Sample records for engineered materials abstracts

  1. Material science and Condensed matter Physics. 8th International Conference. Abstracts.

    NASA Astrophysics Data System (ADS)

    Kulyuk, L. L.; Paladi, Florentin; Canter, Valeriu; Nikorich, Valentina; Filippova, Irina

    2016-08-01

    The book includes the abstracts of the communications presented at the 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), a traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP).A total of 346 abstracts has been included in the book. The Conference programm included plenary lectures, topical keynote lectures, contributed oral and poster presentations distributed into 7 sections: * Condensed Matter Theory; * Advanced Bulk Materials; * Design and Structural Characterization of Materials; * Solid State Nanophysics and Nanotechnology; * Energy Conversion and Storage. Solid State Devices; * Surface Engineering and Applied Electrochemistry; * Digital and Optical holography: Materials and Methods. The abstracts are arranged according to the sections mentioned above. The Abstracts book includes a table of matters at the beginning of the book and an index of authors at the finish of the book.

  2. Materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramley, A.N.

    1985-01-01

    This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less

  3. Formal Abstraction in Engineering Education--Challenges and Technology Support

    ERIC Educational Resources Information Center

    Neuper, Walther A.

    2017-01-01

    This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…

  4. Materials technology assessment for stirling engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.

    1977-01-01

    A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.

  5. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov Websites

    ChairMaterials Science and Engineering(414) 229-2668nidal@uwm.eduEng & Math Sciences E351 profile photo (414) 229-2615jhchen@uwm.eduEng & Math Sciences 1225 profile photo Benjamin Church, Ph.D.Associate ProfessorMaterials Science & Engineering(414) 229-2825church@uwm.eduEng & Math Sciences EMS 1175 profile

  6. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  7. Bioinspired engineering of thermal materials.

    PubMed

    Tao, Peng; Shang, Wen; Song, Chengyi; Shen, Qingchen; Zhang, Fangyu; Luo, Zhen; Yi, Nan; Zhang, Di; Deng, Tao

    2015-01-21

    In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Abstraction and Concreteness in the Everyday Mathematics of Structural Engineers.

    ERIC Educational Resources Information Center

    Gainsburg, Julie

    The everyday mathematics processes of structural engineers were studied and analyzed in terms of abstraction. A main purpose of the study was to explore the degree to which the notion of a gap between school and everyday mathematics holds when the scope of practices considered "everyday" is extended. J. Lave (1988) promoted a methodology…

  9. CUBE (Computer Use By Engineers) symposium abstracts. [LASL, October 4--6, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruminer, J.J.

    1978-07-01

    This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories.

  10. Graphene-based materials for tissue engineering.

    PubMed

    Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin; Khoshakhlagh, Parastoo; Akbari, Mohsen; Nasajpour, Amir; Zhang, Yu Shrike; Tamayol, Ali; Khademhosseini, Ali

    2016-10-01

    Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications. Published by Elsevier B.V.

  11. Annual Quality Assurance Conference Abstracts by Barbara Marshik

    EPA Pesticide Factsheets

    25th Annual Quality Assurance Conference. Abstracts: Material and Process Conditions for Successful Use of Extractive Sampling Techniques and Certification Methods Errors in the Analysis of NMHC and VOCs in CNG-Based Engine Emissions by Barbara Marshik

  12. Application of Advanced Materials in Petroleum Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Gufan; Di, Weina; Wang, Minsheng

    With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.

  13. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 42.

    DTIC Science & Technology

    1977-01-27

    Films 37 Titanium 38 Welding • • 42 Miscellaneous 43 -a - [III - USSR - 21- G S & T] Aluminum and Its Alloys USSR UDC 669.715:621.74...GAYNUTDINOV, R. G . and GOLUBNICHIY, A. V., Kiev Institute of Civil Aviation Engineering [Abstract] Results are presented from a study of the influence of...Sep-Oct 76 pp 38-41 manuscript received 16 Jul 75 TELESHOV, V. V. and KUDRYASHOV, V. G ., All-Union Institute of Light Alloys, Moscow [Abstract] A

  14. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  15. Recyclable automobiles. (Latest citations from Engineered Materials Abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 58 citations and includes a subject term index and title list.)

  16. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Abstracts of Review Articles and Educational Materials in Physiology

    ERIC Educational Resources Information Center

    Physiology Teacher, 1977

    1977-01-01

    Contained are 99 abstracts of review articles, texts, books, manuals, learning programs, and audiovisual material used in teaching physiology. Specific fields include cell physiology, circulation, comparative physiology, development and aging, endocrinology and metabolism, environmental and exercise physiology, gastrointestinal physiology, muscle…

  18. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  19. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 32

    DTIC Science & Technology

    1977-05-25

    serial publication contains abstracts of articles and news items from USSR and Eastern Europe scientific and technical journals on the specific...loads ( internal pressure plus pure bending). A study is made of a broad range of problems involved in the design of torroidal, spherical and...and protec- tion system are regulated by the International Electrical Engineering Com- mission. Figure 1; tables 2; references 12. 18 Construction

  1. Abstracts and research accomplishments of university coal research projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  2. PREFACE: 2013 International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2013)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Rizwan Hussain, Raja; Pandiangan, Tumpal; Desai, Amit

    2013-06-01

    Banner The 2013 International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2013), was held at the Grand Royal Panghegar Hotel, Bandung, Indonesia, from 9-10 March 2013. The MOIME 2013 conference brought together researchers, engineers and scientists in the field from around the world. MOIME 2013 aimed to promote interaction between the theoretical, experimental, and applied communities, so that a high level exchange was achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that related to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 103 papers and after rigorous review, 45 papers were accepted. The participants came from 16 countries. There were six Plenary and Invited Speakers. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the conference sponsors for the financial support that contributed to the success of MOIME 2013. The Editors of the MOIME 2013 Dr Ford Lumban Gaol Dr Raja Rizwan Hussain Tumpal Pandiangan Dr Amit Desai The PDF contains the abstracts from the plenary and invited articles and the workshop.

  3. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  4. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  5. Materials & Engineering: Propelling Innovation MRS Bulletin Special Issue Session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Gopal

    Materials enable engineering; and, engineering in turn depends on materials to transform design concepts and equations into physical entities. This relationship continues to grow with expanding societal demand for new products and processes. MRS Bulletin, a publication of the Materials Research Society (MRS) and Cambridge University Press, planned a special issue for December 2015 on Materials and Engineering: Propelling Innovation. This special issue of MRS Bulletin captured the unique relationship between materials and engineering, which are closely intertwined. A special half day session at the 2015 MRS Fall Meeting in Boston captured this discussion through presentations by high level expertsmore » followed by a panel discussion on what it takes to translate materials discoveries into products to benefit society. The Special Session included presentations by experts who are practitioners in materials as well as engineering applications, followed by a panel discussion. Participants discussed state-of-the-art in materials applications in engineering, as well as how engineering needs have pushed materials developments, as also reflected in the 20 or so articles published in the special issue of MRS Bulletin. As expected, the discussions spanned the broad spectrum of materials and provided very strong interdisciplinary interactions and discussions by participants and presenters.« less

  6. Materials science and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliancemore » of Bulk Kel-E.« less

  7. Preparing technicians for engineering materials technology

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  8. Design of Molecular Materials: Supramolecular Engineering

    NASA Astrophysics Data System (ADS)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  9. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 33.

    DTIC Science & Technology

    1977-07-06

    the condensation mode. Analysis is presented of the expediency of creating nuclear power plants for heat supply. Initial data are presented for this...boilers by two-pipe system, from nuclear electric power plant single-pipe system. Table 1; references 3. 69 USSR UDC 621.311.22:621.039.001.5 ANALYSIS ...engineering materials and equipment. 17. Key Words and Document Analysis . 17a. Descriptors USSR Eastern Europe Aeronautics Industrial Engineering Marine

  10. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  11. Natural Origin Materials for Osteochondral Tissue Engineering.

    PubMed

    Bonani, Walter; Singhatanadgige, Weerasak; Pornanong, Aramwit; Motta, Antonella

    2018-01-01

    Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.

  12. Jet engine applications for materials with nanometer-scale dimensions

    NASA Technical Reports Server (NTRS)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  13. Jet engine applications for materials with nanometer-scale dimensions

    NASA Technical Reports Server (NTRS)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  14. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    NASA Astrophysics Data System (ADS)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  15. Sessions with Associated Abstracts by Day: Teaching Materials and Methods.

    ERIC Educational Resources Information Center

    Physiologist, 1984

    1984-01-01

    Presented are abstracts of five papers on teaching materials/methods presented at the 35th annual meeting of the American Physiological Society. Topic areas include expert system used as a teacher/consultant in hemostasis problems, computer assisted testing, and excitation/conduction properties of membranes as illustrated by the compound action…

  16. Microfabrication of hierarchical structures for engineered mechanical materials

    NASA Astrophysics Data System (ADS)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  17. Rural Career Guidance: Abstracts of Current Research, Materials, and Practices.

    ERIC Educational Resources Information Center

    Far West Lab. for Educational Research and Development, San Francisco, CA.

    The annotated bibliography provides a guide to the latest resource material, research findings, and/or developments in rural career guidance found in the ERIC system. Section I contains 158 citations and abstracts which have appeared in "Resources in Education" (RIE). RIE document resumes include the ERIC accession number, author(s), title,…

  18. Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database containsmore » over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.« less

  19. Architecture engineering of supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Li, Gong; Xue, Dongfeng

    2016-02-01

    The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.

  20. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  1. Facet‐Engineered Surface and Interface Design of Photocatalytic Materials

    PubMed Central

    Wang, Lili; Li, Zhengquan

    2016-01-01

    The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398

  2. Applications of smart materials in structural engineering.

    DOT National Transportation Integrated Search

    2003-10-01

    With the development of materials and technology, many new materials find their applications in civil engineering to deal with the deteriorating infrastructure. Smart material is a promising example that deserves a wide focus, from research to applic...

  3. Auto-ignition of hydrazine by engineering materials

    NASA Technical Reports Server (NTRS)

    Perkins, J. H.; Riehl, W. A.

    1978-01-01

    Hydrazine, being a monopropellant, can explode and/or detonate in contact with some materials. This has been generally recognized and minimized by testing the compatibility of engineering materials with hydrazine at ambient temperature. Very limited tests have been done at elevated temperatures. To assess the potential hazard of hydrazine leakage into a propulsion compartment (boattail), autoignition characteristics of hydrazine were tested on 18 engineering materials and coatings at temperatures of 120 C to over 330 C. Furthermore, since hydrazine can decompose violently in nitrogen or helium, common purging cannot assure safety. Therefore tests were also made in nitrogen. Detonations occurred on contact with five materials in air. Similar tests in nitrogen did not lead to ignition.

  4. Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering

    NASA Astrophysics Data System (ADS)

    Kainer, Karl U.

    2006-02-01

    Since the properties of MMCs can be directly designed "into" the material, they can fulfill all the demands set by design engineers. This book surveys the latest results and development possibilities for MMCs as engineering and functional materials, making it of utmost value to all materials scientists and engineers seeking in-depth background information on the potentials these materials have to offer in research, development and design engineering.

  5. Gelatin-Based Materials in Ocular Tissue Engineering.

    PubMed

    Rose, James B; Pacelli, Settimio; Haj, Alicia J El; Dua, Harminder S; Hopkinson, Andrew; White, Lisa J; Rose, Felicity R A J

    2014-04-17

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.

  6. Gelatin-Based Materials in Ocular Tissue Engineering

    PubMed Central

    Rose, James B.; Pacelli, Settimio; El Haj, Alicia J.; Dua, Harminder S.; Hopkinson, Andrew; White, Lisa J.; Rose, Felicity R. A. J.

    2014-01-01

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology. PMID:28788609

  7. Wood handbook : wood as an engineering material.

    Treesearch

    Forest Products Laboratory

    1999-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  8. Wood handbook : wood as an engineering material

    Treesearch

    Robert J. Ross; Forest Products Laboratory USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  9. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  10. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  11. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  12. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  13. The Teaching of Crystallography to Materials Scientists and Engineers.

    ERIC Educational Resources Information Center

    Wuensch, Bernhardt J.

    1988-01-01

    Provides a framework of the disciplines of materials science and engineering as they have developed. Discusses the philosophy, content, and approach to teaching these courses. Indicates the range of crystallographic topics contained in the materials science and engineering curriculum at the Massachussetts Institute of Technology. (CW)

  14. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    PubMed

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Contact engineering for 2D materials and devices.

    PubMed

    Schulman, Daniel S; Arnold, Andrew J; Das, Saptarshi

    2018-05-08

    Over the past decade, the field of two-dimensional (2D) layered materials has surged, promising a new platform for studying diverse physical phenomena that are scientifically intriguing and technologically relevant. Contacts are the communication links between these 2D materials and the three-dimensional world for probing and harnessing their exquisite electronic properties. However, fundamental challenges related to contacts often limit the ultimate performance and potential of 2D materials and devices. This article provides a comprehensive overview of the basic understanding and importance of contacts to 2D materials and various strategies for engineering and improving them. In particular, we elucidate the phenomenon of Fermi level pinning at the metal/2D contact interface, the Schottky versus Ohmic nature of the contacts and various contact engineering approaches including interlayer contacts, phase engineered contacts, and basal versus edge plane contacts, among others. Finally, we also discuss some of the relatively under-addressed and unresolved issues, such as contact scaling, and conclude with a future outlook.

  16. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE PAGES

    Song, Bo; Sanborn, Brett

    2018-05-07

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  17. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Sanborn, Brett

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  18. Materials, Processes, and Environmental Engineering Network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    Attention is given to the Materials, Processes, and Environmental Engineering Network (MPEEN), which was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory of NASA-Marshall. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. The data base is NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team (NOET) to be hazardous to the environment. The data base also contains the usage and performance characteristics of these materials.

  19. Material engineering and fabrication experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havn, T.

    1995-10-01

    Material selection for hydrocarbon and sea water systems is shortly described and experiences are explained. The risk of external stress corrosion cracking is discussed. Same is the need for isolation pipe spools to avoid galvanic corrosion. Possible corrosion as result of hot work reduction on platform modification work is discussed. Benefit from positive material identification is explained and the solution of a weld problem due to mix-up of filler material is shown. Experiences with cold bending and subsea material engineering are discussed and recommendations are given. Fracture mechanic techniques with purpose of avoiding costly replacement and repair welding are shownmore » by two examples. At the end the new cost reduction trend of using performance based specifications is shortly discussed with respect to material requirements.« less

  20. Evaluation and ranking of candidate ceramic wafer engine seal materials

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  1. Integrated computational materials engineering: Tools, simulations and new applications

    DOE PAGES

    Madison, Jonathan D.

    2016-03-30

    Here, Integrated Computational Materials Engineering (ICME) is a relatively new methodology full of tremendous potential to revolutionize how science, engineering and manufacturing work together. ICME was motivated by the desire to derive greater understanding throughout each portion of the development life cycle of materials, while simultaneously reducing the time between discovery to implementation [1,2].

  2. Designing ECM-mimetic Materials Using Protein Engineering

    PubMed Central

    Cai, Lei; Heilshorn, Sarah C.

    2014-01-01

    The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704

  3. Engineering Graphene Mechanical Systems

    DTIC Science & Technology

    2012-07-05

    strength material. On the basis of chemical /defect manipulation and recrystallization this technique allows wide-range engineering of mechanical... Engineering Graphene Mechanical Systems Maxim K. Zalalutdinov,† Jeremy T. Robinson,*,† Chad E. Junkermeier,‡ James C. Culbertson, Thomas L. Reinecke...Information ABSTRACT: We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically

  4. Advanced high temperature materials for the energy efficient automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Stephens, J. R.

    1984-01-01

    The Stirling Engine is under investigated jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling Engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion.

  5. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement VIII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials; related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and…

  6. Nondestructive ultrasonic characterization of engineering materials

    NASA Technical Reports Server (NTRS)

    Salama, K.

    1985-01-01

    The development of an ultrasonic method for the nondestructive characterization of mechanical properties of engineering material is described. The method utilizes the nonlinearity parameter measurement which describes the anharmonic behavior of the solid through measurements of amplitudes of the fundamental and of the generated second harmonic ultrasonic waves. The nonlinearity parameter is also directly related to the acoustoelastic constant of the solid which can be determined by measuring the linear dependence of ultrasonic velocity on stress. A major advantage of measurements of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes it more applicable for in-service nondestructive characterization. The relationships between the nonlinearity parameter of second-harmonic generation and the percentage of solid solution phase in engineering materials such as heat treatable aluminum alloys was established. The acoustoelastic constants are measured on these alloys for comparison and confirmation. A linear relationship between the nonlinearity parameter and the volume fraction of second phase precipitates in the alloys is indicated.

  7. Introductory Circuit Analysis Learning from Abstract and Contextualized Circuit Representations: Effects of Diagram Labels

    ERIC Educational Resources Information Center

    Johnson, Amy M.; Butcher, Kirsten R.; Ozogul, Gamze; Reisslein, Martin

    2014-01-01

    Novice learners are typically unfamiliar with abstract engineering symbols. They are also often unaccustomed to instructional materials consisting of a combination of text, diagrams, and equations. This raises the question of whether instruction on elementary electrical circuit analysis for novice learners should employ contextualized…

  8. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  9. Water Quality Instructional Resources Information System (IRIS). A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XVI.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  10. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement IX.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  11. Water Quality Instructional Resources Information System (IRIS). A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XIII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  12. Water Quality Instructional Resources Information System (IRIS). A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XV.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  13. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XI.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  14. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement X.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  15. Water Quality Instructional Resources Information System (IRIS). A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XVII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  16. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement XVIII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  17. Synthetic Materials for Osteochondral Tissue Engineering.

    PubMed

    Iulian, Antoniac; Dan, Laptoiu; Camelia, Tecu; Claudia, Milea; Sebastian, Gradinaru

    2018-01-01

    The objective of an articular cartilage repair treatment is to repair the affected surface of an articular joint's hyaline cartilage. Currently, both biological and tissue engineering research is concerned with discovering the clues needed to stimulate cells to regenerate tissues and organs totally or partially. The latest findings on nanotechnology advances along with the processability of synthetic biomaterials have succeeded in creating a new range of materials to develop into the desired biological responses to the cellular level. 3D printing has a great ability to establish functional tissues or organs to cure or replace abnormal and necrotic tissue, providing a promising solution for serious tissue/organ failure. The 4D print process has the potential to continually revolutionize the current tissue and organ manufacturing platforms. A new active research area is the development of intelligent materials with high biocompatibility to suit 4D printing technology. As various researchers and tissue engineers have demonstrated, the role of growth factors in tissue engineering for repairing osteochondral and cartilage defects is a very important one. Following animal testing, cell-assisted and growth-factor scaffolds produced much better results, while growth-free scaffolds showed a much lower rate of healing.

  18. Rail Engineering and Education Symposium Materials.

    DOT National Transportation Integrated Search

    2016-05-26

    The objective of this project is to develop curricular materials for the Rail Engineering and Education : Symposia held in the summers of 2012 and 2014. : Description of Activities : The main approach to accomplish the activity is to develop and deli...

  19. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials.

    PubMed

    Nguyen, Peter Q; Courchesne, Noémie-Manuelle Dorval; Duraj-Thatte, Anna; Praveschotinunt, Pichet; Joshi, Neel S

    2018-05-01

    Vast potential exists for the development of novel, engineered platforms that manipulate biology for the production of programmed advanced materials. Such systems would possess the autonomous, adaptive, and self-healing characteristics of living organisms, but would be engineered with the goal of assembling bulk materials with designer physicochemical or mechanical properties, across multiple length scales. Early efforts toward such engineered living materials (ELMs) are reviewed here, with an emphasis on engineered bacterial systems, living composite materials which integrate inorganic components, successful examples of large-scale implementation, and production methods. In addition, a conceptual exploration of the fundamental criteria of ELM technology and its future challenges is presented. Cradled within the rich intersection of synthetic biology and self-assembling materials, the development of ELM technologies allows the power of biology to be leveraged to grow complex structures and objects using a palette of bio-nanomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Design of Innovative Engineering Drawing Teaching Materials

    NASA Astrophysics Data System (ADS)

    Mujiarto; Djohar, A.; Komaro, M.

    2018-02-01

    Good teaching is influenced by several things such as effective school leaders and skilled teachers who are able to use information communication technology as a medium of learning. The purpose of this research in general is to develop innovative teaching materials in the form of multimedia animation for engineering drawing in the field of technology and engineering at vocational high school. Research method used research and development (research and development / R & D). The results showed that the E-book Multimedia Animation Engineering Drawing (E-MMAED) is easy to possess and contains complete material. Students stated that the use of E-MMAED adds to learning motivation and improves learning outcomes (student competencies). We recommend that teachers apply E-MMAED as a learning medium and create other innovations to improve student competences.

  1. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  2. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 28, 1986.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and nonprint materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  3. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 25 (1986).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to hazardous wastes and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  4. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 26, 1986.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of governmental, private concerns, and…

  5. Compendium of abstracts on statistical applications in geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Hynes-Griffin, M. E.; Deer, G. W.

    1983-09-01

    The results of a literature search of geotechnical and statistical abstracts are presented in tables listing specific topics, title of the abstract, main author and the file number under which the abstract can be found.

  6. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  7. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  8. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  9. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  10. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  11. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 29, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  12. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 23 (1985).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  13. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement XIX (1984).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  14. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement XX (1984).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  15. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 22 (1985).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  16. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 21 (1985).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  17. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 27, 1986.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  18. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  19. Material experiments: Environment and engineering institutions in the early American republic.

    PubMed

    Johnson, Ann

    2009-01-01

    In nineteenth-century America, strength of materials, an engineering science, focused on empirical research that yielded practical tools about how to predict the behavior of a wide variety of materials engineers might encounter as they built the nation's infrastructure. This orientation toward "cookbook formulae" that could accommodate many different kinds of timber, stone, mortar, metals, and so on was specifically tailored for the American context, where engineers were peripatetic, materials diverse, and labor in short supply. But these methods also reflected deeper beliefs about the specialness of the landscape and the providential site of the American political experiment. As such, engineers' appreciation of natural bounty both emerged from and contributed to larger values about exceptionalism and the practical character of Americans.

  20. The record of electrical and communication engineering conversazione Tohoku University Volume 63, No. 3

    NASA Astrophysics Data System (ADS)

    1995-05-01

    English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.

  1. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.

    PubMed

    Jin, Hyo-Eon; Lee, Seung-Wuk

    2018-01-01

    M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.

  2. Materials for a Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  3. Geophysical abstracts 167, October-December 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  4. Geophysical abstracts 164, January-March 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. A new table of contents, alphabetically arranged, has been adapted to show more clearly the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  5. Geophysical abstracts 166, July-September 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  6. Geophysical abstracts 165, April-June 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  7. TQM: A bibliography with abstracts. [total quality management

    NASA Technical Reports Server (NTRS)

    Gottlich, Gretchen L. (Editor)

    1992-01-01

    This document is designed to function as a special resource for NASA Langley scientists, engineers, and managers during the introduction and development of total quality management (TQM) practices at the Center. It lists approximately 300 bibliographic citations for articles and reports dealing with various aspects of TQM. Abstracts are also available for the majority of the citations. Citations are organized by broad subject areas, including case studies, customer service, senior management, leadership, communication tools, TQM basics, applications, and implementation. An introduction and indexes provide additional information on arrangement and availability of these materials.

