Science.gov

Sample records for engineered semiconductors ii

  1. Band gap engineering of Zn based II-VI semiconductors through uniaxial strain

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh; Ramprasad, Rampi

    2012-02-01

    The electronic structure of bulk wurtzitic ZnX (X=O, S, Se, and Te) under uniaxial strain along the [0001] direction is investigated using hybrid density functional theory calculations and many-body perturbation theory. It is found that uniaxial tensile and large compressive strains decrease the band gap, similar to what has been predicted by semilocal density functional theory (DFT) calculations [Yadav et. al, Phys. Rev. B, 81, 144120 (2010)]. Moreover, the change in the band gap under uniaxial strains predicted by semilocal DFT is in good quantitative agreement with the present results at all strains considered, thereby bringing a measure of redemption to conventional (semi)local DFT descriptions of the electronic structure of at least this class of insulators. The present results have important implications for band gap engineering through strain, especially for complex systems containing a large number of atoms (e.g., nanowires) for which higher-level calculations may be too computationally intensive.

  2. Mod II engine development

    NASA Technical Reports Server (NTRS)

    Karl, David W.

    1987-01-01

    The Mod II engine, a four-cylinder, automotive Stirling engine utilizing the Siemens-Rinia double-acting concept, was assembled and became operational in January 1986. This paper describes the Mod II engine, its first assembly, and the subsequent development work done on engine components up to the point that engine performance characterization testing took place. Performance data for the engine are included.

  3. Mod II engine development

    NASA Technical Reports Server (NTRS)

    Karl, David W.

    1987-01-01

    The Mod II engine, a four-cylinder, automotive Stirling engine utilizing the Siemens-Rinia double-acting concept, was assembled and became operational in January 1986. This paper describes the Mod II engine, its first assembly, and the subsequent development work done on engine components up to the point that engine performance characterization testing took place. Performance data for the engine are included.

  4. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  5. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  6. Engineering optical properties of semiconductor metafilm superabsorbers

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  7. Multivalley engineering in semiconductor microcavities.

    PubMed

    Sun, M; Savenko, I G; Flayac, H; Liew, T C H

    2017-04-03

    We consider exciton-photon coupling in semiconductor microcavities in which separate periodic potentials have been embedded for excitons and photons. We show theoretically that this system supports degenerate ground-states appearing at non-zero inplane momenta, corresponding to multiple valleys in reciprocal space, which are further separated in polarization corresponding to a polarization-valley coupling in the system. Aside forming a basis for valleytronics, the multivalley dispersion is predicted to allow for spontaneous momentum symmetry breaking and two-mode squeezing under non-resonant and resonant excitation, respectively.

  8. Multivalley engineering in semiconductor microcavities

    PubMed Central

    Sun, M.; Savenko, I. G.; Flayac, H.; Liew, T. C. H.

    2017-01-01

    We consider exciton-photon coupling in semiconductor microcavities in which separate periodic potentials have been embedded for excitons and photons. We show theoretically that this system supports degenerate ground-states appearing at non-zero inplane momenta, corresponding to multiple valleys in reciprocal space, which are further separated in polarization corresponding to a polarization-valley coupling in the system. Aside forming a basis for valleytronics, the multivalley dispersion is predicted to allow for spontaneous momentum symmetry breaking and two-mode squeezing under non-resonant and resonant excitation, respectively. PMID:28367953

  9. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  10. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  11. Taming excitons in II-VI semiconductor nanowires and nanobelts

    NASA Astrophysics Data System (ADS)

    Xu, Xinlong; Zhang, Qing; Zhang, Jun; Zhou, Yixuan; Xiong, Qihua

    2014-10-01

    Excitons are one of the most important fundamental quasi-particles, and are involved in a variety of processes forming the basis of a wide range of opto-electronic and photonic devices based on II-VI semiconductor nanowires and nanobelts, such as light-emitting diodes, photovoltaic cells, photodetectors and nanolasers. A clear understanding of their properties and unveiling the potential engineering for excitons is of particular importance for the design and optimization of nanoscale opto-electronic and photonic devices. Herein, we present a comprehensive review on discussing the fundamental behaviours of the excitons in one-dimensional (1D) II-VI semiconductor nanomaterials (nanowires and nanobelts). We will start with a focus on the unique properties (origin, generation, etc) and dynamics of excitons and exciton complexes in the II-VI semiconductor nanowires and nanobelts. Then we move to the recent progress on the excitonic response in 1D nanomaterials and focus on the tailoring and engineering of excitonic properties through rational controlling of the physical parameters and conditions, intrinsically and extrinsically. These include (1) exciton-exciton interaction, which is important for 1D nanomaterial nanolasing; (2) exciton-phonon interaction, which has interesting applications for laser cooling; and (3) exciton-plasmon interaction, which is the cornerstone towards the realization of plasmonic lasers. The potential of electric field, morphology and size control for excitonic properties is also discussed. Unveiling and controlling excitonic properties in II-VI semiconductor nanowires and nanobelts would promote the development of 1D nanoscience and nanotechnology.

  12. Defect engineering in Multinary Semiconductors

    NASA Astrophysics Data System (ADS)

    Radautsan, S. I.

    1993-12-01

    The last two decades have shown a rapid increase both in our knowledge of the multinary compounds and their applications in engineering. The remarkable scientific leaders from different countries Prof. N.A.Goryunova, M.Rodot, A. Rabenau, E. Parthe, P. Manca, K. Matsumoto, C. Schwab, R. Tomlinson, J. Woolley, W.T. Kim, T. Irie, A. Zunger, N. Joshi, E. Sato et al. made their valuable contribution to the problems of the classification,crystal chemistry,growing processes and characterizations of multinary compounds [1-3]. Most of them were technologically difficult and as a result it was very hard to obtain the crystals with reproducible parameters. It was therefore obvious the well coordinated efforts in the field of chemistry,physics and electronics to be required. In this paper we review some of the major original results to get the defective compounds suitable for fundamental research and electronic applications. The main attention is paid to such effects as non-stoichiometry, order-disorder phase transitions as well as to non-equilibrium treatment by employing different methods of the defect engineering.

  13. Band-gap engineering at a semiconductor - crystalline oxide interface

    NASA Astrophysics Data System (ADS)

    Ahmadi-Majlan, Kamyar; Jahangir-Moghadam, Mohammadreza; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-03-01

    Abstract: The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to electrically coupling crystalline oxides with semiconductors to realize functional behavior is controlling the manner in which their bands align at interfaces. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1 -xO3 and Ge, in which the band-gap of the former is enhanced with Zr content x. We present structural and electrical characterization of SrZrxTi1 -xO3-Ge heterojunctions for x = 0.2 to 0.75 and demonstrate the band offset can be tuned from type-II to type-I, with the latter being verified using photoemission measurements. The type-I band offset provides a platform to integrate the dielectric, ferroelectric and ferromagnetic functionalities of oxides with semiconducting devices.

  14. Photoelectrolysis Using Type-II Semiconductor Heterojunctions.

    PubMed

    Harrison, S; Hayne, M

    2017-09-14

    The solar-powered production of hydrogen for use as a renewable fuel is highly desirable for the world's future energy infrastructure. However, difficulties in achieving reasonable efficiencies, and thus cost-effectiveness, have hampered significant research progress. Here we propose the use of semiconductor nanostructures to create a type-II heterojunction at the semiconductor-water interface in a photoelectrochemical cell (PEC) and theoretically investigate it as a method of increasing the maximum photovoltage such a cell can generate under illumination, with the aim of increasing the overall cell efficiency. A model for the semiconductor electrode in a PEC is created, which solves the Schrödinger, Poisson and drift-diffusion equations self-consistently. From this, it is determined that ZnO quantum dots on bulk n-InGaN with low In content x is the most desirable system, having electron-accepting and -donating states straddling the oxygen- and hydrogen-production potentials for x < 0.26, though large variance in literature values for certain material parameters means large uncertainties in the model output. Accordingly, results presented here should form the basis for further experimental work, which will in turn provide input to refine and develop the model.

  15. Properties of Group-IV, III-V and II-VI Semiconductors

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    2005-03-01

    Almost all the semiconductors of practical interest are the group-IV, III-V and II-VI semiconductors and the range of technical applications of such semiconductors is extremely wide. The purpose of this book is twofold: * to discuss the key properties of the group-IV, III-V and II-VI semiconductors * to systemize these properties from a solid-state physics aspect The majority of the text is devoted to the description of the lattice structural, thermal, elastic, lattice dynamic, electronic energy-band structural, optical and carrier transport properties of these semiconductors. Some corrective effects and related properties, such as piezoelectric, elastooptic and electrooptic properties, are also discussed. The book contains convenient tables summarizing the various material parameters and the definitions of important semiconductor properties. In addition, graphs are included in order to make the information more quantitative and intuitive. The book is intended not only for semiconductor device engineers, but also physicists and physical chemists, and particularly students specializing in the fields of semiconductor synthesis, crystal growth, semiconductor device physics and technology.

  16. Semiconductors for Micro- and Nanotechnology: An Introduction for Engineers

    NASA Astrophysics Data System (ADS)

    Korvink, Jan G.; Greiner, Andreas

    2002-08-01

    Semiconductors play a major role in modern microtechnology, especially in microelectronics. Since the dimensions of new microelectronic components, e.g. computer chips, now reach nanometer size, semiconductor research moves from microtechnology to nanotechnology. An understanding of the semiconductor physics involved in this new technology is of great importance for every student in engineering, especially electrical engineering, microsystem technology and physics. This textbook emphasizes a system-oriented view of semiconductor physics for applications in microsystem technology. While existing books only cover electronic device physics and are mainly written for physics students, this text gives a more hands-on approach to semiconductor physics and so avoids overloading engineering students with mathematical formulas not essential for their studies.

  17. Mod II Stirling engine overviews

    NASA Technical Reports Server (NTRS)

    Farrell, Roger A.

    1988-01-01

    The Mod II engine is a second-generation automotive Stirling engine (ASE) optimized for part-power operation. It has been designed specifically to meet the fuel economy and exhaust emissions objectives of the ASE development program. The design, test experience, performance, and comparison of data to analytical performance estimates of the Mod II engine to date are reviewed. Estimates of Mod II performance in its final configuration are also given.

  18. II-VI Narrow-Bandgap Semiconductors for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Baker, Ian

    The field of narrow-gap II-VI materials is dominated by the compound semiconductor mercury cadmium telluride, (Hg1-x Cd x Te or MCT), which supports a large industry in infrared detectors, cameras and infrared systems. It is probably true to say that HgCdTe is the third most studied semiconductor after silicon and gallium arsenide. Hg1-x Cd x Te is the material most widely used in high-performance infrared detectors at present. By changing the composition x the spectral response of the detector can be made to cover the range from 1 μm to beyond 17 μm. The advantages of this system arise from a number of features, notably: close lattice matching, high optical absorption coefficient, low carrier generation rate, high electron mobility and readily available doping techniques. These advantages mean that very sensitive infrared detectors can be produced at relatively high operating temperatures. Hg1-x Cd x Te multilayers can be readily grown in vapor-phase epitaxial processes. This provides the device engineer with complex doping and composition profiles that can be used to further enhance the electro-optic performance, leading to low-cost, large-area detectors in the future. The main purpose of this chapter is to describe the applications, device physics and technology of II-VI narrow-bandgap devices, focusing on HgCdTe but also including Hg1-x Mn x Te and Hg1-x Zn x Te. It concludes with a review of the research and development programs into third-generation infrared detector technology (so-called GEN III detectors) being performed in centers around the world.

  19. Plasmonic enhancement engineering of semiconductor light emitters

    NASA Astrophysics Data System (ADS)

    Henson, John Timothy Irvine

    Light emitting diodes (LEDs) are light sources of great technological importance because of their wide spectral tunability, long lifetimes, and potentially high energy efficiency. It is widely observed, however, that LEDs based on all relevant material platforms exhibit degraded internal quantum efficiency as the emission wavelength is shifted into the green part of the visible spectrum. Increasing device efficiency in this spectral region has therefore become the focus of intense research. In this work we study the use of plasmonic metallic nanostructures as a method for enhancing LED efficiency. Electromagnetic fields are known to exhibit resonances near metallic nanostructures originating from collective oscillations of the electron gas on the metal surface. Surface plasmon polaritons (SPPs) confined to the surface of a planar metal film, and localized surface plasmons (LSPs) confined to the surface of a nanostructure, feature unique optical properties such as large near optical fields and large modal densities. These spatial and spectral properties are highly dependent on the material and geometric properties of the nanostructure, allowing for extensive engineering of the plasmonic system to meet application needs. Plasmonic nanostructures are currently being studied for use in a wide range of applications such as waveguiding, bio-sensing, surface-enhanced spectroscopy, solid state light emission, and solar cells. Coupling into both SPP and LSP modes can enhance the spontaneous emission rate of a nearby radiating dipole, by virtue of their large associated local optical fields and high density of modes. Effective scattering of the excited plasmonic resonances into the radiation continuum can then lead to large enhancements in radiated field intensity. In this work, we have studied the application of various metallic nanostructures to nitride semiconductor light emitters to enhance their emission efficiency. Numerical investigations have been conducted to

  20. Atomic-Scale Characterization of II-VI Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Smith, David J.

    2013-11-01

    Alloys of II-VI compound semiconductors with suitable band gap selection potentially provide broad coverage of wavelengths for photodetector applications. Achievement of high-quality epitaxial growth is, however, essential for successful development of integrated photonic and optoelectronic devices. Atomic-scale characterization of structural defects in II-VI heterostructures using electron microscopy plays an invaluable role in accomplishing this goal. This paper reviews some recent high-resolution studies of II-VI compound semiconductors with zincblende crystal structure, as grown epitaxially on commonly used substrates. Exploratory studies using aberration-corrected electron microscopes are also briefly considered.

  1. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    ERIC Educational Resources Information Center

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  2. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    ERIC Educational Resources Information Center

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  3. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  4. Molecular engineering of semiconductor surfaces and devices.

    PubMed

    Ashkenasy, Gonen; Cahen, David; Cohen, Rami; Shanzer, Abraham; Vilan, Ayelet

    2002-02-01

    Grafting organic molecules onto solid surfaces can transfer molecular properties to the solid. We describe how modifications of semiconductor or metal surfaces by molecules with systematically varying properties can lead to corresponding trends in the (electronic) properties of the resulting hybrid (molecule + solid) materials and devices made with them. Examples include molecule-controlled diodes and sensors, where the electrons need not to go through the molecules (action at a distance), suggesting a new approach to molecule-based electronics.

  5. Computer Aided Engineering of Semiconductor Integrated Circuits

    DTIC Science & Technology

    1976-04-01

    transistor opera tion; (4) theoretical invest! jations of carrifr mobli *!;y *"« inversion layer of an MOSFET; (5) mathematical investigations for high...satisfactory greLnt «Lh experiment. In time, the rapid groWth of se.r- oonduotor integrated circuit (IC, technology created ^ ^ °n" £or which this theory was...and Technology of Semiconductor Devices, John Wiley and Sons, Inc., N.Y. (1967). [2] S. K. Ghandi, The Theory and Practice of

  6. Semiconductors: Still a Wide Open Frontier for Scientists/Engineers

    NASA Astrophysics Data System (ADS)

    Seiler, David G.

    1997-10-01

    A 1995 Business Week article described several features of the explosive use of semiconductor chips today: ``Booming'' personal computer markets are driving high demand for microprocessors and memory chips; (2) New information superhighway markets will `ignite' sales of multimedia and communication chips; and (3) Demand for digital-signal-processing and data-compression chips, which speed up video and graphics, is `red hot.' A Washington Post article by Stan Hinden said that technology is creating an unstoppable demand for electronic elements. This ``digital pervasiveness'' means that a semiconductor chip is going into almost every high-tech product that people buy - cars, televisions, video recorders, telephones, radios, alarm clocks, coffee pots, etc. ``Semiconductors are everywhere.'' Silicon and compound semiconductors are absolutely essential and are pervasive enablers for DoD operations and systems. DoD's Critical Technologies Plan of 1991 says that ``Semiconductor materials and microelectronics are critically important and appropriately lead the list of critical defense technologies.'' These trends continue unabated. This talk describes some of the frontiers of semiconductors today and shows how scientists and engineers can effectively contribute to its advancement. Cooperative, multidisciplinary efforts are increasing. Specific examples will be given for scanning capacitance microscopy and thin-film metrology.

  7. Semiconductor/dielectric interface engineering and characterization

    NASA Astrophysics Data System (ADS)

    Lucero, Antonio T.

    The focus of this dissertation is the application and characterization of several, novel interface passivation techniques for III-V semiconductors, and the development of an in-situ electrical characterization. Two different interface passivation techniques were evaluated. The first is interface nitridation using a nitrogen radical plasma source. The nitrogen radical plasma generator is a unique system which is capable of producing a large flux of N-radicals free of energetic ions. This was applied to Si and the surface was studied using x-ray photoelectron spectroscopy (XPS). Ultra-thin nitride layers could be formed from 200-400° C. Metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated using this passivation technique. Interface nitridation was able to reduce leakage current and improve the equivalent oxide thickness of the devices. The second passivation technique studied is the atomic layer deposition (ALD) diethylzinc (DEZ)/water treatment of sulfur treated InGaAs and GaSb. On InGaAs this passivation technique is able to chemically reduce higher oxidation states on the surface, and the process results in the deposition of a ZnS/ZnO interface passivation layer, as determined by XPS. Capacitance-voltage (C-V) measurements of MOSCAPs made on p-InGaAs reveal a large reduction in accumulation dispersion and a reduction in the density of interfacial traps. The same technique was applied to GaSb and the process was studied in an in-situ half-cycle XPS experiment. DEZ/H2O is able to remove all Sb-S from the surface, forming a stable ZnS passivation layer. This passivation layer is resistant to further reoxidation during dielectric deposition. The final part of this dissertation is the design and construction of an ultra-high vacuum cluster tool for in-situ electrical characterization. The system consists of three deposition chambers coupled to an electrical probe station. With this setup, devices can be processed and subsequently electrically characterized

  8. Electrical transport engineering of semiconductor superlattice structures

    NASA Astrophysics Data System (ADS)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  9. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  10. Synthesis and characterization of II-IV-V(2) semiconductors

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chung

    1998-11-01

    The II-IV-V2 chalcopyrite semiconductors are isostructural and isoelectronic analogues of the III-V semiconductors. Like the III-V materials the compounds have potential applications in nonlinear optics, optoelectronics and solar energy conversion. The naturally abundant elements and high absorption coefficients in many of the II-IV-V2's make these materials more attractive for large scale applications. Our study focused on the investigation of the basic electrical and optical properties of a number of II-IV- V2 materials by photoelectrochemical methods and photoluminescence. A variety of single crystals in II-IV- V2 family such as ZnSiAs2, CdSiAs2, CdSiP2, ZnSiP2, CdGeP2, ZnGeP2, and ZnSnP2 have been synthesized by chemical vapor transport (CVT) and Bridgman growth techniques. Intentional doping with S, Se, Al, Ga and In of the crystals resulted in complex behavior. In some systems compensation with intrinsic acceptors was observed and in other systems the change of doping type and controllable doping levels were observed. The bandgap, doping level, band position, quantum yield and current voltage behavior in various electrolytes for many of the II-IV-V2 semiconductors have been determined using photoelectrochemical methods. Hall effect measurements of doping density have been used to compare with values obtained from Mott-Schottky analysis. Frequency and pH dependence of the Mott-Schottky plots were observed. The minority diffusion length of II-IV-V2 calculated from quantum yield and absorption coefficient data at the onset of photocurrent matches well to the prediction from the Gartner Model. Polarization dependent photoluminescence has been used for the study of interband transitions and optical anisotropy in CdSiAs2 and CdSiP2 crystals. The electrode surfaces of CdSiAs2 crystals treated by wet chemical etchants were investigated and characterized by XPS. 31P solid state MAS NMR studies of the II-IV- P2 compounds gave very sharp 31P resonances and revealed

  11. Engineering charge transport by heterostructuring solution-processed semiconductors

    NASA Astrophysics Data System (ADS)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  12. Plasmons in finite type-II semiconductor multilayers

    NASA Astrophysics Data System (ADS)

    Sy, H. K.; Song, L. M.

    1988-10-01

    We study finite type-II semiconductor multilayers consisting of alternate layers of two-dimensional electron and hole carriers. The collective excitation is investigated with use of the coupled Boltzmann equations. We obtain the equation determining the plasma modes for N (even) layers. For N=6, we have shown the numerical results for two cases of different electron and hole masses. The total number of plasmons, and the existence of Giuliani-Quinn surface plasmons which are not Landau damped, depend on the parameters used.

  13. Iterative bandgap engineering at selected areas of quantum semiconductor wafers.

    PubMed

    Stanowski, Radoslaw; Martin, Matthieu; Ares, Richard; Dubowski, Jan J

    2009-10-26

    We report on the application of a laser rapid thermal annealing technique for iterative bandgap engineering at selected areas of quantum semiconductor wafers. The approach takes advantage of the quantum well intermixing (QWI) effect for achieving targeted values of the bandgap in a series of small annealing steps. Each QWI step is monitored by collecting a photoluminescence map and, consequently, choosing the annealing strategy of the next step. An array of eight sites, 280 mum in diameter, each emitting at 1480 nm, has been fabricated with a spectral accuracy of better than 2 nm in a standard InGaAs/InGaAsP QW heterostructure that originally emitted at 1550 nm.

  14. Semiconductor nanomembranes: a platform for new properties via strain engineering

    PubMed Central

    2012-01-01

    New phenomena arise in single-crystal semiconductors when these are fabricated in very thin sheets, with thickness at the nanometer scale. We review recent research on Si and Ge nanomembranes, including the use of elastic strain sharing, layer release, and transfer, that demonstrate new science and enable the fabrication of materials with unique properties. Strain engineering produces new strained forms of Si or Ge not possible in nature, new layered structures, defect-free SiGe sheets, and new electronic band structure and photonic properties. Through-membrane elastic interactions cause the double-sided ordering of epitaxially grown nanostressors on Si nanomembranes, resulting in a spatially and periodically varying strain field in the thin crystalline semiconductor sheet. The inherent influence of strain on the band structure creates band gap modulation, thereby creating effectively a single-element electronic superlattice. Conversely, large-enough externally applied strain can make Ge a direct-band gap semiconductor, giving promise for Group IV element light sources. PMID:23153167

  15. Semiconductor nanomembranes: a platform for new properties via strain engineering.

    PubMed

    Cavallo, Francesca; Lagally, Max G

    2012-11-15

    New phenomena arise in single-crystal semiconductors when these are fabricated in very thin sheets, with thickness at the nanometer scale. We review recent research on Si and Ge nanomembranes, including the use of elastic strain sharing, layer release, and transfer, that demonstrate new science and enable the fabrication of materials with unique properties. Strain engineering produces new strained forms of Si or Ge not possible in nature, new layered structures, defect-free SiGe sheets, and new electronic band structure and photonic properties. Through-membrane elastic interactions cause the double-sided ordering of epitaxially grown nanostressors on Si nanomembranes, resulting in a spatially and periodically varying strain field in the thin crystalline semiconductor sheet. The inherent influence of strain on the band structure creates band gap modulation, thereby creating effectively a single-element electronic superlattice. Conversely, large-enough externally applied strain can make Ge a direct-band gap semiconductor, giving promise for Group IV element light sources.

  16. Structure-property relations in engineered semiconductor nanomaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer A.; Htoon, Han

    2016-09-01

    Particle-size or `quantum-confinement' effects have been used for decades to tune semiconductor opto-electronic properties. More recently, particle size control as the primary means for properties control has been succeeded by nanoscale hetero-structuring. In this case, the nanosized particle is modified to include internal, nanoscale interfaces, generally defined by compositional variations that induce additional changes to semiconductor properties. These changes can entail enhancements to the size-induced properties as well as unexpected or `emergent' behaviors. Common structural motifs include enveloping a spherical semiconductor nanocrystal, i.e., a quantum dot, within a shell of a different composition. In this talk, I will discuss how solution-phase synthesis can be used to create these structures with precisely `engineered' complexity. Most notably, I will review our experiences with so-called `giant' quantum dots that, due to their internal nanoscale structure, exhibit a range of novel behaviors, including being non-blinking and non-photobleaching (Chen et al. J. Am. Chem. Soc. 2008, 130, 5026; Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634; Dennis et al. Nano Lett. 2012 12, 5545; Acharya et al. J. Am. Chem. Soc. 2015, 137, 3755), and remarkably efficient emitters of `multi-excitons' due to extreme suppression of Auger recombination (Mangum et al. Nanoscale 2014, 6, 3712; Gao et al. Adv. Optical Mater. 2015, 3, 39). I will discuss recent work extending non-blinking behavior to the blue/green and "dual-color" emission, and show how correlated optical/structural characterization can reveal new information regarding structure-property relations to guide new nanomaterials development (Orfield et al. ACS Nano, Article ASAP).

  17. Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

    DOEpatents

    Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin

    2005-02-08

    A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.

  18. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    NASA Astrophysics Data System (ADS)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  19. Monolayer II-VI semiconductors: A first-principles prediction

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Li, Xian-Bin; Chen, Nian-Ke; Xie, Sheng-Yi; Tian, Wei Quan; Chen, Yuanping; Xia, Hong; Zhang, S. B.; Sun, Hong-Bo

    2015-09-01

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. While none of the two-dimensional (2D) structures can be energetically stable, it appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability. The stability of the five oxides is consistent with the work published by Zhuang et al. [Appl. Phys. Lett. 103, 212102 (2013), 10.1063/1.4831972]. The rest of the compounds in the form of honeycomb are dynamically unstable, revealed by phonon calculations. In addition, according to the molecular dynamic (MD) simulation evolution from these unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS [P 4 /n m m (129 ) ] and orthorhombic HgS [P 21/m (11 ) ] . The honeycomb monolayers exist in the form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has recently been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC) [J. Li et al., arXiv:1412.2528]. Some II-VI partners with less than 5 % lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics.

  20. Persistent Photoconductivity in II-VI Mixed Semiconductors Related Critical Phenomena and Applications

    DTIC Science & Technology

    1991-03-31

    VI Semiconductor Thin Films, (3) Comparison Between II-VI and III-V Semiconductors and (4) PCC Transient Behavior . 14. SIWCT TEI S NtIR0PAE I&Pfcu04 I7...excitation photon dose have been measured. Furthermore, the PPC behavior has been investigated under different bias voltage, Vb. We found for the first... behavior in semiconductor thin films since eventually all the novel opto- electronic devices utilizing PPC mechanism will be fabricated from thin films

  1. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    SciTech Connect

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x. We present structural and electrical characterization of SrZrxTi1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.

  2. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE PAGES

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; ...

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore » structural and electrical characterization of SrZrxTi1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  3. Mod II engine and technology development

    NASA Technical Reports Server (NTRS)

    Ernst, W. D.

    1984-01-01

    The second-generation automotive Stirling engine, known as the Mod II, will be used to accomplish the Automotive Stirling Engine (ASE) Program objectives. Preliminary design has advanced to the point of procuring long-lead components to evaluate manufacturability. The heater head castings of the Hot Engine System (working gas cycle) are being procured, while the V-block casting of the Cold Engine/Drive system is being sectioned for evaluation. The technology required for these designs, and their impact on Mod II performance, have progressed to the design substantiation stage, and successful accomplishment of the program objectives is expected.

  4. II-VI wide band gap semiconductors under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Baquero, R.; Decoss, R.; Olguin, D.

    1993-08-01

    We set an analytical expression for the gap as a function of hydrostatic deformation, E(sub g)(epsilon), by diagonalizing in Gamma the corresponding empirical tight-binding Hamiltonian (ETBH). In the ETBH we use the well known d(exp -2) Harrison scaling law (HSL) to adjust the TB parameter (TBP) to the changes in interatomic distances. We do not consider cation-anion charge transfer. We calculate E(sub g)(epsilon) for wide band gap II-VI semiconductors with zincblende crystal structure for deformations under pressure up to -5 percent. Results are in good agreement with experiment for the compounds of lower ionicity but deviate as the ionicity of the compound increases. This is due to the neglect of charge transfer which should be included self-consistently. Within the approximation we always find a positive second derivative of E(sub g)(epsilon) with respect to epsilon, independent of the material. Furthermore, the inclusion of deviations from HSL appear to be unimportant to this problem.

  5. Quantum Spin Hall Effect in Inverted Type II Semiconductors

    SciTech Connect

    Liu, Chaoxing; Hughes, Taylor L.; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall (QSH) state is a topologically non-trivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells. In this work we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. Because of a rare band alignment the quantum well band structure exhibits an 'inverted' phase similar to CdTe/HgTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking and inter-layer charge transfer are essential. By standard self-consistent calculations, we show that the QSH state persists when these corrections are included, and a quantum phase transition between the normal insulator and the QSH phase can be electrically tuned by the gate voltage.

  6. Magnetoexcitons in type-II semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Fuster, Gonzalo; Barticevic, Zdenka; Pacheco, Monica; Oliveira, Luiz E.

    2004-03-01

    We present a theoretical investigation of excitons in type-II semiconductor quantum dots (QD). In these systems the confinement of electrons inside the QD and the hole outside the QD produces a ring-like structure [1-2]. Recently, Ribeiro et al [3], in a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, observed Aharonov-Bohm-type oscillations characteristic of the ring topology for neutral excitons. Using a simple model they have derived the groundstate hole energy as a function of the magnetic field, and obtained values for the ring parameters which are in good agreement with the measured values. However, some of the features observed experimentally, in the photoluminescence intensity, can not be well explained under that approach. In this work we present a more realistic model which considers the finite width of the ring and the electron-hole interaction included via a perturbative approach. The calculations are performed within the oneparticle formalism using the effective mass approximation. The confinement potential for electrons is modelled as the superposition of a quantum well potential along the axial direction, and a parabolic lateral confinement potential. The energies for the hole in the ring plane are calculated using the method of reference [4]. Theoretical calculations are in good agreement with the experimental results of reference [3] provided that excitonic effects are properly taken into account. References 1. A.O. Govorov et al., Physica E 13 , 297 (2002). 2. K. L. Janssens et al. Phys. Rev B64, 155324 (2001), and Phys. Rev. B66, 075314 (2002). 3. E. Ribeiro, G. Medeiros-Ribeiro, and W.Carvalho Jr., and A.O. Govorov, condmat/0304092 (2003). 4. Z. Barticevic, G. Fuster, and M. Pacheco,Phys. Rev. B 65, 193307 (2002).

  7. Engineering of Semiconductor Nanocrystals for Light Emitting Applications

    PubMed Central

    Todescato, Francesco; Fortunati, Ilaria; Minotto, Alessandro; Signorini, Raffaella; Jasieniak, Jacek J.; Bozio, Renato

    2016-01-01

    Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs) provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies. PMID:28773794

  8. Automotive Stirling engine: Mod II design report

    SciTech Connect

    Nightingale, N.P.

    1986-10-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod II, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, and demonstrate poor performance. Installed in a General Motors 1985 Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/L (41 mi/gal) - a value 50% above the current vehicle fleet average. The Mod II Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation. 35 figs.

  9. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  10. Nanophase Engineering of Organic Semiconductor-based Solar Cells

    SciTech Connect

    Shao, Ming; Keum, Jong Kahk; Geohegan, David B; Xiao, Kai

    2015-01-01

    Organic photovoltaics are promising low-cost, easily-processable energy sources of the future, and are the subject of current academic and industrial interest. In order to achieve the envisioned device efficiencies to surpass commercialization target values, several challenges must be met: (1) to design and synthesize conjugated molecules with low optical bandgaps and optimized electronic energy levels, (2) optimization the morphology of donor/acceptor interpenetrating networks by controlling nanoscale phase separation and self-assembly, and (3) precise tuning of the active layer/electrode interfaces and donor/acceptor interfaces for optimized charge transfer. Here, we focus on recent advances in: (i) synthetic strategies for low-bandgap conjugated polymers and novel fullerene acceptors, (ii) processing to tune film morphologies by solvent annealing, thermal annealing, and the use of solvent additives and compatibilizers, and (iii) engineering of active layer/electrode interfaces and donor/acceptor interfaces with self-assembled monolayer dipoles.

  11. Surface plasmon based engineering of semiconductor nanowire optics

    NASA Astrophysics Data System (ADS)

    Aspetti, Carlos Octavio

    Semiconductor nanowires combine the material properties of semiconductors, which are ubiquitous in modern technology, with nanoscale dimensions and as such, are firmly poised at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics, in particular, arises from the increased interaction between light and matter that occurs when light is confined to dimensions below the size of its wavelength, in other words, when the nanowire serves as a light trapping optical cavity, which itself is also a source of light. Light confinement is taken to new extremes by coupling to the surface plasmon modes of metallic nanostructures, where light acquires mixed photonic and electronic character, and which may focus light to deep-subwavelength regions amenable to the dimensions of the electron wave. This thesis examines how the integration of "plasmonic optical cavities" and semiconductor nanowires leads to substantial modification (and enhancement) of the optical properties of the same, resulting in orders-of-magnitude faster and more efficient light emission with colors that may be tuned as a function of optical cavity geometry. Furthermore, this method is applied to nanowires composed of both direct and indirect bandgap semiconductor materials resulting in applications such as light emission from high-energy states in light emitting materials, highly enhanced broadband light emission from nominally non-light emitting (dark) materials, and broadband (and anomalous) enhancement of light absorption in various materials, all the while maintaining the unifying theme of employing integrated plasmonic-semiconductor optical cavities to achieve tailored optical properties. We begin with a review of the electromagnetic properties of optical cavities, surface plasmon-enhanced light emission in semiconductors, and the key physical properties of semiconductor nanowires. It goes without saying that this thesis work resides at the interface between optical

  12. Microsensors based on GaN semiconductors covalently functionalized with luminescent Ru(II) complexes.

    PubMed

    López-Gejo, Juan; Arranz, Antonio; Navarro, Alvaro; Palacio, Carlos; Muñoz, Elías; Orellana, Guillermo

    2010-02-17

    Covalent tethering of a Ru(II) dye to gallium nitride surfaces has been accomplished as a key step in the development of innovative sensing devices in which the indicator support (semiconductor) plays the role of both support and excitation source. Luminescence emission decays and time-resolved emission spectra confirm the presence of the dye on the semiconductor surfaces, while X-ray photoelectron spectroscopy proves its covalent bonding. The O(2) sensitivity of the new device is comparable to those of other ruthenium-based sensor systems. This achievement paves the way to a new generation of integrable ultracompact microsensors that combine semiconductor emitter-probe assemblies.

  13. Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures.

    PubMed

    Beke, David; Károlyházy, Gyula; Czigány, Zsolt; Bortel, Gábor; Kamarás, Katalin; Gali, Adam

    2017-09-06

    Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.

  14. Quantum well engineering for semiconductor integrated optical sensors

    NASA Astrophysics Data System (ADS)

    Zappe, Hans P.; Hofstetter, Daniel; Arnot, Hazel E.

    1994-07-01

    Semiconductor technology, when applied to the design and fabrication of integrated optical sensors, will yield structures of improved performance and reduced cost. Key advances in this area employ two quantum well-based effects, the quantum confined Stark effect and selective quantum well intermixing, the use of which enable the monolithic integration and enhanced functionality of semiconductor-based optical sensor circuits. In this paper, we discuss the application of these effects to the fabrication of semiconductor devices useful for integrated optical sensors based on waveguide interferometry. The quantum confined Stark effect allows us to electrically define the absorption edge of detectors and permits the fabrication of high- efficiency phase modulators. By the use of different surface dielectrics, quantum well intermixing is employed to generate transparent and absorbing regions on a single substrate. Current and future applications are discussed.

  15. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  16. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  17. Magnetization studies of II-VI semiconductor columnar quantum dots with type-II band alignment

    NASA Astrophysics Data System (ADS)

    Eginligil, M.; Sellers, I. R.; McCombe, B. D.; Chou, W.-C.; Kuskovsky, I. L.

    2009-03-01

    We report SQUID magnetization measurements of MBE-grown type-II, II-VI semiconductor quantum dot (QD) samples, with and without Mn incorporation. In all samples, the easy axis is out-of-plane, possibly due to columnar QD formation that arises from strain interaction between adjacent thin dot-containing layers. In addition, both types of QDs display a non-zero spontaneous magnetic ordering at 300 K. One set of samples consists of five-layers of (Zn,Mn)Te/ZnSe with a nominal (Zn,Mn)Te thickness of 3 nm, and ZnSe spacer thickness of 5 nm and 20 nm. These magnetic QD samples show magnetization vs. temperature behavior that can be interpreted in terms of two independent FM phases characterized by transition temperatures TC1 < TC2. A sample containing no Mn consists of 130 ZnTe/ZnSe layers, which forms Zn(Se,Te) QD layers separated by ZnSe spacers. Evidence of ferromagnetism is also seen in this structure, but the spontaneous magnetization is much weaker. For this sample only one phase is seen with TC above 300 K. Results will be discussed in terms of magneto-polaronic effects and defect-level induced ferromagnetism.

  18. Photophysical Properties of II-VI Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gong, Ke

    As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in

  19. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part

  20. Valence-band of cubic semiconductors: Clifford algebra approach II

    NASA Astrophysics Data System (ADS)

    Dargys, A.

    2010-07-01

    Application of Clifford algebra in the analysis of valence-band spin properties in semiconductors is considered. In the first part (Dargys A 2009 Phys. Scr. 80 065701), for this purpose the isomorphism between multivectors and their matrix representations was used to transform the problem to Clifford algebra. Here equivalence rules are established between the spinors of Hilbert space and basis elements of the five-dimensional Clifford algebra Cl4, 1. Then, the rules are applied to the total angular momentum components and the two-band hole Hamiltonian. The resulting biquaternionic Schrödinger equation for hole spin is solved as an example.

  1. Microwave-assisted synthesis of II-VI semiconductor micro-and nanoparticles towards sensor applications

    NASA Astrophysics Data System (ADS)

    Majithia, Ravish Yogesh

    Engineering particles at the nanoscale demands a high degree of control over process parameters during synthesis. For nanocrystal synthesis, solution-based techniques typically include application of external convective heat. This process often leads to slow heating and allows decomposition of reagents or products over time. Microwave-assisted heating provides faster, localized heating at the molecular level with near instantaneous control over reaction parameters. In this work, microwave-assisted heating has been applied for the synthesis of II-VI semiconductor nanocrystals namely, ZnO nanopods and CdX (X = Se, Te) quantum dots (QDs). Based on factors such as size, surface functionality and charge, optical properties of such nanomaterials can be tuned for application as sensors. ZnO is a direct bandgap semiconductor (3.37 eV) with a large exciton binding energy (60 meV) leading to photoluminescence (PL) at room temperature. A microwave-assisted hydrothermal approach allows the use of sub-5 nm ZnO zero-dimensional nanoparticles as seeds for generation of multi-legged quasi one-dimensional nanopods via heterogeneous nucleation. ZnO nanopods, having individual leg diameters of 13-15 nm and growing along the [0001] direction, can be synthesized in as little as 20 minutes. ZnO nanopods exhibit a broad defect-related PL spanning the visible range with a peak at ~615 nm. Optical sensing based on changes in intensity of the defect PL in response to external environment (e.g., humidity) is demonstrated in this work. Microwave-assisted synthesis was also used for organometallic synthesis of CdX(ZnS) (X = Se, Te) core(shell) QDs. Optical emission of these QDs can be altered based on their size and can be tailored to specific wavelengths. Further, QDs were incorporated in Enhanced Green-Fluorescent Protein -- Ultrabithorax (EGFP-Ubx) fusion protein for the generation of macroscale composite protein fibers via hierarchal self-assembly. Variations in EGFP- Ubx˙QD composite

  2. Surface Bonding Effects in Compound Semiconductor Nanoparticles: II

    SciTech Connect

    Helen H. Farrell

    2008-07-01

    Small nanoparticles have a large proportion of their atoms either at or near the surface, and those in clusters are essentially all on the surface. As a consequence, the details of the surface structure are of paramount importance in governing the overall stability of the particle. Just as with bulk materials, factors that determine this stability include “bulk” structure, surface reconstruction, charge balance and hybridization, ionicity, strain, stoichiometry, and the presence of adsorbates. Needless to say, many of these factors, such as charge balance, hybridization and strain, are interdependent. These factors all contribute to the overall binding energy of clusters and small nanoparticles and play a role in determining the deviations from an inverse size dependence that we have previously reported for compound semiconductor materials. Using first-principles density functional theory calculations, we have explored how these factors influence particle stability under a variety of conditions.

  3. Magnetically engineered semiconductor quantum dots as multimodal imaging probes.

    PubMed

    Jing, Lihong; Ding, Ke; Kershaw, Stephen V; Kempson, Ivan M; Rogach, Andrey L; Gao, Mingyuan

    2014-10-08

    Light-emitting semiconductor quantum dots (QDs) combined with magnetic resonance imaging contrast agents within a single nanoparticle platform are considered to perform as multimodal imaging probes in biomedical research and related clinical applications. The principles of their rational design are outlined and contemporary synthetic strategies are reviewed (heterocrystalline growth; co-encapsulation or assembly of preformed QDs and magnetic nanoparticles; conjugation of magnetic chelates onto QDs; and doping of QDs with transition metal ions), identifying the strengths and weaknesses of different approaches. Some of the opportunities and benefits that arise through in vivo imaging using these dual-mode probes are highlighted where tumor location and delineation is demonstrated in both MRI and fluorescence modality. Work on the toxicological assessments of QD/magnetic nanoparticles is also reviewed, along with progress in reducing their toxicological side effects for eventual clinical use. The review concludes with an outlook for future biomedical imaging and the identification of key challenges in reaching clinical applications.

  4. Strain Engineering of Epitaxially Transferred, Ultrathin Layers of III-V Semiconductor on Insulator

    DTIC Science & Technology

    2011-01-01

    patterned width of 350 nm–5 m and wet etched using a mixture of citric acid 1 g/ml in de-ionized DI H2O and hydrogen peroxide 30% at 1:20 volume...Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator Hui Fang,1,2,3 Morten Madsen,1,2,3 Carlo Carraro...10.1063/1.3537963 III-V compound semiconductors have been extensively explored in the recent years for energy-efficient and high- speed electronics due

  5. Proceedings of defect engineering in semiconductor growth, processing and device technology

    SciTech Connect

    Ashok, S.; Chevallier, J.; Sumino, K.; Weber, E.

    1992-01-01

    This volume results from a symposium that was part of the 1992 Spring Meeting of the Materials Research Society, held in San Francisco from April 26 to May 1, 1992. The symposium, entitled Defect Engineering in Semiconductor Growth, Processing and Device Technology, was the first of its kind at MRS and brought together academic and industrial researchers with varying perspectives on defects in semiconductors. Its aim was to go beyond defect control, and focus instead on deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. While the concept of defect engineering has at least a vague perception in techniques such as impurity/defect gettering and the use of the EL2 level in GaAs, more extensive as well as subtle uses of defects are emerging to augment the field. This symposium was intended principally to encourage creative new applications of defects in all aspects of semiconductor technology. The organization of this proceedings volume closely follows the topics around which the sessions were built. The papers on grown-in defects in bulk crystals deal with overviews of intrinsic and impurity-related defects, their influence on electrical, optical and mechanical properties, as well as the use of impurities to arrest certain types of defects during growth and defects to control growth. The issues addressed by the papers on defects in thin films include impurity and stoichiometry control, defects created by plasmas and the use of electron/ion irradiation for doping control.

  6. Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: A review

    NASA Astrophysics Data System (ADS)

    Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian

    2017-07-01

    The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.

  7. The NDCX-II engineering design

    NASA Astrophysics Data System (ADS)

    Waldron, W. L.; Abraham, W. J.; Arbelaez, D.; Friedman, A.; Galvin, J. E.; Gilson, E. P.; Greenway, W. G.; Grote, D. P.; Jung, J.-Y.; Kwan, J. W.; Leitner, M.; Lidia, S. M.; Lipton, T. M.; Reginato, L. L.; Regis, M. J.; Roy, P. K.; Sharp, W. M.; Stettler, M. W.; Takakuwa, J. H.; Volmering, J.; Vytla, V. K.

    2014-01-01

    The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.

  8. Stable ohmic contacts to thin films of p-type tellurium-containing II-VI semiconductors

    SciTech Connect

    Szabo, L.F.; Biter, W.J.

    1988-04-05

    A photovolatic device is described comprising: a light transmissive substrate; an electrically conductive, transparent layer disposed on the substrate as a first electrode; a layer of a first semiconductor disposed on the first electrode; a p-type thin film of a tellurium-containing II-VI semiconductor disposed on the first semiconductor to form a photoresponsive junction with it; and a second electrode contacting the thin film.

