Culture Analog). Using the 'GI tract-liver-other tissues' system allowed us to observe compounding effects and detect liver tissue injury at lower nanoparticle concentrations than was expected from experiments with single tissues. To construct this system, we combined in vitro models of the human intestinal epithelium, represented by a co-culture of enterocytes (Caco-2) and mucin-producing cells (TH29-MTX), and the liver, represented by HepG2/C3A cells, within one microfluidic device. The device also contained chambers that together represented the liquid portions of all other organs of the human body. Measuring the transport of 50 nm carboxylated polystyrene nanoparticles across the Caco-2/HT29-MTX co-culture, we found that this multi-cell layer presents an effective barrier to 90.5 ± 2.9% of the nanoparticles. Further, our simulation suggests that a larger fraction of the 9.5 ± 2.9% nanoparticles that travelled across the Caco-2/HT29-MTX cell layer were not large nanoparticle aggregates, but primarily single nanoparticles and small aggregates. After crossing the GI tract epithelium, nanoparticles that were administered in high doses estimated in terms of possible daily human consumption (240 and 480 × 10(11) nanoparticles mL(-1)) induced the release of aspartate aminotransferase (AST), an intracellular enzyme of the liver that indicates liver cell injury. Our results indicate that body-on-a-chip devices are highly relevant in vitro models for evaluating nanoparticle interactions with human tissues.

  3. Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma

    PubMed Central

    De Giorgi, Valeria; Monaco, Alessandro; Worchech, Andrea; Tornesello, MariaLina; Izzo, Francesco; Buonaguro, Luigi; Marincola, Francesco M; Wang, Ena; Buonaguro, Franco M

    2009-01-01

    Background Hepatitis C virus (HCV) infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The molecular mechanisms of HCV-induced hepatocarcinogenesis are not yet fully elucidated. Besides indirect effects as tissue inflammation and regeneration, a more direct oncogenic activity of HCV can be postulated leading to an altered expression of cellular genes by early HCV viral proteins. In the present study, a comparison of gene expression patterns has been performed by microarray analysis on liver biopsies from HCV-positive HCC patients and HCV-negative controls. Methods Gene expression profiling of liver tissues has been performed using a high-density microarray containing 36'000 oligos, representing 90% of the human genes. Samples were obtained from 14 patients affected by HCV-related HCC and 7 HCV-negative non-liver-cancer patients, enrolled at INT in Naples. Transcriptional profiles identified in liver biopsies from HCC nodules and paired non-adjacent non-HCC liver tissue of the same HCV-positive patients were compared to those from HCV-negative controls by the Cluster program. The pathway analysis was performed using the BRB-Array- Tools based on the "Ingenuity System Database". Significance threshold of t-test was set at 0.001. Results Significant differences were found between the expression patterns of several genes falling into different metabolic and inflammation/immunity pathways in HCV-related HCC tissues as well as the non-HCC counterpart compared to normal liver tissues. Only few genes were found differentially expressed between HCV-related HCC tissues and paired non-HCC counterpart. Conclusion In this study, informative data on the global gene expression pattern of HCV-related HCC and non-HCC counterpart, as well as on their difference with the one observed in normal liver tissues have been obtained. These results may lead to the identification of specific biomarkers relevant to develop tools for detection, diagnosis, and classification of HCV-related HCC. PMID:19821982

  4. Molecular detection of Coxiella burnetii from the formalin-fixed tissues of Q fever patients with acute hepatitis.

    PubMed

    Jang, Young-Rock; Shin, Yong; Jin, Choong Eun; Koo, Bonhan; Park, Se Yoon; Kim, Min-Chul; Kim, Taeeun; Chong, Yong Pil; Lee, Sang-Oh; Choi, Sang-Ho; Kim, Yang Soo; Woo, Jun Hee; Kim, Sung-Han; Yu, Eunsil

    2017-01-01

    Serologic diagnosis is one of the most widely used diagnostic methods for Q fever, but the window period in antibody response of 2 to 3 weeks after symptom onset results in significant diagnostic delay. We investigated the diagnostic utility of Q fever PCR from formalin-fixed liver tissues in Q fever patients with acute hepatitis. We reviewed the clinical and laboratory data in patients with Q fever hepatitis who underwent liver biopsy during a 17-year period, and whose biopsied tissues were available. We also selected patients who revealed granuloma in liver biopsy and with no Q fever diagnosis within the last 3 years as control. Acute Q fever hepatitis was diagnosed if two or more of the following clinical, serologic, or histopathologic criteria were met: (1) an infectious hepatitis-like clinical feature such as fever (≥ 38°C) with elevated hepatic transaminase levels; (2) exhibition of a phase II immunoglobulin G (IgG) antibodies titer by IFA of ≥ 1:128 in single determination, or a four-fold or greater rise between two separate samples obtained two or more weeks apart; (3) histologic finding of biopsy tissue showing characteristic fibrin ring granuloma. A total of 11 patients with acute Q fever hepatitis were selected and analyzed. Of the 11 patients, 3 (27%) had exposure to zoonotic risk factors and 7 (63%) met the serologic criteria. Granulomas with either circumferential or radiating fibrin deposition were observed in 10 cases on liver biopsy and in 1 case on bone marrow biopsy. 8 (73%) revealed positive Coxiella burnetii PCR from their formalin-fixed liver tissues. In contrast, none of 10 patients with alternative diagnosis who had hepatic granuloma revealed positive C. burnetii PCR from their formalin-fixed liver tissues. Q fever PCR from formalin-fixed liver tissues appears to be a useful adjunct for diagnosing Q fever hepatitis.

  5. TRANSPLANTATION OF HEPATOCYTES FROM GENETICALLY-ENGINEERED PIGS IN BABOONS

    PubMed Central

    Iwase, Hayato; Liu, Hong; Schmelzer, Eva; Ezzelarab, Mohamed; Wijkstrom, Martin; Hara, Hidetaka; Lee, Whayoung; Singh, Jagjit; Long, Cassandra; Lagasse, Eric; Gerlach, Jörg C.; Cooper, David K.C.; Gridelli, Bruno

    2017-01-01

    Background Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically-engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. Methods Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by measurement of anti-nonGal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. Results Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low – 500–1,000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5,000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. Discussion and Conclusions As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient’s intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically-engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken. PMID:28130881

  6. Transplantation of hepatocytes from genetically engineered pigs into baboons.

    PubMed

    Iwase, Hayato; Liu, Hong; Schmelzer, Eva; Ezzelarab, Mohamed; Wijkstrom, Martin; Hara, Hidetaka; Lee, Whayoung; Singh, Jagjit; Long, Cassandra; Lagasse, Eric; Gerlach, Jörg C; Cooper, David K C; Gridelli, Bruno

    2017-03-01

    Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by the measurement of anti-non-Gal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low-500-1000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function.

    PubMed

    Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik

    2018-05-30

    The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018 Institute of Physics and Engineering in Medicine.

  8. The Virtual Liver: Modeling Chemical-Induced Liver Toxicity

    EPA Science Inventory

    The US EPA Virtual Liver (v-Liver) project is aimed at modeling chemical-induced processes in hepatotoxicity and simulating their dose-dependent perturbations. The v-Liver embodies an emerging field of research in computational tissue modeling that integrates molecular and cellul...

  9. Hematoporphyrin-Augmented Phototherapy: Dosimetric Studies In Experimental Liver Cancer In The Rat

    NASA Astrophysics Data System (ADS)

    Pimstone, N. R.; Horner, I. J.; Shaylor-Billings, J.; Gandhi, S. N.

    1982-12-01

    Liver cancer is an aggressively malignant tumor refractory to known therapy. This study investigated the potential of hematoporphyrin (HP) and light energy to selectively photo-necrose experimental hepatoma in rats. Hepatoma cells (106) when inoculated directly into the liver of recipient Wistar rats developed into a rapidly growing neoplasm which simulated human liver cancer. Seventy-two hours following intravenous HP (5-25 mg/kg), the tumor exhibited patchy porphyrin fluorescence on gross examination and on U.V. microscopy. Fluorescence was maximal in areas furthest from blood vessels, and was within cells which morphologically appeared least viable. Liver tissue did not fluoresce but contained HP concentrations 60% of that in fluorescent tumor and 3 times greater than that in non-fluorescent viable tumor. Tumor necrosis produced by light (Tungsten, 600-640 nm, 200 mW/ sq cm, 240 joules) and HP appeared macroscopically complete to a depth of 1.5 cm. Histologically, in necrotic areas, there were islands of surviving tumor enveloping blood vessels. Three weeks after irradiation, tumor volume averaged 2 mm3 compared to 250 mm3 in control operated animals where HP containing neoplasm was exposed to diffuse room light only. Neighboring liver tissue also was necrosed reflecting HP uptake. As the liver behaved in vivo as a tumor, this provided an ideal solid tissue model to study the biology of the photodynamic action of porphyrins. The clearly visible line of demarcation between photonecrosed and living tissue allowed measurement of the depth of necrosis with an accuracy of a fraction of a millimeter. We observed the following: 1) blue light (Xenon, bandwidth 60 nm, 30 mW/sq cm, 360 joules) produced 1/10 depth of necrosis when compared to red light of the same bandwidth and energy. This may relate in part to demonstrated preferential absorption of shorter wavelength (<590 nm) light energy by liver tissue pigments and hemoglobin. 2) The depth of necrosis related to the log of incident light energy (joules/sq cm). 3) The photodynamic effect of red coherent light (545-625 nm) from a tunable dye pulse laser system was no different from that of red light from a continuous noncoherent (Tungsten) source. 4) There was a logarithmic relationship between the dose of HP administered and the depth of liver necrosis. 5) If one interposed a photoopaque shield between the incident laser light and the liver, a considerable back scattering of light caused tissue necrosis behind the shield. However, when the diameter of the shield was greater than 1.3 mm, there always was a surviving island of tissue which escaped destruction. 6) The depth of necrosis in liver (mms) was significantly less than adjacent non-pigment tumor (cms) which suggests that the optical density of the tissue is a major factor in determining effective light penetration. We conclude that measurement of tissue porphyrin, and optical density with reference to the liver, will allow precise calculation potentially of major clinical importance in the treatment of skin and mucosal cancers.

  10. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    PubMed

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  11. Liver-resident NK cells and their potential functions.

    PubMed

    Peng, Hui; Sun, Rui

    2017-09-18

    Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.

  12. Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography.

    PubMed

    Zhao, Jingxin; Zhai, Fei; Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun

    2017-01-01

    Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis.

  13. Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography

    PubMed Central

    Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun

    2017-01-01

    Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis. PMID:28107385

  14. Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties

    NASA Astrophysics Data System (ADS)

    Cournane, S.; Cannon, L.; Browne, J. E.; Fagan, A. J.

    2010-10-01

    The accuracy of a transient elastography liver-scanning ultrasound system was assessed using a novel application of PVA-cryogel as a tissue-mimicking material with acoustic and shear elasticity properties optimized to best represent those of liver tissue. Although the liver-scanning system has been shown to offer a safer alternative for diagnosing liver cirrhosis through stiffness measurement, as compared to the liver needle biopsy exam, the scanner's accuracy has not been fully established. Young's elastic modulus values of 5-6 wt% PVA-cryogel phantoms, also containing glycerol and 0.3 µm Al2O3 and 3 µm Al2O3, were measured using a 'gold standard' mechanical testing technique and transient elastography. The mechanically measured values and acoustic velocities of the phantoms ranged between 1.6 and 16.1 kPa and 1540 and 1570 m s-1, respectively, mimicking those observed in liver tissue. The values reported by the transient elastography system overestimated Young's elastic modulus values representative of the progressive stages of liver fibrosis by up to 32%. These results were attributed to the relative rather than absolute nature of the measurement arising from the single-point acoustic velocity calibration of the system, rendering the measurements critically dependent on the speed of sound of the sample under investigation. Given the wide range of acoustic velocities which exist in the liver, spanning healthy tissue to cirrhotic pathology, coupled with the system's assumption that the liver is approximately elastic when it is rather highly viscoelastic, care should be exercised when interpreting the results from this system in patient groups.

  15. [11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.

    PubMed

    Sasaki, Toru

    2004-02-01

    To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.

  16. Visualizing surface area and volumes of lumens in 3 dimensions using images from histological sections

    USDA-ARS?s Scientific Manuscript database

    Visualizing areas of tissue that are occupied by air or liquid can provide a unique perspective on the relationships between various spaces within the tissue. The portal tracts of liver tissue are an example of such a space since the liver contains several vessels and ducts in various patterns of i...

  17. Microgravity

    NASA Image and Video Library

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. FT-Raman study of deferoxamine and deferiprone exhibits potent amelioration of structural changes in the liver tissues of mice due to aluminum exposure

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Khatiwada, Chandra Prasad; Sivasubramanian, J.; Raja, B.

    2014-01-01

    The present study inform the alterations on major biochemical constituents such as lipids, proteins, nucleic acids and glycogen along with phosphodiester linkages, tryptophan bands, tyrosine doublet, disulfide bridge conformations, aliphatic hydrophobic residue, and salt bridges in liver tissues of mice using Fourier transform Raman spectroscopy. In amide I, amide II and amide III, the area value significant decrease due structural alteration in the protein, glycogen and triglycerides levels but chelating agents DFP and DFO upturned it. Morphology changes by aluminium induced alterations and recovery by chelating agents within liver tissues known by histopathological examination. Concentrations of trace elements were found by ICP-OES. FT-Raman study was revealed to be in agreement with biochemical studies and demonstrate that it can successfully specify the molecular alteration in liver tissues. The tyrosyl doublet ratio I899/I831 decreases more in aluminum intoxicated tissues but treatment with DFP and DFO + DFP brings back to nearer control value. This indicates more variation in the hydrogen bonding of the phenolic hydroxyl group due to aluminum poisoning. The decreased Raman intensity ratio (I3220/I3400) observed in the aluminum induced tissues suggests a decreased water domain size, which could be interpreted in terms of weaker hydrogen-bonded molecular species of water in the aluminum intoxicated liver tissues. Finally, FT-Raman spectroscopy might be a useful tool for obtained successfully to indicate the molecular level changes.

  19. Role of Mitochondria in Prostate Cancer

    DTIC Science & Technology

    2006-12-01

    any tissue other than liver and those having some form of hepatocellular carcinoma (see Table 1). In all cases liver tissues obtained were extracted... carcinoma , lung carcinoma 51 Nodules in the spleen, liver and lungs; lymphoma 52 Hepatocellular carcinoma 54 Wild type 56 Dysplasia, early... hepatocellular carcinoma 58 Wild type 60 Enlarged spleen, lung tumor, lymphoma 61 Lung tumor, lymphoma, carcinoid 66 Enlarged spleen, lung tumors

  20. A physiological approach to quantifying thermal habitat quality for redband rainbow trout (Oncorhynchus mykiss gairdneri) in the south Fork John Day River, Oregon

    USGS Publications Warehouse

    Feldhaus, J.W.; Heppell, S.A.; Li, H.; Mesa, M.G.

    2010-01-01

    We examined tissue-specific levels of heat shock protein 70 (hsp70) and whole body lipid levels in juvenile redband trout (Oncorhynchus mykiss gairdneri) from the South Fork of the John Day River (SFJD), Oregon, with the goal of determining if these measures could be used as physiological indicators of thermal habitat quality for juvenile redband trout. Our objectives were to determine the hsp70 induction temperature in liver, fin, and white muscle tissue and characterize the relation between whole body lipids and hsp70 for fish in the SFJD. We found significant increases in hsp70 levels between 19 and 22??C in fin, liver, and white muscle tissue. Maximum hsp70 levels in liver, fin, and white muscle tissue occurred when mean weekly maximum temperatures (MWMT) exceeded 20-22??C. In general, the estimated hsp70 induction temperature for fin and white muscle tissue was higher than liver tissue. Whole body lipid levels began to decrease when MWMT exceeded 20. 4??C. There was a significant interaction between temperature and hsp70 in fin and white muscle tissue, but not liver tissue. Collectively, these results suggest that increased hsp70 levels in juvenile redband trout are symptomatic of thermal stress, and that energy storage capacity decreases with this stress. The possible decrease in growth potential and fitness for thermally stressed individuals emphasizes the physiological justification for thermal management criteria in salmon-bearing streams. ?? Springer Science+Business Media B.V. 2010.

  1. Influence of medium-chain triglycerides on lipid metabolism in the rat.

    PubMed

    Leveille, G A; Pardini, R S; Tillotson, J A

    1967-07-01

    Lipid metabolism was studied in rats fed diets containing corn oil, coconut oil, or medium-chain triglyceride (MCT), a glyceride mixture containing fatty acids of 8 and 10 carbons in length. The ingestion of MCT-supplemented, cholesterolfree diets depressed plasma and liver total lipids and cholesterol as compared with corn oil-supplemented diets. In rats fed cholesterol-containing diets, plasma cholesterol levels were not influenced by dietary MCT, but liver cholesterol levels were significantly lower than in animals fed corn oil. In vitro cholesterol synthesis from acetate-1-(14)C was lower in liver slices of rats that consumed MCT than in similar preparations from corn oil-fed rats. Studies of fatty acid carboxyl labeling from acetate-1-(14)C and the conversion of palmitate-1-(14)C to C(18) acids by liver slices showed that chain-lengthening activity is greater in the liver tissue of rats fed MCT than in the liver of animals fed corn oil. The hepatic fatty acid desaturation mechanisms, evaluated by measuring the conversion of stearate-2-(14)C to oleate, was also enhanced by feeding MCT.Adipose tissue of rats fed MCT converts acetate-1-(14)C to fatty acids at a much faster rate than does tissue from animals fed corn oil. Evidence is presented to show that the enhanced incorporation of acetate into fatty acids by the adipose tissue of rats fed MCT represents de novo synthesis of fatty acids and not chain-lengthening activity. Data are also presented on the fatty acid composition of plasma, liver, and adipose tissue lipids of rats fed the different fats under study.

  2. The 57Fe hyperfine interactions in iron storage proteins in liver and spleen tissues from normal human and two patients with mantle cell lymphoma and acute myeloid leukemia: a Mössbauer effect study

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Vinogradov, A. V.; Konstantinova, T. S.; Semionkin, V. A.

    2015-04-01

    Study of human spleen and liver tissues from healthy persons and two patients with mantle cell lymphoma and acute myeloid leukemia was carried out using Mössbauer spectroscopy with a high velocity resolution. Small variations in the 57Fe hyperfine parameters for normal and patient's tissues were detected and related to small variations in the 57Fe local microenvironment in ferrihydrite cores. The differences in the relative parts of more crystalline and more amorphous core regions were also supposed for iron storage proteins in normal and patients' spleen and liver tissues.

  3. Microgravity

    NASA Image and Video Library

    2001-05-15

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  4. Accumulation of heavy metals and As in liver, hair, femur, and lung of Persian jird (Meriones persicus) in Darreh Zereshk copper mine, Iran.

    PubMed

    Khazaee, Manoochehr; Hamidian, Amir Hossein; Alizadeh Shabani, Afshin; Ashrafi, Sohrab; Mirjalili, Seyyed Ali Ashghar; Esmaeilzadeh, Esmat

    2016-02-01

    Rodents frequently serve as bioindicator to monitor the quality of the environment. Concentrations of 11 elements (Cd, Co, Ti, Fe, Mn, Cu, Sb, As, Sr, Ni, and Cr) were investigated and compared in liver, hair, femur, and lung of the Persian jird (Meriones persicus) from Darreh Zereshk copper mine, Iran. Metals were determined in different tissues of 39 individuals of Persian jird, collected by snap trap in 2014 from five areas of Darreh Zereshk copper mine. Samples were prepared by wet digestion method, and the contents of elements were analyzed with ICP-OES (VARIAN, 725-ES) instrument. Cadmium, Sb, and Co were below the limit of detection, and Mn and As were found only in hair and liver tissues. We detected the highest concentration of Cu, As, Ti, Fe, Mn, Cr, and Ni in hair in comparison with other tissues. Significant higher levels of Ti in femur and hair; Fe in liver and hair; Mn in liver; As in hair; Sr in lung; Cr in lung, hair, femur, and liver; Cu in femur; and Ni in liver and lung tissues were observed in females. Nearly all element concentrations in the tissues of Persian jird from flotation site, Darreh Zereshk and Hasan Abad villages and leaching site (mining areas) were higher than those from tailing dump site (reference site). We found the highest concentrations of As in liver and hair; Ni and Cr in liver, hair, and lung; and Sr in lung and hair tissues of Persian jird in leaching site. We tried to specify the status of elements before fully exploitation of Darreh Zereshk copper mine by using bioindicator species. Based on our achievements, initial activities did not strongly pollute the surrounded environment of the mine. The high abundance of Persian jird as well as their several proper features makes them a suitable species for biomonitoring programs especially for further studies will be performed after full exploitation of Darreh Zereshk copper mine.

  5. Heavy metal concentrations in commercial deep-sea fish from the Rockall Trough

    NASA Astrophysics Data System (ADS)

    Mormede, S.; Davies, I. M.

    2001-05-01

    Samples of monkfish ( Lophius piscatorius), black scabbard ( Aphanopus carbo), blue ling ( Molva dypterygia), blue whiting ( Micromesistius poutassou) and hake ( Merluccius merluccius) were obtained from 400 to 1150 m depth on the continental slope of Rockall Trough west of Scotland. Muscle, liver, gill and gonad tissue were analysed for arsenic, cadmium, copper, lead, mercury and zinc by various atomic absorption techniques. Median concentrations of arsenic in the muscle tissue ranged from 1.25 to 8.63 mg/kg wet weight; in liver tissue from 3.04 to 5.72 mg/kg wet weight; cadmium in muscle tissue from <0.002 to 0.034 mg/kg wet weight, in liver tissue from 0.11 to 6.98 mg/kg wet weight; copper in the muscle from 0.12 to 0.29 mg/kg wet weight, in the liver from 3.47 to 11.87 mg/kg wet weight; lead levels in muscle from <0.002 to 0.009 mg/kg wet weight, respectively, and in liver tissue <0.05 mg/kg wet weight for all species. In general, the concentrations are similar to those previously published on deep-sea fish, and higher or similar to those published for shallow water counterparts. All metal levels in black scabbard livers are much higher than in the other fish, and between 2 and 30 times higher than the limits of the European Dietary Standards and Guidelines. Differences in accumulation patterns between species and elements, as well as between organs are described using univariate and multivariate statistics (scatterplots, discriminant analysis, triangular plots).

  6. Lipid composition of hepatic and adipose tissues from normal cats and from cats with idiopathic hepatic lipidosis.

    PubMed

    Hall, J A; Barstad, L A; Connor, W E

    1997-01-01

    The purpose of this study was to characterize the lipid classes in hepatic and adipose tissues from cats with idiopathic hepatic lipidosis (IHL). Concentrations of triglyceride, phospholipid phosphorus, and free and total cholesterol were determined in lipid extracts of liver homogenates from 5 cats with IHL and 5 healthy control cats. Total fatty acid composition of liver and adipose tissue was also compared. Triglyceride accounted for 34% of liver by weight in cats with IHL (338 +/- 38 mg/g wet liver) versus 1% in control cats (9.9 +/- 1.0 mg/g wet liver, P < .001). The mass of cholesterol ester was significantly higher in triglyceride-free (TG-free) liver from cats with IHL (741 +/- 340 micrograms/g TG-free wet liver) compared to healthy cats (31 +/- 11 micrograms/g TG-free wet liver, P < .05). Total fatty acid composition of hepatic tissue in the 2 groups differed; palmitate was higher (19.5 +/- 1.1% of total fatty acids in cats with IHL versus 9.2 +/- 2.7% in controls, P < .05), stearate was lower (8.5 +/- 0.8% versus 16.8 +/- 1.1%, P < .05), oleate was higher (41.2 +/- 1.6% versus 31.1 +/- 1.8%, P < .05), and arachidonate was lower (1.2 +/- 0.2% versus 6.0 +/- 0.9%, P < .05). The total fatty acid composition of adipose tissue also differed between the 2 groups; palmitate was higher (26.2 +/- 1.2% in cats with IHL versus 21.3 +/- 0.6% in controls, P < .05), total monounsaturated fatty acids were higher (48.4 +/- 1.0% versus 45.0 +/- 0.8%, P < .05), linolenate was lower (13.3 +/- 1.6% versus 17.5 +/- 0.9%, P < .05), total (n-6) fatty acids were lower (13.8 +/- 1.38% versus 18.4 +/- 0.83%, P < .05), linolenate was lower (0.2 +/- 0.04% versus 0.7 +/- 0.06%, P < .06), and total (n-3) fatty acids were lower (0.3 +/- 0.02% versus 1.3 +/- 0.32%, P < .05). The fatty acid composition of both liver and adipose tissue was similar for stearate, oleate, linoleate, and linolenate in cats with IHL. These results support the hypothesis that the origin of hepatic triglyceride in cats with IHL is the mobilization of fatty acids from adipose tissue.

  7. Human Hepatocyte Isolation: Does Portal Vein Embolization Affect the Outcome?

    PubMed

    Kluge, Martin; Reutzel-Selke, Anja; Napierala, Hendrik; Hillebrandt, Karl Herbert; Major, Rebeka Dalma; Struecker, Benjamin; Leder, Annekatrin; Siefert, Jeffrey; Tang, Peter; Lippert, Steffen; Sallmon, Hannes; Seehofer, Daniel; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael

    2016-01-01

    Primary human hepatocytes are widely used for basic research, pharmaceutical testing, and therapeutic concepts in regenerative medicine. Human hepatocytes can be isolated from resected liver tissue. Preoperative portal vein embolization (PVE) is increasingly used to decrease the risk of delayed postoperative liver regeneration by induction of selective hypertrophy of the future remnant liver tissue. The aim of this study was to investigate the effect of PVE on the outcome of hepatocyte isolation. Primary human hepatocytes were isolated from liver tissue obtained from partial hepatectomies (n = 190) using the two-step collagenase perfusion technique followed by Percoll purification. Of these hepatectomies, 27 isolations (14.2%) were performed using liver tissue obtained from patients undergoing PVE before surgery. All isolations were characterized using parameters that had been described in the literature as relevant for the outcome of hepatocyte isolation. The isolation outcomes of the PVE and the non-PVE groups were then compared before and after Percoll purification. Metabolic parameters (transaminases, urea, albumin, and vascular endothelial growth factor secretion) were measured in the supernatant of cultured hepatocytes for more than 6 days (PVE: n = 4 and non-PVE: n = 3). The PVE and non-PVE groups were similar in regard to donor parameters (sex, age, and indication for surgery), isolation parameters (liver weight and cold ischemia time), and the quality of the liver tissue. The mean initial viable cell yield did not differ between the PVE and non-PVE groups (10.16 ± 2.03 × 10(6) cells/g vs. 9.70 ± 0.73 × 10(6) cells/g, p = 0.499). The initial viability was slightly better in the PVE group (77.8% ± 2.03% vs. 74.4% ± 1.06%). The mean viable cell yield (p = 0.819) and the mean viability (p = 0.141) after Percoll purification did not differ between the groups. PVE had no effect on enzyme leakage and metabolic activity of cultured hepatocytes. Although PVE leads to drastic metabolic alterations and changes in hepatic blood flow, embolized liver tissue is a suitable source for the isolation of primary human hepatocytes and is equivalent to untreated liver tissue in regard to cell yield and viability.

  8. In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits.

    PubMed

    Zhang, Yahui; Yu, Yin; Akkouch, Adil; Dababneh, Amer; Dolati, Farzaneh; Ozbolat, Ibrahim T

    2015-01-01

    The ability to create three dimensional (3D) thick tissues is still a major tissue engineering challenge. It requires the development of a suitable vascular supply for an efficient media exchange. An integrated vasculature network is particularly needed when building thick functional tissues and/or organs with high metabolic activities, such as the heart, liver and pancreas. In this work, human umbilical vein smooth muscle cells (HUVSMCs) were encapsulated in sodium alginate and printed in the form of vasculature conduits using a coaxial deposition system. Detailed investigations were performed to understand the dehydration, swelling and degradation characteristics of printed conduits. In addition, because perfusional, permeable and mechanical properties are unique characteristics of natural blood vessels, for printed conduits these properties were also explored in this work. The results show that cells encapsulated in conduits had good proliferation activities and that their viability increased during prolonged in vitro culture. Deposition of smooth muscle matrix and collagen was observed around the peripheral and luminal surface in long-term cultured cellular vascular conduit through histology studies.

  9. Isotonicity of liver and of kidney tissue in solutions of electrolytes.

    PubMed

    OPIE, E L

    1959-07-01

    Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need.

  10. ISOTONICITY OF LIVER AND OF KIDNEY TISSUE IN SOLUTIONS OF ELECTROLYTES

    PubMed Central

    Opie, Eugene L.

    1959-01-01

    Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need. PMID:13664872

  11. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    NASA Astrophysics Data System (ADS)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  12. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    PubMed Central

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  13. CRISPR-mediated direct mutation of cancer genes in the mouse liver.

    PubMed

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G; Zhang, Feng; Anderson, Daniel G; Sharp, Phillip A; Jacks, Tyler

    2014-10-16

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.

  14. Methods for Improving the Curvature of Steerable Needles in Biological Tissue

    PubMed Central

    Adebar, Troy K.; Greer, Joseph D.; Laeseke, Paul F.; Hwang, Gloria L.; Okamura, Allison M.

    2016-01-01

    Robotic needle steering systems have the potential to improve percutaneous interventions such as radiofrequency ablation of liver tumors, but steering techniques described to date have not achieved sufficiently small radius of curvature in biological tissue to be relevant to this application. In this work, the impact of tip geometry on steerable needle curvature is examined. Finite-element simulations and experiments with bent-tip needles in ex vivo liver tissue demonstrate that selection of tip length and angle can greatly improve curvature, with radius of curvature below 5 cm in liver tissue possible through judicious selection of these parameters. Motivated by the results of this analysis, a new articulated-tip steerable needle is described, in which a distal section is actively switched by a robotic system between a straight tip (resulting in a straight path) and a bent tip (resulting in a curved path). This approach allows the tip length and angle to be increased, while the straight configuration allows the needle tip to still pass through an introducer sheath and rotate inside the body. Validation testing in liver tissue shows that the new articulated-tip steerable needle achieves smaller radius of curvature compared to bent-tip needles described in previous work. Steerable needles with optimized tip parameters, which can generate tight curves in liver tissue, increase the clinical relevance of needle steering to percutaneous interventions. PMID:26441438

  15. An assessment of heavy metal bioaccumulation in Asian swamp eel, Monopterus albus, during plowing stages of a paddy cycle.

    PubMed

    Sow, Ai Yin; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir

    2013-07-01

    Livers and muscles of swamp eels (Monopterus albus) were analyzed for bioaccumulation of heavy metals during the plowing stage of a paddy cycle. Results showed heavy metals were bioaccumulated more highly in liver than muscle. Zinc (Zn) was the highest bioaccumulated metal in liver (98.5 ± 8.95 μg/g) and in muscle (48.8 ± 7.17 μg/g). The lowest bioaccumulated metals were cadmium (Cd) in liver (3.44 ± 2.42 μg/g) and copper (Cu) in muscle (0.65 ± 0.20 μg/g). In sediments, Zn was present at the highest mean concentration (52.7 ± 2.85 μg/g), while Cd had the lowest mean concentration (1.04 ± 0.24 μg/g). The biota-sediment accumulation factor (BSAF) for Cu, Zn, Cd and nickel (Ni) in liver tissue was greater than the corresponding BSAF for muscle tissue. For the three plowing stages, metal concentrations were significantly correlated between liver and muscle tissues in all cases, and between sediment and either liver or muscle in most cases. Mean measured metal concentrations in muscle tissue were below the maximum permissible limits established by Malaysian and U.S. governmental agencies, and were therefore regarded as safe for human consumption.