  8. Emerging Patterns of Abstraction in Environmental Education: A Review of Materials, Methods and Professional Development Perspectives

    ERIC Educational Resources Information Center

    O'Donoghue, Rob; Russo, Vladimir

    2004-01-01

    This paper examines how emerging materials and associated methods became inscribed within and have shaped developing patterns of practice in environmental education. In so doing, it gives attention to how materials and methods have informed methodological narratives and shaped abstracted propositions used in professional development activities.…

  9. USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 40

    DTIC Science & Technology

    1978-01-25

    the meteorite material with cosmic muons , and due to instrument noise. This phenomenon is attributed to the presence of some spontaneously fissile...references 4: 2 Russian, 2 Western. USSR AN INSTRUMENT FOR VISUALIZING THE X- RAY TOPOGRAPHIC PATTERNS IN P-N STRUCTURES DURING THE FABRICATION PROCESS...Special Design and Engineering Office of Industrial Television [Abstract] The x- ray topographic method according to A. P. Lang or G. Borrman is

  10. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials.

    PubMed

    Masoumifard, Nima; Guillet-Nicolas, Rémy; Kleitz, Freddy

    2018-04-01

    The term "engineered zeolitic materials" refers to a class of materials with a rationally designed pore system and active-sites distribution. They are primarily made of crystalline microporous zeolites as the main building blocks, which can be accompanied by other secondary components to form composite materials. These materials are of potential importance in many industrial fields like catalysis or selective adsorption. Herein, critical aspects related to the synthesis and modification of such materials are discussed. The first section provides a short introduction on classical zeolite structures and properties, and their conventional synthesis methods. Then, the motivating rationale behind the growing demand for structural alteration of these zeolitic materials is discussed, with an emphasis on the ongoing struggles regarding mass-transfer issues. The state-of-the-art techniques that are currently available for overcoming these hurdles are reviewed. Following this, the focus is set on core-shell composites as one of the promising pathways toward the creation of a new generation of highly versatile and efficient engineered zeolitic substances. The synthesis approaches developed thus far to make zeolitic core-shell materials and their analogues, yolk-shell, and hollow materials, are also examined and summarized. Finally, the last section concisely reviews the performance of novel core-shell, yolk-shell, and hollow zeolitic materials for some important industrial applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The materials used in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-01

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  12. The materials used in bone tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers aremore » the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.« less

  13. Materials, processes, and environmental engineering network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  14. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 24 (l985).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  15. NASA's high-temperature engine materials program for civil aeronautics

    NASA Technical Reports Server (NTRS)

    Gray, Hugh R.; Ginty, Carol A.

    1992-01-01

    The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.

  16. Recent Advances in Biohybrid Materials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Wan, Ying; Li, Xing; Wang, Shenqi

    2016-07-01

    Biohybrid materials play an important role in tissue engineering, artificial organs and regenerative medicine due to their regulation of cell function through specific cell-matrix interactions involving integrins, mostly those of fibroblasts and myofibroblasts, and ligands on the matrix surface, which have become current research focus. In this paper, recent progress of biohybrid materials, mainly including main types of biohybrid materials, rapid prototype (RP) technique for construction of 3D biohybrid materials, was reviewed in detail; moreover, their applications in tissue engineering, artificial organs and regenerative medicine were also reviewed in detail. At last, we address the challenges biohybrid materials may face.

  17. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  18. Quantum engineering of transistors based on 2D materials heterostructures

    NASA Astrophysics Data System (ADS)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  19. Quantum engineering of transistors based on 2D materials heterostructures.

    PubMed

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  20. Audiovisual Materials for the Engineering Technologies.

    ERIC Educational Resources Information Center

    O'Brien, Janet S., Comp.

    A list of audiovisual materials suitable for use in engineering technology courses is provided. This list includes titles of 16mm films, 8mm film loops, slidetapes, transparencies, audio tapes, and videotapes. Given for each title are: source, format, length of film or tape or number of slides or transparencies, whether color or black-and-white,…

  1. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  2. Engineering Effects of Advanced Composite Materials on Avionics.

    DTIC Science & Technology

    1981-07-01

    facilities. 77 zz~J 319 Electromagnetic-Interference Control EDWARD F. VANCE, SENIOR MEMBER, IEEE Abstract-Tbe use of shield topology concepts to design ...34 and "inside" are interchanged in Fig. 8 and A typical interference- control design for controlling both "Zone 1" and "Zone 2" are interchanged in Fig...P1 ’"EMP engineering and design principles." Bell Telephone Lab A systematic approach to interference control has as its NJ. 1975. foundation

  3. Relationship between using conceptual comprehension of academic material and thinking abstractly about global life issues.

    PubMed

    Westman, A S; Kamoo, R L

    1990-04-01

    The study explored whether more frequent use of conceptual comprehension of academic material generalized to greater use of abstract thinking about global life issues, such as death, goal in life, marriage, AIDS, etc. Undergraduate and graduate students (28 men and 61 women) voluntarily completed a questionnaire which assessed their conceptualizations using three indices. These were an intelligence scale and two learning style indices, namely, Deep Processing and Elaborative Processing of R. R. Schmeck. Also assessed were their levels of abstract thinking about Death Issues and about Other Real Life Issues, and their Denial of Death and their Denial of Dying. All three indices of conceptualization correlated with thinking more abstractly about Other Real Life Issues, but only Elaborative Processing correlated with thinking more abstractly about Death Issues. None of the three indices correlated with Denial of Death or Denial of Dying. It appears conceptualization skills were selectively generalized.

  4. Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character.

    PubMed

    van der Zwaag, S; van Dijk, N H; Jonkers, H M; Mookhoek, S D; Sloof, W G

    2009-05-13

    Man-made engineering materials generally demonstrate excellent mechanical properties, which often far exceed those of natural materials. However, all such engineering materials lack the ability of self-healing, i.e. the ability to remove or neutralize microcracks without (much) intentional human interaction. This inability is the unintentional consequence of the damage prevention paradigm underlying all current engineering material optimization strategies. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account.

  5. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    PubMed

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  6. Silk Materials Functionalized via Genetic Engineering for Biomedical Applications

    PubMed Central

    Deptuch, Tomasz

    2017-01-01

    The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications. PMID:29231863

  7. Engineering solutions to ureteral stents: material, coating and design

    PubMed Central

    Mosayyebi, Ali; Vijayakumar, Aravinthan; Yue, Qi Y.; Bres-Niewada, Ewa; Manes, Costantino; Carugo, Dario

    2017-01-01

    Introduction An ideal stent would offer simple insertion and removal with no discomfort and/or migration, it would have no biofilm formation or encrustation and would also maintain the patient's quality of life. Material and methods In this mini-review, we outlined the engineering developments related to stent material, design and coating. Results There have been a wide variety of in-vitro, model-based, animal-based and clinical studies using a range of commercial and non-commercial stents. Ureteric stents have evolved since their first usage with a wider range of stent design, material and coating available for laboratory and clinical use. Conclusions While engineering innovations have led to the evolution of stents, more work needs to be done to address the issues relating to stent encrustation and biofilm formation. PMID:29104790

  8. Silk Materials Functionalized via Genetic Engineering for Biomedical Applications.

    PubMed

    Deptuch, Tomasz; Dams-Kozlowska, Hanna

    2017-12-12

    The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications.

  9. Mobile APP for Motivation to Learning: An Engineering Case

    ERIC Educational Resources Information Center

    Jou, Min; Lin, Yen-Ting; Tsai, Hsieh-Chih

    2016-01-01

    Synthesis of Materials is regarded as an important core subject in engineering education. However, many concepts and knowledge in the material synthesis can be rather abstract and difficult to understand by the student learners. Experiments are limited in scope due to lack of equipment, control of toxic materials, and risks of chemical reactions,…

  10. Ablative material testing for low-pressure, low-cost rocket engines

    NASA Technical Reports Server (NTRS)

    Richter, G. Paul; Smith, Timothy D.

    1995-01-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  11. Materials for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.

    1985-01-01

    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  12. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip

  13. Engineered materials for all-optical helicity-dependent magnetic switching

    NASA Astrophysics Data System (ADS)

    Mangin, S.; Gottwald, M.; Lambert, C.-H.; Steil, D.; Uhlíř, V.; Pang, L.; Hehn, M.; Alebrand, S.; Cinchetti, M.; Malinowski, G.; Fainman, Y.; Aeschlimann, M.; Fullerton, E. E.

    2014-03-01

    The possibility of manipulating magnetic systems without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of the magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization in engineered magnetic materials. We demonstrate that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth-transition metal (RE-TM) alloy films but also in a much broader variety of materials, including RE-TM alloys, multilayers and heterostructures. We further show that RE-free Co-Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE-TM alloys also exhibit AO-HDS. These results challenge present theories of AO-HDS and provide a pathway to engineering materials for future applications based on all-optical control of magnetic order.

  14. Utilization of lunar materials and expertise for large scale operations in space: Abstracts. [lunar bases and space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R. (Editor)

    1976-01-01

    The practicality of exploiting the moon, not only as a source of materials for large habitable structures at Lagrangian points, but also as a base for colonization is discussed in abstracts of papers presented at a special session on lunar utilization. Questions and answers which followed each presentation are included after the appropriate abstract. Author and subject indexes are provided.

  15. Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.

    DTIC Science & Technology

    1983-09-01

    research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis

  16. Band structure engineering of 2D materials using patterned dielectric superlattices.

    PubMed

    Forsythe, Carlos; Zhou, Xiaodong; Watanabe, Kenji; Taniguchi, Takashi; Pasupathy, Abhay; Moon, Pilkyung; Koshino, Mikito; Kim, Philip; Dean, Cory R

    2018-05-07

    The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals 1-5 . Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra 6-8 under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.

  17. Dynamic Behavior of Engineered Lattice Materials

    PubMed Central

    Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.

    2016-01-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697

  18. Material recognition based on thermal cues: Mechanisms and applications

    PubMed Central

    Ho, Hsin-Ni

    2018-01-01

    ABSTRACT Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering. PMID:29687043

  19. 2014 International Conference on Manufacturing, Optimization, Industrial and Material Engineering

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Webb, Jeff; Ding, Jun

    2014-06-01

    The 2nd International Conference on Manufacturing, Optimization, Industrial and Material Engineering 2014 (MOIME 2014), was held at the Grand Mercure Harmoni, Opal Room 3rd Floor, Jakarta, Indonesia, during 29-30 March 2014. The MOIME 2014 conference is designed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 97 papers and after rigorous review, 24 papers were accepted. The participants come from 7 countries. There are 4 (four) parallel session and 2 Invited Speakers and one workshop. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2014. The Editors of the MOIME 2014 Proceedings Editors Dr Ford Lumban Gaol Jeff Webb, PhD Professor Jun Ding, PhD

  20. Evaluation of some candidate materials for automobile thermal reactors in engine-dynamometer screening tests

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1971-01-01

    Fourteen materials were evaluated in engine screening tests on full-size thermal reactors for automobile engine pollution control systems. Cyclic test-stand engine operation provided 2 hours at 1040 C and a 20-minute air-cool to 70 C each test cycle. Each reactor material was exposed to 83 cycles in 200 hours of engine testing. On the basis of resistance to oxidation and distortion, the best materials included two ferritic iron alloys (Ge 1541 and Armco 18S/R), several commercial oxidation-resistant coatings on AlSl 651 (19-9 DL), and possibly uncoated AISI 310. The best commercial coatings were Cr-Al, Ni-Cr, and a glass ceramic.

  1. The role of hardware in learning engineering fundamentals: An empirical study of engineering design and product analysis activity

    NASA Astrophysics Data System (ADS)

    Brereton, Margot Felicity

    A series of short engineering exercises and design projects was created to help students learn to apply abstract knowledge to physical experiences with hardware. The exercises involved designing machines from kits of materials and dissecting and analyzing familiar household products. Students worked in teams. During the activities students brought their knowledge of engineering fundamentals to bear. Videotape analysis was used to identify and characterize the ways in which hardware contributed to learning fundamental concepts. Structural and qualitative analyses of videotaped activities were undertaken. Structural analysis involved counting the references to theory and hardware and the extent of interleaving of references in activity. The analysis found that there was much more discussion linking fundamental concepts to hardware in some activities than in others. The analysis showed that the interleaving of references to theory and hardware in activity is observable and quantifiable. Qualitative analysis was used to investigate the dialog linking concepts and hardware. Students were found to advance their designs and their understanding of engineering fundamentals through a negotiation process in which they pitted abstract concepts against hardware behavior. Through this process students sorted out theoretical assumptions and causal relations. In addition they discovered design assumptions, functional connections and physical embodiments of abstract concepts in hardware, developing a repertoire of familiar hardware components and machines. Hardware was found to be integral to learning, affecting the course of inquiry and the dynamics of group interaction. Several case studies are presented to illustrate the processes at work. The research illustrates the importance of working across the boundary between abstractions and experiences with hardware in order to learn engineering and physical sciences. The research findings are: (a) the negotiation process by which

  2. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine

    PubMed Central

    Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S.; Khandhar, Amit; Krishnan, Kannan M.

    2015-01-01

    We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body –– an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field. PMID:26586919

  3. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine.

    PubMed

    Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S; Khandhar, Amit; Krishnan, Kannan M

    2016-01-01

    We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body -- an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.

  4. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  5. EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field

    DTIC Science & Technology

    2016-10-01

    Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration ,” Biomaterials (2004). A) B) REDD-2016-537...AWARD NUMBER: W81XWH-14-1-0542 TITLE: EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field PRINCIPAL...23 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field

  6. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  7. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    ERIC Educational Resources Information Center

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  8. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  9. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  10. Development of K-12 Engineering Outreach Materials

    NASA Technical Reports Server (NTRS)

    Jordan, William

    2003-01-01

    Six modules were created that can be used in K-12 classes to introduce students to what engineers can do at NASA.The purpose of this project was to create outreach materials for the classroom. To make it appealing to students, many color NASA photographs are used to illustrate NASA applications.Student experiments are described that can be performed to illustrate topics.

  11. Graduate Student Program in Materials and Engineering Research and Development for Future Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Linda

    The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approachmore » that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.« less

  12. Nonlinear machine learning in soft materials engineering and design

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew

    The inherently many-body nature of molecular folding and colloidal self-assembly makes it challenging to identify the underlying collective mechanisms and pathways governing system behavior, and has hindered rational design of soft materials with desired structure and function. Fundamentally, there exists a predictive gulf between the architecture and chemistry of individual molecules or colloids and the collective many-body thermodynamics and kinetics. Integrating machine learning techniques with statistical thermodynamics provides a means to bridge this divide and identify emergent folding pathways and self-assembly mechanisms from computer simulations or experimental particle tracking data. We will survey a few of our applications of this framework that illustrate the value of nonlinear machine learning in understanding and engineering soft materials: the non-equilibrium self-assembly of Janus colloids into pinwheels, clusters, and archipelagos; engineering reconfigurable ''digital colloids'' as a novel high-density information storage substrate; probing hierarchically self-assembling onjugated asphaltenes in crude oil; and determining macromolecular folding funnels from measurements of single experimental observables. We close with an outlook on the future of machine learning in soft materials engineering, and share some personal perspectives on working at this disciplinary intersection. We acknowledge support for this work from a National Science Foundation CAREER Award (Grant No. DMR-1350008) and the Donors of the American Chemical Society Petroleum Research Fund (ACS PRF #54240-DNI6).

  13. Progress on materials and scaffold fabrications applied to esophageal tissue engineering.

    PubMed

    Shen, Qiuxiang; Shi, Peina; Gao, Mongna; Yu, Xuechan; Liu, Yuxin; Luo, Ling; Zhu, Yabin

    2013-05-01

    The mortality rate from esophageal disease like atresia, carcinoma, tracheoesophageal fistula, etc. is increasing rapidly all over the world. Traditional therapies such as surgery, radiotherapy or chemotherapy have been met with very limited success resulting in reduced survival rate and quality of patients' life. Tissue-engineered esophagus, a novel substitute possessing structure and function similar to native tissue, is believed to be an effective therapy and a promising replacement in the future. However, research on esophageal tissue engineering is still at an early stage. Considerable research has been focused on developing ideal scaffolds with optimal materials and methods of fabrication. This article gives a review of materials and scaffold fabrications currently applied in esophageal tissue engineering research. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    PubMed

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  15. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental enginemore » research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the

  16. 2018 Congress Poster Abstracts

    PubMed

    2018-02-21

    Each abstract has been indexed according to the first author. Abstracts appear as they were submitted and have not undergone editing or the Oncology Nursing Forum’s review process. Only abstracts that will be presented appear here. Poster numbers are subject to change. For updated poster numbers, visit congress.ons.org or check the Congress guide. Data published in abstracts presented at the ONS 43rd Annual Congress are embargoed until the conclusion of the presentation. Coverage and/or distribution of an abstract, poster, or any of its supplemental material to or by the news media, any commercial entity, or individuals, including the authors of said abstract, is strictly prohibited until the embargo is lifted. Promotion of general topics and speakers is encouraged within these guidelines.

  17. Materials and Designs for High-Efficacy LED Light Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbetson, James; Gresback, Ryan

    Cree, Inc. conducted a narrow-band downconverter (NBD) materials development and implementation program which will lead to warm-white LED light engines with enhanced efficacy via improved spectral efficiency with respect to the human eye response. New red (600-630nm) NBD materials could result in as much as a 20% improvement in warm-white efficacy at high color quality relative to conventional phosphor-based light sources. Key program innovations included: high quantum yield; narrow peak width; minimized component-level losses due to “cross-talk” and light scattering among red and yellow-green downconverters; and improved reliability to reach parity with conventional phosphors. NBD-enabled downconversion efficiency gains relative tomore » conventional phosphors yielded an end-of-project LED light engine efficacy of >160 lm/W at room temperature and 35 A/cm2, with a correlated color temperature (CCT) of ~3500K and >90 CRI (Color Rending Index). NBD-LED light engines exhibited equivalent luminous flux and color point maintenance at >1,000 hrs. of highly accelerated reliability testing as conventional phosphor LEDs. A demonstration luminaire utilizing an NBD-based LED light engine had a steady-state system efficacy of >150 lm/W at ~3500K and >90 CRI, which exceeded the 2014 DOE R&D Plan luminaire milestone for FY17 of >150 lm/W at just 80 CRI.« less

  18. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  19. Three-Dimensional Material Properties of Composites with S2-Glass Fibers or Ductile Hybrid Fabric

    DTIC Science & Technology

    2013-01-13

    RDECOM-TARDEC 6501 E. Eleven Mile Rd. Warren, MI 48397-5000 ABSTRACT Material properties were determined for fiber - reinforced polymers (FRPs) with...Research Development and Engineering Center (TARDEC) funded a research project to determine the mechanical properties of seven fiber reinforced ...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Material properties were determined for fiber - reinforced

  20. The Effectiveness of Using the Instructional Strategy Diagnostic Profile to Prescribe Improvements in Self-Instructional Materials Teaching Abstract Concepts.

    ERIC Educational Resources Information Center

    Burkholder, Barry L.

    1981-01-01

    This study conducted to determine the effectiveness of using the Instructional Strategy Diagnostic Profile to revise self-instructional materials that teach abstract concepts examined three sets of materials: the original set, the set with improved consistency rating, and the set with improved consistency and adequacy ratings. Forty-six references…

  1. Gender Equity in Materials Science and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus Rockett

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments.more » Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and

  2. Advance Organizers: Concret Versus Abstract.

    ERIC Educational Resources Information Center

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  3. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonicationmore » in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.« less

  4. Youth Studies Abstracts. Vol. 4 No. 3.

    ERIC Educational Resources Information Center

    Youth Studies Abstracts, 1985

    1985-01-01

    This volume contains 169 abstracts of documents dealing with youth and educational programs for youth. Included in the volume are 97 abstracts of documents dealing with social and educational developments; 56 abstracts of program reports, reviews, and evaluations; and 16 abstracts of program materials. Abstracts are grouped according to the…

  5. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection

    PubMed Central

    Bhattarai, Shanta Raj; Yoo, So Young; Lee, Seung-Wuk; Dean, Deborah

    2012-01-01

    Developing materials that are effective against sexually transmitted pathogens such as Chlamydia trachomatis (Ct) and HIV-1 is challenging both in terms of material selection and improving bio-membrane and cellular permeability at desired mucosal sites. Here, we engineered the prokaryotic bacterial virus (M13 phage) carrying two functional peptides, integrin binding peptide (RGD) and a segment of the polymorphic membrane protein D (PmpD) from Ct, as a phage-based material that can ameliorate Ct infection. Ct is a globally prevalent human pathogen for which there are no effective vaccines or microbicides. We show that engineered phage stably express both RGD motifs and Ct peptides and traffic intracellularly and into the lumen of the inclusion in which the organism resides within the host cell. Engineered phage were able to significantly reduce Ct infection in both HeLa and primary endocervical cells compared with Ct infection alone. Polyclonal antibodies raised against PmpD and co-incubated with constructs prior to infection did not alter the course of infection, indicating that PmpD is responsible for the observed decrease in Ct infection. Our results suggest that phage-based design approaches to vector delivery that overcome mucosal cellular barriers may be effective in preventing Ct and other sexually transmitted pathogens. PMID:22494890

  6. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Includes May 1979 edition and Supplements 1-15.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracts/indexed materials include all levels of government, private concerns, and educational…

  7. Critical materials: a reason for sustainable education of industrial designers and engineers

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas R.; Bakker, Conny; Peck, David

    2013-08-01

    Developed economies have become highly dependent on a range of technology metals with names such as neodymium and terbium. Stakeholders have warned of the impending scarcity of these critical materials. Difficulties in materials supply can affect the high-tech industries as well as the success of sustainable innovation strategies that are based on sophisticated technology. Industrial designers and engineers should therefore increase their awareness of the limits in availability of critical materials. In this paper, it is argued that materials' criticality can give a fresh impetus to the higher education of industrial design engineers. It is important to train future professionals to apply a systems perspective to the process of technology innovation, enabling them to thrive under circumstances of constrained material choices. The conclusions outline ideas on how to weave the topic into existing educational programmes of future technology developers.

  8. Materials technology assessment for a 1050 K Stirling space engine design

    NASA Technical Reports Server (NTRS)

    Scheuermann, Coulson M.; Dreshfield, Robert L.; Gaydosh, Darrell J.; Kiser, James D.; Mackay, Rebecca A.; Mcdaniels, David L.; Petrasek, Donald W.; Vannucci, Raymond D.; Bowles, Kenneth J.; Watson, Gordon K.

    1988-01-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor. However, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  9. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  10. Advances in Integrated Computational Materials Engineering "ICME"

    NASA Astrophysics Data System (ADS)

    Hirsch, Jürgen

    The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.

  11. Production Engineering for Growth of Synthetic Calcite Polarizer Material

    DTIC Science & Technology

    1974-08-01

    AD-A008 043 PRODUCTION ENGINEERING FOR GROWTH OF SYNTHETIC CALCITE POLARIZER MATERIAL Roger F. Belt, et al Litton Systems...Production Bngin««ring for Growth of Synthetic Calcit « Polarizer Material I. RCCIPItNT’tCATALOO NUMMN i. T.vpc or ncpoMT • rtmoo covtnto Final Report...VOKOt (CanlliMit en »xift •id« II ntffrt Kid Idtnlllr br block iwmbmr) Crystal Growth Hydrothermal Growth Calcite Polarizers 30. AtSTHACT

  12. Fundamentals of Composite Materials for Undergraduate Engineering--A Filmed Presentation. Final Report.

    ERIC Educational Resources Information Center

    Busching, Herbert W.

    Curricula in undergraduate engineering have not adequately reflected present usage and knowledge of composite materials (types of rock and organic matter in which structurally dissimilar materials are combined). Wide usage of composites is expected to increase the importance of this class of materials and the need for more substantive exposure to…

  13. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they

  14. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  15. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    PubMed Central

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  16. Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement

    NASA Astrophysics Data System (ADS)

    Raad, Bhagwan Ram; Nigam, Kaushal; Sharma, Dheeraj; Kondekar, P. N.

    2016-06-01

    This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this.

