Sample records for engineered sorbent barriers

  1. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  2. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  3. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    DOE PAGES

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less

  4. Chemical aspects of uranium behavior in soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2011-08-01

    Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.

  5. Synthesis of sintering-resistant sorbents for CO2 capture.

    PubMed

    Liu, Wenqiang; Feng, Bo; Wu, Yueqin; Wang, Guoxiong; Barry, John; da Costa, João C Diniz

    2010-04-15

    Sorbents for high temperature CO2 capture are under intensive development owing to their potential applications in advanced zero emission power, sorption-enhanced steam methane reforming for hydrogen production and energy storage systems in chemical heat pumps. One of the challenges in the development is the prevention of sintering of the sorbent (normally a calcium oxide derivative) which causes the CO2 capture capacity of the material to deteriorate rapidly after a few cycles of utilization. Here we show that a simple wet mixing method can produce sintering-resistant sorbents from calcium and magnesium salts of d-gluconic acid. It was found that calcium oxide was well distributed in the sorbents with metal oxide nanoparticles on the surface acting as physical barriers, and the CO2 capture capacity of the sorbents was largely maintained over multiple cycles of utilization. This method was also applied to other organometallic salts of calcium and magnesium/aluminum and the produced sorbents showed similarly high reversibility.

  6. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix.

    PubMed

    Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang

    2012-01-01

    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.

  7. Jet Engine Exhaust Analysis by Subtractive Chromatography

    DTIC Science & Technology

    1978-12-01

    FID B response = oxygenates + aromatics. Oxygenated compounds with 8 Tenax GC Carbosieve B Glass Wool Glass wool Glass Wool Sample Flow Desoption...sorbent samplinq. During the process of compiling this information a new series of sorbent materials that show promising sorbent characteristics was...produced by a process which "carbonizes" a porous polymer material. The pro- duct is a hard, shiny, black-beaded material. The promotional literature

  8. Development and Test Evaluations for Ni-DOBDC Metal Organic Framework (MOF) Engineered Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell Greenhalgh

    2013-07-01

    A joint effort to prepare engineered forms of a Ni-DOBDC metal organic framework (MOF) was completed with contributions from PNNL, SNL and the INL. Two independent methods were used at INL and SNL to prepare engineered form (EF) sorbents from Ni-DOBDC MOF powder developed and prepared at PNNL. Xe and Kr capacity test evaluations were performed at ambient temperature with the cryostat experimental setup at INL. The initial INL EF MOF test results indicated a Xe capacity of 1.6 mmol/kg sorbent and no Kr capacity. A large loss of surface area also occurred during minimal testing rendering the INL EFmore » MOF unusable. Four capacity tests were completed using the SNL EF MOF at ambient temperature and resulted in Xe capacities of 1.4, 4.2, 5.0 and 3.8 mmol/kg sorbent with no Kr capacity observed in any ambient temperature tests. Two additional capacity tests were performed at 240 K to further evaluate SNL EF MOF performance. Xe capacities of 50.7 and 49.3 mmol/kg of sorbent and Kr capacities of 0.77 and 0.69 mmol/kg of sorbent were obtained, respectively. Following the adsorption evaluations, the SNL EF MOF material had lost about 40 % of the initial mass and 40 % of the initial surface area. In general, the Xe capacity results at ambient temperature for the INL and SNL EF Ni-DOBDC MOF’s were lower than 9.8 mmol Xe/kg sorbent test results reported by INL in FY-12 using PNNL’s inital EF supplied material.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Steven; Envergex, Srivats; Browers, Bruce

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development ofmore » process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.« less

  10. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles.

    PubMed

    Wang, Shengping; Fan, Shasha; Fan, Lijing; Zhao, Yujun; Ma, Xinbin

    2015-04-21

    A series of CaO-based sorbents were synthesized through a sol-gel method and doped with different amounts of CeO2. The sorbent with a Ca/Ce molar ratio of 15:1 showed an excellent absorption capacity (0.59 gCO2/g sorbent) and a remarkable cycle durability (up to 18 cycles). The admirable capture performance of CaCe-15 was ascribed to its special morphology formed by the doping of CeO2 and the well-distributed CeO2 particles. The sorbents doped with CeO2 possessed a loose shell-connected cross-linking structure, which was beneficial for the contact between CaO and CO2. CaO and CeO2 were dispersed homogeneously, and the existence of CeO2 also decreased the grain size of CaO. The well-dispersed CeO2, which could act as a barrier, effectively prevented the CaO crystallite from growing and sintering, thus the sorbent exhibited outstanding stability. The doping of CeO2 also improved the carbonation rate of the sorbent, resulting in a high capacity in a short period of time.

  11. Bench-scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha

    It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less

  12. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigel N. Clark

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, amore » percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.« less

  13. Use of biomass sorbents for oil removal from gas station runoff.

    PubMed

    Khan, Eakalak; Virojnagud, Wanpen; Ratpukdi, Thunyalux

    2004-11-01

    The use of biomass sorbents, which are less expensive and more biodegradable than synthetic sorbents, for oil removal from gas station runoff was investigated. A bench-scale flume experiment was conducted to evaluate the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp., wood chip, rice husk, coconut husk, and bagasse. Polyester fiber, a commercial synthetic sorbent, was also experimented for comparison purpose. Oil sorption and desorption tests were performed at a water flow rate of 20 lmin-1. In the oil sorption tests, a 50 mgl(-1) of used engine oil-water mixture was synthesized to simulate the gas station runoff. The mass of oil sorbed for all sorbents, except coconut husk and bagasse, was greater than 70%. Cattail fiber and polyester fiber were the sorbents that provided the least average effluent oil concentrations. Oil selectivity (hydrophobic properties) and physical characteristics of the sorbents are the two main factors that influence the oil sorption capability. The used sorbents from the sorption tests were employed in the desorption tests. Results indicated that oil leached out of all the sorbents tested. Polyester fiber released the highest amount of oil, approximately 4% (mass basis) of the oil sorbed. copyright 2004 Elsevier Ltd.

  14. Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Testing 2008/2009

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian

    2009-01-01

    This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The benefits of the alternate configurations include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption to increase process efficiency. Test results that demonstrate such improvements are described and presented.

  15. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    EPA Science Inventory

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  16. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  17. Adsorption of crude and engine oils from water using raw rice husk.

    PubMed

    Razavi, Zahra; Mirghaffari, Nourollah; Rezaei, Behzad

    2014-01-01

    The raw rice husk (RRH) was used as a low cost adsorbent to remove three oil compounds with different viscosities (crude oil, engine oil and spent engine oil) from an aqueous environment. Some of the sorbent specifications were characterized using a CHNSO analyzer, Fourier transform infrared, scanning electron microscope and inductively coupled plasma spectroscopy. With decreasing RRH particles size, the oil adsorption percentage was reduced for crude, spent and engine oils from 50 to 30%, 65 to 20% and 70 to 0.01%, respectively. This was probably due to damage of the microcavities. The removal percentage by sorbent at optimized conditions was 88, 80 and 55% for engine, spent and crude oils, respectively, corresponding to their descending viscosity. The adsorption of crude and spent oils on rice husk followed the Freundlich isotherm model, while the adsorption of engine oil was fitted by the Langmuir model. The maximum adsorption capacity (qmax), calculated from the Langmuir model for the adsorption of engine oil on RRH, was 1,250 mg/g.

  18. Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Modeling 2007/2008

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Howard, David F.; Perry, Jay L.

    2007-01-01

    In NASA s Vision for Space Exploration, humans will once again travel beyond the confines of earth s gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth s gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The development efforts described offer a complimentary approach combining testing of subscale systems and multiphysics computer simulations to characterize the regenerative heating substrates and evaluation of engineered structured sorbent geometries. Mass transfer, heat transfer, and fluid dynamics are included in the transient simulations.

  19. Use of lignocellulosic materials as sorbents for pesticide and phosphate residues

    Treesearch

    Mandla A. Tshabalala

    2006-01-01

    We previously reported results from limited field trials of a bark-based filtration unit designed to remove phosphorus from cranberry bog tail water. In that report we also identified some barriers that needed to be overcome to improve the performance of such a filtration unit. One barrier was lack of a cost effective process for large-scale conversion of bark to an...

  20. Time-Dependent CO[subscript 2] Sorption Hysteresis in a One-Dimensional Microporous Octahedral Molecular Sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinal, Laura; Wong-Ng, Winnie; Kaduk, James A.

    2014-09-24

    The development of sorbents for next-generation CO{sub 2} mitigation technologies will require better understanding of CO{sub 2}/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO{sub 2} sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO{sub 2} sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a 'gate-keeping' role of the cation in the tunnel, only allowing CO{submore » 2} molecules to enter fully into the tunnel via a highly unstable transient state when CO{sub 2} loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO{sub 2} is responsible for the observed hysteretic behavior.« less

  1. Design and Assembly of an Integrated Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Paul, Heather L.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Ice Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously each the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU to the future flight unit are considered.

  2. Design and Assembly of an Integrated Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Bower, Chad E.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Icing Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU and the future flight unit are considered.

  3. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigel Clark; Gregory Thompson; Richard Atkinson

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine.more » Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber suitable for a given engine. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passes over fresh sorbent material. This aspect of the research will continue into 2006, and the benefits and challenges of SNR will be compared with those of competing systems, such as Selective Catalytic Reduction. Chemical kinetic modeling using the CHEMKIN software package was extended in 2005 to the case of slightly rich burn with EGR. Simulations were performed at 10%, 20%, 30% and 40% of the intake air replaced with EGR. NOx decomposition efficiency was calculated at the point in time where 98% of fuel was consumed, which is believed to be a conservative approach. The modeling data show that reductions of over 70% are possible using the ''98% fuel burned'' assumption.« less

  4. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that formmore » as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.« less

  5. Novel sorbents for environmental remediation

    NASA Astrophysics Data System (ADS)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session on Novel sorbents for environmental remediation, will also be evaluated and presented.

  6. Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.

    2015-04-01

    In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less

  7. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.

    PubMed

    Kah, Melanie; Sigmund, Gabriel; Xiao, Feng; Hofmann, Thilo

    2017-11-01

    The sorption of ionic and ionizable organic compounds (IOCs) (e.g., pharmaceuticals and pesticides) on carbonaceous materials plays an important role in governing the fate, transport and bioavailability of IOCs. The paradigms previously established for the sorption of neutral organic compounds do not always apply to IOCs and the importance of accounting for the particular sorption behavior of IOCs is being increasingly recognized. This review presents the current state of knowledge and summarizes the recent advances on the sorption of IOCs to carbonaceous sorbents. A broad range of sorbents were considered to evaluate the possibility to read across between fields of research that are often considered in isolation (e.g., carbon nanotubes, graphene, biochar, and activated carbon). Mechanisms relevant to IOCs sorption on carbonaceous sorbents are discussed and critically evaluated, with special attention being given to emerging sorption mechanisms including low-barrier, charge-assisted hydrogen bonds and cation-π assisted π-π interactions. The key role played by some environmental factors is also discussed, with a particular focus on pH and ionic strength. Overall the review reveals significant advances in our understanding of the interactions between IOCs and carbonaceous sorbents. In addition, knowledge gaps are identified and priorities for future research are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200).

    PubMed

    Valderrama, C; Cortina, J L; Farran, A; Gamisans, X; Lao, C

    2007-06-01

    Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed to treat a PAH-polluted plume showed that 0.1-1 m of sorption media is enough even for high water fluxes such as 0.1-2 m(3)/m(2)/day for both sorbents.

  9. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.

    PubMed

    Liu, Yan; Kelly, David J A; Yang, Hongqun; Lin, Christopher C H; Kuznicki, Steve M; Xu, Zhenghe

    2008-08-15

    A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250 degrees C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400 degrees C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC.

  10. In Situ Immobilization of Selenium in Sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert C.; Stewart, Thomas Austin

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is verymore » little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.« less

  11. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  12. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  13. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data basedmore » on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.« less

  14. Esterified sago waste for engine oil removal in aqueous environment.

    PubMed

    Ngaini, Zainab; Noh, Farid; Wahi, Rafeah

    2014-01-01

    Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy.

  15. Geochemical barriers for environment protection and recovery of nonferrous metals.

    PubMed

    Chanturiya, Valentine; Masloboev, Vladimir; Makarov, Dmitriy; Nesterov, Dmitriy; Bajurova, Julia; Svetlov, Anton; Men'shikov, Yuriy

    2014-01-01

    A study of natural minerals, ore tailings and their products as materials for artificial geochemical barriers is presented. In particular, it focuses on interaction between calcite and dolomite and sulfate solutions containing nickel, copper and iron under static conditions. Calcite of -0.1 mm fraction has been shown to perform well as a barrier when added to water phases of tailing dumps and natural reservoirs. Experiments under dynamic conditions have revealed a high potential of thermally activated copper-nickel tailings as barriers. After a 500-day precipitating period on a geochemical barrier, the contents of nickel and copper in ore dressing tailings were found to increase 12- and 28-fold, respectively. An effective sorbent of copper, iron and nickel ions is a brucite-based product of hydrochloric acid treatment of vermiculite ore tailings. Its sorption capacity can be essentially increased through thermal activation.

  16. Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed E.; Khalifa, Mohamed A.; El Wakeel, Yasser M.; Header, Mennatllah S.; Abdel-Fattah, Tarek M.

    2017-04-01

    A novel magnetic nanosorbent was designed using chemical grafting of nano-magnetite (Nano-Fe3O4) with nanolayer of activated carbon (AC) via urea intermediate for the formation of Nano-Fe3O4-Urea-AC. Characterizing was carried out using FT-IR, SEM, HR-TEM, TGA, point of zero charge (Pzc) and surface area analysis. The designed sorbent maintained its magnetic properties and nanosized structure in the range of 8.7-14.1 nm. The surface area was identified as 389 m2/g based on the BET method. Sorption of uranyl ions from aqueous solutions was studied and evaluated in different experimental conditions. Removal of uranyl ions increased with increasing in pH value and the maximum percentage removal was established at pH 5.0. The removal and sorption processes of uranyl ions by Nano-Fe3O4-Urea-AC sorbent were studied and optimized using the batch technique. The key variables affecting removal of uranyl ions were studied including the effect of the contact time, dosage of Nano-Fe3O4-Urea-AC sorbent, reaction temperature, initial uranyl ions concentration and interfering anions and cations.