  16. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease

    PubMed Central

    Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328

  17. Alanine transaminase (ALT) blood test

    MedlinePlus

    ... the levels of substances checked by other liver blood tests have also increased. An increased ALT level may be due to any of the following: Scarring of the liver ( cirrhosis ) Death of liver tissue Swollen and inflamed liver ( ...

  18. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice.

    PubMed

    Valenzuela, Rodrigo; Echeverria, Francisca; Ortiz, Macarena; Rincón-Cervera, Miguel Ángel; Espinosa, Alejandra; Hernandez-Rodas, María Catalina; Illesca, Paola; Valenzuela, Alfonso; Videla, Luis A

    2017-04-11

    Eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6) are long-chain polyunsaturated fatty acids (LCPUFAs) with relevant roles in the organism. EPA and DHA are synthesized from the precursor alpha-linolenic acid (ALA, C18:3n-3), whereas AA is produced from linoleic acid (LA, C18:2n-6) through the action of Δ5 and Δ6-desaturases. High-fat diet (HFD) decreases the activity of both desaturases and LCPUFA accretion in liver and other tissues. Hydroxytyrosol (HT), a natural antioxidant, has an important cytoprotective effects in different cells and tissues. Male mice C57BL/6 J were fed a control diet (CD) (10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks. Animals were daily supplemented with saline (CD) or 5 mg HT (HFD), and blood and the studied tissues were analyzed after the HT intervention. Parameters studied included liver histology (optical microscopy), activity of hepatic desaturases 5 and 6 (gas-liquid chromatography of methyl esters derivatives) and antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase by spectrophotometry), oxidative stress indicators (glutathione, thiobarbituric acid reactants, and the antioxidant capacity of plasma), gene expression assays for sterol regulatory element-binding protein 1c (SREBP-1c) (qPCR and ELISA), and LCPUFA profiles in liver, erythrocyte, brain, heart, and testicle (gas-liquid chromatography). HFD led to insulin resistance and liver steatosis associated with SREBP-1c upregulation, with enhancement in plasma and liver oxidative stress status and diminution in the synthesis and storage of n-6 and n-3 LCPUFAs in the studied tissues, compared to animals given control diet. HT supplementation significantly reduced fat accumulation in liver and plasma as well as tissue metabolic alterations induced by HFD. Furthermore, a normalization of desaturase activities, oxidative stress-related parameters, and tissue n-3 LCPUFA content was observed in HT-treated rats over control animals. HT supplementation prevents metabolic alterations in desaturase activities, oxidative stress status, and n-3 LCPUFA content in the liver and extrahepatic tissues of mice fed HFD.

  19. LYVE1 and PROX1 in the reconstruction of hepatic sinusoids after partial hepatectomy in mice.

    PubMed

    Meng, F

    2017-01-01

    Revascularisation is crucial to liver regeneration after liver injury, but the process remains unclear. This study investigated changes in the levels and distribution of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) and prospero homeobox protein 1 (PROX1) in liver tissue sections after partial hepatectomy in mice. Mice were subjected to partial hepatectomy. Control animals were sham-operated. From days 1 through 8, the remaining liver tissues were collected from 8 animals each day. Histology showed that after partial hepatectomy, the remaining liver tissue samples underwent initial degeneration and then hepatocyte proliferation and regeneration. Using immunohistochemical analysis, relative to the control a significantly higher number of vascular endothelial growth factor A (VEGFA)-positive hepatocytes was observed on days 4 and 5 after partial hepatectomy. LYVE1 was mainly present in the liver sinusoidal endothelial cells and the number of LYVE1-positive cells gradually increased with time. PROX1 was detected in some of the hepatocytes, but liver sinusoidal endothelial cells, artery, and vein were negative for PROX1 staining in the early stage after liver injury. The presence of PROX1 could be observed in some central veins as well as liver sinusoidal endothelial cells. Seven days after partial hepatectomy, colocalisation of PROX1 and LYVE1 was observed in liver sinusoidal endothelial cells and veins. This study revealed the dynamic process of revascularisation and hepatic sinusoid reconstruction during liver regeneration in response to liver injury in mice. PROX1 and LYVE1 may participate in this process and serve as biomarkers for identification of newly formed liver sinusoidal endothelial cells.

  20. Cryopreservation and re-culture of a 2.3 litre biomass for use in a bioartificial liver device

    PubMed Central

    Kilbride, Peter; Lamb, Stephen; Gibbons, Stephanie; Bundy, James; Erro, Eloy; Selden, Clare; Fuller, Barry; Morris, John

    2017-01-01

    For large and complex tissue engineered constructs to be available on demand, long term storage using methods, such as cryopreservation, are essential. This study optimised parameters such as excess media concentration and warming rates and used the findings to enable the successful cryopreservation of 2.3 litres of alginate encapsulated liver cell spheroids. This volume of biomass is typical of those required for successful treatment of Acute Liver Failure using our Bioartificial Liver Device. Adding a buffer of medium above the biomass, as well as slow (0.6°C/min) warming rates was found to give the best results, so long as the warming through the equilibrium melting temperature was rapid. After 72 h post thaw-culture, viable cell number, glucose consumption, lactate production, and alpha-fetoprotein production had recovered to pre-freeze values in the 2.3 litre biomass (1.00 ± 0.05, 1.19 ± 0.10, 1.23 ± 0.18, 2.03 ± 0.04 per ml biomass of the pre-cryopreservation values respectively). It was also shown that further improvements in warming rates of the biomass could reduce recovery time to < 48 h. This is the first example of a biomass of this volume being successfully cryopreserved in a single cassette and re-cultured. It demonstrates that a bioartificial liver device can be cryopreserved, and has wider applications to scale-up large volume cryopreservation. PMID:28841674

  1. Cryopreservation and re-culture of a 2.3 litre biomass for use in a bioartificial liver device.

    PubMed

    Kilbride, Peter; Lamb, Stephen; Gibbons, Stephanie; Bundy, James; Erro, Eloy; Selden, Clare; Fuller, Barry; Morris, John

    2017-01-01

    For large and complex tissue engineered constructs to be available on demand, long term storage using methods, such as cryopreservation, are essential. This study optimised parameters such as excess media concentration and warming rates and used the findings to enable the successful cryopreservation of 2.3 litres of alginate encapsulated liver cell spheroids. This volume of biomass is typical of those required for successful treatment of Acute Liver Failure using our Bioartificial Liver Device. Adding a buffer of medium above the biomass, as well as slow (0.6°C/min) warming rates was found to give the best results, so long as the warming through the equilibrium melting temperature was rapid. After 72 h post thaw-culture, viable cell number, glucose consumption, lactate production, and alpha-fetoprotein production had recovered to pre-freeze values in the 2.3 litre biomass (1.00 ± 0.05, 1.19 ± 0.10, 1.23 ± 0.18, 2.03 ± 0.04 per ml biomass of the pre-cryopreservation values respectively). It was also shown that further improvements in warming rates of the biomass could reduce recovery time to < 48 h. This is the first example of a biomass of this volume being successfully cryopreserved in a single cassette and re-cultured. It demonstrates that a bioartificial liver device can be cryopreserved, and has wider applications to scale-up large volume cryopreservation.

  2. Effects of Rosuvastatin on the expression of the genes involved in cholesterol metabolism in rats: adaptive responses by extrahepatic tissues.

    PubMed

    Ahmadi, Yasin; Haghjoo, Amir Ghorbani; Dastmalchi, Siavoush; Nemati, Mahboob; Bargahi, Nasrin

    2018-06-30

    Statins mostly target the liver; therefore, increase in the synthesis of cholesterol by extra-hepatic tissues and then transferring this cholesterol to the liver can be regarded as adaptive responses by these tissues. In addition to cholesterol, these adaptive responses can increase isoprenoid units as the byproducts of the cholesterol biosynthesis pathway; isoprenoids play a key role in regulating cell signaling pathways and cancer development. Thus, there is a primary need for in vivo investigation of the effects of statins on the cholesterol metabolism in the extra-hepatic tissues. Eighteen male Sprague-Dawley rats were randomly divided into control (n = 9) and treatment (n = 9) groups. The treatment group was orally given 10 mg/kg/day of Rosuvastatin for 6 weeks. Then, serum lipid profile, expression levels of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), ABCA1, ABCG1 and ApoA1, and activity of HMGCR were measured in the liver, intestine and adipose tissues. Rosuvastatin significantly reduced total cholesterol and LDL-C. The expression levels of ABCA1, ABCG1, and ApoA1 in the liver and HMGCR in both liver and intestine were significantly increased in the Rosuvastatin treated-group. However, in the intestine, there were no significant differences in the expression levels of ABCA1 and ABCG1 between the study groups. Rosuvastatin had no effect on the adipose tissue. The HMGCR activity was significantly increased in the liver and intestine of the Rosuvastatin-treated group. In spite of the adipose tissue, the intestine efficiently responses to the reduced levels of cholesterol and increases its cholesterogenesis capacity. However, adipose tissue seems to play a small role in correcting cholesterol deficiency during the course of statin therapy. Copyright © 2018. Published by Elsevier B.V.

  3. Evaluation of fatty proportion in fatty liver using least squares method with constraints.

    PubMed

    Li, Xingsong; Deng, Yinhui; Yu, Jinhua; Wang, Yuanyuan; Shamdasani, Vijay

    2014-01-01

    Backscatter and attenuation parameters are not easily measured in clinical applications due to tissue inhomogeneity in the region of interest (ROI). A least squares method(LSM) that fits the echo signal power spectra from a ROI to a 3-parameter tissue model was used to get attenuation coefficient imaging in fatty liver. Since fat's attenuation value is higher than normal liver parenchyma, a reasonable threshold was chosen to evaluate the fatty proportion in fatty liver. Experimental results using clinical data of fatty liver illustrate that the least squares method can get accurate attenuation estimates. It is proved that the attenuation values have a positive correlation with the fatty proportion, which can be used to evaluate the syndrome of fatty liver.

  4. Three decades of the history of donation and transplantation in Uruguay.

    PubMed

    Alvarez, I; Bengochea, M; Mizraji, R; Toledo, R; Saldías, M C; Carretto, E; Pérez, H; Castro, A; García, C

    2009-10-01

    The aim of this study was to analyze the evolution of the legal framework, health system of donation, and transplantation of cells, tissues, and organs, measured based on processes and rates from 1978 to 2008 in Uruguay. We analyzed 3 decades (1978-1988/1989-1998/1999-2008) by the following evaluation: the legislation, donation and transplantation system, procurement, registration of pre-state of voluntary donations, actual donations and transplantation rates of solid organs (kidneys, heart, liver, and pancreas), and rates of donation and transplantation of tissues (corneal and laminar [skin, amniotic membrane, and fascialata]), of cardiovascular elements (valves and vases), and of ostearticular tissues (bones and tendons). Uruguay has maintained continuous governmental politics in donation and transplantation. In the last decade the elaboration of a strategic plan by promoting Laws and Decrees of Encephalic Death, Presumed Donation and Security of Cells and Tissues, as well as the creation of the Unit Procurement, the registration of nonrelated donors for hematopoietic stem cells, and the re-engineering of tissue banking, has shown a significant increase in deceased donation and cadaveric transplantation, reaching the first highest overall donor rate in Latin America with 24/pmp multiorgan donors.

  5. Nondestructive Methods for Monitoring Cell Removal During Rat Liver Decellularization.

    PubMed

    Geerts, Sharon; Ozer, Sinan; Jaramillo, Maria; Yarmush, Martin L; Uygun, Basak E

    2016-07-01

    Whole liver engineering holds the promise to create transplantable liver grafts that may serve as substitutes for donor organs, addressing the donor shortage in liver transplantation. While decellularization and recellularization of livers in animal models have been successfully achieved, scale up to human livers has been slow. There are a number of donor human livers that are discarded because they are not found suitable for transplantation, but are available for engineering liver grafts. These livers are rejected due to a variety of reasons, which in turn may affect the decellularization outcome. Hence, a one-size-fit-for all decellularization protocol may not result in scaffolds with consistent matrix quality, subsequently influencing downstream recellularization and transplantation outcomes. There is a need for a noninvasive monitoring method to evaluate the extent of cell removal, while ensuring preservation of matrix components during decellularization. In this study, we decellularized rat livers using a protocol previously established by our group, and we monitored decellularization through traditional destructive techniques, including evaluation of DNA, collagen, and glycosaminoglycan (GAG) content in decellularized scaffolds, as well as histology. In addition, we used computed tomography and perfusate analysis as alternative nondestructive decellularization monitoring methods. We found that DNA removal correlates well with the Hounsfield unit of the liver, and perfusate analysis revealed that significant amount of GAG is removed during perfusion with 0.1% sodium dodecyl sulfate. This allowed for optimization of our decellularization protocol leading to scaffolds that have significantly higher GAG content, while maintaining appropriate removal of cellular contents. The significance of this is the creation of a nondestructive monitoring strategy that can be used for optimization of decellularization protocols for individual human livers available for liver engineering.

  6. Nondestructive Methods for Monitoring Cell Removal During Rat Liver Decellularization

    PubMed Central

    Geerts, Sharon; Ozer, Sinan; Jaramillo, Maria; Yarmush, Martin L.

    2016-01-01

    Whole liver engineering holds the promise to create transplantable liver grafts that may serve as substitutes for donor organs, addressing the donor shortage in liver transplantation. While decellularization and recellularization of livers in animal models have been successfully achieved, scale up to human livers has been slow. There are a number of donor human livers that are discarded because they are not found suitable for transplantation, but are available for engineering liver grafts. These livers are rejected due to a variety of reasons, which in turn may affect the decellularization outcome. Hence, a one-size-fit-for all decellularization protocol may not result in scaffolds with consistent matrix quality, subsequently influencing downstream recellularization and transplantation outcomes. There is a need for a noninvasive monitoring method to evaluate the extent of cell removal, while ensuring preservation of matrix components during decellularization. In this study, we decellularized rat livers using a protocol previously established by our group, and we monitored decellularization through traditional destructive techniques, including evaluation of DNA, collagen, and glycosaminoglycan (GAG) content in decellularized scaffolds, as well as histology. In addition, we used computed tomography and perfusate analysis as alternative nondestructive decellularization monitoring methods. We found that DNA removal correlates well with the Hounsfield unit of the liver, and perfusate analysis revealed that significant amount of GAG is removed during perfusion with 0.1% sodium dodecyl sulfate. This allowed for optimization of our decellularization protocol leading to scaffolds that have significantly higher GAG content, while maintaining appropriate removal of cellular contents. The significance of this is the creation of a nondestructive monitoring strategy that can be used for optimization of decellularization protocols for individual human livers available for liver engineering. PMID:27169332

  7. Aging changes in organs - tissue - cells

    MedlinePlus

    ... usually occurs to compensate for a loss of cells. It allows some organs and tissues to regenerate, including the skin, lining of the intestines, liver, and bone marrow. The liver is especially good at regeneration. It can replace up to 70% of its ...

  8. VARIATION IN CHOLINESTERASE ACTIVITY IN TISSUES OF RATS AT DIFFERENT TIMES AFTER IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubkova, S.R.; Chernavskaya, N.M.

    1959-06-11

    It was found that a single lethal dose (1000 r) changes the cholinesterase activity in the brain, liver, and blood serum. After 5 hr and 45 min the cholinesterase activity in tissues drops from the normal level (15.9% in blood serum, 20.6% in the brain, and 18.4% in the liver). After three days the activity changes in various tissues: in the liver it continues to drop, in the brain it rises but does not reach the standard level, and it increases sharply in the blood serum. (R.V.J.)

  9. Effect of body condition on tissue distribution of perfluoroalkyl substances (PFASs) in Arctic fox (Vulpes lagopus).

    PubMed

    Aas, Camilla Bakken; Fuglei, Eva; Herzke, Dorte; Yoccoz, Nigel G; Routti, Heli

    2014-10-07

    Arctic animals undergo large seasonal fluctuations in body weight. The effect of body condition on the distribution and composition of 16 perfluoroalkyl substances (PFASs) was investigated in liver, blood, kidney, adipose tissue, and muscle of Arctic foxes (Vulpes lagopus) from Svalbard (n = 18, age 1-3 years). PFAS concentrations were generally highest in liver, followed by blood and kidney, while lowest concentrations were found in adipose tissue and muscle. Concentrations of summed perfluorocarboxylic acids and perfluoroalkyl sulfonates were five and seven times higher, respectively, in adipose tissue of lean compared to fat foxes. In addition, perfluorodecanoate (PFDA) and perfluoroheptanesulfonate (PFHpS) concentrations in liver, kidney, and blood, and, perfluorononanoate (PFNA) in liver and blood, were twice as high in the lean compared to the fat foxes. The ratio between perfluorooctane sulfonamide (FOSA) and its metabolite perfluorooctanesulfonate (PFOS) was lowest in liver, muscle, and kidney, while significantly higher proportions of FOSA were found in adipose tissue and blood. The results of the present study suggest that toxic potential of exposure to PFAS among other pollutants in Arctic mammals may increase during seasonal emaciation. The results also suggest that body condition should be taken into account when assessing temporal trends of PFASs.

  10. Comparative Proteomic Analysis of Human Liver Tissue and Isolated Hepatocytes with a Focus on Proteins Determining Drug Exposure.

    PubMed

    Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per

    2015-08-07

    Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.

  11. Zinc and copper bioaccumulation in fish from Laizhou Bay, the Bohai Sea

    NASA Astrophysics Data System (ADS)

    Liu, Jinhu; Cao, Liang; Huang, Wei; Zhang, Chuantao; Dou, Shuozeng

    2014-05-01

    Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platycephalus indicus, mackerel Scomberomorus niphonius, silver pomfret Pampus argenteus, and sea bass Lateolabrax japonicus) from Laizhou Bay in the Bohai Sea. Metal bioaccumulation was highest in the metabolically active tissues of the gonads and liver. Bioconcentration factors for Zn were higher in all tissues (gonads 44.35, stomach 7.73, gills 7.72, liver 5.61, skin 4.88, and muscle 1.63) than the corresponding values for Cu (gonads 3.50, stomach 3.00, gills 1.60, liver 5.43, skin 1.50, and muscle 0.93). Mackerel tissues accumulated metal to higher concentrations than did other fish species, but bioaccumulation levels were not significantly correlated with the trophic levels of the fish. Zn and Cu concentrations in the tissues were generally negatively correlated with fish length, except for a few tissues of sea bass. Risk assessment based on national and international permissible limits and provisional tolerances for weekly intake of Zn and Cu revealed that the concentrations of these two metals in muscle were relatively low and would not pose hazards to human health.

  12. Trace and major element levels in rats after oral administration of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) seeds.

    PubMed

    Aksoy, Laçine; Sözbilir, Nalan Bayşu

    2015-10-01

    The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.

  13. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Bammler, Theo K; Gallagher, Evan P; Stapleton, Patricia L; Beyer, Richard P; Farin, Federico M; Hardiman, Gary; Schlenk, Daniel

    2015-12-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.

  14. NS3 protease resistance-associated substitutions in liver tissue and plasma samples from patients infected by hepatitis C virus genotype 1A or 1B.

    PubMed

    Morsica, Giulia; Andolina, Andrea; Merli, Marco; Messina, Emanuela; Hasson, Hamid; Lazzarin, Adriano; Uberti-Foppa, Caterina; Bagaglio, Sabrina

    2017-08-01

    The presence of naturally occurring resistance-associated substitutions (RASs) in the HCV-protease domain has been poorly investigated in the liver, the main site of HCV replication. We evaluated the natural resistance of the virus to NS3 protease inhibitors in liver tissue and plasma samples taken from HCV-infected patients. RASs were investigated by means of viral population sequencing in liver tissue samples from 18 HCV-infected patients harbouring genotype 1a or genotype 1b; plasma samples from 12 of these patients were also available for virological investigation. A discordant genotype was found in two of the 12 patients (16.6%) who provided samples from both compartments. Sequence analysis of the NS3 protease domain showed the presence of RASs in four of the 18 liver tissue samples (22.2%), two of which showed cross-resistance to protease inhibitors in clinical use or phase 2-3 trials. The analysis of the 12 paired tissues and plasma samples excluded the presence of RASs in the plasma compartment. The dominance of discordant genotypes in the paired liver and plasma samples of some HCV-infected patients suggests mixed infection possibly leading to the selective advantage of different genotype in the two compartments. The presence of RASs at intra-hepatic level is not uncommon and may lead to the early emergence of cross-resistant strains.

  15. Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice.

    PubMed

    Braster, Quinte; Silvestre Roig, Carlos; Hartwig, Helene; Beckers, Linda; den Toom, Myrthe; Döring, Yvonne; Daemen, Mat J; Lutgens, Esther; Soehnlein, Oliver

    2016-01-01

    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver.

  16. Quantification of the xenoestrogens 4-tert.-octylphenol and bisphenol A in water and in fish tissue based on microwave assisted extraction, solid-phase extraction and liquid chromatography-mass spectrometry.

    PubMed

    Pedersen, S N; Lindholst, C

    1999-12-09

    Extraction methods were developed for quantification of the xenoestrogens 4-tert.-octylphenol (tOP) and bisphenol A (BPA) in water and in liver and muscle tissue from the rainbow trout (Oncorhynchus mykiss). The extraction of tOP and BPA from tissue samples was carried out using microwave-assisted solvent extraction (MASE) followed by solid-phase extraction (SPE). Water samples were extracted using only SPE. For the quantification of tOP and BPA, liquid chromatography mass spectrometry (LC-MS) equipped with an atmospheric pressure chemical ionisation interface (APCI) was applied. The combined methods for tissue extraction allow the use of small sample amounts of liver or muscle (typically 1 g), low volumes of solvent (20 ml), and short extraction times (25 min). Limits of quantification of tOP in tissue samples were found to be approximately 10 ng/g in muscle and 50 ng/g in liver (both based on 1 g of fresh tissue). The corresponding values for BPA were approximately 50 ng/g in both muscle and liver tissue. In water, the limit of quantification for tOP and BPA was approximately 0.1 microg/l (based on 100 ml sample size).

  17. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes

    PubMed Central

    Hettrick, Lisa; Revenko, Alexey; Kinberger, Garth A.; Prakash, Thazha P.; Seth, Punit P.

    2017-01-01

    Abstract Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc–ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression. PMID:29069408

  18. Regional metabolic liver function measured in patients with cirrhosis by 2-[¹⁸F]fluoro-2-deoxy-D-galactose PET/CT.

    PubMed

    Sørensen, Michael; Mikkelsen, Kasper S; Frisch, Kim; Villadsen, Gerda E; Keiding, Susanne

    2013-06-01

    There is a clinical need for methods that can quantify regional hepatic function non-invasively in patients with cirrhosis. Here we validate the use of 2-[(18)F]fluoro-2-deoxy-d-galactose (FDGal) PET/CT for measuring regional metabolic function to this purpose, and apply the method to test the hypothesis of increased intrahepatic metabolic heterogeneity in cirrhosis. Nine cirrhotic patients underwent dynamic liver FDGal PET/CT with blood samples from a radial artery and a liver vein. Hepatic blood flow was measured by indocyanine green infusion/Fick's principle. From blood measurements, hepatic systemic clearance (Ksyst, Lblood/min) and hepatic intrinsic clearance (Vmax/Km, Lblood/min) of FDGal were calculated. From PET data, hepatic systemic clearance of FDGal in liver parenchyma (Kmet, mL blood/mL liver tissue/min) was calculated. Intrahepatic metabolic heterogeneity was evaluated in terms of coefficient-of-variation (CoV, %) using parametric images of Kmet. Mean approximation of Ksyst to Vmax/Km was 86% which validates the use of FDGal as PET tracer of hepatic metabolic function. Mean Kmet was 0.157 mL blood/mL liver tissue/min, which was lower than 0.274 mL blood/mL liver tissue/min, previously found in healthy subjects (p<0.001), in accordance with decreased metabolic function in cirrhotic livers. Mean CoV for Kmet in liver tissue was 24.4% in patients and 14.4% in healthy subjects (p<0.0001). The degree of intrahepatic metabolic heterogeneity correlated positively with HVPG (p<0.05). A 20-min dynamic FDGal PET/CT with arterial sampling provides an accurate measure of regional hepatic metabolic function in patients with cirrhosis. This is likely to have clinical implications for the assessment of patients with liver disease as well as treatment planning and monitoring. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Effect of solution and post-mortem time on mechanical and histological properties of liver during cold preservation.

    PubMed

    Ayyildiz, Mehmet; Aktas, Ranan Gulhan; Basdogan, Cagatay

    2014-01-01

    In liver transplantation, the donor and recipient are in different locations most of the time, and longer preservation periods are inevitable. Hence, the choice of the preservation solution and the duration of the preservation period are critical for the success of the transplant surgery. In this study, we examine the mechanical and histological properties of the bovine liver tissue stored in Lactated Ringer's (control), HTK and UW solutions as a function of preservation period. The mechanical experiments are conducted with a shear rheometer on cylindrical tissue samples extracted from 3 bovine livers and the change in viscoelastic material properties of the bovine liver is characterized using the fractional derivative Kelvin-Voigt Model. Also, the histological examinations are performed on the same liver samples under a light microscope. The results show that the preservation solution and period have a significant effect on the mechanical and histological properties of the liver tissue. The storage and loss shear moduli, the number of the apoptotic cells, the collagen accumulation, and the sinusoidal dilatation increase, and the glycogen deposition decreases as the preservation period is longer. Based on the statistical analyses, we observe that the liver tissue is preserved well in all three solutions for up to 11 h. After then, UW solution provides a better preservation up to 29 h. However, for preservation periods longer than 29 h, HTK is a more effective preservation solution based on the least amount of change in mechanical properties. On the other hand, the highest correlation between the mechanical and histological properties is observed for the liver samples preserved in UW solution.

  20. Impacts of exposure to 900 MHz mobile phone radiation on liver function in rats.

    PubMed

    Ma, Hui-rong; Ma, Zhi-hong; Wang, Gui-ying; Song, Cui-miao; Ma, Xue-lian; Cao, Xiao-hui; Zhang, Guo-hong

    2015-11-01

    To study the impacts of exposure to electromagnetic radiation (EMR) on liver function in rats. Twenty adult male Sprague-Dawley rats were randomly divided into normal group and radiated group. The rats in normal group were not radiated, those in radiated group were exposed to EMR 4 h/ d for 18 consecutive days. Rats were sacrificed immediately after the end of the experiment. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and those of malondialdehyde (MDA) and glutathione (GSH) in liver tissue were evaluated by colorimetric method. The liver histopathological changes were observed by hematoxylin and eosin staining and the protein expression of bax and bcl- 2 in liver tissue were detected by immunohistochemical method. Terminal-deoxynucleotidyl transferase mediated nick and labelling (TUNEL) method was used for analysis of apoptosis in liver. Compared with the normal rats, the serum levels of ALT and AST in the radiated group had no obvious changes (P>0.05), while the contents of MDA increased (P < 0.01) and those of GSH decreased (P < 0.01) in liver tissues. The histopathology examination showed diffuse hepatocyte swelling and vacuolation, small pieces and focal necrosis. The immunohistochemical results displayed that the expression of the bax protein was higher and that of bcl-2 protein was lower in radiated group. The hepatocyte apoptosis rates in radiated group was higher than that in normal group (all P < 0.01). The exposure to 900 MHz mobile phone 4 h/d for 18 days could induce the liver histological changes, which may be partly due to the apoptosis and oxidative stress induced in liver tissue by electromagnetic radiation.

  1. Protective effects against hepatic ischemia-reperfusion injury after rat orthotopic liver transplantation because of BCL-2 overexpression.

    PubMed

    Wu, Kun; Ma, Long; Xu, Ting; Qin, Zhensheng; Xia, Tianfang; Wang, Yi; Yu, Xiangyou; Pang, Liqun

    2015-01-01

    This study aims to investigate the protective effects and mechanism of recombinant adenovirus Ad.VSG-hBCL-2 towards ischemia/reperfusion injury in rat liver graft. Recombinant adenovirus Ad.VSG-hBCL-2 was injected into the donor rat liver of the experiment group through the portal vein, the laparotomy was performed for liver 36 h later, and the liver was save in lactated Ringer's solution at 4°C for 4 h, "two-cuff method" was used to perform the orthotopic liver transplantation. The bile secretion situations of two groups were observed 6 h after the portal vein reflow; the recipient rats were killed to detect the plasma levels of AST, ALT and LDH. And the expressions of Bcl-2 and TNF-α in liver tissue, and TUNEL assay was used to detect the apoptosis of liver tissue cells, electron microscopy was used to observe the changes of subcellular structures of liver tissue. 6 h after the surgery, the immunohistochemistry and Western Blot test showed that the Bcl-2 expression in the liver of the experiment group significantly increased than the control group, the bile secretion increased, the levels of AST, ALT and LDH were significantly lower, and the TNF-α expression increased significantly. The changes of cellular morphology of the experiment group were milder, and the apoptotic index was significantly lower than the control group. The portal vein-transfected recombinant adenovirus Ad.VSG-hBCL-2 could be effectively expressed in rat liver, and the high expressed Bcl-2 could reduce the ischemia/reperfusion injury in the transplanted liver.

  2. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    PubMed

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-11-01

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney). © 2017 American Academy of Forensic Sciences.

  3. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers.

    PubMed

    Anavi, Sarit; Madar, Zecharia; Tirosh, Oren

    2017-10-01

    Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-β1/Smad7 Signaling Pathway in Vitro and in Vivo.

    PubMed

    Yang, Fan; Luo, Lei; Zhu, Zhi-De; Zhou, Xuan; Wang, Yao; Xue, Juan; Zhang, Juan; Cai, Xin; Chen, Zhi-Lin; Ma, Qian; Chen, Yun-Fei; Wang, Yu-Jie; Luo, Ying-Ying; Liu, Pan; Zhao, Lei

    2017-01-01

    Aims: Chlorogenic acid (CGA) is a phenolic acid that has a wide range of pharmacological effects. However, the protective effects and mechanisms of CGA on liver fibrosis are not clear. This study explored the effects of CGA on miR-21-regulated TGF-β1/Smad7 liver fibrosis in the hepatic stellate LX2 cell line and in CCl4-induced liver fibrosis in Sprague-Dawley rats. Methods: The mRNA expression of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and transforming growth factor-β1 (TGF-β1) and the protein levels of Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3, p-Smad2/3, Smad7, CTGF, α-SMA, TIMP-1, MMP-9 and TGF-β1 were assayed in LX2 cells and liver tissue. The effects of CGA after miR-21 knockdown or overexpression were analyzed in LX2 cells. The liver tissue and serum were collected for histopathological examination, immunohistochemistry (IHC) and ELISA. Results: The mRNA expression of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and the protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1, and TGF-β1 were inhibited by CGA both in vitro and in vivo . Meanwhile, CGA elevated the mRNA and protein expression of Smad7 and MMP-9. After miR-21 knockdown and overexpression, the downstream molecules also changed accordingly. CGA also lessened the degree of liver fibrosis in the pathological manifestation and reduced α-SMA and collagen I expression in liver tissue and TGF-β1 in serum. Conclusion: CGA might relieve liver fibrosis through the miR-21-regulated TGF-β1/Smad7 signaling pathway, which suggests that CGA might be a new anti-fibrosis agent that improves liver fibrosis.