  17. Bio-based materials with novel characteristics for tissue engineering applications - A review.

    PubMed

    Bedian, Luis; Villalba-Rodríguez, Angel M; Hernández-Vargas, Gustavo; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-05-01

    Recently, a wider spectrum of bio-based materials and materials-based novel constructs and systems has been engineered with high interests. The key objective is to help for an enhanced/better quality of life in a secure way by avoiding/limiting various adverse effects of some in practice traditional therapies. In this context, different methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, bio-based therapeutic constructs are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable materials-based novel constructs for multipurpose applications is essential and a core demand to tackle many human health related diseases. Bio-based materials possess several complementary functionalities, e.g. unique chemical structure, bioactivity, non-toxicity, biocompatibility, biodegradability, recyclability, etc. that position them well in the modern world's materials sector. In this context, the utilization of biomaterials provides extensive opportunities for experimentation in the field of interdisciplinary and multidisciplinary scientific research. With an aim to address the global dependence on petroleum-based polymers, researchers have been redirecting their interests to the engineering of biological materials for targeted applications in different industries including cosmetics, pharmaceuticals, and other biotechnological or biomedical applications. Herein, we reviewed biotechnological advancements at large and tissue engineering from a biomaterials perspective in particular and envision directions of future developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of lightweight material concepts for aircraft turbine engine rotor failure protection

    DOT National Transportation Integrated Search

    1997-07-01

    Results of the evaluation of lightweight materials for aircraft turbine engine rotor failure protection are presented in this report. The program consisted of two phases. Phase 1 was an evaluation of a group of composite materials which could possibl...

  19. Hot corrosion of ceramic engine materials

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Jacobson, Nathan S.; Smialek, James L.

    1988-01-01

    A number of commercially available SiC and Si3N4 materials were exposed to 1000 C in a high velocity, pressurized burner rig as a simulation of a turbine engine environment. Sodium impurities added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si4N4 and formation of substantial Na2O-x(SiO2) corrosion product. Room temperature strength of the materials decreased. This was a result of the formation of corrosion pits in SiC, and grain boundary dissolution and pitting in Si3N4. Corrosion regimes for such Si-based ceramics have been predicted using thermodynamics and verified in rig tests of SiO2 coupons. Protective mullite coatings are being investigated as a solution to the corrosion problem for SiC and Si3N4. Limited corrosion occurred to cordierite (Mg2Al4Si5O18) but some cracking of the substrate occurred.

  20. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water.

    PubMed

    Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro

    2011-10-15

    Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. In-Plane Heterostructures Enable Internal Stress Assisted Strain Engineering in 2D Materials.

    PubMed

    Liu, Feng; Wang, Tzu-Chiang; Tang, Qiheng

    2018-04-01

    Conventional methods to induce strain in 2D materials can hardly catch up with the sharp increase in requirements to design specific strain forms, such as the pseudomagnetic field proposed in graphene, funnel effect of excitons in MoS 2 , and also the inverse funnel effect reported in black phosphorus. Therefore, a long-standing challenge in 2D materials strain engineering is to find a feasible scheme that can be used to design given strain forms. In this article, combining the ability of experimentally synthetizing in-plane heterostructures and elegant Eshelby inclusion theory, the possibility of designing strain fields in 2D materials to manipulate physical properties, which is called internal stress assisted strain engineering, is theoretically demonstrated. Particularly, through changing the inclusion's size, the stress or strain gradient can be controlled precisely, which is never achieved. By taking advantage of it, the pseudomagnetic field as well as the funnel effect can be accurately designed, which opens an avenue to practical applications for strain engineering in 2D materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lab Manual & Resources for Materials Science, Engineering and Technology on CD-Rom

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; McKenney, Alfred E.

    2001-01-01

    The National Educators' Workshop (NEW:Update) series of workshops has been in existence since 1986. These annual workshops focus on technical updates and laboratory experiments for materials science, engineering and technology, involving new and traditional content in the field. Scores of educators and industrial and national laboratory personnel have contributed many useful experiments and demonstrations which were then published as NASA Conference Proceedings. This "out poring of riches" creates an ever-expanding shelf of valuable teaching tools for college, university, community college and advanced high school instruction. Now, more than 400 experiments and demonstrations, representing the first thirteen years of NEW:Updates have been selected and published on a CD-ROM, through the collaboration of this national network of materials educators, engineers, and scientists. The CD-ROM examined in this document utilizes the popular Adobe Acrobat Reader format and operates on most popular computer platforms. This presentation provides an overview of the second edition of Experiments in Materials Science, Engineering and Technology (EMSET2) CD-ROM, ISBN 0-13-030534-0.

  3. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  4. Military Curriculum Materials for Vocational and Technical Education. Engine Principles, 8-3. Edition 5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in engine principles has been adapted from military curriculum materials for vocational education use. The course provides the student with basic information on engine principles including different kinds of combustion engines, lubrication systems, and cooling systems. It is organized…

  5. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    NASA Astrophysics Data System (ADS)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  6. 3D Printing Optical Engine for Controlling Material Microstructure

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei

    Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.

  7. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 30, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected materials related…

  8. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  9. Multiscale Issues and Simulation-Based Science and Engineering for Materials-by-Design

    DTIC Science & Technology

    2010-05-15

    planning and execution of programs to achieve the vision of ? material -by-design?. A key part of this effort has been to examine modeling at the mesoscale...15. SUBJECT TERMS Modelling & Simulation, Materials Design 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18...planning and execution of programs to achieve the vision of “ material -by-design”. A key part of this effort has been to examine modeling at the mesoscale. A

  10. Electrospun materials for affinity-based engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Sill, T. J.; von Recum, H. A.

    2015-10-01

    Electrospinning is a process which can quickly and cheaply create materials of high surface to volume and aspect ratios from many materials, however in application toward drug delivery this can be a strong disadvantage as well. Diffusion of drug is proportional to the thickness of that device. In moving from macro to micro to nano-sized electrospun materials drug release rates change to profiles that are too fast to be therapeutically beneficial. In this work we use molecular interactions to further control the rate of release beyond that capable of diffusion alone. To do this we create materials with molecular pockets, which can "hold" therapeutic drugs through a reversible interaction such as a host/guest complexation. Through these complexes we show we are able to impact delivery of drug from electrospun materials, and also apply them in tissue engineering for the reversible presentation of biomolecules on a fiber surface.

  11. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Presented is a compilation of over 3,000 abstracts on print and non-print materials related to water quality and water resources education. Entries are included from all levels of governmental sources, private concerns, and educational institutions. Each entry includes: title, author, cross references, descriptors, and availability. (CLS)

  12. National Educators' Workshop. Update 92: Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Craig, Douglas F. (Compiler)

    1993-01-01

    This document contains a collection of experiments presented and demonstrated at the workshop. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  13. Glycopolymer functionalization of engineered spider silk protein-based materials for improved cell adhesion.

    PubMed

    Hardy, John G; Pfaff, André; Leal-Egaña, Aldo; Müller, Axel H E; Scheibel, Thomas R

    2014-07-01

    Silk protein-based materials are promising biomaterials for application as tissue scaffolds, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) and their functionalization with glycopolymers are described. The glycopolymers bind proteins found in the extracellular matrix, providing a biomimetic coating on the films that improves cell adhesion to the surfaces of engineered spider silk films. Such silk-based materials have potential as coatings for degradable implantable devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SMART materials: Surfaces, transforms and interfaces. The commensurate engineering dimension

    NASA Astrophysics Data System (ADS)

    McDonach, Alaster; Gardiner, Peter T.; McEwen, Ron S.; Culshaw, Brian

    1994-11-01

    The future of molecularly based smart materials hinges on the development of integrated technologies addressing synthesis, assembly, shaping, etc. and some of these are now becoming clear. Even in the bolt on era new technologies will allow issues of commensurate engineering to be addressed.

  15. Stem cell homing-based tissue engineering using bioactive materials

    NASA Astrophysics Data System (ADS)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  16. Grain boundary engineering for structure materials of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Allen, T. R.; Busby, J. T.

    2013-10-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  17. Engineering the shape and structure of materials by fractal cut.

    PubMed

    Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J

    2014-12-09

    In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications.

  18. STEM Education Related Dissertation Abstracts: A Bounded Qualitative Meta-Study

    ERIC Educational Resources Information Center

    Banning, James; Folkestad, James E.

    2012-01-01

    This article utilizes a bounded qualitative meta-study framework to examine the 101 dissertation abstracts found by searching the ProQuest Dissertation and Theses[TM] digital database for dissertations abstracts from 1990 through 2010 using the search terms education, science, technology, engineer, and STEM/SMET. Professional search librarians…

  19. Engineering of oriented carbon nanotubes in composite materials

    PubMed Central

    Beigmoradi, Razieh; Mohebbi-Kalhori, Davod

    2018-01-01

    The orientation and arrangement engineering of carbon nanotubes (CNTs) in composite structures is considered a challenging issue. In this regard, two groups of in situ and ex situ techniques have been developed. In the first, the arrangement is achieved during CNT growth, while in the latter, the CNTs are initially grown in random orientation and the arrangement is then achieved during the device integration process. As the ex situ techniques are free from growth restrictions and more flexible in terms of controlling the alignment and sorting of the CNTs, they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their future outlook. PMID:29515955

  20. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing.

    PubMed

    Butscher, A; Bohner, M; Hofmann, S; Gauckler, L; Müller, R

    2011-03-01

    This article reviews the current state of knowledge concerning the use of powder-based three-dimensional printing (3DP) for the synthesis of bone tissue engineering scaffolds. 3DP is a solid free-form fabrication (SFF) technique building up complex open porous 3D structures layer by layer (a bottom-up approach). In contrast to traditional fabrication techniques generally subtracting material step by step (a top-down approach), SFF approaches allow nearly unlimited designs and a large variety of materials to be used for scaffold engineering. Today's state of the art materials, as well as the mechanical and structural requirements for bone scaffolds, are summarized and discussed in relation to the technical feasibility of their use in 3DP. Advances in the field of 3DP are presented and compared with other SFF methods. Existing strategies on material and design control of scaffolds are reviewed. Finally, the possibilities and limiting factors are addressed and potential strategies to improve 3DP for scaffold engineering are proposed. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. A Visualization-Based Tutoring Tool for Engineering Education

    NASA Astrophysics Data System (ADS)

    Nguyen, Tang-Hung; Khoo, I.-Hung

    2010-06-01

    In engineering disciplines, students usually have hard time to visualize different aspects of engineering analysis and design, which inherently are too complex or abstract to fully understand without the aid of visual explanations or visualizations. As examples, when learning materials and sequences of construction process, students need to visualize how all components of a constructed facility are assembled? Such visualization can not be achieved in a textbook and a traditional lecturing environment. In this paper, the authors present the development of a computer tutoring software, in which different visualization tools including video clips, 3 dimensional models, drawings, pictures/photos together with complementary texts are used to assist students in deeply understanding and effectively mastering materials. The paper will also discuss the implementation and the effectiveness evaluation of the proposed tutoring software, which was used to teach a construction engineering management course offered at California State University, Long Beach.

  2. Advanced engineering and biomimetic materials for bone repair and regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zhong, Chao

    2013-12-01

    Over the past decade, there has been tremendous progress in developing advanced biomaterials for tissue repair and regeneration. This article reviews the frontiers of this field from two closely related areas, new engineering materials for bone substitution and biomimetic mineralization for bone-like nanocomposites. Rather than providing an exhaustive overview of the literature, we focus on several representative directions. We also discuss likely future trends in these areas, including synthetic biology-enabled biomaterials design and multifunctional implant materials for bone repair and regeneration.

  3. National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A.; Karnitz, Michael A.

    1996-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 95. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  4. National Educators' Workshop: Update 1994. Standard experiments in engineering materials science and technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fraker, Anna C. (Compiler)

    1995-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 94. The experiments relate to the nature and properties of engineering materials and provide information to assist in teaching about materials in the education community.

  5. Cost benefit study of advanced materials technology for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Johnston, R. P.

    1977-01-01

    The cost/benefits of eight advanced materials technologies were evaluated for two aircraft missions. The overall study was based on a time frame of commercial engine use of the advanced material technologies by 1985. The material technologies evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, shrouds and combustor liners, tungsten composite FeCrAly blades, gamma prime oxide dispersion strengthened (ODS) alloy blades, and no coat ODS alloy combustor liners. They were evaluated in two conventional takeoff and landing missions, one transcontinental and one intercontinental.

  6. Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Cudney, Harley H.

    2000-01-01

    Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic

  7. Are X-rays the key to integrated computational materials engineering?

    DOE PAGES

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less

  8. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  9. The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective.

    PubMed

    Guo, Liang

    2016-01-01

    Brain-computer interfaces represent one of the most astonishing technologies in our era. However, the grand challenge of chronic instability and limited throughput of the electrode-tissue interface has significantly hindered the further development and ultimate deployment of such exciting technologies. A multidisciplinary research workforce has been called upon to respond to this engineering need. In this paper, I briefly review this multidisciplinary pursuit of chronically reliable neural interfaces from a materials perspective by analyzing the problem, abstracting the engineering principles, and summarizing the corresponding engineering strategies. I further draw my future perspectives by extending the proposed engineering principles.

  10. A review of materials engineering in silicon-based optical fibres

    NASA Astrophysics Data System (ADS)

    Healy, Noel; Gibson, Ursula; Peacock, Anna C.

    2018-02-01

    Semiconductor optical fibre technologies have grown rapidly in the last decade and there are now a range of production and post-processing techniques that allow for a vast degree of control over the core material's optoelectronic properties. These methodologies and the unique optical fibre geometry provide an exciting platform for materials engineering and fibres can now be produced with single crystal cores, low optical losses, tunable strain, and inscribable phase composition. This review discusses the state-of-the-art regarding the production of silicon optical fibres in amorphous and crystalline form and then looks at the post-processing techniques and the improved material quality and new functionality that they afford.

  11. Programmable biofilm-based materials from engineered curli nanofibres.

    PubMed

    Nguyen, Peter Q; Botyanszki, Zsofia; Tay, Pei Kun R; Joshi, Neel S

    2014-09-17

    The significant role of biofilms in pathogenicity has spurred research into preventing their formation and promoting their disruption, resulting in overlooked opportunities to develop biofilms as a synthetic biological platform for self-assembling functional materials. Here we present Biofilm-Integrated Nanofiber Display (BIND) as a strategy for the molecular programming of the bacterial extracellular matrix material by genetically appending peptide domains to the amyloid protein CsgA, the dominant proteinaceous component in Escherichia coli biofilms. These engineered CsgA fusion proteins are successfully secreted and extracellularly self-assemble into amyloid nanofibre networks that retain the functions of the displayed peptide domains. We show the use of BIND to confer diverse artificial functions to the biofilm matrix, such as nanoparticle biotemplating, substrate adhesion, covalent immobilization of proteins or a combination thereof. BIND is a versatile nanobiotechnological platform for developing robust materials with programmable functions, demonstrating the potential of utilizing biofilms as large-scale designable biomaterials.

  12. Materials for engine applications above 3000 deg F: An overview

    NASA Technical Reports Server (NTRS)

    Shaw, Nancy J.; Dicarlo, James A.; Jacobson, Nathan S.; Levine, Stanley R.; Nesbitt, James A.; Probst, Hubert B.; Sanders, William A.; Stearns, Carl A.

    1987-01-01

    Materials for future generations of aeropropulsion systems will be required to perform at ever-increasing temperatures and have properties superior to the current state of the art. Improved engine efficiency can reduce specific fuel consumption and thus increase range and reduce operating costs. The ultimate payoff gain is expected to come when materials are developed which can perform without cooling at gas temperatures to 2200 C (4000 F). An overview is presented of materials for applications above 1650 C (3000 F), some pertinent physical property data, and the rationale used: (1) to arrive at recommendations of material systems that qualify for further investigation, and (2) to develop a proposed plan of research. From an analysis of available thermochemical data it was included that such materials systems must be composed of oxide ceramics. The required structural integrity will be achieved by developing these materials into fiber-reinforced ceramic composites.

  13. Orbit transfer rocket engine technology program: Oxygen materials compatibility testing

    NASA Technical Reports Server (NTRS)

    Schoenman, Leonard

    1989-01-01

    Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).

  14. Research Abstracts of ACE 2001 Research Paper Presentations.

    ERIC Educational Resources Information Center

    Journal of Applied Communications, 2001

    2001-01-01

    Provides abstracts of nine research papers presented at the 2001 Agricultural Communication in Education annual conference. Includes papers on food safety, critical thinking, distance education, information technologies, agricultural news sources, and genetically engineered foods. (JOW)

  15. Is Graphene a Promising Nano-Material for Promoting Surface Modification of Implants or Scaffold Materials in Bone Tissue Engineering?

    PubMed Central

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang

    2014-01-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering. PMID:24447041

  16. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?

    PubMed

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang; Zhou, Yongsheng

    2014-10-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.

  17. Conference Abstracts: AEDS '84.

    ERIC Educational Resources Information Center

    Baird, William E.

    1985-01-01

    The Association of Educational Data Systems (AEDS) conference included 102 presentations. Abstracts of seven of these presentations are provided. Topic areas considered include LOGO, teaching probability through a computer game, writing effective computer assisted instructional materials, computer literacy, research on instructional…

  18. Development of Engineering Data on Advanced Composite Materials

    DTIC Science & Technology

    1977-09-01

    O AFML-TR-77-15 1 ,* • DEVELOPMENT OF ENGINEERING DATA ON ’ ADVANCED COMPOSITE MATERIALS UNIVERSITY OF DAYTON RESEARCH INSTITUTE I - UNIVERSITY OF DA...SUMMARIZED COMPOSITE DATA 47 4.1 SP313 48 4.2 AS/3004 86 4.3 AS/4397 125 4.4 T300/F178 163 4.5 COMPARATIVE ENVIRONMENTAL BEHAVIOR 194 5 CONCLUSIONS 197...AGED INTERLAKINAR SHEAR DATA 452 vi -. -| |b. ~ - LIST OF ILLUSTRATIONS FIGURE PACE 1 Typical Cross Sections of Fabricated Composites 12 2 Heat-Up

  19. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    PubMed Central

    Lin, Wei-Ting; Wu, Yuan-Chieh; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2014-01-01

    This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result. PMID:28788256

  20. Enabling propulsion materials for high-speed civil transport engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Herbell, Thomas P.

    1992-01-01

    NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.

  1. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  2. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  3. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  4. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  5. Computational materials science and engineering education: A survey of trends and needs

    NASA Astrophysics Data System (ADS)

    Thornton, K.; Nola, Samanthule; Edwin Garcia, R.; Asta, Mark; Olson, G. B.

    2009-10-01

    Results from a recent reassessment of the state of computational materials science and engineering (CMSE) education are reported. Surveys were distributed to the chairs and heads of materials programs, faculty members engaged in computational research, and employers of materials scientists and engineers, mainly in the United States. The data was compiled to assess current course offerings related to CMSE, the general climate for introducing computational methods in MSE curricula, and the requirements from the employers’ viewpoint. Furthermore, the available educational resources and their utilization by the community are examined. The surveys show a general support for integrating computational content into MSE education. However, they also reflect remaining issues with implementation, as well as a gap between the tools being taught in courses and those that are used by employers. Overall, the results suggest the necessity for a comprehensively developed vision and plans to further the integration of computational methods into MSE curricula.

  6. Third LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1993-01-01

    This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  7. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  8. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aguilar

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  9. PREFACE: 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Webb, Jeff; Ding, Jun

    2015-05-01

    The 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015) was held at the Sheraton Kuta, Bali, Indonesia, from 28 - 29 March 2015. The MOIME 2015 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program, as well as the invited and plenary speakers. This year, we received 99 papers and after rigorous review, 24 papers were accepted. The participants come from eight countries. There were four parallel sessions and two invited speakers. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2015. The Editors of the MOIME 2015 Proceedings Dr. Ford Lumban Gaol Jeff Webb, Ph.D Prof. Jun DING, Ph.D

  10. Active and passive interaction mechanism of smart materials for health monitoring of engineering structures: a review

    NASA Astrophysics Data System (ADS)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kumar

    2009-03-01

    Smart materials when interact with engineering structures, should have the capability to sense, measure, process, and detect any change in the selected variables (stress, damage) at critical locations. These smart materials can be classified into active and passive depending on the type of the structure, variables to be monitored, and interaction mechanism due to surface bonding or embedment. Some of the prominent smart materials are piezoelectric materials, micro fiber composite, polymers, shape memory alloys, electrostrictive and magnetostrictive materials, electrorheological and magnetorheological fluids and fiber optics. In addition, host structures do have the properties to support or repel the usage of smart materials inside or on it. This paper presents some of the most widely used smart materials and their interaction mechanism for structural health monitoring of engineering structures.

  11. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    PubMed

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  12. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh

    2004-01-01

    The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.

  13. PREFACE: International Scientific and Technical Conference ''Innovative Mechanical Engineering Technologies, Equipment and Materials-2014''

    NASA Astrophysics Data System (ADS)

    Nail, K.

    2015-06-01

    In the period from 3 to 5 December 2014 the city of Kazan hosted the International Scientific Conference ''Innovative mechanical engineering technologies, equipment and materials - 2014'' (ISC ''vIMETEM - 2014''). The event was followed by the 14th International specialized exhibition ''Engineering. Metalworking. Kazan'' The main objective of the annual conference was for participants to discuss scientific and technical achievements in the design and manufacture of engineering products, the expansion of cooperation between scientific organizations and enterprises of machine-building complex and the definition of perspective ways of creation and development of new techniques, technologies and materials. The conference ''IMETEM'' was devoted to the 90th anniversary of Fayzrahman Salahovich Yunusov, who made a great contribution in the field of aviation technology. Kashapov Nail, D.Sc., professor (Kazan Federal University)

  14. Development of a Support Environment for First Year Students Taking Materials Science/Engineering

    ERIC Educational Resources Information Center

    Laoui, Tahar; O'Donoghue, John

    2008-01-01

    This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided…

  15. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less

  16. The formation of students’ engineering thinking as a way to create new techniques, technologies, materials

    NASA Astrophysics Data System (ADS)

    Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    Engineering thinking is regarded as the quality of the person, which is stimulating the human need for the creation of new techniques, technologies and materials. Applications in the study of competence approach allows us to consider a professional thinking as one of the core competencies required for successful engineer innovations in mechanical engineering. The author's definition of professional engineering thinking is presented. The ways of its formation at students of technical fields enrolled in university courses are illustrated

  17. PREFACE: 4th Global Conference on Materials Science and Engineering (CMSE 2015)

    NASA Astrophysics Data System (ADS)

    Ruda, H. E.; Khotsianovsky, A.

    2015-12-01

    IOP Conference Series: Materials Science and Engineering is publishing a volume of conference proceedings that contains a selection of papers presented at the 4th Global Conference on Materials Science and Engineering (CMSE 2015), which is an annual event that started in 2012. CMSE 2015, technically supported by the Institute of Applied Physics and Materials Engineering of University of Macau, organized by Wuhan Advance Materials Society, was successfully held at the University of Macau-new campus located on Hengqin Island from August 3rd-6th, 2015. It aims to bring together leading academic scientists, researchers and scholars to exchange and share their experience and research results on all aspects of Materials Science and Engineering, and to discuss the practical challenges encountered and the solutions adopted. Macau, one of the two special administrative regions of the People's Republic of China, where East meets West, turned out to be an ideal meeting place for domestic and overseas participants of this annual international conference. The conference program included keynote presentations, special sessions, oral and poster contributions. From several hundred submissions, 52 of the most promising and mainstream, IOP-relevant, contributions were included in this volume. The submissions present original ideas or results of general significance, supported by clear reasoning, compelling evidence and methods, theories and practices relevant to the research. The authors state clearly the problems and the significance of their research to theory and practice. Being a successful conference, this event gathered more than 200 qualified and high-level researchers and experts from over 40 countries, including 10 keynote speakers from 6 countries, which created a good platform for worldwide researchers and engineers to enjoy the academic communication. Taking advantage of this opportunity, we would like to thank all participants of this conference, and particularly the

  18. Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials

    PubMed Central

    Li, Nianbei; Ren, Jie

    2014-01-01

    Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports. PMID:25169668

  19. Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials.