  17. Two-step rapid sulfur capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the rangemore » of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.« less

  18. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Stewart

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital costmore » technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alptekin, Gokhan

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for overmore » 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.« less

  20. Revisiting Isotherm Analyses Using R: Comparison of Linear, Non-linear, and Bayesian Techniques

    EPA Science Inventory

    Extensive adsorption isotherm data exist for an array of chemicals of concern on a variety of engineered and natural sorbents. Several isotherm models exist that can accurately describe these data from which the resultant fitting parameters may subsequently be used in numerical ...

  1. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong-Cai; Liu, Di-Jia

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H 2/kg system and volumetric capacity of 0.040 kg H 2/L system at a cost of $400/kg H 2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL)more » collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H 2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal sites oriented towards MOF pores help to surpass the predicted hydrogen uptakes described by Chahine’s rule.4 These observations are believed to have a major impact on the hydrogen storage community, and may potentially lead to the development of a material that could meet the DOE goals for hydrogen storage systems for automotive applications.« less

  2. Thermal barrier coatings for gas turbine and diesel engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  3. Ionic liquids in solid-phase microextraction: a review.

    PubMed

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L

    2011-06-10

    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.

  5. Xe/Kr Selectivity Measurements using AgZ-PAN at Various Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy Gerry; Greenhalgh, Mitchell Randy; Watson, Tony Leroy

    2015-05-01

    In preparation for planned FY-15 Xe/Kr multi-column testing, a series of experiments were performed to determine the selectivity of Xe over Kr using the silver converted mordenite-polyacrylonitrile (AgZ-PAN) sorbent. Results from these experiments will be used for parameter selection guidelines to define test conditions for Kr gas capture purity evaluations later this year. The currently configured experimental test bed was modified by installing a new cooling apparatus to permit future multi-column testing with independent column temperature control. The modified test bed will allow for multi-column testing to facilitate a Xe separation followed by a Kr separation using engineered form sorbents.more » Selectivity experiments were run at temperatures of 295, 250 and 220 K. Two feed gas compositions of 1000 ppmv Xe, 150 ppmv Kr in either a He or an air balance were used. AgZ-PAN sorbent selectivity was calculated using Xe and Kr capacity determinations. AgZ-PAN sorbent selectivities for Xe over Kr of 72 were calculated at room temperature (295 K) using the feed gas with a He balance and 34 using the feed gas with an air balance. As the test temperatures were decreased the selectivity of Xe over Kr also decreased due to an increase in both Xe and Kr capacities. At 220 K, the sorbent selectivities for Xe over Kr were 22 using the feed gas with a He balance and 28 using the feed gas with an air balance. The selectivity results indicate that AgZ-PAN used in the first column of a multi-column configuration will provide adequate partitioning of Xe from Kr in the tested temperature range to produce a more pure Kr end product for collection.« less

  6. Process for the enhanced capture of heavy metal emissions

    DOEpatents

    Biswas, Pratim; Wu, Chang-Yu

    2001-01-01

    This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.

  7. Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DWYER,BRIAN P.

    2000-01-01

    Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for themore » 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This project along with others such as the Durango, CO and Monticello, UT reactive barriers will provide the data to determine the long-term effectiveness and return on investment (ROI) for this technology for comparison to the baseline pump and treat.« less

  8. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  9. Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1982-01-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  10. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    NASA Astrophysics Data System (ADS)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  11. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture

    PubMed Central

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A.; Smith, Sean C.

    2015-01-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 1013 cm−2 or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility. PMID:26621618

  12. Inexpensive, effective novel activated carbon fibers for sample cleanup: application to multipesticide residue analysis in food commodities using a QuEChERS method.

    PubMed

    Singh, Shiv; Srivastava, Anshuman; Singh, Sheelendra Pratap

    2018-03-01

    Phenolic resin based activated carbon fibers (ACFs) were applied for the first time as a reversed-dispersive solid-phase extraction (r-DSPE) sorbent. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied to determine 26 pesticides (organophosphates, organochlorines, synthetic pyrethroids, and herbicides) in different complex matrices, including cauliflower, cucumber, banana, apple, wheat, and black gram. Different physicochemical characterization techniques were used to investigate the engineering and structural properties of the r-DSPE sorbent. All the chromatographic analyses were performed with a gas chromatograph equipped with an electron capture detector. The recoveries of all 26 pesticides were acceptable (70-120%), with relative standard deviations of less than 15%. The limit of detection and the limit of quantification were 1.13-5.48 ng/g and 3.42-16.60 ng/g, respectively. In the original QuEChERS method, primary secondary amine is extensively used as the r-DSPE sorbent in the cleanup process, but it is eightfold more expensive than the ACFs used in this study. Therefore, the modified QuEChERS method using ACFs during the cleanup process is more efficient, cheaper, and more robust to determine pesticides from different types of matrices, including vegetables, grains, and fruits, and ACFs could be used as a cost-effective alternative to primary secondary amine. Graphical Abstract Sample clean-up using PSA and ACF as r-DSPE sorbent in QuEChERS method.

  13. Comparative Study of Molecular Basket Sorbents Consisting of Polyallylamine and Polyethylenimine Functionalized SBA-15 for CO2 Capture from Flue Gas.

    PubMed

    Wang, Dongxiang; Wang, Xiaoxing; Song, Chunshan

    2017-11-17

    Polyallylamine (PAA)-based molecular basket sorbents (MBS) have been studied for CO 2 capture in comparison with polyethylenimine (PEI)-based MBS. The characterizations including N 2 physisorption, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and thermogravimetric analysis (TGA) showed that PAA (M n =15 000) is more rigid and has more steric hindrance inside SBA-15 pores than PEI owing mainly to its different polymer structure. The effects of temperature and PAA loading on the CO 2 sorption capacity of PAA-based MBS have been examined by TGA by using 100 % CO 2 gas stream and compared with PEI/SBA-15. It was found that the capacity of the PAA/SBA-15 sorbent increased with increasing temperature. The optimum capacity of 88 mg CO2  g sorb -1 was obtained at 140 °C for PAA(50)/SBA-15 whereas the optimum sorption temperature was 75 and 90 °C for PEI-I(50)/SBA-15 (PEI-I, M n =423) and PEI-II(50)/SBA-15 (PEI-II, M n =25 000), respectively. The capacity initially increased with the increase of PAA loading and then dropped at high amine contents, owing to the increased diffusion barrier. The highest CO 2 capacity of 109 mg CO2  g sorb -1 was obtained at a PAA loading of 65 wt %, whereas the PAA(50)/SBA-15 sorbent gave the best amine efficiency of 0.23 mol CO2  mol N -1 . The effect of moisture was examined in a fixed-bed flow system with simulated flue gas containing 15 % CO 2 and 4.5 % O 2 in N 2 . It was found that the presence of moisture significantly enhanced CO 2 sorption over PAA(50)/SBA-15 and greatly improved its cyclic stability and regenerability. Compared with PEI/SBA-15, PAA/SBA-15 possesses a better thermal stability and higher resistance to oxidative degradation. However, the CO 2 sorption rate over the PAA(50)/SBA-15 sorbent was much slower. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy G.; Greenhalgh, Mitchell; Rutledge, Veronica J.

    2014-08-01

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuirmore » linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.« less

  15. Novel Silica Nanostructured Platforms with Engineered Surface Functionality and Spherical Morphology for Low-Cost High-Efficiency Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Cheng-Yu; Radu, Daniela R.; Pizzi, Nicholas

    Carbon capture is an integral part of the CO 2 mitigation efforts, and encompasses, among other measures, the demonstration of effective and inexpensive CO 2 capture technologies. The project demonstrated a novel platform—the amine-functionalized stellate mesoporous silica nanosphere (MSN)—for effective CO 2 absorption. The reported CO 2 absorption data are superior to the performance of other reported silica matrices utilized for carbon capture, featuring an amount of over 4 milimoles CO 2/g sorbent at low temperatures (in the range of 30-45 ºC), selected for simulating the temperature of actual flue gas. The reported platform is highly resilient, showing recyclability andmore » 85 % mass conservation of sorbent upon nine tested cycles. Importantly, the stellate MSNs show high CO 2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO 2 absorption performance. The results could lead to a simple and inexpensive new technology for CO 2 mitigation which could be implemented as measure of CO 2 mitigation in current fossil-fuel burning plants in the form of solid sorbent.« less

  16. Sorbents for mercury removal from flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  17. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, Charles D.; Petersen, James N.; Davison, Brian H.

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  18. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  19. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.

    PubMed

    Ardau, C; Lattanzi, P; Peretti, R; Zucca, A

    2014-01-01

    A series of static and kinetic laboratory-scale tests were designed in order to evaluate the efficacy of transformed red mud (TRM) from bauxite refining residues, commercial zero-valent iron, and synthetic iron (III) hydroxides as sorbents/reagents to minimize the generation of acid drainage and the release of toxic elements from multi-contaminant-laden mine wastes. In particular, in some column experiments the percolation of meteoric water through a waste pile, alternated with periods of dryness, was simulated. Wastes were placed in columns together with sorbents/reagents in three different set-ups: as blended amendment (mixing method), as a bed at the bottom of the column (filtration method), or as a combination of the two previous methods. The filtration methods, which simulate the creation of a permeable reactive barrier downstream of a waste pile, are the most effective, while the use of sorbents/reagents as amendments leads to unsatisfactory results, because of the selective removal of only some contaminants. The efficacy of the filtration method is not significantly affected by the periods of dryness, except for a temporary rise of metal contents in the leachates due to dissolution of soluble salts formed upon evaporation in the dry periods. These results offer original information on advantages/limits in the use of TRM for the treatment of multi-contaminant-laden mine wastes, and represent the starting point for experimentation at larger scale.

  20. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbentsmore » was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.« less

  1. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S; Holmes, Michael J; Pavlish, John Henry

    2013-08-20

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  2. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  3. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  4. Sorbents for the oxidation and removal of mercury

    DOEpatents

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  5. FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

    2012-08-01

    Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

  6. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  7. Improving Sorbents for Glycerol Capture in Biodiesel Refinement

    PubMed Central

    Johnson, Brandy J.; Melde, Brian J.; Moore, Martin H.; Malanoski, Anthony P.; Taft, Jenna R.

    2017-01-01

    Biodiesel is produced by transesterification of animal fat, vegetable oil, or waste cooking oil with alcohol. After production costs, the economic viability of biodiesel is dependent on what steps are necessary to remove impurities following synthesis and the effectiveness of quality control analysis. Solid-phase extraction offers a potentially advantageous approach in biodiesel processing applications. Nanoporous scaffolds were investigated for adsorption of glycerol, a side product of biodiesel synthesis that is detrimental to engine combustion when present. Materials were synthesized with varying pore wall composition, including ethane and diethylbenzene bridging groups, and sulfonated to promote hydrogen bonding interactions with glycerol. Materials bearing sulfonate groups throughout the scaffold walls as well as those post-synthetically grafted onto the surfaces show notably superior performance for uptake of glycerol. The sorbents are effective when used in biodiesel mixtures, removing greater than 90% of glycerol from a biodiesel preparation. PMID:28773042

  8. Improving Sorbents for Glycerol Capture in Biodiesel Refinement.

    PubMed

    Johnson, Brandy J; Melde, Brian J; Moore, Martin H; Malanoski, Anthony P; Taft, Jenna R

    2017-06-21

    Biodiesel is produced by transesterification of animal fat, vegetable oil, or waste cooking oil with alcohol. After production costs, the economic viability of biodiesel is dependent on what steps are necessary to remove impurities following synthesis and the effectiveness of quality control analysis. Solid-phase extraction offers a potentially advantageous approach in biodiesel processing applications. Nanoporous scaffolds were investigated for adsorption of glycerol, a side product of biodiesel synthesis that is detrimental to engine combustion when present. Materials were synthesized with varying pore wall composition, including ethane and diethylbenzene bridging groups, and sulfonated to promote hydrogen bonding interactions with glycerol. Materials bearing sulfonate groups throughout the scaffold walls as well as those post-synthetically grafted onto the surfaces show notably superior performance for uptake of glycerol. The sorbents are effective when used in biodiesel mixtures, removing greater than 90% of glycerol from a biodiesel preparation.

  9. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  10. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas.

    PubMed

    Wang, Jiancheng; Qiu, Biao; Han, Lina; Feng, Gang; Hu, Yongfeng; Chang, Liping; Bao, Weiren

    2012-04-30

    Activated carbon (AC) supported manganese oxide sorbents were prepared by the supercritical water impregnation (SCWI) using two different precursor of Mn(NO(3))(2) (SCW(N)) and Mn(Ac)(2)·4H(2)O (SCW(A)). Their capacities of removing H(2)S from coal gas were evaluated and compared to the sorbents prepared by the pore volume impregnation (PVI) method. The structure and composition of different sorbents were characterized by XRD, SEM, TEM, XPS and XANES techniques. It is found that the precursor of active component plays the crucial role and SCW(N) sorbents show much better sulfidation performance than the SCW(A) sorbents. This is because the Mn(3)O(4) active phase of the SCW(N) sorbents are well dispersed on the AC support, while the Mn(2)SiO(4)-like species in the SCW(A) sorbent can be formed and seriously aggregated. The SCW(N) sorbents with 2.80% and 5.60% manganese are favorable for the sulfidation reaction, since the Mn species are better dispersed on the SCW(N) sorbents than those on the PV(N) sorbents and results in the better sulfidation performance of the SCW(N) sorbents. As the Mn content increases to 11.20%, the metal oxide particles on AC supports aggregate seriously, which leads to poorer sulfidation performance of the SCW(N)11.20% sorbents than that of the PV(N)11.20% sorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Thick thermal barrier coatings for diesel components

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1991-01-01

    An engineered thick thermal barrier coating consisting of multiple layers of zirconia and CoCrAlY with a zirconia top layer and having a system thermal conductance less than 410 w/m(exp 2)K exceeded the 100 hour engine durability goals set forth in this program. The thermal barrier coatings were intact at the test conclusion. Back to back single cylinder research engine tests were conducted with watercooled, metal hardware and oil-cooled, thermal barrier coating insulated hardware to determine apparent heat release and fuel economy. Apparent heat release data revealed that the insulated engine had a shorter ignition delay and a longer combustion duration than the metal engine. The insulated engine fuel economy was approximately two percent worse on average for this series of tests. There was no attempt to optimize engine efficiency of the insulated engine by modifying the engine timing, coating, or other techniques.