  5. Populational analysis of suspended microtissues for high-throughput, multiplexed 3D tissue engineering

    PubMed Central

    Chen, Alice A.; Underhill, Gregory H.; Bhatia, Sangeeta N.

    2014-01-01

    Three-dimensional (3D) tissue models have significantly improved our understanding of structure/function relationships and promise to lead to new advances in regenerative medicine. However, despite the expanding diversity of 3D tissue fabrication methods, approaches for functional assessment have been relatively limited. Here, we describe the fabrication of microtissue (μ-tissue) suspensions and their quantitative evaluation with techniques capable of analyzing large sample numbers and performing multiplexed parallel analysis. We applied this platform to 3D μ-tissues representing multiple stages of liver development and disease including: embryonic stem cells, bipotential hepatic progenitors, mature hepatocytes, and hepatoma cells photoencapsulated in polyethylene glycol hydrogels. Multiparametric μ-tissue cytometry enabled quantitation of fluorescent reporter expression within populations of intact μ-tissues (n≥102-103) and sorting-based enrichment of subsets for subsequent studies. Further, 3D μ-tissues could be implanted in vivo, respond to systemic stimuli, retrieved and quantitatively assessed. In order to facilitate multiplexed ‘pooled’ experimentation, fluorescent labeling strategies were developed and utilized to investigate the impact of μ-tissue composition and exposure to soluble factors. In particular, examination of drug/gene interactions on collections of 3D hepatoma μ-tissues indicated synergistic influence of doxorubicin and knockdown of the anti-apoptotic gene BCL-XL. Collectively, these studies highlight the broad utility of μ-tissue suspensions as an enabling approach for high n, populational analysis of 3D tissue biology in vitro and in vivo. PMID:20820630

  6. Liquid microjunction surface sampling of acetaminophen, terfenadine and their metabolites in thin tissue sections

    DOE PAGES

    Kertesz, Vilmos; Paranthaman, Nithya; Moench, Paul; ...

    2014-10-01

    The aim of this paper was to evaluate the analytical performance of a fully automated droplet-based surface-sampling system for determining the distribution of the drugs acetaminophen and terfenadine, and their metabolites, in rat thin tissue sections. The following are the results: The rank order of acetaminophen concentration observed in tissues was stomach > small intestine > liver, while the concentrations of its glucuronide and sulfate metabolites were greatest in the liver and small intestine. Terfenadine was most concentrated in the liver and kidney, while its major metabolite, fexofenadine, was found in the liver and small intestine. In conclusion, the spatialmore » distributions of both drugs and their respective metabolites observed in this work were consistent with previous studies using radiolabeled drugs.« less

  7. Three-Dimensional Model of the Scatterer Distribution in Cirrhotic Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Nakamura, Keigo; Hachiya, Hiroyuki

    2003-05-01

    Ultrasonic B-mode images are affected by changes in scatterer distribution. It is hard to estimate the relationship between the ultrasonic image and the tissue structure quantitatively because we cannot observe the continuous stages of liver cirrhosis tissue clinically, particularly the beginning stage. In this paper, we propose a three-dimensional modeling method of scatterer distribution for normal and cirrhotic livers to confirm the influence of the change in the form of scatterer distribution on echo information. The algorithm of the method includes parameters which determine the expansion of nodules and fibers. Using the B-mode images which are obtained from these scatterer distributions, we analyze the relationship between the changes in the form of biological tissue and the changes in the B-mode images during progressive liver cirrhosis.

  8. Fatty Acid Composition of Lamb Liver, Muscle, And Adipose Tissues in Response to Rumen-Protected Conjugated Linoleic Acid (CLA) Supplementation Is Tissue Dependent.

    PubMed

    Schiavon, Stefano; Bergamaschi, Matteo; Pellattiero, Erika; Simonetto, Alberto; Tagliapietra, Franco

    2017-12-06

    The tissue-specific response to rumen-protected conjugated linoleic acid supply (rpCLA) of liver, two muscles, and three adipose tissues of heavy lambs was studied. Twenty-four lambs, 8 months old, divided into 4 groups of 6, were fed at libitum on a ration supplemented without or with a mixture of rpCLA. Silica and hydrogenated soybean oil was the rpCLA coating matrix. The lambs were slaughtered at 11 months of age. Tissues were collected and analyzed for their FA profiles. The dietary rpCLA supplement had no influence on carcass fatness nor on the fat content of the liver and tissues and had little influence on the FA profiles of these tissues. In the adipose tissues, rpCLA increased the proportions of saturated FAs, 18:0 and 18:2t10c12, and decreased the proportions of monounsaturated FAs in the adipose tissues. In muscles, the effects were the opposite. The results suggest that Δ9 desaturase activity is inhibited by the rpCLA mixture in adipose tissues to a greater extent than in the other tissues.

  9. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    USGS Publications Warehouse

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles.

  10. Lipidomic Perturbations in Lung, Kidney, and Liver Tissues of p53 Knockout Mice Analyzed by Nanoflow UPLC-ESI-MS/MS.

    PubMed

    Park, Se Mi; Byeon, Seul Kee; Sung, Hyerim; Cho, Soo Young; Seong, Je Kyung; Moon, Myeong Hee

    2016-10-07

    Lipids are important signaling molecules regulating biological processes under normal and diseased conditions. Although p53 mutation is well-known for causing cancer, the relationship between p53-related tumorigenesis and altered lipid profile is unclear. We profiled differences in lipid expressions in liver, lung, and kidney in p53 knockout (KO) mice by high-speed quantitative analysis of 320 lipids (399 species identified) using nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry (nUPLC-MS/MS). Lung tissues were most severely affected by the lack of p53 gene, as shown by significant reduction (24-44%, P < 0.05) in total phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), diacylglycerol (DG), and triacylglycerol (TG), and significant increases (30-50%) in phosphatidylserine (PS), phosphatidylinositol (PI), and monohexosylceramide (MHC). MHC levels increased in all tissues. Dihexosylceramide (DHC) level decreased only in kidney tissue. Most PI, PS, and phosphatidic acid (PA) species showing significant increases contained a saturated acyl chain (18:0) in lung and liver tissues. Neutral glycerolipids (16:0/22:0-DG and most TGs with saturated and monounsaturated acyl chains) decreased 2-4-fold in the liver tissue. Our results suggest that the lack of p53 and altered lipid profiles are closely related, but as their changes vary from one tissue to another, the lipid alterations are tissue-specific.

  11. Mesenchymal stem cells correct haemodynamic dysfunction associated with liver injury after extended resection in a pig model.

    PubMed

    Tautenhahn, Hans-Michael; Brückner, Sandra; Uder, Christiane; Erler, Silvio; Hempel, Madlen; von Bergen, Martin; Brach, Janine; Winkler, Sandra; Pankow, Franziska; Gittel, Claudia; Baunack, Manja; Lange, Undine; Broschewitz, Johannes; Dollinger, Matthias; Bartels, Michael; Pietsch, Uta; Amann, Kerstin; Christ, Bruno

    2017-06-01

    In patients, acute kidney injury (AKI) is often due to haemodynamic impairment associated with hepatic decompensation following extended liver surgery. Mesenchymal stem cells (MSCs) supported tissue protection in a variety of acute and chronic diseases, and might hence ameliorate AKI induced by extended liver resection. Here, 70% liver resection was performed in male pigs. MSCs were infused through a central venous catheter and haemodynamic parameters as well as markers of acute kidney damage were monitored under intensive care conditions for 24 h post-surgery. Cytokine profiles were established to anticipate the MSCs' potential mode of action. After extended liver resection, hyperdynamic circulation, associated with hyponatraemia, hyperkalaemia, an increase in serum aldosterone and low urine production developed. These signs of hepatorenal dysfunction and haemodynamic impairment were corrected by MSC treatment. MSCs elevated PDGF levels in the serum, possibly contributing to circulatory homeostasis. Another 14 cytokines were increased in the kidney, most of which are known to support tissue regeneration. In conclusion, MSCs supported kidney and liver function after extended liver resection. They probably acted through paracrine mechanisms improving haemodynamics and tissue homeostasis. They might thus provide a promising strategy to prevent acute kidney injury in the context of post-surgery acute liver failure.

  12. Automatic seed selection for segmentation of liver cirrhosis in laparoscopic sequences

    NASA Astrophysics Data System (ADS)

    Sinha, Rahul; Marcinczak, Jan Marek; Grigat, Rolf-Rainer

    2014-03-01

    For computer aided diagnosis based on laparoscopic sequences, image segmentation is one of the basic steps which define the success of all further processing. However, many image segmentation algorithms require prior knowledge which is given by interaction with the clinician. We propose an automatic seed selection algorithm for segmentation of liver cirrhosis in laparoscopic sequences which assigns each pixel a probability of being cirrhotic liver tissue or background tissue. Our approach is based on a trained classifier using SIFT and RGB features with PCA. Due to the unique illumination conditions in laparoscopic sequences of the liver, a very low dimensional feature space can be used for classification via logistic regression. The methodology is evaluated on 718 cirrhotic liver and background patches that are taken from laparoscopic sequences of 7 patients. Using a linear classifier we achieve a precision of 91% in a leave-one-patient-out cross-validation. Furthermore, we demonstrate that with logistic probability estimates, seeds with high certainty of being cirrhotic liver tissue can be obtained. For example, our precision of liver seeds increases to 98.5% if only seeds with more than 95% probability of being liver are used. Finally, these automatically selected seeds can be used as priors in Graph Cuts which is demonstrated in this paper.

  13. Intrinsic and Extrinsic Modifiers of the Regulative Capacity of the Developing Liver

    PubMed Central

    Shin, Donghun; Weidinger, Gilbert; Moon, Randall T.; Stainier, Didier Y.R.

    2012-01-01

    Zebrafish wnt2bb mutants initially fail to form a liver, but surprisingly the liver eventually forms in a majority of these embryos which then develop into fertile adults. This unexpected result raised the possibility that identifying the mechanisms of liver formation in wnt2bb mutants could provide insights into the poorly understood yet general principle of regulative development, a process by which some cells can change fate in order to compensate for a deficiency. Here, we identify two factors that underlie the regulative capacity of endodermal tissues: an intrinsic factor, Sox32, a transcription factor of the SoxF subfamily, and an extrinsic factor, Fgf10a. sox32 is expressed in the extrahepatic duct primordium which is not affected in wnt2bb mutants. Blocking Sox32 function prevented liver formation in most wnt2bb mutants. fgf10a, which is expressed in the mesenchyme surrounding non-hepatic endodermal cells, negatively impacts the regulative capacity of endodermal tissues. In Wnt/β-catenin signaling deficient embryos, in which the liver completely fails to form, the repression of Fgf10a function allowed liver formation. Altogether, these studies reveal that there is more than one way to form a liver, and provide molecular insights into the phenomenon of tissue plasticity. PMID:22313811

  14. The protective effect of diosmin on hepatic ischemia reperfusion injury: an experimental study

    PubMed Central

    Tanrikulu, Yusuf; Şahin, Mefaret; Kismet, Kemal; Kilicoglu, Sibel Serin; Devrim, Erdinc; Tanrikulu, Ceren Sen; Erdemli, Esra; Erel, Serap; Bayraktar, Kenan; Akkus, Mehmet Ali

    2013-01-01

    Liver ischemia reperfusion injury (IRI) is an important pathologic process leading to bodily systemic effects and liver injury. Our study aimed to investigate the protective effects of diosmin, a phlebotrophic drug with antioxidant and anti-inflammatory effects, in a liver IRI model. Forty rats were divided into 4 groups. Sham group, control group (ischemia-reperfusion), intraoperative treatment group, and preoperative treatment group. Ischemia reperfusion model was formed by clamping hepatic pedicle for a 60 minute of ischemia followed by liver reperfusion for another 90 minutes. Superoxide dismutase (SOD) and catalase (CAT) were measured as antioaxidant enzymes in the liver tissues, and malondialdehyde (MDA) as oxidative stress marker, xanthine oxidase (XO) as an oxidant enzyme and glutathione peroxidase (GSH-Px) as antioaxidant enzyme were measured in the liver tissues and the plasma samples. Hepatic function tests were lower in treatment groups than control group (p<0.001 for ALT and AST). Plasma XO and MDA levels were lower in treatment groups than control group, but plasma GSH-Px levels were higher (p<0.05 for all). Tissue MDA levels were lower in treatment groups than control group, but tissue GSH-Px, SOD, CAT and XO levels were higher (p<0.05 for MDA and p<0.001 for others). Samples in control group histopathologically showed morphologic abnormalities specific to ischemia reperfusion. It has been found that both preoperative and intraoperative diosmin treatment decreases cellular damage and protects cells from toxic effects in liver IRI. As a conclusion, diosmin may be used as a protective agent against IRI in elective and emergent liver surgical operations. PMID:24289756

  15. Expression of β-catenin protein in hepatocellular carcinoma and its relationship with alpha-fetoprotein.

    PubMed

    Ren, Ya-Jun; Huang, Tao; Yu, Hong-Lu; Zhang, Li; He, Qian-Jin; Xiong, Zhi-Fan; Peng, Hua

    2016-12-01

    This study aimed to investigate the expression of β-catenin in hepatocellular carcinoma (HCC) tissues and its relationship with α-fetoprotein (AFP) in HCC. Immunohistochemistry was used to determine the expression of β-catenin in normal liver tissues (n=10), liver cirrhosis tissues (n=20), and primary HCC tissues (n=60). The relationship between β-catenin expression and clinical parameters of HCC was investigated. Real-time PCR and Western blotting were used to detect the mRNA and protein expression levels of β-catenin in the liver cancer cell line SMMC-7721 transfected with a plasmid encoding AFP, and also the mRNA and protein expression levels of β-catenin were measured in the liver cancer cell line Huh7 before and after the transfection with AFP shRNA plasmids. The results showed that β-catenin was only expressed on the cell membrane in normal liver tissues. Its localization to the cytoplasm and nucleus of cells was observed in a small proportion of cirrhotic tissues or adjacent HCC tissues, and such ectopic expression of β-catenin was predominant in HCC tissues. The abnormal expression of β-catenin was correlated with serum AFP levels, cancer cell differentiation and vascular invasion (P<0.05). Additionally, the increased expression of AFP resulted in the upregulation of β-catenin mRNA and protein levels, while knockdown of AFP with AFP shRNA led to significantly decreased β-catenin mRNA and protein levels (P<0.05). It was suggested that the abnormal expression of β-catenin is implicated in hepatic carcinogenesis and development. AFP can lead to increased expression of β-catenin, which may account for the poor prognosis of AFP-associated HCC patients.

  16. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.

    PubMed

    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku

    2014-01-03

    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Expression of connective tissue growth factor in the livers of non-viral hepatocellular carcinoma patients with metabolic risk factors.

    PubMed

    Akahoshi, Keiichi; Tanaka, Shinji; Mogushi, Kaoru; Shimada, Shu; Matsumura, Satoshi; Akiyama, Yoshimitsu; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru

    2016-09-01

    The incidence of hepatocellular carcinoma (HCC) associated with metabolic risk factors, such as diabetes and obesity, has been increasing. However, the underlying mechanism that links these diseases remains unclear. We performed genome-wide expression analysis of human liver tissues of non-viral HCC patients with or without metabolic risk factors. The upregulated genes that associated with diabetes and obesity were investigated by in vitro and in vivo experiments, and immunohistochemistry of human liver tissues was performed. Among the upregulated genes, connective tissue growth factor (CTGF) expression was induced to a greater extent by combined glucose and insulin administration to human hepatoma cells. Genome-wide expression analysis revealed upregulation of a chemokine network in CTGF-overexpressing hepatoma cells, which displayed an increased ability to induce in vitro activation of macrophages, and in vivo infiltration of liver macrophages. Immunohistochemistry of human liver tissues validated the correlations between CTGF expression and diabetes or obesity as well as activation of liver macrophages in patients with non-viral HCC. Recurrence-free survival was significantly poorer in the CTGF-positive patients compared with the CTGF-negative patients (p = 0.002). Multivariate analysis determined that CTGF expression (HR 2.361; 95 % CI 1.195-4.665; p = 0.013) and vascular invasion (HR 2.367; 95 % CI 1.270-4.410; p = 0.007) were independent prognostic factors for recurrence of non-viral HCC. Our data suggest that CTGF could be involved in oncogenic pathways promoting non-viral HCC associated with metabolic risk factors via induction of liver inflammation and is expected to be a novel HCC risk biomarker and potential therapeutic target.

  18. Coordinated improvement in glucose tolerance, liver steatosis and obesity-associated inflammation by cannabinoid 1 receptor antagonism in fat Aussie mice.

    PubMed

    Bell-Anderson, K S; Aouad, L; Williams, H; Sanz, F R; Phuyal, J; Larter, C Z; Farrell, G C; Caterson, I D

    2011-12-01

    Fat Aussie mice (foz/foz) are morbidly obese, glucose intolerant and have liver steatosis that develops into steatohepatitis on a high-fat diet. The cannabinoid 1 receptor (CB1) antagonist SR141716 has been shown to improve obesity-associated metabolic complications in humans and rodent models. The aim of this study was to assess the effect of SR141716 in foz/foz mice. Male wildtype (WT) and foz/foz mice were fed a chow or high-fat diet (45% saturated fat). Vehicle or SR141716 (10 mg kg(-1) per day) was administered in jelly once daily for 4 weeks from 4 months of age. Foz/foz mice were obese but had less epididymal adipose tissue mass than fat-fed WT mice despite being significantly heavier. Liver weight was increased by twofold in foz/foz compared with WT mice and showed significant steatogenesis associated with impaired liver function. Foz/foz and fat-fed WT mice were glucose intolerant as determined by oral glucose tolerance test. In chow-fed foz/foz mice, SR141716 reduced body weight, liver weight, reversed hepatosteatosis and glucose intolerance. Subcutaneous white adipose tissue gene expression of the macrophage-specific marker Cd68 reflected the improvements in the metabolic status by SR141716 in these mice. The results are consistent with the hypothesis that foz/foz mice have defective lipid metabolism, are unable to adequately store fat in adipose tissue but instead sequester fat ectopically in other metabolic tissues (liver) leading to insulin resistance and hepatic steatosis associated with inflammation. Our findings suggest that SR141716 can improve liver lipid metabolism in foz/foz mice in line with improved insulin sensitivity and adipose tissue inflammation.

  19. Distribution and chemical form of mercury in commercial fish tissues.

    PubMed

    Watanabe, Naoko; Tayama, Misato; Inouye, Minoru; Yasutake, Akira

    2012-01-01

    We analyzed total Hg concentrations in various tissue samples obtained from 7 commercially available fish species. MeHg contents were also estimated for muscle and liver samples by a selective analysis of inorganic Hg. Among the tissues, high Hg accumulations were shown in liver, muscle, heart and spleen throughout all fish species. Carnivorous fish, such as scorpion fish, sea bream and Japanese whiting, tended to show higher Hg accumulations in the muscle, with the highest Hg levels being shown by scorpion fish. Although the liver was expected to show the highest Hg accumulations among tissues throughout all fish species, the highest accumulation in the liver was observed only in scorpion fish. In contrast, the muscle level was significantly higher than the liver in Pacific saury and Japanese whiting. MeHg accumulated in fish is considered to show a sustained increase throughout the life of the fish, due to its long biological half-life. In fact, in the present study, muscle Hg levels in Japanese whiting, Japanese flying fish, and halfbeak showed good correlations with body weights. However, such correlations were not clear in scorpion fish, sea bream, Jack mackerel and Pacific saury. Selective analyses of inorganic Hg levels revealed that most of the Hg (> 95%) in fish muscle existed as MeHg, while the rates of MeHg contents in the liver varied from 56% in scorpion fish to 84% in Jack mackerel. As a result, fish muscle showed the highest MeHg accumulations in all fish species examined. These results suggest that reliable information on total Hg contents in fish muscle might be sufficient to avoid the risk of MeHg exposure caused by eating fish, even when one consumes other tissues such as fish liver.

  20. The value of "liver windows" settings in the detection of small renal cell carcinomas on unenhanced computed tomography.

    PubMed

    Sahi, Kamal; Jackson, Stuart; Wiebe, Edward; Armstrong, Gavin; Winters, Sean; Moore, Ronald; Low, Gavin

    2014-02-01

    To assess if "liver window" settings improve the conspicuity of small renal cell carcinomas (RCC). Patients were analysed from our institution's pathology-confirmed RCC database that included the following: (1) stage T1a RCCs, (2) an unenhanced computed tomography (CT) abdomen performed ≤ 6 months before histologic diagnosis, and (3) age ≥ 17 years. Patients with multiple tumours, prior nephrectomy, von Hippel-Lindau disease, and polycystic kidney disease were excluded. The unenhanced CT was analysed, and the tumour locations were confirmed by using corresponding contrast-enhanced CT or magnetic resonance imaging studies. Representative single-slice axial, coronal, and sagittal unenhanced CT images were acquired in "soft tissue windows" (width, 400 Hounsfield unit (HU); level, 40 HU) and liver windows (width, 150 HU; level, 88 HU). In addition, single-slice axial, coronal, and sagittal unenhanced CT images of nontumourous renal tissue (obtained from the same cases) were acquired in soft tissue windows and liver windows. These data sets were randomized, unpaired, and were presented independently to 3 blinded radiologists for analysis. The presence or absence of suspicious findings for tumour was scored on a 5-point confidence scale. Eighty-three of 415 patients met the study criteria. Receiver operating characteristics (ROC) analysis, t test analysis, and kappa analysis were used. ROC analysis showed statistically superior diagnostic performance for liver windows compared with soft tissue windows (area under the curve of 0.923 vs 0.879; P = .0002). Kappa statistics showed "good" vs "moderate" agreement between readers for liver windows compared with soft tissue windows. Use of liver windows settings improves the detection of small RCCs on the unenhanced CT. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  1. The flame-retardant BDE-99 dose-dependently affects viral replication in CVB3-infected mice.

    PubMed

    Lundgren, Magnus; Darnerud, Per Ola; Ilbäck, Nils-Gunnar

    2013-06-01

    The flame retardant component 2,2',4,4',5-penta-BDE (BDE-99) is found in the environment and in human tissues and fluids. In mice the common human coxsackievirus B3 (CVB3) infection has been shown to change the tissue distribution of BDE-99. We now investigate how CVB3 infection in mice affects liver uptake of (14)C at two doses of radiolabelled BDE-99, and whether increased tissue levels are related to changed virus replication and gene expression of the proinflammatory chemokine monocyte chemoattractant protein-1 (MCP-1). Mice were infected on day 0, orally treated either with 200μg or 20mg (14)C-BDE-99/kgbw on day 1, and euthanised on day 3. Serum and liver levels of (14)C-BDE-99, as well as virus levels and gene expressions of MCP-1 in the liver, were measured. In non-infected mice, there was a dose-dependent uptake of BDE-99 in both liver and serum, and in infected animals the liver BDE-99 levels was further increased. When comparing infected mice exposed to the two BDE-99 doses, the higher BDE dose resulted in increased virus amounts in the liver, and decreased infection-induced expression of MCP-1. Consequently, a high enough dose/tissue concentration of BDE-99 may result in a disturbed mobilisation of immune cells into infected tissues that could explain higher virus titres and a possibly altered clinical course of the disease. Moreover, the fact that CVB3 infection increased the BDE-99 levels in liver but not in serum may impair the risk assessment of polybrominated diphenyl ethers (PBDEs) in subclinical and clinically infected individuals, as serum levels is the common marker of exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Biological monitoring of heavy metal contaminations using owls.

    PubMed

    Kim, Jungsoo; Oh, Jong-Min

    2012-03-01

    Iron, manganese, copper, lead and cadmium were measured in the livers, muscles, kidneys and bones of Eurasian Eagle Owls (Bubo bubo), Brown Hawk Owls (Nixos scutulata) and Collared Scops Owls (Otus lempiji) from Korea. Iron concentrations by tissue within species did not differ, but there were significant differences among tissues across all species. Manganese and copper concentrations in muscles, kidneys and bones, but not livers, differed among species and also differed among tissues in the three owl species. We suggest that manganese and copper concentrations from this study were far below the level associated with their toxicity. Lead concentrations significantly differed among all species for livers and bones, and among tissues for each species. Cadmium concentrations were significantly different among species for all tissues and among tissues in Eurasian Eagle Owls and Collared Scops Owls. For most samples, lead concentrations in livers and bones, and cadmium in livers and kidneys, were within the background levels for wild birds. For some Eurasian Eagle Owls and Collared Scops Owls, lead concentrations were at an acute exposure level, whilst lead concentrations were at a chronic exposure level in Brown Hawk Owls. Cadmium concentrations were at a chronic exposure level in all three owl species. Acute and chronic poisoning was significantly correlated between indicator tissues. We suggest that lead and cadmium contamination in Eurasian Eagle Owls may reflect a Korean source, Brown Hawk Owls may reflect Korean and wintering sites, and Collared Scops Owls may reflect breeding and/or wintering sites. This journal is © The Royal Society of Chemistry 2012

  3. Use of CT Hounsfield unit density to identify ablated tumor after laparoscopic radiofrequency ablation of hepatic tumors.

    PubMed

    Berber, E; Foroutani, A; Garland, A M; Rogers, S J; Engle, K L; Ryan, T L; Siperstein, A E

    2000-09-01

    When attempting to interpret CT scans after radiofrequency thermal ablation (RFA) of liver tumors, it is sometimes difficult to distinguish ablated from viable tumor tissue. Identification of the two types of tissue is specially problematic for lesions that are hypodense before ablation. The aim of this study was to determine whether quantitative Hounsfield unit (HU) density measurements can be used to document the lack of tumor perfusion and thereby identify ablated tissue. Liver spiral CT scans of 13 patients with 51 lesions undergoing laparoscopic RFA for metastatic liver tumors within a 2-year time period were reviewed. HU density of the lesions as well as normal liver were measured pre- and postoperatively in each CT phase (noncontrast, arterial, portovenous). Statistical analyses were performed using Student's paired t-test and ANOVA. Normal liver parenchyma, which was used as a control, showed a similar increase with contrast injection in both pre- and postprocedure CT scans (56.4 +/- 2.4 vs 57.1 +/- 2.4 HU, respectively; p = 0.3). In contrast, ablated liver lesions showed a preablation increase of 45.7 +/- 3.4 HU but only a minimal postablation increase of 6.6 +/- 0.7 HU (p < 0.0001). This was true for highly vascular tumors (neuroendocrine) as well as hypovascular ones (adenocarcinoma). This is the first study to define quantitative radiological criteria using HU density for the evaluation of ablated tissues. A lack of increase in HU density with contrast injection indicates necrotic tissue, whereas perfused tissue shows an increase in HU density. This technique can be used in the evaluation of patients undergoing RFA.

  4. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  5. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    PubMed

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. An evaluation of the clinical potential of tissue diffraction studies

    NASA Astrophysics Data System (ADS)

    Speller, R.; Abuchi, S.; Zheng, Y.; Vassiljev, N.; Konstantinidis, A.; Griffiths, J.

    2015-09-01

    Medical imaging is a long established part of patient management in the treatment of disease. However, in most cases it only provides anatomical detail and does not provide any form of tissue characterisation. This is particularly true for X-ray imaging. Recent studies on tissue diffraction have shown that true molecular signatures can be derived for different tissue types. Breast cancer samples and liver tissue have been studied. It has been shown that diffraction profiles can be traced away from the primary tumour in excised breast tissue samples and that potentially 3mm fat nodules in liver tissue can be identified in patients at acceptable doses.

  7. [Hepatic cell transplantation. Technical and methodological aspects].

    PubMed

    Pareja, Eugenia; Martínez, Amparo; Cortés, Miriam; Bonora, Ana; Moya, Angel; Sanjuán, Fernando; Gómez-Lechón, M José; Mir, José

    2010-03-01

    Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  8. Review fantastic medical implications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: A review.

    PubMed

    Wang, Jing-Zhang; Xiong, Nan-Yan; Zhao, Li-Zhen; Hu, Jin-Tian; Kong, De-Cheng; Yuan, Jiang-Yong

    2018-06-07

    The epidemiological trend in liver diseases becomes more serious worldwide. Several recent articles published by International Journal of Surgery in 2018 particularly emphasized the encouraging clinical benefits of hepatectomy, liver regeneration and liver transplantation, however, there are still many technical bottlenecks underlying these therapeutic approaches. Remarkably, a few preliminary studies have shown some clues to the role of three-dimensional (3D) printing in improving traditional therapy for liver diseases. Here, we concisely elucidated the curative applications of 3D-printing (no cells) and 3D Bio-printing (with hepatic cells), such as 3D-printed patient-specific liver models and devices for medical education, surgical simulation, hepatectomy and liver transplantation, 3D Bio-printed hepatic constructs for liver regeneration and artificial liver, 3D-printed liver tissues for evaluating drug's hepatotoxicity, and so on. Briefly, 3D-printed liver models and bioactive tissues may facilitate a lot of key steps to cure liver disorders, predictably bringing promising clinical benefits. This work further provides novel insights into facilitating treatment of hepatic carcinoma, promoting liver regeneration both in vivo and in vitro, expanding transplantable liver resources, maximizing therapeutic efficacy as well as minimizing surgical complications, medical hepatotoxicity, operational time, economic costs, etc. Copyright © 2018. Published by Elsevier Ltd.

  9. Structural and metabolic characterization of RNAs from rats with experimental Guerin tumor - I. Nucleotide composition of RNAs from the liver and tumor tissues of rats.

    PubMed

    Ratkiewicz, A; Galasinski, W

    1976-01-01

    The characteristics of the ribonucleic acids of Guerin tumor was the subject of this work. The effect of tumor development on the structure of the ribonucleic acids in the liver of tumor bearing rats was studied. Some differences of nucleotide compositions in RNAs isolated from subcellular fractions of liver of control and tumor bearing rats and of cancer tissue were observed. The nucleotide compositions of cancer nuclear RNA is distinctly different from liver RNA. The changes in primary structure of liver RNAs due by development of tumor in rats may be result of metabolic peculiarities of these RNAs.

  10. HCV-RNA quantification in liver bioptic samples and extrahepatic compartments, using the abbott RealTime HCV assay.

    PubMed

    Antonucci, FrancescoPaolo; Cento, Valeria; Sorbo, Maria Chiara; Manuelli, Matteo Ciancio; Lenci, Ilaria; Sforza, Daniele; Di Carlo, Domenico; Milana, Martina; Manzia, Tommaso Maria; Angelico, Mario; Tisone, Giuseppe; Perno, Carlo Federico; Ceccherini-Silberstein, Francesca

    2017-08-01

    We evaluated the performance of a rapid method to quantify HCV-RNA in the hepatic and extrahepatic compartments, by using for the first time the Abbott RealTime HCV-assay. Non-tumoral (NT), tumoral (TT) liver samples, lymph nodes and ascitic fluid from patients undergoing orthotopic-liver-transplantation (N=18) or liver resection (N=4) were used for the HCV-RNA quantification; 5/22 patients were tested after or during direct acting antivirals (DAA) treatment. Total RNA and DNA quantification from tissue-biopsies allowed normalization of HCV-RNA concentrations in IU/μg of total RNA and IU/10 6 liver-cells, respectively. HCV-RNA was successfully quantified with high reliability in liver biopsies, lymph nodes and ascitic fluid samples. Among the 17 untreated patients, a positive and significant HCV-RNA correlation between serum and NT liver-samples was observed (Pearson: rho=0.544, p=0.024). Three DAA-treated patients were HCV-RNA "undetectable" in serum, but still "detectable" in all tested liver-tissues. Differently, only one DAA-treated patient, tested after sustained-virological-response, showed HCV-RNA "undetectability" in liver-tissue. HCV-RNA was successfully quantified with high reliability in liver bioptic samples and extrahepatic compartments, even when HCV-RNA was "undetectable" in serum. Abbott RealTime HCV-assay is a good diagnostic tool for HCV quantification in intra- and extra-hepatic compartments, whenever a bioptic sample is available. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ectopic fat depots and left ventricular function in nondiabetic men with nonalcoholic fatty liver disease.