  9. Measurement and applications of dispersion in epitaxial II-VI semiconductor thin films and multilayers

    NASA Astrophysics Data System (ADS)

    Peiris, Frank Channa

    In this thesis we investigate the dispersion of the indices of refraction of II-VI semiconductors, and explore a series of materials combinations which are suited for the fabrication of distributed Bragg reflectors (DBRs). A prism coupler method and reflectivity measurements were used to determine the indices of refraction n of II-VI semiconductor ternary alloys of various compositions prepared by molecular beam epitaxy (MBE). We show that the prism coupler technique, which is capable of measuring n with an accuracy of at least 0.1% at discrete wavelengths, and simultaneously to determine the thickness of the layers with an uncertainty of less than 0.5%, is a very reliable, convenient, and accurate tool for determining compositions and growth rates for MBE. Using the highly accurate values of n obtained from the prism coupler and reflectivity measurements, we have fabricated several DBRs using different II-VI materials. From our work on DBRs, we have obtained a structure (i.e., a 20-period ZnMgSe/ZnCdSe multilayer) which yields 98% reflectivity. This is to our knowledge the highest reflectivity reported for a DBR in the II-VI semiconductor camp. Motivated by this work, we show preliminary results of monolithic microcavities which are fabricated by integrating these high-reflectivity DBRs.

  10. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-03-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics.

  11. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering

    PubMed Central

    2014-01-01

    Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030

  12. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  13. Optical dispersion of ternary II-VI semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu; Furdyna, J. K.

    2004-06-01

    The wavelength dependence of the refractive indices n of a series of II-VI ternary alloys—ZnCdSe, ZnBeSe, ZnMgSe, ZnMnSe, ZnCdTe, ZnMnTe, ZnMgSe, and ZnSeTe—were measured at frequencies below their respective energy gaps using the combined techniques of optical reflectivity and the prism coupler method. To facilitate the analysis of the results—including those obtained in the wavelength region near the fundamental energy gap—we have modified the semiempirical single-effective-oscillator (SEO) model of n by introducing an additional term that explicitly accounts for interband transitions at the fundamental gap. Using the SEO model modified in this manner to fit the wavelength dependence of n, a set of semiempirical parameters was established for the above ternary II-VI-based alloys, where the fitting parameters for each alloy family are themselves expressed as functions of the alloy composition. The availability of these parameters makes it possible to calculate the index of refraction of any given II-VI ternary alloy for any composition and at any wavelength. Furthermore, these parameters provide valuable physical insights, such as the relationship between the covalency (or ionicity) of the material and its refractive index. In addition to its fundamental usefulness, this approach can—by appropriate extrapolation—also be used for obtaining the dispersion properties for "hypothetical" zinc blende compounds that do not form under equilibrium crystal growth conditions (such as MnTe, MnSe, or BeSe).

  14. Engineered semiconductor nanocrystals with enhanced carrier multiplication yields

    NASA Astrophysics Data System (ADS)

    Klimov, Victor

    2014-03-01

    Carrier multiplication (CM) is a process whereby absorption of a single photon results in multiple electron-hole pairs (excitons). This process could benefit a number of solar-energy conversion technologies, most notably photocatalysis and photovoltaics. This presentation overviews recent progress in understanding the CM process in semiconductor nanocrystals, motivated by an outstanding challenge in this field - the lack of capability to predict the CM performance of nanocrystals based on their known photophysical properties or documented parameters of parental bulk solids. Here, we present a possible solution to this problem by showing that, using biexciton Auger lifetimes and intraband relaxation rates inferred from ultrafast spectroscopic studies, we can rationalize relative changes in CM yields as a function of nanocrystal composition, size and shape. Further, guided by this model, we demonstrate a two-fold enhancement in multiexciton yields in PbSe nanorods vs. quantum dots attributed to enhanced Coulomb interactions. We also explore the control of competing intra-band cooling for increasing multiexciton production. Specifically, we design a new type of hetero-structured PbSe/CdSe quantum dots with reduced rates of intra-band relaxation and demonstrate a four-fold boost in the multiexciton yield. These studies provide useful guidelines for future efforts to achieve the ultimate, energy-conservation-defined CM efficiencies.

  15. Engineering Dilute Nitride Semiconductor Alloys for Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Luce, Alexander Vallejo

    The growth and characterization of GaAs nanowires and GaNPAs thin-films is discussed within the context of finding a material system that is suitable as an intermediate band solar cell (IBSC) absorber. The IBSC is an attractive concept proposed to exceed the Shockley-Queisser detailed balance limit for photovoltaic efficiency. These solar cells have an additional intermediate band, allowing for the absorption of below bandgap photons, thus resulting in an increase in photocurrent and higher efficiency. Suitable materials systems for the implementation of the IBSC concept, however, are presently lacking. Recent work on the highly-mismatched alloy (HMA) GaAsN has shown that the unique features of the electronic band structure demonstrate optical activity of three energy bands and have led to the realization of a proof-of-concept IBSC. GaAsN, however, is not without shortcomings. Another HMA material, GaNPAs, which offers a wide range of bandgap tunability and is better matched to the solar spectrum is proposed. This work covers the optical characterization of both GaAs nanowires and GaAsPN using traditional visible-light semiconductor characterization techniques including optical absorption spectroscopy, photo-modulated reflectance, steady-state photoluminescence, and spectral photoconductivity. Additionally, photovoltaic devices based on GaNPAs are demonstrated and assessed as potential IBSCs.

  16. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors.

    PubMed

    Li, Song-Lin; Tsukagoshi, Kazuhito; Orgiu, Emanuele; Samorì, Paolo

    2016-01-07

    Two-dimensional (2D) van der Waals semiconductors represent the thinnest, air stable semiconducting materials known. Their unique optical, electronic and mechanical properties hold great potential for harnessing them as key components in novel applications for electronics and optoelectronics. However, the charge transport behavior in 2D semiconductors is more susceptible to external surroundings (e.g. gaseous adsorbates from air and trapped charges in substrates) and their electronic performance is generally lower than corresponding bulk materials due to the fact that the surface and bulk coincide. In this article, we review recent progress on the charge transport properties and carrier mobility engineering of 2D transition metal chalcogenides, with a particular focus on the markedly high dependence of carrier mobility on thickness. We unveil the origin of this unique thickness dependence and elaborate the devised strategies to master it for carrier mobility optimization. Specifically, physical and chemical methods towards the optimization of the major factors influencing the extrinsic transport such as electrode/semiconductor contacts, interfacial Coulomb impurities and atomic defects are discussed. In particular, the use of ad hoc molecules makes it possible to engineer the interface with the dielectric and heal the vacancies in such materials. By casting fresh light on the theoretical and experimental studies, we provide a guide for improving the electronic performance of 2D semiconductors, with the ultimate goal of achieving technologically viable atomically thin (opto)electronics.

  17. Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications

    NASA Astrophysics Data System (ADS)

    Sun, Yinghui; Wang, Rongming; Liu, Kai

    2017-03-01

    Substrate has great influences on materials syntheses, properties, and applications. The influences are particularly crucial for atomically thin 2-dimensional (2D) semiconductors. Their thicknesses are less than 1 nm; however, the lateral sizes can reach up to several inches or more. Therefore, these materials must be placed onto a variety of substrates before subsequent post-processing techniques for final electronic or optoelectronic devices. Recent studies reveal that substrates have been employed as ways to modulate the optical, electrical, mechanical, and chemical properties of 2D semiconductors. In this review, we summarize recent progress upon the effects of substrates on properties of 2D semiconductors, mostly focused on 2D transition metal dichalcogenides, through viewpoints of both fundamental physics and device applications. First, we discuss various effects of substrates, including interface strain, charge transfer, dielectric screening, and optical interference. Second, we show the modulation of 2D semiconductors by substrate engineering, including novel substrates (patterned substrates, 2D-material substrates, etc.) and active substrates (phase transition materials, ferroelectric materials, flexible substrates, etc.). Last, we present prospectives and challenges in this research field. This review provides a comprehensive understanding of the substrate effects, and may inspire new ideas of novel 2D devices based on substrate engineering.

  18. New highly fluorescent biolabels based on II VI semiconductor hybrid organic inorganic nanostructures for bioimaging

    NASA Astrophysics Data System (ADS)

    Santos, B. S.; Farias, P. M. A.; Menezes, F. D.; Brasil, A. G., Jr.; Fontes, A.; Romão, L.; Amaral, J. O.; Moura-Neto, V.; Tenório, D. P. L. A.; Cesar, C. L.; Barbosa, L. C.; Ferreira, R.

    2008-11-01

    Semiconductor quantum dots based on II-VI materials may be prepared to develop good biolabeling properties. In this study we present some well-succeeded results related to the preparation, functionalization and bioconjugation of CdY (Y = S, Se and Te) to biological systems (live cells and fixed tissues). These nanostructured materials were prepared using colloidal synthesis in aqueous media resulting nanoparticles with very good optical properties and an excellent resistance to photodegradation.

  19. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures.

    PubMed

    Lo, Shun S; Mirkovic, Tihana; Chuang, Chi-Hung; Burda, Clemens; Scholes, Gregory D

    2011-01-11

    The development of elegant synthetic methodologies for the preparation of monocomponent nanocrystalline particles has opened many possibilities for the preparation of heterostructured semiconductor nanostructures. Each of the integrated nanodomains is characterized by its individual physical properties, surface chemistry, and morphology, yet, these multicomponent hybrid particles present ideal systems for the investigation of the synergetic properties that arise from the material combination in a non-additive fashion. Of particular interest are type-II heterostructures, where the relative band alignment of their constituent semiconductor materials promotes a spatial separation of the electron and hole following photoexcitation, a highly desirable property for photovoltaic applications. This article highlights recent progress in both synthetic strategies, which allow for material and architectural modulation of novel nanoheterostructures, as well as the experimental work that provides insight into the photophysical properties of type-II heterostructures. The effects of external factors, such as electric fields, temperature, and solvent are explored in conjunction with exciton and multiexciton dynamics and charge transfer processes typical for type-II semiconductor heterostructures.

  20. A nitride based polarization-engineered photocathode for water splitting without a p-type semiconductor.

    PubMed

    Nakamura, Akihiro; Fujii, Katsushi; Sugiyama, Masakazu; Nakano, Yoshiaki

    2014-08-07

    Photoelectrochemical water splitting is a promising way for hydrogen production with low environmental burden. Although III-nitride semiconductors have potentially favorable properties as water splitting photoelectrodes, they have several limitations for practical use currently. In this study, the concept of a polarization-engineered nitride photocathode for water splitting is proposed to overcome this problem. We observed that the proposed GaN/AlN/GaN structure worked as a photocathode even though it consisted of only n-type III-nitride semiconductors. This polarization-engineered photocathode showed a remarkably stable and relatively high photocurrent since it can avoid the causes of problems from which both n-type and p-type conventional GaN photoelectrodes suffer.

  1. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  2. Phase transitions in Group III-V and II-VI semiconductors at high pressure

    NASA Technical Reports Server (NTRS)

    Yu, S. C.; Liu, C. Y.; Spain, I. L.; Skelton, E. F.

    1979-01-01

    The structures and transition pressures of Group III-V and II-VI semiconductors and of a pseudobinary system (Ga/x/In/1-x/Sb) have been investigated. Results indicate that GaP, InSb, GaSb, GaAs and possible AlP assume Metallic structures at high pressures; a tetragonal, beta-Sn-like structure is adopted by only InSb and GaSb. The rocksalt phase is preferred in InP, InAs, AlSb, ZnO and ZnS. The model of Van Vechten (1973) gives transition pressures which are in good agreement with measured values, but must be refined to account for the occurrence of the ionic rocksalt structure in some compounds. In addition, discrepancies between the theoretical scaling values for volume changes at the semiconductor-to-metal transitions are observed.

  3. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  4. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  5. Nuclear Magnetic Resonance Studies of II-Vi and Iii-V Semiconductor Alloys

    NASA Astrophysics Data System (ADS)

    Shi, Jian-Hui

    In this thesis, I show how the basic solid-state NMR techniques can be used to study the local electronic structures of II-VI and III-V semiconductor alloys on an atomic scale. We have focused our studies on a few high quality samples, mainly Hg_{rm 1-x}Cd_{rm x} Te in the II-VI group, In-based binary III-V bulk semiconductors InP, InAs and InSb, and the III-V alloys Ga_{rm 1-x}In _{rm x}As. For solid-state-recrystallized device-quality bulk Hg_{rm 1-x}Cd _{rm x}Te samples, with x equal to 0.2, 0.22 and 0.28, corresponding to the narrow-gap semiconducting side of the band-inversion configurations, we have obtained detailed band-edge symmetry information, and site-selective quantitative charge carrier orbital characteristics on an atomic scale. Our study also indicated that a random cation distribution model well described the materials. We have investigated ^{115 }In magnetic resonance frequency shifts and the temperature dependence of these shifts in In-based III-V binary semiconductors. We have extracted the chemical shifts from the total shifts for these III-V semiconductors at 303K and 77K. Our NMR study of these binary semiconductors not only enhanced the understanding of electronic properties of these compounds, but also served as a reference for our NMR studies of III-V alloys. We performed ^{115}In NMR studies for dilute III-V semiconductor alloy Ga _{rm 1-x}In_ {rm x}As with x equal to 0.72%. Spectra clearly indicating the local electronic configurations were obtained. We carried out a series of field orientation studies, and determined the field gradient which is due to In-In pairs. This study provided evidence of local clustering of In atoms.

  6. Electronic properties of electron and hole in type-II semiconductor nano-heterostructures

    SciTech Connect

    Rahul, K. Suseel; Souparnika, C.; Salini, K.; Mathew, Vincent

    2016-05-06

    In this project, we record the orbitals of electron and hole in type-II (CdTe/CdSe/CdTe/CdSe) semiconductor nanocrystal using effective mass approximation. In type-II the band edges of both valance and conduction band are higher than that of shell. So the electron and hole get confined in different layers of the hetero-structure. The energy eigen values and eigen functions are calculated by solving Schrodinger equation using finite difference matrix method. Based on this we investigate the effect of shell thickness and well width on energy and probability distribution of ground state (1s) and few excited states (1p,1d,etc). Our results predict that, type-II quantum dots have significant importance in photovoltaic applications.

  7. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Digdaya, Ibadillah A.; Adhyaksa, Gede W. P.; Trześniewski, Bartek J.; Garnett, Erik C.; Smith, Wilson A.

    2017-06-01

    Solar-assisted water splitting can potentially provide an efficient route for large-scale renewable energy conversion and storage. It is essential for such a system to provide a sufficiently high photocurrent and photovoltage to drive the water oxidation reaction. Here we demonstrate a photoanode that is capable of achieving a high photovoltage by engineering the interfacial energetics of metal-insulator-semiconductor junctions. We evaluate the importance of using two metals to decouple the functionalities for a Schottky contact and a highly efficient catalyst. We also illustrate the improvement of the photovoltage upon incidental oxidation of the metallic surface layer in KOH solution. Additionally, we analyse the role of the thin insulating layer to the pinning and depinning of Fermi level that is responsible to the resulting photovoltage. Finally, we report the advantage of using dual metal overlayers as a simple protection route for highly efficient metal-insulator-semiconductor photoanodes by showing over 200 h of operational stability.

  8. Design of cadmium-free colloidal II-VI semiconductor quantum dots exhibiting RGB emission

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi; Omata, Takahisa

    2017-04-01

    The size and composition dependence of the optical gap of colloidal alloyed quantum dots (QDs) of Zn(Te1-xSex) and Zn(Te1-xSx) were calculated by the finite-depth-well effective mass approximation method. QDs that exhibited red, green and blue emission were explored to develop cadmium-free II-VI chalcogenide-based QD-phosphors. We considered that highly monodisperse colloidal QDs with diameters of 3-6 nm are easy to synthesize and II-VI semiconductor QDs usually exhibit a Stokes shift ranging between 50 and 150 meV. We showed that Zn(Te1-xSex) QDs with 0.02≤x≤0.68, and 0≤x≤0.06, and 0.66≤x≤0.9 may be expected to exhibit green, and blue emission, respectively. Zn(Te1-xSx) QDs with 0.26≤x≤0.37, 0.01≤x≤0.2 and 0.45≤x≤0.61, 0≤x≤0.02, and 0.63≤x≤0.72, should give red, green and blue emission respectively. On the basis of our calculations, we showed that Zn(Te,Se) and Zn(Te,S) QDs are very promising cadmium-free II-VI chalcogenide semiconductor QD phosphors.

  9. Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot.

    PubMed

    Zhang, Qiang; Dang, Cuong; Urabe, Hayato; Wang, Jing; Sun, Shouheng; Nurmikko, Arto

    2008-11-24

    In this paper, we developed a novel and efficient method of deterministically organizing colloidal particles on structured surfaces over macroscopic areas. Our approach utilizes integrated solution-based processes of dielectric encapsulation and electrostatic-force-mediated self-assembly, which allow precisely controlled placement of sub-10nm sized particles at single particle resolution. As a specific demonstration, motivated by application to single photon sources, highly ordered 2D arrays of single II-VI semiconductor colloidal quantum dots (QDs) were created by this method. Individually, the QDs display triggered single photon emission at room temperature with characteristic photon antibunching statistics, suggesting a pathway to scalable quantum optical radiative systems.

  10. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons.

    PubMed

    Pappas, Todd C; Wickramanyake, W M Shan; Jan, Edward; Motamedi, Massoud; Brodwick, Malcolm; Kotov, Nicholas A

    2007-02-01

    The remarkable optical and electrical properties of nanostructured materials are considered now as a source for a variety of biomaterials, biosensing, and cell interface applications. In this study, we report the first example of hybrid bionanodevice where absorption of light by thin films of quantum confined semiconductor nanoparticles of HgTe produced by the layer-by-layer assembly stimulate adherent neural cells via a sequence of photochemical and charge-transfer reactions. We also demonstrate an example of nanoscale engineering of the material driven by biological functionalities.

  11. Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides.

    PubMed

    Huang, Bing; Yoon, Mina; Sumpter, Bobby G; Wei, Su-Huai; Liu, Feng

    2015-09-18

    Developing practical approaches to effectively reduce the amount of deep defect levels in semiconductors is critical for their use in electronic and optoelectronic devices, but this still remains a very challenging task. In this Letter, we propose that specific alloying can provide an effective means to suppress the deep defect levels in semiconductors while maintaining their basic electronic properties. Specifically, we demonstrate that for transition-metal dichalcogenides, such as MoSe_{2} and WSe_{2}, where anion vacancies are the most abundant defects that can induce deep levels, the deep levels can be effectively suppressed in Mo_{1-x}W_{x}Se_{2} alloys at low W concentrations. This surprising phenomenon is associated with the fact that the band edge energies can be substantially tuned by the global alloy concentration, whereas the defect level is controlled locally by the preferred locations of Se vacancies around W atoms. Our findings illustrate a concept of alloy engineering and provide a promising approach to control the defect properties of semiconductors.

  12. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering.

    PubMed

    Wu, Lihua; Yang, Jiong; Zhang, Tiansong; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2016-03-02

    Rashba semiconductors are of great interest in spintronics, superconducting electronics and thermoelectrics. Bulk BiTeI is a new Rashba system with a giant spin-split band structure. 2D-like thermoelectric response has been found in BiTeI. However, as optimizing the carrier concentration, the bipolar effect occurs at elevated temperature and deteriorates the thermoelectric performance of BiTeI. In this paper, band gap engineering in Rashba semiconductor BiTeI through Br-substitution successfully reduces the bipolar effect and improves the thermoelectric properties. By utilizing the optical absorption and Burstein-Moss-effect analysis, we find that the band gap in Rashba semiconductor BiTeI increases upon bromine substitution, which is consistent with theoretical predictions. Bipolar transport is mitigated due to the larger band gap, as the thermally-activated minority carriers diminish. Consequently, the Seebeck coefficient keeps increasing with a corresponding rise in temperature, and thermoelectric performance can thus be enhanced with a ZT  =  0.5 at 570 K for BiTeI0.88Br0.12.

  13. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering

    NASA Astrophysics Data System (ADS)

    Wu, Lihua; Yang, Jiong; Zhang, Tiansong; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2016-03-01

    Rashba semiconductors are of great interest in spintronics, superconducting electronics and thermoelectrics. Bulk BiTeI is a new Rashba system with a giant spin-split band structure. 2D-like thermoelectric response has been found in BiTeI. However, as optimizing the carrier concentration, the bipolar effect occurs at elevated temperature and deteriorates the thermoelectric performance of BiTeI. In this paper, band gap engineering in Rashba semiconductor BiTeI through Br-substitution successfully reduces the bipolar effect and improves the thermoelectric properties. By utilizing the optical absorption and Burstein-Moss-effect analysis, we find that the band gap in Rashba semiconductor BiTeI increases upon bromine substitution, which is consistent with theoretical predictions. Bipolar transport is mitigated due to the larger band gap, as the thermally-activated minority carriers diminish. Consequently, the Seebeck coefficient keeps increasing with a corresponding rise in temperature, and thermoelectric performance can thus be enhanced with a ZT  =  0.5 at 570 K for BiTeI0.88Br0.12.

  14. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering.

    PubMed

    Jang, Hyuk-Jae; Richter, Curt A

    2017-01-01

    Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies.

  15. Simple way to engineer metal-semiconductor interface for enhanced performance of perovskite organic lead iodide solar cells.

    PubMed

    Xu, Yuzhuan; Shi, Jiangjian; Lv, Songtao; Zhu, Lifeng; Dong, Juan; Wu, Huijue; Xiao, Yin; Luo, Yanhong; Wang, Shirong; Li, Dongmei; Li, Xianggao; Meng, Qingbo

    2014-04-23

    A thin wide band gap organic semiconductor N,N,N',N'-tetraphenyl-benzidine layer has been introduced by spin-coating to engineer the metal-semiconductor interface in the hole-conductor-free perovskite solar cells. The average cell power conversion efficiency (PCE) has been enhanced from 5.26% to 6.26% after the modification and a highest PCE of 6.71% has been achieved. By the aid of electrochemical impedance spectroscopy and dark current analysis, it is revealed that this modification can increase interfacial resistance of CH3NH3PbI3/Au interface and retard electron recombination process in the metal-semiconductor interface.

  16. Characterization of β-FeSi II films as a novel solar cell semiconductor

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  17. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering

    NASA Astrophysics Data System (ADS)

    Guo, J. H.; Li, T. H.; Liu, L. Z.; Hu, F. R.

    2016-09-01

    The study of the magnetism and optical properties of semiconductor materials by defect engineering has attracted much attention because of their potential uses in spintronic and optoelectronic devices. In this paper, first-principle calculations discloses that cationic vacancy formation energy of the doped wurtzite materials can be sharply decreased due to alkali metal dopants and shows that their magnetic properties strongly depend on defect and doping concentration. This effect can be ascribed to the volume change induced by foreign elements doped into the host system and atomic population's difference. The symmetric deformation induced by biaxial strain can further regulate this behavior. Our results suggest that the formation of cationic vacancy can be tailored by strain engineering and dopants incorporation.

  18. Optical properties of II-VI semiconductor nanoclusters for use as phosphors

    NASA Astrophysics Data System (ADS)

    Wilcoxon, Jess P.; Newcomer, Paula

    2002-11-01

    The optical properties of both II-VI (direct gap) and type IV (indirect gap) nanosize semiconductors are significantly affected not only by their size, but by the nature of the chemical interface of the cluster with the embedding medium. This affects the light conversion efficiency and can alter the shape and position (i.e. the color) of the photoluminescence (PL). As the goal of our work is to embed nanoclusters into either organic or inorganic matrices for use as near UV, LED-excited phosphor thin films, understanding and controlling this interface is very important for preserving the high Q.E. of nanoclusters known for dilute solution conditions. We describe a room temperature synthesis of semiconductor nanoclusters which employs inexpensive, less toxic ionic precursors (metal salts), and simple coordinating solvents (e.g. tetrahydrofuran). This allows us to add passivating agents, ions, metal or semiconductor coatings to identical, highly dispersed bare clusters, post-synthesis. We can also increase the cluster size by heterogeneous growth on the seed nanoclusters. One of the most interesting observations for our II-VI nanomaterials is that both the absorbance excitonic features and the photoluminescence (PL) energy and intensity depend on the nature of the surface as well as the average size. In CdS, for example, the presence of electron traps (i.e Cd(II) sites) decreases the exciton absorbance peak amplitude but increases the PL nearly two-fold. Hole traps (i.e. S(II)) have the opposite effect. In the coordinating solvents used for the synthesis, the PL yield for d~2 nm, blue emitting CdSe clusters increases dramatically with sample age as the multiple absorbance features sharpen. Liquid chromatographic (LC) separation of the nanoclusters from other chemicals and different sized clusters is used to investigate the intrinsic optical properties of the purified clusters and identify which clusters are contributing most strongly to the PL. Both LC and dynamic

  19. Interfacial Engineering of Semiconductor-Superconductor Junctions for High Performance Micro-Coolers.

    PubMed

    Gunnarsson, D; Richardson-Bullock, J S; Prest, M J; Nguyen, H Q; Timofeev, A V; Shah, V A; Whall, T E; Parker, E H C; Leadley, D R; Myronov, M; Prunnila, M

    2015-12-01

    The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300 mK to below 100 mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour.

  20. Interfacial Engineering of Semiconductor-Superconductor Junctions for High Performance Micro-Coolers

    NASA Astrophysics Data System (ADS)

    Gunnarsson, D.; Richardson-Bullock, J. S.; Prest, M. J.; Nguyen, H. Q.; Timofeev, A. V.; Shah, V. A.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Myronov, M.; Prunnila, M.

    2015-12-01

    The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300 mK to below 100 mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour.

  1. A-10 Thunderbolt II (Warthog) Systems Engineering Case Study

    DTIC Science & Technology

    2010-01-01

    A-10 Thunderbolt II ( Warthog ) SYSTEMS ENGINEERING CASE STUDY David R. Jacques, PhD, LtCol USAF (Ret) Dennis D. Strouble, PhD...SUBTITLE A-10 Thunderbolt II ( Warthog ) Systems Engineering Case Study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...on this A-10 “ Warthog ” case study and our other AF CSE published studies. GEORGE E. MOONEY, SES Director, Air Force Center for Systems

  2. Investigation of II-VI Semiconductor Quantum Dots for Sensitized Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Horoz, Sabit

    Semiconductor nanocrystals, also referred to as quantum dots (QDs) which have advantages of low-cost, photostability, high molar extinction coefficients and size-dependent optical properties, have been the focus of great scientific and technological efforts in solar cells development. Due to the multi-electron generation effect, the theoretical maximum efficiency of quantum dots sensitized solar cells (QDSSCs) is much higher than that of dye sensitized solar cells (DSSCs). Thus QDSSCs have a clear potential to overtake the efficiency of other kinds of solar cells. Doped semiconductor QDs can not only retain nearly all advantages of intrinsic QDs, but also have additional absorption bands for improved efficiency. This approach is particularly important for wide band gap semiconductors, for example, zinc based QDs. Zinc based are desirable candidates as they are inexpensive, earth abundant and nontoxic. When doped, they can cover a broad range of visible spectrum. In my project, I aim at developing novel methods for the preparation of II-VI QDs and investigating the effects of doping on the properties and performances of QDSSCs. Cadmium selenide (CdSe), manganese doped cadmium selenide (Mn:CdSe), and manganese doped zinc sulfide (Mn:ZnS) QDs have been synthesized by laser ablation in water. The structural and luminescent properties of the QDs have been investigated. In addition, QDSSC performances of the samples have been measured using nanowire electrode made of ZnO and Zn2SnO 4. I have also successfully synthesized europium doped zinc sulfide (Eu:ZnS) and manganese doped cadmium sulfide (Mn:CdS) nanoparticles by wet chemical method, and analyzed structural, optical, and magnetic properties as well as the device performance of the nanoparticles.

  3. Normal and reverse defect annealing in ion implanted II-VI oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Azarov, Alexander; Galeckas, Augustinas; Wendler, Elke; Ellingsen, Josef; Monakhov, Edouard; Svensson, Bengt G.

    2017-09-01

    Post-implantation annealing is typically used to remove structural defects and electrically activate implanted dopants in semiconductors. However, ion-induced defects and their interaction with dopants in group II oxide semiconductors are not fully understood. Here, we study defect evolution in the course of annealing in CdO and ZnO materials implanted with nitrogen which is one of the most promising candidates for p-type doping. The results of photoluminescence and ion channeling measurements revealed a striking difference in defect behavior between CdO and ZnO. In particular, the defect annealing in CdO exhibits a two stage behavior, the first stage accounting for efficient removal of point defects and small defect clusters, while the second one involves gradual disappearance of extended defects where the sample decomposition can play a role. In contrast, a strong reverse annealing occurs for ZnO with a maximum defect concentration around 900 °C. This effect occurs exclusively for nitrogen ions and is attributed to efficient growth of extended defects promoted by the presence of nitrogen.

  4. Realistic tight-binding model for the electronic structure of II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Sapra, Sameer; Shanthi, N.; Sarma, D. D.

    2002-11-01

    We analyze the electronic structure of group II-VI semiconductors obtained within linearized muffin-tin-orbital approach in order to arrive at a realistic and minimal tight-binding model, parametrized to provide an accurate description of both valence and conduction bands. It is shown that a nearest-neighbor sp3 d5 model is fairly sufficient to describe the electronic structure of these systems over a wide energy range, obviating the use of any fictitious s* orbital. The obtained hopping parameters obey the universal scaling law proposed by Harrison, ensuring transferability to other systems. Furthermore, we show that certain subtle features in the bonding of these compounds require the inclusion of anion-anion interactions in addition to the nearest-neighbor cation-anion interactions.

  5. Characterization of convection related defects in II-VI compound semiconductors

    NASA Technical Reports Server (NTRS)

    Witt, August F.

    1993-01-01

    The research carried out under NAG8-913, 'Characterization of Convection Related Defects in II-VI Compound Semiconductors', was aimed at exploration of the potential of axial magnetic fields for melt stabilization when applied in Bridgman geometry to the growth of HgMnTe. The thrust of the work was directed at the experimental establishment of the limits of magnetic melt stabilization during crystal growth and at the analytical verification of the effects of stabilization on critical materials properties. The data obtained indicate noticeable stabilization effects, particularly as far as the formation of microscopic compositional inhomogeneities is concerned. The effects of magnetic fields on precipitate formation are found to be minor. Magnetic field effects were investigated for both 'Bridgman' and 'travelling heater' geometries. The research was conducted during the period from May 22 to September 30, 1992.

  6. All-vapor processing of p-type tellurium-containing II-VI semiconductor and ohmic contacts thereof

    DOEpatents

    McCandless, Brian E.

    2001-06-26

    An all dry method for producing solar cells is provided comprising first heat-annealing a II-VI semiconductor; enhancing the conductivity and grain size of the annealed layer; modifying the surface and depositing a tellurium layer onto the enhanced layer; and then depositing copper onto the tellurium layer so as to produce a copper tellurium compound on the layer.

  7. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation

    PubMed Central

    Digdaya, Ibadillah A.; Adhyaksa, Gede W. P.; Trześniewski, Bartek J.; Garnett, Erik C.; Smith, Wilson A.

    2017-01-01

    Solar-assisted water splitting can potentially provide an efficient route for large-scale renewable energy conversion and storage. It is essential for such a system to provide a sufficiently high photocurrent and photovoltage to drive the water oxidation reaction. Here we demonstrate a photoanode that is capable of achieving a high photovoltage by engineering the interfacial energetics of metal–insulator–semiconductor junctions. We evaluate the importance of using two metals to decouple the functionalities for a Schottky contact and a highly efficient catalyst. We also illustrate the improvement of the photovoltage upon incidental oxidation of the metallic surface layer in KOH solution. Additionally, we analyse the role of the thin insulating layer to the pinning and depinning of Fermi level that is responsible to the resulting photovoltage. Finally, we report the advantage of using dual metal overlayers as a simple protection route for highly efficient metal–insulator–semiconductor photoanodes by showing over 200 h of operational stability. PMID:28660883

  8. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering.

    PubMed

    Lee, Junghoon; Han, A-Reum; Yu, Hojeong; Shin, Tae Joo; Yang, Changduk; Oh, Joon Hak

    2013-06-26

    Ambipolar polymer semiconductors are highly suited for use in flexible, printable, and large-area electronics as they exhibit both n-type (electron-transporting) and p-type (hole-transporting) operations within a single layer. This allows for cost-effective fabrication of complementary circuits with high noise immunity and operational stability. Currently, the performance of ambipolar polymer semiconductors lags behind that of their unipolar counterparts. Here, we report on the side-chain engineering of conjugated, alternating electron donor-acceptor (D-A) polymers using diketopyrrolopyrrole-selenophene copolymers with hybrid siloxane-solubilizing groups (PTDPPSe-Si) to enhance ambipolar performance. The alkyl spacer length of the hybrid side chains was systematically tuned to boost ambipolar performance. The optimized three-dimensional (3-D) charge transport of PTDPPSe-Si with pentyl spacers yielded unprecedentedly high hole and electron mobilities of 8.84 and 4.34 cm(2) V(-1) s(-1), respectively. These results provide guidelines for the molecular design of semiconducting polymers with hybrid side chains.

  9. The Effect of World War II on Women in Engineering

    NASA Astrophysics Data System (ADS)

    Barker, Anne M.

    The field of engineering has been one of the most difficult for women to enter. Even with an increase in the proportion of women in the engineering workforce from 0.3% before the 1970s to 9.5% in 1999, women are still seriously underrepresented. This article examines the history of women in engineering in the United States during World War II. Women were actively recruited as engineering aides by the federal government, which saw them as a temporary substitute for men who were in the military. Yet this crisis did not break down the barriers to and prejudices against women in engineering, nor did it give them a real opportunity to become professional engineers equal to men. After the war, calls for a return to normalcy were used to reestablish social norms, which kept women at home and reserved desirable places in the workforce, including in engineering, for men.

  10. Photosystem II: the engine of life.

    PubMed

    Barber, James

    2003-02-01

    Photosystem II (PS II) is a multisubunit membrane protein complex, which uses light energy to oxidize water and reduce plastoquinone. High-resolution electron cryomicroscopy and X-ray crystallography are revealing the structure of this important molecular machine. Both approaches have contributed to our understanding of the organization of the transmembrane helices of higher plant and cyanobacterial PS II and both indicate that PS II normally functions as a dimer. However the high-resolution electron density maps derived from X-ray crystallography currently at 3.7/3.8 A, have allowed assignments to be made to the redox active cofactors involved in the light-driven water-plastoquinone oxidoreductase activity and to the chlorophyll molecules that absorb and transfer energy to the reaction centre. In particular the X-ray work has identified density that can accommodate the four manganese atoms which catalyse the water-oxidation process. The Mn cluster is located at the lumenal surface of the DI protein and approximately 7 A from the redox active tyrosine residue (YZ) which acts an electron/proton transfer link to the primary oxidant P680.+. The lower resolution electron microscopy studies, however, are providing structural models of larger PS II supercomplexes that are ideal frameworks in which to incorporate the X-ray derived structures.

  11. U.S. Air Force Turbine Engine Emission Survey. Volume II. Individual Engine Test Reports.

    DTIC Science & Technology

    1978-08-01

    1» I MI HU III.I11M1,|IHIIPH|I»^^—»^ II 111.11 l|. I I | mi | . I I. I.,.L ENGINE J85 -5 17 ^ ^_._. rr •Wl...AD-AÜbl 665 UNCLASSIFIED SCOTT ENVIRONMENTAL TECHNOLOGY INC PLUMSTEAOVILLE PA F/G 21/5 U.S. AIR FORCE TURBINE ENGINE EMISSION SURVEY...i run’ LEVEL CEEDOTR-7834 U.S. AIR FORCE TURBINE ENGINE EMISSION SURVEY VOL II INDIVIDUAL ENGINE TEST REPORTS v o-< 3 „ fi-^\\^92 ANTHONY F

  12. Dielectric response of II-VI semiconductor core-shell ensembles: Study of the lossless optical condition

    NASA Astrophysics Data System (ADS)

    de la Cruz, R. M.; Kanyinda-Malu, C.

    2014-09-01

    We theoretically investigate optical properties of II-VI core-shell distribution mixtures made of two type-I sized-nanoshells as a plausible negative dielectric function material. The nonlocal optical response of the semiconductor QD is described by using a resonant excitonic dielectric function, while the shell response is modeled with Demangeot formula. Achieving the zero-loss at an optical frequency ω, i.e., ɛeff =ɛeff‧ + iɛeff″ with ɛeff‧ < 0 and ɛeff″ = 0, is of fundamental importance in nanophotonics. Resonant states in semiconductors provide a source for negative dielectric function provided that the dipole strength and the oscillator density are adequate to offset the background. Furthermore, the semiconductor offers the prospect of pumping, either optically or electrically, to achieve a gain mechanism that can offset the loss. We analyse optimal conditions that must be satisfied to achieve semiconductor-based negative index materials. By comparing with II-VI semiconductor quantum dots (QDs) previously reported in the literature, the inclusion of phonon and shell contributions in the ɛeff along with the finite barrier Effective Mass Approximation (EMA) approach, we found similar qualitative behaviours for the ɛeff. The lossless optical condition along with ɛeff‧ < 0 is discussed in terms of sizes, volume fractions and embedding medium of the mixtures' distributions. Furthermore, we estimated optical power to maintain nanocrystals density in excited states and this value is less than that previously obtained in II-VI semiconductor QDs.

  13. Bulk Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1997-01-01

    The mechanism of physical vapor transport of II-VI semiconducting compounds was studied both theoretically, using a one-dimensional diffusion model, as well as experimentally. It was found that the vapor phase stoichiometry is critical in determining the vapor transport rate. The experimental heat treatment methods to control the vapor composition over the starting materials were investigated and the effectiveness of the heat treatments was confirmed by partial pressure measurements using an optical absorption technique. The effect of residual (foreign) gas on the transport rate was also studies theoretically by the diffusion model and confirmed experimentally by the measurements of total pressure and compositions of the residual gas. An in-situ dynamic technique for the transport rate measurements and a further extension of the technique that simultaneously measured the partial pressures and transport rates were performed and, for the first time, the experimentally determined mass fluxes were compared with those calculated, without any adjustable parameters, from the diffusion model. Using the information obtained from the experimental transport rate measurements as guideline high quality bulk crystal of wide band gap II-VI semiconductor were grown from the source materials which undergone the same heat treatment methods. The grown crystals were then extensively characterized with emphasis on the analysis of the crystalline structural defects.

  14. Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers

    NASA Astrophysics Data System (ADS)

    Piccardo, Marco; Li, Chi-Kang; Wu, Yuh-Renn; Speck, James S.; Bonef, Bastien; Farrell, Robert M.; Filoche, Marcel; Martinelli, Lucio; Peretti, Jacques; Weisbuch, Claude

    2017-04-01

    Urbach tails in semiconductors are often associated to effects of compositional disorder. The Urbach tail observed in InGaN alloy quantum wells of solar cells and LEDs by biased photocurrent spectroscopy is shown to be characteristic of the ternary alloy disorder. The broadening of the absorption edge observed for quantum wells emitting from violet to green (indium content ranging from 0% to 28%) corresponds to a typical Urbach energy of 20 meV. A three-dimensional absorption model is developed based on a recent theory of disorder-induced localization which provides the effective potential seen by the localized carriers without having to resort to the solution of the Schrödinger equation in a disordered potential. This model incorporating compositional disorder accounts well for the experimental broadening of the Urbach tail of the absorption edge. For energies below the Urbach tail of the InGaN quantum wells, type-II well-to-barrier transitions are observed and modeled. This contribution to the below-band-gap absorption is particularly efficient in near-ultraviolet emitting quantum wells. When reverse biasing the device, the well-to-barrier below-band-gap absorption exhibits a red-shift, while the Urbach tail corresponding to the absorption within the quantum wells is blue-shifted, due to the partial compensation of the internal piezoelectric fields by the external bias. The good agreement between the measured Urbach tail and its modeling by the localization theory demonstrates the applicability of the latter to compositional disorder effects in nitride semiconductors.

  15. Epitaxial growth and characterization of II-VI-semiconductor, one-dimensional nanostructures and thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Zuoming

    In this thesis, I present the results of three material science studies on II-VI semiconductor nanostructures and thin films: (1) epitaxial growth and characterization of one-dimensional ZnO nanostructures, (2) crystal structure and self-assembly of ultrathin ZnO nanorods, and (3) investigations of surface chemistry for atomic layer epitaxy of ZnS thin film on silicon with chemical precursors. First, in Chapter 3, I present a comparative study of metal-surface-catalyzed growth of ZnO nanowires using four different metal catalysts and using substrates of differing materials and crystal orientation. Multiple material diagnostics were employed to compare the material, structural, and optical properties of the nanowires grown using these different surface systems. My study showed that the growth modes of nanowires are dependent on the choice of surface catalysts. Further, the study revealed that these differences in growth modes are also closely related to the differences in materials properties of these wires including the degree of nanowire alignment on substrates, and the atomic composition ratio of Zn/O, as well as the relative intensity of the oxygen vacancy-related emission in photoluminescence spectra. Second, in Chapter 4, I investigated the growth and self-assembly of ultrathin ZnO nanorods using a combination of small-angle and wide-angle synchrotron X-ray diffraction (SAXRD and WAXRD), and TEM. SAXRD and TEM were used to investigate nanorod self-assembly and the influence of surfactant/precursor ratio on self-assembly; WAXRD were used to study the effects of growth chemistry and physical parameters on the nanorod size and lattice constants. These measurements revealed that these rods self-assemble into periodic superstructures and that the surfactant ligands are important in controlling self-assembly. WAXRD results suggest that surface-dependent changes, such as the binding of surface ligands or other adsorbed species may dominate the changes in nanorod

  16. Analytical Electron Diffraction from Iii-V and II-Vi Semiconductors

    NASA Astrophysics Data System (ADS)

    Spellward, Paul

    Available from UMI in association with The British Library. This thesis describes the development and evaluation of a number of new TEM-based techniques for the measurement of composition in ternary III-V and II-VI semiconductors. New methods of polarity determination in binary and ternary compounds are also presented. The theory of high energy electron diffraction is outlined, with particular emphasis on zone axis diffraction from well-defined strings. An account of TEM microstructural studies of Cd_{rm x}Hg _{rm 1-x}Te and CdTe epitaxial layers, which provided the impetus for developing the diffraction-based analytical techniques, is given. The wide range of TEM-based compositional determination techniques is described. The use of HOLZ deficiency lines to infer composition from a lattice parameter measurement is evaluated. In the case of Cd_{ rm x}Hg_{rm 1-x}Te, it is found to be inferior to other techniques developed. Studies of dynamical aspects of HOLZ diffraction can yield information about the dispersion surface from which a measure of composition may be obtained. This technique is evaluated for Al_{rm x}Ga_{rm 1-x} As, in which it is found to be of some use, and for Cd_{rm x}Hg _{rm 1-x}Te, in which the large Debye-Waller factor associated with mercury in discovered to render the method of little value. A number of critical voltages may be measured in medium voltage TEMs. The (111) zone axis critical voltage of Cd_{rm x}Hg _{rm 1-x}Te is found to vary significantly with x and forms the basis of an accurate technique for composition measurement in that ternary compound. Other critical voltage phenomena are investigated. In Al _{rm x}Ga_ {rm 1-x}As and other light ternaries, a non-systematic critical voltage is found to vary with x, providing a good indicator of composition. Critical voltage measurements may be made by conventional CBED or by various other techniques, which may also simultaneously yield information on the spatial variation of composition. The

  17. Near-field and far-field engineering of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Yu, Nanfang

    Plasmonics focuses on the interaction between light and metallic films or nanostructures. In the last two decades, intensive research efforts were devoted to exploring the extremely broad applications of plasmonics. My research combines the versatility of plasmonics with active light sources, i.e., quantum cascade lasers (QCLs). This thesis focuses on the application of plasmonics in near-field and far-field engineering of semiconductor lasers, specifically, subwavelength focusing in the near-field, and laser beam collimation and polarization control. The first chapter of this thesis lays out fundamental materials necessary for understanding the following chapters. Systematic simulation and experimental results are presented in Chapter 2 to demonstrate that the integration of a suitably designed one dimensional or two dimensional plasmonic structures on the facet of QCLs can reduce the beam divergence by more than one order of magnitude. The devices with optimized collimators preserve a high output power, comparable to that of the unpatterned lasers. Chapter 3 demonstrates that the polarization state of the output of semiconductor lasers can be controlled by defining plasmonic structures on the laser facet. An integrated plasmonic polarizer can project the polarization of a semiconductor laser onto other directions. By patterning a facet with two orthogonal grating-aperture structures, a QCL can produce emission consisting of a superposition of a linearly and right-circularly polarized light, a first step towards a circularly-polarized laser. Chapter 4 presents experimental work on the coupled-rod antennas and the bowtie antennas patterned on the facet of QCLs. Both designs can provide an optical field confinement on the order of lambda/50 and with peak intensity on the order of 1 GW/cm2 in the antenna gap. The bowtie devices are more advanced due to better confinement of light into a single spot. Chapter 5 and 6 discuss two side research topics. Chapter 5

  18. Magnetism in the p-type Monolayer II-VI semiconductors SrS and SrSe.

    PubMed

    Lin, Heng-Fu; Lau, Woon-Ming; Zhao, Jijun

    2017-04-05

    Using density functional theory calculations, we study the electronic and magnetic properties of the p-type monolayer II-VI semiconductors SrX (X = S,Se). The pristine SrS and SrSe monolayers are large band gap semiconductor with a very flat band in the top valence band. Upon injecting hole uniformly, ferromagnetism emerges in those system in a large range of hole density. By varying hole density, the systems also show complicated phases transition among nonmagnetic semiconductor, half metal, magnetic semiconductor, and nonmagnetic metal. Furthermore, after introducing p-type dopants in SrS and SrSe via substitutionary inserting P (or As) dopants at the S (or Se) sites, local magnetic moments are formed around the substitutional sites. The local magnetic moments are stable with the ferromagnetic order with appreciable Curie temperature. The ferromagnetism originates from the instability of the electronic states in SrS and SrSe with the large density of states at the valence band edge, which demonstrates a useful strategy for realizing the ferromagnetism in the two dimensional semiconductors.