  12. Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.

  13. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  14. New high-capacity, calcium-based sorbents, calcium silicate sorbents. Final report, 1993--August 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, M.C.; Chiang, R.K.; Fillgrove, K.L.

    1995-02-01

    A search is being carried out for new calcium-based S0{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The objectives for the current year include the study of sorbents made from Ca(OH){sub 2}, from mixtures of Ca(OH){sub 2} and SiO{sub 2}, and from portland cement. They also include the study of sorbents made from model compounds. During this year, sorbents prepared from Ca(OH){sub 2} and from mixtures of Ca(OH){sub 2} and fumed SiO{sub 2} were investigated. The results show that very good SiO{sub 2}-modifiedmore » Ca(OH){sub 2} sorbents in which the Si-to-Ca reactant ratio is low can be prepared from Ca(OH){sub 2} and fumed SiO{sub 2}. Sorbents prepared from Ca(OH){sub 2} and natural SiO{sub 2} or natural SiO{sub 2} sources were also studied. The results obtained show that very good SiO{sub 2}-modified Ca(OH){sub 2} sorbents and calcium silicate hydrate sorbents, C-S-H sorbents, can be prepared from Ca(OH){sub 2} and diatomite, pumice or perlite, minerals that are readily available. In addition. sorbents prepared from Ca{sub 3}SiO{sub 5} and {beta}-Ca{sub 2}SiO{sub 4} and from mixtures of these compounds and SiO{sub 2} were studied. The results secured demonstrate that very good C-S-H rich sorbents can be prepared from these compounds and from mixtures of them with SiO{sub 2}. They also provide information useful for interpreting the cement sorbent results. Sorbents prepared from cement and from mixtures of cement and natural SiO{sub 2} or SiO{sub 2} sources were investigated as well. The results secured show that cement and mixtures of it with diatomite, pumice or perlite rapidly yield excellent sorbents with the proper reaction conditions.« less

  15. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  16. Determining when a set of compute nodes participating in a barrier operation on a parallel computer are ready to exit the barrier operation

    DOEpatents

    Blocksome, Michael A [Rochester, MN

    2011-12-20

    Methods, apparatus, and products are disclosed for determining when a set of compute nodes participating in a barrier operation on a parallel computer are ready to exit the barrier operation that includes, for each compute node in the set: initializing a barrier counter with no counter underflow interrupt; configuring, upon entering the barrier operation, the barrier counter with a value in dependence upon a number of compute nodes in the set; broadcasting, by a DMA engine on the compute node to each of the other compute nodes upon entering the barrier operation, a barrier control packet; receiving, by the DMA engine from each of the other compute nodes, a barrier control packet; modifying, by the DMA engine, the value for the barrier counter in dependence upon each of the received barrier control packets; exiting the barrier operation if the value for the barrier counter matches the exit value.

  17. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, Bernard P.; Thallapally, Praveen K.; Liu, Jian

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magneticmore » iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.« less

  18. Microlith-based Structured Sorbent for Carbon Dioxide, Humidity, and Trace Contaminant Control in Manned Space Habitats

    NASA Technical Reports Server (NTRS)

    Junaedi, Christian; Roychoudhury, SUbir; Howard, David F.; Perry, Jay L.; Knox, James C.

    2011-01-01

    To support continued manned space exploration, the development of atmosphere revitalization systems that are lightweight, compact, durable, and power efficient is a key challenge. The systems should be adaptable for use in a variety of habitats and should offer operational functionality to either expel removed constituents or capture them for closedloop recovery. As mission durations increase and exploration goals reach beyond low earth orbit, the need for regenerable adsorption processes for continuous removal of CO2 and trace contaminants from cabin air becomes critical. Precision Combustion, Inc. (PCI) and NASA Marshall (MSFC) have been developing an Engineered Structured Sorbents (ESS) approach based on PCI s patented Microlith technology to meet the requirements of future, extended human spaceflight explorations. This technology offers the inherent performance and safety attributes of zeolite and other sorbents with greater structural integrity, regenerability, and process control, thereby providing potential durability and efficiency improvements over current state-of-the-art systems. The major advantages of the ESS explored in this study are realized through the use of metal substrates to provide structural integrity (i.e., less partition of sorbents) and enhanced thermal control during the sorption process. The Microlith technology also offers a unique internal resistive heating capability that shows potential for short regeneration time and reduced power requirement compared to conventional systems. This paper presents the design, development, and performance results of the integrated adsorber modules for removing CO2, water vapor, and trace chemical contaminants. A related effort that utilizes the adsorber modules for sorption of toxic industrial chemicals is also discussed. Finally, the development of a 4-person two-leg ESS system for continuous CO2 removal is also presented.

  19. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  20. SO 2-Resistant Immobilized Amine Sorbents for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluri, Uma

    2014-01-01

    The solid amine sorbent for CO 2 capture process has advantages of simplicity and low operating cost compared to the MEA (monoethanolamine) process. Solid amine sorbents reported so far suffered from either low CO 2 capture capacity or low stability in the flue gas environment. This project is aimed at developing a SO 2-resistant solid amine sorbent for capturing CO 2 from coal–fired power plants with SCR/FGD which emits SO 2ranging from 15 to 30 ppm and NO ranging from 5 to 10 ppm. The amine sorbent we developed in a previous project degraded rapidly with 65% decrease in themore » initial capture capacity in presence of 1% SO 2. This amine sorbent was further modified by coating with polyethyleneglycol (PEG) to increase the SO 2-resistance. Polyethylene glycol (PEG) was found to decrease the SO 2-amine interaction, resulting in the decrease in the maximum SO desorption temperature (Tmax ) of amine sorbent. The PEG-coated amine sorbent exhibited higher stability with only 40% decrease in the initial capture capacity compared to un-coated amine sorbents. The cost of the solid amine sorbent developed in this project is estimated to be less than $7.00/lb; the sorbent exhibited CO 2 capture capacity more than 2.3 mmol/g. The results of this study provided the scientific basis for further development of SO 2-resistant sorbents.« less

  1. Functions of an engineered barrier system for a nuclear waste repository in basalt

    NASA Astrophysics Data System (ADS)

    Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.

    1980-01-01

    The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.

  2. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    NASA Astrophysics Data System (ADS)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  3. Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.

  4. Reactivity of Metal Oxide Sorbents for Removal of H{sub 2}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, K.C.; Crowe, E.R.

    1996-12-31

    Removal of hydrogen sulfide contained in hot coal gases produced from integrated gasification combined cycle power generation systems is required to protect downstream combustion turbines from being corroded with sulfur compounds. Removal of sulfur compounds from hot coal gas products is investigated by using various metal oxide sorbents and membrane separation methods. The main requirements of these metal oxide sorbents are durability and high sulfur loading capacity during absorption-regeneration cycles. In this research, durable metal oxide sorbents were formulated. Reactivity of the formulated metal oxide sorbents with simulated coal gas mixtures was examined to search for an ideal sorbent formulationmore » with a high-sulfur loading capacity suitable for removal of hydrogen sulfide from coal gases. The main objectives of this research are to formulate durable metal oxide sorbents with high-sulfur loading capacity by a physical mixing method, to investigate reaction kinetics on the removal of sulfur compounds from coal gases at high temperature and pressure, to study reaction kinetics on the regeneration of sulfided sorbents, to identify effects of hydrogen partial pressures and moisture on equilibrium/dynamic absorption of hydrogen sulfide into formulated metal oxide sorbents as well as initial reaction rates of H{sub 2}S with formulated metal oxide sorbents, and to evaluate intraparticular diffusivity of H{sub 2}S into formulated sorbents at various reaction conditions. The metal oxide sorbents such as TU-1, TU-19, TU-24, TU-25 and TU-28 were formulated with zinc oxide powder as an active sorbent ingredient, bentonite as a binding material and titanium oxide as a supporting metal oxide.« less

  5. Decontamination systems information and research program. Quarterly report, April--June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains separate reports on the following subtasks: analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using CFD; drain enhanced soil flushing using prefabricated vertical drains; performance and characteristics evaluation of acrylates as grout barriers; development of standard test protocol barrier design models for desiccation barriers, and for in-situ formed barriers; in-situ bioremediation of chlorinated solvents at Portsmouth Gaseous Diffusion Plant; development of a decision support system and a prototype database for management of the EM50 technology development program; GIS-based infrastructure for site characterization and remediation; treatment of mixed wastes via fluidized bed steammore » reforming; use of centrifugal membrane technology to treat hazardous/radioactive waste; environmental pollution control devices based on novel forms of carbon; development of instrumental methods for analysis of nuclear wastes and environmental materials; production and testing of biosorbents and cleaning solutions for D and D; use of SpinTek centrifugal membrane and sorbents/cleaning solutions for D and D; West Virginia High Tech Consortium Foundation--Environmental support program; small business interaction opportunities; and approach for assessing potential voluntary environmental protection.« less

  6. Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase.

    PubMed

    Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange

    2017-10-01

    Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.

  7. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying

    2008-03-01

    Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.

  8. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermicmore » nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.« less

  10. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  11. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, JS; Hillesheim, PC; Huang, DK

    A proof of concept study for a new type of carbon capture system is considered for post-combustion CO2 capture based on porous hollow fiber sorbents with ionic liquids sorbed in the cell walls of the fiber. This study proves that delicate morphological features in the open-celled porous wall can be maintained during the infusion process. Mixtures of task specific ionic liquid (i.e. [BMIM][Tf2N]) and superbase (i.e. DBU) were loaded into polyamide-imide (PAI) fibers by a so-called two-step non-solvent infusion protocol. In the protocol, methanol carries ionic liquids into the pore cell walls of hollow fibers and then hexane carries superbasemore » to create an efficient CO2 sorbent. Our ionic liquid/superbase impregnation technique overcomes a serious increase in mass transfer resistance upon reaction with CO2, thereby allowing its large scale utilization for post-combustion CO2 capture. The investigation on the effect of different pore former additives (different molecular weights of polyvinylpyrrolidone, lithium nitrate, and their mixtures) suggested that a large molecular weight of PVP (M-w; 1300k) including dope composition produces highly interconnected open cell pore structures of PAI hollow fibers. Lastly, a lumen side barrier layer was successfully formed on the bore side of neat PAI fibers by using a mixture of Neoprene (R) with crosslinking agents (TSR-633) via a post-treatment process. The lumen layer will enable heat removal from the fiber sorbents during their application in rapid thermal swing cycling processes. (C) 2012 Elsevier Ltd. All rights reserved.« less

  12. The Development of 2700-3000 F Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  13. Biomass-Derived Porous Carbonaceous Aerogel as Sorbent for Oil-Spill Remediation.

    PubMed

    Wang, Zhuqing; Jin, Pengxiang; Wang, Min; Wu, Genhua; Dong, Chen; Wu, Aiguo

    2016-12-07

    We prepared a cost-effective, environmentally friendly carbonaceuous oil sorbent with a lotus effect structure using a simple one-pot hydrothermal reaction and a mild modification process. The carbonaceous oil sorbent can rapidly, efficiently, and continuously collect oil in situ from a water surface. This sorbent was unlike traditional sorbents because it was not dependent on the weight and volume of the sorption material. The sorbent was also successfully used to separate and collect crude oil from the water surface and can collect organic solvents underwater. This novel oil sorbent and oil-collection device can be used in case of emergency for organic solvent leakages, as well as leakages in tankers and offshore drilling platforms.

  14. Sorbents for the oxidation and removal of mercur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbentmore » into the mercury contaminated gas stream are described.« less

  15. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    DOE Data Explorer

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  16. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Process and system for removing impurities from a gas

    DOEpatents

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  18. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOEpatents

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  19. Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO-CaCO3 Sorbents.

    PubMed

    Cui, Hongjie; Zhang, Qiming; Hu, Yuanwu; Peng, Chong; Fang, Xiangchen; Cheng, Zhenmin; Galvita, Vladimir V; Zhou, Zhiming

    2018-06-20

    As a potential candidate for precombustion CO 2 capture at intermediate temperatures (200-400 °C), MgO-based sorbents usually suffer from low kinetics and poor cyclic stability. Herein, a general and facile approach is proposed for the fabrication of high-performance MgO-based sorbents via incorporation of CaCO 3 into MgO followed by deposition of a mixed alkali metal salt (AMS). The AMS-promoted MgO-CaCO 3 sorbents are capable of adsorbing CO 2 at an ultrafast rate, high capacity, and good stability. The CO 2 uptake of sorbent can reach as high as above 0.5 g CO 2 g sorbent -1 after only 5 min of sorption at 350 °C, accounting for vast majority of the total uptake. In addition, the sorbents are very stable even under severe but more realistic conditions (desorption in CO 2 at 500 °C), where the CO 2 uptake of the best sorbent is stabilized at 0.58 g CO 2 g sorbent -1 in 20 consecutive cycles. The excellent CO 2 capture performance of the sorbent is mainly due to the promoting effect of molten AMS, the rapid formation of CaMg(CO 3 ) 2 , and the plate-like structure of sorbent. The exceptional ultrafast rate and the good stability of the AMS-promoted MgO-CaCO 3 sorbents promise high potential for practical applications, such as precombustion CO 2 capture from integrated gasification combined cycle plants and sorption-enhanced water gas shift process.

  20. The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2007-01-01

    Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.