    PubMed

    Granér, Marit; Nyman, Kristofer; Siren, Reijo; Pentikäinen, Markku O; Lundbom, Jesper; Hakkarainen, Antti; Lauerma, Kirsi; Lundbom, Nina; Nieminen, Markku S; Taskinen, Marja-Riitta

    2015-01-01

    Nonalcoholic fatty liver disease has emerged as a novel cardiovascular risk factor. The aim of the study was to assess the effect of different ectopic fat depots on left ventricular (LV) function in subjects with nonalcoholic fatty liver disease. Myocardial and hepatic triglyceride contents were measured with 1.5 T magnetic resonance spectroscopy and LV function, visceral adipose tissue (VAT) and subcutaneous adipose tissue, epicardial and pericardial fat by MRI in 75 nondiabetic men. Subjects were stratified by hepatic triglyceride content into low, moderate, and high liver fat groups. Myocardial triglyceride, epicardial and pericardial fat, VAT, and subcutaneous adipose tissue increased stepwise from low to high liver fat group. Parameters of LV diastolic function showed a stepwise decrease over tertiles of liver fat and VAT, and they were inversely correlated with hepatic triglyceride, VAT, and VAT/subcutaneous adipose tissue ratio. In multivariable analyses, hepatic triglyceride and VAT were independent predictors of LV diastolic function, whereas myocardial triglyceride was not associated with measures of diastolic function. Myocardial triglyceride, epicardial and pericardial fat increased with increasing amount of liver fat and VAT. Hepatic steatosis and VAT associated with significant changes in LV structure and function. The association of LV diastolic function with hepatic triglyceride and VAT may be because of toxic systemic effects. The effects of myocardial triglyceride on LV structure and function seem to be more complex than previously thought and merit further study. © 2014 American Heart Association, Inc.

  12. Multiplication free neural network for cancer stem cell detection in H-and-E stained liver images

    NASA Astrophysics Data System (ADS)

    Badawi, Diaa; Akhan, Ece; Mallah, Ma'en; Üner, Ayşegül; ćetin-Atalay, Rengül; ćetin, A. Enis

    2017-05-01

    Markers such as CD13 and CD133 have been used to identify Cancer Stem Cells (CSC) in various tissue images. It is highly likely that CSC nuclei appear as brown in CD13 stained liver tissue images. We observe that there is a high correlation between the ratio of brown to blue colored nuclei in CD13 images and the ratio between the dark blue to blue colored nuclei in H&E stained liver images. Therefore, we recommend that a pathologist observing many dark blue nuclei in an H&E stained tissue image may also order CD13 staining to estimate the CSC ratio. In this paper, we describe a computer vision method based on a neural network estimating the ratio of dark blue to blue colored nuclei in an H&E stained liver tissue image. The neural network structure is based on a multiplication free operator using only additions and sign operations. Experimental results are presented.

  13. Investigations of the Cavitation and Damage Thresholds of Histotripsy and Applications in Targeted Tissue Ablation

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli

    Histotripsy is a noninvasive ultrasound therapy that controls acoustic cavitation to mechanically fractionate soft tissue. This dissertation investigates the physical thresholds to initiate cavitation and produce tissue damage in histotripsy and factors affecting these thresholds in order to develop novel strategies for targeted tissue ablation. In the first part of this dissertation, the effects of tissue properties on histotripsy cavitation thresholds and damage thresholds were investigated. Results demonstrated that the histotripsy shock scattering threshold using multi-cycle pulses increases in stiffer tissues, while the histotripsy intrinsic threshold using single-cycle pulses is independent of tissue stiffness. Further, the intrinsic threshold slightly decreases with lower frequencies and significantly decreases with increasing temperature. The effects of tissue properties on the susceptibility to histotripsy-induced tissue damage were also investigated, demonstrating that stiffer tissues are more resistant to histotripsy. Two strategies were investigated for increasing the effectiveness of histotripsy for the treatment of stiffer tissues, with results showing that thermal preconditioning may be used to alter tissue susceptibility to histotripsy and that lower frequency treatments may increase the efficiency of histotripsy tissue ablation due to enhanced bubble expansion. In the second part of this dissertation, the feasibility of using histotripsy for targeted liver ablation was investigated in an intact in vivo porcine model, with results demonstrating that histotripsy was capable of non-invasively creating precise lesions throughout the entire liver. Additionally, a tissue selective ablation approach was developed, where histotripsy completely fractionated the liver tissue surrounding the major hepatic vessels and gallbladder while being self-limited at the boundaries of these critical structures. Finally, the long-term effects of histotripsy liver ablation were investigated in an intact in vivo rodent model, showing that the liver homogenate resulting from histotripsy-induced tissue fractionation was completely resorbed over the course of 28 days. In the final part of this dissertation, a novel ablation method combining histotripsy with acoustically sensitive nanodroplets was developed for targeted cancer cell ablation, demonstrating the potential of using nanodroplet-mediated histotripsy (NMH) for targeted, multi-focal ablation. Studies demonstrated that lower frequency and higher boiling point perfluorocarbon droplets can improve NMH therapy. The role of positive and negative pressure on cavitation nucleation in NMH was also investigated, showing that NMH cavitation nucleation is caused directly from the peak negative pressure of the incident wave, similar to histotripsy bubbles generated above the intrinsic threshold. Overall, the results of this dissertation provide significant insight into the physical mechanisms underlying histotripsy tissue ablation and will help to guide the future development of histotripsy for clinical applications such as the treatment of liver cancer.

  14. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy

    NASA Astrophysics Data System (ADS)

    Liu, Shaojie; Doughty, Austin; Mesiya, Sana; Pettitt, Alex; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Temperature distribution in tissue is a crucial factor in determining the outcome of photothermal therapy in cancer treatment. In order to investigate the temperature distribution in tumor tissue during laser irradiation, we developed a novel ex vivo device to simulate the photothermal therapy on tumors. A 35°C, a thermostatic incubator was used to provide a simulation environment for body temperature of live animals. Different biological tissues (chicken breast and bovine liver) were buried inside a tissue-simulating gel and considered as tumor tissues. An 805-nm laser was used to irradiate the target tissue. A fiber with an interstitial cylindrical diffuser (10 mm) was directly inserted in the center of the tissue, and the needle probes of a thermocouple were inserted into the tissue paralleling the laser fiber at different distances to measure the temperature distribution. All of the procedures were performed in the incubator. Based on the results of this study, the temperature distribution in bovine liver is similar to that of tumor tissue under photothermal therapy with the same doses. Therefore, the developed model using bovine liver for determining temperature distribution can be used during interstitial photothermal therapy.

  15. Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats.

    PubMed

    Medhat, Amina; Mansour, Somaya; El-Sonbaty, Sawsan; Kandil, Eman; Mahmoud, Mustafa

    2017-07-01

    This study aimed to evaluate the antitumor activity of platinum nanoparticles compared with cis-platin both in vitro and in vivo in the treatment of hepatocellular carcinoma induced in rats. The treatment efficacy of platinum nanoparticles was evaluated by measuring antioxidant activities against oxidative stress caused by diethylnitrosamine in liver tissue. The measurements included reduced glutathione content and superoxide dismutase activity, as well as malondialdehyde level. Liver function tests were also determined, in addition to the evaluation of serum alpha-fetoprotein, caspase-3, and cytochrome c in liver tissue. Total RNA extraction from liver tissue samples was also done for the relative quantification of B-cell lymphoma 2, matrix metallopeptidase 9, and tumor protein p53 genes. Histopathological examination was also performed for liver tissue. Results showed that platinum nanoparticles are more potent than cis-platin in treatment of hepatocellular carcinoma induced by diethylnitrosamine in rats as it ameliorated the investigated parameters toward normal control animals. These findings were well appreciated with histopathological studies of diethylnitrosamine group treated with platinum nanoparticles, suggesting that platinum nanoparticles can serve as a good therapeutic agent for the treatment of hepatocellular carcinoma which should attract further studies.

  16. Optical redox ratio using endogenous fluorescence to assess the metabolic changes associated with treatment response of bioconjugated gold nanoparticles in streptozotocin-induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Adavallan, K.; Gurushankar, K.; Nazeer, Shaiju S.; Gohulkumar, M.; Jayasree, Ramapurath S.; Krishnakumar, N.

    2017-06-01

    Fluorescence spectroscopic techniques have the potential to assess the metabolic changes during disease development and evaluation of treatment response in a non-invasive and label-free manner. The present study aims to evaluate the effect of mulberry-mediated gold nanoparticles (MAuNPs) in comparison with mulberry leaf extract alone (MLE) for monitoring endogenous fluorophores and to quantify the metabolic changes associated with mitochondrial redox states during streptozotocin-induced diabetic liver tissues using fluorescence spectroscopy. Two mitochondrial metabolic coenzymes, reduced nicotinamide dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD) are autofluorescent and are important optical biomarkers to estimate the redox state of a cell. Significant differences in the autofluorescence spectral signatures between the control and the experimental diabetic animals have been noticed under the excitation wavelength at 320 nm with emission ranging from 350-550 nm. A direct correlation between the progression of diabetes and the levels of collagen and optical redox ratio was observed. The results revealed that a significant increase in the emission of collagen in diabetic liver tissues as compared with the control liver tissues. Moreover, there was a significant decrease in the optical redox ratio (FAD/(FAD  +  NADH)) observed in diabetic control liver tissues, which indicates an increased oxidative stress compared to the liver tissues of control rats. Further, the extent of increased oxidative stress was confirmed by the reduced levels of reduced glutathione (GSH) in diabetic liver tissues. On a comparative basis, treatment with MAuNPs was found to be more effective than MLE for reducing the progression of diabetes and improving the optical redox ratio to a near normal range in streptozotocin-induced diabetic liver tissues. Furthermore, principal component analysis followed by linear discriminant analysis (PC-LDA) has been used to classify the autofluorescence emission spectra from the control and the experimental group of diabetic rats. The results of this study raise the important possibility that fluorescence spectroscopy in conjunction with multivariate statistical analysis has tremendous potential for monitoring or potentially predicting responses to therapy.

  17. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis.

    PubMed

    Choi, Youngshim; Abdelmegeed, Mohamed A; Song, Byoung-Joon

    2018-05-01

    Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. PBDEs and PCBs in the liver of the St Lawrence Estuary beluga (Delphinapterus leucas): a comparison of levels and temporal trends with the blubber.

    PubMed

    Raach, Meriem; Lebeuf, Michel; Pelletier, Emilien

    2011-03-01

    Due to their lipophilic properties, persistent organic pollutants (POPs) are commonly assessed using the blubber of marine mammals. However, these chemicals are also accumulating in other tissues including the liver. Some pollutants, namely perfluorinated alkyl acids, are found predominately in the liver and blood of marine mammals, and thus monitored in those tissues. This raises the question whether any tissue would represent an identical trend of POPs in the SLE beluga. The current study reports the first temporal trends of PBDEs and PCBs in the liver of 65 SLE belugas. Neither ∑₇PBDEs nor major individual PBDE-homolog group concentrations showed significant trends between 1993 and 2007. Also, ∑₃₂PCBs did not change over years, although, tetra-, penta- and hepta-PCB decreased by 7.1, 6.8 and 8.5%, respectively, in males, whereas tetra-, penta- and octa-PCBs declined by 11, 12 and 12.9%, respectively, in females. In order to compare the distribution of POPs between liver and blubber, a lipid normalised concentration ratio R (blubber/liver) for PBDEs and PCBs was calculated for each individual beluga. For all PBDE and several PCB homolog groups, mean R values were not statistically different from unity indicating that the partitioning of these POPs is governed by the tissue lipid-content. Temporal trends of R ratios of PBDEs and PCBs were also examined. There were generally no significant temporal trends except for PBDEs in males where R increased in average by 12.7 ± 2.9% yearly. The stratification of the blubber into a metabolically active (inner) and less active layers (outer blubber) may result in a slower response time of the blubber (full depth) than the liver to the recent change of contamination in the environment and explain the time trend differences between both tissues. This study suggests that the liver is more representative of recent exposure to lipophilic contaminants.

  19. Whey-hydrolyzed peptide-enriched immunomodulating diet prevents progression of liver cirrhosis in rats.

    PubMed

    Jobara, Kanta; Kaido, Toshimi; Hori, Tomohide; Iwaisako, Keiko; Endo, Kosuke; Uchida, Yoichiro; Uemoto, Shinji

    2014-10-01

    Liver fibrosis and subsequent cirrhosis is a major cause of death worldwide, but few effective antifibrotic therapies are reported. Whey-hydrolyzed peptide (WHP), a major peptide component of bovine milk, exerts anti-inflammatory effects in experimental models. A WHP-enriched diet is widely used for immunomodulating diets (IMD) in clinical fields. However, the effects of WHP on liver fibrosis remain unknown. The aim of this study was to investigate the antifibrotic effects of WHP in a rat cirrhosis model. Progressive liver fibrosis was induced by repeated intraperitoneal administration of dimethylnitrosamine (DMN) for 3 wk. Rats were fed either a WHP-enriched IMD (WHP group) or a control enteral diet (control group). The degree of liver fibrosis was compared between groups. Hepatocyte-protective effects were examined using hepatocytes isolated from rats fed a WHP diet. Reactive oxygen species and glutathione in liver tissue were investigated in the DMN cirrhosis model. Macroscopic and microscopic progression of liver fibrosis was remarkably suppressed in the WHP group. Elevated serum levels of liver enzymes and hyaluronic acid, and liver tissue hydroxyproline content were significantly attenuated in the WHP group. Necrotic hepatocyte rates with DMN challenge, isolated from rats fed a WHP-enriched IMD, were significantly lower. In the DMN cirrhosis model, reactive oxygen species were significantly lower, and glutathione was significantly higher in the WHP group's whole liver tissue. A WHP-enriched IMD effectively prevented progression of DMN-induced liver fibrosis in rats via a direct hepatocyte-protective effect and an antioxidant effect through glutathione synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Tissue specific MR contrast media role in the differential diagnosis of cirrhotic liver nodules.

    PubMed

    Lupescu, Ioana Gabriela; Capsa, Razvan A; Gheorghe, Liana; Herlea, Vlad; Georgescu, Serban A

    2008-09-01

    State-of-the-art magnetic resonance (MR) imaging using tissue specific contrast media facilitates detection and characterization in most cases of hepatic nodules. According to the currently used nomenclature, in liver cirrhosis there are only two major types of hepatocellular nodular lesions: regenerative lesions and dysplastic or neoplastic lesions. The purpose of this clinical imaging review is to provide information on the properties of tissue-specific MR contrast agents and on their usefulness in the demonstration of the pathologic changes that take place at the level of the hepatobiliary and reticuloendothelial systems during the carcinogenesis in liver cirrhosis.

  1. Liver abscess that responded well to pazufloxacin therapy.

    PubMed

    Hamada, Yukihiro; Imaizumi, Hiroshi; Kobayashi, Masahiro; Sunakawa, Keisuke; Saigenji, Katsunori; Yago, Kazuo

    2006-02-01

    Pazufloxacin (PZFX), an injectable, new quinolone antibacterial drug, has strong antibacterial activity against gram-negative bacteria (which often account for liver abscess) and transfers well to liver tissue, gallbladder tissue, and bile. Therefore, it is probable that PZFX could be extremely useful for patients with liver abscess. Here, we report two cases of liver abscess that resolved with PZFX. PZFX was intravenously administered to patients who had undergone abscess drainage, at a dose level of 500 mg x 2/day. PZFX therapy thereby allowed the patients to shorten the period of hospital stay. Liver abscess has been considered as a poor-prognosis disorder, due to delay in diagnosis of the disorder and the high incidence of septicemia that subsequently occurs. However, now, appropriate antibacterial drug therapy in combination with abscess drainage successfully allows excellent prognosis of patients with liver abscess without the reduction in the activities of daily living (ADL) that accompanies hepatic artery injection.

  2. Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei

    2013-10-01

    We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (χ31/χ15 and χ33/χ15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.

  3. Assessment of fibrotic liver disease with multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Lin, Jian; Yu, Hanry; Huang, Zhiwei

    2010-02-01

    Liver fibrosis is the excessive accumulation of extracellular matrix proteins such as collagens, which may result in cirrhosis, liver failure, and portal hypertension. In this study, we apply a multimodal nonlinear optical microscopy platform developed to investigate the fibrotic liver diseases in rat models established by performing bile duct ligation (BDL) surgery. The three nonlinear microscopy imaging modalities are implemented on the same sectioned tissues of diseased model sequentially: i.e., second harmonic generation (SHG) imaging quantifies the contents of the collagens, the two-photon excitation fluorescence (TPEF) imaging reveals the morphology of hepatic cells, while coherent anti-Stokes Raman scattering (CARS) imaging maps the distributions of fats or lipids quantitatively across the tissue. Our imaging results show that during the development of liver fibrosis (collagens) in BDL model, fatty liver disease also occurs. The aggregated concentrations of collagen and fat constituents in liver fibrosis model show a certain correlationship between each other.

  4. Comparison of pinniped and cetacean prey tissue lipids with lipids of their elasmobranch predator.

    PubMed

    Davidson, Bruce; Cliff, Geremy

    2014-01-01

    The great white shark is known to include pinnipeds and cetaceans in its diet. Both groups of marine mammals deposit thick blubber layers around their bodies. Elasmobranchs do not produce adipose tissue, but rather store lipid in their livers, thus a great white predating on a marine mammal will deposit the lipids in its liver until required. Samples from great white liver and muscle, Cape fur seal, Indian Ocean bottlenose dolphin and common dolphin liver, muscle and blubber were analyzed for their lipid and fatty acid profiles. The great white liver and marine mammal blubber samples showed a considerable degree of homogeneity, but there were significant differences when comparing between the muscle samples. Blubber from all three marine mammal species was calculated to provide greater than 95% of lipid intake for the great white shark from the tissues analyzed. Sampling of prey blubber may give a good indication of the lipids provided to the shark predator.

  5. Concentrations of metallic elements in kidney, liver, and lung tissue of Indo-Pacific bottlenose dolphin Tursiops aduncus from coastal waters of Zanzibar, Tanzania.

    PubMed

    Mapunda, Edgar C; Othman, Othman C; Akwilapo, Leonard D; Bouwman, Hindrik; Mwevura, Haji

    2017-09-15

    Concentrations of metallic elements in kidney, liver and lung tissues of Indo-Pacific bottlenose dolphins Tursiops aduncus from coastal waters of Zanzibar were determined using inductively coupled plasma - optical emission spectroscopy. Cadmium, chromium, copper, and zinc were quantifiable in all tissues at concentration ranges of 0.10-150, 0.08-3.2, 1.1-88 and 14-210μg/g dry mass, respectively. Copper and zinc was significantly higher in liver, and females had significantly higher Cd in liver, and chromium in lung. Generally, T. aduncus dolphins from coastal waters around Zanzibar carry low concentrations of metals compared with dolphins from other areas. Cadmium increased significantly with age in kidney and lung. Copper decreased significantly with age in liver, probably due to foetal metallothionein. This study supplied baseline data against which future trends in marine mammals in the Indian Ocean, the world's third largest, can be assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Treatment of rats with a self-selected hyperlipidic diet, increases the lipid content of the main adipose tissue sites in a proportion similar to that of the lipids in the rest of organs and tissues.

    PubMed

    Romero, María Del Mar; Roy, Stéphanie; Pouillot, Karl; Feito, Marisol; Esteve, Montserrat; Grasa, María Del Mar; Fernández-López, José-Antonio; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in "other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the "rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.

  7. Liver metabolomics analysis associated with feed efficiency on steers

    USDA-ARS?s Scientific Manuscript database

    The liver represents a metabolic crossroad regulating and modulating nutrients available from digestive tract absorption to the peripheral tissues. To identify potential differences in liver function that lead to differences in feed efficiency, liver metabolomic analysis was conducted using ultra-pe...

  8. Tumor radioimmunoimaging of chimeric antibody in nude mice with hepatoma xenograft

    PubMed Central

    Gong, Yi; Liu, Kang-Da; Zhou, Ge; Xue, Qiong; Chen, Shao-Liang; Tang, Zhao-You

    1998-01-01

    AIM: To study the radioimmunoimaging (RAII) using the human/mouse chimeric Ab to evaluate its targeting activity in animal models. METHODS: To chimeric Ab was labeled with 131I. RAII was performed at different intervals after injection of radio-labeled Abs in nude mice with human hepatoma xenograft, and tissue distribution of radioactivity was measured. Comparison was made in the chimeric Ab between the single segment Ab and previous murine mAb against HBxAg. RESULTS: The experimental objects developed tumor-positive image after 2 days of radio-labeled Abs injection, and the peak accumulation of radioactivity fell on the 7th day. The tumor/liver ratioactivity of the chimeric Ab, single segment Ab, anti-HBx mAb, and the control group was 281 ± 0.21, 2.44 ± 0.16, 4.60 ± 0.19, and 0.96 ± 0.14, respectively. CONCLUSION: The genetic engineering Abs have a considerable targeting activity which can be used as a novel humanized vector in the targeting treatment of liver cancer. PMID:11819217

  9. Modulation of metallothionein and metal partitioning in liver and kidney of Solea senegalensis after long-term acclimation to two environmental temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siscar, R.; Torreblanca, A.; Ramo, J. del

    Juveniles of Solea senegalensis were fed with commercial pellets under controlled conditions at two environmental Mediterranean temperatures (15 and 20 °C) for two months. After this period, the accumulation of essential and non-essential metals and metallothionein (MT) levels was measured in liver and kidney by inductively coupled plasma mass spectrometry (ICP-MS) and pulse polarography, respectively. The bioaccumulation factor (BAF) for selected metals in both tissues was calculated in relation to levels present in the feed. Tissue partitioning (liver/kidney) and molar ratios, considering the metal protective mechanisms: MT and Selenium (Se), were included for evaluating the detoxification capacity of each tissue.more » Ag, Cd, Cu and Mn were preferentially accumulated in the liver whereas Co, Fe, Hg, Se and Zn were found in larger concentrations in the kidney, and higher temperature enhanced the accumulation of some of them, but not all. MT content in liver, but not in kidney, was also influenced by temperature changes and by length of exposure. The BAF revealed that Cu was taken up mainly by the liver whereas Se was efficiently taken up by both tissues. The high molar ratios of MT and most metals denoted the kidney's remarkable spare capacity for metal detoxification through MT binding. Moreover, the potential protective role of Se was also more evident in kidney as a higher Se:Cd and Se:Ag molar ratios were reached in this organ. In contrast to other fish, the storage of Cd in kidney was particularly low. - Highlights: • Long-term increases in temperature entailed changes in MT and metal content in liver. • The liver is the preferred storage organ for most metals. • Se assimilation from feed results in a high BAF in the liver and kidney. • MT/metal and Se/metal are higher in kidney than in liver for most metals, except Cd.« less

  10. Role of pentoxifylline in non-alcoholic fatty liver disease in high-fat diet-induced obesity in mice.

    PubMed

    Acedo, Simone Coghetto; Caria, Cintia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Pereira, José Aires; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2015-10-28

    To study pentoxifylline effects in liver and adipose tissue inflammation in obese mice induced by high-fat diet (HFD). Male swiss mice (6-wk old) were fed a high-fat diet (HFD; 60% kcal from fat) or AIN-93 (control diet; 15% kcal from fat) for 12 wk and received pentoxifylline intraperitoneally (100 mg/kg per day) for the last 14 d. Glucose homeostasis was evaluated by measurements of basal glucose blood levels and insulin tolerance test two days before the end of the protocol. Final body weight was assessed. Epididymal adipose tissue was collected and weighted for adiposity evaluation. Liver and adipose tissue biopsies were homogenized in solubilization buffer and cytokines were measured in supernatant by enzyme immunoassay or multiplex kit, respectively. Hepatic histopathologic analyses were performed in sections of paraformaldehyde-fixed, paraffin-embedded liver specimens stained with hematoxylin-eosin by an independent pathologist. Steatosis (macrovesicular and microvesicular), ballooning degeneration and inflammation were histopathologically determined. Triglycerides measurements were performed after lipid extraction in liver tissue. Pentoxifylline treatment reduced microsteatosis and tumor necrosis factor (TNF)-α in liver (156.3 ± 17.2 and 62.6 ± 7.6 pg/mL of TNF-α for non-treated and treated obese mice, respectively; P < 0.05). Serum aspartate aminotransferase levels were also reduced (23.2 ± 6.9 and 12.1 ± 1.6 U/L for non-treated and treated obese mice, respectively; P < 0.05) but had no effect on glucose homeostasis. In obese adipose tissue, pentoxifylline reduced TNF-α (106.1 ± 17.6 and 51.1 ± 9.6 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) and interleukin-6 (340.8 ± 51.3 and 166.6 ± 22.5 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) levels; however, leptin (8.1 ± 0.7 and 23.1 ± 2.9 ng/mL for non-treated and treated lean mice, respectively; P < 0.05) and plasminogen activator inhibitor-1 (600.2 ± 32.3 and 1508.6 ± 210.4 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) levels increased in lean adipose tissue. TNF-α level in the liver of lean mice also increased (29.6 ± 6.6 and 75.4 ± 12.6 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) while triglycerides presented a tendency to reduction. Pentoxifylline was beneficial in obese mice improving liver and adipose tissue inflammation. Unexpectedly, pentoxifylline increased pro-inflammatory markers in the liver and adipose tissue of lean mice.

  11. Role of pentoxifylline in non-alcoholic fatty liver disease in high-fat diet-induced obesity in mice

    PubMed Central

    Acedo, Simone Coghetto; Caria, Cintia Rabelo e Paiva; Gotardo, Érica Martins Ferreira; Pereira, José Aires; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2015-01-01

    AIM: To study pentoxifylline effects in liver and adipose tissue inflammation in obese mice induced by high-fat diet (HFD). METHODS: Male swiss mice (6-wk old) were fed a high-fat diet (HFD; 60% kcal from fat) or AIN-93 (control diet; 15% kcal from fat) for 12 wk and received pentoxifylline intraperitoneally (100 mg/kg per day) for the last 14 d. Glucose homeostasis was evaluated by measurements of basal glucose blood levels and insulin tolerance test two days before the end of the protocol. Final body weight was assessed. Epididymal adipose tissue was collected and weighted for adiposity evaluation. Liver and adipose tissue biopsies were homogenized in solubilization buffer and cytokines were measured in supernatant by enzyme immunoassay or multiplex kit, respectively. Hepatic histopathologic analyses were performed in sections of paraformaldehyde-fixed, paraffin-embedded liver specimens stained with hematoxylin-eosin by an independent pathologist. Steatosis (macrovesicular and microvesicular), ballooning degeneration and inflammation were histopathologically determined. Triglycerides measurements were performed after lipid extraction in liver tissue. RESULTS: Pentoxifylline treatment reduced microsteatosis and tumor necrosis factor (TNF)-α in liver (156.3 ± 17.2 and 62.6 ± 7.6 pg/mL of TNF-α for non-treated and treated obese mice, respectively; P < 0.05). Serum aspartate aminotransferase levels were also reduced (23.2 ± 6.9 and 12.1 ± 1.6 U/L for non-treated and treated obese mice, respectively; P < 0.05) but had no effect on glucose homeostasis. In obese adipose tissue, pentoxifylline reduced TNF-α (106.1 ± 17.6 and 51.1 ± 9.6 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) and interleukin-6 (340.8 ± 51.3 and 166.6 ± 22.5 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) levels; however, leptin (8.1 ± 0.7 and 23.1 ± 2.9 ng/mL for non-treated and treated lean mice, respectively; P < 0.05) and plasminogen activator inhibitor-1 (600.2 ± 32.3 and 1508.6 ± 210.4 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) levels increased in lean adipose tissue. TNF-α level in the liver of lean mice also increased (29.6 ± 6.6 and 75.4 ± 12.6 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) while triglycerides presented a tendency to reduction. CONCLUSION: Pentoxifylline was beneficial in obese mice improving liver and adipose tissue inflammation. Unexpectedly, pentoxifylline increased pro-inflammatory markers in the liver and adipose tissue of lean mice. PMID:26523207

  12. Quantification of liver fibrosis via second harmonic imaging of the Glisson's capsule from liver surface.

    PubMed

    Xu, Shuoyu; Kang, Chiang Huen; Gou, Xiaoli; Peng, Qiwen; Yan, Jie; Zhuo, Shuangmu; Cheng, Chee Leong; He, Yuting; Kang, Yuzhan; Xia, Wuzheng; So, Peter T C; Welsch, Roy; Rajapakse, Jagath C; Yu, Hanry

    2016-04-01

    Liver surface is covered by a collagenous layer called the Glisson's capsule. The structure of the Glisson's capsule is barely seen in the biopsy samples for histology assessment, thus the changes of the collagen network from the Glisson's capsule during the liver disease progression are not well studied. In this report, we investigated whether non-linear optical imaging of the Glisson's capsule at liver surface would yield sufficient information to allow quantitative staging of liver fibrosis. In contrast to conventional tissue sections whereby tissues are cut perpendicular to the liver surface and interior information from the liver biopsy samples were used, we have established a capsule index based on significant parameters extracted from the second harmonic generation (SHG) microscopy images of capsule collagen from anterior surface of rat livers. Thioacetamide (TAA) induced liver fibrosis animal models was used in this study. The capsule index is capable of differentiating different fibrosis stages, with area under receiver operating characteristics curve (AUC) up to 0.91, making it possible to quantitatively stage liver fibrosis via liver surface imaging potentially with endomicroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multi-institutional Quantitative Evaluation and Clinical Validation of Smart Probabilistic Image Contouring Engine (SPICE) Autosegmentation of Target Structures and Normal Tissues on Computer Tomography Images in the Head and Neck, Thorax, Liver, and Male Pelvis Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Mingyao; Bzdusek, Karl; Brink, Carsten

    2013-11-15

    Purpose: Clinical validation and quantitative evaluation of computed tomography (CT) image autosegmentation using Smart Probabilistic Image Contouring Engine (SPICE). Methods and Materials: CT images of 125 treated patients (32 head and neck [HN], 40 thorax, 23 liver, and 30 prostate) in 7 independent institutions were autosegmented using SPICE and computational times were recorded. The number of structures autocontoured were 25 for the HN, 7 for the thorax, 3 for the liver, and 6 for the male pelvis regions. Using the clinical contours as reference, autocontours of 22 selected structures were quantitatively evaluated using Dice Similarity Coefficient (DSC) and Mean Slice-wisemore » Hausdorff Distance (MSHD). All 40 autocontours were evaluated by a radiation oncologist from the institution that treated the patients. Results: The mean computational times to autosegment all the structures using SPICE were 3.1 to 11.1 minutes per patient. For the HN region, the mean DSC was >0.70 for all evaluated structures, and the MSHD ranged from 3.2 to 10.0 mm. For the thorax region, the mean DSC was 0.95 for the lungs and 0.90 for the heart, and the MSHD ranged from 2.8 to 12.8 mm. For the liver region, the mean DSC was >0.92 for all structures, and the MSHD ranged from 5.2 to 15.9 mm. For the male pelvis region, the mean DSC was >0.76 for all structures, and the MSHD ranged from 4.8 to 10.5 mm. Out of the 40 autocontoured structures reviews by experts, 25 were scored useful as autocontoured or with minor edits for at least 90% of the patients and 33 were scored useful autocontoured or with minor edits for at least 80% of the patients. Conclusions: Compared with manual contouring, autosegmentation using SPICE for the HN, thorax, liver, and male pelvis regions is efficient and shows significant promise for clinical utility.« less

  14. Study on the abuse of amantadine in tissues of broiler chickens by HPLC-MS/MS.

    PubMed

    You, X; Yang, S; Zhao, J; Zhang, Y; Zhao, L; Cheng, Y; Hou, C; Xu, Z

    2017-10-01

    To evaluate the residual target tissues for better monitoring of amantadine abuse in broiler chickens, 22-day-old commercial Arbor Acres broiler chickens were, respectively, fed with 10, 20, and 40 mg/kg of amantadine for five consecutive days. Plasma, breast, and liver tissue samples from the chickens were collected 0, 4, 16, 24, 48, 96, 144, and 312 h after amantadine withdrawal. The high-performance liquid chromatography-tandem mass spectrometry method was used to detect the concentrations of amantadine. The highest concentration was found in the chicken liver and it took the longest time for amantadine to vanish by metabolism. In the high-dose group, amantadine residues were still detected 312 h after amantadine withdrawal. As the amantadine dose increased, amantadine residues in the chicken liver were more slowly to disappear than in other tissues. Even if approximately the same concentration of amantadine residues was found in chicken breast and plasma samples, it took a shorter time before the residues were eliminated. In the medium- and high-dose groups, the concentrations of amantadine residues in chicken liver samples were substantially higher than those in chicken breast and plasma samples, and it took more time to eliminate them. Therefore, the chicken liver can be used as a target tissue to detect illegal use of amantadine. © 2017 John Wiley & Sons Ltd.