    PubMed

    Li, Nianbei; Ren, Jie

    2014-08-29

    Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports.

  20. National Educators' Workshop: Update 1991. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Stiegler, James O. (Compiler)

    1992-01-01

    Given here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 91, held at the Oak Ridge National Laboratory on November 12-14, 1991. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  1. Ultra high vacuum adhesion testing of NERVA engine materials

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The primary objective of this research program was to determine the effects of surface cleaning and deliberate gaseous contamination on the adhesion behavior of selected candidate materials for use in the NERVA nuclear rocket engine program. Using a torsion balance technique, the relationship between the normal compressive load applied to crossed rod samples and the resultant contact resistance was used to ascertain the extent of adhesion under each set of experimental conditions. In addition to an evaluation of the static adhesion behavior of selected materials combinations, the experimental apparatus was modified to permit a similar investigation relating to the effects of specific tangential displacements of the sample wires, i.e., their sliding friction behavior. During the course of this subcontract, the materials combinations 440 C vs. 440 C. pyrographite vs ZTA graphite, Nbc (graphite) vs. Nbc (graphite), and Electrolize Inconel 718 vs. Au electroplated 302 S/S were evaluated.

  2. Materials Engineering by Ameloblasts

    PubMed Central

    2015-01-01

    Enamel is unique. It is the only epithelial-derived mineralized tissue in mammals and has a distinct micro- and nanostructure with nanofibrous apatite crystals as building blocks. It is synthesized by a highly specialized cell, the ameloblast, which secretes matrix proteins with little homology to any other known amino acid sequence, but which is composed of a primary structure that makes it competent to self-assemble and control apatite crystal growth at the nanometer scale. The end-product of ameloblast activity is a marvel of structural engineering: a material optimized to provide the tooth with maximum biting force, withstanding millions of cycles of loads without catastrophic failure, while also protecting the dental pulp from bacterial attack. This review attempts to bring into context the mechanical behavior of enamel with the developmental process of amelogenesis and structural development, since they are linked to tissue function, and the importance of controlling calcium phosphate mineralization at the nanometer scale. The origins of apatite nanofibers, the development of a stiffness gradient, and the biological processes responsible for the synthesis of a hard and fracture-resistant dental tissue are discussed with reference to the evolution of enamel from a fibrous composite to a complex, tough, and damage-tolerant coating on dentin. PMID:25800708

  3. Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.

    2016-04-01

    This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.

  4. National Educators' Workshop: Update 1997. Standard Experiments in Engineering Materials, Science, and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Freeman, Ginger L. (Compiler); Jacobs, James A. (Compiler); Miller, Alan G. (Compiler); Smith, Brian W. (Compiler)

    1998-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 97, held at Boeing Commercial Airplane Group, Seattle, Washington, on November 2-5, 1997. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  5. Poster Session- Extended Abstracts

    Treesearch

    Jack D. Alexander III; Jean Findley; Brenda K. Kury; Jan L. Beyers; Douglas S. Cram; Terrell T. Baker; Jon C. Boren; Carl Edminster; Sue A. Ferguson; Steven McKay; David Nagel; Trent Piepho; Miriam Rorig; Casey Anderson; Jeanne Hoadley; Paulette L. Ford; Mark C. Andersen; Ed L. Fredrickson; Joe Truett; Gary W. Roemer; Brenda K. Kury; Jennifer Vollmer; Christine L. May; Danny C. Lee; James P. Menakis; Robert E. Keane; Zhi-Liang Zhu; Carol Miller; Brett Davis; Katharine Gray; Ken Mix; William P. Kuvlesky Jr.; D. Lynn Drawe; Marcia G. Narog; Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Timothy E. Paysen; Burton K. Pendleton; Rosemary L. Pendleton; Carleton S. White; John Rogan; Doug Stow; Janet Franklin; Jennifer Miller; Lisa Levien; Chris Fischer; Emma Underwood; Robert Klinger; Peggy Moore; Clinton S. Wright

    2008-01-01

    Titles found within Poster Session-Extended Abstracts include:Assessment of emergency fire rehabilitation of four fires from the 2000 fire season on the Vale, Oregon, BLM district: review of the density sampling materials and methods: p. 329 Growth of regreen, seeded for erosion control, in the...

  6. Tissue Engineering of the Corneal Endothelium: A Review of Carrier Materials

    PubMed Central

    Teichmann, Juliane; Valtink, Monika; Nitschke, Mirko; Gramm, Stefan; Funk, Richard H.W.; Engelmann, Katrin; Werner, Carsten

    2013-01-01

    Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings. PMID:24956190

  7. Transforming Systems Engineering through Model Centric Engineering

    DTIC Science & Technology

    2017-08-08

    12 Figure 5. Semantic Web Technologies related to Layers of Abstraction ................................. 23 Figure 6. NASA /JPL Instantiation...of OpenMBEE (circa 2014) ................................................. 24 Figure 7. NASA /JPL Foundational Ontology for Systems Engineering...Engineering (DE) Transformation initiative, and our relationship that we have fostered with National Aeronautics and Space Administration ( NASA ) Jet

  8. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  9. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  10. National Educators' Workshop: Update 1989 Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 89, held October 17 to 19, 1989 at the National Aeronautics and Space Administration, Hampton, Virginia. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  11. National Educators' Workshop: Update 1993. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1994-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 93 held at the NASA Langley Research Center in Hampton, Virginia, on November 3-5, 1993. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  12. Study of sound-absorbing properties of glass-fiber reinforced materials used in engineering

    NASA Astrophysics Data System (ADS)

    Egorova, V. E.; Habibova, R. R.; Shafigullin, L. N.

    2017-09-01

    Modern engineering makes high demands to the noise level in the passenger compartment or cabin of KAMAZ. An effective means of dealing with noise is to use sound absorbing materials produced by the automotive industry. To increase sound-absorbing capacity of materials and structures using glass fibre reinforced polyurethane foams (PUF) obtained by the technology Fiber Composite Spraying.

  13. National Educators' Workshop: Update 1988. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 88, held May 10 to 12, 1988 at the National Institute of Standards and Technology (NIST), Gaithersberg, Maryland. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  14. SERS internship: Spring 1994 abstracts and research papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, B.

    1994-05-06

    This document contains abstracts from the science and engineering research semester from the Lawrence Livermore National Laboratory. Projects cover many areas in the fields of contaminant removal from the environment, physics, and genetics research. Individual projects were processed separately for the Department of Energy databases.

  15. Forensic engineering: applying materials and mechanics principles to the investigation of product failures.

    PubMed

    Hainsworth, S V; Fitzpatrick, M E

    2007-06-01

    Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.

  16. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    PubMed Central

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  17. Molecular engineering of phosphole-based conjugated materials

    NASA Astrophysics Data System (ADS)

    Ren, Yi

    The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well

  18. SERS internship Fall 1992--Spring 1993: Abstract and research papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-05

    This report contains the abstracts and research papers by students on a variety of topics in engineering, genetics, solid state physics, thermonuclear energy, astrophysics, and other science related topics.

  19. The Usability of a Commercial Game Physics Engine to Develop Physics Educational Materials: An Investigation

    ERIC Educational Resources Information Center

    Price, Colin B.

    2008-01-01

    Commercial computer games contain "physics engine" components, responsible for providing realistic interactions among game objects. The question naturally arises of whether these engines can be used to develop educational materials for high school and university physics education. To answer this question, the author's group recently conducted a…

  20. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine

    PubMed Central

    Andorko, James I.

    2017-01-01

    Abstract Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune‐stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties—size, shape, chemical functionality—impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine. We begin by discussing what has been learned from studies conducted in the contexts of vaccines and immunotherapies. Next, research is highlighted that elucidates the properties of materials that polarize innate immune cells, including macrophages and dendritic cells, toward either inflammatory or wound healing phenotypes. We also discuss recent studies demonstrating that scaffolds used in tissue engineering applications can influence cells of the adaptive immune system—B and T cell lymphocytes—to promote regenerative tissue microenvironments. Through greater study of the intrinsic immunogenic features of implantable materials and scaffolds, new translational opportunities will arise to better control tissue engineering and regenerative medicine applications. PMID:28932817

  1. Application of composite materials to turbofan engine fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Smith, G. T.

    1980-01-01

    A program was conducted by NASA with the JT9D engine manufacturer to develop a lightweight, cost effective, composite material fan exit guide vane design having satisfactory structural durability for commerical engine use. Based on the results of a previous company supported program, eight graphite/epoxy and graphite-glass/epoxy guide vane designs were evaluated and four were selected for fabrication and testing. Two commercial fabricators each fabricated 13 vanes. Fatigue tests were used to qualify the selected design configurations under nominally dry, 38 C (100 F) and fully wet and 60 C (140 F) environmental conditions. Cost estimates for a production rate of 1000 vanes per month ranged from 1.7 to 2.6 times the cost of an all aluminum vane. This cost is 50 to 80 percent less than the initial program target cost ratio which was 3 times the cost of an aluminum vane. Application to the JT9D commercial engine is projected to provide a weight savings of 236 N (53 lb) per engine.

  2. Yield strength of Cu and an engineered material of Cu with 1% Pb

    NASA Astrophysics Data System (ADS)

    Buttler, William; Gray, George, III; Fensin, Saryu; Grover, Mike; Stevens, Gerald; Stone, Joseph; Turley, William

    2015-06-01

    To study the effects of engineered elastic-plastic yield on the mass-ejection from shocked materials we fielded explosively driven Cu and CuPb experiments. The Cu and CuPb experiments fielded fully annealed disks in contact with PBX 9501; the CuPb was extruded with 1% Pb that aggregates at the Cu grain boundaries. The elastic-plastic yield strength is explored as a difference of ejecta production of CuPb versus Cu, where the ejecta production of solid materials ties directly to the surface perturbation geometries of wavelengths (fixed at 65 μm) and amplitudes (which were varied). We observed that the Cu performs as expected, with ejecta turning on at the previously observed yield threshold, but the CuPb ejects mass in much larger quantities, at much lower wavenumber (k = 2 π/ λ) amplitude (h) products (kh), implying a reduced elastic-plastic yield stress of the engineered material, CuPb.

  3. Design and engineering analysis of material procurement mobile operation platform

    NASA Astrophysics Data System (ADS)

    Ding, H.; Li, J.

    2014-03-01

    The material procurement mobile operation platform (MPMOP) consists of six modules, including network operation, truck transportation, remote communication, satellite positioning, power supply and environment regulation. The MPMOP is designed to have six major functions, including online procurement, command control, remote communication, satellite positioning, information management and auxiliary decision. The paper implements an engineering analysis on the MPMOP from three aspects, including transportation transfinite, centroid, and power dissipation.

  4. [Experimental study on vagina reconstruction with tissue-engineering biological material.].

    PubMed

    Zhou, Hui-Mei; Lang, Jing-He; Zhu, Lan

    2009-11-01

    To investigate the effect of vagina reconstruction using tissue-engineering biological material (acellular dermal matrix) in an animal model. Vagina excision and vagina reconstruction with tissue-engineering biological material were performed in 12 Chinese experimental miniature pigs. The control group was matched with two of normal vagina specimens resected. At week 1, 2, 4, 6, 8, 12 after surgery, the animals were sacrificed, respectively, and the neovaginas were prepared for immunohistochemical and Van Gieson (VG) staining to evaluate the status of various layer growth of vagina. Epithelial broad spectrum of monoclonal antibodies of AE1/AE3 and alpha-actin were used to test the existence of epithelial and smooth muscle tissue by immunohistochemical staining. The ultrastructure of neovagina was studied by transmission electron microscope at week 1 and 12 after surgery. Contractile function of isolated smooth muscle of neovagina was evaluated by chemical and electronic stimulation after 12 weeks' reconstruction. (1) Epithelization of 2/3 neovaginal mucosa was observed within 1 week. Only 1 - 2 layer epitheliums were observed under the light microscopy and epithelial cells with characteristics of loose and disarrangement were shown with the electron microscopy. Within 4 - 6 weeks, epithelization in mucosa of neovaginal canal was intensified to 4 - 5 layers. After 12 weeks, the differences between the neovagina and the native vagina were harldy noted either in the gross or microscopically. (2) After 4 weeks, a few smooth muscle cells were observed with VG and immunohistochemical staining, and homogeneous muscle bundle was formed. (3) After 12 weeks, similar contractile responses between neovagina and native vagina were observed when KCl and electrical stimulation with different frequency and voltage were given [(2.96 +/- 0.29) g vs. (3.14 +/- 0.30) g, (3.43 +/- 0.34) g vs. (4.65 +/- 0.73) g, (4.92 +/- 0.38) g vs. (4.89 +/- 0.44) g]. The tissue-engineering biological

  5. Some aspects of applying nanostructured materials in air filtration, water filtration and electrical engineering

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lovecka, Lenka; Kazda, Tomas; Giurg, Adam; Skorvan, Ondrej

    2017-05-01

    Nanostructures prepared from nanofibres and nanostructured composites prepared from nanofibres and fillers are gradually becoming increasingly demanded materials for applications in various industrial branches connected with catalysis, environment protection (air filtration, waste water treatment, sound absorption), in biological engineering, electronics (battery separators, electrode materials), etc. Selected applications of these materials prepared in the company SPUR a.s. are summed up in the following presentation.

  6. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    NASA Astrophysics Data System (ADS)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  7. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.

    PubMed

    Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn

    2018-01-17

    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

  8. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  9. From kinetic-structure analysis to engineering crystalline fiber networks in soft materials.

    PubMed

    Wang, Rong-Yao; Wang, Peng; Li, Jing-Liang; Yuan, Bing; Liu, Yu; Li, Li; Liu, Xiang-Yang

    2013-03-07

    Understanding the role of kinetics in fiber network microstructure formation is of considerable importance in engineering gel materials to achieve their optimized performances/functionalities. In this work, we present a new approach for kinetic-structure analysis for fibrous gel materials. In this method, kinetic data is acquired using a rheology technique and is analyzed in terms of an extended Dickinson model in which the scaling behaviors of dynamic rheological properties in the gelation process are taken into account. It enables us to extract the structural parameter, i.e. the fractal dimension, of a fibrous gel from the dynamic rheological measurement of the gelation process, and to establish the kinetic-structure relationship suitable for both dilute and concentrated gelling systems. In comparison to the fractal analysis method reported in a previous study, our method is advantageous due to its general validity for a wide range of fractal structures of fibrous gels, from a highly compact network of the spherulitic domains to an open fibrous network structure. With such a kinetic-structure analysis, we can gain a quantitative understanding of the role of kinetic control in engineering the microstructure of the fiber network in gel materials.

  10. Resistive oxygen sensor using ceria-zirconia sensor material and ceria-yttria temperature compensating material for lean-burn engine.

    PubMed

    Izu, Noriya; Nishizaki, Sayaka; Shin, Woosuck; Itoh, Toshio; Nishibori, Maiko; Matsubara, Ichiro

    2009-01-01

    Temperature compensating materials were investigated for a resistive oxygen sensor using Ce(0.9)Zr(0.1)O(2) as a sensor material for lean-burn engines. The temperature dependence of a temperature compensating material should be the same as the sensor material; therefore, the Y concentration in CeO(2)-Y(2)O(3) was optimized. The resistance of Ce(0.5)Y(0.5)O(2-δ) was independent of the air-to-fuel ratio (oxygen partial pressure), so that it was confirmed to function as a temperature compensating material. Sensor elements comprised of Ce(0.9)Zr(0.1)O(2) and Ce(0.5)Y(0.5)O(2-δ) were fabricated and the output was determined to be approximately independent of the temperature in the wide range from 773 to 1,073 K.

  11. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources materials. Supplement 31, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected…

  12. Temporal abstraction-based clinical phenotyping with Eureka!

    PubMed

    Post, Andrew R; Kurc, Tahsin; Willard, Richie; Rathod, Himanshu; Mansour, Michel; Pai, Akshatha Kalsanka; Torian, William M; Agravat, Sanjay; Sturm, Suzanne; Saltz, Joel H

    2013-01-01

    Temporal abstraction, a method for specifying and detecting temporal patterns in clinical databases, is very expressive and performs well, but it is difficult for clinical investigators and data analysts to understand. Such patterns are critical in phenotyping patients using their medical records in research and quality improvement. We have previously developed the Analytic Information Warehouse (AIW), which computes such phenotypes using temporal abstraction but requires software engineers to use. We have extended the AIW's web user interface, Eureka! Clinical Analytics, to support specifying phenotypes using an alternative model that we developed with clinical stakeholders. The software converts phenotypes from this model to that of temporal abstraction prior to data processing. The model can represent all phenotypes in a quality improvement project and a growing set of phenotypes in a multi-site research study. Phenotyping that is accessible to investigators and IT personnel may enable its broader adoption.

  13. Fractography of modern engineering materials: Composites and metals, Second volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, J.E.; Gilbertson, L.N.

    1993-01-01

    This book contains the manuscripts of eleven papers that were presented at the Second Symposium on Fractography of Modern Engineering Materials held in May 1992. The numerous advances in materials science in the six year period following the First Symposium dictated this second meeting. Not only had new materials been developed in the intervening years, but understanding of older materials had also progressed. Similarly, advances in the technology and the techniques of fractography had occurred. The objective of the symposium was to extend the colloquy on fractography to include these many advances. The paper may be divided into three sections:more » Unique Fractographic Techniques; Metallic Materials; Polymeric and Composite Materials. The section titles reflect the diversity of materials discussed in the meeting. The range of materials included cross-linked polyethylene, AISI 52100 steel, 2024 aluminum, and a variety of organic and metal matrix fibrous composites. The case studies presented also covered a wide range. They included failure investigations of an antenna used in deep space exploration and chemical storage tanks. Advances in the techniques of fractography were also reflected in a number of presentations; quantitative techniques and expert systems were also subjects of presentations. A short precis of each paper is included here to assist the readers in identifying works of particular interest.« less

  14. Cost/benefit analysis of advanced material technologies for small aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Comey, D. H.

    1977-01-01

    Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.

  15. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 41

    DTIC Science & Technology

    1978-08-08

    ELEKTRICHESKIYE STANTSII In Russian No 3, Mar 78 pp 70-71 KUZNETSOV, Vi P., Z0B0LÖTNIK0V, V. I. and MAKEYEV , V. P., engineers, Doltekhenergo...after completion 25 Mar 76 LEYTMAN, MIKHAIL BORISOVICH, candidate in technical sciences, dotsent, Smolensk Affiliate of Moscow Power Engineering

  16. Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials

    NASA Astrophysics Data System (ADS)

    Trifale, Ninad T.

    application were analyzed for potential use of engineered materials. Heat spreader application involving thermal and mechanical constraints, artificial bone grafts application involving mechanical and permeability constraints and structural materials applications involving mechanical, thermal and porosity constraints is analyzed. Recommendations for optimum topologies for specific operating conditions are provided.

  17. Engineering Poly(ethylene glycol) Materials to Promote Cardiogenesis

    NASA Astrophysics Data System (ADS)

    Smith, Amanda Walker

    Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles. Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture. In the third chapter of the

  18. Construction Mechanic, Engine Tune-Up I, 8-7. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, teaches students to perform a complete engine tune-up using appropriate hand tools, special tools, and testing equipment. Students completing the course will be able to diagnose gasoline-engine performance and perform corrective measures to…

  19. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    PubMed

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SERS internship fall 1995 abstracts and research papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Beverly

    1996-05-01

    This report is a compilation of twenty abstracts and their corresponding full papers of research projects done under the US Department of Energy Science and Engineering Research Semester (SERS) program. Papers cover a broad range of topics, for example, environmental transport, supercomputers, databases, biology. Selected papers were indexed separately for inclusion the the Energy Science and Technology Database.

  1. Grounded understanding of abstract concepts: The case of STEM learning.

    PubMed

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  2. The Virtual Employment Test Bed: An Immersive Synthetic Environment Allows Engineers to Test and Evaluate Material Solutions

    DTIC Science & Technology

    2014-04-03

    synthetic environment allows engineers to test and evaluate material solutions Robert DeMarco, MSBME; Gordon Cooke, MEME ; John Riedener, MSSE...ROBERT DEMARCO, MSBME, is a Project Lead Engineer and Certified LabVIEW Associate Developer. GORDON COOKE, MEME , is a Principal Investigator at the

  3. Legacy System Engineering, VPERC Consortium

    DTIC Science & Technology

    2009-09-01

    REPORT Legacy System Engineering, VPERC Consortium, Final Report, University of Utah for Work Ending Joly 15, 2009. 14. ABSTRACT 16. SECURITY...Engineering, VPERC Consortium, Final Report, University of Utah for Work Ending Joly 15, 2009. Report Title ABSTRACT This paper is one of three...Sons, 1995. [3] Turner MJ, Clough RW, Martin HC, Topp LJ. “Stiffness and deflection analysis of complex structures.” Journal of the Aeronautical

  4. National Educators' Workshop: Update 2002 - Standard Experiments in Engineering, Materials Science, and Technology

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Chung, W. Richard (Compiler)

    2003-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 2002 held in San Jose, California, October 13-16,2002. This publication provides experiments and demonstrations that can serve as a valuable guide to faculty who are interested in useful activities for their students. The material was the result of years of research aimed at better methods of teaching technical subjects. The experiments developed by faculty, scientists, and engineers throughout the United States and abroad add to the collection from past workshops. They include a blend of experiments on new materials and traditional materials.

  5. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  6. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K.

    PubMed

    Kirichek, O; Timms, J D; Kelleher, J F; Down, R B E; Offer, C D; Kabra, S; Zhang, S Y

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  7. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Timms, J. D.; Kelleher, J. F.; Down, R. B. E.; Offer, C. D.; Kabra, S.; Zhang, S. Y.

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  8. Second LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1992-01-01

    These abstracts from the symposium represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science, (cosmic ray, interstellar gas, heavy ions, micrometeoroids, etc.), electronics, optics, and life science.

  9. Improving a data-acquisition software system with abstract data type components

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1990-01-01

    Abstract data types and object-oriented design are active research areas in computer science and software engineering. Much of the interest is aimed at new software development. Abstract data type packages developed for a discontinued software project were used to improve a real-time data-acquisition system under maintenance. The result saved effort and contributed to a significant improvement in the performance, maintainability, and reliability of the Goldstone Solar System Radar Data Acquisition System.

  10. Construction Mechanic, Engine Tune-Up II (Diesel), 8-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for vocational and technical education, teaches students to restore diesel engine performance to the manufacturer's specifications through troubleshooting and analyzing diesel engine fuel systems and to make minor and major adjustments to those components that directly affect engine…

  11. Picasso, Car Classics, and the Engineers.

    ERIC Educational Resources Information Center

    Wosk, Julie H.

    1982-01-01

    Describes a college course which introduces engineering and business students to abstract art. Students study the relationships between abstract styles in painting and abstract styles in twentieth-century architecture and industrial design. The relevance of abstract design principles is shown by referring students to "Car and Driver"…

  12. ECM-Based Biohybrid Materials for Engineering Compliant, Matrix-Dense Tissues

    PubMed Central

    Bracaglia, Laura G.; Fisher, John P.