  19. Magnetism in the p-type Monolayer II-VI semiconductors SrS and SrSe

    PubMed Central

    Lin, Heng-Fu; Lau, Woon-Ming; Zhao, Jijun

    2017-01-01

    Using density functional theory calculations, we study the electronic and magnetic properties of the p-type monolayer II-VI semiconductors SrX (X = S,Se). The pristine SrS and SrSe monolayers are large band gap semiconductor with a very flat band in the top valence band. Upon injecting hole uniformly, ferromagnetism emerges in those system in a large range of hole density. By varying hole density, the systems also show complicated phases transition among nonmagnetic semiconductor, half metal, magnetic semiconductor, and nonmagnetic metal. Furthermore, after introducing p-type dopants in SrS and SrSe via substitutionary inserting P (or As) dopants at the S (or Se) sites, local magnetic moments are formed around the substitutional sites. The local magnetic moments are stable with the ferromagnetic order with appreciable Curie temperature. The ferromagnetism originates from the instability of the electronic states in SrS and SrSe with the large density of states at the valence band edge, which demonstrates a useful strategy for realizing the ferromagnetism in the two dimensional semiconductors. PMID:28378761

  20. X-34 40K Fastrac II Engine Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photo of an X-34 40K Fastrac II duration test performed at the Marshall Space Flight Center test stand 116 (TS116) in June 1997. Engine ignition is started with Tea-Gas which makes the start burn green. The X-34 program was cancelled in 2001.

  1. X-34 40K Fastrac II Engine Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photo of an X-34 40K Fastrac II duration test performed at the Marshall Space Flight Center test stand 116 (TS116) in June 1997. Engine ignition is started with Tea-Gas which makes the start burn green. The X-34 program was cancelled in 2001.

  2. Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals.

    PubMed

    Zhai, You; Shim, Moonsub

    2015-12-01

    Annealing or growth at high temperatures for an extended period of time is considered detrimental for most synthetic strategies for high-quality Mn-doped II-VI semiconductor nanocrystals. It can lead to the broadening of size distribution and, more importantly, to the loss of dopants. Here, we examine how ripening can be beneficial to doping in a simple "heat-up" approach, where high dopant concentrations can be achieved. We discuss the interplay of the loss of dopants, Ostwald ripening, and the clustering of Mn near the surface during nanocrystal growth. Smaller nanocrystals in a reaction batch, on average, exhibit higher undesirable band-edge photoluminescence (PL) and lower desirable dopant PL. The optimization of dopant loss and the removal of such smaller undesirable nanocrystals through Ostwald ripening along with surface exchange/passivation to remove Mn clustering lead to high Mn PL quantum yields (45 to 55 %) for ZnSxSe1-x, ZnS, CdS, and CdSxSe1-x host nanocrystals. These results provide an improved understanding of the doping process in a simple and potentially scalable synthetic strategy for achieving "pure" and bright dopant emission.

  3. Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhai, You; Shim, Moonsub

    2015-10-01

    Annealing or growth at high temperatures for an extended period of time is considered detrimental for most synthetic strategies for high-quality Mn-doped II-VI semiconductor nanocrystals. It can lead to the broadening of size distribution and, more importantly, to the loss of dopants. Here, we examine how ripening can be beneficial to doping in a simple "heat-up" approach, where high dopant concentrations can be achieved. We discuss the interplay of the loss of dopants, Ostwald ripening, and the clustering of Mn near the surface during nanocrystal growth. Smaller nanocrystals in a reaction batch, on average, exhibit higher undesirable band-edge photoluminescence (PL) and lower desirable dopant PL. The optimization of dopant loss and the removal of such smaller undesirable nanocrystals through Ostwald ripening along with surface exchange/passivation to remove Mn clustering lead to high Mn PL quantum yields (45 to 55 %) for ZnSxSe1-x, ZnS, CdS, and CdSxSe1-x host nanocrystals. These results provide an improved understanding of the doping process in a simple and potentially scalable synthetic strategy for achieving "pure" and bright dopant emission.

  4. Temperature Dependence of Density, Viscosity and Electrical Conductivity for Hg-Based II-VI Semiconductor Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.

  5. Orbiter Atlantis (STS-110) Launch With New Block II Engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Powered by three newly-enhanced Space Shuttle Maine Engines (SSMEs), called the Block II Maine Engines, the Space Shuttle Orbiter Atlantis lifted off from the Kennedy Space Center launch pad on April 8, 2002 for the STS-110 mission. The Block II Main Engines incorporate an improved fuel pump featuring fewer welds, a stronger integral shaft/disk, and more robust bearings, making them safer and more reliable, and potentially increasing the number of flights between major overhauls. NASA continues to increase the reliability and safety of Shuttle flights through a series of enhancements to the SSME. The engines were modified in 1988 and 1995. Developed in the 1970s and managed by the Space Shuttle Projects Office at the Marshall Space Flight Center, the SSME is the world's most sophisticated reusable rocket engine. The new turbopump made by Pratt and Whitney of West Palm Beach, Florida, was tested at NASA's Stennis Space Center in Mississippi. Boeing Rocketdyne in Canoga Park, California, manufactures the SSME. This image was extracted from engineering motion picture footage taken by a tracking camera.

  6. Exposure assessment and risk management of engineered nanoparticles: Investigation in semiconductor wafer processing

    NASA Astrophysics Data System (ADS)

    Shepard, Michele N.

    Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations. Chemical mechanical planarization (CMP) processes with engineered nanoparticle abrasives are used for research and commercial manufacturing applications in the semiconductor and related industries. Despite growing use, no published studies addressed occupational exposures to nanoparticles associated with CMP or risk assessment and management practices for these scenarios. Additional studies are needed to evaluate potential sources of workplace exposure or emission, as well as to help test and refine assessment methods. This research was conducted to: identify the lifecycle stages and potential exposure sources for ENMs in CMP processes; characterize worker exposure; determine recommended engineering controls and compare risk assessment models. The study included workplace air and surface sampling and an evaluation of qualitative risk banding approaches. Exposure assessment results indicated the potential for worker contact with ENMs on workplace surfaces but did not identify nanoparticles readily dispersed in air during work tasks. Some increases in respirable particle concentrations were identified, but not consistently. Measured aerosol concentrations by number and mass were well below current reference values for poorly soluble low toxicity nanoparticles. From

  7. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion.

    PubMed

    Nowotny, Janusz; Alim, Mohammad Abdul; Bak, Tadeusz; Idris, Mohammad Asri; Ionescu, Mihail; Prince, Kathryn; Sahdan, Mohd Zainizan; Sopian, Kamaruzzaman; Mat Teridi, Mohd Asri; Sigmund, Wolfgang

    2015-12-07

    This tutorial review considers defect chemistry of TiO2 and its solid solutions as well as defect-related properties associated with solar-to-chemical energy conversion, such as Fermi level, bandgap, charge transport and surface active sites. Defect disorder is discussed in terms of defect reactions and the related charge compensation. Defect equilibria are used in derivation of defect diagrams showing the effect of oxygen activity and temperature on the concentration of both ionic and electronic defects. These defect diagrams may be used for imposition of desired semiconducting properties that are needed to maximize the performance of TiO2-based photoelectrodes for the generation of solar hydrogen fuel using photo electrochemical cells (PECs) and photocatalysts for water purification. The performance of the TiO2-based semiconductors is considered in terms of the key performance-related properties (KPPs) that are defect related. It is shown that defect engineering may be applied for optimization of the KPPs in order to achieve optimum performance.

  8. Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers.

    PubMed

    Ghosh, S; Wang, W H; Mendoza, F M; Myers, R C; Li, X; Samarth, N; Gossard, A C; Awschalom, D D

    2006-04-01

    Semiconductor microcavities offer unique means of controlling light-matter interactions in confined geometries, resulting in a wide range of applications in optical communications and inspiring proposals for quantum information processing and computational schemes. Studies of spin dynamics in microcavities, a new and promising research field, have revealed effects such as polarization beats, stimulated spin scattering and giant Faraday rotation. Here, we study the electron spin dynamics in optically pumped GaAs microdisc lasers with quantum wells and interface-fluctuation quantum dots in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the discs, and observe an enhancement of the spin-coherence time when the optical excitation is in resonance with a high-quality (Q approximately 5,000) lasing mode. This resonant enhancement, contrary to expectations from the observed trend in the carrier-recombination time, is then manipulated by altering the cavity design and dimensions. In analogy with devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide new pathways towards spin-dependent quantum optoelectronics.

  9. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.

    PubMed

    Regulacio, Michelle D; Han, Ming-Yong

    2016-03-15

    are the multinary chalcogenide semiconductors (MCSs), which include the ternary I-III-VI2 semiconductors (e.g., AgGaS2, CuInS2, and CuInSe2) and the quaternary I2-II-IV-VI4 semiconductors (e.g., Cu2ZnGeS4, Cu2ZnSnS4, and Ag2ZnSnS4). These inorganic compounds consist of environmentally benign elemental components, exhibit excellent light-harvesting properties, and possess band gap energies that are well-suited for solar photon absorption. Moreover, the band structures of these materials can be conveniently modified through alloying to boost their ability to harvest visible photons. In this Account, we provide a summary of recent research on the use of ternary I-III-VI2 and quaternary I2-II-IV-VI4 semiconductor nanostructures for light-induced photocatalytic applications, with focus on hydrogen production and organic dye degradation. We include a review of the solution-based methods that have been employed to prepare multinary chalcogenide semiconductor nanostructures of varying compositions, sizes, shapes, and crystal structures, which are factors that are known to have significant influence on the photocatalytic activity of semiconductor photocatalysts. The enhancement of photocatalytic performance through creation of hybrid nanoscale architectures is also presented. Lastly, views on the current challenges and future directions are discussed in the concluding section.

  10. X-ray absorption and diffraction study of II VI dilute oxide semiconductor alloy epilayers

    NASA Astrophysics Data System (ADS)

    Boscherini, F.; Malvestuto, M.; Ciatto, G.; D'Acapito, F.; Bisognin, G.; DeSalvador, D.; Berti, M.; Felici, M.; Polimeni, A.; Nabetani, Y.

    2007-11-01

    Dilute oxide semiconductor alloys obtained by adding oxygen to a II-VI binary compound are of potential applicative interest for blue-light emitters in which the oxygen content could be used to tune the band gap. Moreover, their properties can be usefully compared to the more thoroughly studied dilute nitrides in order to gain insight into the common mechanisms which give rise to their highly non-linear physical properties. Recently, it has been possible to deposit ZnSeO and ZnSeOS epilayers on GaAs(001), which exhibit a red-shift of the band gap and giant optical bowing. In order to provide a structural basis for an understanding of their physical properties, we have performed a study of a set of ZnSeO and ZnSeOS epilayers on GaAs by high resolution x-ray diffraction and x-ray absorption fine structure. We have found that the strain goes from compressive to tensile with increasing O and S concentration and that, while all epilayers are never found to be pseudomorphic, the ternary ones exhibit a low relaxed fraction if compared to the ZnSe/GaAs sample. O K-edge x-ray absorption near edge spectra and corresponding simulations within the full multiple-scattering regime show that O is substitutionally incorporated in the host lattice. Zn and Se K-edge extended x-ray absorption fine structure detect the formation of Zn-O and Zn-S bonds; the analysis of these spectra within multiple-scattering theory has allowed us to measure the local structural parameters. The value of Zn-Se bond length is found to be in agreement with estimates based on models of local distortions in strained and relaxed epilayers; an increase of the mean-square relative displacement is detected at high O and S concentration and is related to both intrinsic and extrinsic factors.

  11. Heterogenous Material Integration and Band Engineering With Type II Superlattice

    DTIC Science & Technology

    2015-10-26

    AFRL-AFOSR-VA-TR-2015-0333 HETEROGENOUS MATERIAL INTEGRATION AND BAND ENGINEERING WITH TYPE II SUPERLATTICE Sanjay Krishna UNIVERSITY OF NEW MEXICO...REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE Final 3. DATES COVERED (From - To) 04/15/2010-10/14/2015 4. TITLE AND SUBTITLE "Heterogenous Material ...well as lowered size, weight, power and cost. However, despite extensive efforts on T2SL material growth, detector passivation, and fabrication, T2SL

  12. Electrodeposited doped II-VI semiconductor films and devices incorporating such films

    SciTech Connect

    Ondris, M.; Picher, M.A.; Brownfield, R.E.

    1990-03-20

    This patent describes a photovoltaic device. It comprises: a first thin film of a compound semiconductor of a first conductivity type including tellurium and a metal selected from Group IIB of the Periodic Table of Elements and containing as a dopant impurity in a concentration not exceeding 10{sup 20} atoms per cubic centimeter a metal selected from Group IB, a second semiconductor thin film in contact with the first semiconductor thin film and having a second conductivity type opposite that of the first conductivity type and electrical contacts to each of the first and second semiconductor thin films. Also described is the device wherein the first thin film is p-type cadmium telluride.

  13. Theoretical study of time-resolved luminescence in semiconductors. II. Pulsed excitation

    NASA Astrophysics Data System (ADS)

    Maiberg, Matthias; Scheer, Roland

    2014-09-01

    In the second part of this series, we studied TRL decay on semiconductor layers and thin film homostructures after a pulsed excitation by simulation with Synopsys TCAD® and by mathematical approximation. Again, our working example is Cu(In,Ga)Se2. We investigate the influence of the excitation pulse length, axial diffusion, bulk-defects, and defects at the contacts, as well as space charge on the TRL-decay separately by quasi one-dimensional simulations of semiconductor layers and semiconductor homostructures. Material parameters like defect density, carrier mobility, and surface recombination velocity are varied in a wide range, such that the calculations are applicable to other semiconductors. We further study the influence of multi-pulse excitation. We show how material parameters such as carrier lifetime and carrier mobility can be extracted from the TRL transients and how the samples can be characterized by excitation dependent measurements in the open circuit case. We can explain some effects found in luminescence experiments, like an increased decay in semiconductor junctions due to the electric field in the space charge region. However, we also discuss the effect of charge storage which may lead to decreased decay. It is revealed that under high injection conditions single layers within a semiconductor stack can be characterized in terms of carrier lifetime.

  14. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors.

    PubMed

    Awschalom, David D; Bassett, Lee C; Dzurak, Andrew S; Hu, Evelyn L; Petta, Jason R

    2013-03-08

    The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors. Quantum control has been established at room temperature, and electron spin coherence times now exceed several seconds, a nine-order-of-magnitude increase in coherence compared with the first semiconductor qubits. These coherence times rival those traditionally found only in atomic systems, ushering in a new era of ultracoherent spintronics. We review recent advances in quantum measurements, coherent control, and the generation of entangled states and describe some of the challenges that remain for processing quantum information with spins in semiconductors.

  15. Structural and optical properties of II-VI and III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi

    This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and

  16. Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.; hide

    1994-01-01

    Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.

  17. Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.; Wang, J. C.

    1994-01-01

    Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.

  18. Three-Dimensional Topological Insulators in I-III-VI2 and II-IV-V2 Chalcopyrite Semiconductors

    SciTech Connect

    Feng, wanxiang; Ding, Jun; Yao, yugui

    2011-01-01

    The recent discovery of topological insulators with exotic metallic surface states has garnered great interest in the fields of condensed matter physics and materials science.1 A number of spectacular quantum phenomena have been predicted when the surface states are under the influence of magnetism and superconductivity,2 5 which could open up new opportunities for technological applications in spintronics and quantum computing. To achieve this goal, material realization of topological insulators with desired physical properties is of crucial importance. Based on first-principles calculations, here we show that a large number of ternary chalcopyrite compounds of composition I-III-VI2 and II-IV-V2 can realize the topological insulating phase in their native states. The crystal structure of chalcopyrites is derived from the frequently used zinc-blende structure, and many of them possess a close lattice match to important mainstream semiconductors, which is essential for a smooth integration into current semiconductor technology. The diverse optical, electrical and structural properties of chalcopyrite semiconductors,6 and particularly their ability to host room-temperature ferromagnetism,7 9 make them appealing candidates for novel spintronic devices.

  19. Pressure Induced Phase Transition (B3-B1) and Elastic Properties of II-Vi ZnSe Semiconductors

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh

    2012-07-01

    We evolve an effective interionic interaction potential (EIoIP) to investigate the pressure induced phase transitions from Zinc blende (B3) to Rocksalt (B1) structure in ZnSe semiconductor. The developed potential consists of the long-range Coulomb and three-body interactions (TBI) and the Hafemeister and Flygare type short-range (SR) overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The three-body interactions arise from the electron-shell deformation when the nearest-neighbor ions overlap and has been employed for detailed studies of pressure-induced phase-transition behavior of ZnSe semiconductors. Our calculated value of the phase transition pressure (Pt) is higher and the magnitude of the discontinuity in volume at the transition pressure is consistent with reported data. The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is inferred that the vdW interaction is effective in obtaining the Debye temperature, Gruneisen parameter, thermal expansion coefficient and compressibility. It is argued that the model with TBI (model II) has yielded somewhat more realistic predictions of the phase-transition and high-pressure behavior as compared to usual two-body potentials (model I) based on phenomenological approach.

  20. Coherent control and detection of spin qubits in semiconductor with magnetic field engineering

    NASA Astrophysics Data System (ADS)

    Tokura, Yasuhiro

    2012-02-01

    Electrical control and detection of the spin qubits in semiconductor quantum dots (QDs) are among the major rapidly progressing fields for possible implementation of scalable quantum information processing. Coherent control of one-[1-3] and two-[4,5] spin qubits by electrical means had been demonstrated with various approaches. We have used an engineered magnetic field structure realized with proximal micro-magnets to transduce the spin and charge degrees of freedom and to selectively address one of the two spins [3]. We have demonstrated an all-electrical two-qubit gate consisting of single-spin rotations and interdot spin exchange in double QDs. A partially entangled output state is obtained by the application of the two-qubit gate to an initial, uncorrelated state. Our calculations taking into account of the nuclear spin fluctuation show the degree of entanglement. Non-uniform magnetic field also enables spin selective photon-assisted tunneling in double QDs, which then constitutes non-demolition spin read-out system in combination with a near-by charge detector [6]. [4pt] In collaboration with R. Brunner, Inst. of Phys., Montanuniversitaet Leoben, 8700, Austria, M. Pioro-Ladrière, D'ep. de Phys., Universit'e de Sherbrooke, Sherbrooke, Qu'ebec, J1K-2R1, Canada, T. Kubo, Y. -S. Shin, T. Obata, and S. Tarucha, ICORP-JST and Dep. of Appl. Phys., Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.[4pt] [1] F. H. Koppens, et al., Nature 442, 766 (2006).[0pt] [2] K. C. Nowack, et al., Science 318, 1430 (2007).[0pt] [3] M. Pioro-Ladrière, et al., Nature Physics 4, 776 (2008).[0pt] [4] J. R. Petta, et al., Science 309, 2180 (2005).[0pt] [5] R. Brunner, et al., Phys. Rev. Lett. 107, 146801 (2011).[0pt] [6] Y. -S. Shin, et al., Phys. Rev. Lett. 104, 046802 (2010).

  1. Measuring unsteady pressure on rotating compressor blades. [with semiconductor strain gages under gas turbine engine operating conditions

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Grant, H. P.; Lanati, G. A.

    1979-01-01

    The capability for accurate measurement of unsteady pressure on the surface of compressor and fan blades during engine operation was established. Tests were run on miniature semiconductor strain gage pressure transducers mounted in several arrangements. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the blade, acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results showed no failures of transducers or mountings and indicated an uncertainty of unsteady pressure measurement of approximately + or - 6%, plus 0.1 kPa for a typical application.

  2. Macroporous Semiconductors

    PubMed Central

    Föll, Helmut; Leisner, Malte; Cojocaru, Ala; Carstensen, Jürgen

    2010-01-01

    Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal) and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  3. Nonlinear theory of surface-helical instability of a semiconductor plasma. II. Calculation of linear parameters

    NASA Astrophysics Data System (ADS)

    Karavaev, G. F.; Uspenskii, B. A.; Chuprikov, N. L.

    1980-04-01

    A numerical analysis is made of the threshold characteristics of the helical instability of a semiconductor plasma which fills a half-space; these are the threshold electric field, the threshold frequency of the oscillations, the optimal wave vector, and the optimal angle of propagation of a wave. The characteristic dependences for these quantities are presented and explained qualitatively.

  4. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.

    PubMed

    Shepard, Michele Noble; Brenner, Sara

    2014-03-01

    Engineered nanoparticles of alumina, amorphous silica, and ceria are used in semiconductor device fabrication during wafer polishing steps referred to as 'chemical mechanical planarization' (CMP). Some metal oxide nanoparticles can impact the biological response of cells and organ systems and may cause adverse health effects; additional research is necessary to better understand potential risks from nanomaterial applications and occupational exposure scenarios. This study was conducted to assess potential airborne exposures to nanoparticles and agglomerates using direct-reading instruments and filter-based samples to characterize workplace aerosols by particle number, mass, size, composition, and morphology. Sampling was repeated for tasks in three work areas (fab, subfab, wastewater treatment) at a facility using engineered nanoparticles for CMP. Real-time measurements were collected using a condensation particle counter (CPC), optical particle counter, and scanning mobility particle spectrometer (SMPS). Filter-based samples were analyzed for total mass or the respirable fraction, and for specific metals of interest. Additional air sample filters were analyzed by transmission electron microscopy with energy dispersive x-ray spectroscopy (TEM/EDX) for elemental identification and to provide data on particle size, morphology, and concentration. Peak concentrations measured on the CPC ranged from 1 to 16 particles per cubic centimeter (P cm(-3)) for background and from 4 to 74 P cm(-3) during tasks sampled in the fab; from 1 to 60 P cm(-3) for background and from 3 to 84 P cm(-3) for tasks sampled in the subfab; and from 1160 to 45 894 P cm(-3) for background and from 1710 to 45 519 P cm(-3) during wastewater treatment system filter change tasks. Significant variability was seen among the repeated task measurements and among background comparisons in each area. Several data analysis methods were used to compare each set of task and background measurements. Increased

  5. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-04-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  6. Thermophysical analysis of II-VI semiconductors by PPE calorimetry and lock-in thermography

    SciTech Connect

    Streza, M.; Dadarlat, D.; Strzałkowski, K.

    2013-11-13

    An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directly irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.

  7. Photoinduced electron donor/acceptor processes in colloidal II-VI semiconductor quantum dots and nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Dutta, Poulami

    Electron transfer (ET) processes are one of the most researched topics for applications ranging from energy conversion to catalysis. An exciting variation is utilizing colloidal semiconductor nanostructures to explore such processes. Semiconductor quantum dots (QDs) are emerging as a novel class of light harvesting, emitting and charge-separation materials for applications such as solar energy conversion. Detailed knowledge of the quantitative dissociation of the photogenerated excitons and the interfacial charge- (electron/hole) transfer is essential for optimization of the overall efficiency of many such applications. Organic free radicals are the attractive counterparts for studying ET to/from QDs because these undergo single-electron transfer steps in reversible fashion. Nitroxides are an exciting class of stable organic free radicals, which have recently been demonstrated to be efficient as redox mediators in dye-sensitized solar cells, making them even more interesting for the aforementioned studies. This dissertation investigates the interaction between nitroxide free radicals TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 4-amino-TEMPO (4-amino- 2,2,6,6-tetramethylpiperidine-1-oxyl) and II-VI semiconductor (CdSe and CdTe) QDs. The nature of interaction in these hybrids has been examined through ground-state UV-Vis absorbance, steady state and time-resolved photoluminescence (PL) spectroscopy, transient absorbance, upconversion photoluminescence spectroscopy and electron paramagnetic resonance (EPR). The detailed analysis of the PL quenching indicates that the intrinsic charge transfer is ultrafast however, the overall quenching is still limited by the lower binding capacities and slower diffusion related kinetics. Careful analysis of the time resolved PL decay kinetics reveal that the decay rate constants are distributed and that the trap states are involved in the overall quenching process. The ultrafast hole transfer from CdSe QDs to 4-Amino TEMPO observed

  8. Bioengineered II-VI semiconductor quantum dot-carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells.

    PubMed

    Mansur, Alexandra A P; Mansur, Herman S; Mansur, Rafael L; de Carvalho, Fernanda G; Carvalho, Sandhra M

    2017-08-19

    Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M=Cd, Pb, Zn, X=S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor.

    PubMed

    Grandhi, G Krishnamurthy; Tomar, Renu; Viswanatha, Ranjani

    2012-11-27

    Efficiency of the quantum dots based solar cells relies on charge transfer at the interface and hence on the relative alignment of the energy levels between materials. Despite a high demand to obtain size specific band offsets, very few studies exist where meticulous methods like photoelectron spectroscopy are used. However, semiconductor charging during measurements could result in indirect and possibly inaccurate measurements due to shift in valence and conduction band position. Here, in this report, we devise a novel method to study the band offsets by associating an atomic like state with the conduction band and hence obtaining an internal standard. This is achieved by doping copper in semiconductor nanocrystals, leading to the development of a characteristic intragap Cu-related emission feature assigned to the transition from the conduction band to the atomic-like Cu d state. Using this transition we determine the relative band alignment of II-VI semiconductor nanocrystals as a function of size in the below 10 nm size regime. The results are in excellent agreement with the available photoelectron spectroscopy data as well as the theoretical data. We further use this technique to study the excitonic band edge variation as a function of temperature in CdSe nanocrystals. Additionally, surface electronic structure of CdSe nanocrystals have been studied using quantitative measurements of absolute quantum yield and PL decay studies of the Cu related emission and the excitonic emission. The role of TOP and oleic acid as surface passivating ligand molecules has been studied for the first time.

  10. Chemical trends of stability and band alignment of lattice-matched II-VI/III-V semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Luo, Jun-Wei; Wei, Su-Huai

    2015-02-01

    Using the first-principles density functional theory method, we systematically investigate the structural and electronic properties of heterovalent interfaces of the lattice-matched II-VI/III-V semiconductors, i.e., ZnTe/GaSb, ZnSe/GaAs, ZnS/GaP, and ZnO/GaN. We find that, independent of the orientations, the heterovalent superlattices with period n =6 are energetically more favorable to form nonpolar interfaces. For the [001] interface, the stable nonpolar interfaces are formed by mixing 50% group-III with 50% group-II atoms or by mixing 50% group-V with 50% group-VI atoms; for the [111] nonpolar interfaces, the mixings are 25% group-III (II) and 75% group-II (III) atoms or 25% group-V (VI) and 75% group-VI (V) atoms. For all the nonpolar interfaces, the [110] interface has the lowest interfacial energy because it has the minimum number of II-V or III-VI "wrong bonds" per unit interfacial area. The interfacial energy increases when the atomic number of the elements decreases, except for the ZnO/GaN system. The band alignments between the II-VI and III-V compounds are drastically different depending on whether they have mixed-cation or mixed-anion interfaces, but the averaged values are nearly independent of the orientations. Similarly, other than ZnO/GaN, the valence-band offsets also increase as the atomic number of the elements decreases. The abnormal trends in interfacial energy and band alignment for ZnO/GaN are primarily attributed to the very short bond lengths in this system. The underlying physics behind these trends are explained.

  11. Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts.

    PubMed

    Bashir, Asif; Heck, Alexander; Narita, Akimitsu; Feng, Xinliang; Nefedov, Alexei; Rohwerder, Michael; Müllen, Klaus; Elstner, Marcus; Wöll, Christof

    2015-09-14

    We have conducted a combined experimental and theoretical study on the optimization of hexa-peri-hexabenzocoronene (HBC) as organic semiconductor. While orientations with high electronic coupling are unfavorable in the native liquid crystalline phase of HBC, we enforced such orientations by applying external constraints. To this end, self-assembled monolayers (SAMs) were formed by a non-conventional preparation method on an Au-substrate using electrochemical control. Within these SAMs the HBC units are forced into favorable orientations that cannot be achieved by unconstrained crystallization. For simulating the charge transport we applied a recently developed approach, where the molecular structure and the charge carrier are propagated simultaneously during a molecular dynamics simulation. Experiments as well as simulations are mutually supportive of an improved mobility in these novel materials. The implication of these findings for a rational design of future organic semiconductors will be discussed.

  12. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    SciTech Connect

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-03-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. {copyright} {ital 1996 American Institute of Physics.}

  13. (001)-surface-induced bulk states and surface resonances in II-VI zinc-blende semiconductors

    NASA Astrophysics Data System (ADS)

    Olguín, D.; Baquero, R.

    1995-06-01

    In a previous paper [Phys. Rev. 50, 1980 (1994)] we gave an account of the nondispersive band found experimentally at -4.4 for CdTe(001) by Niles and Höchst. We have characterized this band as a surface-induced bulk state. In a second paper we showed that a similar state does exist in II-VI and III-V zinc-blende semiconductor compounds. In this paper we show that there are more such states within the valence-band energy interval. We use tight-binding Hamiltonians and the surface-Green's-function matching method to calculate the surface resonances and surface-induced bulk states in the zinc-blende semiconductors CdTe, CdSe, ZnTe, and ZnSe. We find one distinctive surface resonance for the cation- and two for the anion-terminated (001) surface and three (001)-surface-induced bulk states with energies that correspond to the value of the heavy-hole, light-hole, and spin-orbit bands at X.

  14. Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: A theoretical study

    SciTech Connect

    Alidoust, Nima; Lessio, Martina; Carter, Emily A.

    2016-01-14

    Solar cells based on single pn junctions, employing single-gap semiconductors can ideally achieve efficiencies as high as 34%. Developing solar cells based on intermediate-band semiconductors (IBSCs), which can absorb light across multiple band gaps, is a possible way to defy this theoretical limit and achieve efficiencies as high as 60%. Here, we use first principles quantum mechanics methods and introduce CoO and Co{sub 0.25}Ni{sub 0.75}O as possible IBSCs. We show that the conduction band in both of these materials is divided into two distinct bands separated by a band gap. We further show that the lower conduction band (i.e., the intermediate band) is wider in Co{sub 0.25}Ni{sub 0.75}O compared with CoO. This should enhance light absorption from the valence band edge to the intermediate band, making Co{sub 0.25}Ni{sub 0.75}O more appropriate for use as an IBSC. Our findings provide the basis for future attempts to partially populate the intermediate band and to reduce the lower band gap in Co{sub 0.25}Ni{sub 0.75}O in order to enhance the potential of this material for use in IBSC solar cell technologies. Furthermore, with proper identification of heterojunctions and dopants, CoO and Co{sub 0.25}Ni{sub 0.75}O could be used in multi-color light emitting diode and laser technologies.

  15. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  16. Nonvolatile Memory Effect in Indium Gallium Arsenide-Based Metal-Oxide-Semiconductor Devices Using II-VI Tunnel Insulators

    NASA Astrophysics Data System (ADS)

    Chan, P.-Y.; Gogna, M.; Suarez, E.; Karmakar, S.; Al-Amoody, F.; Miller, B. I.; Jain, F. C.

    2011-08-01

    This paper reports the successful use of ZnSe/ZnS/ZnMgS/ZnS/ZnSe as a gate insulator stack for an InGaAs-based metal-oxide-semiconductor (MOS) device, and demonstrates the threshold voltage shift required in nonvolatile memory devices using a floating gate quantum dot layer. An InGaAs-based nonvolatile memory MOS device was fabricated using a high- κ II-VI tunnel insulator stack and self-assembled GeO x -cladded Ge quantum dots as the charge storage units. A Si3N4 layer was used as the control gate insulator. Capacitance-voltage data showed that, after applying a positive voltage to the gate of a MOS device, charges were being stored in the quantum dots. This was shown by the shift in the flat-band/threshold voltage, simulating the write process of a nonvolatile memory device.

  17. Application of the transition semiconductor to semimetal in type II nanostructure superlattice for mid-infrared optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Boutramine, Abderrazak; Nafidi, Abdelhakim; Barkissy, Driss; Hannour, Abdelkrim; Elanique, Abdellatif; Gouti, Thami El

    2016-04-01

    The present work is devoted to the study of band structure and band gap in symmetric InAs (d 1 = 25 Å)/GaSb (d 2 = 25 Å) type II superlattice. Our calculations were performed in the envelope function formalism with the valence band offset Λ = 570 meV. We discussed the semiconductor to semimetal transition and the evolutions of the fundamental band gap, E g (Γ), as a function of d 1, Λ and the temperature. This study suggests that a wide range of wavelength can be reached by adjusting d 1. In addition, E g (Γ, T) decreases from 288.7 to 230 meV in the range of 4.2-300 K, corresponding to the cutoff wavelength ranging from 4.3 to 5.4 µm. These latter results explain the recent experimental ones realized by C. Cervera et al. for our Λ = 588 meV.

  18. Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism for experimental analysis

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn; Mohammed, Amr M. S.; Pernot, Gilles; Koh, Yee Rui; Shakouri, Ali

    2015-02-01

    Nearly all experimental observations of quasiballistic heat flow are interpreted using Fourier theory with modified thermal conductivity. Detailed Boltzmann transport equation (BTE) analysis, however, reveals that the quasi-ballistic motion of thermal energy in semiconductor alloys is no longer Brownian but instead exhibits Lévy dynamics with fractal dimension α <2 . Here, we present a framework that enables full three-dimensional experimental analysis by retaining all essential physics of the quasiballistic BTE dynamics phenomenologically. A stochastic process with just two fitting parameters describes the transition from pure Lévy superdiffusion as short length and time scales to regular Fourier diffusion. The model provides accurate fits to time domain thermoreflectance raw experimental data over the full modulation frequency range without requiring any "effective" thermal parameters and without any a priori knowledge of microscopic phonon scattering mechanisms. Identified α values for InGaAs and SiGe match ab initio BTE predictions within a few percent. Our results provide experimental evidence of fractal Lévy heat conduction in semiconductor alloys. The formalism additionally indicates that the transient temperature inside the material differs significantly from Fourier theory and can lead to improved thermal characterization of nanoscale devices and material interfaces.

  19. Engineering of an alternative electron transfer path in photosystem II

    PubMed Central

    Larom, Shirley; Salama, Faris; Schuster, Gadi; Adir, Noam

    2010-01-01

    The initial steps of oxygenic photosynthetic electron transfer occur within photosystem II, an intricate pigment/protein transmembrane complex. Light-driven electron transfer occurs within a multistep pathway that is efficiently insulated from competing electron transfer pathways. The heart of the electron transfer system, composed of six linearly coupled redox active cofactors that enable electron transfer from water to the secondary quinone acceptor QB, is mainly embedded within two proteins called D1 and D2. We have identified a site in silico, poised in the vicinity of the QA intermediate quinone acceptor, which could serve as a potential binding site for redox active proteins. Here we show that modification of Lysine 238 of the D1 protein to glutamic acid (Glu) in the cyanobacterium Synechocystis sp. PCC 6803, results in a strain that grows photautotrophically. The Glu thylakoid membranes are able to perform light-dependent reduction of exogenous cytochrome c with water as the electron donor. Cytochrome c photoreduction by the Glu mutant was also shown to significantly protect the D1 protein from photodamage when isolated thylakoid membranes were illuminated. We have therefore engineered a novel electron transfer pathway from water to a soluble protein electron carrier without harming the normal function of photosystem II. PMID:20457933

  20. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

    NASA Astrophysics Data System (ADS)

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-11-01

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

  1. Backbone Engineered γ-Peptide Amphitropic Gels for Immobilization of Semiconductor Quantum Dots and 2D Cell Culture.

    PubMed

    Misra, Rajkumar; Sharma, Aman; Shiras, Anjali; Gopi, Hosahudya N

    2017-08-08

    We are reporting a spontaneous supramolecular assembly of backbone engineered γ-peptide scaffold and its utility in the immobilization of semiconductor quantum dots and in cell culture. The stimulating feature of this γ-peptide scaffold is that it efficiently gelates both aqueous phosphate buffers and aromatic organic solvents. A comparative and systematic investigation reveals that the greater spontaneous self-aggregation property of γ-peptide over the α- and β-peptide analogues is mainly due to the backbone flexibility, increased hydrophobicity, and π-π stacking of γ-phenylalanine residues. The hydrogels and organogels obtained from the γ-peptide scaffold have been characterized through field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), FT-IR, circular dichroism (CD), wide-angle X-ray diffraction, and rheometric study. Additionally, the peptide hydrogel has displayed a stimuli-responsive and thixotropic signature, which leads to the injectable hydrogels. 2D cell culture studies using normal and cancer cell lines reveal the biocompatibility of γ-peptide hydrogels. Further, the immobilization of semiconductor core-shell quantum dots in the transparent γ-peptide organogels showed ordered arrangement of quantum dots along the peptide fibrillar network with retaining photophysical property. Overall, γ-peptide scaffolds may serve as potential templates for the design of new functional biomaterials.

  2. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

    PubMed Central

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-01-01

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses. PMID:27812035

  3. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration.

    PubMed

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-11-04

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

  4. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering.

    PubMed

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-28

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.

  5. Hole doping and pressure effects on the II-II-V-based diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2

    DOE PAGES

    Sun, F.; Zhao, G. Q.; Escanhoela, Jr., C. A.; ...

    2017-03-13

    We investigate doping- and pressure-induced changes in the electronic state of Mn 3d and As 4p orbitals in II-II-V based diluted magnetic semiconductor (Ba1-x,Kx)(Zn1-y,Mny)2As2 to shed light into the mechanism of indirect exchange interactions leading to high ferromagnetic ordering temperature (Tc = 230 K in optimally doped samples). A suite of x-ray spectroscopy experiments (emission, absorption and dichroism) show that the emergence, and further enhancement of ferromagnetic interactions with increased hole doping into the As 4p band is accompanied by a decrease in local 3d spin density at Mn sites. This is a result of increasing Mn 3d - Asmore » 4p hybridization with hole doping which enhances indirect exchange interactions between Mn dopants and gives rise to induced magnetic polarization in As 4p states. On the contrary, application of pressure suppresses exchange interactions. While Mn Kβ emission spectra show a weak response of 3d state to pressure, clear As 4p band broadening (hole delocalization) is observed under pressure ultimately leading to loss of ferromagnetism concomitant with a semiconductor to metal transition. The pressure response of As 4p and Mn 3d states is intimately connected with the evolution of the As-As interlayer distance and the geometry of the MnAs4 tetrahedral units, which we probed with X-ray diffraction. Our results indicate that hole doping increases the degree of covalency between the anion (As) p states and cation (Mn) d states in the MnAs4 tetrahedron, a crucial ingredient to promote indirect exchange interactions between Mn dopants and high Tc ferromagnetism. As a result, the instability of ferromagnetism and semiconducting state against pressure is mainly dictated by delocalization of anion p states.« less

  6. Master-equation theory of multimode semiconductor lasers. II. Injection locking

    NASA Astrophysics Data System (ADS)

    Eschmann, A.; Gardiner, C. W.

    1996-10-01

    The master-equation theory for multimode semiconductor lasers [A. Eschmann and C. W. Gardiner, Phys. Rev. A 54, 760 (1996)] is adapted to treat the case of an injection-locked laser. Both the intensity noise and the phase noise of the system are examined. A decrease in the total intensity noise and in the inten- sity noises of the individual modes is found for increasing injection power, provided the injection signal does not dominate the entire system. A regime is found in which a reduction of the intensity noise below the shot noise level is obtained which is not single-mode squeezing, but which is due to anticorrelations between the individual modes, and a further regime in which true single-mode squeezing exists is also found. The phase noise is found to decrease with increasing injection strength, in other words as phase locking occurs.

  7. II-VI semiconductor quantum dot quantum wells: a tight-binding study

    NASA Astrophysics Data System (ADS)

    Pérez-Conde, J.; Bhattacharjee, A. K.

    2006-05-01

    We have studied the electronic structure, exciton states and optical spectra of spherical semiconductor quantum dot quantum wells (QDQW's) by means of a symmetry-adapted tight-binding (TB) method. We have investigated two classes of QDQW's: CdS/HgS/CdS, based on a CdS core which acts as a barrier, with a thin HgS well layer intercalated between the core and a clad layer of CdS. The second class of QDQW's is based on ZnS cores covered with CdS layers which act in this case as a well. The calculated values of the absorption onset show a good agreement with the experimental data. Large photoluminescence Stokes shifts are also predicted.

  8. Effects of a semiconductor matrix on the band anticrossing in dilute group II-VI oxides

    NASA Astrophysics Data System (ADS)

    Wełna, M.; Kudrawiec, R.; Nabetani, Y.; Tanaka, T.; Jaquez, M.; Dubon, O. D.; Yu, K. M.; Walukiewicz, W.

    2015-08-01

    The effect of a semiconductor matrix on the band anticrossing interaction is studied for four different dilute-oxide material systems: ZnSO, ZnSeO, ZnTeO, and ZnCdTeO. The choice of host material allows for independent control of the energy separation between the conduction band edge and the O energy level as well as the coupling parameter. The transition energies measured by photoreflectance and optical absorption are well explained by the band anticrossing model with the coupling parameter increasing from 1.35 eV for ZnSO to 2.8 eV for ZnTeO and showing approximately linear dependence on the electronegativity difference between O and the host anion.

  9. Detection of Toxic Heavy Metal, Co(II) Trace via Voltammetry with Semiconductor Microelectrodes

    PubMed Central

    Ly, Suw Young; Lee, Chang Hyun; Koo, Jae Mo

    2017-01-01

    The cobalt (Co(II)) ion is a main component of alloys and considered to be carcinogenic, especially due to the carcinogenic and toxicological effects in the aquatic environment. The toxic trace of the Co(II) detection was conducted using the infrared photodiode electrode (IPDE) using a working electrode, via the cyclic and square-wave anodic stripping voltammetry. The results indicated a sensitive oxidation peak current of Co(II) on the IPDE. Under the optimal conditions, the common-type glassy carbon, the metal platinum, the carbon paste, and the carbon fiber microelectrode were compared with the IPDE in the electrolyte using the standard Co(II). The IPDE was found to be far superior to the others. PMID:28503262

  10. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE PAGES

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu; ...

    2017-05-31

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcitedmore » spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  11. Formation of Ideal Rashba States on Layered Semiconductor Surfaces Steered by Strain Engineering

    DOE PAGES

    Ming, Wenmei; Wang, Z. F.; Zhou, Miao; ...