  1. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    PubMed Central

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-01-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η − γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment. PMID:27682811

  2. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-09-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η - γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, G.P.; Delzer, G.A.; Kubicek, D.H.

    Phillips Z-Sorb sorbents have been evaluated successfully as regenerable sorbents for hydrogen sulfide in the fuel gas that is produced in a clean coal technology power plant. Tests have been carried out in fixed-,moving-, and fluid-bed applications. The fixed-bed tests completed at the Morgantown Energy Technology Center showed that Phillips Z-Sorb sorbent performed better than zinc titanate. The performance of Phillips Z-Sorb sorbent in a moving-bed application was very encouraging. The sorbent flowed well, H{sub 2}S was reduced to less than 50 ppm at the absorber outlet over long periods and post-test analysis of the sorbent indicated very low sulfatemore » levels at the regenerator exit. The fluidizable version of Phillips Z-Sorb sorbent was tested in Research Triangle Institutes`s high temperature, high pressure, semi-bath, fluidized-bed reactor system. in a life cycle test consisting of 50 cycles of sulfidation and regeneration, this sorbent exhibited excellent activity and regenerability. The sulfur loading was observed to be 90 + percent of the theoretical capacity. The sorbent consistently demonstrated a sharp regeneration profile with no evidence of sulfate accumulation. 7 refs., 7 fig., 5 tabs.« less

  4. Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Bush, Richard

    2016-01-01

    Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.

  5. Synthesis and properties of nanostructured sol-gel sorbents for simultaneous removal of sulfur dioxide and nitrogen oxides from flue gas

    NASA Astrophysics Data System (ADS)

    Buelna Quijada, Genoveva

    2001-07-01

    Regenerative, alumina-supported, copper-based sorbent/catalysts provide a promising technique for simultaneous removal of SO2 and NO x from flue gas. These sorbents can remove over 90% of SO2 and 70+% of NOx while generating no wastes, reducing energy consumption, and producing valuable by-products. The lack of a cost-effective sorbent with low attrition rate and good reactivity has been the main hurdle to commercialization of this copper oxide process. Developing such a sorbent is the focus of this dissertation. This work examines using sol-gel techniques rather than traditional processes to produce gamma-alumina and copper coated 7-alumina granular sorbents. Important modifications to the established sol-gel synthesis process were made, which minimized generated wastes and reduced preparation time and sorbent cost. A laboratory scale semi-continuous process providing a basis for large-scale synthesis was developed. The effect of the copper content on the surface area and dispersion of the active species on sol-gel-derived sorbents coated by the one step and wet-impregnation methods was studied. The sol-gel-derived sorbents showed superior sulfation and regeneration properties than the existing commercial sorbents used in the copper oxide process in terms of sulfation capacity, fast regeneration, recovery of sorption capacity, and SO2 concentration in the regenerated effluent. The optimum temperature for NO reduction by NH3 over sol-gel-derived CuO/gamma-Al2O3 was found to be 350°C for both fresh and sulfated catalysts. This was also the optimum operating temperature for simultaneous removal of SO2 and NOx from simulated flue gas. At 350°C, the adsorption capacity of the sol-gel sorbent/catalyst was higher than UOP's sorbent, and very close to the capacity of ALCOA's sorbent, while the catalytic activity for NO reduction of the sol-gel-derived CuO/gamma-Al 2O3 sorbent fell between the commercial sorbents. The new mesoporous sol-gel-derived materials showed larger surface area, better mechanical strength, and more uniform dispersion of the copper species than existing commercially available sorbents. The superior mechanical properties, better cost effectiveness, and comparable efficiency for simultaneous removal of SO2 and NOx of the sol-gel-derived CuO/gamma-Al 2O3 sorbents with respect to the commercial ones make them a good option for use in the copper oxide process for combined removal of SO2 and NOx from flue gas.

  6. Aerogel sorbents

    DOEpatents

    Begag, Redouane; Rhine, Wendell E.; Dong, Wenting

    2018-04-03

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  7. Aerogel sorbents

    DOEpatents

    Begag, Redouane; Rhine, Wendell E; Dong, Wenting

    2016-04-05

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  8. Multicomponent gas sorption Joule-Thomson refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)

    1991-01-01

    The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.

  9. EVALUATION OF SORBENTS FOR INDUSTRIAL SLUDGE LEACHATE TREATMENT

    EPA Science Inventory

    A laboratory and outdoor pilot-scale investigation was conducted on the use of selected sorbents for removing leachate contaminants from three industrial sludges. The laboratory results indicated that, rather than a single sorbent, a combination of acidic and basic sorbents is re...

  10. Sulphation of CaO-Based Sorbent Modified in CO2 Looping Cycles

    NASA Astrophysics Data System (ADS)

    Manovic, Vasilije; Anthony, Edward J.; Loncarevic, Davor

    CaO-based looping cycles for CO2 capture at high temperatures are based on cyclical carbonation of CaO and regeneration of CaCO3. The main limitation of natural sorbents is the loss of carrying capacity with increasing numbers of reaction cycles, resulting in spent sorbent ballast. Use of spent sorbent from CO2 looping cycles for SO2 capture is a possible solution investigated in this study. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain) and Katowice (Poland). Carbonation/calcination cycles were performed in a tube furnace with original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulphated in a thermogravimetric analyzer. Changes in the resulting pore structure were then investigated using mercury porosimetry. Final conversions of both spent and pretreated sorbents after longer sulphation times were comparable or higher than those observed for the original sorbents. Maximum sulphation levels strongly depend on sorbent porosity and pore surface area. The shrinkage of sorbent particles during calcination/cycling resulted in a loss of sorbent porosity (≤48%), which corresponds to maximum sulphation levels ˜55% for spent Kelly Rock and Katowice. However, this is ˜10% higher than for the original samples. By contrast, La Blanca limestone had more pronounced particle shrinkage during pretreatment and cycling, leading to lower porosity, <35%, resulting in sulphation conversion of spent samples <30%, significantly lower than for the original sample (45%). These results showed that spent sorbent samples from CO2 looping cycles can be used as sorbents for SO2 retention if significant porosity loss does not occur during CO2 reaction cycles. For spent Kelly Rock and Katowice samples final conversions are determined by the total pore volume available for the bulky CaSO4 product.

  11. Performance of a novel synthetic Ca-based solid sorbent suitable for desulfurizing flue gases in a fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacciani, R.; Muller, C.R.; Davidson, J.F.

    2009-08-05

    The extent and mechanism of sulfation and carbonation of limestone, dolomite, and chalk, were compared with a novel, synthetic sorbent (85 wt % CaO and 15 wt % Ca{sub 12}A{sub l14}O{sub 33}), by means of experiments undertaken in a small, electrically heated fluidized bed. The sorbent particles were used either (I) untreated, sieved to two particle sizes and reacted with two different concentrations of SO{sub 2}, or (ii) after being cycled 20 times between carbonation, in 15 vol % CO{sub 2} in N2, and calcination, in pure N2, at 750 degrees C. The uptake of untreated limestone and dolomite wasmore » generally low (<0.2 g(SO{sub 2})/g(sorbent)), confirming previous results, However, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO{sub 2}, and their final uptake was significantly higher (>0.5 g(SO{sub 2})/g(sorbent)) and essentially independent of the particle size. Here, comparisons are made on the basis of the sorbents in the calcined state. The capacities for the uptake of SO{sub 2}, on a basis of unit mass of calcined sorbent, were comparable for the chalk and the synthetic sorbent. However, previous work has demonstrated the ability of the synthetic sorbent to retain its capacity for CO{sub 2} over many cycles of carbonation and calcination: much more so than natural sorbents such as chalk and limestone. Accordingly, the advantage of the synthetic sorbent is that it could be used to remove CO{sub 2} from flue gases and, at the end of its life, to remove SO{sub 2} on a once-through basis.« less

  12. Barriers to student success in engineering education

    NASA Astrophysics Data System (ADS)

    Boles, Wageeh; Whelan, Karen

    2017-07-01

    In the UK, the USA and Australia, there have been calls for an increase in the number of engineering graduates to meet the needs of current global challenges. Universities around the world have been grappling with how to both attract more engineering students and to then retain them. Attrition from engineering programmes is disturbingly high. This paper reports on an element of research undertaken through an Australian Learning and Teaching Council-funded Fellowship that investigated the factors leading to student attrition in engineering programmes, by identifying barriers to student success. Here, we contrast a review of the literature related to student barriers and success with student perceptions, gathered through a series of focus groups and interviews at three Australian universities. We also present recommendations for action to try to remove barriers to student success.

  13. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested. Acknowledgement: Support from a project 2014/0009/1DP/1.1.1.2.0/13/APIA/VIAA/044

  14. Space-filling polyhedral sorbents

    DOEpatents

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  15. Circulating moving bed system for CO.sub.2 separation, and method of same

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James

    2016-12-27

    A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO.sub.2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO.sub.2 by concentration swing adsorption and adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.

  16. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles.

    PubMed

    Manovic, Vasilije; Anthony, Edward J

    2007-06-15

    This paper examines the reactivation of spent sorbent, produced from multiple CO2 capture cycles, for use in SO2 capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, > 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when > 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO4 with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. This enables the development of a more suitable pore surface area and pore volume distribution for sulfation, and this has been confirmed by N2 adsorption-desorption isotherms and the Barrett-Joyner-Halenda (BJH) method. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH)2 crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. The improved characteristics of spent reactivated sorbent in comparison to the original and to the sorbent calcined under different conditions and hydrated indicate the beneficial effect of CO2 cycles on sorbent reactivation and subsequent sulfation. These results allow us to propose a new process for the use of CaO-based sorbent in fluidized bed combustion (FBC) systems, which incorporates CO2 capture, sorbent reactivation, and SO2 retention.

  17. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    DOEpatents

    Nelson, Sidney [Hudson, OH

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  18. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOEpatents

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  19. Enantioseparation of Mandelic Acid Enantiomers With Magnetic Nano-Sorbent Modified by a Chiral Selector.

    PubMed

    Tarhan, Tuba; Tural, Bilsen; Tural, Servet; Topal, Giray

    2015-11-01

    In this study, R(+)-α-methylbenzylamine-modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo-second-order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g(-1). The magnetic chiral sorbent has a greater affinity for (S)-(+)-mandelic acid compared to (R)-(-)-mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD-H column. © 2015 Wiley Periodicals, Inc.

  20. Reactivity of metal oxide sorbents for removal of sulfur compounds from coal gases at high temperature and pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, K.C.; Crowe, E.R.; Gangwal, S.K.

    1997-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated to effectively remove hydrogen sulfide with various metal oxide sorbents at high temperatures and pressures. Metal oxide sorbents such as zinc titanate oxide, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide were found to be promising sorbents in comparison with other removal methods such as membrane separation and reactive membrane separation. The removal reaction of H{sub 2}S from coal gas mixtures with zinc titanate oxide sorbents was conducted in a batch reactor. The main objectives of this research are to formulate promising metal oxide sorbentsmore » for removal of hydrogen sulfide from coal gas mixtures, to compare reactivity of a formulated sorbent with a sorbent supplied by the Research Triangle Institute at high temperatures and pressures, and to determine effects of concentrations of moisture contained in coal gas mixtures on equilibrium absorption of H{sub 2}S into metal oxide sorbents. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures.« less

  1. Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent.

    PubMed

    Han, Deman; Jia, Wenping; Liang, Huading

    2010-01-01

    A molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-dichlorophenoxyacetic acid (2,4-D) was prepared by a surface imprinting technique in combination with a sol-gel process. The 2,4-D-imprinted amino-functionalized silica sorbent was characterized by FT-IR, nitrogen adsorption and static adsorption experiments. The selectivity of the sorbent was investigated by a batch competitive binding experiment using an aqueous 2,4-D and 2,4-dichlorophenol (2,4-DCP) mixture or using an aqueous 2,4-D and 2,4-dichlorophenylacetic acid (DPAC) mixture. The largest selectivity coefficient for 2,4-D in the presence of 2,4-DCP was found to be over 18, the largest relative selectivity coefficient between 2,4-D and 2,4-DCP over 9. The static uptake capacity and selectivity coefficient of the 2,4-D-imprinted functionalized sorbent are higher than those of the non-imprinted sorbent. The imprinted functionalized silica gel sorbent offered a fast kinetics for the extraction/stripping of 2,4-D, 73% of binding capacity (200 mg/L 2,4-D onto 20 mg of imprinted sorbent) was obtained within 5 min and the adsorbed 2,4-D can be easily stripped by the mixture solution of ethanol and 6 mol/L HCl (V:V = 1:1). In a test of five extraction/stripping cycles, the adsorption capacity of the sorbent was all above 93% of that of the fresh sorbent. Experimental result showed the potential of molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-D.

  2. Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review

    PubMed Central

    Moyo, Francis; Tandlich, Roman; Wilhelmi, Brendan S.; Balaz, Stefan

    2014-01-01

    Renewed focus on the sorption of hydrophobic organic chemicals (HOCs) onto mineral surfaces and soil components is required due to the increased and wider range of organic pollutants being released into the environment. This mini-review examines the possibility of the contribution and mechanism of HOC sorption onto clay mineral sorbents such as kaolinite, and soil organic matter and the possible role of both in the prevention of environmental contamination by HOCs. Literature data indicates that certain siloxane surfaces can be hydrophobic. Therefore soils can retain HOCs even at low soil organic levels and the extent will depend on the structure of the pollutant and the type and concentration of clay minerals in the sorbent. Clay minerals are wettable by nonpolar solvents and so sorption of HOCs onto them from aqueous and non-aqueous solutions is possible. This is important for two reasons: firstly, the movement and remediation of soil environments will be a function of the concentration and type of clay minerals in the soil. Secondly, low-cost sorbents such as kaolinite and expandable clays can be added to soils or contaminated environments as temporary retention barriers for HOCs. Inorganic cations sorbed onto the kaolinite have a strong influence on the rate and extent of sorption of hydrophobic organic pollutants onto kaolinite. Structural sorbate classes that can be retained by the kaolinite matrix are limited by hydrogen bonding between hydroxyl groups of the octahedral alumosilicate sheet and the tetrahedral sheet with silicon. Soil organic carbon plays a key role in the sorption of HOCs onto soils, but the extent will be strongly affected by the structure of the organic soil matter and the presence of soot. Structural characterisation of soil organic matter in a particular soil should be conducted during a particular contamination event. Contamination by mining extractants and antibiotics will require renewed focus on the use of the QSAR approaches in the context of the sorption of HOCs onto clay minerals from aqueous and non-aqueous solutions. PMID:24821385

  3. 40 CFR 75.39 - Missing data procedures for sorbent trap monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Missing data procedures for sorbent... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.39 Missing data procedures for sorbent trap monitoring systems. (a) If a primary sorbent trap...