    2015-01-01

    An ideal tissue engineering scaffold should not only promote, but take an active role in, constructive remodeling and formation of site appropriate tissue. ECM-derived proteins provide unmatched cellular recognition, and therefore influence cellular response towards predicted remodeling behaviors. Materials built with only these proteins, however, can degrade rapidly or begin too weak to substitute for compliant, matrix-dense tissues. The focus of this review is on biohybrid materials that incorporate polymer components with ECM-derived proteins, to produce a substrate with desired mechanical and degradation properties, as well as actively guide tissue remodeling. Materials are described through four fabrication methods: (1) polymer and ECM-protein fibers woven together, (2) polymer and ECM proteins combined in a bilayer, (3) cell-built ECM on polymer scaffold, and (4) ECM proteins and polymers combined in a single hydrogel. Scaffolds from each fabrication method can achieve characteristics suitable for different types of tissue. In vivo testing has shown progressive remodeling in injury models, and suggests ECM-based biohybrid materials promote a prohealing immune response over single component alternatives. The prohealing immune response is associated with lasting success and long term host maintenance of the implant. PMID:26227679

  13. Study of the costs and benefits of composite materials in advanced turbofan engines

    NASA Technical Reports Server (NTRS)

    Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.

    1974-01-01

    Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.

  14. Economic Education Projects: Abstracts from the 1980-81 Competition.

    ERIC Educational Resources Information Center

    Palmer, George E., Ed.

    Abstracts of innovative and imaginative economics units are provided in this annotated listing of economic education projects submitted to the 1980-81 National Awards Program for Teaching Economics. Over 200 abstracts are contained in separate sections covering materials for primary grades, intermediate grades, junior high schools, senior high…

  15. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  16. Ceramics Technology Project database: September 1991 summary report. [Materials for piston ring-cylinder liner for advanced heat/diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less

  17. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering: A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  18. Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.

  19. Biotemplated syntheses of macroporous materials for bone tissue engineering scaffolds and experiments in vitro and vivo.

    PubMed

    Li, Xing; Zhao, Yayun; Bing, Yue; Li, Yaping; Gan, Ning; Guo, Zhiyong; Peng, Zhaoxiang; Zhu, Yabin

    2013-06-26

    The macroporous materials were prepared from the transformation of cuttlebone as biotemplates under hydrothermal reactions and characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric/differential thermal analyses (TG-DTA), and scanning electron microscopy (SEM). Cell experimental results showed that the prepared materials as bone tissue engineering scaffolds or fillers had fine biocompatibility suitable for adhesion and proliferation of the hMSCs (human marrow mesenchymal stem cells). Histological analyses were carried out by implanting the scaffolds into a rabbit femur, where the bioresorption, degradation, and biological activity of the scaffolds were observed in the animal body. The prepared scaffolds kept the original three-dimensional frameworks with the ordered porous structures, which made for blood circulation, nutrition supply, and the cells implantation. The biotemplated syntheses could provide a new effective approach to prepare the bone tissue engineering scaffold materials.

  20. Materials engineering, characterization, and applications of the organicbased magnet, V[TCNE

    NASA Astrophysics Data System (ADS)

    Harberts, Megan

    Organic materials have advantageous properties such as low cost and mechanical flexibility that have made them attractive to complement traditional materials used in electronics and have led to commercial success, especially in organic light emitting diodes (OLEDs). Many rapidly advancing technologies incorporate magnetic materials, leading to the potential for creating analogous organic-based magnetic applications. The semiconducting ferrimagnet, vanadium tetracyanoethylene, V[TCNE]x˜2, exhibits room temperature magnetic ordering which makes it an attractive candidate. My research is focused on development of thin films of V[TCNE]x˜2 through advancement in growth, materials engineering, and applications. My thesis is broken up into two sections, the first which provides background and details of V[TCNE]x˜2 growth and characterization. The second section focuses on advances beyond V[TCNE]x˜2 film growth. The ordering of the chapters is for the ease of the reader, but encompasses work that I led and robust collaborations that I have participated in. V[TCNE]x˜2 films are deposited through a chemical vapor deposition process (CVD). My advancements to the growth process have led to higher quality films which have higher magnetic ordering temperatures, more magnetically homogenous samples, and extremely narrow ferromagnetic resonance (FMR) linewidths. Beyond improvements in film growth, materials engineering has created new materials and structures with properties to compliment thin film V[TCNE]x˜2. Though a robust collaboration with chemistry colleagues, modification of the molecule TCNE has led to the creation of new magnetic materials vanadium methyl tricyanoethylene carboxylate, V[MeTCEC]x and vanadium ethyl tricyanoethylene carboxylate, V[ETCEC]x. Additionally, I have lead a project to deposit V[TCNE]x˜2 on periodically patterned substrates leading to the formation of a 1-D array of V[TCNE]x˜2 nanowires. These arrays exhibit in-plane magnetic anisotropy

  1. [Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering].

    PubMed

    Li, Ran; Wang, Hong; Leng, Chongyan; Wang, Kuan; Xie, Ying

    2016-05-01

    Natural polymeric materials and their derivatives are organic macromolecular compounds which exist in plants, animals, and micro-organisms. They have been widely used in the preparation of scaffolds for skin tissue engineering recently because of their good histocompatibility and degradability, and low immunogenicity. With the improvement of the preparation technics, composite materials are more commonly used to make scaffolds for dermal tissue engineering. This article summarizes the classification and research status of the commonly used natural polymer materials, their derivatives, and composite scaffold materials, as well as makes a prospect of the research trends of dermal scaffold in the future.

  2. Materials and processes for shuttle engine, external tank, and solid rocket booster

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1977-01-01

    The Shuttle flight system is composed of the Orbiter, an External Tank (ET) that contains the ascent propellant to be used by the Space Shuttle Main Engines (SSME), and two Solid Rocket Boosters (SRB). The ET is expended on each launch; the Orbiter and SRB's are reusable. It is the requirement for reuse which poses the exciting new materials and processes challenges in the development of the Space Shuttle. A brief description of the Space Shuttle and the mission profile is given. The Shuttle configuration is then described with emphasis on the SSME, ET, and SRB. The materials selection, tracking, and control system used to assure reliability and to minimize cost are described, and salient features and challenges in materials and processes associated with the SSME, ET, and SRB are subsequently discussed.

  3. Mission and spacecraft support functions of the Materials Engineering Branch: A space oriented technology resource

    NASA Technical Reports Server (NTRS)

    Fisher, A.; Staugaitis, C. L.

    1974-01-01

    The capabilities of the Materials Engineering Branch (MEB) of the Goddard Space Flight Center, Greenbelt, Maryland, are surveyed. The specific functions of spacecraft materials review, materials processing and information dissemination, and laboratory support, are outlined in the Activity Report. Further detail is provided by case histories of laboratory satellite support and equipment. Project support statistics are shown, and complete listings of MEB publications, patents, and tech briefs are included. MEB staff, and their respective discipline areas and spacecraft liaison associations, are listed.

  4. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.

    The world’s first master’s degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5½ year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, includedmore » students who started the program in their third year of studies, as the first 2½ years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program’s specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training.« less

  5. Development of Educational Materials to Enhance Students‧ Motivation using the ODE Physics Engine

    NASA Astrophysics Data System (ADS)

    Demura, Kosei

    This paper presents educational materials, a simulator and a textbook, using the Open Dynamics Engine (ODE) . ODE is an open source, fast, robust and industrial quality library for a real-time and interactive simulation of rigid body dynamics. ODE is suitable for developing educational materials. However, there had been no book which introduced how to use ODE to make simulators written in Japanese. Thus I wrote a textbook which gave basic robotics and how to make simulators based on ODE. Students are able to tackle the subject with interest using the textbook and the simulators.

  6. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, No. 43.

    DTIC Science & Technology

    1978-11-16

    WISOWSKI, JANUSZ; STOLARSKI, EDWARD and CZERWINSKI, ANDRZEJ , Institute of Electronic Technology NPCP [Scientific-Production Center for...PINTER (Mrs DUDAS ), MARTA [Abstract] Some theoretical considerations are presented concerning the design of small coaxial cables with

  7. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  8. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    NASA Astrophysics Data System (ADS)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2018-03-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  9. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    NASA Astrophysics Data System (ADS)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2017-12-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  10. Multi-Material Tissue Engineering Scaffold with Hierarchical Pore Architecture.

    PubMed

    Morgan, Kathy Ye; Sklaviadis, Demetra; Tochka, Zachary L; Fischer, Kristin M; Hearon, Keith; Morgan, Thomas D; Langer, Robert; Freed, Lisa E

    2016-08-23

    Multi-material polymer scaffolds with multiscale pore architectures were characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds were constructed from a new material, poly(limonene thioether) (PLT32i), which met the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular-parenchymal interface was a poly(glycerol sebacate) (PGS) porous membrane that met different criteria of rapid biodegradability, high oxygen permeance, and high porosity. A hierarchical architecture of primary (macroscale) and secondary (microscale) pores was created by casting the PLT32i prepolymer onto sintered spheres of poly(methyl methacrylate) (PMMA) within precisely patterned molds followed by photocuring, de-molding, and leaching out the PMMA. Pre-fabricated polymer templates were cellularized, assembled, and perfused in order to engineer spatially organized, contractile heart tissue. Structural and functional analyses showed that the primary pores guided heart cell alignment and enabled robust perfusion while the secondary pores increased heart cell retention and reduced polymer volume fraction.

  11. ATK Launch Systems Engineering NASA Programs Engineering Examples

    NASA Technical Reports Server (NTRS)

    Richardson, David

    2007-01-01

    This presentation provides an overview of the work done at ATK Launch Systems with and indication of how engineering knowledge can be applied to several real world problems. All material in the presentation has been screened to meet ITAR restrictions. The information provided is a compilation of general engineering knowledge and material available in the public domain. The presentation provides an overview of ATK Launch Systems and NASA programs. Some discussion is provided about the types of engineering conducted at the Promontory plant with added detail about RSRM nozzle engineering. Some brief examples of examples of nozzle technical issues with regard to adhesives and phenolics are shared. These technical issue discussions are based on material available in the public domain.

  12. Novel hybrid materials for preparation of bone tissue engineering scaffolds.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria

    2015-09-01

    The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.

  13. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  14. Uncertainty Management in Urban Water Engineering Adaptation to Climate Change - abstract

    EPA Science Inventory

    Current water resource planning and engineering assume a stationary climate, in which the observed historical water flow rate and water quality variations are often used to define the technical basis. When the non-stationarity is considered, however, climate change projection co...

  15. Impact of materials engineering on edge placement error (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Freed, Regina; Mitra, Uday; Zhang, Ying

    2017-04-01

    Transistor scaling has transitioned from wavelength scaling to multi-patterning techniques, due to the resolution limits of immersion of immersion lithography. Deposition and etch have enabled scaling in the by means of SADP and SAQP. Spacer based patterning enables extremely small linewidths, sufficient for several future generations of transistors. However, aligning layers in Z-direction, as well as aligning cut and via patterning layers, is becoming a road-block due to global and local feature variation and fidelity. This presentation will highlight the impact of deposition and etch on this feature alignment (EPE) and illustrate potential paths toward lowering EPE using material engineering.

  16. Composite material application for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Heubner, S. W.

    1982-01-01

    With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.

  17. Engineering water repellency in granular materials for ground applications

    NASA Astrophysics Data System (ADS)

    Lourenco, Sergio; Saulick, Yunesh; Zheng, Shuang; Kang, Hengyi; Liu, Deyun; Lin, Hongjie

    2017-04-01

    Synthetic water repellent granular materials are a novel technology for constructing water-tight barriers and fills that is both inexpensive and reliant on an abundant local resource - soils. Our research is verifying its stability, so that perceived risks to practical implementation are identified and alleviated. Current ground stabilization measures are intrusive and use concrete, steel, and glass fibres as reinforcement elements (e.g. soil nails), so more sustainable approaches that require fewer raw materials are strongly recommended. Synthetic water repellent granular materials, with persistent water repellency, have been tested for water harvesting and proposed as landfill and slope covers. By chemically, physically and biologically adjusting the magnitude of water repellency, they offer the unique advantage of controlling water infiltration and allow their deployment as semi-permeable or impermeable materials. Other advantages include (1) volumetric stability, (2) high air permeability and low water permeability, (3) suitability for flexible applications (permanent and temporary usage), (4) improved adhesion aggregate-bitumen in pavements. Application areas include hydraulic barriers (e.g. for engineered slopes and waste containment), pavements and other waterproofing systems. Chemical treatments to achieve water repellency include the use of waxes, oils and silicone polymers which affect the soil particles at sub-millimetric scales. To date, our research has been aimed at demonstrating their use as slope covers and establishing the chemical compounds that develop high and stable water repellency. Future work will determine the durability of the water repellent coatings and the mechanics and modelling of processes in such soils.

  18. Advancement and Implementation of Integrated Computational Materials Engineering (ICME) for Aerospace Applications

    DTIC Science & Technology

    2010-03-01

    of sub-routines Thermal history • Abaqus FEM engine mature applied within ABAQUS Residual stress & Distortion • Unknown maturity for HTC • Focused...investment. The committee’s ICME vision is comprehensive, expansive , and involves the entire materials community. The scope of this white paper is...Software • Continuum FEM for fluid flow, heat Mold Fill • FEM implementation mature flow and stress analysis Thermal & mushy zone history • Needs

  19. An Integrated Computational Materials Engineering Method for Woven Carbon Fiber Composites Preforming Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn

    2016-10-19

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterizemore » the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.« less

  20. Mechanical, Biological and Electrochemical Investigations of Advanced Micro/Nano Materials for Tissue Engineering and Energy Storage

    NASA Astrophysics Data System (ADS)

    Pu, Juan

    Various micro/nano materials have been extensively studied for applications in tissue engineering and energy storage. Tissue engineering seeks to repair or replace damaged tissue by integrating approaches from cellular/molecular biology and material chemistry/engineering. A major challenge is the consistent design of three-dimensional (3D) scaffolds that mimic the structure and biological functions of extracellular matrix (ECM), guide cell migration, provide mechanical support, and regulate cell activity. Electrospun micro/nanofibers have been investigated as promising tissue engineering scaffolds because they resemble native ECM and possess tunable surface morphologies. Supercapacitors, one of the energy storage devices, bridge the performance gap between rechargeable batteries and conventional capacitors. Active electrode materials of supercapacitors must possess high specific surface area, high conductivity, and good electrochemical properties. Carbon-based micro/nano-particles, such as graphene, activated carbon (AC), and carbon nanotubes, are commonly used as active electrode materials for storing charge in supercapacitors by the electrical double layer mechanism due to their high specific surface area and excellent conductivity. In this thesis, the mechanical properties of electrospun bilayer microfibrous membranes were investigated for potential applications in tissue engineering. Bilayer microfibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning using a parallel-disk mandrel configuration, which resulted in the sequential deposition of a layer with aligned fibers (AFL) across the two parallel disks and a layer with random fibers (RFL), both deposited by a single process step. The membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, the bilayer membranes exhibited higher porosity than the

  1. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  2. IMEC-9: The 9th Israel Materials Engineering Conference. Program & Abstracts

    DTIC Science & Technology

    1999-12-07

    non- toxic , magnetite (FesC^) nanoparticles of very narrow size distribution in sizes ranging from approximately 20 nm up to 0.1 urn. The process for...Israel 17 Composites I Hall G Chair: R. Albalak 13:30 -13:50 Synthesis of Dense Oxide -Based In Situ Composites via Thermal Explosion/SHS...Tsionsky, Israel 16:00 -16:20 The Effect of Composition and Microstructure on the Corrosion Behavior of Magnesium- Aluminium Alloys P. Uzan, D. Eliezer

  3. Military Curriculum Materials for Vocational and Technical Education. Soils Engineering 3-1. Edition 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in soils engineering was adapted from military curriculum materials for use in vocational education. The course is designed to acquaint students with various soil types and their characteristics using various procedures, tests, and recording forms. Some of these duties are determining…

  4. Program and Abstracts, Boron Americas IX Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feakes, Debra A.

    The Scientific and Technical Information (STI) submitted includes the final report and a collection of abstracts for the Ninth Boron in the Americas Conference which was held May 19-22, 2004, in San Marcos, Texas. The topics covered in the abstracts include: Application in Medicine, Application in Organic Synthesis and Catalysis, Boranes and Carboranes, Materials and Polymers, Metallaboranes and Metallacarboranes, Organoboron Compounds, Synthesis and Catalysis, and Theoretical Studies. Attendees represented researchers from government, industry, and academia.

  5. Physicists in Primary Schools (PIPS) Project: Fun Presentations for Physicists to Take into Schools Worldwide (abstract)

    NASA Astrophysics Data System (ADS)

    Marks, Ann

    2009-04-01

    The Physicists in Primary Schools (PIPS) project is a joint venture initiated by the UK Women in Physics Group. A team from the University of Sheffield, with Engineering and Physical Sciences Research Council funding, has developed fun presentations and novel class activities using everyday articles for physicists to take into primary schools. The objectives are to instill enthusiasm in young children-including girls-through the enjoyment and excitement of physics, and support primary school teachers with a curriculum which includes many abstract concepts. All PIPS material is free to download from the Institute of Physics website (www.iop.org/pips), providing PowerPoint presentations and detailed explanations, as well as videos of the activities in classrooms. The topics are suitable for children age 4 to 11 years. There is interest in translating the presentations into other languages as there are few words on the slides and the material is likely valuable for older age groups. The presentations therefore have the potential to be useful worldwide.

  6. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to sharemore » its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.« less

  7. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 38

    DTIC Science & Technology

    1977-12-27

    THEORY OF STIMULATED EMISSION OF SOUND IN A LIQUID HALF-SPACE WITH UNEVEN BOUNDARY WHEN Q-SWITCHED LASER RADIATION IS ABSORBED Moscow AKUSTICHESKIY...Coherent and Non- linear Optics ["Concerning the Influence of an Uneven Boundary on Optical Stimulation of Sound in a Liquid ," Abstracts of Reports to...switched laser radiation is absorbed in a liquid half-space is considered in the small perturbation approximation. It is assumed that the

  8. Engineered materials for all-optical helicity-dependent magnetic switching

    NASA Astrophysics Data System (ADS)

    Fullerton, Eric

    2014-03-01

    The possibilities of manipulating magnetization without applied magnetic fields have attracted growing attention over the last fifteen years. The low-power manipulation of magnetization, preferably at ultra-short time scales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization of engineered materials and devices using 100 fs optical pulses. We demonstrate that all optical - helicity dependent switching (AO-HDS) can be observed not only in selected rare-earth transition-metal (RE-TM) alloy films but also in a much broader variety of materials, including alloys, multilayers, heterostructures and RE-free Co-Ir-based synthetic ferrimagnets. The discovery of AO-HDS in RE-free TM-based synthetic ferrimagnets can enable breakthroughs for numerous applications since it exploits materials that are currently used in magnetic data storage, memories and logic technologies. In addition, this materials study of AO-HDS offers valuable insight into the underlying mechanisms involved. Indeed the common denominator of the diverse structures showing AO-HDS in this study is that two ferromagnetic sub-lattices exhibit magnetization compensation (and therefore angular momentum compensation) at temperatures near or above room temperature. We are highlighting that compensation plays a major role and that this compensation can be established at the atomic level as in alloys but also over a larger nanometers scale as in the multilayers or in heterostructures. We will also discuss the potential to extend AO-HDS to new classes of magnetic materials. This work was done in collaboration with S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, and M. Aeschlimann. Supported by the ANR-10-BLANC-1005 ``Friends,'' a grant from the Advanced Storage Technology Consortium, Partner University Fund

  9. Strain-engineered growth of two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here in this paper, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1%more » tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2, respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.« less

  10. Strain-engineered growth of two-dimensional materials

    DOE PAGES

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; ...

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here in this paper, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1%more » tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2, respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.« less

  11. Engineered Barrier System: Physical and Chemical Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less

  12. Teaching Reform of Civil Engineering Materials Course Based on Project-Driven Pedagogy

    NASA Astrophysics Data System (ADS)

    Yidong, Xu; Wei, Chen; WeiguoJian, You; Jiansheng, Shen

    2018-05-01

    In view of the scattered experimental projects in practical courses of civil engineering materials, the poor practical ability of students and the disconnection between practical teaching and theoretical teaching, this paper proposes a practical teaching procedure. Firstly, the single experiment should be offered which emphasizes on improving the students’ basic experimental operating ability. Secondly, the compressive experiment is offered and the overall quality of students can be examined in the form of project team. In order to investigate the effect of teaching reform, the comparative analysis of the students of three grades (2014, 2015 and 2016) majored in civil engineering was conducted. The result shows that the students’ ability of experimental operation is obviously improved by using the project driven method-based teaching reform. Besides, the students’ ability to analyse and solve problems has also been improved.

  13. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design.

    PubMed

    van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J

    2017-05-22

    Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

  14. Is searching full text more effective than searching abstracts?

    PubMed Central

    Lin, Jimmy

    2009-01-01

    Background With the growing availability of full-text articles online, scientists and other consumers of the life sciences literature now have the ability to go beyond searching bibliographic records (title, abstract, metadata) to directly access full-text content. Motivated by this emerging trend, I posed the following question: is searching full text more effective than searching abstracts? This question is answered by comparing text retrieval algorithms on MEDLINE® abstracts, full-text articles, and spans (paragraphs) within full-text articles using data from the TREC 2007 genomics track evaluation. Two retrieval models are examined: bm25 and the ranking algorithm implemented in the open-source Lucene search engine. Results Experiments show that treating an entire article as an indexing unit does not consistently yield higher effectiveness compared to abstract-only search. However, retrieval based on spans, or paragraphs-sized segments of full-text articles, consistently outperforms abstract-only search. Results suggest that highest overall effectiveness may be achieved by combining evidence from spans and full articles. Conclusion Users searching full text are more likely to find relevant articles than searching only abstracts. This finding affirms the value of full text collections for text retrieval and provides a starting point for future work in exploring algorithms that take advantage of rapidly-growing digital archives. Experimental results also highlight the need to develop distributed text retrieval algorithms, since full-text articles are significantly longer than abstracts and may require the computational resources of multiple machines in a cluster. The MapReduce programming model provides a convenient framework for organizing such computations. PMID:19192280

  15. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials

    NASA Astrophysics Data System (ADS)

    Beaumont, Peter W. R.

    2014-02-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  16. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 398

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes - subject and author are included after the abstract section.

  17. Genetically Engineered Materials for Biofuels Production

    NASA Astrophysics Data System (ADS)

    Raab, Michael

    2012-02-01

    Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.

  18. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 31

    DTIC Science & Technology

    1977-04-18

    average coefficient of air absorption is computed by the method of approximate replacement of the real spectrum by the graduated one. The entire range...end of transition area with an accuracy of 15%. Figures 5; References 7. USSR UDC 541.24:532.5 PARAMETRIC METHOD OF CALCULATION OF THERMODYNAMIC...12, 1976 Abstract No 12B723 by V. A. Polyanskiy] GLEBOV, G. A., and KOSHKIN, V. K. [Text] A method is presented for calculation of thermodynamic

  19. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivationmore » for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World

  20. Interfacial Engineering of Inorganic Materials for Energy Storage and Conversion Applications

    NASA Astrophysics Data System (ADS)

    Samiee, Mojtaba

    Since the micrometer-sized bulk materials have reached their inherent limits, development of new materials with high performance is essential for low cost and environmentally friendly electrochemical energy storage and conversion devices. One approach is to take advantage of interfacial engineering in order to modify currently developed materials, thus improving their properties for specific applications. The advantage of interfacial engineering is that it can also be applied to newly developed materials to further improve their properties for the specific applications. In first part of this dissertation, a systematic study is performed to investigate the effect of annealing in reducing atmospheres with different oxygen partial pressures and presence of other species (Ar, H2, N2, vacuum or hydrocarbon) on visible-light photocatalytic activity of TiO2. In second part, a facile nitridation method is used to improve the rate capability of TiO 2 as anode material for Li ion batteries. The enhanced high-rate capacities are attributed to moderate surface nitridation with less-disordered nitridated regions, which may enhance the surface electronic conductivity without forming discrete, nanoscale, and surface amorphous films to block the lithium transport. In third part, pseudocapacitive properties of V2O5-based adsorbates supported on TiO2 nanoparticles is systematically measured. Surface amorphous films (SAFs), which form naturally at thermodynamic equilibria at 550-600 °C with self-regulating or "equilibrium" thicknesses on the order of 1 nm, exhibit superior electrochemical performance at moderate and high scan rates (20-500 mV/s) that are of prime importance for supercapacitor applications, as compared with submonolayer and monolayer adsorbates formed at lower equilibration temperatures. In fourth part, we perform a combined experimental and computational investigation into the effects of aliovalent doping in NASICON on both bulk and grain boundary ionic conductivity

  1. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    ERIC Educational Resources Information Center

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  2. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less

  3. Non-Destructive Characterization of Engineering Materials Using High-Energy X-rays at the Advanced Photon Source

    DOE PAGES

    Park, Jun-Sang; Okasinski, John; Chatterjee, Kamalika; ...