    2015-12-10

    Spin splitting of Rashba states in two-dimensional electron system provides a mechanism of spin manipulation for spintronics applications. However, Rashba states realized experimentally to date are often outnumbered by spin-degenerated substrate states at the same energy range, hindering their practical applications. Here, by density functional theory calculation, we show that Au one monolayer film deposition on a layered semiconductor surface β-InSe(0001) can possess “ideal” Rashba states with large spin splitting, which are completely situated inside the large band gap of the substrate. The position of the Rashba bands can be tuned over a wide range with respect to the substratemore » band edges by experimentally accessible strain. Furthermore, our nonequilibrium Green’s function transport calculation shows that this system may give rise to the long-sought strong current modulation when made into a device of Datta-Das transistor. Similar systems may be identified with other metal ultrathin films and layered semiconductor substrates to realize ideal Rashba states.« less

  12. Formation of Ideal Rashba States on Layered Semiconductor Surfaces Steered by Strain Engineering

    SciTech Connect

    Ming, Wenmei; Wang, Z. F.; Zhou, Miao; Yoon, Mina; Liu, Feng

    2015-12-10

    Spin splitting of Rashba states in two-dimensional electron system provides a mechanism of spin manipulation for spintronics applications. However, Rashba states realized experimentally to date are often outnumbered by spin-degenerated substrate states at the same energy range, hindering their practical applications. Here, by density functional theory calculation, we show that Au one monolayer film deposition on a layered semiconductor surface β-InSe(0001) can possess “ideal” Rashba states with large spin splitting, which are completely situated inside the large band gap of the substrate. The position of the Rashba bands can be tuned over a wide range with respect to the substrate band edges by experimentally accessible strain. Furthermore, our nonequilibrium Green’s function transport calculation shows that this system may give rise to the long-sought strong current modulation when made into a device of Datta-Das transistor. Similar systems may be identified with other metal ultrathin films and layered semiconductor substrates to realize ideal Rashba states.

  13. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes

    DOE PAGES

    Liu, Yuanyue; Xiao, Hai; Goddard, III, William A.

    2016-11-22

    Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. Here we demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. Based on first principles calculations, we find that the surface chemistry strongly affects the Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, while F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weakmore » Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control the surface terminations based on the calculated formation energies. Finally, this study enhances the understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives practical predictions for improving 2D electronics.« less

  14. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes

    SciTech Connect

    Liu, Yuanyue; Xiao, Hai; Goddard, III, William A.

    2016-11-22

    Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. Here we demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. Based on first principles calculations, we find that the surface chemistry strongly affects the Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, while F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weak Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control the surface terminations based on the calculated formation energies. Finally, this study enhances the understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives practical predictions for improving 2D electronics.

  15. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors.

    PubMed

    Liu, Yuanfeng; Sahoo, Pranati; Makongo, Julien P A; Zhou, Xiaoyuan; Kim, Sung-Joo; Chi, Hang; Uher, Ctirad; Pan, Xiaoqing; Poudeu, Pierre F P

    2013-05-22

    The thermopower (S) and electrical conductivity (σ) in conventional semiconductors are coupled adversely through the carriers' density (n) making it difficult to achieve meaningful simultaneous improvements in both electronic properties through doping and/or substitutional chemistry. Here, we demonstrate the effectiveness of coherently embedded full-Heusler (FH) quantum dots (QDs) in tailoring the density, mobility, and effective mass of charge carriers in the n-type Ti(0.1)Zr(0.9)NiSn half-Heusler matrix. We propose that the embedded FH QD forms a potential barrier at the interface with the matrix due to the offset of their conduction band minima. This potential barrier discriminates existing charge carriers from the conduction band of the matrix with respect to their relative energy leading to simultaneous large enhancements of the thermopower (up to 200%) and carrier mobility (up to 43%) of the resulting Ti(0.1)Zr(0.9)Ni(1+x)Sn nanocomposites. The improvement in S with increasing mole fraction of the FH-QDs arises from a drastic reduction (up to 250%) in the effective carrier density coupled with an increase in the carrier's effective mass (m*), whereas the surprising enhancement in the mobility (μ) is attributed to an increase in the carrier's relaxation time (τ). This strategy to manipulate the transport behavior of existing ensembles of charge carriers within a bulk semiconductor using QDs is very promising and could pave the way to a new generation of high figure of merit thermoelectric materials.

  16. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a)...

  17. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a)...

  18. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a)...

  19. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a)...

  20. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a)...

  1. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  2. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  3. Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors.

    PubMed

    Zhang, Hongtao; Guo, Xuefeng; Hui, Jingshu; Hu, Shuxin; Xu, Wei; Zhu, Daoben

    2011-11-09

    Interface modification is an effective and promising route for developing functional organic field-effect transistors (OFETs). In this context, however, researchers have not created a reliable method of functionalizing the interfaces existing in OFETs, although this has been crucial for the technological development of high-performance CMOS circuits. Here, we demonstrate a novel approach that enables us to reversibly photocontrol the carrier density at the interface by using photochromic spiropyran (SP) self-assembled monolayers (SAMs) sandwiched between active semiconductors and gate insulators. Reversible changes in dipole moment of SPs in SAMs triggered by lights with different wavelengths produce two distinct built-in electric fields on the OFET that can modulate the channel conductance and consequently threshold voltage values, thus leading to a low-cost noninvasive memory device. This concept of interface functionalization offers attractive new prospects for the development of organic electronic devices with tailored electronic and other properties.

  4. Interface Schottky barrier engineering via strain in metal-semiconductor composites

    NASA Astrophysics Data System (ADS)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2016-01-01

    The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures.The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation

  5. Learning Activity Packets for Auto Mechanics II. Section A--Engine Rebuilding.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Eight learning activity packets (LAPs) are provided for the instructional area of engine rebuilding in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these eight units: (1) engine condition evaluation; (2) engine removal; (3) engine…

  6. Learning Activity Packets for Auto Mechanics II. Section A--Engine Rebuilding.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Eight learning activity packets (LAPs) are provided for the instructional area of engine rebuilding in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these eight units: (1) engine condition evaluation; (2) engine removal; (3) engine…

  7. Two-dimensional wide-band-gap II-V semiconductors with a dilated graphene-like structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Jing; Liu, Bang-Gui

    2016-12-01

    Since the advent of graphene, two-dimensional (2D) materials have become very attractive and there is growing interest in exploring new 2D materials beyond graphene. Here, through density-functional theory (DFT) calculations, we predict 2D wide-band-gap II-V semiconductor materials of M3X2 (M = Zn, Cd and X = N, P, As) with a dilated graphene-like honeycomb structure. In this structure the group-V X atoms form two X-atomic planes symmetrically astride the centering group-IIB M atomic plane. Our DFT calculation shows that 2D Zn3N2, Zn3P2 and Zn3As2 have direct band gaps of 2.87, 3.81 and 3.55 eV, respectively, and 2D Cd3N2, Cd3P2 and Cd3As2 exhibit indirect band gaps of 2.74, 3.51 and 3.29 eV, respectively. Each of the six 2D materials is shown to have effective carrier (either hole or electron) masses down to 0.03m 0-0.05m 0. The structural stability and feasibility of experimental realization of these 2D materials has been shown in terms of DFT phonon spectra and total energy comparison with related existing bulk materials. On the experimental side, there already are many similar two-coordinate structures of Zn and other transition metals in various organic materials. Therefore, these 2D semiconductors can enrich the family of 2D electronic materials and may have promising potential for achieving novel transistors and optoelectronic devices.

  8. Two Photon Absorption in II-VI Semiconductors: The Influence of Dimensionality and Size.

    PubMed

    Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol; Antanovich, Artsiom; Christodoulou, Sotirios; Moreels, Iwan; Artemyev, Mikhail; Woggon, Ulrike

    2015-08-12

    We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.

  9. High- and Reproducible-Performance Graphene/II-VI Semiconductor Film Hybrid Photodetectors

    PubMed Central

    Huang, Fan; Jia, Feixiang; Cai, Caoyuan; Xu, Zhihao; Wu, Congjun; Ma, Yang; Fei, Guangtao; Wang, Min

    2016-01-01

    High- and reproducible-performance photodetectors are critical to the development of many technologies, which mainly include one-dimensional (1D) nanostructure based and film based photodetectors. The former suffer from a huge performance variation because the performance is quite sensitive to the synthesis microenvironment of 1D nanostructure. Herein, we show that the graphene/semiconductor film hybrid photodetectors not only possess a high performance but also have a reproducible performance. As a demo, the as-produced graphene/ZnS film hybrid photodetector shows a high responsivity of 1.7 × 107 A/W and a fast response speed of 50 ms, and shows a highly reproducible performance, in terms of narrow distribution of photocurrent (38–65 μA) and response speed (40–60 ms) for 20 devices. Graphene/ZnSe film and graphene/CdSe film hybrid photodetectors fabricated by this method also show a high and reproducible performance. The general method is compatible with the conventional planar process, and would be easily standardized and thus pay a way for the photodetector applications. PMID:27349692

  10. High- and Reproducible-Performance Graphene/II-VI Semiconductor Film Hybrid Photodetectors.

    PubMed

    Huang, Fan; Jia, Feixiang; Cai, Caoyuan; Xu, Zhihao; Wu, Congjun; Ma, Yang; Fei, Guangtao; Wang, Min

    2016-06-28

    High- and reproducible-performance photodetectors are critical to the development of many technologies, which mainly include one-dimensional (1D) nanostructure based and film based photodetectors. The former suffer from a huge performance variation because the performance is quite sensitive to the synthesis microenvironment of 1D nanostructure. Herein, we show that the graphene/semiconductor film hybrid photodetectors not only possess a high performance but also have a reproducible performance. As a demo, the as-produced graphene/ZnS film hybrid photodetector shows a high responsivity of 1.7 × 10(7) A/W and a fast response speed of 50 ms, and shows a highly reproducible performance, in terms of narrow distribution of photocurrent (38-65 μA) and response speed (40-60 ms) for 20 devices. Graphene/ZnSe film and graphene/CdSe film hybrid photodetectors fabricated by this method also show a high and reproducible performance. The general method is compatible with the conventional planar process, and would be easily standardized and thus pay a way for the photodetector applications.

  11. High Resolution Triple Axis X-Ray Diffraction Analysis of II-VI Semiconductor Crystals

    NASA Technical Reports Server (NTRS)

    Volz, H. M.; Matyi, R. J.

    1999-01-01

    The objective of this research program is to develop methods of structural analysis based on high resolution triple axis X-ray diffractometry (HRTXD) and to carry out detailed studies of defect distributions in crystals grown in both microgravity and ground-based environments. HRTXD represents a modification of the widely used double axis X-ray rocking curve method for the characterization of grown-in defects in nearly perfect crystals. In a double axis rocking curve experiment, the sample is illuminated by a monochromatic X-ray beam and the diffracted intensity is recorded by a fixed, wide-open detector. The intensity diffracted by the sample is then monitored as the sample is rotated through the Bragg reflection condition. The breadth of the peak, which is often reported as the full angular width at half the maximum intensity (FWHM), is used as an indicator of the amount of defects in the sample. This work has shown that high resolution triple axis X-ray diffraction is an effective tool for characterizing the defect structure in semiconductor crystals, particularly at high defect densities. Additionally, the technique is complimentary to X-ray topography for defect characterization in crystals.

  12. Investigation of the exciton emission lifetime in type-II spherical core/shell semiconductor heteronanostructures

    NASA Astrophysics Data System (ADS)

    Arfaoui, A.; Mahdouani, M.; Bourguiga, R.

    2017-08-01

    The two-band model effective mass approximation has been adopted to explain the energy spectra in type-I CdSe core-only and type-II CdSe/CdTe core/shell quantum dots (QDs). As optical properties, the emission wavelength, the electron-hole overlap integral and the radiative recombination lifetime have been investigated. The simulated emission spectra are in good agreement with available experimental results for both core-only and core/shell QDs. The radiative recombination lifetime (τrad) has been investigated in different carrier localization regimes and compared to that corresponding to core-only QDs. We have found a sudden increase in τrad at around r1 1.1 nm suggesting the transition of the heterostructure from the quasi-type-II to the type-II regime. A monotonic increase in τrad with the core and shell sizes (geometric parameters) was observed. Also found is the possibility of increasing τrad over two orders of magnitude with a suitable change in the geometric parameters. The long radiative lifetime produced by increasing the geometric parameters is found due to spatial separation of the carriers, which makes the type-II core/shell QDs made from large core and shell sizes promising for photovoltaic applications.

  13. The Luminescence of Wide Band Gap II-Mn-VI Semimagnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Benecke, Carsten; Gumlich, Hans-Eckhart

    The following sections are included: * INTRODUCTION * BASIC CONSIDERATIONS * The Forbidden Gap As A Function Of The Mn Concentration * The Ground State Of Mn2+ In The II-VI Compounds * The Dependence Of The Luminescence Upon The Mn Concentration * The Selfactivated Luminescence * The Time Dependence Of Luminescence Emission * LUMINESCENCE PROPERTIES OF DIFFERENT WIDE BAND GAP II-Mn-VI SMSCs * Zn1-xMnxS * Emission * Excitation * Transient measurements * Cdl-xMnXS * Emission * Excitation * Transient measurements * Zn1-xMnxSe * Emission * Excitation * Transient measurements * Cd1-xMnxSe * Emission * Excitation * Zn1-xMnxTe * Emission * Excitation * Transient measurements * Cd1-xMnxTe * Emission * Excitation * Transient measurements * ON THE NATURE OF THE Mn CORRELATED LUMINESCENCE CENTERS AND CHEMICAL TRENDS * Acknowledgement * REFERENCES

  14. Surface Chemistry and Transport Properties of II-VI Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Paudel, Pravin

    Semiconductor nanowires have been widely studied due to their unique properties such as width comparable to critical length-scales, high aspect ratio, and high carrier mobility. These unique properties make them a suitable candidate for various optical and electronic devices like photovoltaics, photodetectors, and field effect transistors. The nanowire surface plays an important role in the performance of these devices because of their high surface to volume ratio. The larger surface area of nanowires may provide better charge separation than planar heterostructures in photovoltaics by providing shorter distance to move for carrier before separation, however, presence of surface states may lead to the recombination of photo-generated carriers, limiting the amount of charge separation. In order to remove these surface states, ligands can be attached to the surface of nanowires. In this work CdS and CdSe nanowires are grown through the high temperature Vapor-Liquid-Solid (VLS) process. VLS process yields single crystalline, low defect nanowires with controllable length and diameter. In order to show ligand binding on nanowire surface, CdS nanowires were treated with a dye-labeled polymer. Fluorescence microscopy and spectroscopy were used to confirm ligand binding. Fluorescence microscopy can also be used to show the kinetics of ligand binding on nanowire surfaces. In order to control the electronic properties of the nanowire surfaces, nanowires were treated with solution phase and vapor phase reagents. Photoluminescence measurements and transport measurements were performed before and after the chemical treatment to see the consequences of ligand binding on the optical and electronic properties of nanowires.

  15. Synthesis, functionalization, and biological tagging applications of II-VI semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Jun

    Fluorescent labeling of biological molecules is a technique that is used widely for analytical purposes in biotechnology and bioengineering. It typically involves the use of an organic dye molecule linked to a moiety that selectively bonds a particular biological molecule, allowing the detection of the latter by the fluorescence of the dye molecule. Semiconductor nanocrystals or quantum dots have emerged as a new class of fluorescent markers with distinct advantages over the traditional organic dyes. Their attractive properties include narrow, symmetric, and bright emission, continuous excitation by any wavelength smaller than the emission wavelength, broad absorption spectrum, long lifetime, resistance to photobleaching, as well as excellent optical and chemical stability that allows their use in lengthy experiments. The focus of this thesis is the synthesis and surface functionalization of ZnSe quantum dots and (ZnSe)ZnS core-shell nanostructures, and their biological conjugation with DNA and protein. The ability to synthesize different populations of quantum dots with narrow emission spectra permits multiplexing, a property that is very important for simultaneous detection of several analytes, which would be very tedious and expensive if done sequentially. Highly luminescent ZnSe nanocrystals have been synthesized using a hot-injection colloidal method. The synthesis was performed in a stirred batch reactor containing liquid hexadecylamine at 310°C. The precursors were diethylzinc diluted in heptane and selenium powder mixed with trioctylphosphine. The mixture of reactants was injected into the batch reactor and the time of reaction was used to control the size and luminescence emission wavelength of the quantum dots. In order to optimize the process various parameters that can influence the photoluminescence property of quantum dots obtained were investigated, such as surfactant addition, temperature, precursor ratio, and mixing conditions. Capping of the Zn

  16. Preparation and characterization of II-VI compound semiconductor thin-films

    NASA Astrophysics Data System (ADS)

    Boyer, Leah (Ge Shao)

    In this thesis the pulsed-laser deposition (PLD) method for growing thin-films was discussed and applied to form II-VI compound ZnTe thin-films. The transmission and reflection of these films were measured by different methods and theoretically fitted. The characterization of the selected thin-films was analyzed using x-ray diffraction, scanning electron microscopy (SEM). In order to complete the characterization the photocurrent of ZnTe thin-film on Si substrate was measured. The optical nonlinearity of ZnTe thin-film was theoretically proposed and experimentally measured.

  17. Turnable Semiconductor Laser Spectroscopy in Hollow Optical Waveguides, Phase II SBIR

    SciTech Connect

    Gregory J. Fetzer, Ph.D.

    2001-12-24

    In this study a novel optical trace gas sensor based on a perforated hollow waveguide (PHW) was proposed. The sensor has been given the acronym ESHOW for Environmental Sensor using Hollow Optical Waveguides. Realizations of the sensor have demonstrated rapid response time (<2s), low minimum detection limits (typically around 3 x 10-5 absorbance). Operation of the PHW technology has been demonstrated in the near-infrared (NIR) and mid0infrared (MIR) regions of the spectrum. Simulation of sensor performance provided in depth understanding of the signals and signal processing required to provide high sensitivity yet retain rapid response to gas changes. A dedicated sensor electronics and software foundation were developed during the course of the Phase II effort. Commercial applications of the sensor are ambient air and continuous emissions monitoring, industrial process control and hazardous waste site monitoring. There are numerous other applications for such a sensor including medical diagnosis and treatment, breath analysis for legal purposes, water quality assessment, combustion diagnostics, and chemical process control. The successful completion of Phase II resulted in additional funding of instrument development by the Nations Institute of Heath through a Phase I SBIR grant and a strategic teaming relationship with a commercial manufacture of medical instrumentation. The purpose of the NIH grant and teaming relationship is to further develop the sensor to monitor NO in exhaled breath for the purposes of asthma diagnosis.

  18. Chemical trend of exchange coupling in II-VI diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Chanier, Thomas; Hayn, Roland; Virot, François

    2010-03-01

    We present an ab-initio study of the magnetic couplings in Mn- and Co-doped II-VI DMS ZnA (A=O,S,Se,Te). We show the necessity of taking into account the strong electron correlation on the transition metal (TM) 3d level to reproduce correctly the experimental chemical trend. Within the LSDA+U (local spin density approximation with a Hubbard-type correction to TM 3d electrons), we find (i) the d-d exchange couplings between nearest-neighbor magnetic ions to be antiferromagnetic (AFM) of the order of -1 meV and (ii) the sp-d exchange constants between magnetic ions and conduction (valence) band electrons (holes) Nα (Nβ) to be FM (AFM) of the order of 0.1 eV (-1 eV). In ZnMnO and ZnCoO, the strong p-d hybridisation leads to the presence of a bound state above the valence band, the failure of the commonly-used Larson perturbation theory formulae for p-d and d-d exchange interactions [1] and prevents high-Tc ferromagnetism [2]. [1] B. Larson et al. , PRB 37, 4137 (1988) [2] T. Chanier et al. , PRB 79, 205204 (2009)

  19. Magnetic properties of clusters in IV-VI and II-IV-V2 diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Górska, M.; Kilanski, L.; Podgórni, A.; Dobrowolski, W.; Szymczak, R.; Anderson, J. R.; Fedorchenko, I. V.; Marenkin, S. F.; Slynko, V. E.; Slynko, E. I.

    2016-12-01

    We have been studying magnetic properties of magnetic ion clusters in ternary, quaternary, and quinary IV-VI and II-IV-V2 diluted magnetic semiconductors with varying concentrations of different magnetic and non-magnetic cations. We observed clusters of different types, from non-random distribution of magnetic ions in the host lattice to precipitates with the crystalline structure different from that of the host. The size of such precipitates varied from 200 nm to 20 μm. Depending on the type and size of clusters we observed different magnetic properties of the compounds, such as paramagnetic, spin-glass, spin-glass-like, or ferromagnetic states. For example, Zn1-xMnxGeAs2 compounds with x ≤ 0.053 were paramagnetic with evidence of small short-range magnetic interactions, while in the same material with x ≥ 0.078 we observed room-temperature ferromagnetism. In IV-VI DMS clusters usually created a spin-glass or spinglass- like state. However, in some Ge1-x-yPbxMnyTe crystals we observed a co-existence of two very different spin-glasslike states with transition temperatures T1 ≈ 5 K and T2 ≈ 90 K.

  20. Exchange couplings for Mn ions in CdTe: Validity of spin models for dilute magnetic II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Linneweber, Thorben; Bünemann, Jörg; Löw, Ute; Gebhard, Florian; Anders, Frithjof

    2017-01-01

    We employ density-functional theory (DFT) in the generalized gradient approximation (GGA) and its extensions GGA +U and GGA+Gutzwiller to calculate the magnetic exchange couplings between pairs of Mn ions substituting Cd in a CdTe crystal at very small doping. DFT(GGA) overestimates the exchange couplings by a factor of 3 because it underestimates the charge-transfer gap in Mn-doped II-VI semiconductors. Fixing the nearest-neighbor coupling J1 to its experimental value in GGA +U , in GGA+Gutzwiller, or by a simple scaling of the DFT(GGA) results provides acceptable values for the exchange couplings at second-, third-, and fourth-neighbor distances in Cd(Mn)Te, Zn(Mn)Te, Zn(Mn)Se, and Zn(Mn)S. In particular, we recover the experimentally observed relation J4>J2,J3 . The filling of the Mn 3 d shell is not integer, which puts the underlying Heisenberg description into question. However, using a few-ion toy model the picture of a slightly extended local moment emerges so that an integer 3 d -shell filling is not a prerequisite for equidistant magnetization plateaus, as seen in experiment.

  1. Molecular Semiconductors: An Introduction

    NASA Astrophysics Data System (ADS)

    de Mello, John; Halls, Jonathan James Michael

    2005-10-01

    Introducing the fundamental ideas and concepts behind organic semiconductors, this book provides a clear impression of the broad range of research activities currently underway. Aimed specifically at new entrant doctoral students from a wide variety of backgrounds, including chemistry, physics, electrical engineering and materials science, it also represents an ideal companion text to undergraduate courses in organic semiconductors.

  2. Evidence of type-II band alignment in III-nitride semiconductors: experimental and theoretical investigation for In 0.17 Al 0.83 N/GaN heterostructures.

    PubMed

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-10-06

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In 0.17 Al 0.83 N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with E(AlInN(VBM) being above E(GaN)(VBM)). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering.

  3. Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures

    PubMed Central

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-01-01

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In0.17Al0.83N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with being above). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering. PMID:25283334

  4. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    PubMed

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-03

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.

  5. Small Engines Care, Operation, Maintenance and Repair. Volume II.

    ERIC Educational Resources Information Center

    Turner, J. Howard

    Developed by teacher educators and agricultural engineers, this teacher and student reference is for use in a course in small engine operation and maintenance. Content includes: (1) Principles of Good Workmanship, (2) Repairing Starters, (3) Maintaining and Repairing Ignition Systems, (4) Repairing Fuel Systems, (5) Repairing Governors, (6)…

  6. Introduction to Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  7. Semiconductor heterostructure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold John (Inventor); Woodall, Jerry MacPherson (Inventor)

    1978-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  8. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  9. Monte-Carlo simulation studies of the effect of temperature and diameter variation on spin transport in II-VI semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Chishti, Sabiq; Ghosh, Bahniman; Bishnoi, Bhupesh

    2015-02-01

    We have analyzed the spin transport behaviour of four II-VI semiconductor nanowires by simulating spin polarized transport using a semi-classical Monte-Carlo approach. The different scattering mechanisms considered are acoustic phonon scattering, surface roughness scattering, polar optical phonon scattering, and spin flip scattering. The II-VI materials used in our study are CdS, CdSe, ZnO and ZnS. The spin transport behaviour is first studied by varying the temperature (4-500 K) at a fixed diameter of 10 nm and also by varying the diameter (8-12 nm) at a fixed temperature of 300 K. For II-VI compounds, the dominant mechanism is for spin relaxation; D'yakonovPerel and Elliot Yafet have been actively employed in the first order model to simulate the spin transport. The dependence of the spin relaxation length (SRL) on the diameter and temperature has been analyzed.

  10. Triad model of education (II) and instructional engineering.

    PubMed

    Vargas, E A

    2007-11-01

    Despite the money and sweat that go into new instructional technologies, they do not produce the overall high level of student performances that societies seek. More effective teaching calls for a profound solution. It requires a coordinate triad of factors: a proper science, the correct organizational structure, and an engineering instructional technology. This second of a series of articles on the Triad Model of Education concentrates on instructional engineering. The instructional engineering drawn from the science is contingency-based. Contingency-based instructional systems always handle the inevitable two components of instruction: the repertoires of students and the setups that shape those repertoires. The setup component features five elements: subject matter, objectives, quality control, presentation modes, and logistics. The repertoire component consists of the governance of repertoires-event and lingual governed, the type of repertoire-knowing, solving, and creating, and the variability of the repertoire--convergent and divergent. These elements, and their required engineering, reveal an instructional task more complex than previously considered. Progress with such complexity occurs only when all components of the triad are in place.

  11. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.

    PubMed

    Zhu, Haiming; Song, Nianhui; Lian, Tianquan

    2011-06-08

    The size dependence of optical and electronic properties of semiconductor quantum dots (QDs) have been extensively studied in various applications ranging from solar energy conversion to biological imaging. Core/shell QDs allow further tuning of these properties by controlling the spatial distributions of the conduction-band electron and valence-band hole wave functions through the choice of the core/shell materials and their size/thickness. It is possible to engineer type II core/shell QDs, such as CdTe/CdSe, in which the lowest energy conduction-band electron is largely localized in the shell while the lowest energy valence-band hole is localized in the core. This spatial distribution enables ultrafast electron transfer to the surface-adsorbed electron acceptors due to enhanced electron density on the shell materials, while simultaneously retarding the charge recombination process because the shell acts as a tunneling barrier for the core localized hole. Using ultrafast transient absorption spectroscopy, we show that in CdTe/CdSe-anthraquinone (AQ) complexes, after the initial ultrafast (~770 fs) intra-QD electron transfer from the CdTe core to the CdSe shell, the shell-localized electron is transferred to the adsorbed AQ with a half-life of 2.7 ps. The subsequent charge recombination from the reduced acceptor, AQ(-), to the hole in the CdTe core has a half-life of 92 ns. Compared to CdSe-AQ complexes, the type II band alignment in CdTe/CdSe QDs maintains similar ultrafast charge separation while retarding the charge recombination by 100-fold. This unique ultrafast charge separation and slow recombination property, coupled with longer single and multiple exciton lifetimes in type II QDs, suggests that they are ideal light-harvesting materials for solar energy conversion.

  12. Mechanical Engineering Upgrades to the DARHT-II Induction Cells

    DTIC Science & Technology

    2005-06-01

    Lean Manufacturing principles found in industry today [2]. This topic, as it applies to refurbishing the DARHT-II cells, is discussed by Barraza...2005. [2] J.T. Liker, The Toyota Way. New York: McGraw- Hill, 2004. [3] J. Barraza, et al, “Application of Lean Manufacturing Principles to

  13. T-6A Texan II Systems Engineering Case Study

    DTIC Science & Technology

    2010-01-01

    IFR Certified Instrumentation IFR Certified (Selectable EADI/EHSI) All digital except backups Visual System for IFT/OFT Provide a visual field...subject matter expert ( SME ), signifying that the requirement had been verified. Some requirements also required the systems safety and program manager’s...Engineering Plan SLEP Structural Life Extension Program SME Subject Matter Expert SON Statement of Need SoS System-of-Systems SOW Statement of Work

  14. Development of USES Specific Aptitude Test Battery for Semiconductor Occupations: Electronics Inspector (Electronics) II, 726.684-022; Electronics Tester (Electronics) II, 726.684-026; Semiconductor Processor (Electronics), 590.684-022. Analysis and Report.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC.

    The United States Employment Service (USES) Specific Aptitude Test Battery (SATB) for Semiconductor Occupations is evaluated from three points of view: (1) technical adequacy of the research, (2) fairness to minorities, and (3) usefulness of the battery to United States Employment Service staff and employers in selecting individuals for training…

  15. Semiconductor Heterojunction Engineering

    DTIC Science & Technology

    2007-11-02

    Rev. B 48, 8899(1993). - 3 2 JE. Anselo, W.W. Gerberich, G. Bratina, L. Sorba, and A. Franciosi, "Effects of Surface Reconstruction on CdTe ...370 (1996). 3 28 Y. Fan, I. Karpov, G. Bratina, L. Sorba, W. Gladfelter, and A. Franciosi, "Atomic Scale Roughness of GaAs(001)2x4 Surfaces ", J. Vac...components of new optoelectronic devices operating in the blue region of the visible spectrum . For such heterojunctions, the large value reported for

  16. Testing of bellows for engineering systems. Part II

    SciTech Connect

    McCoy, H.E. Jr.; McNabb, B.

    1981-04-01

    Techniques were developed for performing elastic, creep, fatigue, and squirm tests on several specific geometries of Hastelloy X and type 347 stainless steel bellows. The fatigue cycle studies was complex and included time, temperature strain, and internal pressure as variables. A programmable calculator was used to control the test and record data. Fatigue failures occurred by typical high-temperature deformation modes, and observed lifetimes were close to those predicted by the designer. In creep tests where bellows length was restrained, individual convolutions widened while the gaps between convolutions contracted. Deformation during creep was often very inhomogeneous. Nevertheless, this test program showed that bellows can be designed and characterized for engineering service.

  17. Safety-I, Safety-II and Resilience Engineering.

    PubMed

    Patterson, Mary; Deutsch, Ellen S

    2015-12-01

    In the quest to continually improve the health care delivered to patients, it is important to understand "what went wrong," also known as Safety-I, when there are undesired outcomes, but it is also important to understand, and optimize "what went right," also known as Safety-II. The difference between Safety-I and Safety-II are philosophical as well as pragmatic. Improving health care delivery involves understanding that health care delivery is a complex adaptive system; components of that system impact, and are impacted by, the actions of other components of the system. Challenges to optimal care include regular, irregular and unexampled threats. This article addresses the dangers of brittleness and miscalibration, as well as the value of adaptive capacity and margin. These qualities can, respectively, detract from or contribute to the emergence of organizational resilience. Resilience is characterized by the ability to monitor, react, anticipate, and learn. Finally, this article celebrates the importance of humans, who make use of system capabilities and proactively mitigate the effects of system limitations to contribute to successful outcomes. Copyright © 2015 Mosby, Inc. All rights reserved.

  18. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  19. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  20. Education and Experience in Engineering, The E3 Program. Volume II, Appendices to Final Report.

    ERIC Educational Resources Information Center

    Torda, T. Paul, Ed.

    Volume II of the Education and Experience in Engineering E3 Program is a collection of 21 appendices related to this program which provide information on funding, participants, meetings, and communications among participants. Appendix V, an E3 Handbook for students, contains information on student advising, placement, and evaluation. Appendix VI…

  1. Blooms' separation of the final exam of Engineering Mathematics II: Item reliability using Rasch measurement model

    NASA Astrophysics Data System (ADS)

    Fuaad, Norain Farhana Ahmad; Nopiah, Zulkifli Mohd; Tawil, Norgainy Mohd; Othman, Haliza; Asshaari, Izamarlina; Osman, Mohd Hanif; Ismail, Nur Arzilah

    2014-06-01

    In engineering studies and researches, Mathematics is one of the main elements which express physical, chemical and engineering laws. Therefore, it is essential for engineering students to have a strong knowledge in the fundamental of mathematics in order to apply the knowledge to real life issues. However, based on the previous results of Mathematics Pre-Test, it shows that the engineering students lack the fundamental knowledge in certain topics in mathematics. Due to this, apart from making improvements in the methods of teaching and learning, studies on the construction of questions (items) should also be emphasized. The purpose of this study is to assist lecturers in the process of item development and to monitor the separation of items based on Blooms' Taxonomy and to measure the reliability of the items itself usingRasch Measurement Model as a tool. By using Rasch Measurement Model, the final exam questions of Engineering Mathematics II (Linear Algebra) for semester 2 sessions 2012/2013 were analysed and the results will provide the details onthe extent to which the content of the item providesuseful information about students' ability. This study reveals that the items used in Engineering Mathematics II (Linear Algebra) final exam are well constructed but the separation of the items raises concern as it is argued that it needs further attention, as there is abig gap between items at several levels of Blooms' cognitive skill.

  2. Engineering Certification Program Self-Study Course, Construction Inspection - Part II. Engineering Management [Series].

    ERIC Educational Resources Information Center

    Owsley, Fran, Ed.

    This book is a part of a self-study sequence in an engineering certification program. This volume concerns inspection and quality control of concrete structures. Sections titles are Inspection and Quality Control of Concrete; General Guides for Concrete Work; Concrete Floor and Slab Construction; Concrete Formwork; Correct and Incorrect Methods of…

  3. Engineering Certification Program Self-Study Course, Construction Inspection - Part II. Engineering Management [Series].

    ERIC Educational Resources Information Center

    Owsley, Fran, Ed.

    This book is a part of a self-study sequence in an engineering certification program. This volume concerns inspection and quality control of concrete structures. Sections titles are Inspection and Quality Control of Concrete; General Guides for Concrete Work; Concrete Floor and Slab Construction; Concrete Formwork; Correct and Incorrect Methods of…

  4. Guidelines for clinical engineering programs--Part I: guidelines for electrical isolation; Part II: performance evaluation of clinical engineering programs.

    PubMed

    Ridgway, M

    1980-01-01

    This series presents guidelines for: electrically isolated inputs and outputs; measuring the performance of hospital biomedical engineering programs; evaluating the risk of electric shock in hospitals; and for isolated power in anesthetizing locations. In Part I, specific recommendations are given for the use of insulated approach, battery-powered monitors in surgery, and for isolation requirements for devices connected to cardiac leads. In Part II, checklists are provided for the self-evaluation of an in-house, biomedical engineering staff. Parts III and IV, in future issues of this Journal, will include discussion of the theoretical electrical hazard potential in reference to the use of isolated power systems. The question of whether isolated power should be required in all anesthetizing locations will be discussed in Part IV.

  5. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering.

    PubMed

    Li, Fangxin; Helmy, Amr S

    2013-11-15

    We propose and demonstrate a technique to generate low-noise broadly tunable single-side-band microwaves using cascaded semiconductor optical amplifiers (SOAs) using no RF bias. The proposed technique uses no RF components and is based on polarization-state controlled gain-induced four-wave mixing in SOAs. Microwave generation from 40 to 875 GHz with a line-width ~22 KHz is experimentally demonstrated.

  6. Rational engineering of type II restriction endonuclease DNA binding and cleavage specificity.

    PubMed

    Morgan, Richard D; Luyten, Yvette A

    2009-08-01

    The type II restriction endonucleases are indispensible tools for molecular biology. Although enzymes recognizing nearly 300 unique sequences are known, the ability to engineer enzymes to recognize any sequence of choice would be valuable. However, previous attempts to engineer new recognition specificity have met limited success. Here we report the rational engineering of multiple new type II specificities. We recently identified a family of MmeI-like type II endonucleases that have highly similar protein sequences but different recognition specificity. We identified the amino-acid positions within these enzymes that determine position specific DNA base recognition at three positions within their recognition sequences through correlations between their aligned amino-acid residues and aligned recognition sequences. We then altered the amino acids at the identified positions to those correlated with recognition of a desired new base to create enzymes that recognize and cut at predictable new DNA sequences. The enzymes so altered have similar levels of endonuclease activity compared to the wild-type enzymes. Using simple and predictable mutagenesis in this family it is now possible to create hundreds of unique new type II restriction endonuclease specificities. The findings suggest a simple mechanism for the evolution of new DNA specificity in Nature.

  7. Beyond modulation doping: Engineering a semiconductor to be ambipolar, or making an ON-OFF-ON transistor

    SciTech Connect

    Gupta, K. Das; Croxall, A. F.; Zheng, B.; Sfigakis, F.; Farrer, I.; Nicoll, C. A.; Beere, H. E.; Ritchie, D. A.

    2014-04-24

    Semiconductors are traditionaly either p-type or n-type, meaning that the mobile charge carriers in them are either 'holes' in the valence band or electrons in the conduction band. Ambipolar conduction implies that the experimenter should be able to populate the same channel with either electrons or holes in a controlled manner. This has been shown to be possible in newer materials like Graphene and some organic semiconductors. 'Ambipolarity' can open up new device possibilities as well as new ways to study fundamental scattering mechanisms in semiconductors. However, achieving this in a conventional high mobility structure like a GaAs-AlGaAs heterostructure/quantum well requires new thinking. It was realized, that to do this modulation doping must be given up and techniques to make an undoped heterostructure conduct, must be developed first. Such structures have been developed by only a few groups worldwide. They are of great interest to low temperature physicists working with Quantum Hall states and mesoscopic/nano structures in the ballistic regime. We discuss the reason behind this interest and the analysis of scattering mechanisms in such structures. Finally very recent experimental success in developing fully gate controlled ambipolar structures where both electron and hole mobilites exceed 1 million cm{sup 2}/Vs at low temperatures (T∼1Kelvin) are discussed. Such gated ambipolar structures can be used to analyse scattering mechanisms in ultra-high mobility 2dimensional electron and hole gases in a way that is not possible using other techniques.

  8. Maritime Patrol Aircraft Engine Study P&WA Derivative Engines. Volume II. Performance Data.

    DTIC Science & Technology

    1979-04-30

    U) APR 79 R C NEWELL. P W HERRICK N62269-78C-0GIG UNCLASSIFIED PWA -FR-10966B/C"VOL-2 NAC-79132-60-VOL-2 NL mmEhE mhm 111 1 4;.c~ 111128 12.5 IIIIIII...MARITIME PATROL AIRCRAFT ENGINE STUDT PIWA DERIVATIVE ENGINES. --EC(U) APR 79 R C NEWELL. P W HERRICK N62269-78-C-010 UNCLASSIFIED PWA -FR-10966B/C-VOL-2 NADC...0.80 823. n. 524 -165. 51.3 5.8 1635. MAX .LIft 5.000. 0.85 6289 o 0.333 249. 125.3 17.*6 2535. MAX CKUISE 45000. 0.85 5629. 0.331 150.. 11,.6 16.3

  9. Lanthanide sensitization in II-VI semiconductor materials: a case study with terbium(III) and europium(III) in zinc sulfide nanoparticles.

    PubMed

    Mukherjee, Prasun; Shade, Chad M; Yingling, Adrienne M; Lamont, Daniel N; Waldeck, David H; Petoud, Stéphane

    2011-04-28

    This work explores the sensitization of luminescent lanthanide Tb(3+) and Eu(3+) cations by the electronic structure of zinc sulfide (ZnS) semiconductor nanoparticles. Excitation spectra collected while monitoring the lanthanide emission bands reveal that the ZnS nanoparticles act as an antenna for the sensitization of Tb(3+) and Eu(3+). The mechanism of lanthanide ion luminescence sensitization is rationalized in terms of an energy and charge transfer between trap sites and is based on a semiempirical model, proposed by Dorenbos and co-workers (Dorenbos, P. J. Phys.: Condens. Matter 2003, 15, 8417-8434; J. Lumin. 2004, 108, 301-305; J. Lumin. 2005, 111, 89-104. Dorenbos, P.; van der Kolk, E. Appl. Phys. Lett. 2006, 89, 061122-1-061122-3; Opt. Mater. 2008, 30, 1052-1057. Dorenbos, P. J. Alloys Compd. 2009, 488, 568-573; references 1-6.) to describe the energy level scheme. This model implies that the mechanisms of luminescence sensitization of Tb(3+) and Eu(3+) in ZnS nanoparticles are different; namely, Tb(3+) acts as a hole trap, whereas Eu(3+) acts as an electron trap. Further testing of this model is made by extending the studies from ZnS nanoparticles to other II-VI semiconductor materials; namely, CdSe, CdS, and ZnSe.

  10. Systematic defect donor levels in III-V and II-VI semiconductors revealed by hybrid functional density-functional theory

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Bruneval, Fabien

    2015-12-01

    The identification of defect levels from photoluminescence spectroscopy is a useful but challenging task. Density-functional theory (DFT) is a highly valuable tool to this aim. However, the semilocal approximations of DFT that are affected by a band gap underestimation are not reliable to evaluate defect properties, such as charge transition levels. It is now established that hybrid functional approximations to DFT improve the defect description in semiconductors. Here we demonstrate that the use of hybrid functionals systematically stabilizes donor defect states in the lower part of the band gap for many defects, impurities or vacancies, in III-V and in II-VI semiconductors, even though these defects are usually considered as acceptors. These donor defect states are a very general feature and, to the best of our knowledge, have been overlooked in previous studies. The states we identify here may challenge the older assignments to photoluminescent peaks. Though appealing to screen quickly through the possible stable charge states of a defect, semilocal approximations should not be trusted for that purpose.

  11. Stability of Quasi-Two-Dimensional Electron-Hole Liquid in Semiconductor Structures of the Type-II

    NASA Astrophysics Data System (ADS)

    Vasilchenko, A. A.; Kopytov, G. F.; Krivobok, V. S.; Ermokhin, D. A.

    2017-02-01

    Analytical expressions are obtained for the energy of a quasi-two-dimensional electron-hole liquid (EHL) and the threshold value of the barrier height for electrons, above which formation of the direct EHL is impossible. It is shown that the state with a quasi-two-dimensional EHL can be energetically favorable in semiconductors with the anisotropy of masses and (or) a large number of equivalent valleys. A comparison of the calculation results with the experimental data for the Si/SiGe/Si structure is made.

  12. An efficient electron-beam-pumped semiconductor laser for the green spectral range based on II-VI multilayer nanostructures

    SciTech Connect

    Zverev, M. M.; Gamov, N. A.; Peregoudov, D. V.; Studionov, V. B.; Zdanova, E. V.; Sedova, I. V. Gronin, S. V.; Sorokin, S. V.; Ivanov, S. V.; Kop'ev, P. S.

    2008-12-15

    Emission characteristics of an electron-beam-pumped Cd(Zn)Se/ZnMgSSe semiconductor laser are studied. The laser's active region consists of a set of ten equidistant ZnSe quantum wells containing fractional-monolayer CdSe quantum-dot inserts and a waveguide formed by a short-period superlattice with the net thickness of {approx}0.65 {mu}m. Lasing occurs at room temperature at a wavelength of 542 nm. Pulsed power as high as 12 W per cavity face and an unprecedentedly high efficiency of {approx}8.5% are attained for the electron-beam energy of 23 keV.

  13. Critical evaluation of dipolar, acid-base and charge interactions II. Charge exchange within electrolytes and electron exchange with semiconductors.

    PubMed

    Rosenholm, Jarl B

    2017-09-01

    Electron displacements may be considered as a general measure of semiconductor activity as well as of dipolar, acid-base and charge interactions. Electron transfers during reduction and oxidation reactions between dissolved cations and anions correspond to an extreme Lewis acid-base electron displacement. Brϕnsted proton release (protolysis) represents an extremely weakened hydrogen bond. The most common electrostatic (Born, PCM) and chemical (pKa matching) models for electron and proton exchange between dissolved species are reviewed using aluminium species as examples. Dissolution of ions from solids (salts) may be considered as a reversed precipitation reaction. For partly covalent solids dissociation is dependent on electron or vacancy (hole) transfers to the solid which connects oxidation and reduction reactions to electron displacements in semiconductors. The electron exchange is characterized by Femi energy of semiconductors and of electrolytes. The standard reduction potential may thus be converted to Fermi energy of connected electrochemical cells. In disconnected particle suspensions (sols) the electron activity is a more appropriate parameter which may be converted both to standard reduction potential of ions and to Fermi energy of semiconductors. Dissolution of potential determining cations and anions and hydrolysis of surface sites determines the charging (electron transfer to/from surface) of solids. Both electrostatic (MUSIC) and chemical equilibrium constant models are available for Brϕnsted equilibrium of surface hydroxyls. Point of zero charge is a result of positive and negative charge matching and it represents the optimal condition for condensation of polynuclear species by olation and oxolation. The capability of partial charge (PCM) model to predict condensation is evaluated. Acidity (pH), composition and temperature dependence of aluminium species is illustrated by solubility limits of contributing species and by phase diagrams. Influence

  14. Synthesis and Characterization of Mixed III-V and II-VI Semiconductor Monomers Included in the Borate Sodalite Analogue

    DTIC Science & Technology

    1993-04-30

    Characterization of Mixed III-V and .I-VI N00014-k0-J-er59Semiconductor Monomrers Included in the Borate Sodalite Analogue ..... C LL AU N.𔃾 K.L. Moran...dependent static and magic angle spinning and solid state NMR experiments. Inclusion of GaP within the borate sodalite analogue results in the formation of an...properties of compounds can be dramatically altered by inclusion into the sodalite framework, which is one of several reasons why this zeolite structure

  15. Engineering English and the High-Tech Industry: A Case Study of an English Needs Analysis of Process Integration Engineers at a Semiconductor Manufacturing Company in Taiwan

    ERIC Educational Resources Information Center

    Spence, Paul; Liu, Gi-Zen

    2013-01-01

    The global high-tech industry is characterized by extreme competitiveness, innovation, and widespread use of English. Consequently, Taiwanese high-tech companies require engineers that are talented in both their engineering and English abilities. In response to the lack of knowledge regarding the English skills needed by engineers in Taiwan's…

  16. Engineering English and the High-Tech Industry: A Case Study of an English Needs Analysis of Process Integration Engineers at a Semiconductor Manufacturing Company in Taiwan

    ERIC Educational Resources Information Center

    Spence, Paul; Liu, Gi-Zen

    2013-01-01

    The global high-tech industry is characterized by extreme competitiveness, innovation, and widespread use of English. Consequently, Taiwanese high-tech companies require engineers that are talented in both their engineering and English abilities. In response to the lack of knowledge regarding the English skills needed by engineers in Taiwan's…

  17. Engineering-scale destruction of organics at Savannah River Site using the silver(II) ion

    SciTech Connect

    Fleischman, S.D.; Pierce, R.A.