  15. Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio.

    PubMed

    Özkan-Yilmaz, Ferbal; Özlüer-Hunt, Arzu; Gündüz, Suna Gül; Berköz, Mehmet; Yalin, Serap

    2014-04-01

    In this study was evaluated potential protective effect of organic selenium (Se) on heavy metal stress induced by lead (Pb) in Cyprinus carpio. For this reason, C. carpio was exposed to sublethal concentration of Pb (1.5 mg/L Pb(NO3)2) for 14 days. The fish were fed a basal (control; measured 0.55 mg/kg Se) diet or a basal diet supplemented with 2.50 mg/kg (measured 2.92 mg/kg Se) organic Se (Sel-Plex(®)) during the experiment period. The variations in glutathione peroxidase (GSH-Px), glutathione S-transferase (GST) activities, and levels of reduced glutathione (GSH) with malondialdehyde (MDA) in liver and brain tissues of C. carpio were investigated in experimental groups. GSH levels in liver and brain tissues were significantly decreased by exposure to Pb. GST activity was significantly increased (p < 0.05) in liver tissue, but decreased in brain of treated fish by exposure to Pb. Also, GSH-Px activity was significantly increased in liver tissue, but decreased in brain of Pb-treated fish. Levels of MDA were increased in liver and brain of Pb-treated fish. The organic Se treatment for Pb-intoxicated animals improved activities of GSH-Px, GST and levels of MDA within normal limits. Supplemented Se could be able to improve Pb-induced oxidative stress by decreasing lipid peroxidation and regulating antioxidant defense system in tissues.

  16. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity

    PubMed Central

    Lavado, Ramon; Bammler, Theo K.; Gallagher, Evan P.; Stapleton, Patricia L.; Beyer, Richard P.; Farin, Federico M.; Hardiman, Gary; Schlenk, Daniel

    2015-01-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  17. Liver fat quantification using fast kVp-switching dual energy CT

    NASA Astrophysics Data System (ADS)

    Kriston, Andras; Mendonça, Paulo; Silva, Alvin; Paden, Robert G.; Pavlicek, William; Sahani, Dushyant; Janos Kis, Benedek; Rusko, Laszlo; Okerlund, Darin; Bhotika, Rahul

    2011-03-01

    Nonalcoholic steatohepatitis (NASH) is a liver disease that occurs in patients that lack a history of the well-proven association of alcohol use. A major symptom of NASH is increased fat deposition in the liver. Gemstone Spectral Imaging (GSI) with fast kVp-switching enables projection-based material decomposition, offering the opportunity to accurately characterize tissue types, e.g., fat and healthy liver tissue, based on their energy-sensitive material attenuation and density. We describe our pilot efforts to apply GSI to locate and quantify the amount of fat deposition in the liver. Two approaches are presented, one that computes percentage fat from the difference in HU values at high and low energies and the second based on directly computing fat volume fraction at each voxel using multi-material decomposition. Simulation software was used to create a phantom with a set of concentric rings, each composed of fat and soft tissue in different relative amounts with attenuation values obtained from the National Institute of Standards and Technology. Monte Carlo 80 and 140 kVp X-ray projections were acquired and CT images of the phantom were reconstructed. Results demonstrated the sensitivity of dual energy CT to the presence of fat and its ability to distinguish fat from soft tissue. Additionally, actual patient (liver) datasets were acquired using GSI and monochromatic images at 70 and 140 keV were reconstructed. Preliminary results demonstrate a tissue sensitivity that appears sufficient to quantify fat content with a degree of accuracy as may be needed for non-invasive clinical assessment of NASH.

  18. In vivo tumor identification of colorectal liver metastases with diffuse reflectance and fluorescence spectroscopy.

    PubMed

    Tanis, Erik; Evers, Danny J; Spliethoff, Jarich W; Pully, Vishnu V; Kuhlmann, Koert; van Coevorden, Frits; Hendriks, Benno H W; Sanders, Joyce; Prevoo, Warner; Ruers, Theo J M

    2016-11-01

    Over the last decade, an increasing effort has been put towards the implementation of optical guidance techniques to aid surgeons during cancer surgery. Diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy (FS) are two of these new techniques. The objective of this study is to investigate whether in vivo optical spectroscopy is able to accurately discriminate colorectal liver metastases (CRLM) from normal liver tissue in vivo. DRS and FS were incorporated at the tip of a needle and were used for in vivo tissue differentiation during resection of CRLM. Measurements were taken in and around the tumor lesions and measurement sites were marked and correlated to histology (i.e., normal liver tissue or tumor tissue). Patients with and without neoadjuvant systemic chemotherapy were included into the study. Four hundred and eighty-four measurements were taken in and near 19 liver lesions prior to resection. Overall sensitivity and specificity for DRS was 95% and 92%, respectively. Bile was the most discriminative parameter. The addition of FS did not improve the overall accuracy. Sensitivity and specificity was not hampered by neo-adjuvant chemotherapy; sensitivity and specificity after neo-adjuvant chemotherapy were 92% and 100%, respectively. We have successfully integrated spectroscopy technology into a disposable 15 Gauge optical needle and we have shown that DRS and FS can accurately discriminate CRLM from normal liver tissue in the in vivo setting regardless of whether the patient was pre-treated with systemic therapy. This technique makes in vivo guidance accessible for common surgical practice. Lasers Surg. Med. 48:820-827, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Apocynin prevented inflammation and oxidative stress in carbon tetra chloride induced hepatic dysfunction in rats.

    PubMed

    Rahman, Md Mizanur; Muse, Awale Yousuf; Khan, D M Isha Olive; Ahmed, Ismaile Hussein; Subhan, Nusrat; Reza, Hasan Mahmud; Alam, Md Ashraful; Nahar, Lutfun; Sarker, Satyajit Dey

    2017-08-01

    Liver fibrosis is a leading pathway to cirrhosis and a global clinical issue. Oxidative stress mediated tissue damage is one of the prime causes of hepatic dysfunction and fibrosis. Apocynin is one of many strong antioxidants. To evaluate the effect of apocynin in the CCl 4 administered hepatic dysfunction in rats. Female Long Evans rats were administered with CCl 4 orally (1mL/kg) twice a week for 2 weeks and were treated with apocynin (100mg/kg). Both plasma and liver tissues were analyzed for alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase activities. Oxidative stress parameters were also measured by determining malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), advanced protein oxidation product (APOP). In addition, antioxidant enzyme activities such as superoxide dismutase (SOD) and catalase activities in plasma and liver tissues were analyzed. Moreover, inflammation and tissue fibrosis were confirmed by histological staining of liver tissue sections. Apocynin significantly reduced serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. It also exhibited a considerable reduction of the oxidative stress markers (MDA, MPO, NO, and APOP level) which was elevated due to CCl 4 administration in rats. Apocynin treatment also restored the catalase and superoxide dismutase activity in CCl 4 treated rats. Histological analysis of liver sections revealed that apocynin prevented inflammatory cells infiltration and fibrosis in CCl 4 administered rats. These results suggest that apocynin protects liver damage induced by CCl 4 by inhibiting lipid peroxidation and stimulating the cellular antioxidant system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    PubMed

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  1. Intestinal parasite Acanthocephalus lucii (Acanthocephala) from European perch (Perca fluviatilis) as a bioindicator for lead pollution in the stream "Jevanský potok" near Prague, Czech Republic.

    PubMed

    Jankovská, Ivana; Miholová, Daniela; Petrtýl, Miloslav; Romočuský, Stěpán; Kalous, Lukáš; Vadlejch, Jaroslav; Cadková, Zuzana; Langrová, Iva

    2011-03-01

    Lead concentrations in the tissues of perch and its parasites were determined as mg/kg dw. Lead was found at higher concentrations in the acanthocephalans (11.56) than in different tissues (liver, gonads and muscle with skin and bone) of perch. With respect to fish tissues, the highest concentrations of lead were present in the liver (1.24), followed by the gonads (0.57) whereas the lowest concentrations were in the muscle with skin and bone (0.21). The bioconcentration factors for lead indicated that parasites accumulate metals to a higher degree than fish tissues--lead concentrations in acanthocephalans were 9.32, 19.27 and 55.05 higher than in liver, gonads and muscles of host, respectively.

  2. Interventional Vitamin C A Strategy for Attenuation of Coagulopathy and Inflammation in Hemorrhagic Trauma and Shock

    DTIC Science & Technology

    2016-10-01

    evident in liver and kidney sections. Treatment with VitC (200mg/kg) was associated with a lower degree of histological tissue injury and a...significantly reduced ALI score. Treatment with VitC also reduced the expression of pro-inflammatory mediators in lungs, liver and kidneys . In addition, VitC...Euthasol IV  Tissue samples (lung, liver and kidney ) obtained for histology and molecular characterization Definitive trial conducted: Eight (8

  3. Grape Leucoanthocyanidin Protects Liver Tissue in Albino Rabbits with Nonalcoholic Hepatic Steatosis.

    PubMed

    Franklin, Reginaldo; Bispo, Rodrigo Freitas Monte; Sousa-Rodrigues, Célio Fernando; Pires, Lucas Alves Sarmento; Fonseca, Albino; Babinski, Marcio Antonio

    2018-06-18

    Nonalcoholic fatty liver disease (NAFLD) is a common ailment. It is usually found in association with diabetes or obesity. There are no approved drugs to treat this condition. The study of flavonoid consumption has increased over the decades due to their antioxidative properties, although the literature is scarce when it comes to their effects in liver tissue. The purpose of this study was to evaluate the role of leucoanthocyanidin in nonalcoholic hepatic steatosis. Thirty male albino rabbits were divided in 3 groups. Group 1 had a regular commercial diet. The second group had a regular diet and 10 mL of egg yolk and 1.5 g of pure cholesterol. The rabbits of the third group were on the same regimen as the second, but were also treated with grape leucoanthocyanidin (50 mg/kg/day) for 100 days. On the last day of the experiment, the animals were euthanized, and the livers excised and fixated in a 10% formalin solution. Afterwards, fragments of each liver were removed and histologically processed and analyzed. The stereological evaluation showed that leucoanthocyanidin reduced NAFLD in comparison with the nontreated group. This was also observed in the histological analysis of the liver tissue, as the treated group had less foci of fatty tissue. Leucoanthocyanidin may therefore be a promising substance to treat NAFLD, although further studies are needed. © 2018 S. Karger AG, Basel.

  4. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears.

    PubMed

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Born, Erik W

    2012-11-06

    Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.

  5. Systemic effect of mineral aggregate-based cements: histopathological analysis in rats.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Huck, Claudia; Magalhães, Fernando Augusto Cintra; Souza, Pedro Paulo Chaves de; Souza Costa, Carlos Alberto de

    2017-01-01

    Several studies reported the local tissue reaction caused by mineral aggregate-based cements. However, few studies have investigated the systemic effects promoted by these cements on liver and kidney when directly applied to connective tissue. The purpose of this in vivo study was to investigate the systemic effect of mineral aggregate-based cements on the livers and kidneys of rats. Samples of Mineral Trioxide Aggregate (MTA) and a calcium aluminate-based cement (EndoBinder) containing different radiopacifiers were implanted into the dorsum of 40 rats. After 7 and 30 d, samples of subcutaneous, liver and kidney tissues were submitted to histopathological analysis. A score (0-3) was used to grade the inflammatory reaction. Blood samples were collected to evaluate changes in hepatic and renal functions of animals. The moderate inflammatory reaction (2) observed for 7 d in the subcutaneous tissue decreased with time for all cements. The thickness of inflammatory capsules also presented a significant decrease with time (P<.05). Systemically, all cements caused adverse inflammatory reactions in the liver and kidney, being more evident for MTA, persisting until the end of the analysis. Liver functions increased significantly for MTA during 30 d (P<.05). The different cements induced to a locally limited inflammatory reaction. However, from the systemic point of view, the cements promoted significant inflammatory reactions in the liver and kidney. For MTA, the reactions were more accentuated.

  6. Enhancement of Lipid Metabolism and Hepatic Stability in Fat-Induced Obese Mice by Fermented Cucurbita moschata Extract

    PubMed Central

    Lee, Seung-Jin; Park, Na-Hye; Birhanu, Biruk Tesfaye; Mechesso, Abraham Fikru; Park, Ji-Yong; Park, Eun-Jin; Youn, Sun-Joo

    2018-01-01

    The aim of this study was to evaluate the potentials of fermented Cucurbita moschata extract (FCME) in the treatment of obesity and nonalcoholic fatty liver disease (NAFLD). Five-week-old male C57BL/6 mice were assigned to 6 groups and treated for 8 weeks by feeding the normal diet (ND) and high fat diet (HFD) with and without FCME. Changes in body weight gain and consumption of feed and water were recorded. Major organs, adipose tissues, and blood samples were collected after the experimental period. The serum lipid profile, histological features of liver and adipose tissues, and mRNA expression of different adipogenic/lipogenic genes from liver tissue were evaluated. The supplementation of FCME in HFD significantly prevented HFD-induced increment of bodyweight. The adipose tissue mass, liver enzymes, and plasma lipids were also reduced significantly (p < 0.05) by the consumption of FCME. The mRNA expressions of adipogenic/lipogenic genes (PPARγ, C/EBPα, C/EBPβ, C/EBPγ, and SREBP-1C) in FCME-treated obese mice were considerably (p < 0.05) suppressed. FCME showed its antiobesity potential by suppressing the body weight gain and by modulating the plasma lipids and liver enzymes through the regulation of adipogenic/lipogenic transcriptional factors. Fermented Cucurbita moschata could be an opportunistic agent in controlling obesity and fatty liver changes. PMID:29725353

  7. Fimasartan Ameliorates Nonalcoholic Fatty Liver Disease through PPARδ Regulation in Hyperlipidemic and Hypertensive Conditions

    PubMed Central

    Jang, Yoo-Na; Han, Yoon-Mi; Kim, Hyun-Min; Jeong, Jong-Min

    2017-01-01

    To investigate the effects of fimasartan on nonalcoholic fatty liver disease in hyperlipidemic and hypertensive conditions, the levels of biomarkers related to fatty acid metabolism were determined in HepG2 and differentiated 3T3-L1 cells treated by high fatty acid and liver and visceral fat tissue samples of spontaneously hypertensive rats (SHRs) given high-fat diet. In HepG2 cells and liver tissues, fimasartan was shown to increase the protein levels of peroxisome proliferator-activated receptor delta (PPARδ), phosphorylated 5′ adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase (p-ACC), malonyl-CoA decarboxylase (MCD), medium chain acyl-CoA dehydrogenase (MCAD), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and it led to a decrease in the protein levels of 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSDH1), fatty acid synthase (FAS), and tumor necrosis factor-alpha (TNF-α). Fimasartan decreased lipid contents in HepG2 and differentiated 3T3-L1 cells and liver tissues. In addition, fimasartan increased the adiponectin level in visceral fat tissues. The antiadipogenic effects of fimasartan were offset by PPARδ antagonist (GSK0660). Consequently, fimasartan ameliorates nonalcoholic fatty liver disease mainly through the activation of oxidative metabolism represented by PPARδ-AMPK-PGC-1α pathway. PMID:28386270

  8. MR-guided noninvasive thermal coagulation of in-vivo liver tissue using ultrasonic phased array

    NASA Astrophysics Data System (ADS)

    Daum, Douglas R.; Smith, Nadine; McDannold, Nathan; Hynynen, Kullervo H.

    1999-05-01

    Magnetic resonance (MR) imaging was used to guide and monitor the thermal tissue coagulation of in vivo porcine tissue using a 256 element ultrasonic phased array. The array could coagulate tissue volumes greater than 2 cm3 in liver and 0.5 cm3 in kidney using a single 20 second sonication. This sonication used multiple focus fields which were temporally cycled to heat large tissue volumes simultaneously. Estimates of the coagulated tissue using a thermal dose threshold compare well with T2-weighted images of post sonication lesions. The overlapping large focal volumes could aid in the treatment of large tumor volumes which require multiple overlapping sonications. The ability of MR to detect the presence and undesirable thermal increases at acoustic obstacle such as cartilaginous and bony ribs is demonstrated. This could have a significant impact on the ability to monitor thermal treatments of the liver and other organs which are acoustically blocked.

  9. Simultaneous determination of aditoprim and its three major metabolites in pigs, broilers and carp tissues, and its application in tissue distribution and depletion studies.

    PubMed

    Wang, Liye; Huang, Lingli; Pan, Yuanhu; Wu, Qinghua; Xie, Shuyu; Yuan, Zonghui

    2016-08-01

    Aditoprim (ADP) is a recently developed dihydrofolate reductase inhibitor that has shown promise for therapeutic use in veterinary medicine because of its excellent pharmacokinetic properties. In this study, a sensitive and reliable multi-residue chromatography-ultraviolet (HPLC-UV) method for the quantitative analysis of ADP and its three major metabolites was developed, and the tissue distribution and depletion profiles of ADP and its major metabolites in pigs, broilers and carp were investigated. Edible and additional tissues (heart, lung, stomach, intestine and swim bladder) were collected for analysis at six different withdrawal periods after ADP administration for 7 days. ADP, N-monomethyl-ADP and N-didesmethyl-ADP were detected in almost all tissues in the three species. The liver, kidney and lung showed higher residue concentrations, and the liver showed a longer residue half-life (t1/2) than other tissues. In the liver, ADP was the most abundant component with the longest persistence. The results suggest that the liver was the residual target tissue and ADP was the marker residue, and the conclusive withdrawal time (WDT) of 20 days in pigs, 16 days in broilers and 25 days in carp was estimated using the assessment methodologies approved by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).

  10. In vivo characterization of colorectal metastases in human liver using diffuse reflectance spectroscopy: toward guidance in oncological procedures

    NASA Astrophysics Data System (ADS)

    Spliethoff, Jarich W.; de Boer, Lisanne L.; Meier, Mark A. J.; Prevoo, Warner; de Jong, Jeroen; Kuhlmann, Koert; Bydlon, Torre M.; Sterenborg, Henricus J. C. M.; Hendriks, Benno H. W.; Ruers, Theo J. M.

    2016-09-01

    There is a strong need to develop clinical instruments that can perform rapid tissue assessment at the tip of smart clinical instruments for a variety of oncological applications. This study presents the first in vivo real-time tissue characterization during 24 liver biopsy procedures using diffuse reflectance (DR) spectroscopy at the tip of a core biopsy needle with integrated optical fibers. DR measurements were performed along each needle path, followed by biopsy of the target lesion using the same needle. Interventional imaging was coregistered with the DR spectra. Pathology results were compared with the DR spectroscopy data at the final measurement position. Bile was the primary discriminator between normal liver tissue and tumor tissue. Relative differences in bile content matched with the tissue diagnosis based on histopathological analysis in all 24 clinical cases. Continuous DR measurements during needle insertion in three patients showed that the method can also be applied for biopsy guidance or tumor recognition during surgery. This study provides an important validation step for DR spectroscopy-based tissue characterization in the liver. Given the feasibility of the outlined approach, it is also conceivable to make integrated fiber-optic tools for other clinical procedures that rely on accurate instrument positioning.

  11. Influence of Tissue Microstructure on Shear Wave Speed Measurements in Plane Shear Wave Elastography: A Computational Study in Lossless Fibrotic Liver Media.

    PubMed

    Wang, Yu; Jiang, Jingfeng

    2018-01-01

    Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.

  12. Deletion of Smad4 attenuates the hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis progression.

    PubMed

    Qin, Geng; Wang, Guo Zhen; Guo, Dan Dan; Bai, Ru-Xue; Wang, Miao; Du, Shi Yu

    2018-04-25

    To explore the effects of Smad4 deletion on inflammation and fibrogenesis during nonalcoholic steatohepatitis (NASH) progression. We collected 56 liver tissues from NASH patients (NASH group) and 60 normal liver tissues from patients received liver resection for trauma (control group). Smad4 Co/Co mice and wild-type (WT) mice were used to construct NASH model by high-fat diet (HFD) or methionine- and choline-deficient (MCD) diet. Hematoxylin and eosin (HE) staining and Tunnel assay were performed to observe pathological changes and apoptosis of liver tissues, respectively, quantitative real-time polymerase chain reaction (qRT-PCR) to detect expressions of inflammatory, fibrogenesis and apoptosis-related genes, and immunohistochemistry to determine proteins expressions of Smad4, MCP-1 and α-SMA. Smad4 protein expression was significantly increased in NASH patients as compared with Control group. Besides, in terms of HFD- and MCD- fed mice, those in Smad4 Co/Co group showed reduction of hepatic steatosis, inflammatory, liver apoptosis and NAS scores, and presented a decrease in glucose, TG, FFAs, AST and ALT, a great up-regulation in adiponectin. Besides, as compared with the WT mice fed with HFD and MCD, Smad4 Co/Co decreased the expressions of inflammatory markers (TNF-α, MCP-1, IFN-γ), fibrogenesis markers (COL1A1, α-SMA and TGF-β1), lipogenic genes (SREBP1c, FAS and ACC) and proapoptotic genes (Bax and caspase 3) in liver tissues, but increased the expressions of β-oxidation genes (PPARα, CPT1 and ACO) and antiapoptotic gene Bcl-2. Smad4 deletion may inhibit lipogenesis, stimulateβ-oxidation, ameliorate lipid metabolism and liver function, alleviate inflammation, fibrosis, and reduce liver apoptosis during NASH. This article is protected by copyright. All rights reserved.

  13. Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation.

    PubMed

    Bhogal, Ricky Harminder; Curbishley, Stuart M; Weston, Christopher J; Adams, David H; Afford, Simon C

    2010-11-01

    Increasing evidence shows that reactive oxygen species (ROS) may be critical mediators of liver damage during the relative hypoxia of ischemia/reperfusion injury (IRI) associated with transplant surgery or of the tissue microenvironment created as a result of chronic hepatic inflammation or infection. Much work has been focused on Kupffer cells or liver resident macrophages with respect to the generation of ROS during IRI. However, little is known about the contribution of endogenous hepatocyte ROS production or its potential impact on the parenchymal cell death associated with IRI and chronic hepatic inflammation. For the first time, we show that human hepatocytes isolated from nondiseased liver tissue and human hepatocytes isolated from diseased liver tissue exhibit marked differences in ROS production in response to hypoxia/reoxygenation (H-R). Furthermore, several different antioxidants are able to abrogate hepatocyte ROS-induced cell death during hypoxia and H-R. These data provide clear evidence that endogenous ROS production by mitochondria and nicotinamide adenine dinucleotide phosphate oxidase drives human hepatocyte apoptosis and necrosis during hypoxia and H-R and may therefore play an important role in any hepatic diseases characterized by a relatively hypoxic liver microenvironment. In conclusion, these data strongly suggest that hepatocytes and hepatocyte-derived ROS are active participants driving hepatic inflammation. These novel findings highlight important functional/metabolic differences between hepatocytes isolated from normal donor livers, hepatocytes isolated from normal resected tissue obtained during surgery for malignant neoplasms, and hepatocytes isolated from livers with end-stage disease. Furthermore, the targeting of hepatocyte ROS generation with antioxidants may offer therapeutic potential for the adjunctive treatment of IRI and chronic inflammatory liver diseases. © 2010 AASLD.

  14. Hyperplasia vs hypertrophy in tissue regeneration after extensive liver resection.

    PubMed

    Marongiu, Fabio; Marongiu, Michela; Contini, Antonella; Serra, Monica; Cadoni, Erika; Murgia, Riccardo; Laconi, Ezio

    2017-03-14

    To address to what extent hypertrophy and hyperplasia contribute to liver mass restoration after major tissue loss. The ability of the liver to regenerate is remarkable on both clinical and biological grounds. Basic mechanisms underlying this process have been intensively investigated. However, it is still debated to what extent hypertrophy and hyperplasia contribute to liver mass restoration after major tissue loss. We addressed this issue using a genetically tagged system. We were able to follow the fate of single transplanted hepatocytes during the regenerative response elicited by 2/3 partial surgical hepatectomy (PH) in rats. Clusters of transplanted cells were 3D reconstructed and their size distribution was evaluated over time after PH. Liver size and liver DNA content were largely recovered 10 d post-PH, as expected ( e.g ., total DNA/liver/100 g b.w. was 6.37 ± 0.21 before PH and returned to 6.10 ± 0.36 10 d after PH). Data indicated that about 2/3 of the original residual hepatocytes entered S-phase in response to PH. Analysis of cluster size distribution at 24, 48, 96 h and 10 d after PH revealed that about half of the remnant hepatocytes completed at least 2 cell cycles. Average size of hepatocytes increased at 24 h (248.50 μm 2 ± 7.82 μm 2 , P = 0.0015), but returned to control values throughout the regenerative process (up to 10 d post-PH, 197.9 μm 2 ± 6.44 μm 2 , P = 0.11). A sizeable fraction of the remnant hepatocyte population does not participate actively in tissue mass restoration. Hyperplasia stands as the major mechanism contributing to liver mass restoration after PH, with hypertrophy playing a transient role in the process.

  15. Effects of octenidine HCl on liver tissue: could it be an alternative scolicidal for Hidatid disease?

    PubMed

    Arikan, Yüksel; Akbulut, Gökhan; Sahin, Dursun Ali; Dilek, Fatma Hüsniye; Saykol, Volkan; Dilek, Osman Nuri

    2007-06-01

    Octenidine HCl is new topical antiseptic solution for wounds and abdominal washing that has been found to be highly effective for inactivating scolices in an in vitro study. However, the effects of octenidine HCl on the liver are not yet known. The aim of this study was to determine if there are any histopathologic changes after injecting octenidine HCl into the liver. A group of 50 male Sprague-Dawley rats were included in the study and randomly divided into five groups of 10 rats each, as follows: sham group; 0.09% NaCl group; 20% NaCl group; undiluted octenidine HCl group; 1% octenidine HCl group. The scolicidal agents (0.3 ml) were directly injected into the left lobe of the liver (except in the sham group). At 3 and 7 days after the injection, the rats were sacrificed, and the left lobe of the liver was harvested. Liver tissue was scored for degree of necrosis and the diameter of the necrosis examined under light microscopy. The highest scores were found in the undiluted octenidine HCl group, although a similar effect was observed in the 20% NaCl group. There was no necrosis in the sham group, the 0.09% NaCl group, or the 1% octenidine HCl group. All of the injury was coagulation-type necrosis. No mortality was observed throughout the study. The 1% octenidine HCl solution could thus be used as a scolicidal agent in liver tissue, whereas the undiluted form of octenidine and 20% NaCl solutions were shown to cause necrosis when directly injected into liver tissue in our animal model.

  16. Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH).

    PubMed

    Jha, Pooja; Knopf, Astrid; Koefeler, Harald; Mueller, Michaela; Lackner, Carolin; Hoefler, Gerald; Claudel, Thierry; Trauner, Michael

    2014-07-01

    Methionine-choline-deficient (MCD) diet is a widely used dietary model of non-alcoholic steatohepatitis (NASH) in rodents. However, the contribution of adipose tissue to MCD-induced steatosis, and inflammation as features of NASH are not fully understood. The goal of this study was to elucidate the role of adipose tissue fatty acid (FA) metabolism, adipogenesis, lipolysis, inflammation and subsequent changes in FA profiles in serum and liver in the pathogenesis of steatohepatitis. We therefore fed ob/ob mice with control or MCD diet for 5 weeks. MCD-feeding increased adipose triglyceride lipase and hormone sensitive lipase activities in all adipose depots which may be attributed to increased systemic FGF21 levels. The highest lipase enzyme activity was exhibited by visceral WAT. Non-esterified fatty acid (NEFA)-18:2n6 was the predominantly elevated FA species in serum and liver of MCD-fed ob/ob mice, while overall serum total fatty acid (TFA) composition was reduced. In contrast, an overall increase of all FA species from TFA pool was found in liver, reflecting the combined effects of increased FA flux to liver, decreased FA oxidation and decrease in lipase activity in liver. NAFLD activity score was increased in liver, while WAT showed no changes and BAT showed even reduced inflammation. This study demonstrates a key role for adipose tissue lipases in the pathogenesis of NASH and provides a comprehensive lipidomic profiling of NEFA and TFA homeostasis in serum and liver. Our findings provide novel mechanistic insights for the role of WAT in progression of MCD-induced liver injury. Copyright © 2014. Published by Elsevier B.V.

  17. Bimodal electric tissue ablation (BETA): a study on ablation size when the anode is placed on the peritoneum and the liver.