    2017-05-30

    High energy X-rays can penetrate large components and samples made from engineering alloys. Brilliant synchrotron sources like the Advanced Photon Source (APS) combined with unique experimental setups are increasingly allowing scientists and engineers to non-destructively characterize the state of materials across a range of length scales. In this article, some of the new developments at the APS, namely the high energy diffraction microscopy technique for grain-by-grain maps and aperture-based techniques for aggregate maps, are described.

  4. Non-Destructive Characterization of Engineering Materials Using High-Energy X-rays at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jun-Sang; Okasinski, John; Chatterjee, Kamalika

    High energy X-rays can penetrate large components and samples made from engineering alloys. Brilliant synchrotron sources like the Advanced Photon Source (APS) combined with unique experimental setups are increasingly allowing scientists and engineers to non-destructively characterize the state of materials across a range of length scales. In this article, some of the new developments at the APS, namely the high energy diffraction microscopy technique for grain-by-grain maps and aperture-based techniques for aggregate maps, are described.

  5. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 39

    DTIC Science & Technology

    1978-01-30

    34 ’\\ v i \\ • . .1 DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited •’••*^.:- v ;;;.-’.i^ 20000405 198 U. S...1034 manuscript received 22 Feb 77 GOLUBINSKIY, A . I., and GOLYBKIN, V . N., Central Aerohydrodynamic Institute imeni N. Ye. Zhukovskiy [Abstract] A ...Russian Vol 232 No 3, 1977 pp 538-541 manuscript received 23 Apr 76 ZHEVNIN, A . A ., and T0L0KN0V, V . I., Moscow Higher Technical School imeni N. E

  6. [Tissue engineered bone scaffold material in restoration of alveolar socket after extraction of lower impacted third molar].

    PubMed

    Chen, Zhi-fang

    2011-02-01

    To investigate the effects of tissue engineered bone scaffold material in the restoration of alveolar socket after extraction of lower impacted third molar. Thirteen patients were immediately implanted with Bio-oss or PerioGlas® in the alveolar cavity after impacted mandibular third molar extraction. Clinical observation and X-ray were taken 1 to 12 weeks after operation. Paired t test was used for statistical analysis by SPSS10.0 software package. Thirteen patients did not experience postoperative complications. The distal alveolar height of the second molar and the gingival attachment did decrease significantly 1 to 12 weeks after operation(P < 0.05). Tissue engineered bone scaffold material is helpful in the restoration of alveolar socket after impacted third molar extraction.

  7. Development and validation of science, technology, engineering and mathematics (STEM) based instructional material

    NASA Astrophysics Data System (ADS)

    Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma

    2017-05-01

    This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.

  8. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  9. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  10. USSR and Eastern Europe Scientific Abstracts. Engineering and Equipment, Nubmer 28.

    DTIC Science & Technology

    1977-02-04

    with a gas of negligibly low density^ The fluid is in a magnetic field with intensity vector H*, a gravitational field ng ( g » 9.81 m/sec , n = the...account. The^axis of symmetry of the vessel is anticollinear to the vector g . Basic equations are presented in a form that is convenient for...REQUIREMENTS OF THE NEW SNiP STANDARD MOSCOW STROITEL’STVO TRUBOPROVODOV No 8, Aug 76, pp 31-33 PROKOF’YEV, V.l., AND KAMERSHTEYN, A. G . Abstract

  11. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 415

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  12. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 407

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  13. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 408

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, a Continuing Bibliography with Indexes (NASA/SP#1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.

  14. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 411

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.

  15. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplment 394

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  16. Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    He, Daping; Tang, Haolin; Kou, Zongkui; Pan, Mu; Sun, Xueliang; Zhang, Jiujun; Mu, Shichun

    2017-05-01

    Engineered graphene materials (EGMs) with unique structures and properties have been incorporated into various components of polymer electrolyte membrane fuel cells (PEMFCs) such as electrode, membrane, and bipolar plates to achieve enhanced performances in terms of electrical conductivity, mechanical durability, corrosion resistance, and electrochemical surface area. This research news article provides an overview of the recent development in EGMs and EGM-based PEMFCs with a focus on the effects of EGMs on PEMFC performance when they are incorporated into different components of PEMFCs. The challenges of EGMs for practical PEMFC applications in terms of production scale, stability, conductivity, and coupling capability with other materials are also discussed and the corresponding measures and future research trends to overcome such challenges are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cumulative metal leaching from utilisation of secondary building materials in river engineering.

    PubMed

    Leuven, R S E W; Willems, F H G

    2004-01-01

    The present paper estimates the utilisation of bulky wastes (minestone, steel slag, phosphorus slag and demolition waste) in hydraulic engineering structures in Dutch parts of the rivers Rhine, Meuse and Scheldt over the period 1980-2025. Although they offer several economic, technical and environmental benefits, these secondary building materials contain various metals that may leach into river water. A leaching model was used to predict annual emissions of arsenic, cadmium, copper, chromium, lead, mercury, nickel and zinc. Under the current utilisation and model assumptions, the contribution of secondary building materials to metal pollution in Dutch surface waters is expected to be relatively low compared to other sources (less than 0.1% and 0.2% in the years 2000 and 2025, respectively). However, continued and widespread large-scale applications of secondary building materials will increase pollutant leaching and may require further cuts to be made in emissions from other sources to meet emission reduction targets and water quality standards. It is recommended to validate available leaching models under various field conditions. Complete registration of secondary building materials will be required to improve input data for leaching models.

  18. Comparing different tissue-engineered repair materials for the treatment of pelvic organ prolapse and urinary incontinence: which material is better?

    PubMed

    Wang, Xiaojuan; Chen, Yisong; Fan, Zhongyong; Hua, Keqin

    2018-01-01

    Synthetic non-absorbable meshes are widely used to augment surgical repair of pelvic organ prolapse (POP) and stress urinary incontinence (SUI), but these meshes are associated with serious complications. This study compares the attachment and extracellular matrix (ECM) production of adipose-derived stem cells (ADSCs) on different biodegradable nanomaterials to develop tissue engineered repair materials. Rat ADSCs were isolated and cultured on electrospun poly-L-lactic acid (PLA) and electrospun poly(L-lactide)-trimethylene carbonate-gycolide (PLTG) terpolymers for 1 and 2 weeks. Samples were tested for cell proliferation (cell counting kit-8), microstructure, and morphology (scanning electron microscopy), production of ECM components (immunostaining for collagen I, collagen III, and elastin) and biomechanical properties (uniaxial tensile methods). The ADSCs showed good attachment and proliferation on both PLA and PLTG scaffolds. The production of collagen I and collagen III on both scaffolds was greater at 14 days than at 7 days and was greater on PLTG scaffolds than on PLA scaffolds, but these differences were not significant. The addition of ADSCs onto scaffolds led to a significant increase in the biomechanical properties of both PLA and PLTG scaffolds compared with unseeded scaffolds. These data support the use of both PLA and PLTG as tissue-engineered repair materials for POP or SUI.

  19. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material

    USDA-ARS?s Scientific Manuscript database

    Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer material with varying silt and clay content, background solution chemistry, and flow velocity. Brea...

  20. Engineering tumor cell targeting in nanoscale amyloidal materials

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Seras-Franzoso, Joaquin; Virtudes Céspedes, María; Saccardo, Paolo; Cortés, Francisco; Rueda, Fabián; Garcia-Fruitós, Elena; Ferrer-Miralles, Neus; Mangues, Ramon; Vázquez, Esther; Villaverde, Antonio

    2017-01-01

    Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

  1. On-board Optical Spectrometry for Detection of Mixture Ratio and Eroded Materials in Rocket Engine Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis; Kittinger, Scott

    2006-01-01

    Optical spectrometry can provide means to characterize rocket engine exhaust plume impurities due to eroded materials, as well as combustion mixture ratio without any interference with plume. Fiberoptic probes and cables were designed, fabricated and installed on Space Shuttle Main Engines (SSME), allowing monitoring of the plume spectra in real time with a Commercial of the Shelf (COTS) fiberoptic spectrometer, located in a test-stand control room. The probes and the cables survived the harsh engine environments for numerous hot-fire tests. When the plume was seeded with a nickel alloy powder, the spectrometer was able to successfully detect all the metallic and OH radical spectra from 300 to 800 nanometers.

  2. USSR and Eastern Europe Scientific Abstracts Engineering and Equipment No. 30

    DTIC Science & Technology

    1977-03-18

    Table 2j Biblio 4. 41 HUNGARY INVESTIGATION OF TRANSIENT PHENOMENA IN FLUID PIPELINES WITH THE AID OF THE MATRIX OPERATOR Budapest ENERGIA ES...investigated. Ill 5; Biblio 3. 48 USSR UDC 629.7.036.002.2 PROCEDURE AND SETUP FOR RENOVATING WORN-OUT PARTS OF AVIATION GAS-TURBINE ENGINES...Kiev VOPROSY POVYSHENIYA NADEZHNOSTI, DOLGOVECHNOSTI I VOSSTANOVLENIYA AVIATSIONNOY TEKHNIKI [Increasing the Reliability, Lifetime and Renovation of

  3. Biomimetically Engineered Demi‐Bacteria Potentiate Vaccination against Cancer

    PubMed Central

    Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo

    2017-01-01

    Abstract Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi‐bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross‐presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB‐based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism‐sourced materials thus presents new opportunities for potent cancer therapy. PMID:29051851

  4. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    PubMed

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. USSR and Eastern Europe Scientifc Abstracts Materials Science and Metallurgy No 43.

    DTIC Science & Technology

    1977-03-09

    Institute [Abstract] A study is made of the influence of stoichiometry on the characteristics of microplastic deformation in powders of zirconium and... microplasticity , stoichiometric carbides can be arranged in the following sequence of increasing brittleness: NbC, ZrC, TiC. References 18: 13 Soviet

  7. The Development of Engineering Tomography for Monolithic and Composite Materials and Components

    NASA Technical Reports Server (NTRS)

    Hemann, John

    1997-01-01

    The research accomplishments under this grant were very extensive in the areas of the development of engineering tomography for monolithic and composite materials and components. Computed tomography was used on graphite composite pins and bushings to find porosity, cracks, and delaminations. It supported the following two programs: Reusable Launch Vehicle (RLV) and Southern Research institute (SRI). Did research using CT and radiography on Nickel based Superalloy dogbones and found density variations and gas shrinkage porosity. Did extensive radiography and CT of PMC composite flywheels and found delamination and non-uniform fiber distribution. This grant supported the Attitude Control Energy Storage Experiment (ACESE) program. Found broken fibers and cracks of outer stainless steel fibers using both radiographic and CT techniques on Pratt and Whitney fuel lines; Supported the Pratt & Whitney and Aging Aircraft engines program. Grant research helped identify and corroborate thickness variations and density differences in a silicon nitride "ROTH" tube using computed tomography.

  8. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  9. NASA Patent Abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 21) Abstracts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts are cited for 87 patents and applications introduced into the NASA scientific and technical information system during the period of January 1982 through June 1982. Each entry consists of a citation, an abstract, and in mose cases, a key illustration selected from the patent or patent application.

  10. Low Density Materials

    DTIC Science & Technology

    2012-03-09

    materials structures across scales for design of engineered systems ODISSEI: Origami Design for Integration of Self-assembling Systems for...AGENCIES Origami Engineering US-India Tunable Materials Forum US-AFRICA Initiative Reliance 21 Board Materials and Processing COI 29 DISTRIBUTION A

  11. Evaluation of the Material Point Method within CTH to Model 2-Dimensional Plate Impact Problems

    DTIC Science & Technology

    2014-09-01

    Howard University . 14. ABSTRACT The material point method (MPM) is a mixed Eulerian and Lagrangian computational method that allows for the... University in Washington, DC, as a second-year graduate student within mechanical engineering. I also attended Howard University for my undergraduate...Kevin Rugirello, Dr Andrew Tonge, Dr Jeffrey Lloyd, Dr Mary Jane Graham, and Dr Gbadebo Owolabi. vi Student Bio I am currently attending Howard

  12. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill

    abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop

  13. Fire Technology Abstracts, volume 4, issue 1, August, 1981

    NASA Astrophysics Data System (ADS)

    Holtschlag, L. J.; Kuvshinoff, B. W.; Jernigan, J. B.

    This bibliography contains over 400 citations with abstracts addressing various aspects of fire technology. Subjects cover the dynamics of fire, behavior and properties of materials, fire modeling and test burns, fire protection, fire safety, fire service organization, apparatus and equipment, fire prevention, suppression, planning, human behavior, medical problems, codes and standards, hazard identification, safe handling of materials, insurance, economics of loss and prevention, and more.

  14. Engineering aspects of the application of structural materials in the 5 MW-ESS-mercury-target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttek, B.

    1996-06-01

    A main problem of the ESS-Hg-target development and the design of the components of its primary Hg-circuit is the choice of structural materials. As designing, calculations and experiments with elected materials take time and are very costy, a preview on their successful application has to be done before as detailed as possible. One aspect on this is to have the knowledge of characteristics values of the structural material candidates under the occuring mechanical and thermal loads, irradiation, corrosion and erosion. Another point is the technology of engineering concerning the manufacturing, welding, surface treatment, and quality control of such parts andmore » components under the demand to reach maximum lifetime.« less

  15. Grounding Abstractness: Abstract Concepts and the Activation of the Mouth

    PubMed Central

    Borghi, Anna M.; Zarcone, Edoardo

    2016-01-01

    One key issue for theories of cognition is how abstract concepts, such as freedom, are represented. According to the WAT (Words As social Tools) proposal, abstract concepts activate both sensorimotor and linguistic/social information, and their acquisition modality involves the linguistic experience more than the acquisition of concrete concepts. We report an experiment in which participants were presented with abstract and concrete definitions followed by concrete and abstract target-words. When the definition and the word matched, participants were required to press a key, either with the hand or with the mouth. Response times and accuracy were recorded. As predicted, we found that abstract definitions and abstract words yielded slower responses and more errors compared to concrete definitions and concrete words. More crucially, there was an interaction between the target-words and the effector used to respond (hand, mouth). While responses with the mouth were overall slower, the advantage of the hand over the mouth responses was more marked with concrete than with abstract concepts. The results are in keeping with grounded and embodied theories of cognition and support the WAT proposal, according to which abstract concepts evoke linguistic-social information, hence activate the mouth. The mechanisms underlying the mouth activation with abstract concepts (re-enactment of acquisition experience, or re-explanation of the word meaning, possibly through inner talk) are discussed. To our knowledge this is the first behavioral study demonstrating with real words that the advantage of the hand over the mouth is more marked with concrete than with abstract concepts, likely because of the activation of linguistic information with abstract concepts. PMID:27777563

  16. Lifing of Engine Components

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.

  17. Abstracts, Third Space Processing Symposium, Skylab results

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Skylab experiments results are reported in abstracts of papers presented at the Third Space Processing Symposium. Specific areas of interest include: exothermic brazing, metals melting, crystals, reinforced composites, glasses, eutectics; physics of the low-g processes; electrophoresis, heat flow, and convection demonstrations flown on Apollo missions; and apparatus for containerless processing, heating, cooling, and containing materials.

  18. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications.

    PubMed

    Baranwal, Anupriya; Kumar, Ashutosh; Priyadharshini, A; Oggu, Gopi Suresh; Bhatnagar, Ira; Srivastava, Ananya; Chandra, Pranjal

    2018-04-15

    Biopolymers have been serving the mankind in various ways since long. Over the last few years, these polymers have found great demand in various domains which includes bio medicine, tissue engineering, bio sensor fabrications etc. because of their excellent bio compatibility. In this context, chitosan has found global attention due to its environmentally benign nature, biocompatibility, biodegradability, and ease of availability. In last one decade or so, extensive research in active biomaterials, like chitosan has led to the development of novel delivery systems for drugs, genes, and biomolecules; and regenerative medicine. Additionally, chitosan has also witnessed its usage in functionalization of biocompatible materials, nanoparticle (NP) synthesis, and immobilization of various bio-recognition elements (BREs) to form active bio-surfaces with great ease. Keeping these aspects in mind, we have written a comprehensive review which aims to acquaint its readers with the exceptional properties of chitosan and its usage in the domain of biomedicine, tissue engineering, and biosensor fabrication. Herein, we have briefly explained various aspects of direct utilization of chitosan and then presented vivid strategies towards formulation of chitosan based nanocomposites for biomedicine, tissue engineering, and biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  20. A Regeneratively Cooled Thrust Chamber For The Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Sparks, Dave; Woodcock, Gordon

    2000-01-01

    Abstract This paper presents the development of a low-cost, regeneratively-cooled thrust chamber for the Fastrac engine. The chamber was fabricated using hydraformed copper tubing to form the coolant jacket and wrapped with a fiber reinforced polymer composite Material to form a structural jacket. The thrust chamber design and fabrication approach was based upon Space America. Inc.'s 12,000 lb regeneratively-cooled LOX/kerosene rocket engine. Fabrication of regeneratively cooled thrust chambers by tubewall construction dates back to the early US ballistic missile programs. The most significant innovations in this design was the development of a low-cost process for fabrication from copper tubing (nickel alloy was the usual practice) and use of graphite composite overwrap as the pressure containment, which yields an easily fabricated, lightweight pressure jacket around the copper tubes A regeneratively-cooled reusable thrust chamber can benefit the Fastrac engine program by allowing more efficient (cost and scheduler testing). A proof-of-concept test article has been fabricated and will he tested at Marshall Space Flight Center in the late Summer or Fall of 2000.

  1. Investigation of Hygro-Thermal Aging on Carbon/Epoxy Materials for Jet Engine Fan Sections

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael

    2011-01-01

    This poster summarizes 2 years of aging on E862 epoxy and E862 epoxy with triaxial braided T700s carbon fiber composite. Several test methods were used to characterize chemical, physical, and mechanical properties of both the resin and composite materials. The aging cycle that was used included varying temperature and humidity exposure. The goal was to evaluate the environmental effects on a potential jet engine fan section material. Some changes were noted in the resin which resulted in increased brittleness, though this did not significantly affect the tensile and impact test results. A potential decrease in compression strength requires additional investigation.

  2. Beyond Crystal Engineering: Significant Enhancement of C2H2/CO2 Separation by Constructing Composite Material.

    PubMed

    Wu, Hui Qiong; Yan, Chang Sheng; Luo, Feng; Krishna, Rajamani

    2018-04-02

    Different from the established crystal engineering method for enhancing gas-separation performance, we demonstrate herein a distinct approach. In contrast to the pristine MOF (metal-organic framework) material, the C 2 H 2 /CO 2 separation ability for the resultant Ag NPs (nanoparticle)@Fe 2 O 3 @MOF composite material, estimated from breakthrough calculations, is greatly enhanced by 2 times, and further magnified up to 3 times under visible light irradiation.

  3. Engineered materials characterization report, volume 3 - corrosion data and modeling update for viability assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCright, R D

    1998-06-30

    This Engineered Materials Characterization Report (EMCR), Volume 3, discusses in considerable detail the work of the past 18 months on testing the candidate materials proposed for the waste-package (WP) container and on modeling the performance of those materials in the Yucca Mountain (YM) repository setting This report was prepared as an update of information and serves as one of the supporting documents to the Viability Assessment (VA) of the Yucca Mountain Project. Previous versions of the EMCR have provided a history and background of container-materials selection and evaluation (Volume I), a compilation of physical and mechanical properties for the WPmore » design effort (Volume 2), and corrosion-test data and performance-modeling activities (Volume 3). Because the information in Volumes 1 and 2 is still largely current, those volumes are not being revised. As new information becomes available in the testing and modeling efforts, Volume 3 is periodically updated to include that information.« less

  4. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1983-01-01

    The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.

  5. Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials.

    PubMed

    Ng, Joanna L; Knothe, Lillian E; Whan, Renee M; Knothe, Ulf; Tate, Melissa L Knothe

    2017-01-11

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently "smart" material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues' biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  6. Engineered clay-shredded tyre mixtures as barrier materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Tabbaa, A.; Aravinthan, T.

    1997-12-31

    An engineered clay consisting of kaolin and bentonite was mixed with shredded tyre in various weight percentages and examined for use as a constituent in a landfill liner. The clay-tyre mixtures properties in terms of compaction, unconfined compressive strength, permeability to water and paraffin, leachability, stress-strain behaviour, free swell behaviour and swelling pressure were investigated. The results show that the dry density and strength reduced with the addition of tyre and also with increased tyre content but that good interaction was developed between the clay and tyre. The strain at failure increased showing reinforcing effect of the tyre. The permeabilitymore » to paraffin was considerably reduced compared to that to water due to the presence of the tyre which caused high swelling pressures to develop. The leachability results indicate initial high concentrations leaching out of the soil-tyre mixtures which will be subjected to dilution in the environment. This work adds evidence to the potential advantages of using soil-tyre mixtures as a landfill liner material.« less

  7. Investigation of engineered bacterial adhesins for opportunity to interface cells with abiotic materials

    NASA Astrophysics Data System (ADS)

    Terrell, Jessica L.; Dong, Hong; Holthoff, Ellen L.; Small, Meagan C.; Sarkes, Deborah A.; Hurley, Margaret M.; Stratis-Cullum, Dimitra N.

    2016-05-01

    The convenience of cellular genetic engineering has afforded the power to build `smart' synthetic biological tools with novel applications. Here, we have explored opportunities to hybridize engineered cells with inorganic materials toward the development of 'living' device-compatible systems. Cellular structural biology is engineerable based on the ability to rewrite genetic code to generate recombinant, foreign, or even unnatural proteins. With this capability on the biological end, it should be possible to achieve superior abio-compatibility with the inorganic materials that compose current microfabricated technology. This work investigated the hair-like appendages of Escherichia coli known as Type 1 fimbriae that enable natural adhesion to glycosylated substrates. Sequence alterations within the fimbrial gene cluster were found to be well-tolerated, evidenced by tagging the fimbriae with peptide-based probes. As a further development, fimbriae tips could be reconfigured to, in turn, alter cell binding. In particular, the fimbriae were fused with a genetically optimized peptide-for-inorganics to enable metal binding. This work established methodologies to systematically survey cell adhesion properties across a suite of fimbriae-modified cell types as well as to direct patterned cell adhesion. Cell types were further customized for added complexity including turning on secondary gene expression and binding to gold surfaces. The former demonstrates potential for programmable gene switches and the latter for interfacing biology with inorganic materials. In general, the incorporation of 'programmed' cells into devices can be used to provide the feature of dynamic and automated cell response. The outcomes of this study are foundational toward the critical feature of deliberate positioning of cells as configurable biocomponentry. Overall, cellular integration into bioMEMs will yield advanced sensing and actuation.