    1991-09-04

    Electrochemical destruction of organics to carbon dioxide, water, and inorganic salts using the silver(II) ion as an oxidizer has been demonstrated at the Savannah River Site (SRS) on a laboratory scale. An engineering-scale facility has been constructed at SRS for a process demonstration of the technology using benzene. Organic destruction rates, cell efficiencies and off gas generation will be related to key process variables. Electrocell design, peripheral support equipment, engineering considerations, safety issues, and operating parameters will be discussed. Future test plans and the impact of early results on the direction of the organics destruction program at SRS will also be addressed.

  18. Engineering-scale destruction of organics at Savannah River Site using the silver(II) ion

    SciTech Connect

    Fleischman, S.D.; Pierce, R.A.

    1991-09-04

    Electrochemical destruction of organics to carbon dioxide, water, and inorganic salts using the silver(II) ion as an oxidizer has been demonstrated at the Savannah River Site (SRS) on a laboratory scale. An engineering-scale facility has been constructed at SRS for a process demonstration of the technology using benzene. Organic destruction rates, cell efficiencies and off gas generation will be related to key process variables. Electrocell design, peripheral support equipment, engineering considerations, safety issues, and operating parameters will be discussed. Future test plans and the impact of early results on the direction of the organics destruction program at SRS will also be addressed.

  19. Effect of dissolved organic matter on Fe(II) oxidation in natural and engineered waters.

    PubMed

    Lee, Ying Ping; Fujii, Manabu; Terao, Koumei; Kikuchi, Tetsuro; Yoshimura, Chihiro

    2016-10-15

    Fe(II) oxidation was investigated in samples from the Sagami River basin (Japan) with particular emphasis on the effect of dissolved organic matter (DOM) in an urban river system. Collected samples consisted of main stream and tributary waters impacted to a moderate and minor extent by anthropogenic activities, respectively, and treated effluents from adjacent municipal wastewater treatment plants (MWWTPs: as representative anthropogenic point source). Nanomolar Fe(II) oxidation was measured in air-saturated waters using luminol chemiluminescence in the dark at 25 °C. Second-order rate constant for Fe(II) oxidation (with respect to Fe(II) and O2 concentrations) showed spatial and temporal variation. Annual average of the rate constant was highest for MWWTP effluents, followed by reservoir and river waters, with tributary waters showing the lowest oxidation rate. Manipulation experiments indicated that, in addition to pH (7.8-8.4), DOM characteristics are important explanatory variable for the Fe(II) oxidation. For example, the addition of MWWTP-derived humic-type DOM to anthropogenically less-influenced tributary water resulted in substantial increase in the oxidation rate. Significant negative correlation observed between the specific UV absorbance (SUVA254) and Fe(II) oxidation rate constant (pH 8.0) suggests a potential effect of humic-type DOM with low SUVA254 (high aliphatic content) on Fe(II) oxidation in natural and engineered waters.

  20. Excited Electron Dynamics at Semiconductor-Molecule Type-II Heterojunction Interface: First-Principles Dynamics Simulation.

    PubMed

    Li, Lesheng; Kanai, Yosuke

    2016-04-21

    Excited electron dynamics at semiconductor-molecule interfaces is ubiquitous in various energy conversion technologies. However, a quantitative understanding of how molecular details influence the quantum dynamics of excited electrons remains a great scientific challenge because of the complex interplay of different processes with various time scales. Here, we employ first-principles electron dynamics simulations to investigate how molecular features govern the dynamics in a representative interface between the hydrogen-terminated Si(111) surface and a cyanidin molecule. Hot electron transfer to the chemisorbed molecule was observed but was short-lived on the molecule. Interfacial electron transfer to the chemisorbed molecule was found to be largely decoupled from hot electron relaxation within the semiconductor surface. While the hot electron relaxation was found to take place on a time scale of several hundred femtoseconds, the subsequent interfacial electron transfer was slower by an order of magnitude. At the same time, this secondary process of picosecond electron transfer is comparable in time scale to typical electron trapping into defect states in the energy gap.

  1. Nature-Inspired, Highly Durable CO2 Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light.

    PubMed

    Kuriki, Ryo; Matsunaga, Hironori; Nakashima, Takuya; Wada, Keisuke; Yamakata, Akira; Ishitani, Osamu; Maeda, Kazuhiko

    2016-04-20

    A metal-free organic semiconductor of mesoporous graphitic carbon nitride (C3N4) coupled with a Ru(II) binuclear complex (RuRu') containing photosensitizer and catalytic units selectively reduced CO2 into HCOOH under visible light (λ > 400 nm) in the presence of a suitable electron donor with high durability, even in aqueous solution. Modification of C3N4 with Ag nanoparticles resulted in a RuRu'/Ag/C3N4 photocatalyst that exhibited a very high turnover number (>33000 with respect to the amount of RuRu'), while maintaining high selectivity for HCOOH production (87-99%). This turnover number was 30 times greater than that reported previously using C3N4 modified with a mononuclear Ru(II) complex, and by far the highest among the metal-complex/semiconductor hybrid systems reported to date. The results of photocatalytic reactions, emission decay measurements, and time-resolved infrared spectroscopy indicated that Ag nanoparticles on C3N4 collected electrons having lifetimes of several milliseconds from the conduction band of C3N4, which were transferred to the excited state of RuRu', thereby promoting photocatalytic CO2 reduction driven by two-step photoexcitation of C3N4 and RuRu'. This study also revealed that the RuRu'/Ag/C3N4 hybrid photocatalyst worked efficiently in water containing a proper electron donor, despite the intrinsic hydrophobic nature of C3N4 and low solubility of CO2 in an aqueous environment.

  2. High-throughput engineering and analysis of peptide binding to class II MHC

    PubMed Central

    Jiang, Wei; Boder, Eric T.

    2010-01-01

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity. PMID:20622157

  3. Cutaneous exposure scenarios for engineered nanoparticles used in semiconductor fabrication: a preliminary investigation of workplace surface contamination

    PubMed Central

    Shepard, Michele; Brenner, Sara

    2014-01-01

    Background: Numerous studies are ongoing in the fields of nanotoxicology and exposure science; however, gaps remain in identifying and evaluating potential exposures from skin contact with engineered nanoparticles in occupational settings. Objectives: The aim of this study was to identify potential cutaneous exposure scenarios at a workplace using engineered nanoparticles (alumina, ceria, amorphous silica) and evaluate the presence of these materials on workplace surfaces. Methods: Process review, workplace observations, and preliminary surface sampling were conducted using microvacuum and wipe sample collection methods and transmission electron microscopy with elemental analysis. Results: Exposure scenarios were identified with potential for incidental contact. Nanoparticles of silica or silica and/or alumina agglomerates (or aggregates) were identified in surface samples from work areas where engineered nanoparticles were used or handled. Conclusions: Additional data are needed to evaluate occupational exposures from skin contact with engineered nanoparticles; precautionary measures should be used to minimize potential cutaneous exposures in the workplace. PMID:25000112

  4. Conductivity in transparent oxide semiconductors.

    PubMed

    King, P D C; Veal, T D

    2011-08-24

    Despite an extensive research effort for over 60 years, an understanding of the origins of conductivity in wide band gap transparent conducting oxide (TCO) semiconductors remains elusive. While TCOs have already found widespread use in device applications requiring a transparent contact, there are currently enormous efforts to (i) increase the conductivity of existing materials, (ii) identify suitable alternatives, and (iii) attempt to gain semiconductor-engineering levels of control over their carrier density, essential for the incorporation of TCOs into a new generation of multifunctional transparent electronic devices. These efforts, however, are dependent on a microscopic identification of the defects and impurities leading to the high unintentional carrier densities present in these materials. Here, we review recent developments towards such an understanding. While oxygen vacancies are commonly assumed to be the source of the conductivity, there is increasing evidence that this is not a sufficient mechanism to explain the total measured carrier concentrations. In fact, many studies suggest that oxygen vacancies are deep, rather than shallow, donors, and their abundance in as-grown material is also debated. We discuss other potential contributions to the conductivity in TCOs, including other native defects, their complexes, and in particular hydrogen impurities. Convincing theoretical and experimental evidence is presented for the donor nature of hydrogen across a range of TCO materials, and while its stability and the role of interstitial versus substitutional species are still somewhat open questions, it is one of the leading contenders for yielding unintentional conductivity in TCOs. We also review recent work indicating that the surfaces of TCOs can support very high carrier densities, opposite to the case for conventional semiconductors. In thin-film materials/devices and, in particular, nanostructures, the surface can have a large impact on the total

  5. Electrochemical photovoltaic cells/stabilization and optimization of II-VI semiconductors. First technical progress report, 15 April 1980-30 June 1980

    SciTech Connect

    Noufi, R.; Tench, D.; Warren, L.

    1980-07-20

    The overall goal of this program is to provide the basis for designing a practical electrochemical solar cell based on the II-VI compound semiconductors. Emphasis is on developing new electrolyte redox systems and electrode surface modifications which will stabilize the II-VI compounds against photodissolution without seriously degrading the long-term solar response. The bulk electrode material properties are also being optimized to provide the maximum solar conversion efficiency and greatest inherent electrode stability. Factors limiting the short circuit current of the n-CdSe/methanol/ferro-ferricyanide system to 17.5 mA/cm/sup 2/ have been identified. The principal limiting factor is apparently specific adsorption of hexacyanoferrate species on the electrode surface which occurs at higher redox couple concentrations and slows the overall charge transfer process. Ion pairing also occurs, resulting in a low mass transport rate (smaller diffusion coefficients and increased solution viscosity), and probably enhances the degree of specific adsorption. Improvements in the performance of this system will require mitigation of the interactions between the redox species and the electrode surface, e.g., via electrolytes with reduced ion-pairing tendencies or the use of electrode surface films. Photoelectrochemically generated polypyrrole films have been shown to protect CdX photoanodes from dissolution while permitting electron exchange with the electrolyte. Current effort is directed toward improving the film adhesion and optimizing the performance characteristics.

  6. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    PubMed

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity.

  7. Femtosecond studies of photoinduced electron dynamics in colloidal quantum-confined II-VI semiconductor nanoparticles: CdS, CdSe and CdZnS

    NASA Astrophysics Data System (ADS)

    Roberti, Trevor

    A variety of synthetic and spectroscopic techniques have been applied to elucidate photoinduced charge carrier processes in II-VI semiconductor quantum dots. These semiconductor nanoparticles exhibit both size-dependent optical tuning due to the quantum-confinement effect and power-dependent absorption, bleach and emission characteristics. Although the tunable-absorption has been well characterized, the subsequent trapping and recombination processes are still under much investigation and are the subject of this dissertation. Particles with vastly differing surfaces, sizes, energetics and solvents have been characterized using various spectroscopic techniques in unison. The primary technique was transient femtosecond near-IR absorption, which was used to characterize charge carrier processes on the subpicosecond and picosecond time scales. UV-visible spectroscopy was used to characterize the size of the particles. Static fluorescence measurements were used to characterize the surface of the particles and the relative amount of radiative recombination. Nanosecond fluorescence measurements were also used to assist in the assignment of the fast, power-dependent near-IR absorption decay. The research reported here makes two fundamental contributions to the photophysics of semiconductor nanoparticles. First, the power-dependent, few picosecond decay process has primarily been assigned to electron-hole recombination via exciton-exciton annihilation. As the power increases, higher order, Auger processes may also arise. The exciton-exciton annihilation mechanism was primarily deduced based on power-dependent fluorescence measurements which exhibited the formation of short-lived exciton fluorescence at high powers. Secondly, many nanoparticle properties and environments were varied in order to better understand the observed picosecond processes and the effect of variations on these processes. The systems studied ranged from aqueous acidic and basic quantum dots of differing

  8. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications

    PubMed Central

    Minteer, Danielle Marie; Young, Matthew T; Lin, Yen-Chih; Over, Patrick J; Rubin, J Peter; Gerlach, Jorg C

    2015-01-01

    To address the functionality of diabetic adipose-derived stem cells in tissue engineering applications, adipose-derived stem cells isolated from patients with and without type II diabetes mellitus were cultured in bioreactor culture systems. The adipose-derived stem cells were differentiated into adipocytes and maintained as functional adipocytes. The bioreactor system utilizes a hollow fiber–based technology for three-dimensional perfusion of tissues in vitro, creating a model in which long-term culture of adipocytes is feasible, and providing a potential tool useful for drug discovery. Daily metabolic activity of the adipose-derived stem cells was analyzed within the medium recirculating throughout the bioreactor system. At experiment termination, tissues were extracted from bioreactors for immunohistological analyses in addition to gene and protein expression. Type II diabetic adipose-derived stem cells did not exhibit significantly different glucose consumption compared to adipose-derived stem cells from patients without type II diabetes (p > 0.05, N = 3). Expression of mature adipocyte genes was not significantly different between diabetic/non-diabetic groups (p > 0.05, N = 3). Protein expression of adipose tissue grown within all bioreactors was verified by Western blotting.The results from this small-scale study reveal adipose-derived stem cells from patients with type II diabetes when removed from diabetic environments behave metabolically similar to the same cells of non-diabetic patients when cultured in a three-dimensional perfusion bioreactor, suggesting that glucose transport across the adipocyte cell membrane, the hindrance of which being characteristic of type II diabetes, is dependent on environment. The presented observation describes a tissue-engineered tool for long-term cell culture and, following future adjustments to the culture environment and increased sample sizes, potentially for anti-diabetic drug testing. PMID:26090087

  9. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications.

    PubMed

    Minteer, Danielle Marie; Young, Matthew T; Lin, Yen-Chih; Over, Patrick J; Rubin, J Peter; Gerlach, Jorg C; Marra, Kacey G

    2015-01-01

    To address the functionality of diabetic adipose-derived stem cells in tissue engineering applications, adipose-derived stem cells isolated from patients with and without type II diabetes mellitus were cultured in bioreactor culture systems. The adipose-derived stem cells were differentiated into adipocytes and maintained as functional adipocytes. The bioreactor system utilizes a hollow fiber-based technology for three-dimensional perfusion of tissues in vitro, creating a model in which long-term culture of adipocytes is feasible, and providing a potential tool useful for drug discovery. Daily metabolic activity of the adipose-derived stem cells was analyzed within the medium recirculating throughout the bioreactor system. At experiment termination, tissues were extracted from bioreactors for immunohistological analyses in addition to gene and protein expression. Type II diabetic adipose-derived stem cells did not exhibit significantly different glucose consumption compared to adipose-derived stem cells from patients without type II diabetes (p > 0.05, N = 3). Expression of mature adipocyte genes was not significantly different between diabetic/non-diabetic groups (p > 0.05, N = 3). Protein expression of adipose tissue grown within all bioreactors was verified by Western blotting.The results from this small-scale study reveal adipose-derived stem cells from patients with type II diabetes when removed from diabetic environments behave metabolically similar to the same cells of non-diabetic patients when cultured in a three-dimensional perfusion bioreactor, suggesting that glucose transport across the adipocyte cell membrane, the hindrance of which being characteristic of type II diabetes, is dependent on environment. The presented observation describes a tissue-engineered tool for long-term cell culture and, following future adjustments to the culture environment and increased sample sizes, potentially for anti-diabetic drug testing.

  10. Radiation-enhanced thermal diffusion of transition metal and rare earth ions into II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Martinez, Alán.; Williams, Lamario; Gafarov, Ozarfar; Martyshkin, Dmitry; Fedorov, Vladimir; Mirov, Sergey

    2015-02-01

    We report on study of gamma radiation-enhanced thermal diffusion of Transition Metal and Rare Earth ions into IIVI semiconductor crystals. ZnSe and ZnS samples with of iron thin film deposited on one facet were sealed in evacuated quartz ampoules at 10-3 Torr. The crystals were annealed for 14 days at 950°C under γ-irradiation from 60Co source. The irradiation dose rates of 43.99 R/s, 1.81 R/s were varied by distance between 60Co source and furnaces. For comparison, the samples were also annealed without irradiation at the same temperature. The spatial distributions of transition metal were measured by absorption of focused laser radiation at 5T2-5E mid-IR transitions of iron ions. In addition, samples of ZnSe were similarly sealed in evacuated quartz ampoules in the presence of Praseodymium metal and annealed at 950°C under 43.99 R/s and 0 R/s and the diffusion lengths and Pr concentrations were compared. The γ-irradiation results in better intrusion of the iron ions from the metal film and increase of the diffusion length at ~25%, while Praseodymium diffusion is dramatically enhanced by γ-irradiation during the annealing process.

  11. Bi-photon imaging and diagnostics using ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies

    NASA Astrophysics Data System (ADS)

    Hafian, Hilal; Sukhanova, Alyona; Chames, Patrick; Baty, Daniel; Pluot, Michel; Cohen, Jacques H. M.; Nabiev, Igor R.; Millot, Jean-Marc

    2012-10-01

    Semiconductor fluorescent quantum dots (QDs) have just demonstrated their numerous advantages over organic dyes in bioimaging and diagnostics. One of characteristics of QDs is a very large cross section of their twophoton absorption. A common approach to biodetection by means of QDs is to use monoclonal antibodies (mAbs) for targeting. Recently, we have engineered ultrasmall diagnostic nanoprobes (sdAb-QD) based on highly oriented conjugates of QDs with the single-domain antibodies (sdAbs) against cancer biomarkers. With a molecular weight of only 13 kDa (12-fold smaller than full-size mAbs) and extreme stability and capacity to refolding, sdAbs are the smallest functional Ab fragments capable of binding antigens with affinities comparable to those of conventional Abs. Ultrasmall diagnostic sdAb-QD nanoprobes were engineered through oriented conjugation of QDs with sdAbs. This study is the first to demonstrate the possibility of immunohistochemical imaging of colon carcinoma biomarkers with sdAb-QD conjugates by means of two-photon excitation. The optimal excitation conditions for imaging of the markers in clinical samples with sdAb-QD nanoprobes have been determined. The absence of sample autofluorescence significantly improves the sensitivity of biomarker detection with the use of the two-photon excitation diagnostic setup.

  12. Metabolic engineering of Pichia pastoris for the production of dammarenediol-II.

    PubMed

    Liu, Xin-Bin; Liu, Min; Tao, Xin-Yi; Zhang, Zhong-Xi; Wang, Feng-Qing; Wei, Dong-Zhi

    2015-12-20

    Dammarenediol-II is the nucleus of dammarane-type ginsenosides, which are a group of active triterpenoids exhibiting various pharmacological activities. Based on the native triterpene synthetic pathway, a dammarenediol-II synthetic pathway was established in Pichia pastoris by introducing a dammarenediol-II synthase gene (PgDDS) from Panax ginseng, which is responsible for the cyclization of 2,3-oxidosqualene to dammarenediol-II in this study. To enhance productivity, a strategy of "increasing supply and reducing competitive consumption of 2,3-oxidosqualene" was used. To increase the supply of 2,3-oxidosqualene, we augmented expression of the ERG1 gene, which is responsible for 2,3-oxidosqualene synthesis. This significantly improved the yield of dammarenediol-II over 6.7-fold, from 0.030mg/g dry cell weight (DCW) to 0.203mg/g DCW. Subsequently, to reduce competition for 2,3-oxidosqualene from ergosterol biosynthesis without affecting the normal growth of P. pastoris, we targeted the ERG7gene, which is responsible for conversion of 2,3-oxidosqualene to lanosterol. This gene was downregulated by replacing its native promoter with a thiamine-repressible promoter, using a marker-recycling and gene-targeting Cre- lox71/66 system developed for P. pastoris herein. The yield of dammarenediol-II was further increased more than 3.6-fold, to 0.736mg/g DCW. Furthermore, the direct addition of 0.5g/L squalene into the culture medium further enhanced the yield of dammarenediol-II to 1.073mg/g DCW, which was 37.5-fold higher than the yield from the strain with the PgDDS gene introduction only. The P. pastoris strains engineered in this study constitute a good platform for further production of ginsenosides in Pichia species.

  13. Hole doping and pressure effects on the II-II-V-based diluted magnetic semiconductor (B a1 -xKx ) (Zn1-yM ny ) 2A s2

    NASA Astrophysics Data System (ADS)

    Sun, F.; Zhao, G. Q.; Escanhoela, C. A.; Chen, B. J.; Kou, R. H.; Wang, Y. G.; Xiao, Y. M.; Chow, P.; Mao, H. K.; Haskel, D.; Yang, W. G.; Jin, C. Q.

    2017-03-01

    We investigate doping- and pressure-induced changes in the electronic state of Mn 3 d and As 4 p orbitals in II-II-V-based diluted magnetic semiconductor (B a1 -xKx ) (Zn1-yM ny ) 2A s2 to shed light into the mechanism of indirect exchange interactions leading to high ferromagnetic ordering temperature (T c =230 K in optimally doped samples). A suite of x-ray spectroscopy experiments (emission, absorption, and dichroism) show that the emergence and further enhancement of ferromagnetic interactions with increased hole doping into the As 4 p band is accompanied by a decrease in local 3 d spin density at Mn sites. This is a result of increasing Mn 3 d -As 4 p hybridization with hole doping, which enhances indirect exchange interactions between Mn dopants and gives rise to induced magnetic polarization in As 4 p states. On the contrary, application of pressure suppresses exchange interactions. While Mn K β emission spectra show a weak response of 3 d states to pressure, clear As 4 p band broadening (hole delocalization) is observed under pressure, ultimately leading to loss of ferromagnetism concomitant with a semiconductor to metal transition. The pressure response of As 4 p and Mn 3 d states is intimately connected with the evolution of the As-As interlayer distance and the geometry of the MnA s4 tetrahedral units, which we probed with x-ray diffraction. Our results indicate that hole doping increases the degree of covalency between the anion (As) p states and cation (Mn) d states in the MnA s4 tetrahedron, a crucial ingredient to promote indirect exchange interactions between Mn dopants and high T c ferromagnetism. The instability of ferromagnetism and semiconducting states against pressure is mainly dictated by delocalization of anion p states.

  14. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    SciTech Connect

    Yin, Wan-Jian; Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Wei, Su-Huai; Yan, Yanfa

    2015-10-05

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  15. Can high pressure I-II transitions in semiconductors be affected by plastic flow and nanocrystal precipitation in phase I?

    NASA Astrophysics Data System (ADS)

    Weinstein, B. A.; Lindberg, G. P.

    Pressure-Raman spectroscopy in ZnSe and ZnTe single crystals reveals that Se and Te nano-crystals (NCs) precipitate in these II-VI hosts for pressures far below their I-II phase transitions. The inclusions are evident from the appearance and negative pressure-shift of the A1 Raman peaks of Se and Te (trigonal phase). The Se and Te NCs nucleate at dislocations and grain boundaries that arise from pressure-induced plastic flow. This produces chemical and structural inhomogeneities in the zincblende phase of the host. At substantially higher pressures, the I-II transition proceeds in the presence of these inhomogenities. This can affect the transition's onset pressure Pt and width ΔPt, and the occurrence of metastable phases along the transition path. Precipitation models in metals show that nucleation of inclusions depends on the Peierls stress τp and a parameter α related to the net free energy gained on nucleation. For favorable values of τp and α, NC precipitation at pressures below the I-II transition could occur in other compounds. We propose criteria to judge whether this is likely based on the observed ranges of τp in the hosts, and estimates of α derived from the cohesive energy densities of the NC materials. One finds trends that can serve as a useful guide, both to test the proposed criteria, and to decide when closer scrutiny of phase transition experiments is warranted, e.g., in powders where high dislocation densities are initially created

  16. Electronic structure of defects in III-VI and II-VI semiconductors and novel ytterbium-based intermetallics

    NASA Astrophysics Data System (ADS)

    Rak, Zsolt

    In recent years there has been a revival of interest in the III-VI family of semiconductors (GaS, GaSe, GaTe and InSe) due to their exciting nonlinear optical properties and their possible application in detector devices. These materials crystallize in layered crystal structure and their physical properties display a quasi two-dimensional character. An important characteristic of these systems is the existence of Ga-Ga (or In-In) dimers. It is well known that defects control the physical properties of semiconductors. In this thesis, we have carried out electronic structure calculations to study the nature of defect states in these materials. The defects we have studied include substitutional impurities at the cation and the anion sites as well as cationic and anionic vacancies. The failure of the hydrogenic effective mass approximation (EMA) to reproduce the experimental binding energies for the substitutional Cd and Sn defect states in GaSe, indicates the presence of large central cell corrections and the necessity of incorporating short range interactions in the calculation of defect binding energy. This has been done using a supercell model and self-consistent ab initio electronic structure method within density functional theory (DFT), which is known to be quite successful in tackling the problem of defects in semiconductors. Analyzing the defects from first-principles, we have been able to explain the detailed microscopic mechanism of the formation of Ga-site defects in GaSe and GaTe. When Ga is replaced by an impurity or when it is removed from the system to create a vacancy, the Ga dimer states can be strongly perturbed and this perturbation can give rise to defect states in the band gap. Defect formation energy calculations, based on total energy differences between the pure and defect containing systems, can give valuable insight into the solubility of different impurities in a host compound. The formation energies of Ge and Sn impurities reveal that under

  17. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis

    PubMed Central

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-01-01

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts. PMID:27650485

  18. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis.

    PubMed

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-09-21

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts.

  19. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    SciTech Connect

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-10-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  20. Three-Dimensional Topological Insulators in I-III- VI2 and II-IV- V2 Chalcopyrite Semiconductors

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Feng, Wanxiang; Ding, Jun; Yao, Yugui

    2011-03-01

    Using first-principles calculations, we investigate the band topology of the ternary chalcopyrite family. Our method is based on the adiabatic continuity of the Hamiltonian combined with direct calculation of the Z2 topological invariants in inversion-symmetry breaking systems. We show that a large number of these compounds are candidates for three-dimensional topological insulators. Moreover, The topological order can be tuned and controlled by lattice strain. The excellent physical properties of these compounds make them an appealing platform for novel quantum phenomena. Research sponsored by the DOE, Office of BES, Materials Sciences and Engineering Division, and by the NSF and MOST of China.

  1. Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Coyotecatl, H. A.; Del Castillo-Mussot, M.; Reyes, J. A.; Vazquez, G. J.; Montemayor-Aldrete, J. A.; Reyes-Esqueda, J. A.; Cocoletzi, G. H.

    2005-08-01

    We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrodinger equation is similar to that of a 3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this system the effective electron-hole interaction depends on the confinement potentials.

  2. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  3. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  4. Defect engineering of complex semiconductor alloys: Cu2-2xMxO1-yXy

    NASA Astrophysics Data System (ADS)

    Lany, Stephan; Stevanovic, Vladan

    2013-03-01

    The electrical properties of semiconductors are generally controlled via doping, i.e., the incorporation of dilute concentrations of aliovalent impurity atoms, whereas the band structure properties (gap, effective masses, optical properties) are manipulated by alloying, i.e., the incorporation of much larger amounts of isovalent elements. Theoretical approaches usually address either doping or alloying, but rarely both problems at the same time. By combining defect supercell calculations, GW quasi-particle energy calculation, and thermodynamic modeling, we study the range of electrical and band structure properties accessible by alloying aliovalent cations (M = Mg, Zn, Cd) and isovalent anions (X = S, Se) in Cu2O. In order to extend dilute defect models to higher concentrations, we take into account the association/dissociation of defect pairs and complexes, as well as the composition dependence of the band gap and the band edge energies. Considering a composition window for the Cu2-2xMxO1-yXy alloys of 0 <= (x,y) <= 0.2, we predict a wide range of possible band gaps from 1.7 to 2.6 eV, and net doping concentrations between p = 1019 cm-3 and n = 1017cm-3, notably achieving type conversion from p- to n-type at Zn or Cd compositions around x = 0.1. This work is supported as part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.

  5. Investigation of p-side contact layers for II-VI compound semiconductor optical devices fabricated on InP substrates by MBE

    NASA Astrophysics Data System (ADS)

    Takamatsu, Shingo; Nomura, Ichirou; Shiraishi, Tomohiro; Kishino, Katsumi

    2015-09-01

    N-doped p-type ZnTe and ZnSeTe contact layers were investigated to evaluate which is more suitable for use in II-VI compound semiconductor optical devices on InP substrates. Contact resistances (Rc) between the contact layers and several electrode materials (Pd/Pt/Au, Pd/Au, and Au) were measured by the circular transmission line model (c-TLM) method using p-n diode samples grown on InP substrates by molecular beam epitaxy (MBE). The lowest Rc (6.5×10-5 Ω cm2) was obtained in the case of the ZnTe contact and Pd/Pt/Au electrode combination, which proves that the combination is suitable for obtaining low Rc. Yellow light-emitting diode devices with a ZnTe and ZnSeTe p-contact layer were fabricated by MBE to investigate the effect of different contact layers. The devices were characterized under direct current injections at room temperature. Yellow emission at around 600 nm was observed for each device. Higher emission intensity and lower slope resistance were obtained for the device with the ZnTe contact layer and Pd/Pt/Au electrode compared with other devices. These device performances are ascribed to the low Rc of the ZnTe contact and Pd/Pt/Au electrode combination.

  6. Collision-induced dissociation of II-VI semiconductor nanocrystal precursors, Cd2+ and Zn2+ complexes with trioctylphosphine oxide, sulfide, and selenide.

    PubMed

    Min, Won Ja; Jung, Sunghan; Lim, Sung Jun; Kim, Yongwook; Shin, Seung Koo

    2009-09-03

    The metal (M = Cd2+ and Zn2+) complexes with trioctylphosphine chalcogenide (TOPE, E = O, S, and Se) are prepared by electrospray ionization, and their relative stabilities and intramolecular reactions are studied by collision-induced dissociation (CID) with Xe under single collision conditions. These metal-TOPE complexes are considered as molecular precursors for the colloidal synthesis of II-VI compound semiconductor nanocrystals employing TOPO as a metal-coordinating solvent and TOPS or TOPSe as a chalcogen precursor. Of the various [M + nTOPE]2+ (n = 2-7) ions generated by ESI, the n = 2-4 complexes are characterized by CID as a function of collision energy. The collision energy at 50% dissociation (E50%) is determined from the cracking curve and the relative stabilities of the complexes are established. Between the two metal ions, the zinc-TOPE complexes are more stable than the cadmium-TOPE complexes when n = 2-3, whereas their stabilities are reversed when n = 4. Of the TOPE, TOPO binds most strongly to the metal ion, while TOPSe does most weakly. Upon CID, loss of TOPE occurs exclusively from the tetra-TOPE complexes, while extensive fragmentation of TOPE takes place from the di-TOPE complexes, showing the signature of the metal chacogenide formation. The nucleation of nanocrystals appears to begin with cracking of [M + 2TOPE]2+ (E = S and Se).

  7. Scattering amplitudes and static atomic correction factors for the composition-sensitive 002 reflection in sphalerite ternary III-V and II-VI semiconductors.

    PubMed

    Schowalter, M; Müller, K; Rosenauer, A

    2012-01-01

    Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.

  8. Chemical trends of the luminescence in wide band gap II 1-xMn xVI semimagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Benecke, C.; Busse, W.; Gumlich, H.-E.

    1990-04-01

    Time resolved emission and excitation spectroscopy is used to investigate the Mn correlated luminescence in wide band gap II-VI compounds, i.e. Zn 1-xMn xS, Cd 1-xMn xSe, Zn 1-xMn xTe and Cd 1-xMn xTe. Additional Information has been obtained with CdxZnyMnzTe( x+ y+ z=1) in checking the luminescence by variation of the ratio of the cations Cd and Zn. Generally speaking, at least two distinct emissions bands can be observed for each II 1- xMn xVI compound. One emissions band is attributed to the internal transition 4T 1(G)→ 6A 1(S) of the 3d 5 electron of the Mn 2+ on regular metal sites with energies of about ≈2 eV. The other emission band is found to occur in the near infrared range of about ≈1.3 eV. This emission band is tentatively interpreted as a transition of Mn 2+ ions on interstitial sites or in small Mn chalcogenide clusters, both interpretations assuming cubic symmetry. This model is supported by the existence of low energy excitation bands and by the great similarity of the shape of the two emission bands which lead to comparable Huang-Rhys factors and effective phonon energies. Also the established trend in the experimental data of the II-VI compounds under consideration confirm this interpretation. For both the IR and the yellow Mn 2+ center, the Racah parameters B and C and the crystal field parameter Dq are determined on the basis of experimental data. As a result, the energy of both the emission and the excitation bands is predominantly determined by the sorrounding anions. These bands shift to higher energies when the anions are changed in the fixed order: Te→Se→S. Regularly, there is also a spectral shift when Zn is replaced by Cd, which is smaller than the shift due to the variation of onions.

  9. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III

    SciTech Connect

    1998-09-30

    This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: à thermal efficiency (HHV) >47%; à NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); à coal providing >65% of heat input; à all solid wastes benign; à cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: à Task 2.2 HITAF Air Heaters; à Task 6 HIPPS Commercial Plant Design Update.

  10. Effect of Residual Accelerations on the Crystal Growth of II-VI Semiconductors in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Su, C.-H.; Szofran, F. R.; Scripa, R. N.; Cobb, S. D.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper compares and summarizes the effects of residual acceleration during crystal growth on the compositional variation of two II-VI solid solution binary alloys (Hg(0.8)Cd(0.2)Te and Hg(0.84)Zn(0.16)Te). The crystals were grown by directional solidification on the second United States Microgravity Payload (USMP-2) and the first United States Microgravity Laboratory (USML-1) missions, respectively. For both alloys, changes in the direction and magnitude of the quasisteady acceleration vector (approximately 0.4- 1 mu g) caused large changes in the radial compositional distribution that demonstrates the importance of residual accelerations, even in the submicrogravity range, for large density gradients in the melt and slow solidification rates. The observed compositional variations will be correlated to changes in the radial flow velocities ahead of the solidification interface.

  11. Analysis of Performance of Jet Engine from Characteristics of Components II : Interaction of Components as Determined from Engine Operation

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl

    1949-01-01

    In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.

  12. Bone tissue engineering: current strategies and techniques--part II: Cell types.

    PubMed

    Szpalski, Caroline; Barbaro, Marissa; Sagebin, Fabio; Warren, Stephen M

    2012-08-01

    Bone repair and regeneration is a dynamic process that involves a complex interplay between the (1) ground substance; (2) cells; and (3) milieu. Each constituent is integral to the final product, but it is often helpful to consider each component individually. While bone tissue engineering has capitalized on a number of breakthrough technologies, one of the most valued advancements is the incorporation of mesenchymal stem cells (SCs) into bone tissue engineering applications. With this new idea, however, came new found problems of guiding SC differentiation. Moreover, investigators are still working to understand which SCs source produces optimal bone formation in vitro and in vivo. Bone marrow-derived mesenchymal SCs and adipose-derived SCs have been researched most extensively, but other SC sources, including dental pulp, blood, umbilical cord blood, epithelial cells reprogrammed to become induced pluripotent SCs, among others, are being investigated. In Part II of this review series, we discuss the variety of cell types (e.g., osteocytes, osteoblasts, osteoclasts, chondrocytes, mesenchymal SCs, and vasculogenic cells) important in bone tissue engineering.

  13. Characterization of Collagen Type I and II Blended Hydrogels for Articular Cartilage Tissue Engineering.

    PubMed

    Vázquez-Portalatı N, Nelda; Kilmer, Claire E; Panitch, Alyssa; Liu, Julie C

    2016-10-10

    Biomaterials that provide signals present in the native extracellular matrix have been proposed as scaffolds to support improved cartilage regeneration. This study harnesses the biological activity of collagen type II and the superior mechanical properties of collagen type I by characterizing gels made of collagen type I and II blends. The collagen blend hydrogels were able to incorporate both types of collagen and retained chondroitin sulfate and hyaluronic acid. Cryo-scanning electron microscopy images showed that the 3:1 ratio of collagen type I to type II gels had a lower void space percentage (36.4%) than the 1:1 gels (46.5%). The complex modulus was larger for the 3:1 gels (G* = 5.0 Pa) compared to the 1:1 gels (G* = 1.2 Pa). The 3:1 blend consistently formed gels with superior mechanical properties compared to the other blends and has the potential to be implemented as a scaffold for articular cartilage engineering.

  14. Structural and chemical disorder in semiconductors under pressure: Evidence in II-VI’s, role of photoactive defects, material predictions

    NASA Astrophysics Data System (ADS)

    Weinstein, Bernard A.; Lindberg, George P.; Gross, Nelson

    2017-05-01

    Hydrostatic pressure can sometimes generate structural and chemical disorder within crystals. We review pressure-Raman experiments on ZnSe, ZnTe, and CdSe showing evidence for these phenomena. In ZnSe and ZnTe Raman spectra recorded with low laser flux show only pre-transition structural disorder on approaching the lowest pressure transition, as is typical for first-order phase changes. Spectra recorded with higher laser flux (sub-band-gap) observe precipitation of anion nanocrystals. This behavior is absent in CdSe. A model is developed that considers the role of crystal defects. The defects promote plastic deformation assisted by photoexcitation of Jahn-Teller distortions. Nanocrystals can precipitate on dislocations in deformed regions under energetically favorable conditions. Model calculations based on theories for precipitation in metals account for the influence of pressure on the nanocrystal formation in ZnSe and ZnTe, and explain its absence in CdSe. Material maps are constructed to predict the tendencies for similar precipitation in III-V, II-VI, I-VII, and chalcopyrite crystals.

  15. Molecular beam epitaxy engineered III-V semiconductor structures for low-power optically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Device approaches are investigated for optically addressed SLMs based on molecular-beam epitaxy (MBE) engineered III-V materials and structures. Strong photooptic effects can be achieved in periodically delta-doped multiple-quantum-well structures, but are still insufficient for high-contrast modulation with only single- or double-pass absorption through active layers of practical thickness. The asymmetric Fabry-Perot cavity approach is employed to permit extinction of light due to interference of light reflected from the front and back surfaces of the cavity. This approach is realized with an all-MBE-grown structure consisting of GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror and the GaAs surface as the low reflectance mirror. High-contrast modulation is achieved using a low-power InGaAs/GaAs quantum well laser for the control signal.

  16. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  17. Chemically Derivatized Semiconductor Photoelectrodes.

    DTIC Science & Technology

    1982-01-04

    as Si, Ge, and GaAs derivatized with reagents based on ferrocene such as those represented by I and II. Work with p-type semiconductor photoelectrode...Concerning n-type Si it was found that EtOH/0.1 M En-Bu4N)C104 solutions containing A = ferrocene and A+ = ferri-- cinium result in a constant output of...electrical energy from an illuminated photoelectrochemical device configured as in Scheme II.(20) The ferrocene captures the photogenerated h+ at a rate -4

  18. [Effect of the insulation layer of tissue-engineering scaffold on collagen type II expression in the neo-cartilage].

    PubMed

    DA, Hu; Mu, Yunjing; Wang, Wenyong

    2013-07-01

    To investigate the effect of the insulation layer in the tissue-engineering composite osteochondral scaffolds on collagen type II expression in the neo-cartilage. Chondral phases of insulation layer-free or insulation layer-containing biphasic scaffolds were seeded with autogeneic chondrocyte-induced bone marrow-derived mesenchymal stem cells. Then, the biphasic scaffolds-cells constructs were implanted into osteochondral defects of rabbits' knees. The expression of type II collagen in the tissue-engineering cartilages was evaluated by immunohistochemistry and Western blotting at 3 and 6 months after surgery, respectively. Moreover, the mRNA expression of collagen type II was also detected by qRT-PCR. The expression of the collagen type II at both protein and mRNA levels in tissue-engineering neo-cartilages generated by the insulation layer-containing biphasic scaffold were significantly higher than those by the insulation layer-free biphasic scaffold in vivo (P<0.05). After the insulation layer is added into the osteochondral composite scaffold, the collagen type II expression in the tissue-engineering neo-cartilage can be significantly enhanced.

  19. Repository Planning, Design, and Engineering: Part II-Equipment and Costing.

    PubMed

    Baird, Phillip M; Gunter, Elaine W

    2016-08-01

    Part II of this article discusses and provides guidance on the equipment and systems necessary to operate a repository. The various types of storage equipment and monitoring and support systems are presented in detail. While the material focuses on the large repository, the requirements for a small-scale startup are also presented. Cost estimates and a cost model for establishing a repository are presented. The cost model presents an expected range of acquisition costs for the large capital items in developing a repository. A range of 5,000-7,000 ft(2) constructed has been assumed, with 50 frozen storage units, to reflect a successful operation with growth potential. No design or engineering costs, permit or regulatory costs, or smaller items such as the computers, software, furniture, phones, and barcode readers required for operations have been included.

  20. Turbine Engine Fault Detection and Isolation Program. Phase I. Requirements Definition for an Integrated Engine Monitoring System. Volume II.

    DTIC Science & Technology

    1980-04-01

    FAULT DETECTION AND ISOLATION PROGRAM PHASE I - Requirements Definition Study for an Integrated Engine Monitoring System DTIC SYSTEMS CONTROL...performance monitoring on-condition maintenance performance trending engine fault detection and isolation 20 ABSTRACT (Continue an rsierse aide If...operational units and organizations actively participated in this study effort. Their technical input to the Turbine Engine Fault Detection and Isolation

  1. Properties of II-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems. Materials Research Society Symposium Proceedings. Volume 161

    DTIC Science & Technology

    1990-11-21

    quantum well (MQW) structures, which can confine electrons and holes in a two-dimensional well , fabricated by MBE [2] and MOCVD [3]. Despite the...N Pie MA’ FERIA -LS - RESEAR(--’H -)CIFFY VOLUME 161 Properties of 11-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures...Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnet;-- Systems :1ity CodeS JLECTE0 Nov 15 1990 SDISTRI:7UTICN SAT EM~

  2. Studies of High Power Density, Pico-Second Rise-Time Light Activated Semiconductor Switch

    DTIC Science & Technology

    1988-12-31

    34 Proceedings of the IEEE, vol.55, pp.2192-2193, 1967. 3. McKay, K., K. McAfee, "Electron Multiplication in Silicon and Germanium ," Physical Review...Conwell, E., "Properties of Silicon and Germanium : II," Proceedings of the Institute of Radio Engineers. vol.46, pp.1281-1300, 1958. 6. Zucker, 0...light activated semiconductor switches made of silicon junction diode have been demonstrated. A novel optical delay line has been designed in sampling

  3. Semiconductor devices: solar cells. January 1975-May 1981 (citations from the International Information Service for the Physics and Engineering Communities Data Base). Report for Jan 75-May 81

    SciTech Connect

    Not Available

    1981-05-01

    The applications of semiconductor devices to solar cells and arrays are presented. Emphasis is placed on manufacturing processes, cell design, and performance. (Contains 235 citations fully indexed and including a title list.)