    PubMed

    Tiong, Leong U; Finnie, John W; Field, John B; Maddern, Guy J

    2012-07-01

    In bimodal electric tissue ablation (BETA), the cathode of the DC circuit is attached to the radiofrequency (RF) electrode to increase the surrounding tissue hydration. This will delay tissue desiccation and allowing the ablation process to continue for a longer period of time before "roll-off" occurs, resulting in larger ablations compared with standard radiofrequency ablation (RFA). Previous research showed that attaching the anode to the skin using electrosurgical grounding pads would reduce the efficacy of BETA because of the high electrical resistivity of the skin. This study investigated the ablation size produced when the anode was attached to the peritoneum (BETA-peritoneum) and the liver (BETA-liver) respectively. The anode of the DC circuit in BETA was attached to the peritoneum and the liver in a pig model using ECG dots. In BETA, 9 V of DC was provided for 10 min, after which the radiofrequency generator were switched on and both electrical circuits allowed to run concurrently until "roll-off." The size of ablations produced was compared to when the anode attached to the skin (BETA-skin) and standard RFA, respectively. The sites of anode placement were examined for local tissue injury. The transverse diameters in BETA-peritoneum and BETA-liver were significantly larger compared with BETA-skin and standard RFA, respectively (P < 0.001). The axial diameter in the BETA-peritoneum and BETA-liver groups were also larger compared with the BETA-skin and RFA groups, although the differences did not reach statistical significance (P = 0.09). Hematoxylin and eosin (H and E) examination of the peritoneum and the liver where the anode was attached showed coagulation necrosis involving the superficial epithelium and the liver capsule, respectively. BETA can be used to treat larger liver tumors more effectively and may reduce the tumor recurrence rates compared with standard RFA. The efficacy of BETA depends on ensuring good electrical conductivity between the cathode and the anode of the DC circuit. Research so far has shown that BETA works best when the anode is placed deep to the skin as the stratum corneum consisted of a layer of a-nucleated cells, which have high electrical resistivity. The liver could be the ideal location to place the anode as it has excellent electrical conductivity, therefore ensuring maximum tissue hydration around the cathode to produce the largest ablations possible. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A morphological method for ammonia detection in liver

    PubMed Central

    Gutiérrez-de-Juan, Virginia; López de Davalillo, Sergio; Fernández-Ramos, David; Barbier-Torres, Lucía; Zubiete-Franco, Imanol; Fernández-Tussy, Pablo; Simon, Jorge; Lopitz-Otsoa, Fernando; de las Heras, Javier; Iruzubieta, Paula; Arias-Loste, María Teresa; Villa, Erica; Crespo, Javier; Andrade, Raúl; Lucena, M. Isabel; Varela-Rey, Marta; Lu, Shelly C.; Mato, José M.; Delgado, Teresa Cardoso

    2017-01-01

    Hyperammonemia is a metabolic condition characterized by elevated levels of ammonia and a common event in acute liver injury/failure and chronic liver disease. Even though hepatic ammonia levels are potential predictive factors of patient outcome, easy and inexpensive methods aiming at the detection of liver ammonia accumulation in the clinical setting remain unavailable. Thus, herein we have developed a morphological method, based on the utilization of Nessler´s reagent, to accurately and precisely detect the accumulation of ammonia in biological tissue. We have validated our method against a commercially available kit in mouse tissue samples and, by using this modified method, we have confirmed the hepatic accumulation of ammonia in clinical and animal models of acute and chronic advanced liver injury as well as in the progression of fatty liver disease. Overall, we propose a morphological method for ammonia detection in liver that correlates well with the degree of liver disease severity and therefore can be potentially used to predict patient outcome. PMID:28319158

  19. A morphological method for ammonia detection in liver.

    PubMed

    Gutiérrez-de-Juan, Virginia; López de Davalillo, Sergio; Fernández-Ramos, David; Barbier-Torres, Lucía; Zubiete-Franco, Imanol; Fernández-Tussy, Pablo; Simon, Jorge; Lopitz-Otsoa, Fernando; de Las Heras, Javier; Iruzubieta, Paula; Arias-Loste, María Teresa; Villa, Erica; Crespo, Javier; Andrade, Raúl; Lucena, M Isabel; Varela-Rey, Marta; Lu, Shelly C; Mato, José M; Delgado, Teresa Cardoso; Martínez-Chantar, María-Luz

    2017-01-01

    Hyperammonemia is a metabolic condition characterized by elevated levels of ammonia and a common event in acute liver injury/failure and chronic liver disease. Even though hepatic ammonia levels are potential predictive factors of patient outcome, easy and inexpensive methods aiming at the detection of liver ammonia accumulation in the clinical setting remain unavailable. Thus, herein we have developed a morphological method, based on the utilization of Nessler´s reagent, to accurately and precisely detect the accumulation of ammonia in biological tissue. We have validated our method against a commercially available kit in mouse tissue samples and, by using this modified method, we have confirmed the hepatic accumulation of ammonia in clinical and animal models of acute and chronic advanced liver injury as well as in the progression of fatty liver disease. Overall, we propose a morphological method for ammonia detection in liver that correlates well with the degree of liver disease severity and therefore can be potentially used to predict patient outcome.

  20. Multimodal nonlinear optical imaging of obesity-induced liver steatosis and fibrosis

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Yu, Hanry; Sheppard, Colin; Huang, Zhiwei

    2011-03-01

    Liver steatosis/fibrosis represents the major conditions and symptoms for many liver diseases. Nonlinear optical microscopy has emerged as a powerful tool for label-free tissue imaging with high sensitivity and chemical specificity for several typical biochemical compounds. Three nonlinear microscopy imaging modalities are implemented on the sectioned tissues from diseased livers induced by high fat diet (HFD). Coherent anti-Stokes Raman scattering (CARS) imaging visualizes and quantifies the lipid droplets accumulated in the liver, Second harmonic generation (SHG) is used to map the distribution of aggregated collagen fibers, and two-photon excitation fluorescence (TPEF) reveals the morphology of hepatic cells based on the autofluorescence signals from NADH and flavins within the hepatocytes. Our results demonstrate that obesity induces liver steatosis in the beginning stage, which may progress into liver fibrosis with high risk. There is a certain correlation between liver steatosis and fibrosis. This study may provide new insights into the understanding of the mechanisms of steatosis/fibrosis transformations at the cellular and molecular levels.

  1. Evaluation of laser radiation regimes at thermal tissue destruction

    NASA Astrophysics Data System (ADS)

    Ivanov, Anatoly; Kazaryan, Mishik A.; Molodykh, E. I.; Shchetinkina, T. A.

    1996-01-01

    The existing methods of laser destruction of biotissues, widely spread in surgery and coagulation action, are based on local heat emission in the tissues after light absorption. Here we present the results of the simulation of tissues heat destruction, taking into account the influence of blood and lymph circulation on the processes of heat transfer. The problem is adapted to the case of liver tissue with tumor. A liver is considered as a capillary-porous body with internal blood circulation. Heatconductivity and tissue-blood heat transfer are considered. Heat action is assumed to be implemented with contact laser scalpel. The mathematical model consists of two inhomogeneous nonlinear equations of heatconductivity with spherical symmetry. Nonstationary temperature fields of tissue and blood are determined and the main parameters are: (1) coefficients of heatconductivity and capacitance of blood and tissue, (2) blood and tissue density, (3) total metabolic energy, (4) volume coefficient accounting for heat-exchange between tissue and blood, and (5) blood circulation velocity. The power of laser radiation was taken into account in boundary conditions set for the center of coagulated tissue volume. We also took into account the process connected with changing of substance phase (vaporization). The original computer programs allow one to solve the problem varying in a wide range of the main parameters. Reasonable agreement was found between the calculation results and the experimental data for operations on microsamples and on test animals. It was demonstrated, in particular, that liver tissue coagulation regime is achieved at 10 W laser power during 25 s. The coagulation radius of 0.7 cm with the given tumor radius of 0.5 cm corresponds to the real clinical situation in case of metastasis liver affection.

  2. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues.

    PubMed

    Faust, Derek R; Hooper, Michael J; Cobb, George P; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N

    2014-09-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles. © 2014 SETAC.

  3. THE EFFECTS OF IONIZING RADIATIONS ON THE BIOCHEMISTRY OF MAMMALIAN TISSUES.

    DTIC Science & Technology

    Contents: The effects of Ionizing Radiations on the Biochemistry of Mammalian Tissues: (1) Studies on the Effect of X-irradiation on Coenzyme A ... Levels of the Livers of Mice; (2) Influence of X-irradiation on the Development of a Detoxification System for Phosphorothioates in the Livers of Rats

  4. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....5 part per million in uncooked muscle tissue. (2) 2 parts per million in uncooked edible by-products... liver and kidney. (2) 0.5 part per million in uncooked muscle tissue and by-products other than liver... RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD Specific Tolerances for Residues of...

  5. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de; Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103

    Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention inmore » the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The hepatocyte differentiation of porcine adipose tissue-derived MSC was shown for the first time yielding hepatocyte-like cells with specific functions similar in bone marrow and subcutaneous adipose tissue-derived MSC. That makes them good pre-clinical candidates for supportive approaches after liver resection in the pig. - Highlights: • First time to show hepatocytic differentiation of porcine adipose tissue-derived MSC. • Hepatocytic-differentiated MSC display metabolic qualities of primary hepatocytes. • Metabolic potency varies between differentiated MSC from different tissues. • MSC are good candidates for pre-clinical evaluation of stem cell-based therapies.« less

  6. Protective effect of Malva sylvestris L. extract in ischemia-reperfusion induced acute kidney and remote liver injury

    PubMed Central

    Najafi, Houshang; Mohamadi Yarijani, Zeynab; Changizi-Ashtiyani, Saeed; Mansouri, Kamran; Modarresi, Masoud; Madani, Seyed Hamid

    2017-01-01

    Mallow (Malva sylvestris L.) has had medicinal and therapeutic uses in addition to its oral consumption. The present study was conducted to examine the protective effect of Malva sylvestris L. extract on ischemia-reperfusion-induced kidney injury and remote organ injuries in the liver. Before ischemia-reperfusion, rats in the different groups received intraperitoneal normal saline or mallow extract at the doses of 200, 400 or 600 mg/kg of body weight. After 30-minutes of bilateral renal ischemia followed by 24-hours of reperfusion, tissue damage in the kidney and liver samples were determined through studying H&E-stained slides under a light microscope. The degree of leukocyte infiltration and tissue mRNA expressions of TNF- and ICAM-1 were then measured to examine the degree of renal inflammation. The renal tissue MDA and FRAP levels were measured for determining the amount of oxidative stress. Plasma concentrations of creatinine, urea, ALT and ALP were also measured. Ischemia-reperfusion led to a significant increase in plasma concentrations of creatinine, urea, ALT and ALP, and renal tissue MDA, and a significant decrease in renal tissue FRAP. The expression of pro-inflammatory factors in the kidney tissue, the level of leukocyte infiltration and the amount of tissue damage in the kidney and liver also increased. Pretreatment by mallow extract led to a significant improvement in all the variables measured. The 200- and 400-mg doses yielded better results in most parameters compared to the 600-mg dose. The findings showed that mallow extract protects the kidney against ischemia-reperfusion and reduces remote organ injury in the liver. PMID:29155898

  7. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model.

    PubMed

    Amabile, Claudio; Farina, Laura; Lopresto, Vanni; Pinto, Rosanna; Cassarino, Simone; Tosoratti, Nevio; Goldberg, S Nahum; Cavagnaro, Marta

    2017-02-01

    The aim of this study was to develop a predictive model of the shrinkage of liver tissues in microwave ablation. Thirty-seven cuboid specimens of ex vivo bovine liver of size ranging from 2 cm to 8 cm were heated exploiting different techniques: 1) using a microwave oven (2.45 GHz) operated at 420 W, 500 W and 700 W for 8 to 20 min, achieving complete carbonisation of the specimens, 2) using a radiofrequency ablation apparatus (450 kHz) operated at 70 W for a time ranging from 6 to 7.5 min obtaining white coagulation of the specimens, and 3) using a microwave (2.45 GHz) ablation apparatus operated at 60 W for 10 min. Measurements of specimen dimensions, carbonised and coagulated regions were performed using a ruler with an accuracy of 1 mm. Based on the results of the first two experiments a predictive model for the contraction of liver tissue from microwave ablation was constructed and compared to the result of the third experiment. For carbonised tissue, a linear contraction of 31 ± 6% was obtained independently of the heating source, power and operation time. Radiofrequency experiments determined that the average percentage linear contraction of white coagulated tissue was 12 ± 5%. The average accuracy of our model was determined to be 3 mm (5%). The proposed model allows the prediction of the shrinkage of liver tissues upon microwave ablation given the extension of the carbonised and coagulated zones. This may be useful in helping to predict whether sufficient tissue volume is ablated in clinical practice.

  8. Using X-Ray In-Line Phase-Contrast Imaging for the Investigation of Nude Mouse Hepatic Tumors

    PubMed Central

    Zhang, Lu; Luo, Shuqian

    2012-01-01

    The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI). The projection images' texture feature based on gray level co-occurrence matrix (GLCM) and dual-tree complex wavelet transforms (DTCWT) were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM). Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA) of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors. PMID:22761929

  9. Magnetoacoustic imaging of human liver tumor with magnetic induction

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Cressman, Erik; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging technique under development to achieve imaging of electrical impedance contrast in biological tissues with spatial resolution close to ultrasound imaging. However, previously reported MAT-MI experimental results are obtained either from low salinity gel phantoms, or from normal animal tissue samples. In this study, we report the experimental study on the performance of the MAT-MI imaging method for imaging in vitro human liver tumor tissue. The present promising experimental results suggest the feasibility of MAT-MI to image electrical impedance contrast between the cancerous tissue and its surrounding normal tissues.

  10. Synchrotron X-ray microscopy and spectroscopy analysis of iron in hemochromatosis liver and intestines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, J .Y. Peter; Sham, Tsun-Kong; Chakrabarti, Subrata

    2009-12-01

    Hemochromatosis is a genetic disorder that causes body to store excess iron in organs such as heart or liver. Distribution of iron, as well as copper, zinc and calcium, and chemical identity of iron in hemochromatosis liver and intestine were investigated by X-ray microprobe experiments, which consist of X-ray microscopy and micro-X-ray absorption fine structure. Our results show that iron concentration in hemochromatosis liver tissue is high, while much less Fe is found in intestinal tissue. Moreover, chemical identity of Fe in hemochromatosis liver can be identified. X-ray microprobe experiments allows for examining elemental distribution at an excellent spatial resolution.more » Moreover, chemical identity of element of interest can be obtained.« less

  11. A genome-wide interactome of DNA-associated proteins in the human liver.

    PubMed

    Ramaker, Ryne C; Savic, Daniel; Hardigan, Andrew A; Newberry, Kimberly; Cooper, Gregory M; Myers, Richard M; Cooper, Sara J

    2017-11-01

    Large-scale efforts like the ENCODE Project have made tremendous progress in cataloging the genomic binding patterns of DNA-associated proteins (DAPs), such as transcription factors (TFs). However, most chromatin immunoprecipitation-sequencing (ChIP-seq) analyses have focused on a few immortalized cell lines whose activities and physiology differ in important ways from endogenous cells and tissues. Consequently, binding data from primary human tissue are essential to improving our understanding of in vivo gene regulation. Here, we identify and analyze more than 440,000 binding sites using ChIP-seq data for 20 DAPs in two human liver tissue samples. We integrated binding data with transcriptome and phased WGS data to investigate allelic DAP interactions and the impact of heterozygous sequence variation on the expression of neighboring genes. Our tissue-based data set exhibits binding patterns more consistent with liver biology than cell lines, and we describe uses of these data to better prioritize impactful noncoding variation. Collectively, our rich data set offers novel insights into genome function in human liver tissue and provides a valuable resource for assessing disease-related disruptions. © 2017 Ramaker et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Heavy metals in laughing gulls: Gender, age and tissue differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gochfeld, M.; Belant, J.L.; Shukla, T.

    1996-12-01

    The authors examined concentrations of lead, cadmium, mercury, manganese, selenium, and chromium in feathers, liver, kidney, heart, and muscle of known-aged laughing gulls (Larus atricilla) that hatched in Barnegat Bay, New Jersey and were collected at John F. Kennedy International Airport, New York 1 to 7 years later. Concentrations differed significantly among tissues, and tissue entered all the regression models explaining the greatest variation in metal levels. Age of bird contributed significantly to the models for lead, cadmium, selenium, and chromium. Although there were significant gender differences in all body measurements except wing length, there were few differences in metalmore » levels. Males had significantly higher lead levels in feathers, and females had significantly higher selenium levels in heart and muscle tissue. For lead, 3-year olds had the highest levels in the heart, liver, and kidney, and levels were lower thereafter. Mercury levels in feathers and heart decreased significantly with age. Cadmium levels increased significantly with age for feathers, heart, liver, and muscle, although there was a slight decrease in the 7-year olds. Selenium levels decreased significantly with age for all tissues. Chromium levels increased with age for liver and heart.« less

  13. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.

    PubMed

    Kageyama, Tatsuto; Kakegawa, Takahiro; Osaki, Tatsuya; Enomoto, Junko; Ito, Taichi; Nittami, Tadashi; Fukuda, Junji

    2014-06-01

    Fabrication of perfusable vascular networks in vitro is one of the most critical challenges in the advancement of tissue engineering. Because cells consume oxygen and nutrients during the fabrication process, a rapid fabrication approach is necessary to construct cell-dense vital tissues and organs, such as the liver. In this study, we propose a rapid molding process using an in situ crosslinkable hydrogel and electrochemical cell transfer for the fabrication of perfusable vascular structures. The in situ crosslinkable hydrogel was composed of hydrazide-modified gelatin (gelatin-ADH) and aldehyde-modified hyaluronic acid (HA-CHO). By simply mixing these two solutions, the gelation occurred in less than 20 s through the formation of a stable hydrazone bond. To rapidly transfer cells from a culture surface to the hydrogel, we utilized a zwitterionic oligopeptide, which forms a self-assembled molecular layer on a gold surface. Human umbilical vein endothelial cells adhering on a gold surface via the oligopeptide layer were transferred to the hydrogel within 5 min, along with electrochemical desorption of the oligopeptides. This approach was applicable to cylindrical needles 200-700 µm in diameter, resulting in the formation of perfusable microchannels where the internal surface was fully enveloped with the transferred endothelial cells. The entire fabrication process was completed within 10 min, including 20 s for the hydrogel crosslinking and 5 min for the electrochemical cell transfer. This rapid fabrication approach may provide a promising strategy to construct perfusable vasculatures in cell-dense tissue constructs and subsequently allow cells to organize complicated and fully vascularized tissues while preventing hypoxic cell injury.

  14. Study of curcumin on microvasculature characteristic in diabetic rat's liver as revealed by vascular corrosion cast/scanning electron microscope (SEM) technique.

    PubMed

    Khimmaktong, Wipapan; Petpiboolthai, Hattaya; Panyarachun, Busaba; Anupunpisit, Vipavee

    2012-05-01

    To investigate the effect of curcumin on the structural change ofmicrovasculature in STZ-induced diabetic rat' liver. Diabetic rats were induced by streptozotocin (60 mg/kg BW). Male rats were divided into thre groups, control (C), diabetic (DM) and diabetic rats treated with curcumin (DMC) (200 mg/kg BW). After 8 weeks o experiments, blood vessels of rat's liver were studied under conventional light microscope (LM) and vascular corrosion cas technique with scanning electron microscope (SEM). LM observation demonstrated that there were pathology and destruction of liver tissues and microvasculature in diabetic animals. The sinusoids around central veins were dilated and filled with red blood cells. There was an accumulation of lipid droplets in the cytoplasm of hepatocytes and hepatocyte nuclei showed pathological sign of pyknosis. Moreover, the inflammation change of liver tissues revealed the infiltration of lymphocytes and increasing of collagen deposition in the area of portal triad. In curcumin-treated rats, the distinguished recovery of liver tissues showed regained normal pattern of central veins, sinusoids, hepatocytes and portal triad, when compared with liver tissues of control group. By using vascular corrosion casting with SEM, the liver blood vessels of DM group revealed higher and expanded sizes, compared with control group; proximal parts of portal veins (C = 577.75 +/- 126.23, DM = 892 +/- 35.79, DMC = 469.5 +/- 8553 microm), distal parts of portal veins (C = 76.72 +/- 1.48, DM = 200 +/- 31.05, DMC = 76.38 +/- 2.98 microm) and venules (C = 27.03 +/- 0.55, DM = 45.15 +/- 5.03, DMC = 28.38 +/- 3.67 microm) and corresponding to increased blood volumes compared with control group; proximal parts of portal veins (C = 20.8 +/- 1.28, DM = 62.2 +/- 3.39, DMC = 14.9 +/- 0.67 microm3), distal parts of portal veins (C = 0.46 +/- 0.03, DM = 3.81 +/- 0.18, DMC = 0.41 +/- 0.05 microm3) and venules (C = 0.05 +/- 0.05, DM = 0.24 +/- 0.013, DMC = 0.05 +/- 0.05 microm3) respectively. Fascinatingly, liver microvasculature in curcumin treated group developed into regenerate and repair into healthy and normal characteristics. Efficiency of curcumin treatment beneficially repaired and regenerated liver tissues of diabetic groups and also redeveloped the liver's microvascular complications. These results optimistically demonstrated the potential use of curcumin as a novel therapeutic agent in liver pathology of diabetic rats.

  15. Is ability to hepatic steatosis influenced by age at the beginning of the overfeeding period in Muscovy and Pekin ducks?

    PubMed

    Chartrin, P; Bernadet, M D; Sannier, M; Baéza, E

    2013-04-01

    The aim of this study was to analyse the effects of species (Muscovy and Pekin ducks) and age at the beginning of the overfeeding period on fatty liver production, carcass composition and lipid and moisture content of the liver and breast muscle. We reared four groups of 40 ducks per species for the study, starting at 2-week intervals in order to have four different ages together at the beginning of the overfeeding period (10, 12, 14 and 16 weeks). At the end of the overfeeding period, all ducks were slaughtered. Our results confirmed the high levels of difference in carcass composition and lipid content in the plasma, liver and breast muscle between Muscovy and Pekin ducks at all ages. Pekin ducks were not able to develop a high degree of hepatic steatosis, but had increased lipid storage in peripheral adipose and muscle tissues than Muscovy ducks. However, the fatty liver weight of Pekin ducks increased with age, with lipid deposition in the liver and peripheral tissues. The ability of Muscovy ducks to produce fatty livers remained unchanged with age in line, with lipid deposition in the liver and peripheral tissues. The sites of lipid deposition thus depend on species and not on the physiological maturity of ducks.

  16. Measurement of liver iron overload: noninvasive calibration of MRI-R2* by magnetic iron detector susceptometer.

    PubMed

    Gianesin, B; Zefiro, D; Musso, M; Rosa, A; Bruzzone, C; Balocco, M; Carrara, P; Bacigalupo, L; Banderali, S; Rollandi, G A; Gambaro, M; Marinelli, M; Forni, G L

    2012-06-01

    An accurate assessment of body iron accumulation is essential for the diagnosis and therapy of iron overload in diseases such as thalassemia or hemochromatosis. Magnetic iron detector susceptometry and MRI are noninvasive techniques capable of detecting iron overload in the liver. Although the transverse relaxation rate measured by MRI can be correlated with the presence of iron, a calibration step is needed to obtain the liver iron concentration. Magnetic iron detector provides an evaluation of the iron overload in the whole liver. In this article, we describe a retrospective observational study comparing magnetic iron detector and MRI examinations performed on the same group of 97 patients with transfusional or congenital iron overload. A biopsy-free linear calibration to convert the average transverse relaxation rate in iron overload (R(2) = 0.72), or in liver iron concentration evaluated in wet tissue (R(2) = 0.68), is presented. This article also compares liver iron concentrations calculated in dry tissue using MRI and the existing biopsy calibration with liver iron concentrations evaluated in wet tissue by magnetic iron detector to obtain an estimate of the wet-to-dry conversion factor of 6.7 ± 0.8 (95% confidence level). Copyright © 2011 Wiley-Liss, Inc.

  17. Transcriptomic analysis on responses of the liver and kidney of finishing pigs fed cadmium contaminated rice.

    PubMed

    Xia, Yaoyao; Li, Jun; Ren, Wenkai; Feng, Zemeng; Huang, Ruilin; Yin, Yulong

    2018-06-01

    Cadmium (Cd) is a common harmful substance that has many deleterious effects on the liver and kidney. Most reports about Cd toxic studies focused on its inorganic status, whereas the toxicity of Cd in organic materials is less studied. Here, we performed RNA-seq to explore the influences of Cd contaminated rice on function of the liver and kidney of finishing pigs. The concentration of Cd in liver and kidney of pigs fed Cd contaminated rice increased by 4.00 and 2.94 times, respectively, compared to those in the control group. With transcriptomic analysis, approximately 4-6 × 10 7 clean reads were acquired. Five differently expressed genes (DEGs) were identified in the liver, and 12 DEGs in the kidney. SPHK2 was commonly down-regulated. No significantly enriched gene ontology (GO) terms were identified. By Kyoto encyclopaedia of genes and genomes (KEGG) enrichments, four pathways were identified in hepatic tissue, and five pathways in nephritic tissue. Intriguingly, two pathways (sphingolipid metabolism and VEGF signalling pathway) were altered both in the liver and kidney. Cd contaminated rice may cause liver and kidney damage and inflammation, or even lead to more severe harm to these tissues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Hepatic protoporphyrin metabolism in patients with advanced protoporphyric liver disease.

    PubMed Central

    Bloomer, J. R.

    1997-01-01

    Protoporphyria is a genetic disorder in which liver damage is caused by the toxic effect of protoporphyrin accumulation in the liver. In this study protoporphyrin was measured in the resected livers of 7 patients who had liver transplantation and an additional patient from whom liver tissue was obtained post mortem. Comparison of liver, erythrocyte and serum protoporphyrin levels demonstrated a marked gradient between these compartments: erythrocyte, 5781 +/- 655 micrograms/dl; serum, 384 +/- 102 micrograms/dl; liver 377,238 +/- 55,568 micrograms/100 gm wet weight, (mean +/- SE). Protoporphyrin levels in bile of 3 patients were 55,559, and 1,153 micrograms/dl, indicating a gradient between liver and bile as well. Examination of the livers by polarization microscopy and electron microscopy demonstrated protoporphyrin pigment crystals. In one patient who had recurrent liver disease after transplantation, the protoporphyrin concentration in the graft at the time of death was similar to that in the resected liver. These data indicate that liver protoporphyrin levels in patients with advanced protoporphyric liver disease are much higher than levels in blood and bile, in part because protoporphyrin forms crystalline deposits in liver tissue. Thus, progressive hepatic accumulation of protoporphyrin occurs in the face of impaired biliary excretion. An intrinsic defect in hepatic excretion of protoporphyrin is probably not necessary for this condition to develop because liver disease can occur in the graft following transplantation. PMID:9626752

  19. Non-Invasive Blood Perfusion Measurements Using a Combined Temperature and Heat Flux Surface Probe

    PubMed Central

    Ricketts, Patricia L.; Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Pullins, Clay A.; Meyers, Leah A.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.

    2009-01-01

    Non-invasive blood perfusion measurement systems have been developed and tested in a phantom tissue and an animal model. The probes use a small sensor with a laminated flat thermocouple to measure the heat transfer and temperature response to an arbitrary thermal event (convective or conductive) imposed on the tissue surface. Blood perfusion and thermal contact resistance are estimated by comparing heat flux data with a mathematical model of the tissue. The perfusion probes were evaluated for repeatability and sensitivity using both a phantom tissue test stand and exposed rat liver tests. Perfusion in the phantom tissue tests was varied by controlling the flow of water into the phantom tissue test section, and the perfusion in the exposed liver tests was varied by temporarily occluding blood flow through the portal vein. The phantom tissue tests indicated that the probes can be used to detect small changes in perfusion (0.005 ml/ml/s). The probes qualitatively tracked the changes in the perfusion of the liver model due to occlusion of the portal vein. PMID:19885372

  20. Spectrum of pathogens in native liver, bile, and blood during pediatric liver transplantation.

    PubMed

    Schukfeh, Nagoud; Doerner, Judith M; Heintschel von Heinegg, Evelyn; Steinmann, Joerg; Metzelder, Martin L; Kathemann, Simone; Hoyer, Peter F; Paul, Andreas; Gerner, Patrick

    2014-05-01

    During LTX, there may be a risk that pathogens of the native liver are released into the systemic circulation. No investigations on incidence/spectrum of pathogens in native livers have been published. We hypothesized that pathogens are found in the native liver of a large proportion of pediatric patients during LTX and investigated the microbiology of native livers. These data may help optimize antibiotic therapy. Twenty-two consecutive pediatric patients (median age 14 months, range, 5 months-15 yr) receiving LTX in our department from October 2010 to October 2011 were included in this prospective study. Tissue and bile were collected from the explanted liver and were cultivated on different media. All liver tissues were investigated using a broad-range PCR (SepsiTest(®)). In 16 patients, blood cultures were collected post-transplantation. Eleven patients (50%) had at least one pathogen detected; nine of these patients had an underlying diagnosis of biliary atresia. SepsiTest(®) was positive in seven patients. In four patients it was the only test detecting any pathogen. In detail, the positivity rate for liver tissue in all patients was 41% (n = 9); for bile 25% (n = 3); and for blood 25% (n = 4). Thirteen different pathogens (69% bacterial, 31% fungal) were isolated. A highly-sensitive broad-range PCR appears to be an effective method to detect pathogens in native livers of patients undergoing LTX. A high number and variety of microbes, including a high proportion of fungal pathogens, were detected. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Experimental study of osthole on treatment of hyperlipidemic and alcoholic fatty liver in animals

    PubMed Central

    Song, Fang; Xie, Mei-Lin; Zhu, Lu-Jia; Zhang, Ke-Ping; Xue, Jie; Gu, Zhen-Lun

    2006-01-01

    AIM: To evaluate the effects of osthole on fatty liver, and investigate the possible mechanism. METHODS: A quail model with hyperlipidemic fatty liver and rat model with alcoholic fatty liver were set up by feeding high fat diet and alcohol, respectively. These experimental animals were then treated with osthole 5-20 mg/kg for 6 wk, respectively. Whereafter, the lipid in serum and hepatic tissue, and coefficient of hepatic weight were measured. RESULTS: After treatment with osthole the levels of serum total cholesterol (TC), triglyceride (TG), lower density lipoprotein-cholesterol (LDL-C), coefficient of hepatic weight, and the hepatic tissue contents of TC and TG were significantly decreased. The activity of superoxide dismutase (SOD) in liver was improved. In alcohol-induced fatty liver rats, the level of malondialdehyde (MDA) in liver was decreased. In high fat-induced fatty liver quails, glutathione peroxidase (GSH-PX) in liver was significantly improved. The histological evaluation of liver specimens demonstrated that the osthole dramatically decreased lipid accumulation. CONCLUSION: These results suggested that osthole had therapeutic effects on both alcohol and high fat-induced fatty liver. The mechanism might be associated with its antioxidation. PMID:16865778

  2. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging.

    PubMed

    Zhang, Ya-Min; Shi, Rui; Hou, Jian-Cun; Liu, Zi-Rong; Cui, Zi-Lin; Li, Yang; Wu, Di; Shi, Yuan; Shen, Zhong-Yang

    2017-01-01

    Clear delineation between tumors and normal tissues is ideal for real-time surgical navigation imaging. We investigated applying indocyanine green (ICG) fluorescence imaging navigation using an intraoperative administration method in liver resection. Fifty patients who underwent liver resection were divided into two groups based on clinical situation and operative purpose. In group I, sizes of superficial liver tumors were determined; tiny tumors were identified. In group II, the liver resection margin was determined; real-time navigation was performed. ICG was injected intravenously at the beginning of the operation; the liver surface was observed with a photodynamic eye (PDE). Liver resection margins were determined using PDE. Fluorescence contrast between normal liver and tumor tissues was obvious in 32 of 35 patients. A boundary for half the liver or specific liver segments was determined in nine patients by examining the portal vein anatomy after ICG injection. Eight small tumors not observed preoperatively were detected; the smallest was 2 mm. ICG fluorescence imaging navigation is a promising, simple, and safe tool for routine real-time intraoperative imaging during hepatic resection and clinical exploration in hepatocellular carcinoma, enabling high sensibility for identifying liver resection margins and detecting tiny superficial tumors.