  8. Engineering for Liberal Arts and Engineering Students.

    ERIC Educational Resources Information Center

    The Weaver, 1986

    1986-01-01

    Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…

  9. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, No. 35

    DTIC Science & Technology

    1977-12-07

    are as given by source. The contents of this publication in no way represent the poli- cies, views or attitudes of the U.S. Government...Instruments. Figures 16; tables 3; references 5: 1 Czech, 4 Western. USSR UDC 53.085 INDICATORS BASED ON MIRROR SEMISPHERE Moscow PRIBORY I SISTEMY...Abstract] Three indicators are described, the basis of all being a cylindrical body with a mirror convex semisphere inserted in it, which can be

  10. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 406

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  11. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 413

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  12. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 419

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  13. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 404

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  14. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 420

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  15. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 418

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  16. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 396

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  17. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  18. Engineering behavior of small-scale foundation piers constructed from alternative materials

    NASA Astrophysics Data System (ADS)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  19. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1986-03-01

    Dietzmann L.R. Smith Engines, Emissions, and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prepared for Belvoir Fuels and...replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric -powered forklifts have no...diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to

  20. Why Industry Must Step In to Train Engineers.

    ERIC Educational Resources Information Center

    Business Week, 1981

    1981-01-01

    Suggests industrial training of Japanese engineers since engineering education in Japan focuses on abstract science and rote learning of fundamental principles and not on practical laboratory experiences characteristic of training in the United States. (SK)

  1. Aeronautical engineering, a special bibliography, September 1971 (supplement 10)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This supplement to Aeronautical Engineering-A Special Bibliography (NASA SP-7037) lists 413 reports, journal articles, and other documents originally announced in September 1971 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the bibliography consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries in that order. The citations and abstracts are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals.

  2. Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering

    NASA Astrophysics Data System (ADS)

    Joost, William J.

    2012-09-01

    Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.

  3. Synthesis of biomass derived carbon materials for environmental engineering and energy storage applications

    NASA Astrophysics Data System (ADS)

    Huggins, Mitchell Tyler

    Biomass derived carbon (BC) can serve as an environmentally and cost effective material for both remediation and energy production/storage applications. The use of locally derived biomass, such as unrefined wood waste, provides a renewable feedstock for carbon material production compared to conventional unrenewable resources like coal. Additionally, energy and capital cost can be reduced through the reduction in transport and processing steps and the use of spent material as a soil amendment. However, little work has been done to evaluate and compare biochar to conventional materials such as granular activated carbon or graphite in advanced applications of Environmental Engineering. In this work I evaluated the synthesis and compared the performance of biochar for different applications in wastewater treatment, nutrient recovery, and energy production and storage. This includes the use of biochar as an electrode and filter media in several bioelectrochemical systems (BES) treating synthetic and industrial wastewater. I also compared the treatment efficiency of granular biochar as a packed bed adsorbent for the primary treatment of high strength brewery wastewater. My studies conclude with the cultivation of fungal biomass to serve as a template for biochar synthesis, controlling the chemical and physical features of the feedstock and avoiding some of the limitations of waste derived materials.

  4. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  5. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering. Number 31

    DTIC Science & Technology

    1977-06-09

    RABOT VYCHISLITEL’NOGO TSENTRA MOSKOVSKOGO UNIVERSITETA in Russian 1975 pp 183-192 BEREZINA, N. I. and CHECHKIN , A . V . [Abstract] This paper deals...ZADACHAKH ELEKTRODINAMIKI) XXIV; SBORNIK RABOT VYCHISLITEL’NOGO TSENTRA MOSKOVSKOGO UNIVERSITETA in Russian 1975 pp 161-170 CHECHKIN , A . V ...flux in such a device described in terms of current I]_(ü),z) and kinetic potential VI(<ü,Z)= 2VQ V 1^> Z) as the variables. The law of power

  6. The Institute of Biological Engineering 2013 Annual Conference

    DTIC Science & Technology

    2014-10-30

    of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering

  7. ICCG-10: Tenth International Conference on Crystal Growth. Poster presentation abstracts

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Poster presentation abstracts from the tenth International Conference on Crystal Growth (ICCG) (Aug. 16-21, 1992) are provided. Topics discussed at the conference include crystal growth mechanisms, superconductors, semiconductors, laser materials, optical materials, and biomaterials. Organizing committees, ICCG advisory board and officers, and sponsors of the conference are also included.

  8. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria

    2015-02-10

    Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.

  9. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    PubMed

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  10. Needs assessment for nondestructive testing and materials characterization for improved reliability in structural ceramics for heat engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.; McClung, R.W.; Janney, M.A.

    1987-08-01

    A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less

  11. Digital dissemination platform of transportation engineering education materials.

    DOT National Transportation Integrated Search

    2014-09-01

    National agencies have called for more widespread adoption of best practices in engineering education. To facilitate this sharing of practices we will develop a web-based system that will be used by transportation engineering educators to share curri...

  12. e-Biologics: Fabrication of Sustainable Electronics with “Green” Biological Materials

    PubMed Central

    2017-01-01

    ABSTRACT The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new “green age” of sustainable electronic materials and devices. PMID:28655820

  13. Basic Principles of Marine Diesel Engines, 8-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This volume of student materials for a secondary/postsecondary level course in principles of marine diesel engines is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose of the individualized, self-paced course is to acquaint…

  14. Materials, device, and interface engineering to improve polymer-based solar cells

    NASA Astrophysics Data System (ADS)

    Hau, Steven Kin

    The continued depletion of fossil fuel resources has lead to the rise in energy production costs which has lead to the search for an economically viable alternative energy source. One alternative of particular interest is solar energy. A promising alternative to inorganic materials is organic semiconductor polymer solar cells due to their advantages of being cheaper, light weight, flexible and made into large areas by roll-to-roll processing. In this dissertation, an integrated approach is taken to improve the overall performance of polymer-based solar cells by the development of new polymer materials, device architectures, and interface engineering of the contacts between layers. First, a new class of metallated conjugated polymers is explored as potential solar cell materials. Systematic modifications to the molecular units on the main chain of amorphous metallated Pt-polymers show a correlation that improving charge carrier mobility also improves solar cell performance leading to mobilities as high as 1 x 10-2 cm2/V·s and efficiencies as high as 4.1%. Second, an inverted device architecture using a more air stable electrode (Ag) is demonstrated to improve the ambient stability of unencapsulated P3HT:PCBM devices showing over 80% efficiency retention after 40 days of exposure. To further demonstrate the potential for roll-to-roll processing of polymer solar cells, solution processed Ag-nanoparticles were used to replace the vacuum deposited Ag anode electrode for inverted solar cells showing efficiencies as high as 3%. In addition, solution processed polymer based electrodes were demonstrated as a replacement to the expensive and brittle indium tin oxide showing efficiencies of 3% on flexible substrate solar cells. Third, interface engineering of the n-type (high temperature sol-gel processed TiO2 or ZnO, low temperature processed ZnO nanoparticles) electron selective metal oxide contacts in inverted solar cells with self-assembled monolayers (SAM) show improved

  15. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 414

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  16. Ethics, engineers and drama.

    PubMed

    Monk, John

    2009-03-01

    This paper describes four plays which illustrate ethical themes relevant to engineers and which could be used as a resource for engineers who wish to explore ethical topics and their relationship with professional practice. The plays themselves have been chosen because a character in the play is involved in engineering activities. Each play is analysed to highlight some of the ethical issues the play raises. Often ethical topics are presented in abstract terms but the plays relate ethical issues to individuals and individual actions in specific situations that connect either directly or figuratively to practical situations engineers find themselves in. The paper describes how the resources have or could be used in an educational programme.

  17. Stellar Presentations (Abstract)

    NASA Astrophysics Data System (ADS)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  18. Engineering Research Division publication report, calendar year 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  19. Engineering tunable bio-inspired polymeric coatings for amphiphobic fibrous materials

    NASA Astrophysics Data System (ADS)

    Oyola-Reynoso, Stephanie

    Chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolysable moieties in the presence of physisorbed water. In the following chapters, we demonstrate that using alkyltrichlorosilanes (trivalent [3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound polymeric particles. We infer that the presence of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane, prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2-201.4 g/m2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from 70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, cardboard houses can be rendered self-cleaning or tolerant to surface running water. Each of the chapters below supports the mechanism via a series of applications, material characterization, and/or, smart engineering.

  20. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    PubMed Central

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun; Arefe, Ghidewon; Hill, Heather M.; Rigosi, Albert F.; Berkelbach, Timothy C.; Nagler, Philipp; Schüller, Christian; Korn, Tobias; Nuckolls, Colin; Hone, James; Brus, Louis E.; Heinz, Tony F.; Reichman, David R.; Chernikov, Alexey

    2017-01-01

    The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution. PMID:28469178

  1. Advanced bearing materials for cryogenic aerospace engine turbopump requirements

    NASA Technical Reports Server (NTRS)

    Friedman, G.; Bhat, B. N.

    1986-01-01

    The properties of eleven alloys were investigated to select an improved bearing material for the High Pressure Oxygen Turbo Pump which delivers liquid oxygen to the Space Shuttle Main Engine. The alloys, selected through detailed literature analysis, X 405, MRC-2001, T440V, 14-4/6V, D-5, V-M Pyromet 350, Stellite 3, FerroTic CS-40, Tribaloy 800, WD-65, and CBS-600. The alloys were tested in hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness tests, and their performance was compared with the baseline 440C test alloy. As a result, five alloys were eliminated, leaving the remaining six (X 405, MRC-2001, T440V, 14-4/6V, D-5, and WD-65 to be evaluated in the next phase of NASA tests which will include fracture toughness, rolling contact fatigue, wear resistance, and corrosion resistance. From these, three alloys will be selected, which will be made into ninety bearings for subsequent testing.

  2. A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Tamai, Tetsuo

    2009-01-01

    Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.

  3. [Quality of the structured abstracts presented at a congress].

    PubMed

    dos Santos, Edilson F; Pereira, Maurício G

    2007-01-01

    To assess and compare quality of abstracts presented at a medical congress (XIV Congresso da Sociedade Brasileira de Infectologia, November, 2005). The hypothesis is that material of better quality is chosen for oral presentation. All the 63 abstracts selected for oral presentation were compared with a random sample (n=63) of the 664 abstracts registered as poster presentations. Quality was measured by a structured questionnaire comprised of 33 criteria, distributed in eight categories: purpose, research design, setting, subjects, intervention, measurement, results and conclusions. The questionnaire was applied by one of the authors who were not blind to the objective of the study. The final score could range from 0 (bad) to 1 (excellent). Abstracts quality was considered moderately good. The overall mean quality scores were 0.60 and 0.62 respectively, for poster and oral presentation (p = 0.086). The criteria rated poorly were: subjects, variable measurements, location and conclusion. The tested hypothesis of better quality in abstracts selected for oral presentation has not been confirmed. It is recommended that organizers of the congresses the use of objective quality criteria to select the form of presentation while improving on quality.

  4. Analysis of full-text publication and publishing predictors of abstracts presented at an Italian public health meeting (2005-2007).

    PubMed

    Castaldi, S; Giacometti, M; Toigo, W; Bert, F; Siliquini, R

    2015-09-29

    In Public Health, a thorough review of abstract quality evaluations and the publication history of studies presented at scientific meetings has never been conducted. To analyse the long-term outcome of quality abstracts submitted to conferences of Italian Society of Hygiene and Public Health (SItI) from 2005 to 2007, we conducted a second analysis of previously published material aiming to estimate full-text publication rate of high quality abstract presented at Italian public health meetings, and to identify predictors of full-text publication. The search was undertaken through scientific databases and search engines and through the web sites of the major Italian journals of Public Health. For each publication confirmed as a full text paper, the journal name, impact factor, year of publication, gender of the first author, type of study design, characteristics of the results and sample size were collected. The overall publication rate of the abstracts presented is 23.5%; most of the papers were published in Public Health journals (average impact factor: 3.007). Non universitary affiliation had resulted in a lower probability of publication, while some of the Conference topics had predisposed the studies to an increased likelihood of publication as well as poster form presentation. The method presented in this study provides a good framework for the evaluation of the scientific evidence. The findings achieved should be taken into consideration by the Scientific Societies during the contributions selection phase, with the aim of achieving a continuous improvement of work quality. In the future, it would be interesting to survey the abstract authors to identify reasons for unpublished data.

  5. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  6. Solid Waste Management: Abstracts and Excerpts From the Literature. Volumes 1 and 2.

    ERIC Educational Resources Information Center

    Golueke, C. G.

    The collection presented in this report represents a summary of literature gathered over a period of more than 15 years by the Sanitary Engineering Research Laboratory of the University of California and abstracted as the first step in a program of definitive research in the planning, systems, economic, health, and technological aspects of…

  7. Abstracted Workow Framework with a Structure from Motion Application

    NASA Astrophysics Data System (ADS)

    Rossi, Adam J.

    In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multi-disciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense

  8. Characterization and Evaluation of Re-Refined Engine Lubricating Oil.

    DTIC Science & Technology

    1981-12-01

    performance of re-refineod and virgin oils and to Investigate the potential esubstantlal esquivalknced of re-refined and virgin lubricating oils. The...d 20. Abstract (continued) engine deposits derived from virgin and re-refined engine oils. (2) The effects of virgin and re-refined oils on engine...blowby composition and engine deposit generation were determined using a spark ignition engine and, 3) Virgin and re-refined basestock production

  9. Stirling material technology

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Stephens, J. R.; Scheuermann, C. M.

    1984-01-01

    The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A materials research and technology program identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818, NASAUT 4G-A1, and NASACC-1 as candidate replacements for the cobalt containing alloys used in current prototype engines. It is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. Results of research that lead to this conclusion are presented.

  10. Steel — ab Initio: Quantum Mechanics Guided Design of New Fe-Based Materials

    NASA Astrophysics Data System (ADS)

    Prahl, Ulrich; Bleck, Wolfgang; Saeed-Akbari, Alireza

    This contribution reports the results of the collaborative research unit SFB 761 "Steel — ab initio", a cooperative project between RWTH Aachen University and the Max-Planck-Institute for Iron Research in Düsseldorf (MPIE) financed by the German Research Foundation (DFG). For the first time, it is exploited how ab initio approaches may lead to a detailed understanding and thus to a specific improvement of material development. The challenge lies in the combination of abstract natural science theories with rather engineering-like established concepts. Aiming at the technological target of the development of a new type of structural materials based on Fe-Mn-C alloys, the combination of ab initio and engineering methods is new, but could be followed quite successfully. Three major topics are treated in this research unit: a) development of a new method for material- and process-development based on ab initio calculations; b) design of a new class of structural materials with extraordinary property combinations; c) acceleration of development time and reduction of experimental efforts and complexity for material- and process-development. In the present work, an overview of the results of the first five years as well as an outlook for the upcoming three-year period is given.

  11. HBCUs Research Conference Agenda and Abstracts

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil (Compiler)

    1997-01-01

    The purpose of this Historically Black Colleges and Universities (HBCUS) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUS. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.

  12. HBCUs Research Conference Agenda and Abstracts

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil (Compiler)

    1998-01-01

    The purpose of this Historically Black Colleges and Universities (HBCUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.

  13. HBCUs Research Conference agenda and abstracts

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil (Compiler)

    1995-01-01

    The purpose of this Historically Black Colleges and Universities (HBCUs) Research conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.

  14. Engineering and Design: Composite Materials for Civil Engineering Structures

    DTIC Science & Technology

    1997-03-31

    the effects of acidic, salt, and fresh waters . Acidic, salt, and fresh waters are corrosive to ferrous metals. In Corps of Engineers structures, high...what is commonly called a toughened epoxy. (5) Polymeric resins will absorb moisture. Since many applications are in contact with water (at least...ultraviolet radiation. Some coatings can reduce the amount of moisture absorption by the structure. All polymeric resins will absorb water to some

  15. Discrepancies and rates of publication in orthopaedic sports medicine abstracts.

    PubMed

    Kleweno, Conor P; Bryant, Whitney K; Jacir, Albert M; Levine, William N; Ahmad, Christopher S

    2008-10-01

    attendees as well as nonattendees who reference conference abstracts need to exercise good judgment when considering the implications of oral presentations of unpublished materials. When reviewing meeting presentation abstracts, readers should remember that the material being presented is often not in its definitive or ultimate form.

  16. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  17. Bilingual/Bicultural Education: Titles and Abstracts of Doctoral Dissertations.

    ERIC Educational Resources Information Center

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    Dissertation abstracts describing research on a wide variety of topics in bilingual education are presented. This publication is designed to provide background material for bilingual educators as well as practical procedures for bilingual teachers, administrators, counselors, and evaluators. The titles were acquired by using the two broad…

  18. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 24.

    DTIC Science & Technology

    1976-11-12

    GERMANY DUMMER, Joachim, graduate mathematician, and KLEIN, Richard, graduate engineer, Radio Works Combine State Enterprise, Erfurt DIGITAL FRONT PANEL ...operation, performance, and applications of a digital front panel display instrument was described and illustrated with circuit diagrams, block diagrams...technics, various digital and alphabetic panels , holography, and possibly the screens of cathode-ray tubes. One of the chief merits of "ftiros" is the

  19. Learning-Centered Instruction of Engineering Graphics for Freshman Engineering Students

    ERIC Educational Resources Information Center

    Pucha, Raghuram V.; Utschig, Tristan T.

    2012-01-01

    Teaching "Engineering Graphics" to freshman engineering students poses challenges to instructors as well as to students. While the instructors are confronted with a lack of material / text book that covers the broad scope of the subject matter, the students struggle to correlate newly developed skills to real-world engineering design problems…

  20. Un-Building Blocks: A Model of Reverse Engineering and Applicable Heuristics

    DTIC Science & Technology

    2015-12-01

    CONCLUSIONS The machine does not isolate man from the great problems of nature but plunges him more deeply into them. Antoine de Saint-Exupery— Wind ...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Reverse engineering is the problem -solving activity that ensues when one takes a...Douglas Moses, Vice Provost for Academic Affairs iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Reverse engineering is the problem -solving

  1. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 45

    DTIC Science & Technology

    1977-05-11

    constants VQ and q. The values of the critical stress intensity factor produced by the authors by their indirect method are compared with...and TEREKHOV, A. N., Moscow Institute of Steel and Alloys [Russian abstract provided by the source] [Text] The method of high-temperature...their melting point. References 9; all Russian. USSR ’ UDC 539𔃽 IMPROVING THE PRECISION OF THE ACOUSTIC METHOD OF STRESS DETERMINATION Kiev

  2. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 47

    DTIC Science & Technology

    1977-09-27

    temperature intervals may vary and depends on the composition and previous heat treatment history of the alloy. Figures 2; references 13: 1 Russian, 12... HISTORY OF AMg6 ALLOY INTERMEDIATE WORKPIECES ON THE TIGHTNESS AND MECHANICAL PROPERTIES OF WELDS Kiev AVTOMATICHESKAYA SVARKA In Russian No 5(290), May...of Sciences Ukrainian SSR [Abstract] The effect of flux composition during argon-arc welding of titani - um with a nonconsumable electrode on melting

  3. 2016 Oncology Nursing Society Annual Congress: Podium, E-Poster, and Poster Session Abstracts.

    PubMed

    2016-03-01

    Abstracts appear as they were submitted and have not undergone editing or the Oncology Nursing Forum's review process. Only abstracts that will be presented appear online. Poster numbers are subject to change. For updated poster numbers, visit congress.ons.org or check the Congress guide. Data published in abstracts presented at ONS's Annual Congress are embargoed until the conclusion of the presentation. Coverage and/or distribution of an abstract, poster, or any of its supplemental material to or by the news media, any commercial entity, or individuals, including the authors of said abstract, is strictly prohibited until the embargo is lifted. Promotion of general topics and speakers is encouraged within these guidelines.

  4. Diesel Technology: Engines. [Teacher and Student Editions.

    ERIC Educational Resources Information Center

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  5. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources, Supplement XIV (1983).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  6. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun

    Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as anmore » initial step towards the creation of diverse lateral junctions with nanoscale resolution.« less

  7. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    DOE PAGES

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun; ...

    2017-05-04

    Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as anmore » initial step towards the creation of diverse lateral junctions with nanoscale resolution.« less

  8. Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials

    NASA Astrophysics Data System (ADS)

    Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe

    2017-01-01

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  9. (abstract) Oblique Insonification Ultrasonic NDE of Composite Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Lih, S. S.; Mal, A. K.

    1997-01-01

    In recent years, a great deal of research has been exerted to developing NDE methods for the characterization of the material properties of composites as well as other space structural materials. The need for information about such parameters as the elastic properties, density, and thickness are critical to the safe design and operation of such structural materials. Ultrasonics using immersion methods has played an important role in these efforts due to its capability, cost effectiveness, and ease of use. The authors designed a series of ultrasonic oblique insonification experiments in order to develop a practical field applicable NDE method for space structures.

  10. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  11. (abstract) Formal Inspection Technology Transfer Program

    NASA Technical Reports Server (NTRS)

    Welz, Linda A.; Kelly, John C.

    1993-01-01

    A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.

  12. A new material for tissue engineered vagina reconstruction: Acellular porcine vagina matrix.

    PubMed

    Zhang, Jing-Kun; Du, Run-Xuan; Zhang, Lin; Li, Ya-Nan; Zhang, Ming-Le; Zhao, Shuo; Huang, Xiang-Hua; Xu, Yan-Fang

    2017-07-01

    Acellular matrix materials have been widely used to repair various tissues and organs. According to the plastic principle, when a part of the body is lost, it should be replaced with a similar material. Therefore, the use of a homologous organ-specific acellular vaginal tissue in vagina reconstruction repair surgery may show good results. However, the acellular vagina matrix (AVM) form large vertebrates is difficult to isolate. In this study, we described a multistep method to prepare porcine AVM and evaluated the efficacy of acellularization. We also investigated the biomechanical properties, biological activity elements, and biocompatibility of the porcine AVM. We then used this material to reconstruct a rat vagina and performed further morphologic and functional analyses. Small intestinal submucosa (SIS), which is a commonly used acellular matrix material, was used in a control group. Histological examination, DNA content analysis, and agarose gel electrophoresis revealed that the decellularization procedure was effective. The AVM had acceptable biomechanical properties and sufficient growth factor production (VEGF, FGF, TGF-β1, and PDGF-BB) compared with that of the SIS. Subcutaneous transplantation in rats showed that the AVM had good biocompatibility. The tissue-engineered vagina using the AVM more resembled normal-appearing tissue than did that using SIS following morphologic and functional analyses. The AVM has great potential for application in vaginal reconstructive surgery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1949-1959, 2017. © 2017 Wiley Periodicals, Inc.

  13. Synthetic biology: new engineering rules for an emerging discipline

    PubMed Central

    Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron

    2006-01-01

    Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development. PMID:16738572

  14. Synthetic biology: new engineering rules for an emerging discipline.

    PubMed

    Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron

    2006-01-01

    Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development.