  4. DEVELOPMENT OF A SUPERSONIC TRANSPORT AIRCRAFT ENGINE - PHASE II-A.

    DTIC Science & Technology

    JET TRANSPORT PLANES, *SUPERSONIC AIRCRAFT ) (U) TURBOJET ENGINES , PERFORMANCE( ENGINEERING ), TURBOFAN ENGINES , AFTERBURNING, SPECIFICATIONS...COMPRESSORS, GEOMETRY, TURBOJET INLETS, COMBUSTION, TEST EQUIPMENT, TURBINE BLADES , HEAT TRANSFER, AIRFOILS , CASCADE STRUCTURES, EVAPOTRANSPIRATION, PLUG NOZZLES, ANECHOIC CHAMBERS, BEARINGS, SEALS, DESIGN, FATIGUE(MECHANICS)

  5. Engineering Two-dimensional Materials Surface Chemistry.

    PubMed

    Shih, Chih-Jen

    2016-11-30

    This account reviews our recent research activities and achievements in the field of two-dimensional (2D) materials surface chemistry. 2D materials are atomically thin, so that carriers are less-restricted to move in the in-plane direction, whereas the out-of-plain motion is quantum-confined. Semiconductor quantum wells and graphene are two well-known examples. Applications of 2D materials in optoelectronics, surface modification, and complex materials must overcome engineering challenges associated with understanding and engineering surface chemistry of 2D materials, which essentially bridge multiscale physical phenomena. In my research group, we understand and engineer broad aspects of chemistry and physics at nanomaterials surfaces for advancing nanomaterials-based technologies. The three main topics covered in this account are as follows: i) colloidal synthesis of stacking-controlled 2D materials, ii) wetting properties of 2D materials, and iii) engineering electronic transport at 2D materials-semiconductor interfaces.

  6. Hyperentangled photon sources in semiconductor waveguides

    NASA Astrophysics Data System (ADS)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei V.; Torres, Juan P.; Sipe, J. E.; Helmy, A. S.

    2014-02-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering which allows for simultaneous modal phase matching with the pump beam in a higher-order mode. Paired photons generated in each process are cross polarized and guided by different guiding mechanisms, which produces entanglement in both polarization and spatial mode. Theoretical analysis shows that the output quantum state has a high quality of hyperentanglement by spectral filtering with a bandwidth of a few nanometers, while off-chip compensation is not needed. This technique offers a path to realize an electrically pumped hyperentangled photon source.

  7. A stepwise increase in pristinamycin II biosynthesis by Streptomyces pristinaespiralis through combinatorial metabolic engineering.

    PubMed

    Li, Lei; Zhao, Yawei; Ruan, Lijun; Yang, Sheng; Ge, Mei; Jiang, Weihong; Lu, Yinhua

    2015-05-01

    Pristinamycin, which is a streptogramin antibiotic produced by Streptomyces pristinaespiralis, contains two chemically unrelated compounds, pristinamycin I (PI) and pristinamycin II (PII). Semi-synthetic derivatives of PI and PII have been approved for use in human medicine to treat a broad range of drug-resistant pathogens. In this study, we design and implement a combinatorial metabolic engineering strategy for improving PII production. First, an extra copy of the PII biosynthetic gene cluster, which was assembled using a modified Gibson assembly method for cloning large DNA fragments with high GC contents, was introduced into a high-producing strain S. pristinaespiralis HCCB10218. This duplication of the PII biosynthetic gene cluster resulted in a maximum increase in PII titer by 45%. Second, all seven cluster-situated regulatory genes (from papR1 to papR6 and spbR) were systematically manipulated. Higher PII titers were achieved by deleting either one of the two repressor genes papR3 or papR5 in combination with overexpression of both activator genes papR4 and papR6, and the resulting strains ∆papR3+R4R6 and ∆papR5+R4R6 showed maximum increases in PII production by 99% and 75%, respectively. A combination of the above two different approaches was employed. Integration of the assembled PII gene cluster (BAC-F1F15) into ∆papR5+R4R6 led to the highest PII titer improvement, which was approximately 1.5-fold higher than the parental strain. By adding the macroreticular resin, which can separate pristinamycin in situ and thereby lessen end-product feedback inhibition and toxic effects, PII titers of the final engineered strain ∆papR5+R4R6/BAC-F1F15 reached 1.13 and 1.16g/L in the Erlenmeyer flask and 5-L bioreactor, respectively, with 5.13- and 5.26-fold improvements over the parental strain. Taken together, this combinatorial strategy is an efficient method to optimize PII biosynthesis of S. pristinaespiralis and may be extended to other industrially used

  8. Engineering semiconductor hybrids for sensing

    NASA Astrophysics Data System (ADS)

    Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong

    2016-06-01

    The effect of screening of the coulomb interaction between two layers of two-dimensional electrons, such as in graphene, by a highly doped semiconducting substrate is investigated. We employ the random-phase approximation to calculate the dispersion equation of this hybrid structure in order to determine the plasmon excitation spectrum. When an electric current is passed through a layer, the low-frequency plasmons in the layer may bifurcate into separate streams due to the current-driving effect. At a critical wave vector, determined by the separation between layers and their distance from the surface, their phase velocities may be in opposite directions and a surface plasmon instability leads to the emission of radiation. Applications to detectors and other electromagnetic devices exploiting nano-plasmonics are discussed.

  9. Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.

    PubMed

    Vinyard, David J; Gimpel, Javier; Ananyev, Gennady M; Mayfield, Stephen P; Dismukes, G Charles

    2014-03-12

    The D1 protein of Photosystem II (PSII) provides most of the ligating amino acid residues for the Mn4CaO5 water-oxidizing complex (WOC) and half of the reaction center cofactors, and it is present as two isoforms in the cyanobacterium Synechococcus elongatus PCC 7942. These isoforms, D1:1 and D1:2, confer functional advantages for photosynthetic growth at low and high light intensities, respectively. D1:1, D1:2, and seven point mutations in the D1:2 background that are native to D1:1 were expressed in the green alga Chlamydomonas reinhardtii. We used these nine strains to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions (where charge recombination is significant) have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period. Conversely, these same strains under light saturation (where charge recombination does not compete) confer a correspondingly faster O2 evolution rate and greater protection against photoinhibition. Taken together, the data clearly establish that PSII primary charge separation is a trade-off between photochemical productivity (water oxidation and plastoquinone reduction) and charge recombination (photoprotection). These trade-offs add up to a significant growth advantage for the two natural isoforms. These insights provide fundamental design principles for engineering of PSII reaction centers with optimal photochemical efficiencies for growth at low versus high light intensities.

  10. One-pot synthesis of class II lanthipeptide bovicin HJ50 via an engineered lanthipeptide synthetase

    PubMed Central

    Wang, Jian; Ge, Xiaoxuan; Zhang, Li; Teng, Kunling; Zhong, Jin

    2016-01-01

    Lanthipeptides are a large class of bacteria-produced, ribosomally-synthesized and post-translationally modified peptides. They are recognized as peptide antibiotics because most of them exhibit potent antimicrobial activities against Gram-positive bacteria especially those that are phylogenetically related to producers. Maturation of class II lanthipeptide like bovicin HJ50 undergoes precursor modification by LanM and a subsequent leader peptide cleavage by LanT. Herein, via co-expression of precursor gene bovA, modification gene bovM and transporter gene bovT in Escherichia coli C43 (DE3), bioactive bovicin HJ50 was successfully produced and secreted. To further achieve in vitro one-pot synthesis of bovicin HJ50, an engineered bovicin HJ50 synthetase BovT150M was obtained by fusing the peptidase domain of BovT (BovT150) to the N-terminus of BovM. BovT150M exhibited dual functions of precursor modification and leader peptide cleavage to release mature bovicin HJ50. Under the guidance of BovA leader peptide, BovT150M exhibited substrate tolerance to modify non-native substrates including suicin and lacticin 481. This work exemplifies the feasibility of enzyme chimera of peptidase domain (LanT150) and modification enzyme (LanM) as a one-pot lanthipeptide synthetase. PMID:27924934

  11. One-pot synthesis of class II lanthipeptide bovicin HJ50 via an engineered lanthipeptide synthetase.

    PubMed

    Wang, Jian; Ge, Xiaoxuan; Zhang, Li; Teng, Kunling; Zhong, Jin

    2016-12-07

    Lanthipeptides are a large class of bacteria-produced, ribosomally-synthesized and post-translationally modified peptides. They are recognized as peptide antibiotics because most of them exhibit potent antimicrobial activities against Gram-positive bacteria especially those that are phylogenetically related to producers. Maturation of class II lanthipeptide like bovicin HJ50 undergoes precursor modification by LanM and a subsequent leader peptide cleavage by LanT. Herein, via co-expression of precursor gene bovA, modification gene bovM and transporter gene bovT in Escherichia coli C43 (DE3), bioactive bovicin HJ50 was successfully produced and secreted. To further achieve in vitro one-pot synthesis of bovicin HJ50, an engineered bovicin HJ50 synthetase BovT150M was obtained by fusing the peptidase domain of BovT (BovT150) to the N-terminus of BovM. BovT150M exhibited dual functions of precursor modification and leader peptide cleavage to release mature bovicin HJ50. Under the guidance of BovA leader peptide, BovT150M exhibited substrate tolerance to modify non-native substrates including suicin and lacticin 481. This work exemplifies the feasibility of enzyme chimera of peptidase domain (LanT150) and modification enzyme (LanM) as a one-pot lanthipeptide synthetase.

  12. Combat Engineers of World War II: Lessons on training and Mobilization

    DTIC Science & Technology

    2014-06-13

    one engineer unit in all of the Philippines, the 14th Engineer Combat Battalion ( ECB ) Philippine Scouts.11 The Philippine Army divisional engineer...Instructors were provided by the 14th ECB .14 Enlisted soldiers were provided limited training in water supply operations, use of hand tools, and...the Filipinos the essentials of combat engineering, officers of the 14th ECB and 803rd EAB provided each engineer battalion two four-hour periods

  13. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  14. Quantum Transport in Semiconductor Devices

    DTIC Science & Technology

    1994-06-30

    TITLE AND SUBTITLE S. FUNDING NUMBERS " Quantum Transport in Semiconductor Devices" 6. AUTHOR(S) ,DftftLo3-91-6-oo 7 David K. Ferry 7. PERFORMING...OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL NZIN 1540-01-280-5500 Standard Form 298 (Rev 2-89) PrinCrlt>• oy ANSI SIC Z39-18 QUANTUM ... TRANSPORT IN SEMICONDUCTOR DEVICES Final Report on DAAL03-91-G-0067 (28461-EL) David K. Ferry, Principal Investigator Department of Electrical Engineering

  15. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants.

    PubMed

    Yang, Xinghong; Wen, Xiaogang; Gong, Hongmei; Lu, Qingtao; Yang, Zhipan; Tang, Yunlai; Liang, Zheng; Lu, Congming

    2007-02-01

    Genetically engineered tobacco (Nicotiana tabacum L.) with the ability to accumulate glycinebetaine was established. The wild type and transgenic plants were exposed to heat treatment (25-50 degrees C) for 4 h in the dark and under growth light intensity (300 mumol m(-2) s(-1)). The analyses of oxygen-evolving activity and chlorophyll fluorescence demonstrated that photosystem II (PSII) in transgenic plants showed higher thermotolerance than in wild type plants in particular when heat stress was performed in the light, suggesting that the accumulation of glycinebetaine leads to increased tolerance to heat-enhanced photoinhibition. This increased tolerance was associated with an improvement on thermostability of the oxygen-evolving complex and the reaction center of PSII. The enhanced tolerance was caused by acceleration of the repair of PSII from heat-enhanced photoinhibition. Under heat stress, there was a significant accumulation of H(2)O(2), O (2) (-) and catalytic Fe in wild type plants but this accumulation was much less in transgenic plants. Heat stress significantly decreased the activities of catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase in wild type plants whereas the activities of these enzymes either decreased much less or maintained or even increased in transgenic plants. In addition, heat stress increased the activity of superoxide dismutase in wild type plants but this increase was much greater in transgenic plants. Furthermore, transgenic plants also showed higher content of ascorbate and reduced glutathione than that of wild type plants under heat stress. The results suggest that the increased thermotolerance induced by accumulation of glycinebetaine in vivo was associated with the enhancement of the repair of PSII from heat-enhanced photo inhibition, which might be due to less accumulation of reactive oxygen species in transgenic plants.

  16. Preliminary Transient Performance Data on the J73 Turbojet Engine. II - Altitude, 35,000 Feet

    NASA Technical Reports Server (NTRS)

    Lubick, Robert J.; Sobolewski, Adam E.

    1953-01-01

    A program was undertaken to determine the J73 turbojet engine compressor stall and surge characteristics and combustor blow-out limits encountered during transient engine operation. Data were obtained in the form of oscillograph traces showing the time history of several engine performance parameters with changes in engine fuel flow. The data presented in this report are for step changes in fuel flow at an altitude of 35,000 feet, at flight Mach numbers of 0.3, 0.8, and 1.2, and at several engine-inlet temperatures,

  17. EDITORIAL: Oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Kawasaki, M.; Makino, T.

    2005-04-01

    Blue or ultraviolet semiconducting light-emitting diodes have the potential to revolutionize illumination systems in the near-future. Such industrial need has propelled the investigation of several wide-gap semiconducting materials in recent years. Commercial applications include blue lasers for DVD memory and laser printers, while military applications are also expected. Most of the material development has so far been focused on GaN (band gap 3.5 eV at 2 K), and ZnSe (2.9 eV) because these two representative direct transition semiconductors are known to be bright emitting sources. GaN and GaN-based alloys are emerging as the winners in this field because ZnSe is subject to defect formation under high current drive. On the other hand, another II-VI compound, ZnO, has also excited substantial interest in the optoelectronics-oriented research communities because it is the brightest emitter of all, owing to the fact that its excitons have a 60 meV binding energy. This is compared with 26 meV for GaN and 20 meV for ZnSe. The stable excitons could lead to laser action based on their recombination even at temperatures well above room temperature. ZnO has additional major properties that are more advantageous than other wide-gap materials: availability of large area substrates, higher energy radiation stability, environmentally-friendly ingredients, and amenability to wet chemical etching. However, ZnO is not new to the semiconductor field as exemplified by several studies made during the 1960s on structural, vibrational, optical and electrical properties (Mollwo E 1982 Landolt-Boernstein New Series vol 17 (Berlin: Springer) p 35). In terms of devices, the luminescence from light-emitting diode structures was demonstrated in which Cu2O was used as the p-type material (Drapak I T 1968 Semiconductors 2 624). The main obstacle to the development of ZnO has been the lack of reproducible p-type ZnO. The possibility of achieving epitaxial p-type layers with the aid of thermal

  18. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  19. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  20. III-V semiconductor Quantum Well systems: Physics of Gallium Arsenide two-dimensional hole systems and engineering of mid-infrared Quantum Cascade lasers

    NASA Astrophysics Data System (ADS)

    Chiu, YenTing

    This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further

  1. Molecular tectonics: crystal engineering of mixed valence Fe(II)/Fe(III) solid solutions.

    PubMed

    Dechambenoit, Pierre; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2010-02-14

    Based on isostructurality between crystals formed upon combining the dicationic tecton 2 with either M(3)Fe(III)(CN)(6) or M(4)Fe(II)(CN)(6) (M = Cs), a rare example of an H-bonded mixed valence Fe(ii)-Fe(iii) solid solution ((Cs(2)2(3)-[Fe(II)(CN)(6)](2))(0.83)(2(3)-[Fe(III)(CN)(6)](2))(0.17))) and curious necklace-like composite crystals were generated.

  2. Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: Competition of direct exchange interaction and superexchange interaction

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofang; Qi, Jingshan; Shi, Daning

    2015-01-01

    In this paper, we demonstrate by the density functional theory calculations that the monolayer CrSiTe3 is an intrinsic ferromagnetic semiconductor. More importantly, ferromagnetic stability can be enhanced significantly by applying an elastic tensile stain, implying their potential applications in spintronic devices at room temperature. In addition, a ferromagnetic-antiferromagnetic transition occurs under the small compression stain. The underlying physical mechanism is attributed to a competition effect of direct antiferromagnetic interaction and indirect ferromagnetic superexchange interaction.

  3. 75 FR 49528 - Freescale Semiconductor, Inc., Networking and Multimedia Group (“NMG”) Excluding the Multimedia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Employment and Training Administration Freescale Semiconductor, Inc., Networking and Multimedia Group (``NMG..., applicable to workers of Freescale Semiconductor, Inc., Networking and Multimedia Group (``NMG''), excluding... design and engineering services for chips used in networking and multimedia products. The company...

  4. Recent Development of the Two-Stroke Engine. II - Design Features. 2; Design Features

    NASA Technical Reports Server (NTRS)

    Zeman, J.

    1945-01-01

    Completing the first paper dealing with charging methods and arrangements, the present paper discusses the design forms of two-stroke engines. Features which largely influence piston running are: (a) The shape and surface condition of the sliding parts. (b) The cylinder and piston materials. (c) Heat conditions in the piston, and lubrication. There is little essential difference between four-stroke and two-stroke engines with ordinary pistons. In large engines, for example, are always found separately cast or welded frames in which the stresses are taken up by tie rods. Twin piston and timing piston engines often differ from this design. Examples can be found in many engines of German or foreign make. Their methods of operation will be dealt with in the third part of the present paper, which also includes the bibliography. The development of two-stroke engine design is, of course, mainly concerned with such features as are inherently difficult to master; that is, the piston barrel and the design of the gudgeon pin bearing. Designers of four-stroke engines now-a-days experience approximately the same difficulties, since heat stresses have increased to the point of influencing conditions in the piston barrel. Features which notably affect this are: (a) The material. (b) Prevailing heat conditions.

  5. Colloquium: Persistent spin textures in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Schliemann, John

    2017-01-01

    Device concepts in semiconductor spintronics make long spin lifetimes desirable, and the requirements put on spin control by proposals for quantum information processing are even more demanding. Unfortunately, due to spin-orbit coupling electron spins in semiconductors are generically subject to rather fast decoherence. In two-dimensional quantum wells made of zinc-blende semiconductors, however, the spin-orbit interaction can be engineered to produce persistent spin structures with extraordinarily long spin lifetimes even in the presence of disorder and imperfections. Experimental and theoretical developments on this subject for both n -doped and p -doped structures are reviewed and possible device applications are discussed.

  6. Novel Semiconductors

    DTIC Science & Technology

    2006-11-30

    low-temperature synthesis method we recently developed, and (ii) the synthesis of defined molecular precursors of bimetallic oxides, thereby...Najarian, J. C. Weaver, and D.E. Morse. 2005. Functionalized gold nanoparticles mimic catalytic activity of a polysiloxane-synthesizing enzyme. Advanced...Biocatalytic synthesis of a nanostructured and crystalline bimetallic perovskite-like barium oxofluorotitanate at low temperature. J. Amer. Chem

  7. Raman spectra of Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} magnetic quaternary semiconductor compounds with tetragonal stannite type structure

    SciTech Connect

    Rincón, C. Quintero, M.; Power, Ch.; Moreno, E.; Quintero, E.; Morocoima, M.; Henao, J. A.; Macías, M. A.

    2015-05-28

    A comparative study of the Raman spectra of Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} and Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI}(where B = Mn or Fe) magnetic quaternary semiconductor compounds with stannite-type structure (I4{sup ¯}2m) has been done. Most of the fourteen Raman lines expected for these materials were observed in the spectra. The two strongest lines observed have been assigned to the IR inactive A{sub 1}{sup 1} and A{sub 1}{sup 2} stannite modes that originated from the motion of the S or Se anion around the Cu and C{sup IV} cations remaining at rest. The shift in the frequency of these two lines of about 150 cm{sup −1} to lower energies observed in Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI} compounds as compared to those in Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} ones, can then be explained as due to the anion mass effect. Based on the fact that values of these frequencies depend mainly on anion mass and bond-stretching forces between nearest-neighbor atoms, the vibrational frequencies v{sup ¯}(A{sub 1}{sup 2}) and v{sup ¯}(A{sub 1}{sup 2}) of both modes for several Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} stannite compounds (where X = S, Se, or Te) very close to the experimental data reported for these materials were calculated from a simple model that relates these stretching forces to the anion-cation bond-distances.

  8. Controlled growth of semiconductor nanofilms within TiO₂ nanotubes for nanofilm sensitized solar cells.

    PubMed

    Zheng, Xiaojia; Yu, Dongqi; Xiong, Feng-Qiang; Li, Mingrun; Yang, Zhou; Zhu, Jian; Zhang, Wen-Hua; Li, Can

    2014-04-28

    Anodized TiO2 nanotubes were decorated by II-VI semiconductor nanofilms via atomic layer deposition (ALD) and further employed as photoanodes of semiconductor nanofilm sensitized solar cells (NFSCs) exhibiting superior photovoltaic performance.

  9. Half-metallic diluted antiferromagnetic semiconductors.

    PubMed

    Akai, H; Ogura, M

    2006-07-14

    The possibility of half-metallic antiferromagnetism, a special case of ferrimagnetism with a compensated magnetization, in the diluted magnetic semiconductors is highlighted on the basis of the first-principles electronic structure calculation. As typical examples, the electrical and magnetic properties of II-VI compound semiconductors doped with 3d transition metal ion pairs--(V, Co) and (Fe, Cr)--are discussed.

  10. Hydrogen in anion vacancies of semiconductors

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2009-01-01

    Density functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either two-fold or four-fold coordinated, and has either amphoteric or shallow donor character. In general, the multi-coordination of hydrogen in an anion vacancy is the indication of an anionic H, H { ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy.

  11. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-II

    SciTech Connect

    Reitz, R.D.; Rutland, C.J.

    1993-09-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: Wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo`vich NO{sub x}, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described in this report. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and computations have been made of intake flow in the ports and combustion chamber of a two-intake-valve engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons have been made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results have been obtained showing the effect of injection rate and split injections on engine performance and emissions.

  12. Delta-doping of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schubert, E. F.

    2005-08-01

    Part I: 1. Introduction E. F. Schubert; Part II: 2. Electronic structure of delta-doped semiconductors C. R. Proetto; Part III: 3. Recent progress in delta-like confinement of impurities in GaAs K. H. Ploog; 4. Flow-rate modulation epitaxy (FME) of III-V semiconductors T. Makimoto and Y. Horikoshi; 5. Gas source molecular beam epitaxy (MBE) of delta-doped III-V semiconductors D. Ritter; 6. Solid phase epitaxy for delta-doping in silicon I. Eisele; 7. Low temperature MBE of silicon H.-J. Gossmann; Part IV: 8. Secondary ion mass spectrometry of delta-doped semiconductors H. S. Luftmann; 9. Capacitance-voltage profiling E. F. Schubert; 10. Redistribution of impurities in III-V semiconductors E. F. Schubert; 11. Dopant diffusion and segregation in delta-doped silicon films H.-J. Gossmann; 12. Characterisation of silicon and delta-doped structures in GaAs R. C. Newman; 13. The DX-center in silicon delta-doped GaAs and AlxGa1-xAs P. M. Koenraad; Part V: 14. Luminescence and ellipsometry spectroscopy H. Yao and E. F. Schubert; 15. Photoluminescence and Raman spectroscopy of single delta-doped III-V semiconductor heterostructures J. Wagner and D. Richards; 16. Electron transport in delta-doped quantum wells W. T. Masselink; 17. Electron mobility in delta-doped layers P. M. Koenraad; 18. Hot electrons in delta-doped GaAs M. Asche; 19. Ordered delta-doping R. L. Headrick, L. C. Feldman and B. E. Weir; Part IV: 20. Delta-doped channel III-V field effect transistors (FETs) W.-P. Hong; 21. Selectively doped heterostructure devices E. F. Schubert; 22. Silicon atomic layer doping FET K. Nakagawa and K. Yamaguchi; 23. Planar doped barrier devices R. J. Malik; 24. Silicon interband and intersubband photodetectors I. Eisele; 25. Doping superlattice devices E. F. Schubert.

  13. Influence of non steady gravity on natural convection during micro-gravity solidification of semiconductors. I - Time scale analysis. II - Implications for crystal growth experiments

    NASA Technical Reports Server (NTRS)

    Griffin, P. R.; Motakef, S.

    1989-01-01

    Consideration is given to the influence of temporal variations in the magnitude of gravity on natural convection during unidirectional solidification of semiconductors. It is shown that the response time to step changes in g at low Rayleigh numbers is controlled by the momentum diffusive time scale. At higher Rayleigh numbers, the response time to increases in g is reduced because of inertial effects. The degree of perturbation of flow fields by transients in the gravitational acceleration on the Space Shuttle and the Space Station is determined. The analysis is used to derive the requirements for crystal growth experiments conducted on low duration low-g vehicles. Also, the effectiveness of sounding rockets and KC-135 aircraft for microgravity experiments is examined.

  14. Influence of non steady gravity on natural convection during micro-gravity solidification of semiconductors. I - Time scale analysis. II - Implications for crystal growth experiments

    NASA Technical Reports Server (NTRS)

    Griffin, P. R.; Motakef, S.

    1989-01-01

    Consideration is given to the influence of temporal variations in the magnitude of gravity on natural convection during unidirectional solidification of semiconductors. It is shown that the response time to step changes in g at low Rayleigh numbers is controlled by the momentum diffusive time scale. At higher Rayleigh numbers, the response time to increases in g is reduced because of inertial effects. The degree of perturbation of flow fields by transients in the gravitational acceleration on the Space Shuttle and the Space Station is determined. The analysis is used to derive the requirements for crystal growth experiments conducted on low duration low-g vehicles. Also, the effectiveness of sounding rockets and KC-135 aircraft for microgravity experiments is examined.

  15. Materials and Fabrication Methods II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; Bay, Robert

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…

  16. Shaping the Future. Volume II: Perspectives on Undergraduate Education in Science, Mathematics, Engineering, and Technology.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    This is a companion study to "Shaping the Future: New Expectations for Undergraduate Education in Science, Math, Engineering, and Technology (SMET)" (NSF 96-139). Both the original report and Volume 2 focus on a collaborative approach to developing and implementing strategies to improve undergraduate SMET education. The reports, compiled…

  17. Chemical Science and Technology II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  18. Designing Preclinical Instruction for Psychomotor Skills (II)--Instructional Engineering: Task Analysis.

    ERIC Educational Resources Information Center

    Knight, G. William; And Others

    1994-01-01

    The first step in engineering the instruction of dental psychomotor skills, task analysis, is explained. A chart details the procedural, cognitive, desired-criteria, and desired-performance analysis of a single task, occlusal preparation for amalgam restoration with carious lesion. (MSE)

  19. Designing Preclinical Instruction for Psychomotor Skills (II)--Instructional Engineering: Task Analysis.

    ERIC Educational Resources Information Center

    Knight, G. William; And Others

    1994-01-01

    The first step in engineering the instruction of dental psychomotor skills, task analysis, is explained. A chart details the procedural, cognitive, desired-criteria, and desired-performance analysis of a single task, occlusal preparation for amalgam restoration with carious lesion. (MSE)

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  1. Part I: Synthesis and study of nonacene derivatives; Part II: Optoelectronic properties of metal-semiconductor nanocomposites in strongly coupled regime

    NASA Astrophysics Data System (ADS)

    Khon, Dmitriy

    Acenes are polycyclic aromatic hydrocarbons (PAHs) consisting of linearly fused benzene rings. In the recent past, acenes have been of interest from fundamental and applied perspectives. Smaller acenes such as benzene, naphthalene, and anthracene are among the most studied organic compounds and their properties are well explored. Pentacene has received considerable attention as the most promising active semiconductor for use in organic thin film transistors (TFT) because of its high charge-carrier mobility; however, poor environmental stability is one of the problems limiting its practical application. As the number of rings increases, the members of the acene family become increasingly reactive. The successful synthesis of heptacene developed by Mondal et al. used the Strating-Zwanenberg photodecarbonylation reaction. The lesser stability of the tetracene moieties in the nonacene photoprecursor compared to the anthracene moieties of the heptacene process make its synthesis more challenging. The latter scheme requires 2,3-dibromoanthracene as one of the starting materials. Besides the poor solubility of 2,3-dibromoanthracene, failure was also due to insufficient formation of anthracyne upon treatment of 2,3-dibromoanthracene with n-BuLi. Although the initial idea didn't work we used the same scheme replacing 2,3-dibromoanthracene with 7,8-dibromo-1,4-dihydroanthracene. The reaction of the latter with 5,6,7,8-tetramethylenebicyclo[2.2.2]oct-2-ene gave 1,4,7,8,9,12,15,18,19,20-octadecahydro-8,19-diethenononacene albeit in low yield. Multiple attempts to dehydrogenate the non-aromatic rings using DDQ and other reagents under various conditions failed to produce the desired compound. Recently Miller reported the synthesis of relatively stable heptacene derivatives having a combination of arylthio and o-dialkylphenyl substituents. Miller's scheme used 1,2,4,5-tetrakis(bromomethyl)-3,6-bis(4'- t-butylthiophenyl)benzene as the core precursor. Another synthetic approach

  2. Enhanced carrier multiplication in engineered quasi-type-II quantum dots

    PubMed Central

    Cirloganu, Claudiu M.; Padilha, Lazaro A.; Lin, Qianglu; Makarov, Nikolay S.; Velizhanin, Kirill A.; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.

    2014-01-01

    One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462

  3. Project PRE-Schooner II. Postshot Geologic and Engineering Properties Investigations

    DTIC Science & Technology

    1967-11-01

    rock medium. 9 1. 5 PROJECT LOCATION AND ACCESSIBILITY The Pre-Schooner II Event was located in Owyhee County of southwestern Idaho. The site is...Radiation Laboratory, Livermore. 11. L. M. Gard and J. W. Hasler; "Geology of Proposed Schooner Site, Bruneau River Area, Owyhee County, Idaho" USGS

  4. TIBER II/ETR final design report: Volume 1, 1. 0 Introduction; 2. 0 plasma engineering

    SciTech Connect

    Lee, J.D.

    1987-09-01

    This paper discusses the design of the TIBER II tokamak test reactor. Specific topics discussed are the physics objectives for Tiber, magnetics, baseline operating point, pulsed inductive operation, edge physics and impurity control, fueling, disruption control, vertical stability and impurity flow reversal. (LSP)

  5. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  6. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    DOEpatents

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  7. Graded core/shell semiconductor nanorods and nanorod barcodes

    SciTech Connect

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  8. Plasma Processes for Semiconductor Fabrication

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  9. Understanding band alignments in semiconductor heterostructures: Composition dependence and type-I-type-II transition of natural band offsets in nonpolar zinc-blende AlxGa1 -xN /AlyGa1 -yN composites

    NASA Astrophysics Data System (ADS)

    Landmann, M.; Rauls, E.; Schmidt, W. G.

    2017-04-01

    The composition dependence of the natural band alignment at nonpolar AlxGa1 -xN /AlyGa1 -yN heterojunctions is investigated via hybrid functional based density functional theory. Accurate band-gap data are provided using Heyd-Scuseria-Ernzerhof (HSE) type hybrid functionals with a composition dependent exact-exchange contribution. The unstrained band alignment between zincblende (zb) AlxGa1 -xN semiconductor alloys is studied within the entire ternary composition range utilizing the Branch-point technique to align the energy levels related to the bulklike direct Γv→Γc and indirect, pseudodirect, respectively, Γv→Xc type transitions in zb-AlxGa1 -xN . While the zb-GaN/AlxGa1 -xN band edges consistently show a type-I alignment, the relative position of fundamental band edges changes to a type-II alignment in the Al-rich composition ranges of zb-AlxGa1 -xN /AlN and zb-AlxGa1 -xN /AlyGa1 -yN systems. The presence of a direct-indirect band-gap transition at xc=0.63 in zb-AlxGa1 -xN semiconductor alloys gives rise to a notably different composition dependence of band discontinuities in the direct and indirect energy-gap ranges. Below the critical direct-indirect Al/Ga-crossover concentration, the band offsets show a close to linear dependence on the alloy composition. In contrast, notable bowing characteristics of all band discontinuities are observed above the critical crossover composition.

  10. Optical Characterization of Antimony-Based, Types-I and -II, Multiple Quantum-Well Semiconductor Structures for Mid-Infrared Laser Applications

    DTIC Science & Technology

    2003-03-01

    material. The type-I sample is represented by a hollow triangle and the type-II materials are represented by filled in symbols. The dashed lines are......Polarizing Beam Splitter λ/2 Vacuum Chamber/ Cryostat Off-Axis Parabolic Mirrors (Au Coated) Neutral Density Filter Wheel Retroreflector Delay Stage

  11. Photoelectrosynthesis at semiconductor electrodes

    SciTech Connect

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  12. Semiconductor ohmic contact

    NASA Technical Reports Server (NTRS)

    Hawrylo, F. Z.; Kressel, H.

    1977-01-01

    Contact formed on p-type surface of semiconductor laser has several advantages: highly conductive degenerate region and narrow band gap provides surface for good metal-to-semiconductor contact; lattice parameter of GaAs is 5.6533 A; improved lattice match eases interface strain which reduces interface cracking of semiconductor material.

  13. "Black Betsy": The 6000C-4 rocket engine, 1945-1989. Part II

    NASA Astrophysics Data System (ADS)

    Winter, Frank H.

    Part I of this paper introduced the 6000C-4 rocket engine, popularly called "Black Betsy", as the powerplant which propelled the Bell X-1 aircraft that achieved the world's first supersonic manned flight in 1947. The background and development of this engine, which began in 1945 by Reaction Motors, Inc. was related. The use of the 6000C-4 (signifying 6000 lb or 2270 kg of thrust from four combustion chambers) in the three Bell X-1 aircraft and advanced X-1s (X-1A, X-1B, X-1D, and X-1E) were also detailed. The last of these planes flew up to 1958. This paper continues recounting the remarkably successful and long career of the engine and examines its use in the Douglas D-558-1 Skyrocket, XF-91, MX-774 test missile, in various miscellaneous projects, as interim powerplants for the X-15, landing maneuvering rockets in several Lifting Bodies (HL-10, MS-F3, X-24A, and X-24B), and up to the current Sonic Wind rocket-propelled subsonic ice-sled.

  14. Physics with chemically and isotopically pure semiconductors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Chemically and isotopically pure semiconductors offer a wealth of interesting physics. We review a number of impurity complexes which were discovered in ultrapure Germanium. The have led the way to the widely pursued studies of hydrogen in numerous semiconductors. Isotope related effects and processes include neutron transmutation doping, a technique used for a number of silicon and germanium devices. Isotopically pure and deliberately mixed crystals of germanium have been grown recently and have been used to study the dependence of the indirect bandgap and phonon properties on the mass and mass disorder of the nuclei. The large number of stable isotopes of the various semiconductors present a great potential for basic and applied studies. Semi-conductor isotope engineering may become a reality because of the new economic and political world order.

  15. Physics with chemically and isotopically pure semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1993-05-01

    Chemically and isotopically pure semiconductors offer a wealth of interesting physics. We review a number of impurity complexes which were discovered in ultrapure Germanium. They have led the way to the widely pursued studies of hydrogen in numerous semiconductors. Isotope related effects and processes include neutron transmutation doping, a technique used for a number of silicon and germanium devices. Isotopically pure and deliberately mixed crystals of germanium have been grown recently and have been used to study the dependence of the indirect bandgap and phonon properties on the mass and mass disorder of the nuclei. The large number of stable isotopes of the various semiconductors present a great potential for basic and applied studies. Semi-conductor isotope engineering may become a reality because of the new economic and political world order.

  16. Altitude-chamber Performance of British Roll-royce Nene II Engine IV : Effect of Operational Variables on Temperature Distribution at Combustion-chamber Outlets

    NASA Technical Reports Server (NTRS)

    Huntley, Sidney C

    1950-01-01

    Temperature surveys were made at the combustion-chamber outlets of a British Rolls-Royce Nene II engine. The highest mean nozzle-vane and mean gas temperatures were found to occur at a radius approximately 75% of the nozzle-vane length from the inner ring of the nozzle-vane assembly. Variations in engine speed, jet-nozzle area, simulated altitude, and simulated flight speed altered the temperature level but did not materially affect the pattern of radial temperature distribution.

  17. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  18. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  19. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  20. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  1. Impact of linker engineering on the catalytic activity of metal–organic frameworks containing Pd(II)–bipyridine complexes

    DOE PAGES

    Li, Xinle; Van Zeeland, Ryan; Maligal-Ganesh, Raghu V.; ...

    2016-08-09

    A series of mixed-linker bipyridyl metal–organic framework (MOF)-supported palladium(II) catalysts were used to elucidate the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki–Miyaura cross-coupling reactions. m-6,6'-Me2bpy-MOF-PdCl2 exhibited 110- and 496-fold enhancements in activity compared to nonfunctionalized m-bpy-MOF-PdCl2 and m-4,4'-Me2bpy-MOF-PdCl2, respectively. Furthermore, this result clearly demonstrates that the stereoelectronic properties of metal-binding linker units are critical to the activity of single-site organometallic catalysts in MOFs and highlights the importance of linker engineering in the design and development of efficient MOF catalysts.

  2. Impact of linker engineering on the catalytic activity of metal–organic frameworks containing Pd(II)–bipyridine complexes

    SciTech Connect

    Li, Xinle; Van Zeeland, Ryan; Maligal-Ganesh, Raghu V.; Pei, Yuchen; Power, Gregory; Stanley, Levi; Huang, Wenyu

    2016-08-09

    A series of mixed-linker bipyridyl metal–organic framework (MOF)-supported palladium(II) catalysts were used to elucidate the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki–Miyaura cross-coupling reactions. m-6,6'-Me2bpy-MOF-PdCl2 exhibited 110- and 496-fold enhancements in activity compared to nonfunctionalized m-bpy-MOF-PdCl2 and m-4,4'-Me2bpy-MOF-PdCl2, respectively. Furthermore, this result clearly demonstrates that the stereoelectronic properties of metal-binding linker units are critical to the activity of single-site organometallic catalysts in MOFs and highlights the importance of linker engineering in the design and development of efficient MOF catalysts.

  3. Impact of linker engineering on the catalytic activity of metal–organic frameworks containing Pd(II)–bipyridine complexes

    SciTech Connect

    Li, Xinle; Van Zeeland, Ryan; Maligal-Ganesh, Raghu V.; Pei, Yuchen; Power, Gregory; Stanley, Levi; Huang, Wenyu

    2016-08-09

    A series of mixed-linker bipyridyl metal–organic framework (MOF)-supported palladium(II) catalysts were used to elucidate the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki–Miyaura cross-coupling reactions. m-6,6'-Me2bpy-MOF-PdCl2 exhibited 110- and 496-fold enhancements in activity compared to nonfunctionalized m-bpy-MOF-PdCl2 and m-4,4'-Me2bpy-MOF-PdCl2, respectively. Furthermore, this result clearly demonstrates that the stereoelectronic properties of metal-binding linker units are critical to the activity of single-site organometallic catalysts in MOFs and highlights the importance of linker engineering in the design and development of efficient MOF catalysts.

  4. Pressure-Driven Cooperative Spin-Crossover, Large-Volume Collapse, and Semiconductor-to-Metal Transition in Manganese(II) Honeycomb Lattices.

    PubMed

    Wang, Yonggang; Zhou, Zhengyang; Wen, Ting; Zhou, Yannan; Li, Nana; Han, Fei; Xiao, Yuming; Chow, Paul; Sun, Junliang; Pravica, Michael; Cornelius, Andrew L; Yang, Wenge; Zhao, Yusheng

    2016-12-07

    Spin-crossover (SCO) is generally regarded as a spectacular molecular magnetism in 3d(4)-3d(7) metal complexes and holds great promise for various applications such as memory, displays, and sensors. In particular, SCO materials can be multifunctional when a classical light- or temperature-induced SCO occurs along with other cooperative structural and/or electrical transport alterations. However, such a cooperative SCO has rarely been observed in condensed matter under hydrostatic pressure (an alternative external stimulus to light or temperature), probably due to the lack of synergy between metal neighbors under compression. Here, we report the observation of a pressure-driven, cooperative SCO in the two-dimensional (2D) honeycomb antiferromagnets MnPS3 and MnPSe3 at room temperature. Applying pressure to this confined 2D system leads to a dramatic magnetic moment collapse of Mn(2+) (d(5)) from S = 5/2 to S = 1/2. Significantly, a number of collective phenomena were observed along with the SCO, including a large lattice collapse (∼20% in volume), the formation of metallic bonding, and a semiconductor-to-metal transition. Experimental evidence shows that all of these events occur in the honeycomb lattice, indicating a strongly cooperative mechanism that facilitates the occurrence of the abrupt pressure-driven SCO. We believe that the observation of this cooperative pressure-driven SCO in a 2D system can provide a rare model for theoretical investigations and lead to the discovery of more pressure-responsive multifunctional materials.

  5. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect

    Guo, Yijun; Rowland, Clare E; Schaller, Richard D; Vela, Javier

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  6. Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors

    DTIC Science & Technology

    2015-08-27

    effect is present in the device. The EQE was determined by measuring the photocurrent under a 633 nm laser light confined onto the pixel under test...photodetector for visible light detection and a well- developed InSb PIN sub-photodetector for MWIR detection, which are electrically connected by a...the desire to use III-V substrates for II-VI material epitaxial growth, and the possibility of developing novel optoelectronic devices utilizing III-V

  7. Mechanisms of current flow in metal-semiconductor ohmic contacts

    SciTech Connect

    Blank, T. V. Gol'dberg, Yu. A.

    2007-11-15

    Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II-VI semiconductors (ZnSe, ZnO), III-V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1-0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3-0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed.

  8. Aqueous Synthesis of Protein-Encapsulated ZnSe Quantum Dots and Physical Significance of Semiconductor-Induced Cu(II) Ion Sensing.

    PubMed

    Kundu, Somashree; Maiti, Susmita; Ghosh, Debasmita; Roy, Chandra Nath; Saha, Abhijit

    2017-09-20

    In view of their promising bio-applicability, we have synthesized water-soluble bovine serum albumin (BSA)-encapsulated ZnSe quantum dots (QDs) with visible emission with longer average luminescence lifetimes of approximately 125 ns at ambient conditions. BSA-ZnSe QDs are shown to be efficient selective copper ion probes in the presence of physiologically important metal ions through luminescence quenching with a high Stern-Volmer constant (3.3×10(5)  m(-1) ). The mechanism of sensing has been explained in terms of electron transfer processes and the apparent rate of electron transfer (Ket ) from ZnSe QDs to Cu(2+) has been calculated to be 2.8×10(8)  s(-1) . It is demonstrated that the negative conduction band potential plays a major role in the feasibility of the electron transfer process, which is reflected in the higher efficacy of ZnSe QDs in sensing copper(II) ions over other group II-VI quantum dots, namely, CdSe, ZnS, or CdS. The results observed with cysteine-capped QDs are almost identical to those with BSA-encapsulated QDs and this presumably negates the possible reason of Cu(II) ion induced quenching ascribed to its binding with surface groups or replacement of metal sites as proposed by several groups previously. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ice Protection of Turbojet Engines by Inertia Separation of Water II : Single-offset-duct System

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Investigation of a single-offset-duct system designed to prevent entrance of water into a turbojet engine was conducted on a half-scale nacelle model. An investigation was made to determine ram-pressure recovery and radial velocity profiles at the compressor section and icing characteristics of such a duct system. At a design inlet velocity of 0.77, the maximum ram-pressure recovery attained with effective water-separating inlet was 77 percent, which is considerably less than attainable with a direct-ram inlet. Continuous heating of the accessory-housing surface would be required for inlets that have a small ice storage space.

  10. Polymorph engineering of CuMO2 (M = Al, Ga, Sc, Y) semiconductors for solar energy applications: from delafossite to wurtzite.

    PubMed

    Scanlon, David O; Walsh, Aron

    2015-12-01

    The cuprous oxide based ternary delafossite semiconductors have been well studied in the context of p-type transparent conducting oxides. CuAlO2, CuGaO2 and CuInO2 represent a homologous series where the electronic properties can be tuned over a large range. The optical transparency of these materials has been associated with dipole forbidden transitions, which are related to the linear O-Cu-O coordination motif. The recent demonstration that these materials can be synthesized in tetrahedral structures (wurtzite analogues of the chalcopyrite lattice) opens up a new vista of applications. We investigate the underlying structure-property relationships (for Group 3 and 13 metals), from the perspective of first-principles materials modelling, towards developing earth-abundant photoactive metal oxides. All materials studied possess indirect fundamental band gaps ranging from 1 to 2 eV, which are smaller than their delafossite counterparts, although in all cases the difference between direct and indirect band gaps is less than 0.03 eV.

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIX, I--ENGINE TUNE-UP--CUMMINS DIESEL ENGINE, II--FRONT END SUSPENSION AND AXLES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…

  13. Engineered Mononuclear Variants in Bacillus cereus Metallo-β-lactamase BcII Are Inactive†

    PubMed Central

    Abriata, Luciano A.; González, Lisandro J.; Llarrull, Leticia I.; Tomatis, Pablo E.; Myers, William K.; Costello, Alison L.; Tierney, David L.; Vila, Alejandro J.