  4. Carbon sorbent based on flax boon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramov, M.V.; Tyulina, R.M.; Yaroslavtsev, V.T.

    1994-11-10

    Flax-fiber production wastes such as boon can be used effectively as the starting material for producing carbon sorbents. Activated carbons are among the most widely used sorbents in industrial wastewater and waste gas treatment. A single-stage process has been developed for producing an efficient, cheap carbon sorbent based on flax boon.

  5. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  6. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  7. Regenerable solid imine sorbents

    DOEpatents

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  8. Sulfur tolerant highly durable CO.sub.2 sorbents

    DOEpatents

    Smirniotis, Panagiotis G [Cincinnati, OH; Lu, Hong [Urbana, IL

    2012-02-14

    A sorbent for the capture of carbon dioxide from a gas stream is provided, the sorbent containing calcium oxide (CaO) and at least one refractory dopant having a Tammann temperature greater than about 530.degree. C., wherein the refractory dopant enhances resistance to sintering, thereby conserving performance of the sorbent at temperatures of at least about 530.degree. C. Also provided are doped CaO sorbents for the capture of carbon dioxide in the presence of SO.sub.2.

  9. Surmounting the Barriers: Ethnic Diversity in Engineering Education: Summary of a Workshop

    ERIC Educational Resources Information Center

    National Academies Press, 2014

    2014-01-01

    "Surmounting the Barriers: Ethnic Diversity in Engineering Education" is the summary of a workshop held in September 2013 to take a fresh look at the impediments to greater diversification in engineering education. The workshop brought together educators in engineering from two- and four-year colleges and staff members from the three…

  10. PCB-induced changes of a benthic community and expected ecosystem recovery following in situ sorbent amendment

    USGS Publications Warehouse

    Janssen, Elisabeth M.-L.; Thompson, Janet K.; Luoma, Samuel N.; Luthy, Richard G.

    2011-01-01

    The benthic community was analyzed to evaluate pollution-induced changes for the polychlorinated biphenyl (PCB)-contaminated site at Hunters Point (HP) relative to 30 reference sites in San Francisco Bay, California, USA. An analysis based on functional traits of feeding, reproduction, and position in the sediment shows that HP is depauperate in deposit feeders, subsurface carnivores, and species with no protective barrier. Sediment chemistry analysis shows that PCBs are the major risk drivers at HP (1,570 ppb) and that the reference sites contain very low levels of PCB contamination (9 ppb). Different feeding traits support the existence of direct pathways of exposure, which can be mechanistically linked to PCB bioaccumulation by biodynamic modeling. The model shows that the deposit feeder Neanthes arenaceodentata accumulates approximately 20 times more PCBs in its lipids than the facultative deposit feeder Macoma balthica and up to 130 times more than the filter feeder Mytilus edulis. The comparison of different exposure scenarios suggests that PCB tissue concentrations at HP are two orders of magnitude higher than at the reference sites. At full scale, in situ sorbent amendment with activated carbon may reduce PCB bioaccumulation at HP by up to 85 to 90% under favorable field and treatment conditions. The modeling framework further demonstrates that such expected remedial success corresponds to exposure conditions suggested as the cleanup goal for HP. However, concentrations remain slightly higher than at the reference sites. The present study demonstrates how the remedial success of a sorbent amendment, which lowers the PCB availability, can be compared to reference conditions and traditional cleanup goals, which are commonly based on bulk sediment concentrations.

  11. West Virginia Geological Survey's role in siting fluidized bed combustion facilities

    USGS Publications Warehouse

    Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.

    1989-01-01

    A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.

  12. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    NASA Technical Reports Server (NTRS)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  13. Toward in situ monitoring of water contamination by nitroenergetic compounds.

    PubMed

    Johnson, Brandy J; Leska, Iwona A; Medina, Alejandro; Dyson, Norris F; Nasir, Mansoor; Melde, Brian J; Taft, Jenna R; Charles, Paul T

    2012-11-06

    We have previously described the application of novel porous organosilicate materials to the preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbents and the advantages of these types of materials over commercially available solid phase extraction sorbents have been demonstrated. Here, the development of systems for application of those sorbents to in situ monitoring is described. Considerations such as column pressure, particulate filtration, and component durability are discussed. The diameter of selected column housings, the sorbent bed depth, and the frits utilized significantly impact the utility of the sorbent columns in the prototype system. The impact of and necessity for improvements in the morphological characteristics of the sorbents as they relate to reduction in column pressure are detailed. The results of experiments utilizing a prototype system are presented. Data demonstrating feasibility for use of the sorbents in preconcentration prior to ion mobility spectrometry is also presented.

  14. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    NASA Technical Reports Server (NTRS)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, James; Cmarik, Gregory E.; Ebner, Armin; Ritter, James

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0 C, 10 C, 25 C, 50 C, and 75 C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  15. Technetium-99m generator system

    DOEpatents

    Mirzadeh, Saed; Knapp, Jr., Furn F.; Collins, Emory D.

    1998-01-01

    A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

  16. Technetium-99m generator system

    DOEpatents

    Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

    1998-06-30

    A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

  17. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  18. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents

    DOEpatents

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2004-11-02

    The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H.sub.2 S, COS and CS.sub.2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.

  19. 40 CFR Table 3 to Subpart Jjjjjj... - Operating Limits for Boilers With Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... performance test demonstrating compliance with the PM emission limitation. 4. Dry sorbent or carbon injection control Maintain the sorbent or carbon injection rate at or above the lowest 2-hour average sorbent flow... emissions limitation. When your boiler operates at lower loads, multiply your sorbent or carbon injection...

  20. 40 CFR Table 7 to Subpart Jjjjjj... - Demonstrating Continuous Compliance

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.11211. 4. Dry Scrubber Sorbent or Activated Carbon Injection Rate a. Collecting the sorbent or activated carbon injection rate monitoring system data for the dry scrubber according to §§ 63.11224 and 63... average sorbent or activated carbon injection rate at or above the minimum sorbent or activated carbon...

  1. 40 CFR Table 7 to Subpart Jjjjjj... - Demonstrating Continuous Compliance

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.11211. 4. Dry Scrubber Sorbent or Activated Carbon Injection Rate a. Collecting the sorbent or activated carbon injection rate monitoring system data for the dry scrubber according to §§ 63.11224 and 63... average sorbent or activated carbon injection rate at or above the minimum sorbent or activated carbon...

  2. Polymeric ionic liquid bucky gels as sorbent coatings for solid-phase microextraction.

    PubMed

    Zhang, Cheng; Anderson, Jared L

    2014-05-30

    Novel cross-linked polymeric ionic liquid (PIL) bucky gels were formed by free-radical polymerization of polymerizable ionic liquids gelled with multi-walled carbon nanotubes (MWCNT) and used as sorbent coatings for solid-phase microextraction (SPME). The combination of PIL with MWCNTs significantly enhanced the π-π interaction between the sorbent coatings and the aromatic analytes. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for the extraction of polycyclic aromatic hydrocarbons (PAHs). A partitioning extraction mechanism was observed for the PIL/MWCNT-based sorbent coatings indicating that the addition of MWCNTs did not seem to affect the extraction mechanism of the sorbent coating. The analyte-to-coating partition coefficients (logKfs) were estimated and the limits of detection (LOD) for selected PIL bucky gel sorbent coating were determined to be in the range of 1-2.5 ng L(-1). Recovery studies were also performed for PAHs in river and tap water to validate the applicability of the developed method. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.

    PubMed

    Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L

    2011-08-29

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 10¹ m²/g), CDI-X copolymers (< 10¹ m²/g), and granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.

  4. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    PubMed Central

    Wilson, Lee D.; Mohamed, Mohamed H.; Berhaut, Christopher L.

    2011-01-01

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g), CDI-X copolymers (< 101 m2/g), and granular activated carbon (GAC ~103 m2/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material. PMID:28824156

  5. Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal

    NASA Astrophysics Data System (ADS)

    Daniel-da-Silva, Ana L.; Salgueiro, Ana M.; Creaney, Bianca; Oliveira-Silva, Rui; Silva, Nuno J. O.; Trindade, Tito

    2015-07-01

    The efforts dedicated to improving water decontamination procedures have prompted the interest in the development of efficient, inexpensive, and reusable sorbents for the uptake of dye pollutants. In this work, novel sorbents consisting of carrageenan polysaccharides grafted to magnetic iron oxide nanoparticles were prepared. κ- and ι-carrageenan were first chemically modified by carboxymethylation and then covalently attached via amide bond to the surface of aminated silica-coated magnetite nanoparticles, both steps monitored using infrared spectroscopy (FTIR) analysis. The kinetics and the equilibrium behavior of the cationic dye methylene blue (MB) adsorption onto the carrageenan sorbents were investigated. ι-carrageenan sorbents displayed higher MB adsorption capacity that was ascribed to high content of sulfonate groups. Overall, the pseudo-second order equation provided a good description of the adsorption kinetics. The κ-carrageenan sorbents followed an unusual Z-type equilibrium adsorption isotherm whereas the isotherm of ι-carrageenan sorbents, although displaying a conventional shape, could not be successfully predicted by isotherm models commonly used. Noteworthy, both sorbents were long-term stable and could easily be recycled by simply rinsing with KCl aqueous solution. The removal efficiency of κ-carrageenan sorbents was 92 % in the first adsorption cycle and kept high (>80 %) even after six consecutive adsorption/desorption cycles.

  6. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  7. KINETICS OF Mn-BASED SORBENTS FOR HOT COAL GAS DESULFURIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.J. BERNS; K.A. SADECKI; M.T. HEPWORTH

    1997-09-15

    Mixed manganese oxide sorbents have been investigated for high-temperature removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases. The sorbents were screened by thermodynamic equilibrium considerations for sulfidation. Preliminary experimental work using thermogravimetric analysis (TGA) indicated titania to be a superior substrate than alumina. Four formulations showing superior reactivity in a TGA were then tested in an ambient pressure fixed-bed reactor to determine steady state H 2 S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. Eight tests were conducted with each test consisting of five cycles ofmore » sulfidation and regeneration. Sulfidation occurred at 600 o C using a simulated coal gas at an empty-bed space velocity of approximately 12,000 per hour. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H 2 S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent at 600 o C. Regeneration tests determined that loaded pellets can be essentially completely regenerated in an air/steam mixture at 750 o C with minimal sulfate formation. The leading formulation (designated C6-2) from the fixed-bed tests was then further tested under varying sorbent induration temperature, sulfidation temperature and superficial gas velocity. Four tests were conducted with each test consisting of four cycles of sulfidation and regeneration. Results showed that the induration temperature of the sorbent and the reaction temperature greatly affected the H 2 S removal capacity of the sorbent while the superficial gas velocity between 1090 and 1635 cm/min had minimal affect on the sorbent's breakthrough capacity. Testing showed that the sorbent's strength was a strong function of the sorbent induration temperature. Sorbent also showed 30 to 53% loss of its strength over four cycles of sulfidation and regeneration. The former being sorbent indurated at 1115 o C and the prior being sorbent indurated at 1100 o C. A mathematical model was developed to describe the reaction of H 2 S with the mixed metal oxide in a fixed-bed reactor, where the individual pellets react according to the shrinking core model. The effective diffusivity within a single pellet was estimated by adjusting its value until a good match between the experimental and model H 2 S breakthrough curves was obtained. Predicted sorbent conversion at the conclusion of test FB3A compared well with experimental sulfur analysis.« less

  8. Evaluation of Solid Sorbents as a Retrofit Technology for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, Sharon

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO 2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO 2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO 2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbentmore » CO 2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO 2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO 2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO 2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating temperatures combined with pre-loading of the sorbent with CO 2 prior to entering the adsorber. Specifically, CO 2-rich gas was utilized to convey sorbent from the regenerator to the adsorber. This gas was nominally 45°C below the regenerator temperature during testing. ADA’s post-combustion capture system with modifications to overcome pilot constraints, in conjunction with incorporating a sorbent with CO 2 working capacity of 15 g CO 2/100 g sorbent and a contact time of 10 to 15 minutes or less with flue gas could provide significant cost and performance benefits when compared to an MEA system.« less

  9. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designedmore » and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, sorbents AX, F, and BN, were selected for evaluation using the 1 kW pilot at Sherco. Sorbent AX was operated in batch mode and performed similarly to sorbent R (i.e. could achieve up to 90% removal when given adequate regeneration time). Sorbent BN was not expected to be subject to the same mass diffusion limitations as experienced with sorbent R. When sorbent BN was used in continuous mode the steady state CO{sub 2} removal was approximately double that of sorbent R, which highlighted the importance of sorbents without kinetic limitations.« less

  10. Women in Engineering: The Impact of the College Internship on Persistence into an Engineering Field

    ERIC Educational Resources Information Center

    Brush, Kimberly M.

    2013-01-01

    The development of a diverse engineering workforce, with a variety of skills and interests is essential to the future of American innovation. Historically, the engineering field has been grounded in a series of standards that often benefit men while creating barriers for women. Thus, strategies for overcoming barriers to women's successful…

  11. Apparatus for hot-gas desulfurization of fuel gases

    DOEpatents

    Bissett, Larry A.

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  12. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling.