  15. Artificially Engineered Protein Polymers.

    PubMed

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  16. Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering

    PubMed Central

    Jovanovic, Danijela; Roukes, Frans V.; Löber, Andrea; Engels, Gerwin E.; van Oeveren, Willem; van Seijen, Xavier J. Gallego; van Luyn, Marja J.A.; Harmsen, Martin C.; Schouten, Arend Jan

    2011-01-01

    Polycaprolactone (PCL) polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suitable in applications in which scaffold support is needed for a shorter time. A recently developed class of polyacylurethanes (PAUs) is expected to fulfill such requirements. Our aim was to assess in vitro the degradation of PAUs and evaluate their suitability as temporary scaffold materials to support soft tissue repair. With both a mass loss of 2.5–3.0% and a decrease in molar mass of approx. 35% over a period of 80 days, PAUs were shown to degrade via both bulk and surface erosion mechanisms. Fourier Transform Infra Red (FTIR) spectroscopy was successfully applied to study the extent of PAUs microphase separation during in vitro degradation. The microphase separated morphology of PAU1000 (molar mass of the oligocaprolactone soft segment = 1000 g/mol) provided this polymer with mechano-physical characteristics that would render it a suitable material for constructs and devices. PAU1000 exhibited excellent haemocompatibility in vitro. In addition, PAU1000 supported both adhesion and proliferation of vascular endothelial cells and this could be further enhanced by pre-coating of PAU1000 with fibronectin (Fn). The contact angle of PAU1000 decreased both with in vitro degradation and by incubation in biological fluids. In endothelial cell culture medium the contact angle reached 60°, which is optimal for cell adhesion. Taken together, these results support the application of PAU1000 in the field of soft tissue repair as a temporary degradable scaffold. PMID:28824103

  17. Defense Small Business Innovation Research Program (SBIR). Volume 3. Air Force Abstracts of Phase 1 Awards 1992

    DTIC Science & Technology

    1992-01-01

    boost plenum which houses the camshaft . The compressed mixture is metered by a throttle to intake valves of the engine. The engine is constructed from...difficulties associated with a time-tagged fault tree . In particular, recent work indicates that the multi-layer perception architecture can give good fdi...Abstract: In the past decade, wastepaper recycling has gained a wider acceptance. Depletion of tree stocks, waste water treatment demands and

  18. Application of materials database (MAT.DB.) to materials education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    Finding the right material for the job is an important aspect of engineering. Sometimes the choice is as fundamental as selecting between steel and aluminum. Other times, the choice may be between different compositions in an alloy. Discovering and compiling materials data is a demanding task, but it leads to accurate models for analysis and successful materials application. Mat. DB. is a database management system designed for maintaining information on the properties and processing of engineered materials, including metals, plastics, composites, and ceramics. It was developed by the Center for Materials Data of American Society for Metals (ASM) International. The ASM Center for Materials Data collects and reviews material property data for publication in books, reports, and electronic database. Mat. DB was developed to aid the data management and material applications.

  19. Proceedings of the biomagnetic effects workshop. [Lead abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenforde, T.S.

    1978-01-01

    Separate abstracts were prepared for six of the eight chapters contained in these proceedings. The other two chapters contain introductory material (Chapter 1) dealing with the rationale for the work shop, and a summary (Chapter 8) of the major objectives that were accomplished at the workshop relative to the current status of awareness in the field of biomagnetic effects. (ERB)

  20. Engine Throat/Nozzle Optics for Plume Spectroscopy

    DTIC Science & Technology

    1991-02-01

    independent of the external plume characteristics so operation can be achieved on diffuser test stands and with the engine exhausting to a variable... combustion chamber operates at 205 atmospheres during 109% power conditions with a mixture ratio of 6:1. The engine is overexpanded at sea level and...LeRC/500-219. 16. Abstract The throat and combustion chamber of an operating rocket engine provide a preferred signal source for optical spectroscopy

  1. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  2. Photon absorption potential coefficient as a tool for materials engineering

    NASA Astrophysics Data System (ADS)

    Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole

    2016-09-01

    the material is able to absorb more than that the photon source could provide, at this point. These resulting effects might be of immense materials engineering applications.

  3. Evolution of a Materials Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Warren, James A.; Ward, Charles H.

    2018-06-01

    The field of materials science and engineering is writing a new chapter in its evolution, one of digitally empowered materials discovery, development, and deployment. The 2008 Integrated Computational Materials Engineering (ICME) study report helped usher in this paradigm shift, making a compelling case and strong recommendations for an infrastructure supporting ICME that would enable access to precompetitive materials data for both scientific and engineering applications. With the launch of the Materials Genome Initiative in 2011, which drew substantial inspiration from the ICME study, digital data was highlighted as a core component of a Materials Innovation Infrastructure, along with experimental and computational tools. Over the past 10 years, our understanding of what it takes to provide accessible materials data has matured and rapid progress has been made in establishing a Materials Data Infrastructure (MDI). We are learning that the MDI is essential to eliminating the seams between experiment and computation by providing a means for them to connect effortlessly. Additionally, the MDI is becoming an enabler, allowing materials engineering to tie into a much broader model-based engineering enterprise for product design.

  4. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE PAGES

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit; ...

    2017-07-01

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  5. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  6. How do the Polytechnic Students Cope with the Difficulties in Composing Abstracts for Their Final Projects?

    NASA Astrophysics Data System (ADS)

    Niswatin, C.; Latief, M. A.; Suharyadi, S.

    2018-02-01

    This research aims to uncover the fact about engineering students in dealing with composing abstracts for their final projects. The research applies a descriptive qualitative quantitative design. The data were collected through questioners involving 104 engineering students, including the alumni at Politeknik Kota Malang, Indonesia. Furthermore, interviews were carried out to explain the details where necessary to support the primary data. It is found that the common problems faced by engineering students include 1) combining words into sentences, 2) identifying the most appropriate technical terms in engineering, and 3) applying grammar in context. To cope with those difficulties they demanded translation application machines, supported by peer-proofreaders. In addition, they considerably engaged personal tutoring with the lectures more than three times.

  7. Epistemology, Ontology and Ethics: "Galaxies Away from the Engineering World"?

    ERIC Educational Resources Information Center

    Christensen, Steen Hyldgaard; Erno-Kjolhede, Erik

    2008-01-01

    Philosophy of technology/philosophy of science has recently become part of the curriculum of engineering degree programmes in Denmark. However, to what extent do teachers of engineering see it as meaningful for students to work with relatively abstract philosophical concepts such as epistemology, ontology and ethics as part of engineering degree…

  8. Abstracts: Energy Sciences programs, January--December 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report presents abstracts of all publications in the Energy Sciences programs of the Department of Energy and Environment from January 1, 1978 through December 31, 1978. It is a companion report to Annual Highlights of Programs in Energy Sciences - (December 1978, BNL 50973). Together, they present scientific and/or technical highlights of the Energy Sciences programs for the past calendar year, detailed descriptions of all the programs, and the publication issuing from the work performed. The following are some of the topics included: porphyrin chemistry; chemistry of energetic compounds; combustion; coal utilization; metal hydrides; cyclic separations process research; tracemore » element analysis; materials properties and structures; radiation damage; superconducting materials; materials of construction for geothermal applications; repair of deteriorated concrete; development of glass--polymer composite sewer pipe; flash hydropyrolysis of coal; desulfurization of high-temperature combustion and fuel gases; and synthetic fuels development. (RWR)« less

  9. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  10. Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering

    NASA Astrophysics Data System (ADS)

    García-Fruitós, Elena; Seras-Franzoso, Joaquín; Vazquez, Esther; Villaverde, Antonio

    2010-05-01

    A spectrum of materials for biomedical applications is produced in bacteria, and some of them, such as metals or polyhydroxyalkanoates, are straightforwardly obtained as particulate entities. We have explored the biofabrication process of bacterial inclusion bodies, particulate proteinaceous materials (ranging from 50 to 500 nm in diameter) recently recognized as suitable for surface topographical modification and tissue engineering. Inclusion bodies have been widely described as spherical or pseudo-spherical particles with only minor morphological variability, mostly restricted to their size. Here we have identified a cellular gene in Escherichia coli (clpP) that controls the in vivo fabrication process of inclusion bodies. In the absence of the encoded protease, the dynamics of protein deposition is perturbed, resulting in unusual tear-shaped particles with enhanced surface-volume ratios. This fact modifies the ability of inclusion bodies to promote mammalian cell attachment and differentiation upon surface decoration. The implications of the genetic control of inclusion body geometry are discussed in the context of their biological fabrication and regarding the biomedical potential of these protein clusters in regenerative medicine.

  11. Particle Engineering of Excipients for Direct Compression: Understanding the Role of Material Properties.

    PubMed

    Mangal, Sharad; Meiser, Felix; Morton, David; Larson, Ian

    2015-01-01

    Tablets represent the preferred and most commonly dispensed pharmaceutical dosage form for administering active pharmaceutical ingredients (APIs). Minimizing the cost of goods and improving manufacturing output efficiency has motivated companies to use direct compression as a preferred method of tablet manufacturing. Excipients dictate the success of direct compression, notably by optimizing powder formulation compactability and flow, thus there has been a surge in creating excipients specifically designed to meet these needs for direct compression. Greater scientific understanding of tablet manufacturing coupled with effective application of the principles of material science and particle engineering has resulted in a number of improved direct compression excipients. Despite this, significant practical disadvantages of direct compression remain relative to granulation, and this is partly due to the limitations of direct compression excipients. For instance, in formulating high-dose APIs, a much higher level of excipient is required relative to wet or dry granulation and so tablets are much bigger. Creating excipients to enable direct compression of high-dose APIs requires the knowledge of the relationship between fundamental material properties and excipient functionalities. In this paper, we review the current understanding of the relationship between fundamental material properties and excipient functionality for direct compression.

  12. Exploiting the Dynamics of Soft Materials for Machine Learning

    PubMed Central

    Hauser, Helmut; Li, Tao; Pfeifer, Rolf

    2018-01-01

    Abstract Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world. PMID:29708857

  13. Engineered nano materials and the U.S. Environmental Protection Agency: Research at the Western Ecology Division in Oregon, USA

    EPA Science Inventory

    Engineered nanoparticles represent a unique hazard to human health and the environment because their inherent characteristics differ significantly from commonly used chemicals and bulk forms of materials. The U.S. Environmental Protection Agency (EPA) is responsible for protecti...

  14. Topography preserved microwave plasma etching for top-down layer engineering in MoS2 and other van der Waals materials.

    PubMed

    Varghese, Abin; Sharma, Chithra H; Thalakulam, Madhu

    2017-03-17

    A generic and universal layer engineering strategy for van der Waals (vW) materials, scalable and compatible with the current semiconductor technology, is of paramount importance in realizing all-two-dimensional logic circuits and to move beyond the silicon scaling limit. In this letter, we demonstrate a scalable and highly controllable microwave plasma based layer engineering strategy for MoS 2 and other vW materials. Using this technique we etch MoS 2 flakes layer-by-layer starting from an arbitrary thickness and area down to the mono- or the few-layer limit. From Raman spectroscopy, atomic force microscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy, we confirm that the structural and morphological properties of the material have not been compromised. The process preserves the pre-etch layer topography and yields a smooth and pristine-like surface. We explore the electrical properties utilising a field effect transistor geometry and find that the mobility values of our samples are comparable to those of the pristine ones. The layer removal does not involve any reactive gasses or chemical reactions and relies on breaking the weak inter-layer vW interaction making it a generic technique for a wide spectrum of layered materials and heterostructures. We demonstrate the wide applicability of the technique by extending it to other systems such as graphene, h-BN and WSe 2 . In addition, using microwave plasma in combination with standard lithography, we illustrate a lateral patterning scheme making this process a potential candidate for large scale device fabrication in addition to layer engineering.

  15. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 54

    DTIC Science & Technology

    1978-06-28

    DEFEKTOSKOPIYA in Russian No 2, Feb 78 pp 49-52 manuscript received 28 Feb 77 DEVYATCHENKO, L. D., YESIPOV, I. V. , BATURINA, S. K., KIRILLOVA, G . K...received 10 Apr 77 KARPINOS, D. M., MAKSIMOVICH, G . G ., LYUTYY, YE. M., FILIPOVSKIY, A. V., and KADYROV, V. KH., Physico-Mechanical Institute and the...OBRABOTKI MATERIALOV in Russian No 1, Jan/Feb 78 pp 149-151 manuscript received 20 Jun 77 KARPINOS, D. M. and ZIL’BERBERG, V. G ., Kiev [Abstract] The

  16. Collaboration between Industrial Designers and Design Engineers - Comparing the Understanding of Design Intent.

    PubMed

    Laursen, Esben Skov; Møller, Louise

    2015-01-01

    This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.

  17. Important Role of the Hall Effect Measurement System in a Modified Course of Materials in Electrical Engineering

    ERIC Educational Resources Information Center

    Stojanovic, G.; Savic, S.; Zivanov, L.

    2009-01-01

    The course "Materials in Electrical Engineering" is a core course in the Mechatronics curriculum at the Faculty of Technical Sciences, University of Novi Sad, Serbia. In the past, this course was comprehensive and mainly theory-based. Teaching methods used in this course had not been changed for many years, and were mainly based on a…

  18. Air Pollution Publications, A Selected Bibliography With Abstracts, 1966-1968.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Contained are over 1000 entries with abstracts spanning the literature from 1966 to 1968. The references are grouped into broad subject categories: emission sources; atmospheric interactions; measurement; control methods; biosciences and medicine; plants; materials deterioration; air quality; legal and administrative aspects; social aspects; basic…

  19. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    NASA Astrophysics Data System (ADS)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  20. Materials engineering data base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  1. Exoplanet Observing: from Art to Science (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.; Gleeson, J.

    2017-12-01

    (Abstract only) This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  2. Resources of Near-Earth Space: Abstracts

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objectives are by theory, experiment, and bench-level testing of small systems, to develop scientifically-sound engineering processes and facility specifications for producing propellants and fuels, construction and shielding materials, and life support substances from the lithospheres and atmospheres of lunar, planetary, and asteroidal bodies. Current emphasis is on the production of oxygen, other usefull gases, metallic, ceramic/composite, and related byproducts from lunar regolith, carbonaceous chrondritic asteroids, and the carbon dioxide rich Martian atmosphere.

  3. American Physiological Society Fall Meeting, August 15-20, 1976, University of Pennsylvania, Philadelphia, Pennsylvania. Abstracts of Papers

    ERIC Educational Resources Information Center

    Physiologist, 1976

    1976-01-01

    Presented are abstracts of papers arranged in alphabetical order by first-named author. The proceedings of the American Physiological Society were held jointly with the American Society of Zoologists (ASZ) and the Biomedical Engineering Society (BMES). (EB)

  4. Engineering Solid-State Materials. Strategies for Modeling and Packing Control of Molecular Assemblies into 3-D Networks

    DTIC Science & Technology

    1993-04-22

    cocrystal /materials design/hydrogen bonding 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The crystal structure and...proterties of a number of urea cocrystals are studied with regard to symmetry of the hydrogen-bonded molecular assemblies. The logical consequences of...symmetry element A or M. ¶/or 2 Results: Our specific goals are to design and synthesize urea based cocrystals in which the twofold symmetry and hydrogen

  5. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  6. Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials.

    PubMed

    Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M

    2003-11-01

    Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.

  7. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  8. Materials for Advanced Turbine Engines. Volume 1; Power Metallurgy Rene 95 Rotating Turbine Engine Parts

    NASA Technical Reports Server (NTRS)

    Pfouts, W. R.; Shamblen, C. E.; Mosier, J. S.; Peebles, R. E.; Gorsler, R. W.

    1979-01-01

    An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included.

  9. Aeronautics and Space Engineering Board: Aeronautics Assessment Committee

    NASA Technical Reports Server (NTRS)

    1977-01-01

    High temperature engine materials, fatigue and fracture life prediction, composite materials, propulsion noise pollution, propulsion components, full-scale engine research, V/STOL propulsion, advanced engine concepts, and advanced general aviation propulsion research were discussed.

  10. Bioresponsive materials

    NASA Astrophysics Data System (ADS)

    Lu, Yue; Aimetti, Alex A.; Langer, Robert; Gu, Zhen

    2017-01-01

    'Smart' bioresponsive materials that are sensitive to biological signals or to pathological abnormalities, and interact with or are actuated by them, are appealing therapeutic platforms for the development of next-generation precision medications. Armed with a better understanding of various biologically responsive mechanisms, researchers have made innovations in the areas of materials chemistry, biomolecular engineering, pharmaceutical science, and micro- and nanofabrication to develop bioresponsive materials for a range of applications, including controlled drug delivery, diagnostics, tissue engineering and biomedical devices. This Review highlights recent advances in the design of smart materials capable of responding to the physiological environment, to biomarkers and to biological particulates. Key design principles, challenges and future directions, including clinical translation, of bioresponsive materials are also discussed.

  11. Building NYX [Engineering Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    From April, 1951, to August 1954, New York Shipbuilding corporation carried out a subcontract with E.I. du Pont de Nemours company that was without parallel in the shipyard's history. The work, designated the NYX Project'' for reasons of security, which was vital to the operations of the Savannah River Plant, Aiken, S.C., which was then being designed and constructed by du Pont for the Atomic Energy Commission. It consisted of three broad parts: Development and experimental work; fabrication and testing of a prototype unit; and fabrication of production units. Five production units were ultimately built, one of them converted frommore » the prototype. All were fabricated from stainless steel, and involved welding techniques, control of thermal distortion and tolerances never previously attempted on assemblies of comparable size. This report provides engineering drawings for this project.« less

  12. Building NYX [Engineering Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-31

    From April, 1951, to August 1954, New York Shipbuilding corporation carried out a subcontract with E.I. du Pont de Nemours & company that was without parallel in the shipyard`s history. The work, designated the ``NYX Project`` for reasons of security, which was vital to the operations of the Savannah River Plant, Aiken, S.C., which was then being designed and constructed by du Pont for the Atomic Energy Commission. It consisted of three broad parts: Development and experimental work; fabrication and testing of a prototype unit; and fabrication of production units. Five production units were ultimately built, one of them convertedmore » from the prototype. All were fabricated from stainless steel, and involved welding techniques, control of thermal distortion and tolerances never previously attempted on assemblies of comparable size. This report provides engineering drawings for this project.« less

  13. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  14. Health care professional workstation: software system construction using DSSA scenario-based engineering process.

    PubMed

    Hufnagel, S; Harbison, K; Silva, J; Mettala, E

    1994-01-01

    This paper describes a new method for the evolutionary determination of user requirements and system specifications called scenario-based engineering process (SEP). Health care professional workstations are critical components of large scale health care system architectures. We suggest that domain-specific software architectures (DSSAs) be used to specify standard interfaces and protocols for reusable software components throughout those architectures, including workstations. We encourage the use of engineering principles and abstraction mechanisms. Engineering principles are flexible guidelines, adaptable to particular situations. Abstraction mechanisms are simplifications for management of complexity. We recommend object-oriented design principles, graphical structural specifications, and formal components' behavioral specifications. We give an ambulatory care scenario and associated models to demonstrate SEP. The scenario uses health care terminology and gives patients' and health care providers' system views. Our goal is to have a threefold benefit. (i) Scenario view abstractions provide consistent interdisciplinary communications. (ii) Hierarchical object-oriented structures provide useful abstractions for reuse, understandability, and long term evolution. (iii) SEP and health care DSSA integration into computer aided software engineering (CASE) environments. These environments should support rapid construction and certification of individualized systems, from reuse libraries.

  15. Designing Biomimetic Materials from Marine Organisms.

    PubMed

    Nichols, William T

    2015-01-01

    Two biomimetic design approaches that apply biological solutions to engineering problems are discussed. In the first case, motivation comes from an engineering problem and the key challenge is to find analogous biological functions and map them into engineering materials. We illustrate with an example of water pollution remediation through appropriate design of a biomimetic sponge. In the second case, a biological function is already known and the challenge is to identify the appropriate engineering problem. We demonstrate the biological approach with marine diatoms that control energy and materials at their surface providing inspiration for a number of engineering applications. In both cases, it is essential to select materials and structures at the nanoscale to control energy and materials flows at interfaces.

  16. Effects of syntactic structure in the memory of concrete and abstract Chinese sentences.

    PubMed

    Ho, C S; Chen, H C

    1993-09-01

    Smith (1981) found that concrete English sentences were better recognized than abstract sentences and that this concreteness effect was potent only when the concrete sentence was also affirmative but the effect switched to an opposite end when the concrete sentence was negative. These results were partially replicated in Experiment 1 by using materials from a very different language (i.e., Chinese): concrete-affirmative sentences were better remembered than concrete-negative and abstract sentences, but no reliable difference was found between the latter two types. In Experiment 2, the task was modified by using a visual presentation instead of an oral one as in Experiment 1. Both concrete-affirmative and concrete-negative sentences were better memorized then abstract ones in Experiment 2. The findings in the two experiments are explained by a combination of the dual-coding model and Marschark's (1985) item-specific and relational processing. The differential effects of experience with different language systems on processing verbal materials in memory are also discussed.

  17. Cardiovascular tissue engineering: where we come from and where are we now?

    PubMed

    Smit, Francis E; Dohmen, Pascal M

    2015-01-27

    Abstract Tissue engineering was introduced by Vacanti and Langer in the 80's, exploring the potential of this new technology starting with the well-known "human ear on the mouse back". The goal is to create a substitute which supplies an individual therapy for patients with regeneration, remodeling and growth potential. The growth potential of these subjects is of special interest in congenital cardiac surgery, avoiding repeated interventions and surgery. Initial applications of tissue engineered created substitutes were relatively simple cardiovascular grafts seeded initially by end-differentiated autologous endothelial cells. Important data were collected from these initial clinical autologous endothelial cell seeded grafts in peripheral and coronary vessel disease. After these initial successfully implantation bone marrow cell were used to seed patches and pulmonary conduits were implanted in patients. Driven by the positive results of tissue engineered material implanted under low pressure circumstances, first tissue engineered patches were implanted in the systemic circulation followed by the implantation of tissue engineered aortic heart valves. Tissue engineering is an extreme dynamic technology with continuously modifications and improvements to optimize clinical products. New technologies are unified and so this has also be done with tissue engineering and new application features, so called transcatheter valve intervention. First studies are initiated to apply tissue engineered heart valves with this new transcatheter delivery system less invasive. Simultaneously studies have been started on tissue engineering of so-called whole organs since organ transplantation is restricted due to donor shortage and tissue engineering could overcome this problem. Initial studies of whole heart engineering in the rat model are promising and larger size models are initiated.

  18. Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene.

    PubMed

    Zhu, Jian; Zhang, Huanan; Kotov, Nicholas A

    2013-06-25

    Materials assembled by layer-by-layer (LBL) assembly and vacuum-assisted flocculation (VAF) have similarities, but a systematic study of their comparative advantages and disadvantages is missing. Such a study is needed from both practical and fundamental perspectives aiming at a better understanding of structure-property relationships of nanocomposites and purposeful engineering of materials with unique properties. Layered composites from polyvinyl alcohol (PVA) and reduced graphene (RG) are made by both techniques. We comparatively evaluate their structure, mechanical, and electrical properties. LBL and VAF composites demonstrate clear differences at atomic and nanoscale structural levels but reveal similarities in micrometer and submicrometer organization. Epitaxial crystallization and suppression of phase transition temperatures are more pronounced for PVA in LBL than for VAF composites. Mechanical properties are virtually identical for both assemblies at high RG contents. We conclude that mechanical properties in layered RG assemblies are largely determined by the thermodynamic state of PVA at the polymer/nanosheet interface rather than the nanometer scale differences in RG packing. High and nearly identical values of toughness for LBL and VAF composites reaching 6.1 MJ/m(3) observed for thermodynamically optimal composition confirm this conclusion. Their toughness is the highest among all other layered assemblies from RG, cellulose, clay, etc. Electrical conductivity, however, is more than 10× higher for LBL than for VAF composites for the same RG contents. Electrical properties are largely determined by the tunneling barrier between RG sheets and therefore strongly dependent on atomic/nanoscale organization. These findings open the door for application-oriented methods of materials engineering using both types of layered assemblies.

  19. HBCUs/OMUs Research Conference Agenda and Abstracts

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil (Compiler)

    2000-01-01

    The purpose of this Historically Black Colleges and Universities (HBCUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The Abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Glenn Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Glenn technical monitors, and other Glenn researchers.

  20. HBCUs/OMUs Research Conference Agenda and Abstracts

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil (Compiler)

    2001-01-01

    The purpose of this Historically Black Colleges and Universities (HBCUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Glenn Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Glenn technical monitors, and other Glenn researchers.