    2008-01-01

    Metallo-β-lactamases (MβLs) are zinc enzymes able to hydrolyze almost all β-lactam antibiotics, rendering them inactive, at the same time endowing bacteria high levels of resistance. The design of inhibitors active against all classes of MβLs has been hampered by their structural diversity and by the heterogeneity in metal content in enzymes from different sources. BcII is the metallo-β-lactamase from Bacillus cereus, which is found in both the mononuclear and dinuclear forms. Despite extensive studies, there is still controversy about the nature of the active BcII species. Here we have designed two mutant enzymes in which each one of the metal binding sites was selectively removed. Both mutants were almost inactive, despite preserving most of the structural features of each metal site. These results reveal that neither site isolated in the MβL scaffold is sufficient to render a fully active enzyme. This suggests that only the dinuclear species is active or that the mononuclear variants can be active only if aided by other residues that would be metal ligands in the dinuclear species. PMID:18652482

  14. Engineered Mononuclear Variants in Bacillus cereus Metallo-beta-lactamase BcII Are Inactive

    SciTech Connect

    Abriata,L.; Gonzalez, L.; Llarrull, L.; Tomatis, P.; Myers, W.; Costello, A.; Tierney, D.; Vila, A.

    2008-01-01

    Metallo-{beta}-lactamases (M{beta}Ls) are zinc enzymes able to hydrolyze almost all {beta}-lactam antibiotics, rendering them inactive, at the same time endowing bacteria high levels of resistance. The design of inhibitors active against all classes of M{beta}Ls has been hampered by their structural diversity and by the heterogeneity in metal content in enzymes from different sources. BcII is the metallo-{beta}-lactamase from Bacillus cereus, which is found in both the mononuclear and dinuclear forms. Despite extensive studies, there is still controversy about the nature of the active BcII species. Here we have designed two mutant enzymes in which each one of the metal binding sites was selectively removed. Both mutants were almost inactive, despite preserving most of the structural features of each metal site. These results reveal that neither site isolated in the M{beta}L scaffold is sufficient to render a fully active enzyme. This suggests that only the dinuclear species is active or that the mononuclear variants can be active only if aided by other residues that would be metal ligands in the dinuclear species.

  15. Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function

    PubMed Central

    Weber, K. Scott; Donermeyer, David L.; Allen, Paul M.; Kranz, David M.

    2005-01-01

    The T cell receptor (TCR) αβ heterodimer determines the peptide and MHC specificity of a T cell. It has been proposed that in vivo selection processes maintain low TCR affinities because T cells with higher-affinity TCRs would (i) have reduced functional capacity or (ii) cross-react with self-peptides resulting in clonal deletion. We used the class II-restricted T cell clone 3.L2, specific for murine hemoglobin (Hb/I-Ek), to explore these possibilities by engineering higher-affinity TCR mutants. A 3.L2 single-chain TCR (Vβ-linker-Vα) was mutagenized and selected for thermal stability and surface expression in a yeast display system. Stabilized mutants were used to generate a library with CDR3 mutations that were selected with Hb/I-Ek to isolate a panel of affinity mutants with KD values as low as 25 nM. Kinetic analysis of soluble single-chain TCRs showed that increased affinities were the result of both faster on-rates and slower off-rates. T cells transfected with the mutant TCRs and wild-type TCR responded to similar concentrations of peptide, indicating that the increased affinity was not detrimental to T cell activation. T cell transfectants maintained exquisite hemoglobin peptide specificity, but an altered peptide ligand that acted as an antagonist for the wild-type TCR was converted to a strong agonist with higher-affinity TCRs. These results show that T cells with high-affinity class II reactive TCRs are functional, but there is an affinity threshold above which an increase in affinity does not result in significant enhancement of T cell activation. PMID:16365315

  16. Molecular Engineering, Photophysical and Electrochemical Characterizations of Novel Ru(II) and BODIPY Sensitizers for Mesoporous TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Cheema, Hammad Arshad

    To realize the dream of a low carbon society and ensure the wide spread application of renewable energy sources such as solar energy, photovoltaic devices should be highly efficient, cost-effective and stable for at least 20 years. Dye sensitized solar cells (DSCs) are photovoltaic cells that mimic the natural photosynthesis. In a DSC, the dye absorbs photons from incident light and converts those photons to electric charges, which are then extracted to the outer circuit through semiconductor TiO2, whereas the mediator regenerates the oxidized dye. A sensitizer is the pivotal component in the device in terms of determining the spectral response, color, photocurrent density, long term stability, and thickness of a DSC. The breakthrough report by O'Regan and Gratzel in 1991 has garnered more than 18,673 citations (as of October 9, 2014), which indicates the immense scientific interest to better understand and improve the fundamental science of this technology. With the aforementioned in mind, this study has focused on the molecular engineering of novel sensitizers to provide a better understanding of structure-property relationships of novel sensitizers for DSCs. The characterization of sensitizers (HD-1-mono, HD-2-mono and HD-2) for photovoltaic applications showed that the photocurrent response of DSCs can be increased by using mono-ancillary ligand instead of bis-ancillary ligands, which is of great commercial value considering the difference in the molecular weights of both dyes. The results of this work were published in Journal of Materials Chemistry A (doi:10.1039/c4ta01942c) and ACS Applied Materials and Interfaces (doi: 10.1021/am502400b). Furthermore, structure-property relationships were investigated in Ru (II) sensitizers HL-41 and HL-42 in order to elucidate the steric effects of electron donating ancillary ligands on photocurrent and photovoltage, as discussed in Chapter 4. It was found that the electron donating group (ethoxy) ortho to the CH=CH spacer

  17. Mid-IR semiconductor lasers for chemical sensing

    NASA Technical Reports Server (NTRS)

    Hill, C. J.; Yang, R. Q.

    2003-01-01

    The development of mid-IR semiconductor diode lasers based on type-II interband cascade structures is presented. How these diode lasers can be developed to meet the requirements in chemical sensing applications is discussed.

  18. Mid-IR semiconductor lasers for chemical sensing

    NASA Technical Reports Server (NTRS)

    Hill, C. J.; Yang, R. Q.

    2003-01-01

    The development of mid-IR semiconductor diode lasers based on type-II interband cascade structures is presented. How these diode lasers can be developed to meet the requirements in chemical sensing applications is discussed.

  19. Seals/Secondary Fluid Flows Workshop 1997; Volume II: HSR Engine Special Session

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C. (Editor)

    2006-01-01

    The High Speed Civil Transport (HSCT) will be the largest engine ever built and operated at maximum conditions for long periods of time. It is being developed collaboratively with NASA, FAA, Boeing-McDonnell Douglas, Pratt & Whitney, and General Electric. This document provides an initial step toward defining high speed research (HSR) sealing needs. The overview for HSR seals includes defining objectives, summarizing sealing and material requirements, presenting relevant seal cross-sections, and identifying technology needs. Overview presentations are given for the inlet, turbomachinery, combustor and nozzle. The HSCT and HSR seal issues center on durability and efficiency of rotating equipment seals, structural seals and high speed bearing and sump seals. Tighter clearances, propulsion system size and thermal requirements challenge component designers.

  20. Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin

    SciTech Connect

    Rouhier, Nicolas . E-mail: nrouhier@scbiol.uhp-nancy.fr; Gama, Filipe; Wingsle, Gunnar; Gelhaye, Eric; Gans, Pierre; Jacquot, Jean-Pierre

    2006-03-24

    The existence of natural peroxiredoxin-glutaredoxin hybrid enzymes in several bacteria is in line with previous findings indicating that poplar peroxiredoxin II can use glutaredoxin as an electron donor. This peroxiredoxin remains however unique since it also uses thioredoxin with a quite good efficiency. Based on the existing fusions, we have created artificial enzymes containing a poplar peroxiredoxin module linked to glutaredoxin or thioredoxin modules. The recombinant fusion enzymes folded properly into non-covalently bound homodimers or homotetramers. Two of the three protein constructs exhibit peroxidase activity, a reaction where the two modules need to function together, but they also display enzymatic activities specific of each module. In addition, mass spectrometry analyses indicate that the Prx module can be both glutathiolated or overoxidized in vitro. This is discussed in the light of the Prx reactivity.

  1. Marx generator engineering and assembly line technology for the PBFA II accelerator

    SciTech Connect

    Woolston, T.L.; Ives, H.C.

    1985-01-01

    The energy storage section of PBFA II requires 36 Marx generators. The Marx generator was designed to minimize the total number and types of parts in order to speed the assembly process and maintain simplicity. Some mechanical highlights include a shorting system, a quick connect spark gap fitting (using unmodified existing spark gaps), and an arragement allowing insertion and removal of the Marx from a filled oil tank. A rapid assembly system for the Marx generators was also designed and consists of (1) a trolley system, (2) an industrial manipulator, and (3) a gantry crane. Three persons can safely assemble at least two Marxes a week using the equipment. The system also will be used to expedite disassembly required for routine maintenance.

  2. A review on the empirical calculation of the electronic band structure of the valence band of the ideal (001) surface of the III-V and II-VI semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Olguín, D.; Baquero, R.; de Coss, R.

    2012-02-01

    In our previous work we have discussed the valence band electronic band structure of a (001) oriented surface (semi-infinite medium) of some II-VI and III-V zinc-blende semiconductor compounds. For these systems, we have found three characteristic surface resonances, besides the known bulk bands (hh, lh and spin-orbit bands). Two of these resonances correspond to the anion terminated surface and the third one to the cation terminated one. We have shown, specifically, that three non dispersive (001)-surface induced bulk states, in the Γ-X direction of the 2D Brillouin zone, do exist and are characteristic of these systems. The existence of these states has been confirmed, independently, by different experimental groups. In this work, we briefly review the main characteristics of the electronic structure of the (001)-surfaces to up-date their analysis. We found that, in general, the nondispersive states occur in several, if not all, crystal surfaces, and, on general grounds, as the consequence of introducing to an infinite medium a frontier of any kind (not only the vacuum). For that reason we propose here, to name them, more appropriately as Frontier Induced Semi-Infinite Medium (FISIM) states.

  3. Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine II - Windmilling Characteristics

    NASA Technical Reports Server (NTRS)

    Conrad, E. W.; Durham, J. D.

    1947-01-01

    An investigation was conducted to determine the operational and performance characteristics of the TG-100A gas turbine-propeller engine II. Windmilling characteristics were deterined for a range of altitudes from 5000 to 35,000 feet, true airspeeds from 100 to 273 miles per hour, and propeller blade angles from 4 degrees to 46 degrees.

  4. Effectiveness of Cooperative Learning (Jigsaw II) Method in Teaching English as a Foreign Language to Engineering Students (Case of Firat University, Turkey)

    ERIC Educational Resources Information Center

    Gomleksiz, M. N.

    2007-01-01

    The present study compares the effects of the cooperative jigsaw II method and traditional teacher-centred teaching method on improving vocabulary knowledge and active-passive voice in English as a foreign language for engineering students and the students' attitudes towards learning English. Jigsaw is a cooperative learning model that involves…

  5. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  6. The use of the TOPAZ II systems with different conversion and engine systems

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N., Dr.; Ogloblin, Boris; Kirillov, E. Y.; Thome, Frank V.

    1995-01-01

    Increase of output electric power and use of heat released in nuclear fuel for thermal jet propulsion is promising for the future development of a bimodal reactor and use of the Topaz-2 Thermionic Space Nuclear Power System (TI-SNPS). In addition to the high-temperature thermionic conversion cycle, the application of low-temperature cycles, such as a machine-type cycle using the Stirling engine and a thermoelectric cycle, is being considered. The possibility of using the Topaz-2 system as a power source for thermal jet propulsion in bimodal operation is also being examined. For low-temperature cycles, the following data are obtained: output electric parameters, geometrical and weight characteristics as a function of thermal power released in the TFE fuel cores, and the relationship of generated total electric power to the total Topaz-2 system weight. The results obtained from this data make it possible to evaluate energy potentials when applying the high-temperature and low-temperature cycles Conference on alternative powere from space; Conference to the Topaz-2 system. The most likely values of specific impulse and propulsion force in relation to hydrogen flow rate in bimodal operation are shown.

  7. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  8. Proceedings of the third U. S. national conference on earthquake engineering. Volume II

    SciTech Connect

    Not Available

    1986-01-01

    During the past quarter century the North American continent has experienced a number of damaging earthquakes, among which were the 1964 Alaska earthquake, the 1971 San Fernando, California, earthquake, and most recently the 1985 Mexico City earthquake. A large number of smaller earthquakes have occurred during this period, all of which, along with large earthquakes that have occurred in other parts of the world, serve to remind one that the earthquake hazard is real. In view of potential loss of life and the economic losses that could result from large earthquakes, it is important that the United States continue its vigorous efforts towards mitigating the hazards of earthquakes including developing and implementing safe and economic methods of earthquake-resistant design and construction. In the light of the foregoing observations it it fitting that this Third U.S. National Conference on Earthquake Engineering be held in 1986 at Charleston, South Carolina, on the one-hundred-year anniversary of the 1886 Charleston earthquake. Although intended primarily for participation by U.S. practitioners and researchers, participants from many other parts of the world are also present. From the more than 300 papers offered for publication and presentation, over 200 papers are published in the three volumes of Proceedings and the single volume of Post-Conference Proceedings.

  9. Genetically engineered Escherichia coli FBR5: part II. Ethanol production from xylose and simultaneous product recovery.

    PubMed

    Qureshi, N; Dien, B S; Liu, S; Saha, B C; Cotta, M A; Hughes, S; Hector, R

    2012-01-01

    In these studies, concentrated xylose solution was fermented to ethanol using Escherichia coli FBR5 which can ferment both lignocellulosic sugars (hexoses and pentoses). E. coli FBR5 can produce 40-50 g L(-1) ethanol from 100 g L(-1) xylose in batch reactors. Increasing sugar concentration beyond this level results in the loss of sugar with the reactor effluent thus affecting the process yield adversely. In a nonintegrated system without simultaneous product removal more than 120 g L(-1) xylose was left unused of the 220 g L(-1) that was fed into the reactor. In contrast to this, application of simultaneous product removal by gas stripping was able to relieve product inhibition and the culture was able to use 216.6 g L(-1) xylose thus producing 140 g L(-1) (based on reactor volume) ethanol resulting in a product yield of 0.48. The product stream achieved an ethanol concentration up to 148.41 g L(-1). This process has potential for greatly improving the performance of E. coli FBR5 where the strain can ferment all the lignocellulosic sugars to ethanol and gas stripping can be applied to recover product. Published 2012 American Institute of Chemical Engineers (AIChE).

  10. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1998-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard), coal providing {ge} 65% of heat input, all solid wastes benign cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAF Combustor; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART I), II--LEARNING ABOUT BRAKES (PART II).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE STARTING ENGINES AND BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL DESCRIPTION, (2) OPERATION, (3) COMBUSTION SPACE AND VALVE ARRANGEMENT (STARTING ENGINES), (4) TYPES OF BRAKES, AND (5) DOUBLE…

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVIII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART II), II--UNDERSTANDING MORE ABOUT STARTING DEVICES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF DIESEL ENGINE STARTING ENGINES. TOPICS ARE (1) STARTING ENGINE MAGNETO (WICO), (2) MAGNETO MAINTENANCE, (3) SPARK PLUGS, (4) GENERAL DESCRIPTION (STARTING DEVICES), (5) OPERATING (STARTING DEVICES), (6) LUBRICATION (STARTING DEVICES), (7)…

  13. Core/Shell semiconductor nanocrystals.

    PubMed

    Reiss, Peter; Protière, Myriam; Li, Liang

    2009-02-01

    Colloidal core/shell nanocrystals contain at least two semiconductor materials in an onionlike structure. The possibility to tune the basic optical properties of the core nanocrystals, for example, their fluorescence wavelength, quantum yield, and lifetime, by growing an epitaxial-type shell of another semiconductor has fueled significant progress on the chemical synthesis of these systems. In such core/shell nanocrystals, the shell provides a physical barrier between the optically active core and the surrounding medium, thus making the nanocrystals less sensitive to environmental changes, surface chemistry, and photo-oxidation. The shell further provides an efficient passivation of the surface trap states, giving rise to a strongly enhanced fluorescence quantum yield. This effect is a fundamental prerequisite for the use of nanocrystals in applications such as biological labeling and light-emitting devices, which rely on their emission properties. Focusing on recent advances, this Review discusses the fundamental properties and synthesis methods of core/shell and core/multiple shell structures of II-VI, IV-VI, and III-V semiconductors.

  14. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  15. Coherent spectroscopy of semiconductors.

    PubMed

    Cundiff, Steven T

    2008-03-31

    The coherent optical response of semiconductors has been the subject of substantial research over the last couple of decades. The interest has been motivated by unique aspects of the interaction between light and semiconductors that are revealed by coherent techniques. The ability to probe the dynamics of charge carriers has been a significant driver. This paper presents a review of selected results in coherent optical spectroscopy of semiconductors.

  16. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  17. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  18. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  19. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  20. Materials Science and Device Physics of 2-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Fang, Hui

    Materials and device innovations are the keys to future technology revolution. For MOSFET scaling in particular, semiconductors with ultra-thin thickness on insulator platform is currently of great interest, due to the potential of integrating excellent channel materials with the industrially mature Si processing. Meanwhile, ultra-thin thickness also induces strong quantum confinement which in turn affect most of the material properties of these 2-dimensional (2-D) semiconductors, providing unprecedented opportunities for emerging technologies. In this thesis, multiple novel 2-D material systems are explored. Chapter one introduces the present challenges faced by MOSFET scaling. Chapter two covers the integration of ultrathin III V membranes with Si. Free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering and alloying. Chapter three studies the light absorption in 2-D membranes. Experimental results and theoretical analysis reveal that light absorption in the 2-D quantum membranes is quantized into a fundamental physical constant, where we call it the quantum unit of light absorption, irrelevant of most of the material dependent parameters. Chapter four starts to focus on another 2-D system, atomic thin layered chalcogenides. Single and few layered chalcogenides are first explored as channel materials, with focuses in engineering the contacts for high performance MOSFETs. Contact treatment by molecular doping methods reveals that many layered chalcogenides other than MoS2 exhibit good transport properties at single layer limit. Finally, Chapter five investigated 2-D van der Waals heterostructures built from different single layer chalcogenides. The investigation in a WSe2/MoS2 hetero-bilayer shows a large Stokes like shift between photoluminescence peak and lowest absorption peak, as well as strong photoluminescence intensity, consistent with spatially indirect transition in a type II band alignment in this

  1. Thyroxine Increases Collagen Type II Expression and Accumulation in Scaffold-Free Tissue-Engineered Articular Cartilage.

    PubMed

    Whitney, G Adam; Kean, Thomas J; Fernandes, Russell J; Waldman, Stephen; Tse, M Yat; Pang, Stephen C; Mansour, Joseph M; Dennis, James E

    2017-07-07

    Low collagen accumulation in the extracellular matrix is a pressing problem in cartilage tissue engineering, leading to a low collagen-to-glycosaminoglycan (GAG) ratio and poor mechanical properties in neocartilage. Soluble factors have been shown to increase collagen content, but may result in a more pronounced increase in GAG content. Thyroid hormones have been reported to stimulate collagen and GAG production, but reported outcomes, including which specific collagen types are affected, are variable throughout the literature. Here we investigated the ability of thyroxine (T4) to preferentially stimulate collagen production, as compared with GAG, in articular chondrocyte-derived scaffold-free engineered cartilage. Dose response curves for T4 in pellet cultures showed that 25 ng/mL T4 increased the total collagen content without increasing the GAG content, resulting in a statistically significant increase in the collagen-to-GAG ratio, a fold change of 2.3 ± 1.2, p < 0.05. In contrast, another growth factor, TGFβ1, increased the GAG content in excess of threefold more than the increase in collagen. In large scaffold-free neocartilage, T4 also increased the total collagen/DNA at 1 month and at 2 months (fold increases of 2.1 ± 0.8, p < 0.01 and 2.1 ± 0.4, p < 0.001, respectively). Increases in GAG content were not statistically significant. The effect on collagen was largely specific to collagen type II, which showed a 2.8 ± 1.6-fold increase of COL2A1 mRNA expression (p < 0.01). Western blots confirmed a statistically significant increase in type II collagen protein at 1 month (fold increase of 2.2 ± 1.8); at 2 months, the fold increase of 3.7 ± 3.3 approached significance (p = 0.059). Collagen type X protein was less than the 0.1 μg limit of detection. T4 did not affect COL10A1 and COL1A2 gene expression in a statistically significant manner. Biglycan mRNA expression increased 2.6 ± 1.6-fold, p < 0

  2. Laser cooling in semiconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    2017-06-01

    Laser cooling of semiconductor is very important topic in science researches and technological applications. Here we will report our progresses on laser cooling in semiconductors. By using of strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, we observe a net cooling by about 40 K starting from 290 kelvin with 514-nm pumping and about 15 K starting from100 K with 532-nm pumping in a semiconductor using group-II-VI cadmium sulphide nanobelts. We also discuss the thickness dependence of laser cooing in CdS nanobelts, a concept porotype of semiconductor cryocooler and possibility of laser cooling in II-VI semiconductor family including CdSSe、CdSe, CdSe/ZnTe QDs and bulk CdS et al., Beyond II-VI semiconductor, we will present our recent progress in laser cooling of organic-inorganic perovskite materials, which show a very big cooling power and external quantum efficiency in 3D and 2D case. Further more, we demonstrate a resolved sideband Raman cooling of a specific LO phonon in ZnTe, in which only one specific phonon resonant with exciton can be cooled or heated. In the end, we will discuss the nonlinear anti-Stokes Raman and anti-Stokes photoluminescence upcoversion in very low temperature as low as down to liquid 4.2 K. In this case, the anti-Stokes resonance induces a quadratic power denpendece of anti-Stokes Raman and anti-Stokes PL. We proposed a CARS-like process to explain it. This nonlinear process also provides a possible physics picture of ultra-low temperatures phonon assisted photoluminescence and anti-Stokes Raman process.

  3. Heterogeneous Integration of Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Moutanabbir, Oussama; Gösele, Ulrich

    2010-08-01

    The ability to tailor compound semiconductors and to integrate them onto foreign substrates can lead to superior or novel functionalities with a potential impact on various areas in electronics, optoelectronics, spintronics, biosensing, and photovoltaics. This review provides a brief description of different approaches to achieve this heterogeneous integration, with an emphasis on the ion-cut process, also known commercially as the Smart-Cut™ process. This process combines semiconductor wafer bonding and undercutting using defect engineering by light ion implantation. Bulk-quality heterostructures frequently unattainable by direct epitaxial growth can be produced, provided that a list of technical criteria is fulfilled, thus offering an additional degree of freedom in the design and fabrication of heterogeneous and flexible devices. Ion cutting is a generic process that can be employed to split and transfer fine monocrystalline layers from various crystals. Materials and engineering issues as well as our current understanding of the underlying physics involved in its application to cleaving thin layers from freestanding GaN, InP, and GaAs wafers are presented.

  4. Electronic structures and magnetic properties of a II-II-V based diluted magnetic semiconductor Ba 1-x K x (Cd 1-y Mn y )2 As 2 with decoupled charge and spin doping

    NASA Astrophysics Data System (ADS)

    Yang, Juntao; Luo, Shijun; Cheng, ZhenXiang; Wang, Xiaotian; Xiong, Yongchen; Amel, Laref

    2016-10-01

    By using the density functional theory within Perdew-Burke-Ernzerh of generalized gradient approximation, the electronic structures and magnetic properties of {{Ba}}1-x{K}x{({{Cd}}1-y{{Mn}}y)}2{{As}}2 system were investigated. Undoped compound {{BaCd}}2{{As}}2 is a semiconductor crystallized with a hexagonal {{CaAl}}2{{Si}}2-type structure. After local moments doping via isovalent (Cd2+, Mn2+) substitutions, {Ba}{({{Cd}}1-y{{Mn}}y)}2{{As}}2 is antiferromagnetic system, which is attributed to the superexchange interactions between the Mn2+ ions in the high spin state. With itinerant holes introduced via off-stoichiometry (Ba2+, {{{K}}}+) substitutions, {{Ba}}1-x{K}x{({{Cd}}1-y{{Mn}}y)}2{{As}}2 system (except for the system doped with the most nearest neighbor Mn-Mn pair) changes from antiferromagnetic to ferromagnetic, resulted from the indirect exchange interactions based on p - d exchange coupling between As 4p and Mn 3d orbitals. Moreover, hypothetical supercells {{Ba}}10{K}2{{Cd}}22{{Mn}}2{{As}}24 with different lattice parameters under mechanical compression and expansion were calculated to study the effect of itinerant holes on the Curie temperature. Our results reveal that the {{Ba}}1-x{K}x{({{Cd}}1-y{{Mn}}y)}2{{As}}2 system with small lattice has more holes amount and better holes mobility, leading to a higher Curie temperature for the {{CaAl}}2{{Si}}2-type structure DMSs.

  5. EDITORIAL: Frontiers in semiconductor-based devices Frontiers in semiconductor-based devices

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay; Phillips, Jamie; Ghosh, Siddhartha; Ma, Jack; Sabarinanthan, Jayshri; Stiff-Roberts, Adrienne; Xu, Jian; Zhou, Weidong

    2009-12-01

    This special cluster of Journal of Physics D: Applied Physics reports proceedings from the Frontiers in Semiconductor-Based Devices Symposium, held in honor of the 60th birthday of Professor Pallab Bhattacharya by his former doctoral students. The symposium took place at the University of Michigan, Ann Arbor on 6-7 December 2009. Pallab Bhattacharya has served on the faculty of the Electrical Engineering and Computer Science Department at the University of Michigan, Ann Arbor for 25 years. During this time, he has made pioneering contributions to semiconductor epitaxy, characterization of strained heterostructures, self-organized quantum dots, quantum-dot optoelectronic devices, and integrated optoelectronics. Professor Bhattacharya has been recognized for his accomplishments by membership of the National Academy of Engineering, by chaired professorships (Charles M Vest Distinguished University Professor and James R Mellor Professor of Engineering), and by selection as a Fellow of the IEEE, among numerous other honors and awards. Professor Bhattacharya has also made remarkable contributions in education, including authorship of the textbook Semiconductor Optoelectronic Devices (Prentice Hall, 2nd edition) and the production of 60 PhD students (and counting). In fact, this development of critical human resources is one of the biggest impacts of Professor Bhattacharya's career. His guidance and dedication have shaped the varied professional paths of his students, many of whom currently enjoy successful careers in academia, industry, and government around the world. This special cluster acknowledges the importance of Professor Bhattacharya's influence as all of the contributions are from his former doctoral students. The symposium reflects the significant impact of Professor Bhattacharya's research in that the topics span diverse, critical research areas, including: semiconductor lasers and modulators, nanoscale quantum structure-based devices, flexible CMOS

  6. ENGINEERING INVESTIGATION OF A THERMOPHOTOVOLTAIC ENERGY CONVERTER.

    DTIC Science & Technology

    THERMOELECTRICITY, *PHOTOELECTRIC CELLS(SEMICONDUCTOR), *ENERGY CONVERSION, GENERATORS, ELECTRIC POWER PRODUCTION, POWER SUPPLIES, MATHEMATICAL ANALYSIS, PERFORMANCE(ENGINEERING), COOLING AND VENTILATING EQUIPMENT.

  7. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    SciTech Connect

    Lu, Hong; Burke, Peter G.; Gossard, Arthur C.; Zeng, Gehong; Ramu, Ashok T.; Bahk, Je-Hyeong; Bowers, John E.

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nano­structures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μm thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  8. Semimetal/semiconductor nanocomposites for thermoelectrics.

    PubMed

    Lu, Hong; Burke, Peter G; Gossard, Arthur C; Zeng, Gehong; Ramu, Ashok T; Bahk, Je-Hyeong; Bowers, John E

    2011-05-24

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:In(x)Ga(1−x)Sb as a promising p-type thermoelectric material. Nanostructures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By co-doping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μ m thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  9. The Physics of Low-dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Davies, John H.

    1997-12-01

    Low-dimensional systems have revolutionized semiconductor physics and had a tremendous impact on technology. Using simple physical explanations, with reference to examples from actual devices, this book introduces the general principles essential to low-dimensional semiconductors. The author presents a formalism that describes low-dimensional semiconductor systems, studying two key systems in detail: the two-dimensional electron gas, employed in field-effect transistors, and the quantum well, whose optical properties have multiple applications in lasers and other opto-electronic devices. The book will be invaluable to undergraduate and first-year graduate physics or electrical engineering students taking courses in low-dimensional systems or heterostructure device physics.

  10. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume II. Detailed technical plan. Revision 2

    SciTech Connect

    Not Available

    1982-08-01

    The four sections which comprise Part II describe in detail the technical basis for each of the four Program Elements (PE's) of the FWBS Engineering Technology Program (ETP). Each PE is planned to be executed in a number of phases. The purpose of the DTP's is to delineate detailed near-term research, development, and testing required to establish a FWBS engineering data base. Optimum testing strategies and construction of test facilities where needed are identified. The DTP's are based on guidelines given by Argonne National Laboratory which included the basic programmatic goals and the requirements for the types of tests and test conditions.

  11. Preliminary Results of Nene II Engine Altitude-chamber Performance Investigation. 2; Altitude Performance using 18.41-inch Diameter-jet Nozzle

    NASA Technical Reports Server (NTRS)

    Armstron, J. C.; Wilsted, H. D.; Vincent, K. R.

    1948-01-01

    An investigation is being conducted to determine the altitude performance characteristics of the Nene II engine and its components. The present paper presents preliminary results obtained using a jet nozzle of 18.41 inches in diameter, giving an area equal to 96.4 percent of the area of the standard jet nozzle of this engine. The test results presented are for conditions simulating altitudes from seal level to 50,000 feet and ram-pressure ratios from 1.00 to 2.70. The ram pressure ratios correspond to flight Mach numbers between zero and 1.28.

  12. Composition-tunable alloyed semiconductor nanocrystals.

    PubMed

    Regulacio, Michelle D; Han, Ming-Yong

    2010-05-18

    The ability to engineer the band gap energy of semiconductor nanocrystals has led to the development of nanomaterials with many new exciting properties and applications. Band gap engineering has thus proven to be an effective tool in the design of new nanocrystal-based semiconductor devices. As reported in numerous publications over the last three decades, tuning the size of nanocrystalline semiconductors is one way of adjusting the band gap energy. On the other hand, research on band gap engineering via control of nanocrystal composition, which is achieved by adjusting the constituent stoichiometries of alloyed semiconductors, is still in its infancy. In this Account, we summarize recent research on colloidal alloyed semiconductor nanocrystals that exhibit novel composition-tunable properties. Alloying of two semiconductors at the nanometer scale produces materials that display properties distinct not only from the properties of their bulk counterparts but also from those of their parent semiconductors. As a result, alloyed nanocrystals possess additional properties that are composition-dependent aside from the properties that emerge due to quantum confinement effects. For example, although the size-dependent emission wavelength of the widely studied CdSe nanocrystals can be continuously tuned to cover almost the entire visible spectrum, the near-infrared (NIR) region is far outside its spectral range. By contrast, certain alloy compositions of nanocrystalline CdSe(x)Te(1-x), an alloy of CdSe and CdTe, can efficiently emit light in the NIR spectral window. These NIR-emitting nanocrystals are potentially useful in several biomedical applications. In addition, highly stable nanocrystals formed by alloying CdSe with ZnSe (i.e., Zn(x)Cd(1-x)Se) emit blue light with excellent efficiency, a property seldom achieved by the parent binary systems. As a result, these materials can be used in short-wavelength optoelectronic devices. In the future, we foresee new discoveries

  13. Wavefunction engineering: From quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy

    PubMed Central

    Li, J. Jack; Tsay, James M.; Michalet, Xavier; Weiss, Shimon

    2012-01-01

    We review the concept and the evolution of bandgap and wavefunction engineering, the seminal contributions of Dr. Chemla to the understanding of the rich phenomena displayed in epitaxially grown quantum confined systems, and demonstrate the application of these concepts to the colloidal synthesis of high quality type-II CdTe/CdSe quantum dots using successive ion layer adsorption and reaction chemistry. Transmission electron microscopy reveals that CdTe/CdSe can be synthesized layer by layer, yielding particles of narrow size distribution. Photoluminescence emission and excitation spectra reveal discrete type-II transitions, which correspond to energy lower than the type-I bandgap. The increase in the spatial separation between photoexcited electrons and holes as a function of successive addition of CdSe monolayers was monitored by photoluminescence lifetime measurements. Systematic increase in lifetimes demonstrates the high level of wavefunction engineering and control in these systems. PMID:22865949

  14. Assessing Conceptual Knowledge for the Physics of Semiconductors

    ERIC Educational Resources Information Center

    Ene, Emanuela

    2013-01-01

    Following the trend in science and engineering education generated by the visible impact created by the Force Concept Inventory (FCI), the investigator developed a Physics of Semiconductors Concept Inventory (PSCI). PSCI fills the need of standardized concept tests for undergraduate education in photonics and electrical engineering. The structure…

  15. Assessing Conceptual Knowledge for the Physics of Semiconductors

    ERIC Educational Resources Information Center

    Ene, Emanuela

    2013-01-01

    Following the trend in science and engineering education generated by the visible impact created by the Force Concept Inventory (FCI), the investigator developed a Physics of Semiconductors Concept Inventory (PSCI). PSCI fills the need of standardized concept tests for undergraduate education in photonics and electrical engineering. The structure…

  16. The Implementation of a Multi-Backend Database System (MDBS). Part II. The First Prototype MDBS and the Software Engineering Experience.

    DTIC Science & Technology

    1982-07-01

    DATABASE SYSTEM (MDBS): PART II - THE FIRST PROTOTYPE MDBS AND THE SOFTWARE ENGINEERING EXPERIENCE Xlngui He, Masanobu Higashida , David K. Hsiao, Douglas S...111101111WO) Xingui He, Masanobu Higashida , David K. Hsiao, N00014-75-C-0573 Douglas S. Kerr, Ali Orooji, Zong-Zhi Shi, Paula Strawser ______________ 9...Xingui, Masanobu Higashida */ 1* (4) Date : Jan. 28, 1982 1* (5) Modified : Feb. 1, 1982 */ 1* Feb. 18, 1982 */ /* Mar. 11, 1982 /* April 1, 1982 *I

  17. Slow Light Semiconductor Laser

    DTIC Science & Technology

    2015-02-02

    we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. The views, opinions and/or findings...we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. Further, the large intracavity field...hybrid Si/III- V platforms Abstract The semiconductor laser is the principal light source powering the world-wide optical fiber network . Ever

  18. Engineering and Technology Degrees, 1980. Part II - By Minorities. Detailed Data for Minority Groups, Women, and Foreign Students.

    ERIC Educational Resources Information Center

    Howley, Barbara Ann; Bonadonna, Rosanna

    Data on 1980 engineering and technology degree graduates are presented for six categories of students. Tables appear for each of the following: women, foreign nationals, blacks, Hispanics, American Indians, and Asian/Pacific groups. Data are presented for four degree levels in engineering, four in engineering technology, and four in industrial…

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  20. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  1. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low

  2. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  3. Semiconductor Solar Superabsorbers

    PubMed Central

    Yu, Yiling; Huang, Lujun; Cao, Linyou

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques. PMID:24531211

  4. Physics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Brütting, Wolfgang

    2005-08-01

    Filling the gap in the literature currently available, this book presents an overview of our knowledge of the physics behind organic semiconductor devices. Contributions from 18 international research groups cover various aspects of this field, ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in such different devices as organic field-effect transistors, photovoltaic cells and organic light-emitting diodes. From the contents: * Excitation Dynamics in Organic Semiconductors * Organic Field-Effect Transistors * Spectroscopy of Organic Semiconductors * Interfaces between Organic Semiconductors and Metals * Analysis and Modeling of Devices * Exciton Formation and Energy Transfer in Organic Light Emitting Diodes * Deposition and Characterization

  5. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  6. Hightower Engineering Academy Prepares High School Students for the Engineering Professions - A Program by the Fort Bend Independent School District - II

    NASA Astrophysics Data System (ADS)

    Cain, Lee; Verret, Doug; Griffin, Richard

    1998-10-01

    Hightower Engineering Academy, a project of the Fort Bend Independent School District, near Houston Texas, introduces high school students to the engineering professions. It has a college preparatory curriculum in which students are first grounded in the fundamentals of science and mathematics. Then more specific courses help them develop an appreciation for, and many of the skills of, the engineering profession. The Academy will implement a consistent teaching philosophy using a diverse array of innovative technology. The Academy is unique in the degree of partnership with local industry and state universities. It is committed to using the best known science pedagogy in combination with proven teaching art, experienced science educators and state-of-the art facilities all aimed at providing future engineers with complete mastery of the foundation knowledge of the profession. Hightower is committed to a "constructivist" teaching philosophy, the synergy of teamwork, and an appreciation of personal and professional ethics To the greatest extent possible, Hightower will have working engineers present the profession to students. There will be guest lecturers, field trips, and mentorships. Students will participate in engineering-specific organizations and competitions. Students will build a portfolio of their accomplishments at Hightower. They will experience project-based learning, culminating in a senior project that will encompass college-level research, experimentation, data analysis, and technical writing.

  7. Electronic and Optoelectronic Properties of Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Singh, Jasprit

    2003-02-01

    Jasprit Singh presents the underlying physics behind devices that drive today's technologies utilizing carefully chosen solved examples to convey important concepts. Real-world applications are highlighted throughout the book, stressing the links between physical principles and actual devices. The volume provides engineering and physics students and professionals with complete coverage of key modern semiconductor concepts. A solutions manual and set of viewgraphs for use in lectures is available for instructors, from solutions@cambridge.org.

  8. Wide-Bandgap Semiconductors

    SciTech Connect

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  9. Light confinement and absorption in metal-semiconductor-metal nanostructures

    NASA Astrophysics Data System (ADS)

    Collin, Stephane; Pardo, Fabrice; Teissier, Roland; Bardou, Nathalie; Dupuis, Christophe; Mahe, Ronan; Ferlazzo, Laurence; Cambril, Edmond; Thierry-Mieg, Veronique; Lemaitre, Aristide; Pelouard, Jean-Luc

    2005-04-01

    New concepts for efficient light absorption in nanoscale metal-semiconductor-metal photodetectors are analyzed from both theoretical and experimental point of view. They are based on sub-wavelength metallic gratings which allows light confinement in tiny volumes (< 100 nm) close to electrodes (< 100 nm). Two photodetector structures are proposed: (i) a resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector, and (ii) a nanoscale metal-semiconductor grating photodetector. External quantum efficiency as high as 9 % has been obtained in 40 x 100 nm2 cross-section GaAs wires, limited by fabrication technology. These results show promising features for highly efficient and ultrafast photodetectors.

  10. Spin relaxation in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Bobbert, Peter

    2011-03-01

    Intriguing magnetic field effects in organic semiconductor devices have been reported: anomalous magnetoresistance in organic spin valves and large effects of small magnetic fields on the current and luminescence of organic light-emitting diodes. Influences of isotopic substitution on these effects points at the role of hyperfine coupling. We performed studies of spin relaxation in organic semiconductors based on (i) coherent spin precession of the electron spin in an effective magnetic field consisting of a random hyperfine field and an applied magnetic field and (ii) incoherent hopping of charges. These ingredients are incorporated in a stochastic Liouville equation for the dynamics of the spin density matrix of single charges as well as pairs of charges. For single charges we find a spin diffusion length that depends on the magnetic field, explaining anomalous magnetoresistance in organic spin valves. For pairs of charges we show that the magnetic field influences formation of singlet bipolarons, in the case of like charges, and singlet and triplet excitons, in the case of opposite charges. We can reproduce different line shapes of reported magnetic field effects, including recently found effects at ultra-small fields.

  11. Polaronic trapping in magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Raebiger, Hannes

    2012-02-01

    GaN doped with iron is an interesting candidate material for magnetic semiconductors, as p-d coupling between the localized Fe-d and extended N-p hole states is expected to facilitate long-range ferromagnetic alignment of the Fe spins [1]. This picture of extended states in GaN:Fe, however, falls apart due to a polaronic localization of the hole carriers nearby the Fe impurities. To elucidate the carrier localization in GaN:Fe and related iron doped III-V semiconductors, I present a systematic study using self-interaction corrected density-functional calculations [2]. These calculations predict three distinct scenarios. (i) Some systems do sustain extended host-like hole states, (ii) some exhibit polaronic trapping, (iii) and some exhibit carrier trapping at Fe-d orbitals. These behaviors are described in detail to give an insight as to how to distinguish them experimentally. I thank T. Fujita, C. Echeverria-Arrondo, and A. Ayuela for their collaboration.[4pt] [1] T. Dietl et al, Science, 287, 1019 (2000).[0pt] [2] S. Lany and A. Zunger, Phys. Rev. B, 80, 085202 (2009).

  12. EDITORIAL The 23rd Nordic Semiconductor Meeting The 23rd Nordic Semiconductor Meeting

    NASA Astrophysics Data System (ADS)

    Ólafsson, Sveinn; Sveinbjörnsson, Einar

    2010-12-01

    A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a topical issue of Physica Scripta. All of the papers in this topical issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This meeting of the 23rd Nordic Semiconductor community, NSM 2009, was held at Háskólatorg at the campus of the University of Iceland, Reykjavik, Iceland, 14-17 June 2009. Support was provided by the University of Iceland. Almost 50 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The meeting aim was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. Topics Theory and fundamental physics of semiconductors Emerging semiconductor technologies (for example III-V integration on Si, novel Si devices, graphene) Energy and semiconductors Optical phenomena and optical devices MEMS and sensors Program 14 June Registration 13:00-17:00 15 June Meeting program 09:30-17:00 and Poster Session I 16 June Meeting program 09:30-17:00 and Poster Session II 17 June Excursion and dinner

  13. Development of accelerated fuel-engines qualification procedures methodology. Volume II. Appendices. Interim report for Oct 80-Sep 81

    SciTech Connect

    Russell, J.A.; Cuellar, J.P. Jr; Tyler, J.C.; Erwin, J.; Knutson, W.K.

    1981-12-01

    This volume of appendices includes: AVRADCOM Aircraft/Engine Component Listings; AFLRL Elastomer Swell and Hardness Data; AFLRL Elastomer Retention Properties; JFC 78 500-Hour Shale Oil Fuel Plan of Test, April 20, 1981; JFC 78 Shale Oil Fuel Plan of Test, Revised July 30, 1981; Pre and Post Test Definition Data; Spot Calibration; Flow Test; Fuel Characteristics and Lubricity and Interfacial Tension; Detailed Component Test Results; Disassembly and Inspection Results; Identification of Critical Fuel System Components; Existing Engine Qualifications Procedures; NATO Standard Engine Laboratory Test-Edition June 80; Fuel System Components Qualification Procedures; and EPA Heavy-Duty Diesel Engine Exhaust Emissions Certification and Test Procedures.

  14. Interfaces of electrical contacts in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Demirkan, Korhan

    Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5

  15. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047576 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  16. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047582 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  17. Engineered regulatory T cells coexpressing MHC class II:peptide complexes are efficient inhibitors of autoimmune T cell function and prevent the development of autoimmune arthritis.

    PubMed

    Qian, Zhaohui; Latham, Kary A; Whittington, Karen B; Miller, David C; Brand, David D; Rosloniec, Edward F

    2013-06-01

    Regulatory T cells (Tregs) are critical homeostatic components in preventing the development of autoimmunity, and are a major focus for their therapeutic potential for autoimmune diseases. To enhance the efficacy of Tregs in adoptive therapy, we developed a strategy for generating engineered Tregs that have the capacity to target autoimmune T cells in an Ag-specific manner. Using a retroviral expression system encoding Foxp3 and HLA-DR1 covalently linked to the immunodominant peptide of the autoantigen type II collagen (DR1-CII), naive T cells were engineered to become Tregs that express DR1-CII complexes on their surface. When these cells were tested for their ability to prevent the development of collagen induced arthritis, both the engineered DR1-CII-Foxp3 and Foxp3 only Tregs significantly reduced the severity and incidence of disease. However, the mechanism by which these two populations of Tregs inhibited disease differed significantly. Disease inhibition by the DR1-CII-Foxp3 Tregs was accompanied by significantly lower numbers of autoimmune CII-specific T cells in vivo and lower levels of autoantibodies in comparison with engineered Tregs expressing Foxp3 alone. In addition, the numbers of IFN-γ- and IL-17-expressing T cells in mice treated with DR1-CII-Foxp3 Tregs were also significantly reduced in comparison with mice treated with Foxp3 engineered Tregs or vector control cells. These data indicate that the coexpression of class II autoantigen-peptide complexes on Tregs provides these cells with a distinct capacity to regulate autoimmune T cell responses that differs from that used by conventional Tregs.