    PubMed

    Tansel, Berrin; Surita, Sharon C

    2016-06-01

    Siloxane levels in biogas can jeopardize the warranties of the engines used at the biogas to energy facilities. The chemical structure of siloxanes consists of silicon and oxygen atoms, alternating in position, with hydrocarbon groups attached to the silicon side chain. Siloxanes can be either in cyclic (D) or linear (L) configuration and referred with a letter corresponding to their structure followed by a number corresponding to the number of silicon atoms present. When siloxanes are burned, the hydrocarbon fraction is lost and silicon is converted to silicates. The purpose of this study was to evaluate the adequacy of activated carbon gas samplers for quantitative analysis of siloxanes in biogas samples. Biogas samples were collected from a landfill and an anaerobic digester using multiple carbon sorbent tubes assembled in series. One set of samples was collected for 30min (sampling 6-L gas), and the second set was collected for 60min (sampling 12-L gas). Carbon particles were thermally desorbed and analyzed by Gas Chromatography Mass Spectrometry (GC/MS). The results showed that biogas sampling using a single tube would not adequately capture octamethyltrisiloxane (L3), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). Even with 4 tubes were used in series, D5 was not captured effectively. The single sorbent tube sampling method was adequate only for capturing trimethylsilanol (TMS) and hexamethyldisiloxane (L2). Affinity of siloxanes for activated carbon decreased with increasing molecular weight. Using multiple carbon sorbent tubes in series can be an appropriate method for developing a standard procedure for determining siloxane levels for low molecular weight siloxanes (up to D3). Appropriate quality assurance and quality control procedures should be developed for adequately quantifying the levels of the higher molecular weight siloxanes in biogas with sorbent tubes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Multi-Column Experimental Test Bed Using CaSDB MOF for Xe/Kr Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, Amy Keil; Greenhalgh, Mitchell Randy; Garn, Troy Gerry

    Processing of spent nuclear fuel produces off-gas from which several volatile radioactive components must be separated for further treatment or storage. As part of the Off-gas Sigma Team, parallel research at INL and PNNL has produced several promising sorbents for the selective capture of xenon and krypton from these off-gas streams. In order to design full-scale treatment systems, sorbents that are promising on a laboratory scale must be proven under process conditions to be considered for pilot and then full-scale use. To that end, a bench-scale multi-column system with capability to test multiple sorbents was designed and constructed at INL.more » This report details bench-scale testing of CaSDB MOF, produced at PNNL, and compares the results to those reported last year using INL engineered sorbents. Two multi-column tests were performed with the CaSDB MOF installed in the first column, followed with HZ-PAN installed in the second column. The CaSDB MOF column was placed in a Stirling cryocooler while the cryostat was employed for the HZ-PAN column. Test temperatures of 253 K and 191 K were selected for the first column while the second column was held at 191 K for both tests. Calibrated volume sample bombs were utilized for gas stream analyses. At the conclusion of each test, samples were collected from each column and analyzed for gas composition. While CaSDB MOF does appear to have good capacity for Xe, the short time to initial breakthrough would make design of a continuous adsorption/desorption cycle difficult, requiring either very large columns or a large number of smaller columns. Because of the tenacity with which Xe and Kr adhere to the material once adsorbed, this CaSDB MOF may be more suitable for use as a long-term storage solution. Further testing is recommended to determine if CaSDB MOF is suitable for this purpose.« less

  14. 6S Return Samples: Assessment of Air Quality in the International Space Station (ISS) Based on Solid Sorbent Air Sampler (SSAS) and Formaldehyde Monitoring Kit (FMK) Analyses

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.

  15. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. Brad

    1995-01-01

    Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  16. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. B.

    1995-01-01

    Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  17. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  18. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.

    PubMed

    Kalin, Robert M

    2004-06-01

    Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

  19. Sorbent Scoping Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chancellor, Christopher John

    2016-11-14

    The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste thatmore » will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.« less

  20. Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents.

    PubMed

    Paulauskiene, Tatjana

    2018-04-01

    This work aimed to evaluate the sorption capacity of natural sorbents (wool, moss, straw, peat) and their composites during the sorption of crude oil and of diesel overspread on the water surface. The work presents the research results of the maximum sorption capacity of the sorbents/their composites using crude oil/diesel; the sorption capacity of the sorbents/their composites when crude oil/diesel is spilled on the water surface; and the research results of the unrealized part of the crude oil/diesel in the sorbents. The results of the analysis showed that all the sorbents and their composites have their selectivity to crude oil less than 50%. Also the results showed that the distribution of diesel and water in the sorbents and their composites is very different compared with the distribution of crude oil during the sorption analyses. In total, the diesel in the liquid mass absorbed by the straw and the peat amounted to 17 and 20%, respectively. This shows that these sorbents are much more selective for water but not for diesel. A larger part of the diesel was in the liquid amount absorbed by the composites-up to 33%. Accordingly, the use of these composites in watery environments is much more effective than the use of individual sorbents. The composition of sorbents in the composite enhanced both the hydrophobic and the oleophilic properties; as a result, a more effective removal of the diesel and oil from the water surface was achieved.

  1. Design and operation of a medium speed 12-cylinder coal-fueled diesel engine. Phase 2: Improvements

    NASA Astrophysics Data System (ADS)

    Confer, G. L.; Hsu, B. D.; McDowell, R. E.; Gal, E.; Vankleunen, W.; Kaldor, S.; Mengel, M.

    Under the sponsorship of the US Department of Energy, General Electric has been pioneering the development of a coal fired diesel engine to power a locomotive. The feasibility of using a coal water slurry (CWS) mixture as a fuel in a medium speed diesel engine has been demonstrated with the first successful locomotive systems test in 1991 on the GE Transportation Systems test track in Erie, PA. Phase 2 of the development process incorporates the results of the programs research in durable engine parts, improved combustion efficiency, and emissions reduction. A GE 7FDL12 engine has been built using diamond insert injector nozzles, tungsten carbide coated piston rings, and tungsten carbide coated liners to overcome power assembly wear. Electronic controlled fuel injection for both diesel pilot and main CWS injector were incorporated to control injection timing. An envelop filter and copper oxide sorbent system were used to cleanup engine emissions. The system is capable of removing over 99% of the particulates, 90% of the SO2, and 85% of NO(x).

  2. Performance of Zn-Fe-Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Liu, B. S.; Wang, F.; Amin, R.

    2015-10-01

    MCM-48 was synthesized using a rapid and facile process at room temperature. A series of 50%Zn-Fe-Mn/MCM-48 sorbents were prepared and their performance of hot coal gas desulfurization was investigated. High breakthrough sulfur capacity (13.2 g-S/100 g sorbent) and utilization (66.1%) of 50%1Zn2Fe2Mn/MCM-48 sorbent at 550 °C was achieved. The characterization results of XRD, BET, TPR and FT-IR revealed that MCM-48 had excellent thermal stability at less than 700 °C, ZnMn2O4 and (Mn, Zn)Fe2O4 were mainly active particles in fresh sorbents which were highly dispersed on support. The MCM-48 mesoporous structure remained intact after eight successive desulfurization/regeneration cycles. The regeneration process of 50%1Zn2Fe2Mn/MCM-48 sorbent was analyzed, it indicated that the breakthrough sulfur capacity decline of sorbent was due to the migration of Zn onto the sorbent surface and Zn accumulated on the surface and vaporized to the exterior from the surface. In the TPO test, the oxidation of Zn was different for 50%Zn/MCM-48 at 700 °C. It revealed that the temperature of regeneration for ZnO sorbent should be higher than 700 °C.

  3. Analysis and test of insulated components for rotary engine

    NASA Technical Reports Server (NTRS)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  4. The Relationship between Barrier Courses and Persistence in Engineering

    ERIC Educational Resources Information Center

    Suresh, Radhika

    2007-01-01

    Attrition in engineering programs continues to be an important issue for universities across the country. This study examined the connection between student performance in barrier courses and persistence in engineering. Quantitative results showed that high school academic experience, student behaviors (including study habits, work habits, coping…

  5. High copper level comulled and impregnated sulfur sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, K.C.

    A porous sulfur sorbent is disclosed which has principal use in desulfurizing reformer feedstreams. The sorbent is prepared by peptizing alumina with acid and mulling the peptized alumina with a copper compound to form an extrudable dough. The dough is extruded, dried and impregnated with additional copper. The resulting sorbent has a higher capacity for adsorbing sulfur compounds than conventional prior art materials.

  6. Reversible Ammonia Sorption for the Primary Life Support System (PLSS)

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Jennings, Mallory A.

    2012-01-01

    Results are presented on the development of regenerable trace-contaminant (TC) sorbent for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). Since ammonia is the most important TC to be captured, data presented in this paper are limited to ammonia sorption, with results relevant to other TCs to be reported at a later time. The currently available TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal. The sorbent is non-regenerable, and its use is associated with appreciable pressure drop, i.e. power consumption. The objective of this work is to demonstrate the feasibility of using vacuum-regenerable sorbents for PLSS application. In this study, several carbon sorbent monoliths were fabricated and tested. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, as well as carbon surface conditioning that enhances ammonia sorption without impairing sorbent regeneration. Depending on sorbent monolith geometry, the reduction in pressure drop with respect to granular sorbent was found to be between 50% and two orders of magnitude. Resistive heating of the carbon sorbent monolith was demonstrated by applying voltage to the opposite ends of the monolith.

  7. Removal of sulphur dioxide from flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ersoy-Mericboyu, A.

    1999-08-01

    Mixtures of Ca(OH){sub 2} and different siliceous materials such as fly ash, bentonite, silica fume, and diatomite were hydrated to produce reactive SO{sub 2} sorbents. It was observed that these sorbents showed a better reactivity toward SO{sub 2} than the Ca(OH){sub 2} itself. This behavior is closely related to the pozzolanic nature of the hydrated sorbents and to the greater surface area. The reactivity of the sorbents was strongly influenced by the source of siliceous material and the hydration conditions. The total sulphation capacities of the sorbents were determined at 338 K with a synthetic gaseous mixture containing 5,000 ppmmore » SO{sub 2} and 55% relative humidity. Depending on the chemical and physical properties of the sorbents, the SO{sub 2} captures ranged from 1.20 to 5.58 mmol SO{sub 2}/g sorbent. The amount of SO{sub 2} capture increased with the increasing surface area of the sorbent. The utilization of Ca(OH){sub 2} with SO{sub 2} improved significantly when Ca(OH){sub 2} was hydrated with siliceous materials first and later exposed to SO{sub 2}.« less

  8. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO 2 from CO 2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution ismore » examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO 2 desorption can be implemented.« less

  9. Is There a Foreign Language Barrier in Engineering Research?

    ERIC Educational Resources Information Center

    Hawks, Carla; And Others

    Perception and effects of foreign language publications in engineering research are examined. Through the use of both survey and archival sources, including coverage in major scientific and technical databases as vended by DIALOG, various aspects of the foreign language barrier were measured. A foreign language barrier is said to exist when…

  10. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  11. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  12. Research on using Mineral Sorbents for A Sorption Process in the Environment Contaminated with Petroleum Substances

    NASA Astrophysics Data System (ADS)

    Pijarowski, Piotr Marek; Tic, Wilhelm Jan

    2014-06-01

    A research on diatomite sorbents was carried out to investigate their ability to remove hazardous substances from oil spillages. We used two types of sorbents available on the market with differences in material density and particles size of composition. As sorbents we used Ekoterm oil and unleaded petrol 95 coming from refinery PKN Orlen S.A. Two types of sorbents with similar chemical composition but different granulometric composition were used. They are marked as D1 and C1 samples. The fastest absorbent was C1, but D1 sample was the most absorptive.

  13. Sol-gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis.

    PubMed

    Kesani, Sheshanka; Malik, Abdul

    2018-04-01

    A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(II) from aqueous solution.

    PubMed

    Li, Feng; Jiang, Hongquan; Zhang, Shusheng

    2007-03-15

    Ion-imprinting concept and polysaccharide incorporated sol-gel process were applied to the preparation of a new silica-supported organic-inorganic hybrid sorbent for selective separation of Cd(II) from aqueous solution. In the prepared shell/core composite sorbent, covalently surface coating on the supporting silica gel was achieved by using a Cd(II)-imprinting sol-gel process starting from an inorganic precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS). The sorbent was prepared through self-hydrolysis of GPTMS, self-condensation and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, in combination with in situ covalent cross-linking of CS with partial amine shielded by Cd(II) complexation. Extraction of the imprinting molecules left a predetermined arrangement of ligands and tailored binding pockets for Cd(II). The prepared sorbent was characterized by using X-ray energy dispersion spectroscopy (EDX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Batch experiments were conducted to study the sorption performance by removal of Cd(II) when present singly or in binary system, an aqueous Cd(II) and Zn(II) mixture. The ion-imprinted composite sorbent offered a fast kinetics for the sorption of Cd(II) and the maximum capacity was 1.14mmolg(-1). The uptake capacity of the imprinted sorbent and the selectivity coefficient were much higher than that of the non-imprinted sorbent. The imprinted sorbent exhibited high reusability. The prepared functional sorbent was shown to be promising for the preconcentration of cadmium in environmental and biological samples.

  15. Preparation of stable tetraethylenepentamine-modified ordered mesoporous silica sorbents by recycling natural Equisetum ramosissimum.