  3. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells.

    PubMed

    Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok; Kim, Kyung Sik

    2015-05-01

    Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial.

  4. GC-MS/MS Analyses of Biological Samples in Support of Developmental Toxic Effects on Percutaneous Exposure of Rats to VX

    DTIC Science & Technology

    2016-07-01

    of blood, tissues, and organs (heart, lung, liver, kidney , brain, eye, diaphragm, and skin) that were obtained from rats (postnatal days 42 and 70...of blood, tissues, and organs (heart, lung, liver, kidney , brain, eye, and diaphragm) that were used to quantify the amounts of free and regenerated...Biosamples (brain, diaphragm, eye, heart, lung, liver, and kidney ) were collected at time of death or 48 h post-exposure for survivors. All

  5. Basic investigation on acoustic velocity change imaging method for quantitative assessment of fat content in human liver

    NASA Astrophysics Data System (ADS)

    Mano, Kazune; Tanigawa, Shohei; Hori, Makoto; Yokota, Daiki; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2016-07-01

    Fatty liver is a disease caused by the excess accumulation of fat in the human liver. The early diagnosis of fatty liver is very important, because fatty liver is the major marker linked to metabolic syndrome. We already proposed the ultrasonic velocity change imaging method to diagnose fatty liver by using the fact that the temperature dependence of ultrasonic velocity is different in water and in fat. For the diagonosis of a fatty liver stage, we attempted a feasibility study of the quantitative assessment of the fat content in the human liver using our ultrasonic velocity change imaging method. Experimental results showed that the fat content in the tissue mimic phantom containing lard was determined by its ultrasonic velocity change in the flat temperature region formed by a circular warming ultrasonic transducer with an acoustic lens having an appropriate focal length. By considering the results of our simulation using a thermal diffusion equation, we determined whether this method could be applied to fatty liver assessment under the condition that the tissue had the thermal relaxation effect caused by blood flow.

  6. Analysis of normal and diseased liver tissue using auto-fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Jia, Chunde; Lin, Junxiu; Kang, Youping

    2003-12-01

    In this paper, laser induced human serum Raman spectra of liver cancer are measured. The spectra differences in serum from normal people and liver cancer patients are analyzed. For the typical spectrum of normal serum, there are three sharp Raman peaks and relative intensity of Raman peaks excited by 514.5 nm is higher than that excited by 488.0 nm. However, for the Raman spectrum of liver cancer serum there are no peaks or very weak Raman peaks at the same positions. Results from more than two hundred case measurements show that clinical diagnostic accuracy is 92.86%. And then, the liver fibrosis and liver cirrhosis are studied applying the technology of LIF. To liver cirrhosis, the shape of Raman peak is similar to normal and fluorescence spectrum is similar to that of liver cancer from statistic data. The experiment indicates that there is notable fluorescence difference between the abnormal and normal liver tissue and have blue shift in fluorescence peak. These results have important reference values to explore the method of laser spectrum diagnosis.

  7. High residue levels and the chemical form of mercury in tissues and organs of seabirds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi

    1995-12-31

    Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% inmore » feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.« less

  8. A new laparoscopic-assisted hepatectomy (LAH) utilizing radiofrequency ablation and high-frequency electrocautery.

    PubMed

    Miyazawa, Mitsuo; Torii, Takahiro; Toshimitsu, Yasuko; Okada, Katsuya; Ogawa, Nobuji; Shinozuka, Nozomi; Koyama, Isamu

    2006-01-01

    Compared to tumors located at the edge of the liver, tumors located directly on the liver surface are often difficult to resect, especially when the organ is cirrhotic. To remove tumors at this location, our group has developed a round high-frequency electrosurgical knife that allows hemispherical resection of the liver tissue. This study describes a new laparoscopic-assisted hepatectomy utilizing radiofrequency ablation of the tissue surrounding the tumor and high-frequency electrocautery. When compared with the laparoscopic hepatectomy, this new procedure seems to offer a safer, more effective, and less time-consuming means of resecting tumors on the liver surface. (c) 2005 Wiley-Liss, Inc.

  9. Organ reconstruction: Dream or reality for the future.

    PubMed

    Stoltz, J-F; Zhang, L; Ye, J S; De Isla, N

    2017-01-01

    The relevance of research on reconstructed organs is justified by the lack of organs available for transplant and the growing needs for the ageing population. The development of a reconstructed organ involves two parallel complementary steps: de-cellularization of the organ with the need to maintain the structural integrity of the extracellular matrix and vascular network and re-cellularization of the scaffold with stem cells or resident cells.Whole organ engineering for liver, heart, lung or kidneys, is particularly difficult because of the structural complexity of organs and heterogeneity of cells. Rodent, porcine and rhesus monkey organs have been de-cellularized to obtain a scaffold with preserved extracellular matrix and vascular network. As concern the cells for re-cellularization, embryonic, foetal, adult, progenitor stem cells and also iPS have been proposed.Heart construction could be an alternative option for the treatment of cardiac insufficiency. It is based on the use of an extra-cellular matrix coming from an animal's heart and seeded with cells likely to reconstruct a normal cardiac function. Though de-cellularization techniques now seem controlled, the issues posed by the selection of cells capable of generating the various components of cardiac tissue are not settled yet. In addition, the recolonisation of the matrix does not only depend on the phenotype of cells that are used, but it is also impacted by the nature of biochemical signals emitted.Recent researches have shown that it is possible to use decellularized whole liver treated by detergents as scaffold, which keeps the entire network of blood vessels and the integrated extracellular matrix (ECM). Beside of decellularized whole organ scaffold seeding cells selected to repopulate a decellularized liver scaffold are critical for the function of the bioengineered liver. At present, potential cell sources are hepatocyte, and mesenchymal stem cells.Pulmonary regeneration using engineering approaches is complex. In fact, several types of local progenitor cells that contribute to cell repair have been described at different levels of the respiratory tract. Moving towards the alveoles, one finds bronchioalveolar stem cells as well as epithelial cells and pneumocytes. A promising option to increase the donor organ pool is to use allogeneic or xenogeneic decellularized lungs as a scaffold to engineer functional lung tissue ex vivo.The kidney is certainly one of the most difficult organs to reconstruct due to its complex nature and the heterogeneous nature of the cells. There is relatively little research on auto-construction, and experiments have been performed on rats, pigs and monkeys.Nevertheless, before these therapeutic approaches can be applied in clinical practice, many researches are necessary to understand and in particular the behaviour of cells on the decellularized organs as well as the mechanisms of their interaction with the microenvironment. Current knowledges allow optimism for the future but definitive answers can only be given after long term animal studies and controlled clinical studies.

  10. Cross-reactions between serum proteins and water soluble liver tissue antigens of the nine-banded armadillo (Dasypus novemcinctus Linn.) and man.

    PubMed Central

    Negassi, K; Closs, O; Harboe, M

    1979-01-01

    Cross-reactions between serum proteins and water soluble liver antigens of the nine-banded armadillo (Dasypus novemcinctus Linn.) and man were studied by crossed immunoelectrophoresis (CIE). Armadillo serum tested with rabbit antiserum against human serum proteins gave twelve components in CIE. Nine of these cross-reacting proteins were identified and showed partial identity with the corresponding human proteins. The electrophoretic mobility of alpha 2-macroglobulin and Gc-globulin differed in the two species. An ultrasonicate of normal armadillo liver gave twenty-eight anodic and eight cathodic components in CIE. By absorption experiments with armadillo serum, twenty of the former and seven of the latter were shown to be liver tissue components. A combination of CIE and crossed-line immunoelectrophoresis (CLIE) revealed the presence of twelve anodic and six cathodic liver tissue components cross-reacting with man. A cathodic armadillo liver antigen called (CALA-17) showed partial identity with that of man both in tandem and fused rocket immunoelectrophoresis. The implications of the findings are discussed in relation to the use of armadillo-grown M. leprae for skin testing and other purposes in man. Images FIG. 1 FIG. 3 FIG. 4 FIG. 5 PMID:93527

  11. Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies.

    PubMed

    Sun, Wanxin; Chang, Shi; Tai, Dean C S; Tan, Nancy; Xiao, Guangfa; Tang, Huihuan; Yu, Hanry

    2008-01-01

    Liver fibrosis is associated with an abnormal increase in an extracellular matrix in chronic liver diseases. Quantitative characterization of fibrillar collagen in intact tissue is essential for both fibrosis studies and clinical applications. Commonly used methods, histological staining followed by either semiquantitative or computerized image analysis, have limited sensitivity, accuracy, and operator-dependent variations. The fibrillar collagen in sinusoids of normal livers could be observed through second-harmonic generation (SHG) microscopy. The two-photon excited fluorescence (TPEF) images, recorded simultaneously with SHG, clearly revealed the hepatocyte morphology. We have systematically optimized the parameters for the quantitative SHG/TPEF imaging of liver tissue and developed fully automated image analysis algorithms to extract the information of collagen changes and cell necrosis. Subtle changes in the distribution and amount of collagen and cell morphology are quantitatively characterized in SHG/TPEF images. By comparing to traditional staining, such as Masson's trichrome and Sirius red, SHG/TPEF is a sensitive quantitative tool for automated collagen characterization in liver tissue. Our system allows for enhanced detection and quantification of sinusoidal collagen fibers in fibrosis research and clinical diagnostics.

  12. In vivo quantification of motion in liver parenchyma and its application in shistosomiasis tissue characterization

    NASA Astrophysics Data System (ADS)

    Badawi, Ahmed M.; Hashem, Ahmed M.; Youssef, Abou-Bakr M.; Abdel-Wahab, Mohamed F.

    1995-03-01

    Schistosomiasis is a major problem in Egypt, despite an active control program it is estimated to exist in about 1/3 of the population. Deposition of less functioning fibrous tissues in the liver is the major contributory factor to the hepatic pathology. Fibrous tissues consist of a complex array of connective matrix material and a variety of collagen isotopes. As a result of an increased stromal density (collagen content), the parenchyma became more ectogenic and less elastic (hard). In this study we investigated the effect of cardiac mechanical impulses from the heart and aorta on the kinetics of the liver parenchyma. Under conditions of controlled patient movements and suspended respiration, a 30 frame per second of 588 X 512 ultrasound images (cineloop, 32 pels per cm) are captured from an aTL ultrasound machine then digitized. The image acquisition is triggered by the R wave of the ECG of the patient. The motion that has a forced oscillation form in the liver parenchyma is quantified by tracking of small box (20 - 30 pels) in 16 directions for all the successive 30 frames. The tracking was done using block matching techniques (the max correlation between boxes in time, frequency domains, and the minimum SAD (sum absolute difference) between boxes). The motion is quantified for many regions at different positions within the liver parenchyma for 80 cases of variable degrees of schisto., cirrhotic livers, and for normal livers. The velocity of the tissue is calculated from the displacement (quantified motion), time between frames, and the scan time for the ultrasound scanner. We found that the motion in liver parenchyma is small in the order of very few millimeters, and the attenuation of the mechanical wave for one ECG cycle is higher in the schisto. and cirrhotic livers than in the normal ones. Finally quantification of motion in liver parenchyma due to cardiac impulses under controlled limb movement and respiration may be of value in the characterization of schisto. (elasticity based not scattering based). This value could be used together with the wide varieties of quantitative tissue characterization parameters for pathology differentiation and for differentiating subclasses of cirrhosis as well as the determination of the extent of bilharzial affection.

  13. Identification of tissue-specific targeting peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun

    2012-11-01

    Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.

  14. Tissue engineering: state of the art in oral rehabilitation

    PubMed Central

    SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.

    2009-01-01

    SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277

  15. Tissue engineering: state of the art in oral rehabilitation.

    PubMed

    Scheller, E L; Krebsbach, P H; Kohn, D H

    2009-05-01

    More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.

  16. Uptake of selenium and mercury by captive mink: Results of a controlled feeding experiment.

    PubMed

    Evans, R D; Grochowina, N M; Basu, N; O'Connor, E M; Hickie, B E; Rouvinen-Watt, K; Evans, H E; Chan, H M

    2016-02-01

    Captive, juvenile, ranch-bred, male mink (Neovison vison) were fed diets containing various concentrations of methyl-mercury (MeHg) and selenium (Se) for a period of 13 weeks and then sacrificed to determine total Hg levels in fur, blood, brain, liver and kidneys and total Se concentrations in brain tissue. As MeHg concentrations in the diet increased, concentrations of total Hg in the tissues also increased with the highest level occurring in the fur > liver = kidney > brain > blood. Concentrations of Hg in the fur were correlated (r(2) > 0.97) with liver, kidney, blood and brain concentrations. The addition of Se to the mink diet did not appear to affect most tissue concentrations of total Hg nor did it affect the partitioning of Hg between the liver:blood, kidney:blood and brain:blood; however, partitioning of Hg between fur and blood was apparently affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Differing Distribution of Hepatocyte Growth Factor‐positive Cells in the Liver of LEC Rats with Acute Hepatitis, Chronic Hepatitis and Hepatoma

    PubMed Central

    Kashiwazaki, Haruhiko; Kobayashi, Narumi; Hamada, Jun‐ichi; Matsumoto, Kunio; Nakamura, Toshikazu; Takeichi, Noritoshi

    1995-01-01

    Using anti‐rat hepatocyte growth factor (HGF) antibody, we investigated the distribution of HGF‐positive cells in the liver tissues of LEC rats at various phases of liver diseases. During the phase of fulminant hepatitis, HGF‐positive cells increased remarkably, and many of them were localized at the portal triads; these cells were identified from their shape as non‐epithelial cells. A reduced number of HGF‐positive cells was observed during the phase of chronic hepatitis, while no HGF‐positive cells were seen in the tissue of cholangiofibrosis. During the phase of carcinoma, staining revealed that both the hepatocellular carcinoma cells and the non‐epithelial cells in cancerous liver tissue were HGF‐positive. These results suggest that, in LEC rats, HGF may play an important role in the regeneration of hepatocytes as well as in the development of hepatocellular carcinoma. PMID:7737910

  18. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies

    PubMed Central

    Giannios, Panagiotis; Toutouzas, Konstantinos G.; Matiatou, Maria; Stasinos, Konstantinos; Konstadoulakis, Manousos M.; Zografos, George C.; Moutzouris, Konstantinos

    2016-01-01

    The refractive index is an optical constant that plays a significant role in the description of light-matter interactions. When it comes to biological media, refraction is understudied despite recent advances in the field of bio-optics. In the present article, we report on the measurement of the refractive properties of freshly excised healthy and cancerous human liver samples, by use of a prism-coupling technique covering the visible and near-infrared spectral range. Novel data on the wavelength-dependent complex refractive index of human liver tissues are presented. The magnitude of the real and imaginary part of the refractive index is correlated with hepatic pathology. Notably, the real index contrast is pointed out as a marker of discrimination between normal liver tissue and hepatic metastases. In view of the current progress in optical biosensor technologies, our findings may be exploited for the development of novel surgical and endoscopic tools. PMID:27297034

  19. Engineered in vitro disease models.

    PubMed

    Benam, Kambez H; Dauth, Stephanie; Hassell, Bryan; Herland, Anna; Jain, Abhishek; Jang, Kyung-Jin; Karalis, Katia; Kim, Hyun Jung; MacQueen, Luke; Mahmoodian, Roza; Musah, Samira; Torisawa, Yu-suke; van der Meer, Andries D; Villenave, Remi; Yadid, Moran; Parker, Kevin K; Ingber, Donald E

    2015-01-01

    The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.

  20. An effective strategy for decontamination, ex vivo expansion, and storage of human fetal liver hematopoietic stem cells.

    PubMed

    Rice, H E; Skarsgard, E D; Emani, V R; Zanjani, E D; Harrison, M R; Flake, A W

    1994-12-01

    The transplantation of human fetal tissue has the potential to cure a variety of life-threatening diseases. The strategy for procurement, quality control, and functional assessment of human fetal liver HSC may prove useful for the transplantation of other fetal tissues. In addition to technical limitations, there are ethical and legal issues which need to be resolved before widespread use of fetal tissue. Further development of regulatory standards for the acquisition and distribution of fetal tissues will foster the application of this novel technology.

  1. A teaching phantom for sonographers.

    PubMed

    Zagzebski, J A; Madsen, E L; Frank, G R

    1991-01-01

    An anthropomorphic torso section phantom is described that is intended for use during initial stages of ultrasonographer training. The phantom represents a section of the upper abdomen, with simulated ribs, liver, kidney with fat pad, gallbladder, aorta, and bowel gas. Positioned in the liver are ten simulated soft tissue masses, which produce a variety of typical echographic patterns. All simulated soft tissue components are formed of tissue-mimicking materials that match their corresponding tissue counterparts in terms of speed of sound, ultrasonic attenuation, and density. Construction details are presented and examples of images are shown.

  2. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  3. v-Liver: Simulating Hepatic Tissue Lesions as Virtual Cellular Systems

    EPA Science Inventory

    The US EPA Virtual Liver (v-Liver) project is aimed at reducing the uncertainty in estimating the risk of toxic outcomes in humans by simulating the dose-dependent effects of environmental chemicals in silico. The v-Liver embodies an emerging field of research in computational ti...

  4. Osthole improves glucose and lipid metabolism via modulation of PPARα/γ-mediated target gene expression in liver, adipose tissue, and skeletal muscle in fatty liver rats.

    PubMed

    Qi, Zhi-Gang; Zhao, Xi; Zhong, Wen; Xie, Mei-Lin

    2016-01-01

    Osthole may be a dual agonist of peroxisome proliferator-activated receptors (PPAR) α/γ and ameliorate the insulin resistance (IR), but its mechanisms are not yet understood completely. We investigated the effects of osthole on PPARα/γ-mediated target genes involved in glucose and lipid metabolism in liver, adipose tissue, and skeletal muscle in fatty liver and IR rats. The rat model was established by orally feeding high-fat and high-sucrose emulsion for 9 weeks. The experimental rats were treated with osthole 5-10 mg/kg by gavage after feeding the emulsion for 6 weeks, and were sacrificed 4 weeks after administration. After treatment with osthole 5-10 mg/kg for 4 weeks, the lipid levels in serum and liver were decreased by 37.9-67.2% and 31.4-38.5% for triglyceride, 33.1-47.5% and 28.5-31.2% for free fatty acid, respectively, the fasting blood glucose, fasting serum insulin, and homeostasis model assessment of IR were also decreased by 17.2-22.7%, 25.9-26.7%, and 37.5-42.8%, respectively. Osthole treatment might simultaneously decrease the sterol regulatory element binding protein-1c, diacylglycerol acyltransferase, and fatty acid synthase mRNA expressions in liver and adipose tissue, and increase the carnitine palmitoyltransferase-1A mRNA expression in liver and glucose transporter-4 mRNA expression in skeletal muscle, especially in the osthole 10 mg/kg group (p < 0.01). Osthole can improve glucose and lipid metabolism in fatty liver and IR rats, and its mechanisms may be associated with synergic modulation of PPARα/γ-mediated target genes involved in glucose and lipid metabolism in liver, adipose tissue, and skeletal muscle.

  5. Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score.

    PubMed

    Jeffery, Hannah C; McDowell, Patrick; Lutz, Philipp; Wawman, Rebecca E; Roberts, Sheree; Bagnall, Chris; Birtwistle, Jane; Adams, David H; Oo, Ye Htun

    2017-01-01

    Innate lymphoid cells (ILC) have been implicated in the initiation of inflammation and fibrosis in mice. However, ILC have not been characterized in inflamed human liver tissue. Human intrahepatic lymphocytes were isolated by mechanical digestion and phenotyped by flow cytometry. Conditioned medium from cultures of primary human biliary epithelial cells, stellate cells, fibroblasts and inflamed human liver tissue was used to model the effects of the inflammatory liver environment of ILC phenotype and function. All three ILC subsets were present in the human liver, with the ILC1 (CRTH2negCD117neg) subset constituting around 70% of intrahepatic ILCs. Both NCRpos (NKp44+) and NCRneg ILC3 (CRTH2negCD117pos) subsets were also detected. ILC2 (CRTH2pos) frequency correlated with disease severity measured by model of end stage liver disease (MELD) scoring leading us to study this subset in more detail. ILC2 displayed a tissue resident CD69+ CD161++ phenotype and expressed chemokine receptor CCR6 allowing them to respond to CCL20 secreted by cholangiocytes and stellate cells. ILC2 expressed integrins VLA-5 and VLA-6 and the IL-2 and IL-7 cytokine receptors CD25 and CD127 although IL-2 and IL-7 were barely detectable in inflamed liver tissue. Although biliary epithelial cells secrete IL-33, intrahepatic ILC2 had low expression of the ST2 receptor. Intrahepatic ILC2 secreted the immunoregulatory and repair cytokines IL-13 and amphiregulin. Intrahepatic ILC2 express receptors allowing them to be recruited to bile ducts in inflamed portal tracts. Their frequencies increased with worsening liver function. Their secretion of IL-13 and amphiregulin suggests they may be recruited to promote resolution and repair and thereby they may contribute to ongoing fibrogenesis in liver disease.

  6. Lipoic acid prevents suppression of connective tissue proliferation in the rat liver induced by n-3 PUFAs. A pilot study.

    PubMed

    Arend, A; Zilmer, M; Vihalemm, T; Selstam, G; Sepp, E

    2000-01-01

    As previously shown, dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) suppress connective tissue proliferation in the rat liver wound concurrent with an elevated level of lipid peroxidation. The present study was undertaken to investigate the influence of alpha-lipoic acid (LA), a natural anti-oxidant, on these effects of n-3 PUFAs. Rats were fed with a commercial pellet diet (control group) or with diets enriched with 10% of sunflower oil (n-6 group) or 10% of fish oil (n-3 group) for 8 weeks followed by addition of LA to the same diets for 10 days. Then a liver thermic wound was induced and the administration of LA was continued for 6 days. The proliferation of the connective tissue, the level of lipid peroxidation and their peroxidizability and the content of prostaglandins E2 and F2alpha were measured in the liver wounds. LA prevented the suppression of connective tissue proliferation in the healing wound induced by n-3 PUFAs, avoided the increase in peroxidation of lipids, reduced peroxidizability of lipids and modulated the decrease in PGE2 and PGF2alpha. The results indicate that dietary LA may prevent the suppression of liver wound healing induced by n-3 PUFAs.

  7. Supplementation with antioxidant-rich extra virgin olive oil prevents hepatic oxidative stress and reduction of desaturation capacity in mice fed a high-fat diet: Effects on fatty acid composition in liver and extrahepatic tissues.

    PubMed

    Rincón-Cervera, Miguel Angel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Marambio, Macarena; Espinosa, Alejandra; Mayer, Susana; Romero, Nalda; Barrera M Sc, Cynthia; Valenzuela, Alfonso; Videla, Luis A

    2016-01-01

    The aim of this study was to assess the effect of dietary supplementation with extra virgin olive oil (EVOO) in mice on the reduction of desaturase and antioxidant enzymatic activities in liver, concomitantly with long-chain polyunsaturated fatty acids (LCPUFA) profiles in liver and extrahepatic tissues induced by a high-fat diet (HFD). Male mice C57 BL/6 J were fed with a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or an HFD (60% fat, 20% protein, 20% carbohydrates) for 12 wk. Animals were supplemented with 100 mg/d EVOO with different antioxidant contents (EVOO I, II, and III). After the intervention, blood and several tissues were analyzed. Dietary supplementation with EVOO with the highest antioxidant content and antioxidant capacity (EVOO III) significantly reduced fat accumulation in liver and the plasmatic metabolic alterations caused by HFD and produced a normalization of oxidative stress-related parameters, desaturase activities, and LCPUFA content in tissues. Data suggest that dietary supplementation with EVOO III may prevent oxidative stress and reduction of biosynthesis and accretion of ω-3 LCPUFA in the liver of HFD-fed mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. In vivo estimation of optical properties of rat liver using single-reflectance fiber probe during ischemia and reperfusion

    NASA Astrophysics Data System (ADS)

    Akter, Sharmin; Tanabe, Tomoki; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2016-04-01

    To quantify the changes in optical properties of in vivo rat liver tissue, we applied diffuse reflectance spectroscopy (DRS) system using single-reflectance fiber probe during ischemia and reperfusion evoked by hepatic portal occlusion (hepatic artery, portal vein and bile duct). Changes in the reduced scattering coefficient μ s', the absorption coefficient μ a, the tissue oxygen saturation StO2, and the oxidation of heme aa3 in cytochrome c oxidase (C cO) OHaa3 of in vivo rat liver (n = 6) were evaluated. Heme aa3 in C cO were significantly reduced (P < 0.05) during ischemia, which indicates a sign of mitochondrial energy failure induced by oxygen insufficiency of liver tissue. We found that OHaa3 obtained from the proposed method was unchanged immediately after the onset of ischemia and started gradually decreasing at 2 min after the onset of ischemia. Difference in the time course between OHaa3 and the conventional ratio metric analysis with μ a(605)/ μ a(620) reported in literature demonstrates that the proposed method is effective in reduction of optical cross talk between hemoglobin and heme aa3. Our results suggest that DRS technique is applicable and useful for assessing in vivo tissue viability and hemodynamics in liver intraoperatively.

  9. Efficient generation of biliary epithelial cells from rabbit intrahepatic bile duct by Y-27632 and Matrigel.

    PubMed

    Jin, Lifang; Ji, Shaohui; Sun, Aijing

    2013-06-01

    Efficient culture of primary biliary epithelial cells (BECs) from adult liver is useful for both experimental studies and clinical applications of tissue engineering. However, an effective culture system for long-term proliferation of adult BECs is still unachieved. Laboratory rabbit has been used in a large number of studies; however, there are no reports of BECs from normal adult rabbit. As little as 5 g of normal rabbit liver tissue were minced, digested, and then clonally cultured in medium containing FBS and ITS. Cells were characterized by cell morphology, immunoassaying, and growth rate assay. Different combination of growth factors and substrates, including Y-27632 and Matrigel, were employed to assess their effect on cell proliferation. In the primary culture, the BECs cellular sheets consisting of cuboidal cells, as well as fibroblast-like cells and other hepatic cells, emerged with time of culture. The BECs cellular sheets were then manually split into cells clumps for further characterization. The subcultured cells had typical cell morphology of cholangiocytes, expressed the specific markers of BECs, including GGT, cytokeratin (CK18), and CK19, and possessed the capacity to form duct-like structure in three-dimensional Matrigel. Y-27632 and Matrigel-treated BECs had a steady growth rate as well as colony-formation capacity. The BECs were maintained in Y-27632 and Matrigel culture system for more than 3 mo. This is the first example, to our knowledge, of the successful culture of BECs from normal adult rabbit liver. Furthermore, our results indicate that treatment of BECs with Y-27632 and Matrigel is a simple method for efficient output of BECs.

  10. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.).

    PubMed

    Betancor, Mónica B; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Metochis, Christoforos; Campbell, Patrick J; Napier, Johnathan A; Tocher, Douglas R

    2016-01-01

    Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.

  11. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.)

    PubMed Central

    Betancor, Mónica B.; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Metochis, Christoforos; Campbell, Patrick J.; Napier, Johnathan A.; Tocher, Douglas R.

    2016-01-01

    Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents. PMID:27454884

  12. Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep.

    PubMed

    López-Andrés, Patricia; Luciano, Giuseppe; Vasta, Valentina; Gibson, Trevor M; Biondi, Luisa; Priolo, Alessandro; Mueller-Harvey, Irene

    2013-08-01

    A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography-MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues.

  13. Thermal fixation of swine liver tissue after magnetic resonance-guided high-intensity focused ultrasound ablation.

    PubMed

    Courivaud, Frédéric; Kazaryan, Airazat M; Lund, Alice; Orszagh, Vivian C; Svindland, Aud; Marangos, Irina Pavlik; Halvorsen, Per Steinar; Jebsen, Peter; Fosse, Erik; Hol, Per Kristian; Edwin, Bjørn

    2014-07-01

    The aim of this study was to investigate experimental conditions for efficient and controlled in vivo liver tissue ablation by magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) in a swine model, with the ultimate goal of improving clinical treatment outcome. Histological changes were examined both acutely (four animals) and 1 wk after treatment (five animals). Effects of acoustic power and multiple sonication cycles were investigated. There was good correlation between target size and observed ablation size by thermal dose calculation, post-procedural MR imaging and histopathology, when temperature at the focal point was kept below 90°C. Structural histopathology investigations revealed tissue thermal fixation in ablated regions. In the presence of cavitation, mechanical tissue destruction occurred, resulting in an ablation larger than the target. Complete extra-corporeal MR-guided HIFU ablation in the liver is feasible using high acoustic power. Nearby large vessels were preserved, which makes MR-guided HIFU promising for the ablation of liver tumors adjacent to large veins. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Uptake and metabolism of 14C-palmitate by fetal rabbit tissues.

    PubMed

    Hudson, D G; Hull, D

    1977-01-01

    The uptake and esterification of 14C-palmitate into lipid classes in placenta, fetal brown adipose tissue (BAT) and liver of rabbits were investigated in vitro. Fetal BAT showed a high rate of fatty acid uptake, 8.5 mumol-a-1 tissue-h-1. From 5 min onwards, the majority of incorporated label was in the triglyceride fraction. The placenta and fetal liver also incorporated I-[14C]-palmitate into both FFA and esterified lipid fractions, although at much lower rates than observed for BAT. In the liver, triglycerides, but in the placenta phospholipids, contained the majority of the label after 1 h incubation. BAT from both fetal and newborn rabbits released 14CO2 and the production of 14 CO2 was greater in the presence of noradrenaline. The specific activity of the CO2 was the same in stimulated and unstimulated tissue. It is concluded that BAT as well as the liver are important sites of free fatty acid removal from the fetal circulation. The potential for fatty acid oxidation is present in BAT of the 28-day rabbit fetus.

  15. Choline and Fructooligosaccharide: Non-alcoholic Fatty Liver Disease, Cardiac Fat Deposition, and Oxidative Stress Markers

    PubMed Central

    Borges Haubert, Nadia Juliana Beraldo Goulart; Marchini, Julio Sergio; Carvalho Cunha, Selma Freire; Suen, Vivian Marques Miguel; Padovan, Gilberto Joao; Jordao, Alceu Afonso; Marchini Alves, Claudia Maria Meirelles; Marchini, Julio Flavio Meirelles; Vannucchi, Helio

    2015-01-01

    This study investigates the treatment of non-alcoholic fatty liver disease (NAFLD) in rats with choline and fructooligosaccharide (FOS). The healthy control group received standard diet. The other three groups consisted of animals with NAFLD. Group Estr received standard diet; group Echo received standard diet plus choline (3 g/100 g diet); and group Efos received standard diet plus FOS (10 g/100 g diet). Food intake, weight, urinary nitrogen, urinary ammonia, total cholesterol, serum triacylglyceride, liver and heart weights, tissue nitrogen, tissue fat, vitamin E, TBARS, and reduced glutathione (GSH) were measured in hepatic and heart tissue. Choline and FOS treatments resulted in total mean fat reduction in liver and heart tissue of 0.2 and 1.7 g, respectively. Both treatments were equally effective in reducing hepatic and cardiac steatosis. There were no differences in the TBARS level among experimental and control groups, indicating that the proposed treatments had no added protection against free radicals. While all experimental groups had increased vitamin E and GSH levels, choline treatment led to a significant increase compared to control. PMID:25987847

  16. Melanomacrophage centers in kidney, spleen and liver: A toxic response in carp fish (Cyprinus carpio) exposed to mercury chloride

    NASA Astrophysics Data System (ADS)

    Tjahjaningsih, Wahju; Pursetyo, Kustiawan Tri; Sulmartiwi, Laksmi

    2017-02-01

    This study aims to determine the potential of melanomacrophage centers (MMCs) as a bioindicators of environment polluted with mercury chloride. This study used the carp fish that were kept in an environment that contained mercury chloride with a concentration of 0.01, 0.05 and 0.1 ppm for 21 days. The rate of accumulation of macrophages in the tissue of kidney, spleen and liver were measured by the activity of N-acetylglucosaminidase. The results showed that the MMCs in the spleen and liver tissue of the carp fish potential as the bio-indicators of polluted environment ≥0.1 ppm of mercury chloride. The increased in accumulation of macrophages found in the kidney tissue of carp fish exposed to mercury chloride concentration of 0.01, 0.05 and 0.1 ppm, although no significant difference with control (0 ppm). The suppressive effect of the accumulation of immune response showed at the carp fish liver tissue macrophages which were exposed to mercury chloride lower than carp fish that were not exposed.