  18. Engineered Tregulatory cells co-expressing MHC class II:peptide complexes are efficient inhibitors of autoimmune T cell function and prevent the development of autoimmune arthritis

    PubMed Central

    Qian, Zhaohui; Latham, Kary A.; Whittington, Karen B.; Miller, David C.; Brand, David D.; Rosloniec, Edward F.

    2013-01-01

    Treg cells are critical homeostatic components in preventing the development of autoimmunity, and are a major focus for their therapeutic potential for autoimmune diseases. In order to enhance the efficacy of Treg cells in adoptive therapy, we developed a strategy for generating engineered Tregs that have the capacity to target autoimmune T cells in an antigen specific manner. Using a retroviral expression system encoding Foxp3 and HLA-DR1 covalently linked to the immunodominant peptide of the autoantigen type II collagen (DR1-CII), naïve T cells were engineered to become Treg cells that express DR1-CII complexes on their surface. When these cells were tested for their ability to prevent the development of collagen induced arthritis, both the engineered DR1-CII-Foxp3 and Foxp3 only Treg cells significantly reduced the severity and incidence of disease. However, the mechanism buy which these two populations of Treg cells inhibited disease differed significantly. Disease inhibition by the DR1-CII-Foxp3 Treg cells was accompanied by significantly lower numbers of autoimmune CII-specific T cells in vivo and lower levels of autoantibodies in comparison to engineered Tregs expressing Foxp3 alone. Additionally, the numbers of IFN-γ and IL-17 expressing T cells in mice treated with DR1-CII-Foxp3 Tregs were also significantly reduced in comparison to mice treated with Foxp3 engineered Treg cells or vector control cells. These data indicate that the co-expression of class II autoantigen-peptide complexes on Treg cells provides these cells with a distinct capacity to regulate autoimmune T cell responses that differs from that used by conventional Treg cells. PMID:23630354

  19. Bandgap engineering in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Chia, C. K.; Dong, J. R.; Chua, S. J.; Tripathy, S.

    2006-02-01

    Intermixing in InAs quantum dots (QDs) grown by molecular-beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques on GaAs and InP substrates have been investigated by rapid thermal annealing (RTA) and laser-irradiation techniques. In all cases, substantial energy shifts have been observed after RTA and laser annealing. A comparison between the intermixed QD and quantum well (QW) structures shows distinguished differences in photoluminescence (PL) intensity and full-width at half-maximum (FWHM). For QD structures, an increase in PL intensity and a reduction in FWHM were observed after intermixing, whereas for QW structures the FWHM increased and the PL intensity reduced after intermixing, suggesting degradation of the material quality in the QWs after intermixing. Examination of the role of the surrounding matrix in intermixing process shows that InAs QDs placed in a InGaAs QW can retain its good optical quality after high temperature annealing, as the InGaAs QW provides a foundation for the QDs to be fully desorbed in the well.

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  1. Construction Mechanic, Engine Tune-Up II (Diesel), 8-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for vocational and technical education, teaches students to restore diesel engine performance to the manufacturer's specifications through troubleshooting and analyzing diesel engine fuel systems and to make minor and major adjustments to those components that directly affect engine…

  2. Improving engineering effectiveness

    NASA Technical Reports Server (NTRS)

    Fiero, J. D.

    1985-01-01

    Methodologies to improve engineering productivity were investigated. The rocky road to improving engineering effectiveness is reviewed utilizing a specific semiconductor engineering organization as a case study. The organization had a performance problem regarding new product introductions. With the help of this consultant as a change agent the engineering team used a systems approach to through variables that were effecting their output significantly. Critical factors for improving this engineering organization's effectiveness and the roles/responsibilities of management, the individual engineers and the internal consultant are discussed.

  3. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  4. Hydrogen in semiconductors

    SciTech Connect

    Haller, E.E. Lawrence Berkeley Lab., CA )

    1990-06-01

    After an incubation'' period in the 1970's and early 80's, during which the first hydrogen related centers were discovered and characterized in ultra-pure germanium, a sharp increase of research activity occurred after the discovery of shallow acceptor passivation in crystalline silicon. The aim of this review is to convey an insight into the rich, multifaceted physics and materials science which has emerged from the vast variety of experimental and theoretical studies of hydrogen in semiconductors. In order to arrive at the current understanding of hydrogen related phenomena in a logical way, each chapter will start with a brief review of the major experimental and theoretical advances of the past few years. Those who are interested to learn more about this fascinating area of semiconductor research are referred to reviews, to a number of conference proceedings volumes, and to an upcoming book which will contain authoritative chapters on most aspects of hydrogen in crystalline semiconductors. Some of the early art of semiconductor device processing can finally be put on a scientific foundation and new ways of arriving at advanced device structures begin to use what we have learned from the basic studies of hydrogen in semiconductors. 92 refs., 8 figs.

  5. Reactive codoping of GaAlInP compound semiconductors

    DOEpatents

    Hanna, Mark Cooper [Boulder, CO; Reedy, Robert [Golden, CO

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  6. Purification, crystallization, X-ray diffraction analysis and phasing of an engineered single-chain PvuII restriction endonuclease

    SciTech Connect

    Meramveliotaki, Chrysi; Kotsifaki, Dina; Androulaki, Maria; Hountas, Athanasios; Eliopoulos, Elias; Kokkinidis, Michael

    2007-10-01

    PvuII is the first type II restriction endonuclease to be converted from its wild-type homodimeric form into an enzymatically active single-chain variant. The enzyme was crystallized and phasing was successfully performed by molecular replacement. The restriction endonuclease PvuII from Proteus vulgaris has been converted from its wild-type homodimeric form into the enzymatically active single-chain variant scPvuII by tandemly joining the two subunits through the peptide linker Gly-Ser-Gly-Gly. scPvuII, which is suitable for the development of programmed restriction endonucleases for highly specific DNA cleavage, was purified and crystallized. The crystals diffract to a resolution of 2.35 Å and belong to space group P4{sub 2}, with unit-cell parameters a = b = 101.92, c = 100.28 Å and two molecules per asymmetric unit. Phasing was successfully performed by molecular replacement.

  7. Special Issue featuring invited articles arising from UK Semiconductors 2012

    NASA Astrophysics Data System (ADS)

    Clarke, Edmund; Wada, Osamu

    2013-07-01

    Semiconductor research has formed the basis of many technological advances over the past 50 years, and the field is still highly active, as new material systems and device concepts are developed to address new applications or operating conditions. In addition to the development of traditional semiconductor devices, the wealth of experience with these materials also allows their use as an ideal environment for testing new physics, leading to new classes of devices exploiting quantum mechanical effects that can also benefit from the advantages of existing semiconductor technology in scalability, compactness and ease of mass production. This special issue features papers arising from the UK Semiconductors 2012 Conference, held at the University of Sheffield. The annual conference covers all aspects of semiconductor research, from crystal growth, through investigations of the physics of semiconductor structures to realization of semiconductor devices and their application in emerging technologies. The 2012 conference featured over 150 presentations, including plenary sessions on interband cascade lasers for the 3-6 µm spectral band, efficient single photon sources based on InAs quantum dots embedded in GaAs photonic nanowires, nitride-based quantum dot visible lasers and single photon sources, and engineering of organic light-emitting diodes. The seven papers collected here highlight current research advances, taken from across the scope of the conference. The papers feature growth of novel nitride-antimonide material systems for mid-infrared sources and detectors, use of semiconductor nanostructures for charge-based memory and visible lasers, optimization of device structures either to reduce losses in solar cells or achieve low noise amplification in transistors, design considerations for surface-emitting lasers incorporating photonic crystals and an assessment of laser power convertors for power transfer. The editors of this special issue and the conference

  8. Semiconductor surface protection material

    NASA Technical Reports Server (NTRS)

    Packard, R. D. (Inventor)

    1973-01-01

    A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.

  9. New unorthodox semiconductor devices

    NASA Astrophysics Data System (ADS)

    Board, K.

    1985-12-01

    A range of new semiconductor devices, including a number of structures which rely entirely upon new phenomena, are discussed. Unipolar two-terminal devices, including impurity-controlled barriers and graded composition barriers, are considered, as are new transistor structures, including the hot-electron camel transistor, the planar-doped barrier transistor, the thermionic emission transistor, and the permeable base transistor. Regenerative switching devices are addressed, including the metal-tunnel insulator-semiconductor switch, the polysilicon switch, MIS, and MISIM switching structures, and the triangular-barrier switch. Heterostructure devices are covered, including the heterojunction bipolar transistor, the selectively doped heterojunction transistor, heterojunction lasers, and quantum-well structures.

  10. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  11. Quantum Transport in Semiconductors

    DTIC Science & Technology

    1991-10-01

    SRS i 91 4. TITLE AND SUBTITLE Quantum Transport in Semiconductors 5. FUNDING NUMBER söMtos-rizk-ooss 6. AUTHOR(S) D. K. Ferry ©fte ELECTE...OF ABSTRACT UL NSN 7540-01-280-5500 O 1 9 Standard Form 298 (Rev. 2-89) Presented by ANSI Std «9-18 298-102 Final Report Quantum Transport in... Quantum Transport in Semiconductor Devices This final report describes a program of research investigating quantum effects which become important in

  12. Cooling Characteristics of the V-1650-7 Engine. II - Effect of Coolant Conditions on Cylinder Temperatures and Heat Rejection at Several Engine Powers

    NASA Technical Reports Server (NTRS)

    Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.

    1947-01-01

    An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).

  13. An Investigation of the Ranger V-770-8 Engine Installation for the Edo XOSE-1 Airplane II : Aerodynamics

    NASA Technical Reports Server (NTRS)

    Dennard, John S.

    1945-01-01

    Investigations were made to determine the cowling and cooling characteristics of the Ranger V-770-8 engine installation in an observation seaplane. Final cowl configurations possessed ample engine and oil-cooler pressure drops for cooling in the critical normal-power climb condition with any of the three baffle configurations tested. The indicated critical Mach number of the cowling was found to be 0.70 as determined by the pressure on the lower lip of the inlet.

  14. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    SciTech Connect

    Sfyrla, Anna

    2008-03-10

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb-1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σWW/WZtheory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured NSignal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σWW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels

  15. Imaging the motion of electrons across semiconductor heterojunctions

    NASA Astrophysics Data System (ADS)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  16. Imaging the motion of electrons across semiconductor heterojunctions.

    PubMed

    Man, Michael K L; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E Laine; Krishna, M Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M; Dani, Keshav M

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure-a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  17. Functionalization of semiconductors for biosensing applications

    NASA Astrophysics Data System (ADS)

    Estephan, E.; Larroque, C.; Martineau, P.; Cloitre, T.; Gergely, Cs.

    2007-05-01

    Functionalization of semiconductors (SC) has been widely used for various electronic, photonic and biomedical applications. In this paper, we report on selective functionalization achieved by peptides that reveal specific recognition of the SC surfaces. A M13 bacteriophage library was used to screen 10 10 different 12-mer peptide on various SC substrates to successfully isolate after 3 cycles one specific peptide for the majority of semiconductors. Our results conclude that GaAs(100) and GaN(0001) retain the same sequence of 12-mer peptide, suggesting that the specificity does not depend on the crystallographic structure but it depends on the chemical composition and the electronegativity of the surface, thus on the orientation of the material. We also note the presence of at least one proline (Pro) amino acid in each peptide, and the presence of the histidine (His) in the specific peptides for the II-VI class SC. Pro imprints a constraint to the peptide to facilitate adhesion to the surface, whereas the basic side chain His is known for its affinity towards some of the elements of class II SC. Finally, fluorescence microscopy has been employed to demonstrate the preferential attachment of the peptide to their specific SC surface in close proximity to a surface of different chemical and structural composition. The use of selected peptides expressed by phage display can be extended to encompass a variety of nanostructured semiconductor based devices.

  18. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  19. Physics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Brütting, Wolfgang

    2004-05-01

    Organic semiconductors are of steadily growing interest as active components in electronics and optoelectronics. Due to their flexibility, low cost and ease-of-production they represent a valid alternative to conventional inorganic semiconductor technology in a number of applications, such as flat panel displays and illumination, plastic integrated circuits or solar energy conversion. Although first commercial applications of this technology are being realized nowadays, there is still the need for a deeper scientific understanding in order to achieve optimum device performance.This special issue of physica status solidi (a) tries to give an overview of our present-day knowledge of the physics behind organic semiconductor devices. Contributions from 17 international research groups cover various aspects of this field ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in different devices like organic field-effect transistors, photovoltaic cells and organic light-emitting diodes.Putting together such a special issue one soon realizes that it is simply impossible to fully cover the whole area of organic semiconductors. Nevertheless, we hope that the reader will find the collection of topics in this issue useful for getting an up-to-date review of a field which is still developing very dynamically.

  20. Semiconductor Nanocrystal Photonics

    DTIC Science & Technology

    2005-08-31

    Hahn, H. Du, and T. D. Krauss, "Photoluminescence enhancement of colloidal semiconductor quantum dots embedded in a monolithic microcavity," Appl... DBRs ). The colloidal NC suspension was spun-coat into a 95-nm thick layer in the center of the cavity and then the other layers forming the top DBR

  1. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  2. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  3. A Physics of Semiconductors Concept Inventory

    NASA Astrophysics Data System (ADS)

    Ene, Emanuela; Bruce J. Ackerson Collaboration; Alan Cheville Collaboration

    2011-03-01

    Following the trend in science and engineering education generated by the visible impact that the Force Concept Inventory (FCI) has created, a Physics of Semiconductors Concept Inventory (PSCI) has been developed. Whereas most classroom tests measure how many facts students can remember, or if they can manipulate equations, PSCI measures how well students interpret concepts and how well they can infer new knowledge from already learned knowledge. Operationalized in accordance with the revised Bloom's taxonomy, the multiple--choice items of the PSCI address the ``understand'', ``apply'', ``analyze'' and ``evaluate'' levels of cognition. Once standardized, PSCI may be used as a predictor for students' academic performance in the field of semiconductors and as an assessment instrument for instructional strategies.

  4. Optical and electronic properties of some semiconductors from energy gaps

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Pattanaik, Anup

    2016-03-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap. The proposed empirical relation has also been used to calculate the electronic polarisability of some ternary compounds.

  5. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    NASA Astrophysics Data System (ADS)

    Gong, Ji-Lai; Zhang, Yong-Liang; Jiang, Yan; Zeng, Guang-Ming; Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua; Huan, Shuang-Yan

    2015-03-01

    The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π-π interaction between MB and GO on sand surface in packed filter. The Yoon-Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  6. Transplantation of bone marrow genetically engineered to express proinsulin II protects against autoimmune insulitis in NOD mice.

    PubMed

    Chan, James; Clements, Warren; Field, Judith; Nasa, Zeyad; Lock, Peter; Yap, Felicia; Toh, Ban-Hock; Alderuccio, Frank

    2006-11-01

    Type 1 diabetes (T1D) is a T-cell-dependent autoimmune disease resulting from destructive inflammation (insulitis) of the insulin-producing pancreatic beta-cells. Transgenic expression of proinsulin II by a MHC class II promoter or transfer of bone marrow from these transgenic mice protects NOD mice from insulitis and diabetes. We assessed the feasibility of gene therapy in the NOD mouse as an approach to treat T1D by ex vivo genetic manipulation of normal hematopoietic stem cells (HSCs) with proinsulin II followed by transfer to recipient mice. HSCs were isolated from 6-8-week-old NOD female mice and transduced in vitro with retrovirus encoding enhanced green fluorescent protein (EGFP) and either proinsulin II or control autoantigen. Additional control groups included mice transferred with non-manipulated bone marrow and mice which did not receive bone marrow transfer. EGFP-sorted or non-sorted HSCs were transferred into pre-conditioned 3-4-week-old female NOD mice and insulitis was assessed 8 weeks post-transfer. Chimerism was established in all major lymphoid tissues, ranging from 5-15% in non-sorted bone marrow transplants to 20-45% in EGFP-sorted bone marrow transplants. The incidence and degree of insulitis was significantly reduced in mice receiving proinsulin II bone marrow compared to controls. However, the incidence of sialitis in mice receiving proinsulin II bone marrow and control mice was not altered, indicating protection from insulitis was antigen specific. We show for the first time that ex vivo genetic manipulation of HSCs to express proinsulin II followed by transplantation to NOD mice can establish molecular chimerism and protect from destructive insulitis in an antigen-specific manner.

  7. MARITIME Patrol Aircraft Engine Study, General Electric Derivative Engines. Volume II. Appendix A - Performance Data - GE27/T3 Study at Turboprop.

    DTIC Science & Technology

    1979-04-30

    Re H: Davis N62269-78-C-0414 RE.Warren 9.TI FOAfOf;CVOjt NAME AND ADDRESS 10 . PROGRAM ELEMENT. PROJECT. TASK c Company U~f~gM NIT NUMBERS Aircraft...1979 NavalAir evelpmen Cener 1. NUMBER OF PAGES Warminster, Pennsylvania 18974 80 14. MONITORING AGENCY NAME 6. AOORESS(II differe.,I Innn Caoni,. 10 -11...A IGE 27/T3 STUDY Al RAM RECOVERY zl, CUSTOMER BLEED =0. POWER EXTRACTION =Q Case No. Alt. Mo Day_ Power Setfings 1-6 0 0 STD Max, IRIR MC Part Power

  8. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    SciTech Connect

    Chemla, D.S.

    1993-06-30

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells.

  9. Chemistry related to semiconductor growth involving organometallics

    NASA Astrophysics Data System (ADS)

    Husk, G. R.; Jones, K. A.; Paur, R. J.; Prater, J. T.

    1990-05-01

    OMVPE (OrganoMetallic Vapor-Phase Epitaxy) technology requirements for III-V compounds and chemistry related to semiconductor growth involving organometallics are discussed. The following subject areas are covered: semiconductor device requirements; Army II-VI deposition program/MOMBE (Metal Organic Molecular Beam Epitaxy) for IR detector applications; epitaxial growth of III-V's and II-VI's using organometallics; electrical device requirements; environmental and safety issues in MOVPE; quantum chemistry of vapor phase; carbon doping and selective epitaxy (tailoring growth chemistry in MOVPE); TBA/TBP precursors in GaAs and InP MOCVD; single source precursors for III-V OMCVD (OrganoMetallic Chemical Vapor Deposition) growth; alternate sources for MOMBE of AlGaAs; mechanism of incorporation of impurities and analysis of carbon contamination; growth on nonplanar and patterned substrates; CBE growth mechanisms; TriMethylamine Alane (a new robust precursor for MOMBE growth of AlGaAs); real-time determinations of OMCVD growth kinetics on GaAs by reflectance-difference spectroscopy; photoreflectance measurements; growth and doping mechanisms for HgCdTe; photoassisted CBE (Chemical Beam Epitaxy) of CdTe and HgCdTe alloys; in-situ analysis of ZnSe growth by OMCVD using X-ray scattering; biodegradation of GaAs IC chips and wafers; detailed models of compound semiconductor growth by MOCVD; gas phase probes of GaAs cluster chemistry; photodecomposition of organometallic compounds at 193 nm; manufacturing issues in MOCVD compound semiconductor technology.

  10. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  11. A Comprehensive and Systematic Model of User Evaluation of Web Search Engines: II. An Evaluation by Undergraduates.

    ERIC Educational Resources Information Center

    Su, Louise T.

    2003-01-01

    Presents an application of a model of user evaluation of four major Web search engines (Alta Vista, Excite, Infoseek, and Lycos) by undergraduates. Evaluation was based on 16 performance measures representing five evaluation criteria-relevance, efficiency, utility, user satisfaction, and connectivity. Content analysis of verbal data identified a…

  12. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  13. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  14. Engineering the thermostability of Trichoderma reesei endo-1,4-beta-xylanase II by combination of disulphide bridges.

    PubMed

    Xiong, Hairong; Fenel, Fred; Leisola, Matti; Turunen, Ossi

    2004-10-01

    Disulphide bridges were introduced in different combinations into the N-terminal region and the single alpha-helix of mesophilic Trichoderma reesei xylanase II (TRX II). We used earlier disulphide-bridge data and designed new disulphide bridges for the combination mutants. The most stable mutant contained two disulphide bridges (between positions 2 and 28 and between positions 110 and 154, respectively) and the mutations N11D, N38E, and Q162H. With a half-life of approximately 56 h at 65 degrees C, the thermostability of this sevenfold mutant was approximately 5,000 times higher than that of TRX II, and the half-life was 25 min even at 75 degrees C. The thermostability of this mutant was approximately 30 times higher than that of the corresponding mutant missing the bridge between positions 2 and 28. The extensive stabilization at two protein regions did not alter the kinetic properties of the sevenfold mutant from that of the wild-type TRX II. The combination of disulphide bridges enhanced significantly the pH-dependent stability in a wide pH range.

  15. Quantitative study of Au(III) and Pd(II) ion biosorption on genetically engineered Tobacco mosaic virus.

    PubMed

    Lim, Jung-Sun; Kim, Seung-Min; Lee, Sang-Yup; Stach, Eric A; Culver, James N; Harris, Michael T

    2010-02-15

    One major obstacle in the mineralization of metal onto biologically derived templates is the lack of fundamental information pertaining to the relationship between metal ion loading and overall metal deposition onto the biotemplate. This study focuses on Au(III) and Pd(II) biosorption on the genetically-modified model biological template Tobacco mosaic virus (TMV1Cys). Metal ion (Au(III) or Pd(II)) loading on the TMV1Cys template was measured as a function of the equilibrium concentration of Au(III) or Pd(II) ions in solution at several temperatures. In addition, the Pd(II) loading on the TMV-wild (wild-type TMV) and TMV1Cys were compared to estimate the improvement of metal ion loading by genetic modification of the biotemplate. The gold or palladium coatings on the TMV1Cys were prepared using various metal ion loadings. Results show, for a range of metal ion loadings, a positive correlation existed between the concentration of the metal ions and the coating density of the metals deposited on the virus surface.

  16. Light amplification using semiconductors

    SciTech Connect

    Dupuis, R.D.

    1987-06-01

    During the summer of 1953, John von Neumann discussed his ideas concerning light amplification using semiconductors with Edward Teller. In September of that year, von Neumann sent a manuscript containing his ideas and calculations on this subject to Teller for his comments. To the best of our knowledge, von Neumann did not take time to work further on these ideas, and the manuscript remained unpublished. These previously unpublished writings of John von Neumann on the subject of light amplification in semiconductors are printed as a service to the laser community. While von Neumann's original manuscript and his letter to Teller are available to anyone who visits the Library of Congress, it is much more convenient to have this paper appear in an archival journal.

  17. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  18. Stretchable Organic Semiconductor Devices.

    PubMed

    Qian, Yan; Zhang, Xinwen; Xie, Linghai; Qi, Dianpeng; Chandran, Bevita K; Chen, Xiaodong; Huang, Wei

    2016-11-01

    Stretchable electronics are essential for the development of intensely packed collapsible and portable electronics, wearable electronics, epidermal and bioimplanted electronics, 3D surface compliable devices, bionics, prosthesis, and robotics. However, most stretchable devices are currently based on inorganic electronics, whose high cost of fabrication and limited processing area make it difficult to produce inexpensive, large-area devices. Therefore, organic stretchable electronics are highly attractive due to many advantages over their inorganic counterparts, such as their light weight, flexibility, low cost and large-area solution-processing, the reproducible semiconductor resources, and the easy tuning of their properties via molecular tailoring. Among them, stretchable organic semiconductor devices have become a hot and fast-growing research field, in which great advances have been made in recent years. These fantastic advances are summarized here, focusing on stretchable organic field-effect transistors, light-emitting devices, solar cells, and memory devices.

  19. Thermosize potentials in semiconductors

    NASA Astrophysics Data System (ADS)

    Karabetoglu, S.; Sisman, A.

    2017-09-01

    A thermosize junction consists of two different sized structures made using the same material. Classical and quantum thermosize effects (CTSEs and QTSEs), which are opposite to each other, induce a thermosize potential in a thermosize junction. A semi-analytical method is proposed to calculate thermosize potentials in wide ranges of degeneracy and confinement by considering both CTSEs and QTSEs in thermosize junctions made using semiconductors. Dependencies of thermosize potential on temperature, size, and degeneracy are examined. It is shown that a potential difference in millivolt scale can be induced as a combined effect of CTS and QTS. The highest potential is obtained in nondegenerate limit where the full analytical solution is obtained. The model can be used to design semiconductor thermosize devices for a possible experimental verification of CTSEs and QTSEs, which may lead to new nano energy conversion devices.

  20. Three dimensional strained semiconductors

    DOEpatents

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  1. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  2. Metal Contacts in Semiconductors.

    DTIC Science & Technology

    1983-11-01

    surfaces, Pnotoelectron spe troscopy, Auger electron spectro- I scopy, Schottky barriers, ohmic contacts, Defects in semiconductors, Cadmium * telluride...Indium phosphide, Gallium arsenide, Gallium Selenide . j 20. ABSTR ACT (roothat ow rees esh " neceay and td..ity by block -. b*w) SThe application of...angstroms. Also, provided one eliminates the systems where cadmium outdiffusion into high work function metals occurs then good agreement between the

  3. Chemically Derivatized Semiconductor Photoelectrodes.

    DTIC Science & Technology

    1983-06-01

    Journal of Chemical Education . l.i LA. Is. KEY WOROS (Coneinuo onm Few*,@*.oldsI noede eeand identify by block number) semiconductors, photoelectrodes...Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Prepared for publication in the Journal of Chemical Education June 1, 1983 Reproduction...use of metals or metal oxides coated onto the photoelectrode surface. [Prepared for publication in the Journal of Chemical Education .

  4. Semiconductor projectile impact detector

    NASA Technical Reports Server (NTRS)

    Shriver, E. L. (Inventor)

    1977-01-01

    A semiconductor projectile impact detector is described for use in determining micrometeorite presence, as well as its flux and energy comprising a photovoltaic cell which generates a voltage according to the light and heat emitted by the micrometeorites upon impact. A counter and peak amplitude measuring device were used to indicate the number of particules which strike the surface of the cell as well as the kinetic energy of each of the particles.

  5. Semiconductor Properties Near Interfaces.

    DTIC Science & Technology

    1980-07-31

    electron multi- plication with a scintillation counter. This detECtor , described in the appendix, provides very low background without sacrifice of...k ADA095 858 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES F/G 20/12I SEMICONDUCTOR PROPERTIES NEAR INTERFACES.(U) JUL GO0 DB WITTRY. S Y YIN, F GUO...improvements in the Ion Microprobe Mass Analyzer; in the course of the investioations in improved inn detector was developed and a microcomrnu*e

  6. Semiconductor Diamond Technology

    DTIC Science & Technology

    1991-12-31

    hidrogen at the maximum pressure showed only very faint -second order spots. Annealing of thee samples to 1000*C restored the (2x0) configura.-tion...semiconductor contact also provides a suitable vehicle for electrical characterization of the device material. However, it has been observed that the...nature of the plasma activated diamond deposition processes provides a very useful and flexible vehicle for device fabrication sequences. Other workers

  7. Terahertz-Induced Impact Ionization Effect in Semiconductor Heterojunctions

    NASA Astrophysics Data System (ADS)

    Cao, J. C.

    2005-10-01

    We have extended the balance equations to account for conduction-valence interband impact ionization (II) induced by an intense terahertz (THz) electromagnetic irradiation in two-dimensional semiconductors. We have studied the effect of II on electron transport and electron-hole pair generation-recombination rate in THz-driven InAs/AlSb heterojunctions (HJs). As many as needed multiphoton channels are self-consistently taken into account. Usually II acts as a cooling mechanism in semiconductors. In the present THz-radiation-driven case with a multiphoton process, the electron temperature with II, however, is higher than that without this process. We propose to explain the counterintuitive behavior of electron temperature in THz-radiation-driven HJs.

  8. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  9. New Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Balestra, F.

    2008-11-01

    A review of recently emerging semiconductor devices for nanoelectronic applications is given. For the end of the international technology roadmap for semiconductors, very innovative materials, technologies and nanodevice architectures will be needed. Silicon on insulator-based devices seem to be the best candidates for the ultimate integration of integrated circuits on silicon. The flexibility of the silicon on insulator-based structure and the possibility to realize new device architectures allow to obtain optimum electrical properties for low power and high performance circuits. These transistors are also very interesting for high frequency and memory applications. The performance and physical mechanisms are addressed in single- and multi-gate thin film Si, SiGe and Ge metal-oxide-semiconductor field-effect-transistors. The impact of tensile or compressive uniaxial and biaxial strains in the channel, of high k materials and metal gates as well as metallic Schottky source-drain architectures are discussed. Finally, the interest of advanced beyond-CMOS (complementary MOS) nanodevices for long term applications, based on nanowires, carbon electronics or small slope switch structures are presented.

  10. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  11. DOE Backup Power Working Group Best Practices Handbook for Maintenance and Operation of Engine Generators, Volume II

    SciTech Connect

    Gross, R.E.

    1998-10-30

    The lubricating oil system provides a means to introduce a lubricant in the form of a film to reduce friction and wear between surfaces that bear against each other as they move.1 The oil film which is established also cools the parts by carrying generated heat away from hot surfaces, cleans and carries dirt or metal wear particles to the filter media, and helps seal the piston to the cylinder during combustion. Most systems are pressure lubricated and distribute oil under pressure to bearings, gears, and power assemblies. Lubricating oil usually reaches main, connecting rod, and camshaft bearings through drilled passages in the cylinder block and crankshaft or through piping and common manifolds.Many parts rely on oil for cooling, so if the lube oil system fails to perform its function the engine will overheat. Metal to metal surfaces not separated by a thin film of oil rapidly build up frictional heat. As the metals reach their melting point, they tend to weld together in spots or streaks. Lube oil system failures can cause significant damage to an engine in a short period of time. Proper maintenance and operation of the lubricating oil system is essential if your engine is to accomplish its mission.

  12. Enzyme engineering through evolution: thermostable recombinant group II intron reverse transcriptases provide new tools for RNA research and biotechnology.

    PubMed

    Collins, Kathleen; Nilsen, Timothy W

    2013-08-01

    Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.

  13. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.

    1988-01-01

    The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.

  14. A theoretical search for supervelocity semiconductors

    NASA Astrophysics Data System (ADS)

    Littlejohn, M. A.; Kim, K. W.

    1991-10-01

    This document presents an annual report to the Office of Naval Research for a research program entitled 'A Theoretical Search for Supervelocity Semiconductors.' This program has been funded by ONR since 1974 in the Department of Electrical and Computer Engineering at N.C. State University. The research has resulted in more than 75 refereed publications and numerous conference presentations from its inception. Major contributions to the field of hot electron transport and semiconductor device modeling have been achieved, new computational methods have been developed (e.g., path integral Monte Carlo techniques), and the work has helped stimulate commercial ventures in the applications of quaternary semiconductor materials to electronic and optical devices. In addition, there have been twenty-six Ph.D. and M.S. students who have received degrees at N.C. State University with research support from this contract. Three visiting faculty members from Japan came to the university to work with the faculty investigators supported under this ONR contract during the 1979-1983 time period. A visiting professor from the French CNRS Microstructures and Microelectronics Laboratory in Bagneux (near Paris) spent a sabbatical year at N.C. State during 1988-89, and he devoted full-time working on this program at no cost to ONR. During the current funding period, a visiting scholar from China is a member of our research group working on projects which directly impact this ONR program.

  15. Fuzzy Logic Connectivity in Semiconductor Defect Clustering

    SciTech Connect

    Gleason, S.S.; Kamowski, T.P.; Tobin, K.W.

    1999-01-24

    In joining defects on semiconductor wafer maps into clusters, it is common for defects caused by different sources to overlap. Simple morphological image processing tends to either join too many unrelated defects together or not enough together. Expert semiconductor fabrication engineers have demonstrated that they can easily group clusters of defects from a common manufacturing problem source into a single signature. Capturing this thought process is ideally suited for fuzzy logic. A system of rules was developed to join disconnected clusters based on properties such as elongation, orientation, and distance. The clusters are evaluated on a pair-wise basis using the fuzzy rules and are joined or not joined based on a defuzzification and threshold. The system continuously re-evaluates the clusters under consideration as their fuzzy memberships change with each joining action. The fuzzy membership functions for each pair-wise feature, the techniques used to measure the features, and methods for improving the speed of the system are all developed. Examples of the process are shown using real-world semiconductor wafer maps obtained from chip manufacturers. The algorithm is utilized in the Spatial Signature Analyzer (SSA) software, a joint development project between Oak Ridge National Lab (ORNL) and SEMATECH.

  16. Nanoelectronics in oxides and semiconductors

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei

    The success of silicon industry lies on three major properties of silicon, an easily formed oxide layer to allow field effect operation, tunability of carrier density and high device scalability. All these features exist in oxides, together with some novel properties such as ferroelectricity, magnetic effects and metal-insulator transition. With the recent development in material growth method including molecular beam epitaxy (MBE), pulsed laser deposition (PLD) and reflection high energy electron diffraction (REED), atomically engineered oxide interfaces become available, thus opening the door to the novel oxide nanoelectronics. In this dissertation we create and study nanoelectronics in oxides, semiconductors and hybrid of these two. We used a conductive atomic force microscope tip to write single electron transistors in the 3-unit-cell-LaAlO 3/SrTiO3 heterostructure and observed ferroelectric tunneling behaviors. We also fabricated ferroelectric field transistors directly on silicon using strained SrTiO3 ferroelectric film and further confirmed the ferroelectric properties of this device. Meanwhile, we developed an ultrasensitive microwave capacitance sensor to study the electronic properties of self-assembled quantum dots and the switching mechanism of memristive devices. The integration of this sensor to a home made atomic force microscope provides an important tool to study the dielectric properties at nanoscale.

  17. Wurtzite-derived ternary I-III-O2 semiconductors.

    PubMed

    Omata, Takahisa; Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-04-01

    Ternary zincblende-derived I-III-VI2 chalcogenide and II-IV-V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I-III-O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I-III-O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I-III-O2 semiconductors.

  18. New developments in power semiconductors

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1983-01-01

    This paper represents an overview of some recent power semiconductor developments and spotlights new technologies that may have significant impact for aircraft electric secondary power. Primary emphasis will be on NASA-Lewis-supported developments in transistors, diodes, a new family of semiconductors, and solid-state remote power controllers. Several semiconductor companies that are moving into the power arena with devices rated at 400 V and 50 A and above are listed, with a brief look at a few devices.

  19. Altitude-chamber performance of British Rolls-Royce Nene II engine III : 18.00-inch-diameter jet nozzle

    NASA Technical Reports Server (NTRS)

    Grey, Ralph E; Brightwell, Virginia L; Barson, Zelmar; NACA

    1950-01-01

    An altitude-chamber investigation of British Rolls-Royce Nene II turbojet engine was conducted over range of altitudes from sea level to 65,000 feet and ram pressure ratios from 1.10 to 3.50, using an 18.00-inch-diameter jet nozzle. The 18.00-inch-diameter jet nozzle gave slightly lower values of net-thrust specific fuel consumption than either the 18.41- or the standard 18.75-inch-diameter jet nozzles at high flight speeds. At low flight speeds, the 18.41-inch-diameter jet nozzle gave the lowest value of net-thrust specific fuel consumption.

  20. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    PubMed

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  1. Electrodes for Semiconductor Gas Sensors

    PubMed Central

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  2. Electrodes for Semiconductor Gas Sensors.

    PubMed

    Lee, Sung Pil

    2017-03-25

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode-semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode-semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect.

  3. Predictive simulations of semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Galli, Giulia

    2005-03-01

    Ab-initio simulations are playing an increasingly important role in understanding matter at the nanoscale and in predicting with controllable, quantitative accuracy the novel and complex properties of nanomaterials. A microscopic, fundamental understanding of nanoscale phenomena is very much in demand, as experimental investigations are sometimes controversial and usually they cannot be explained on the basis of simple models. In this talk, ab-initio molecular dynamics simulations and quantum monte carlo calculations of semiconductor nanoparticles will be presented, with focus on electronic and optical properties and on the microscopic structure of surfaces at the nanoscale. The characterization of nanoscale surfaces and interfaces is of paramount importance to predict the function of nanomaterials, and eventually their assembly into macroscopic solids, and it is still very challenging from an experimental standpoint, due to the lack of appropriate imaging techniques. The presentation will focus on Si, Ge, SiC nanoparticles and nanodiamond, and in addition we will discuss several results for II-VI dots and rods. (*) Work done in collaboration with G.Cicero, E.Draeger, J.Grossman, F.Gygi, D.Prendergast, A.Puzder, J.-Y.Raty, F.Reboredo, E.Schwegler, A.Williamson This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48

  4. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  5. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction.

    PubMed

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.

  6. Drag and Cooling with Various Forms of Cowling for a "Whirlwind" Radial Air-cooled Engine II

    NASA Technical Reports Server (NTRS)

    Weick, Fred E

    1930-01-01

    This report gives the results of the second portion of an investigation in the twenty-foot Propeller Research Tunnel of the National Advisory Committee for Aeronautics, on the cowling and cooling of a "Whirlwind" J-5 radial air-cooled engine. The first portion pertains to tests with a cabin fuselage. This report covers tests with several forms of cowling, including conventional types, individual fairings behind the cylinders, individual hoods over the over the cylinders, and the new N. A. C. A. complete cowling, all on an open cockpit fuselage. Drag tests were also made with a conventional engine nacelle, and with a nacelle having the new complete cowling. In the second part of the investigation the results found in the first part were substantiated. It was also found that the reduction in drag with the complete cowling over that with conventional cowling is greater with the smaller bodies than with the cabin fuselage; in fact, the gain in the case of the completely cowled nacelle is over twice that with the cabin fuselage. The individual fairings and hoods did not prove effective in reducing the drag. The results of flight tests on AT-5A airplane has been analyzed and found to agree very well with the results of the wind tunnel tests. (author)

  7. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    NASA Astrophysics Data System (ADS)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  8. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    SciTech Connect

    Pujari, V.J.; Tracey, D.M.; Foley, M.R.

    1996-02-01

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  9. Semiconductors: A pillar of pure and applied physics

    NASA Astrophysics Data System (ADS)

    Chelikowsky, James R.; Cohen, Marvin L.

    2015-03-01

    We give an overview of the central role semiconductor research that has played in basic, applied, and computational science. Our focus is on basic science. However, we will make general comments about applications, such as the transistor, integrated circuits, solar devices, and lasers, which evolved from basic research, and about simulations using computational science, which has enormously benefited from semiconductor research. We will make reference to links with other branches of physics and more generally other areas of science and fields like electrical engineering, computer science, material science, medical science, and chemistry that have made significant contributions to our everyday life.

  10. Semiconductor cooling apparatus

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Gaier, James R. (Inventor)

    1993-01-01

    Gas derived graphite fibers generated by the decomposition of an organic gas are joined with a suitable binder. This produces a high thermal conductivity composite material which passively conducts heat from a source, such as a semiconductor, to a heat sink. The fibers may be intercalated. The intercalate can be halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber. The fibers are bundled and joined with a suitable binder to form a high thermal conductivity composite material device. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers.

  11. Power semiconductor controlled drives

    NASA Astrophysics Data System (ADS)

    Dubey, Gopal K.

    This book presents power semiconductor controlled drives employing dc motors, induction motors, and synchronous motors. The dynamics of motor and load systems are covered. Open-loop and closed-loop drives are considered, and thyristor, power transistor, and GTO converters are discussed. In-depth coverage is given to ac drives, particularly those fed by voltage and current source inverters and cycloconverters. Full coverage is given to brushless and commutatorless dc drives, including load-commuted synchronous motor drives. Rectifier-controlled dc drives are presented in detail.

  12. Semiconductor Eutectic Solar Cell.

    DTIC Science & Technology

    1986-12-01

    InSb - NiSb Es an... InSb - NiSb , InSb -FeSb, InSb -MnSb und InSb -CrSb", J. Phys. Chem. Solids, 26, 2021 (1965). 11. A. Muller and M. Wilhelm, "Das Eutektikum InSb -Mg 3 Sb’" Z...infant stages for use. In semiconducting eutectics, efforts were paid to eutectic systems which consist of III-V semiconductor phases, such as GaAs, InSb

  13. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  14. Semiconductor Terahertz Technology

    DTIC Science & Technology

    2009-06-15

    COVERED (From - To) 15-June-2009 Final Report 12 Apr 07 - 15 Apr 09 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER FA8718-07-C-0030 Semiconductor Terahertz ...and the other for the phononic waveguides. 15. SUBJECT TERMS Quantum cascade laser, gennanium, gennanium-tin, terahertz 16. SECURITY CLASStFICATION OF...7 Figure 7 lllustration of a GaAs-based active region waveguide with either Ga or Au as cladding operating in the Restrahlen band of GaN . 10 Figure 8

  15. Electrowetting on semiconductors

    NASA Astrophysics Data System (ADS)

    Palma, Cesar; Deegan, Robert

    2015-01-01

    Applying a voltage difference between a conductor and a sessile droplet sitting on a thin dielectric film separating it from the conductor will cause the drop to spread. When the conductor is a good metal, the change of the drop's contact angle due to the voltage is given by the Young-Lippmann (YL) equation. Here, we report experiments with lightly doped, single crystal silicon as the conductive electrode. We derive a modified YL equation that includes effects due to the semiconductor and contact line pinning. We show that light induces a non-reversible wetting transition, and that our model agrees well with our experimental results.

  16. Microwave semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sitch, J. E.

    1985-03-01

    The state of the art of microwave semiconductor design is reviewed, with emphasis on developments of the past 10-12 years. Consideration is given to: varistor diodes; varactor diodes; and transit time negative diodes. The design principles of bipolar and unipolar transistors are discussed, with reference to power FETs, traveling-wave FETs, and camel or planar-doped barrier transistors. Recent innovations in the field of fabrication technology are also considered, including: crystal growth; doping; and packaging. Several schematic drawings and photographs of the different devices are provided.

  17. Semiconductor superlattice photodetectors

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.; Coleman, J. J.; Leburton, J. P.

    1984-01-01

    A superlattice photomultiplier and a photodetector based on the real space transfer mechanism were studied. The wavelength for the first device is of the order of a micron or flexible corresponding to the bandgap absorption in a semiconductor. The wavelength for the second device is in the micron range (about 2 to 12 microns) corresponding to the energy of the conduction band edge discontinuity between an Al/(sub x)Ga(sub 1-x)As and GaAs interface. Both devices are described.

  18. Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  19. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. Part II. Engineering, technology development and application aspects

    NASA Astrophysics Data System (ADS)

    Costamagna, Paola; Srinivasan, Supramaniam

    The technology of proton exchange membrane fuel cells (PEMFCs) has now reached the test-phase, and engineering development and optimization are vital in order to achieve to the next step of the evolution, i.e. the realization of commercial units. This paper highlights the most important technological progresses in the areas of (i) water and thermal management, (ii) scale-up from single cells to cell stacks, (iii) bipolar plates and flow fields, and (iv) fuel processing. Modeling is another aspect of the technological development, since modeling studies have significantly contributed to the understanding of the physico-chemical phenomena occurring in a fuel cell, and also have provided a valuable tool for the optimization of structure, geometry and operating conditions of fuel cells and stacks. The 'quantum jumps' in this field are reviewed, starting from the studies at the electrode level up to the stack and system size, with particular emphasis on (i) the 'cluster-network' model of perfluorosulfonic membranes, and the percolative dependence of the membrane proton conductivity on its water content, (ii) the models of charge and mass transport coupled to electrochemical reaction in the electrodes, and (iii) the models of water transport trough the membrane, which have been usefully applied for the optimization of water management of PEMFCs. The evolution of PEMFC applications is discussed as well, starting from the NASA's Gemini Space Flights to the latest developments of fuel cell vehicles, including the evolutions in the areas of portable power sources and residential and building applications.

  20. LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor: Appendix A-4

    SciTech Connect

    Sviatoslavsky, I.N.; Attaya, H.M.; Corradini, M.L.; Lomperski, S.

    1987-01-01

    This paper describes the preliminary analysis of LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor breeding shield. TIBER-II is a compact reactor with a major radius of 3 m and thus requires a thin, high efficiency shield on the inboard side. The use of tungsten in the inboard shield implies a rather high rate of afterheat upon plasma shutdown, which must be dissipated in a controlled manner to avoid the possibility of radioactivity release or threatening the investment. Because the shield is cooled with an aqueous solution, LOFA does not pose a problem as long as natural convection can be established. LOCA, however, has more serious consequences, particularly on the inboard side. Circulation of air by natural convection is proposed as a means for dissipating the inboard shield decay heat. The safety and environmental implications of such a scheme are evaluated. It is shown that the inboard shield temperature never exceeds 510/sup 0/C following LOCA posing no hazard to reactor personnel and not threatening the investment. 7 refs., 6 figs.