    PubMed

    Liu, Shou-Heng; Kuok, Chi-Hong

    2018-01-01

    It is well-known that global warming of the earth is caused by the progressive increase of CO 2 concentration in the environment due to the huge utilization of fossil fuels. As a result, the development of an efficient and economic method to capture CO 2 from large stationary sources, such as coal-fired power plants, cement and steel factories, and so on is urgent. In this study, ordered mesoporous silicas (E-SBA-15) have been prepared by using Equisetum ramosissimum plants as the silica sources and their subsequently incorporating with amino-containing compounds (tetraethylenepentamine, TEPA) and stabilizers (titanium isopropoxide, TIP). A variety of different spectroscopic and analytical techniques, such as nitrogen adsorption-desorption isotherms, low-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transformed infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) are used to characterize the physicochemical properties of various materials. CO 2 adsorption capacities of prepared sorbents at 75 °C are obtained by TGA at atmospheric pressure. Among all sorbents, TEPA impregnated E-SBA-15 sorbents possess the highest CO 2 sorption capacity (1.60 mmol CO 2 g -1 sorbent ) under ambient pressure using dry 15% CO 2 . However, TEPA/TIP incorporated E-SBA-15 sorbents exhibit enhanced durability during repeated sorption-desorption cycles compared to the above-mentioned sorbents. This significant enhancement in the stability of CO 2 sorption-desorption process is most likely due to the decreased decomposition/leaching of TEPA which is restricted via the steric effect of TIP. These synthesized sorbents from inexpensive resources (agricultural waste) exhibit good sorbent capacity and surpassing regenerability, revealing a promising CO 2 sorbent for the cost-effective applications in a cyclic adsorption process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents

    DOEpatents

    Bissett, Larry A.; Strickland, Larry D.; Rockey, John M.

    1994-01-01

    The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

  17. Advanced Sorbent Structure Recovery of REEs, Precious Metals and Other Valuable Metals from Geothermal Waters and Its Associated Technoeconomics

    DOE Data Explorer

    Addleman, Shane; Chouyyok, Wilaiwan; Palo, Daniel; Dunn, Brad M.; Brann, Michelle; Billingsley, Gary; Johnson, Darren; Nell, Kara M.

    2017-05-25

    This work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals beyond commercially available sorbents. This report details the organic and inorganic sorbent uptake, performance, and collection efficiency results for La, Eu, Ho, Ag, Cu and Zn, as well as the characterization of these select sorbent materials. The report also contains estimated costs from an in-depth techno-economic analysis of a scaled up separation process. The estimated financial payback period for installing this equipment varies between 3.3 to 5.7 years depending on the brine flow rate of the geothermal resource.

  18. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    NASA Astrophysics Data System (ADS)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  19. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  20. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  1. Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology

    NASA Astrophysics Data System (ADS)

    Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey

    2017-11-01

    The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.

  2. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.

    PubMed

    Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K

    2002-03-01

    Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.

  3. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    PubMed

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  4. Sorbent-based Oxygen Production for Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Vijay

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less

  5. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  6. A transient performance method for CO2 removal with regenerable adsorbents

    NASA Technical Reports Server (NTRS)

    Hwang, K. C.

    1972-01-01

    A computer program is described which can be used to predict the transient performance of vacuum-desorbed sorbent beds for CO2 or water removal, and composite beds of two sorbents for simultaneous humidity control and CO2 removal. The program was written primarily for silica gel and molecular sieve inorganic sorbents, but can be used for a variety of adsorbent materials. Part 2 of this report describes a computer program which can be used to predict performance for multiple-bed CO2-removal sorbent systems. This program is an expanded version of the composite sorbent bed program described in Part 1.

  7. Method and system for radioisotope generation

    DOEpatents

    Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

    2014-07-15

    A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

  8. Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions.

    PubMed

    Sun, Ping; Grace, John R; Lim, C Jim; Anthony, Edward J

    2007-04-15

    Four FBC-based processes were investigated as possible means of sequentially capturing SO2 and CO2. Sorbent performance is the key to their technical feasibility. Two sorbents (a limestone and a dolomite) were tested in a pressurized thermogravimetric analyzer (PTGA). The sorbent behaviors were explained based on complex interaction between carbonation, sulfation, and direct sulfation. The best option involved using limestone or dolomite as a SO2-sorbent in a FBC combustor following cyclic CO2 capture. Highly sintered limestone is a good sorbent for SO2 because of the generation of macropores during calcination/carbonation cycling.

  9. Identifying barriers to Science, Technology, Society and environment (STSE) educational goals and pedagogy in science education: A case study of UMASS Lowell undergraduate engineering

    NASA Astrophysics Data System (ADS)

    Phaneuf, Tiffany

    The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.

  10. Simulation of mercury capture by sorbent injection using a simplified model.

    PubMed

    Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping

    2009-10-30

    Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.

  11. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    PubMed

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Highly attrition-resistant zinc oxide-based sorbents for H{sub 2}S removal by spray-drying technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.B.; Baek, J.I.; Ryu, C.K.

    2008-07-15

    A ZnO-based sorbent, ZAC 32N, applicable to transport reactors was successfully prepared by the spray-drying technique. Another sorbent, ZAC 32SU, was prepared by scale-up preparation of ZAC 32N sorbent. The physical properties of the sorbents such as attrition resistance, specific surface area, pore volume, and particle size were extensively characterized and exhibited a good potential for use in transport applications. The chemical reactivity tested in the thermogravimetric analyzer and microreactor exhibited desirable characteristics for effective desulfurization of syngas streams in the range of 450-550{sup o}C. Bench-scale tests for the sorbent ZAC 32SU were performed for a continuous 160 h withmore » a steady solid circulation of 54.6 kg/h. The results showed 99.5%+ desulfurization at 500-550{sup o}C and reasonable regenerability at 550-620{sup o}C. Test results on the physical properties and chemical reactivity indicated that the performance of developed sorbents proved to be outstanding.« less

  13. Method And Apparatus For Production Of Bi-213 From The Activity Ac-225 Source

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.

    2005-12-06

    A method and apparatus for isolating and purifying a .sup.213 Bi radioactive isotope from an .sup.225 Ac source using a primary column and a primary sorbent which preferentially retains .sup.225 Ac over .sup.213 Bi when exposed to a compatible solvent in combination with a secondary column having a secondary sorbent which retains .sup.213 Bi when exposed to a mixture of the compatible solvent and .sup.213 Bi. A "compatible solvent" is a solvent which will preferentially remove .sup.213 Bi radioactive isotopes from a primary sorbent without removing .sup.225 Ac radioactive isotopes, and then allow .sup.213 Bi radioactive isotopes removed from the primary sorbent to be retained on a secondary sorbent, without having to dilute or otherwise chemically or physically modify the compatible solvent in between exposure to the primary and secondary sorbents.

  14. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  15. Screening of zinc-based sorbents for hot-gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joong B. Lee; Chong K. Ryu; Chang K. Yi

    2008-03-15

    Highly reactive and attrition-resistant ZnO-based sorbents that are suitable for bubbling fluidized-bed reactors can be produced using the spray-drying method. Most of the ZnO-based sorbents prepared here (ZAC-X, X = 18N-25N) satisfy the physical and chemical criteria for bubbling fluidized-bed application (spherical shape, average particle size, 90-110 {mu}m; size distribution, 40-230 {mu}m; bulk density, 0.9-1.0 g/mL; attrition index (AI), 40-80%; sulfur sorption capacity, 14-17 wt %; sorbent use, 70-80%). The performance test of the ZAC-C sorbent at Korea Institute of Energy Research (KIER) with a bubbling fluidized-bed for 70 h also demonstrated that it had good sulfidation and regeneration performancemore » (11 wt % sorption capacity and 52% sorbent use) as well as reasonable attrition resistance (1.1% attrition loss for 70 h). 14 refs., 7 figs., 6 tabs.« less

  16. Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.

    2016-02-07

    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less

  17. Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO

    DOEpatents

    Jadhav, Raja A [Naperville, IL

    2009-07-07

    A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

  18. Effect of carrier properties on surface characteristics of sorbents modified with acetylacetonates Ni (II), Cu (II)

    NASA Astrophysics Data System (ADS)

    Faustova, Zhanna; Matveeva, Tatiana; Slizhov, Yuriy

    2017-11-01

    Sorbents based on Chromaton N-AW with layers of mesoporous silica gel modified with acetylacetonate nickel (II) and copper (II) were obtained. The porous structure of sorbents based on synthesized silica gel and industrial samples of Chromaton N, Silipore 075, Silochrom C-120 was studied. All studied samples are mesoporous. For sorbents based on commercially available Chromaton N, Silipore 075, and Silochrome 120, the mesopore dimensions vary in a wide range from 10 to 50 nm. For synthesized silica gel and chelate-containing sorbents, a narrower pore distribution is observed in the range of 5-15 nm, which indicates the uniformity of its surface. A comparative analysis of the effect of carrier properties on the acid-base properties of the surface of chelate-containing sorbents is carried out. The acid-base nature of the modifier is more pronounced in the case of synthesized silica gel by the sol-gel method.

  19. LIFAC demonstration at Richmond Power and Light Whitewater Valley Unit No. 2. Final report, Volume 1 - public design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report discusses the demonstration of LIFAC sorbent injection technology at Richmond Power and Light`s (RP&L) Whitewater Valley Unit No. 2 under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North American (LIFAC NA), a joint venture partnership ofmore » Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and several other organizations including the Electric Power Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Final Report Volume 1: Public Design is to consolidate, for public use, all design and cost information regarding the LIFAC Desulfurization Facility at the completion of construction and startup.« less

  20. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  1. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbentmore » samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.« less

  3. Method of CO.sub.2 removal from a gasesous stream at reduced temperature

    DOEpatents

    Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A

    2014-11-18

    A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.

  4. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  5. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on various E/PO topics, and an E/PO proposal writing workshop. SCWG members have also worked to incorporate information about E/PO, including what it is, points of contact, and opportunities for participation, into ongoing training sessions at GSFC, such as New Employee Orientation, Road to Mission Success, and Project Scientist Training. In addition, SCWG members have met with GSFC's upper management to voice barriers and concerns raised by scientists and engineers. We will expand on the barriers, efforts to address them, and the results of those efforts.

  6. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  7. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    DTIC Science & Technology

    2017-12-13

    Leska; P.T. Charles; B.J. Melde; J.R. Taft, "Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants ," Chemosensors 2, 131...monitoring of contaminants in groundwater: Sorbent development; Naval Research Laboratory: 2013. Analysis of Ethane and Diethylbenzene Bridged Sorbents 7...

  8. Full-participation of students with physical disabilities in science and engineering laboratories.

    PubMed

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  9. Examining E-Learning Barriers as Perceived by Faculty Members of Engineering Colleges in the Jordanian Universities

    ERIC Educational Resources Information Center

    Al-Alawneh, Muhammad K.

    2014-01-01

    Employing computer's technology that includes e-learning system in the field of Engineering is a vital issue which needs to be discussed. Therefore, this study purposed to examine e-learning barriers as perceived by faculty members of engineering in three major universities in Jordan (Yarmouk University, Jordan University of Science and…

  10. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  11. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  12. Surface Functionalized Nanostructured Ceramic Sorbents for the Effective Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.

    2016-05-02

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructuredmore » silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.« less

  13. COMPARISON OF SODIUM AND POTASSIUM CARBONATES AS LITHIUM ZIRCONATE MODIFIERS FOR HIGH-TEMPERATURE CARBON DIOXIDE CAPTURE FROM BIOMASS-DERIVED SYNTHESIS GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olstad, J.L.; Phillips, S.D.

    2009-01-01

    The process of gasifi cation converts biomass into synthesis gas (syngas), which can be used to produce biofuels. Solid-phase sorbents were investigated for the removal of CO2 from a N2/CO2 gas stream using a CO2 concentration similar to that found in a biomass gasifi cation process. During the gasifying process, large amounts of carbon dioxide (CO2) are created along with the syngas. The produced CO2 must be removed before the syngas can be used for fuel synthesis and to avoid the possible formation of unwanted byproducts. A thermogravimetric analyzer was used to test the CO2 absorption rates of sorbents composedmore » of lithium zirconate (Li2ZrO3), as well as mixtures of Li2ZrO3 with potassium carbonate (K2CO3) and sodium carbonate (Na2CO3). The experimental results show that Li2ZrO3 has a low absorption rate, but sorbents containing combinations of Li2ZrO3 and the K2CO3 and Na2CO3 additives have high uptake rates. Using different proportions of K2CO3 and Na2CO3 produces varying uptake rates, so an optimization experiment was performed to obtain an improved sorbent. The CO2 absorption and regeneration stability of the solid-phase sorbents were also examined. A sorbent composed of Li2ZrO3 and 12.1 weight % Na2CO3 was shown to be stable, based on the consistent CO2 uptake rates. Sorbents prepared with Li2ZrO3, 17.6 weight % K2CO3 and 18.1 weight % Na2CO3 showed instability during regeneration cycles in air at 800 °C. Sorbent stability improved during regeneration cycles at 700 °C. Further testing of the Li2ZrO3 sorbent under actual syngas conditions, including higher pressure and composition, should be done. Once the optimum sorbent has been found, a suitable support will be needed to use the sorbent in an actual reactor.« less

  14. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  15. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  16. The modeling of reactive solute transport with sorption to mobile and immobile sorbents 1. Experimental evidence and model development

    NASA Astrophysics Data System (ADS)

    Knabner, P.; Totsche, K. U.; Kögel-Knabner, I.

    Modeling carrier-influenced transport needs to take into account the reactivity of the carrier itself. This paper presents a mathematical model of reactive solute transport with sorption to mobile and immobile sorbents. The mobile sorbent is also considered to be reactive. To justify the assumptions and generality of our modeling approach, experimental findings are reviewed and analyzed. A transformation of the model in terms of total concentrations of solute and mobile sorbents is presented which simplifies the mathematical formulations. Breakthrough data on dissolved organic carbon are presented to exemplify the need to take into account the reactivity of the mobile sorbent. Data on hexachlorobiphenyl and cadmium are presented to demonstrate carrier-introduced increased mobility, whereas data on anthracene and pyrene are presented to demonstrate carrier-introduced reduced mobility. The experimental conditions leading to the different findings are pointed out. The sorption processes considered in the model are both equilibrium and nonequilibrium processes, allowing for different sorption sites and nonlinear isotherms and rate functions. Effective isotherms, which describe the sorption to the immobile sorbent in the presence of a mobile sorbent and rate functions, are introduced and their properties are discussed.

  17. Concentration and immobilization of 137Cs from liquid radioactive waste using sorbents based on hydrated titanium and zirconium oxides

    NASA Astrophysics Data System (ADS)

    Voronina, A. V.; Noskova, A. Y.; Gritskevich, E. Y.; Mashkovtsev, M. A.; Semenishchev, V. S.