  17. An Ex Vivo Model for Studying Hepatic Schistosomiasis and the Effect of Released Protein from Dying Eggs

    PubMed Central

    Gobert, Geoffrey N.; Nawaratna, Sujeevi K.; Harvie, Marina; Ramm, Grant A.; McManus, Donald P.

    2015-01-01

    Background We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis. Methods and Findings Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5. Conclusions This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs. PMID:25965781

  18. PPAR-alpha agonist treatment increases trefoil factor family-3 expression and attenuates apoptosis in the liver tissue of bile duct-ligated rats.

    PubMed

    Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan

    2013-01-01

    Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.

  19. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo.

    PubMed

    Orct, Tatjana; Jurasović, Jasna; Micek, Vedran; Karaica, Dean; Sabolić, Ivan

    2017-03-01

    Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Teeth as biomonitors of selenium concentrations in tissues of beluga whales (Delphinapterus leucas).

    PubMed

    Kinghorn, April; Humphries, Murray M; Outridge, Peter; Chan, Hing Man

    2008-08-25

    Selenium (Se) is an essential element which has been shown to play an important role in protecting marine mammals against the toxic effects of mercury (Hg) and other metals. It has been suggested that metal concentration in marine mammal teeth can potentially be used as bioindicators for body burden. The objective of this study was to investigate the relationship between Se concentrations in beluga (Delphinapterus leucas) teeth and those previously measured in soft tissues (liver, kidney, muscle and muktuk). Tooth Hg concentrations are also measured, and the relationships between Se and Hg in teeth and soft tissues are examined. Se in the teeth of beluga was measured using hydride generation atomic fluorescence spectrometry (HG-AFS) and Hg in beluga teeth was measured by cold-vapour atomic absorption. Tooth Se concentrations ranged from 108 ng/g to 245 ng/g dry weight, and tooth Hg concentrations ranged from 10 to 189 ng/g dry weight. In the soft tissues, Se concentrations were highest in the liver, followed by kidney, muktuk, and muscle. There were significant correlations between tooth Se concentrations and animal age, tooth Se and liver and muscle Se, and between liver Se and animal age. The molar ratio of Hg:Se in the liver was found to be 0.70. This study is the first to measure Se in the teeth of a marine mammal species, and HG-AFS is found to be an effective technique for determining Se in beluga teeth. Tooth Se can be used as predictor for liver and muscle Se, although these relationships may be strongly influenced by the association of Se with Hg in marine mammal tissues. This study contributes to an increased understanding of the storage and metabolism of Se in marine mammals.

  1. Evaluation of contralateral kidney, liver and lung after extracorporeal shock wave lithotripsy in rabbits.

    PubMed

    Senyucel, M F; Boybeyi, O; Ayva, S; Aslan, M K; Soyer, T; Demet, A I; Kısa, U; Basar, M; Cakmak, M A

    2013-10-01

    An experimental study was carried out to evaluate the effects of extracorporeal shock wave lithotripsy (ESWL) on contralateral kidney, liver and lung by histopathological and biochemical methods. Twelve New Zealand rabbits were allocated to two groups (n = 6). Tissues of control group (CG, n = 6) were harvested without any intervention. In ESWL group (EG), right kidneys were exposed to 3,000 shock waves at 14 kV energy using electro-hydraulic type ESWL device three times every other day. Both kidneys, liver, and right lobe of lung tissues in EG were harvested on seventh day. Kidneys were examined histopathologically for presence of glomerular and tubular injury, interstitial edema, congestion, inflammation and fibrosis. Livers were examined for hepatocyte vacuolization, congestion, portal inflammation and fibrosis. Lung tissues were examined for loss of normal structure, emphysema, interstitial congestion-edema, prominent alveolar septal vessels, interstitial inflammation, intra-alveolar hemorrhage, intraluminal hemorrhage, peribronchial edema, congestion, inflammation in bronchial wall and epithelial desquamation. Biochemical analysis of tissue samples was performed for oxidative injury markers. Histopathological evaluations revealed that tubular injury was found in both shocked and contralateral kidneys (p < 0.05). EG showed higher grades of portal fibrosis in liver and higher grades of peribronchial congestion in lung when compared to CG (p < 0.05). Biochemical evaluations of both kidneys showed that malondialdehyde levels were higher in EG than in CG (p < 0.05). ESWL causes histopathologic alterations both in shocked and contralateral kidneys. Extrarenal tissues such as liver and lung can be affected by shock waves histopathologically and oxidative injury of contralateral kidney may occur acutely after ESWL.

  2. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.

    PubMed

    Watson, David E; Hunziker, Rosemarie; Wikswo, John P

    2017-10-01

    Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates; and mechanism of action of drug candidates. Impact statement Microphysiological systems (MPS), which include engineered organoids and both individual and coupled organs-on-chips and tissue chips, are a rapidly growing topic of research that addresses the known limitations of conventional cellular monoculture on flat plastic - a well-perfected set of techniques that produces reliable, statistically significant results that may not adequately represent human biology and disease. As reviewed in this article and the others in this thematic issue, MPS research has made notable progress in the past three years in both cell sourcing and characterization. As the field matures, currently identified challenges are being addressed, and new ones are being recognized. Building upon investments by the Defense Advanced Research Projects Agency, National Institutes of Health, Food and Drug Administration, Defense Threat Reduction Agency, and Environmental Protection Agency of more than $200 million since 2012 and sizable corporate spending, academic and commercial players in the MPS community are demonstrating their ability to meet the translational challenges required to apply MPS technologies to accelerate drug development and advance toxicology.

  3. MiR-525-3p Enhances the Migration and Invasion of Liver Cancer Cells by Downregulating ZNF395

    PubMed Central

    Pang, Fei; Zha, Ruopeng; Zhao, Yingjun; Wang, Qifeng; Chen, Di; Zhang, Zhenfeng; Chen, Taoyang; Yao, Ming; Gu, Jianren; He, Xianghuo

    2014-01-01

    Liver cancer is one of leading causes of cancer-related deaths. A deeper mechanistic understanding of liver cancer could lead to the development of more effective therapeutic strategies. In our previous work, we screened 646 miRNAs and identified 11 that regulate liver cancer cell migration. The current study shows that miR-525-3p is frequently up-regulated in liver cancer tissues, and enhanced expression of miR-525-3p can promote liver cancer cell migration and invasion. Zinc finger protein 395 (ZNF395) is the direct functional target gene for miR-525-3p, and it is frequently down-regulated in liver cancer tissues. High expression of ZNF395 can significantly inhibit while knockdown of ZNF395 expression can markedly enhance the migration and invasion of liver cancer cells, suggesting that ZNF395 suppresses metastasis in liver cancer. Down-regulation of ZNF395 can mediate miR-525-3p induced liver cancer cell migration and invasion. In conclusion, miR-525-3p promotes liver cancer cell migration and invasion by directly targeting ZNF395, and the fact that miR-525-3p and ZNF395 both play important roles in liver cancer progression makes them potential therapeutic targets. PMID:24599008

  4. Prolonged Ischemia Triggers Necrotic Depletion of Tissue Resident Macrophages to Facilitate Inflammatory Immune Activation in Liver Ischemia Reperfusion Injury

    PubMed Central

    Yue, Shi; Zhou, Haoming; Wang, Xuehao; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.; Zhai, Yuan

    2017-01-01

    Although mechanisms of immune activation against liver ischemia reperfusion injury (IRI) have been studied extensively, questions regarding liver resident macrophages, i.e., Kupffer cells, remain controversial. Recent progress in the biology of tissue resident macrophages implicates homeostatic functions of KCs. This study aims to dissect responses and functions of KCs in liver IRI. In a murine liver partial warm ischemia model, we analyzed liver resident vs. infiltrating macrophages by fluorescence-activated cell sorting (FACS) and immunofluorescence staining. Our data showed that liver immune activation by IR was associated with not only infiltrations/activations of peripheral macrophages (iMØ), but also necrotic depletion of KCs. Inhibition of Receptor Interacting Protein 1 (RIP1) by necrostatin-1s protected KCs from ischemia-induce depletion, resulting in the reduction of iMØ infiltration, suppression of pro-inflammatory immune activation and protection of livers from IRI. The depletion of KCs by clodronate-liposomes abrogated these effects of Nec-1s. Additionally, liver reconstitutions with KCs post-ischemia exerted anti-inflammatory/cytoprotective effects against IRI. These results reveal a unique response of KCs against liver IR, i.e., RIP-1-dependent necrosis, which constitutes a novel mechanism of liver inflammatory immune activation in the pathogenesis of liver IRI. PMID:28289160

  5. Detection of hepatitis C virus RNA using ligation-dependent polymerase chain reaction in formalin-fixed, paraffin-embedded liver tissues.

    PubMed Central

    Park, Y. N.; Abe, K.; Li, H.; Hsuih, T.; Thung, S. N.; Zhang, D. Y.

    1996-01-01

    Reverse transcription polymerase chain reaction (RT-PCR) has been used to detect hepatitis C virus (HCV) sequences in liver tissue. However, RT-PCR has a variable detection sensitivity, especially on routinely processed formalin-fixed, paraffin-embedded (FFPE) specimens. RNA-RNA and RNA-protein cross-links formed during formalin fixation is the major limiting factor preventing reverse trans criptase from extending the primers. To overcome this problem, we applied the ligation-dependent PCR (LD-PCR) for the detection of HCV RNA in FFPE liver tissue. This method uses two capture probes for RNA isolation and two hemiprobes for the subsequent PCR. Despite cross-links, the capture probes and the hemiprobes are able to form hybrids with HCV RNAs released from the FFPE tissue. The hybrids are isolated through binding of the capture probes to paramagnetic beads. The hemiprobes are then ligated by a T4 DNA ligase to form a full probe that serves as a template for the Taq DNA polymerase. A total of 22 FFPE liver specimens, 21 with hepatocellular carcinoma (HCC) and 1 with biliary cirrhosis secondary to bile duct atresia were selected for this study, of which 13 patients were HCV seropositive and 9 seronegative. HCV RNA was detectable by ID-PCR from all 13 HCV-seropositive HCCs and from 5 of 8 HCV-seronegative HCCs but not from the HCV-seronegative liver with biliary atresia. By contrast, RT-PCR detected HCV sequences in only 5 of the HCV-sero-positive and in 1 of the HCV-seronegative HCCs. To resolve the discordance between the LD-PCR and RT-PCR results, RT-PCR was performed on frozen liver tissue of the discrepant specimens, which confirmed the LD-PCR positive results. In conclusion, LD-PCR is a more sensitive method than RT-PCR for the detection of HCV sequences in routinely processed liver tissues. A high rate of HCV infection (86%) is found in HCC specimens, indicating a previously underestimated role of HCV in HCC pathogenesis. Images Figure 2 PMID:8909238

  6. Fatal methanol poisoning: features of liver histopathology.

    PubMed

    Akhgari, Maryam; Panahianpour, Mohammad Hadi; Bazmi, Elham; Etemadi-Aleagha, Afshar; Mahdavi, Amirhosein; Nazari, Saeed Hashemi

    2013-03-01

    Methanol poisoning has become a considerable problem in Iran. Liver can show some features of poisoning after methanol ingestion. Therefore, our concern was to examine liver tissue histopathology in fatal methanol poisoning cases in Iranian population. In this study, 44 cases of fatal methanol poisoning were identified in a year. The histological changes of the liver were reviewed. The most striking features of liver damage by light microscopy were micro-vesicular steatosis, macro-vesicular steatosis, focal hepatocyte necrosis, mild intra-hepatocyte bile stasis, feathery degeneration and hydropic degeneration. Blood and vitreous humor methanol concentrations were examined to confirm the proposed history of methanol poisoning. The majority of cases were men (86.36%). In conclusion, methanol poisoning can cause histological changes in liver tissues. Most importantly in cases with mean blood and vitreous humor methanol levels greater than 127 ± 38.9 mg/dL more than one pathologic features were detected.

  7. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.

    PubMed

    Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas

    2017-04-01

    The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).

  8. Cadmium induces histopathological injuries and ultrastructural changes in the liver of freshwater turtle (Chinemys reevesii).

    PubMed

    Huo, Junfeng; Dong, Aiguo; Wang, Yonghui; Lee, Shaochin; Ma, Cungen; Wang, Lan

    2017-11-01

    The study investigated the histopathological and ultrastructural lesions of liver of freshwater turtle Chinemys reevesii exposed to Cadmium (Cd). The animals were exposed to 0 mg kg -1 (0.85% normal saline (NS)), 7.5 mg kg -1 , 15 mg kg -1 , 30 mg kg -1 Cd chloride separately by intraperitoneal injection. Liver samples were collected for examination of lesions under light and electronic microscopes. Results showed that liver tissues from Cd -treated animals presented various degrees of histopathological lesions. Liver cells showed swollen, degeneration and necrosis with dose-dependent manner. Under electronic microscope, nucleus, mitochondria and rough endoplasmic reticulum presented various degrees of lesions with dose-dependent manner. In conclusion, Cd has significant toxicity on liver tissue of the freshwater turtle, which occurs in a dose-dependent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Quantitative analysis of ultrasonic images of fibrotic liver using co-occurrence matrix based on multi-Rayleigh model

    NASA Astrophysics Data System (ADS)

    Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.

  10. Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats

    PubMed Central

    Wu, Chunyan; Hwang, Su Hyeon; Jia, Yaoyao; Choi, Joobong; Kim, Yeon-Ji; Choi, Dahee; Pathiraja, Duleepa; Choi, In-Geol; Koo, Seung-Hoi

    2017-01-01

    Olfactory receptors (ORs) are present in tissues outside the olfactory system; however, the function of these receptors remains relatively unknown. Here, we determined that olfactory receptor 544 (Olfr544) is highly expressed in the liver and adipose tissue of mice and regulates cellular energy metabolism and obesity. Azelaic acid (AzA), an Olfr544 ligand, specifically induced PKA-dependent lipolysis in adipocytes and promoted fatty acid oxidation (FAO) and ketogenesis in liver, thus shifting the fuel preference to fats. After 6 weeks of administration, mice fed a high-fat diet (HFD) exhibited a marked reduction in adiposity. AzA treatment induced expression of PPAR-α and genes required for FAO in the liver and induced the expression of PPAR-γ coactivator 1-α (Ppargc1a) and uncoupling protein-1 (Ucp1) genes in brown adipose tissue (BAT). Moreover, treatment with AzA increased insulin sensitivity and ketone body levels. This led to a reduction in the respiratory quotient and an increase in the FAO rate, as indicated by indirect calorimetry. AzA treatment had similar antiobesogenic effects in HFD-fed ob/ob mice. Importantly, AzA-associated metabolic changes were completely abrogated in HFD-fed Olfr544–/– mice. To our knowledge, this is the first report to show that Olfr544 orchestrates the metabolic interplay between the liver and adipose tissue, mobilizing stored fats from adipose tissue and shifting the fuel preference to fats in the liver and BAT. PMID:28990936

  11. Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (Humulus lupulus) in vitro and in vivo

    PubMed Central

    Dietz, Birgit M.; Hagos, Ghenet K.; Eskra, Jillian N.; Wijewickrama, Gihani T.; Anderson, Jeffrey R.; Nikolic, Dejan; Guo, Jian; Wright, Brian; Chen, Shao-Nong; Pauli, Guido F.; van Breemen, Richard B.; Bolton, Judy L.

    2013-01-01

    Scope Hops contain the phytoestrogen, 8-prenylnaringenin, and the cytoprotective compound, xanthohumol (XH). XH induces the detoxification enzyme, NAD(P)H-quinone oxidoreductase (NQO1) in vitro; however, the tissue distribution of XH and 8-prenylnaringenin and their tissue specific activity have not been analyzed. Methods and results A standardized hop extract (p.o.) and XH (s.c.) were administered to Sprague-Dawley rats over four days. LC-MS-MS analysis of plasma, liver and mammary gland revealed that XH accumulated in liver and mammary glands. Compared with the low level in the original extract, 8-prenylnaringenin was enriched in the tissues. Hops and XH induced NQO1 in the liver, while only hops reduced NQO1 activity in the mammary gland. Mechanistic studies revealed that hops modulated NQO1 through three mechanisms. In liver cells, 1) XH modified Keap1 leading to Nrf2 translocation and antioxidant response element (ARE) activation; 2) hop-mediated ARE induction was partially mediated through phosphorylation of Nrf2 by PKC; 3) in breast cells, 8-prenylnaringenin reduced NQO1 likely through binding to ERα, recruiting Nrf2, and downregulating ARE-regulated genes. Conclusions XH and 8-prenylnaringenin in dietary hops are bioavailable to the target tissues. While hops and XH might be cytoprotective in the liver, 8-prenylnaringenin seems responsible for hop-mediated NQO1 reduction in the mammary gland. PMID:23512484

  12. Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute liver failure of rats.

    PubMed

    Li, Dongliang; Fan, Jingjing; He, Xiuhua; Zhang, Xia; Zhang, Zhiqiang; Zeng, Zhiyu; Ruan, Mei; Cai, Lirong

    2015-01-01

    To evaluate the therapeutic efficacy of rat bone marrow mesenchymal stem cells (BMSCs) induced into hepatocyte-like cells and of un-induced BMSCs in acute liver failure rats. BMSCs in highly homogenous passage 3 were cultured using the whole bone marrow adherent culture method. Hepatic-related characters were confirmed with morphology, RT-PCR analysis, glycogen staining and albumin (ALB) immunofluorescence assay. Carbon tetrachloride (CCl4) was injected intraperitoneally to establish an acute rat liver failure model. Hepatocyte-like cells or un-induced BMSCs were respectively injected into the models to examine rats' appearance, liver function assay and liver tissue pathology. Hepatocyte-like morphology, higher expression of cytokeratin 18 (CK18) mRNA and ALB protein, and glycogen accumulation were confirmed in the induced BMSCs. The transplanted DAPI-labeled BMSCs were localized in the liver tissue 3-14 days after transplantation. The levels of liver function indicators (AST, ALT, ALP, and TBIL) from transplanted rats were significant decreased and pathology was improved, indicating the recovery of liver function. However, the differences were statistically insignificant. Both hepatocyte-like cells and un-induced BMSCs had a similarly positively therapeutic efficacy on liver regeneration in rat liver failure model.

  13. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review.

    PubMed

    Taatjes, Douglas J; Roth, Jürgen

    2016-03-01

    We provide here our annual review/synopsis of all of the articles published in Histochemistry and Cell Biology (HCB) for the preceding year. In 2015, HCB published 102 articles, representing a wide variety of topics and methodologies. For ease of access to these differing topics, we have created categories, as determined by the types of articles presented to provide a quick index representing the general areas covered. This year, these categories include: (1) advances in methodologies; (2) molecules in health and disease; (3) organelles, subcellular structures, and compartments; (4) the nucleus; (5) stem cells and tissue engineering; (6) cell cultures: properties and capabilities; (7) connective tissues and extracellular matrix; (8) developmental biology; (9) nervous system; (10) musculoskeletal system; (11) respiratory and cardiovascular system; (12) liver and gastrointestinal tract; and (13) male and female reproductive systems. Of note, the categories proceed from methods development, to molecules, intracellular compartments, stem cells and cell culture, extracellular matrix, developmental biology, and finishing with various organ systems, hopefully presenting a logical journey from methods to organismal molecules, cells, and whole tissue systems.

  14. The effect of silymarin on hepatic regeneration after partial hepatectomy: is silymarin effective in hepatic regeneration?

    PubMed Central

    Cetinkunar, Suleyman; Tokgoz, Serhat; Bilgin, Bulent Caglar; Erdem, Hasan; Aktimur, Recep; Can, Serpil; Erol, Huseyin Serkan; Isgoren, Atilla; Sozen, Selim; Polat, Yilmaz

    2015-01-01

    Aim: Silymarin from Silybum marianum was found to reduce liver injury. The aim of the present study was to investigate the effects of silymarin on hepatic regeneration in partially hepatectomized rats. Methods: Thirty Wistar-Albino rats were divided into 3 groups of 10 animals as sham, control and experimental groups. In the sham group (n=10) abdominal incision was closed after laparotomy. In the control group (n=10), the rats underwent 70% hepatectomy after laparotomy. In the experimental group (n=10) after partial 70% hepatectomy, silymarin (200 mg/kg/d) were given to rats for 10 days. Rats in three groups were sacrificed on 10 days. Aspartate (AST) and alanine transaminase (ALT), gamma glutamyl transferase (GGT), ALP, LDH and total bilirubin levels were measured using intracardiac blood samples. Tissue malondialdehyde (MDA) and tissue glutathion (GSH) and Superoxide dismutase (SOD) levels were measured. To reveal the increase in the mass of the remnant liver tissue in the control and experimental groups relative weight of the liver was calculated. Histopathological analysis of the liver was performed using a semi-quantitative scoring system. Results: A statistically significant difference among three groups was not shown for AST and ALT levels. A statistically significant difference was found between the groups as for total bilirubin and gamma glutamyl transferase levels. Increases in relative liver weights were seen with time in Groups 2 and 3. A statistically significant difference was not found for tissue malondialdehyde, Glutathion and Superoxide dismutase levels between hepatectomy and hepatectomy + silymarin groups. On liver tissue sections of the rats in the hepatectomy + silymarin group, increased regeneration and lipid peroxidation were observed accompanied by decreased antioxidant response. Conclusion: It has been observed that silymarin with many established functions such as antiproliferative, anti-inflammatory and energy antioxidant effects, does not contributed to proliferative regeneration of the liver-which has very important metabolic functions -after partial hepatectomy; instead it will decrease serum levels of transaminases. PMID:25932204

  15. The role of ST2 and ST2 genetic variants in schistosomiasis.

    PubMed

    Long, Xin; Daya, Michelle; Zhao, Jianping; Rafaels, Nicholas; Liang, Huifang; Potee, Joseph; Campbell, Monica; Zhang, Bixiang; Araujo, Maria Ilma; Oliveira, Ricardo R; Mathias, Rasika A; Gao, Li; Ruczinski, Ingo; Georas, Steve N; Vercelli, Donata; Beaty, Terri H; Barnes, Kathleen C; Chen, Xiaoping; Chen, Qian

    2017-11-01

    Chronic schistosomiasis and its severe complication, periportal fibrosis, are characterized by a predominant T h 2 response. To date, specific single nucleotide polymorphisms in ST2 have been some of the most consistently associated genetic variants for asthma. We investigated the role of ST2 (a receptor for the T h 2 cytokine IL-33) in chronic and late-stage schistosomiasis caused by Schistosoma japonicum and the potential effect of ST2 genetic variants on stage of disease and ST2 expression. We recruited 947 adult participants (339 with end-stage schistosomiasis and liver cirrhosis, 307 with chronic infections without liver fibrosis, and 301 health controls) from a S japonicum-endemic area (Hubei, China). Six ST2 single nucleotide polymorphisms were genotyped. Serum soluble ST2 (sST2) was measured by ELISA, and ST2 expression in normal liver tissues, Hepatitis B virus-induced fibrotic liver tissues, and S japonicum-induced fibrotic liver tissues was measured by immunohistochemistry. We found sST2 levels were significantly higher in the end-stage group (36.04 [95% CI, 33.85-38.37]) compared with chronic cases and controls (22.7 [95% CI, 22.0-23.4], P < 1E-10). In addition, S japonicum-induced fibrotic liver tissues showed increased ST2 staining compared with normal liver tissues (P = .0001). Markers rs12712135, rs1420101, and rs6543119 were strongly associated with sST2 levels (P = 2E-10, 5E-05, and 6E-05, respectively), and these results were replicated in an independent cohort from Brazil living in a S mansoni endemic region. We demonstrate for the first time that end-stage schistosomiasis is associated with elevated sST2 levels and show that ST2 genetic variants are associated with sST2 levels in patients with schistosomiasis. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Systemic effect of mineral aggregate-based cements: histopathological analysis in rats

    PubMed Central

    Garcia, Lucas da Fonseca Roberti; Huck, Claudia; Magalhães, Fernando Augusto Cintra; de Souza, Pedro Paulo Chaves; de Souza Costa, Carlos Alberto

    2017-01-01

    Abstract Objective: Several studies reported the local tissue reaction caused by mineral aggregate-based cements. However, few studies have investigated the systemic effects promoted by these cements on liver and kidney when directly applied to connective tissue. The purpose of this in vivo study was to investigate the systemic effect of mineral aggregate-based cements on the livers and kidneys of rats. Material and Methods: Samples of Mineral Trioxide Aggregate (MTA) and a calcium aluminate-based cement (EndoBinder) containing different radiopacifiers were implanted into the dorsum of 40 rats. After 7 and 30 d, samples of subcutaneous, liver and kidney tissues were submitted to histopathological analysis. A score (0-3) was used to grade the inflammatory reaction. Blood samples were collected to evaluate changes in hepatic and renal functions of animals. Results: The moderate inflammatory reaction (2) observed for 7 d in the subcutaneous tissue decreased with time for all cements. The thickness of inflammatory capsules also presented a significant decrease with time (P<.05). Systemically, all cements caused adverse inflammatory reactions in the liver and kidney, being more evident for MTA, persisting until the end of the analysis. Liver functions increased significantly for MTA during 30 d (P<.05). Conclusion: The different cements induced to a locally limited inflammatory reaction. However, from the systemic point of view, the cements promoted significant inflammatory reactions in the liver and kidney. For MTA, the reactions were more accentuated. PMID:29211283

  17. Seasonal changes in enzymes of lipogenesis and triacylglycerol synthesis in the golden-mantled ground squirrel (Spermophilus lateralis).

    PubMed

    Wang, P; Walter, R D; Bhat, B G; Florant, G L; Coleman, R A

    1997-10-01

    In order to determine whether critical enzyme activities of glycerolipid synthesis change seasonally in the golden-mantled ground squirrel (Spermophilus lateralis), we collected summer and winter samples of liver, brown adipose tissue (BAT), and white adipose tissue (WAT). Compared with fatty acid synthase activity during hibernation, summer activities were 2.5- to 8-fold higher in adipose tissue and liver. Diacylglycerol acyltransferase (DGAT) activity was 2.6-fold higher in WAT during the summer, consistent with increased seasonal triacylglycerol storage, but the activity did not change in liver or BAT, suggesting that in these tissues, triacylglycerol synthesis is equally active in summer and winter. Lack of change in acyl-CoA synthetase in liver and BAT may reflect high synthetic rates for acyl-CoAs that are destined in the summer for glycerolipid synthesis and in the winter for beta-oxidation. Monoacylglycerol acyltransferase (MGAT) activity increased significantly in both liver and WAT during the summer but decreased in BAT. Although the changes were consistent with active year-round triacylglycerol synthesis, the higher summer MGAT activity observed in the squirrel liver and WAT suggest that MGATs function may not be limited to conserving essential fatty acids during physiological states of lipolysis. Seasonal changes observed in the ground squirrel were similar to those previously reported in the yellow-bellied marmot (Marmota flaviventris), confirming that important adjustments occur in energy metabolism necessitated by long seasonal hibernation.

  18. The Effect of Parasite Infection on Stable Isotope Turnover Rates of δ15N, δ13C and δ34S in Multiple Tissues of Eurasian Perch Perca fluviatilis.

    PubMed

    Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca

    2017-01-01

    Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and between infected and parasite-free individuals. These results contribute to our understanding of data obtained from field and commercial hatcheries; and strongly improve the applicability of the stable isotope method in understanding life-history and trophic ecology of fish populations.

  19. The Effect of Parasite Infection on Stable Isotope Turnover Rates of δ15N, δ13C and δ34S in Multiple Tissues of Eurasian Perch Perca fluviatilis

    PubMed Central

    Yohannes, Elizabeth; Grimm, Claudia; Rothhaupt, Karl-Otto; Behrmann-Godel, Jasminca

    2017-01-01

    Stable isotope analysis of commercially and ecologically important fish can improve understanding of life-history and trophic ecology. However, accurate interpretation of stable isotope values requires knowledge of tissue-specific isotopic turnover that will help to describe differences in the isotopic composition of tissues and diet. We performed a diet-switch experiment using captive-reared parasite-free Eurasian perch (Perca fluviatilis) and wild caught specimens of the same species, infected with the pike tapeworm Triaenophorus nodulosus living in host liver tissue. We hypothesize that metabolic processes related to infection status play a major role in isotopic turnover and examined the influence of parasite infection on isotopic turn-over rate of carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) in liver, blood and muscle. The δ15N and δ13C turnovers were fastest in liver tissues, followed by blood and muscle. In infected fish, liver and blood δ15N and δ13C turnover rates were similar. However, in infected fish, liver and blood δ13C turnover was faster than that of δ15N. Moreover, in infected subjects, liver δ15N and δ13C turnover rates were three to five times faster than in livers of uninfected subjects (isotopic half-life of ca.3-4 days compared to 16 and 10 days, respectively). Blood δ34S turnover rate were about twice faster in non-infected individuals implying that parasite infection could retard the turnover rate of δ34S and sulphur containing amino acids. Slower turnover rate of essential amino acid could probably decrease individual immune function. These indicate potential hidden costs of chronic and persistent infections that may have accumulated adverse effects and might eventually impair life-history fitness. For the first time, we were able to shift the isotope values of parasites encapsulated in the liver by changing the dietary source of the host. We also report variability in isotopic turnover rates between tissues, elements and between infected and parasite-free individuals. These results contribute to our understanding of data obtained from field and commercial hatcheries; and strongly improve the applicability of the stable isotope method in understanding life-history and trophic ecology of fish populations. PMID:28046021

  20. Simultaneous stimulated Raman scattering and higher harmonic generation imaging for liver disease diagnosis without labeling

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Wang, Zi; Zheng, Wei; Huang, Zhiwei

    2014-02-01

    Nonlinear optical microscopy (e.g., higher harmonic (second-/third- harmonic) generation (HHG), simulated Raman scattering (SRS)) has high diagnostic sensitivity and chemical specificity, making it a promising tool for label-free tissue and cell imaging. In this work, we report a development of a simultaneous SRS and HHG imaging technique for characterization of liver disease in a bile-duct-ligation rat-modal. HHG visualizes collagens formation and reveals the cell morphologic changes associated with liver fibrosis; whereas SRS identifies the distributions of hepatic fat cells formed in steatosis liver tissue. This work shows that the co-registration of SRS and HHG images can be an effective means for label-free diagnosis and characterization of liver steatosis/fibrosis at the cellular and molecular levels.

Top