    2017-09-01

    The possibility of use of sorbents based on hydrated titanium and zirconium oxides (T-3A, T-35, NPF-HTD) for concentration and immobilization of 137Cs from liquid radioactive waste of various chemical composition (fresh water, seawater, solutions containing NaNO3, ammonium acetate, EDTA) was evaluated. It was shown that the NPF-HTD and T-35 sorbents separate 137Cs from fresh water and seawater with distribution coefficients as high as 6.2.104 and 6.1.104, 4.0.105 and 1.6.105 L kg-1 respectively; in 1 M ammonium acetate these values were 2.0.103 and 1.0.103 L kg-1. The NPF-HTD sorbent showed the highest selectivity for cesium in NaNO3 solution: cesium distribution coefficients in 1M NaNO3 was 1.4.106 L kg-1. All studied sorbents are suitable for deactivation of solutions containing EDTA. Cesium distribution coefficients were around 102-103 L kg-1 depending on EDTA concentration. Chemical stability of the sorbents was also studied. It was shown that 137Cs leaching rate from all sorbents meet the requirements for matrix materials.

  18. Mercury removal sorbents

    DOEpatents

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  19. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  20. A FLUID SORBENT RECYCLING DEVICE FOR INDUSTRIAL FLUID USERS

    EPA Science Inventory

    A roller compression Extractor® that extracts fluids from reusable sorbent pads was evaluated as a method of waste reduction. The extraction device, evaluated for industrial fluid users in New Jersey, was found to be effective in recycling unpleated sorbent pads, especially ...

  1. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  2. Kinetics of the sorption of triterpene saponin by hypercrosslinked polystyrene

    NASA Astrophysics Data System (ADS)

    Mironenko, N. V.; Brezhneva, T. A.; Selemenev, V. F.

    2013-03-01

    The kinetics of sorption of triterpene saponin by the polymer sorbent NM-200 is considered. The influence of the surface activity of glycoside on the rate of formation and structure of the adsorption layer on the sorbent's surface is established. The rate-determining step of sorption is found to be diffusion into the sorbent grain. The value of the activation energy demonstrates the determining role of dispersion forces in the interaction between triterpene saponin and the polymer sorbent MN-200.

  3. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  4. Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1993--August 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.S.

    Dry regenerative sorption processes have recently attracted increasing attention in flue gas desulfurization (FGD) because of their several advantages over the conventional wet-scrubbing processes. Dry sorbents are usually made by coating a transition or alkaline earth metal precursor on the surface of a porous support. Major disadvantages of these sorbents prepared by the conventional methods include relatively poor attrition resistance and low SO{sub 2} sorption capacity. The physical and especially chemical attrition (associated with the sulphation-oxidation-reduction cycles in the process) deteriorates the performance of the sorbents. The low SO{sub 2} sorption capacity is primarily due to the small surface areamore » of the support. Materials with a high surface area are not used as the supports for FGD sorbents because these materials usually are not thermally stable at high temperatures. In the past year, the research supported by Ohio Coal Development Office was focused on synthesis and properties of sol-gel derived alumina and zeolite sorbents with improved properties for FGD. The sol-gel derived alumina has large surface area, mesopore size and excellent mechanical strength. Some alumina-free zeolites not only posses the basic properties required as a sorbent for FGD (hydrophobicity, thermal and chemical stability, mechanical strength) but also have extremely large surface area and selective surface chemistry. The major objectives of this research program were to synthesize the sol-gel derived sorbents and to explore the use of the zeolites either directly as adsorbents or as sorbent support for FGD. The research was aimed at developing novel FGD sorbents possessing better sorption equilibrium and kinetic properties and improved physical and chemical attrition resistance.« less

  5. Oil sorbents from plastic wastes and polymers: A review.

    PubMed

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hybrid biosorbents for removal of pollutants and remediation

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda

    2014-05-01

    For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested.

  7. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  8. Regenerable sorbent technique for capturing CO.sub.2 using immobilized amine sorbents

    DOEpatents

    Pennline, Henry W; Hoffman, James S; Gray, McMahan L; Fauth, Daniel J; Resnik, Kevin P

    2013-08-06

    The disclosure provides a CO.sub.2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a conditioner following the steam regeneration process, providing for a water loading on the amine-based solid sorbent following CO.sub.2 absorption substantially equivalent to the moisture loading of the regeneration process. This assists in optimizing the CO.sub.2 removal capacity of the amine-based solid sorbent for a given absorption and regeneration reactor size. Management of the water loading in this manner allows regeneration reactor operation with significant mitigation of energy losses incurred by the necessary desorption of adsorbed water.

  9. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    NASA Astrophysics Data System (ADS)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  10. Rotary moving bed for CO.sub.2 separation and use of same

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; McCall, Patrick P.

    2017-01-10

    A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.

  11. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  12. Thermal Barrier Coatings (les Revetements anti-mur de chaleur)

    DTIC Science & Technology

    1998-04-01

    blades and vanes of advanced aircraft engines », 1992, Yokohama International Gas Turbine Congress... turbine blade and nozzle guide vane aerofoils for the aerogas turbine engine . Figure 9 Scanning electron micrograph of the surface of a plasma...2. Liebert C. H. et al, "Durability of zirconia thermal barrier coatings on air cooled turbine blades in cyclic jet engine operation", NASA

  13. Identifying the Barriers upon Development of Virtual Education in Engineering Majors (Case Study: The University of Isfahan)

    ERIC Educational Resources Information Center

    Nikoonezhad, Sepideh; Nili, Mohammadreza; Esfahani, Ahmadreza Nasr

    2015-01-01

    The present study aims at investigating barriers upon development of virtual education in engineering majors at the University of Isfahan. The study has applied a mixed method (qualitative and quantitative) and its population consists all of the department members of the technical and engineering majors at the University of Isfahan including 125…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian; Vemuri, Rama S.; Estevez, Luis

    Metal–organic frameworks (MOFs) are found to be promising sorbents for adsorption cooling applications. Using organic ligands with 1, 2, and 3 phenylene rings, we construct moisture-stable Ni-MOF-74 members with adjustable pore apertures. These pore-engineered materials exhibit excellent sorption capabilities towards water and fluorocarbons. The adsorption patterns for these materials differ significantly and are attributed to variances in the hydrophobic/hydrophilic pore character, associated with differences in pore size. Complementary ex situ characterizations and in situ FTIR spectra are deployed to understand the correlations between the mechanisms of gas loadings and the pore environment of the MOFs.

  15. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    PubMed

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.

    PubMed

    Ho, T C; Chuang, T C; Chelluri, S; Lee, Y; Hopper, J R

    2001-01-01

    Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.

  17. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  18. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  19. IODIDE AEROSOL SORBENTS FOR MERCURY CAPTURE IN COMBUSTION EXHAUSTS

    EPA Science Inventory

    Several sorbent processes are being studied for their feasibility for mercury capture. Mercury is different from the other heavy metals as it is not as chemically reactive (due to a filled outer electronic shell), thus making it difficult for sorbents to chemically trap it (a). ...

  20. SIMULTANEOUS CONTROL OF HG(0), SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    EPA Science Inventory

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). {NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents ...

  1. SIMULTANEOUS CONTROL OF HGO, SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    EPA Science Inventory

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). (NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents...

  2. COMPARISON OF MERCURY CAPTURE EFFICIENCIES OF THREE DIFFERENT IN SITU GENERATED SORBENTS

    EPA Science Inventory

    Three different sorbent materials (Ti, Si and Ca based) were compared for their mercury capture efficiencies in an entrained flow reactor. Agglomerated particles with a high specific surface area were generated in situ by injecting gas phase sorbent precursors into a high tempera...

  3. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    EPA Science Inventory

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  4. Metallic seal for thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor)

    1990-01-01

    The invention is particularly concerned with sealing thermal barrier coating systems of the type in use and being contemplated for use in diesel and other internal combustion engines. The invention also would find application in moderately high temperature regions of gas turbine engines and any other application employing a thermal barrier coating at moderate temperatures. Ni-35Cr-6Al-1Y, Ni-35Cr-6Al-1Yb, or other metallic alloy denoted as MCrAlx is applied over a zirconia-based thermal barrier overlayer. The close-out layer is glass-bead preened to densify its surface. This seals and protects the thermal barrier coating system.

  5. NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...

  6. The Relative Influence of Turbulence and Turbulent Mixing on the Adsorption of Mercury within a Gas-Sorbent Suspension

    EPA Science Inventory

    Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...

  7. PREPARATION AND EVALUATION OF MODIFIED LIME AND SILICA-LIME SORBENTS FOR MERCURY VAPOR EMISSIONS CONTROL

    EPA Science Inventory

    The paper discusses current efforts to improve the uptake of mercury species by increasing active sites and adding oxidative species to the sorbent. (NOTE: Previous work showed that mercury chloride vapor is readily absorbed by calcium-based sorbents as an acid gas in environmen...

  8. ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    Injection of calcium-based sorbents into the postflame zone of utility boilers is capable of achieving sulfur dioxide (SO2) captures of 50-60% at a stoichiometry of 2. Calcium hydroxide [Ca(OH)2] appears to be the most effective commercially available sorbent. Recent attempts to ...

  9. Trace contaminant adsorption and sorbent regeneration in closed ecological systems

    NASA Technical Reports Server (NTRS)

    Arnold, C. R.; Kersels, G. J.; Merrill, R. P.; Robell, A. J.; Wheeler, A.

    1972-01-01

    Correlation was obtained for determining sorptive capacity of carbon for pure and mixed contaminants under dry and humid conditions at various temperatures. Vacuum desorption rates were investigated for single particles and for sorbent beds. For sorbent beds, rate-determining step is Knudsen diffusion through interparticle voids.

  10. Functionalized sorbent for chemical separations and sequential forming process

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA

    2012-03-20

    A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

  11. FORMATION OF FINE PARTICLES FROM RESIDUAL OIL COMBUSTION: REDUCING ULTRAFINE NUCLEI THROUGH THE ADDITION OF INORGANIC SORBENT

    EPA Science Inventory

    The paper gives results of an investigation, using an 82-kW-rated laboratory-scale refractory-lined combustor, of the characteristics of particulate matter emitted from residual oil combustion and the reduction of ultrafine nuclei by postflame sorbent injection. Without sorbent a...

  12. 40 CFR Table 6 to Subpart Jjjjjj... - Establishing Operating Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Dry sorbent or activated carbon injection rate operating parameters Establish a site-specific minimum sorbent or activated carbon injection rate operating limit according to § 63.11211(b) Data from the sorbent or activated carbon injection rate monitors and the mercury performance stack tests (a) You must...

  13. 40 CFR Table 6 to Subpart Jjjjjj... - Establishing Operating Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Dry sorbent or activated carbon injection rate operating parameters Establish a site-specific minimum sorbent or activated carbon injection rate operating limit according to § 63.11211(b) Data from the sorbent or activated carbon injection rate monitors and the mercury performance stack tests (a) You must...

  14. CHARACTERIZATION OF ADVANCED SORBENTS FOR DRY SO2 CONTROL

    EPA Science Inventory

    The paper discusses the development of new flyash/lime sorbents for removing SO2 from coal-fired flue gas. Flyash/lime weight ratios of 1:1 to 10:1 and several additives to these sorbents for promoting their reactivity were evaluated in a bench-scale reactor simulating conditions...

  15. 21 CFR 876.5870 - Sorbent hemoperfusion system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... system. (a) Identification. A sorbent hemoperfusion system is a device that consists of an extracorporeal blood system similar to that identified in the hemodialysis system and accessories (§ 876.5820) and a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbent hemoperfusion system. 876.5870 Section 876...

  16. Fluidized bed and method and system for gas component capture

    DOEpatents

    Krutka, Holly; Wilson, Cody; Starns, Travis

    2016-05-31

    The present disclosure is directed to a process that allows dry sorbents to remove a target constituent, such as carbon dioxide (CO.sub.2), from a gas stream. A staged fluidized bed separator enables gas and sorbent to move in opposite directions. The sorbent is loaded with target constituent in the separator. It is then transferred to a regenerator where the target constituent is stripped. The temperature of the separator and regenerator are controlled. After it is removed from the regenerator, the sorbent is then transferred back to the separator.

  17. Novel Liquid Sorbent C02 Removal System for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Tanya; Westover, Shayne; Graf, John

    2017-01-01

    Removing Carbon Dioxide (CO2) from a spacecraft environment for deep space exploration requires a robust system that is low in weight, power, and volume. Current state-of-the-art microgravity compatible CO2 removal systems, such as the carbon dioxide removal assembly (CDRA), utilize solid sorbents that demand high power usage due to high desorption temperatures and a large volume to accommodate for their comparatively low capacity for CO2. Additionally, solid sorbent systems contain several mechanical components that significantly reduce reliability and contribute to a large overall mass. A liquid sorbent based system has been evaluated as an alternative is proposed to consume 65% less power, weight, and volume than solid based CO2 scrubbers. This paper presents the design of a liquid sorbent CO2 removal system for microgravity applications.

  18. Thermodynamics of organic molecule adsorption on sorbents modified with 5-hydroxy-6-methyluracil by inverse gas chromatography.

    PubMed

    Gus'kov, Vladimir Yu; Gainullina, Yulia Yu; Ivanov, Sergey P; Kudasheva, Florida Kh

    2014-08-22

    The thermodynamic features of organic molecule adsorption from the gaseous phase of sorbents modified with 5-hydroxy-6-methyluracil (HMU) were studied. Molar internal energy and entropy of adsorption variation analyses showed that with every type surface, except for silica gel, layers of supramolecular structure have cavities equal in size with the ones revealed in HMU crystals by X-ray diffraction. Adsorption thermodynamics on HMU-modified sorbents depended on the amount of impregnated HMU and on the polarity, but not the porosity, of the initial sorbent. Polarity of the modified surface increased as a function of HMU quantity and initial sorbent mean pore size, but become appreciably lower if the initial surface is capable of hydrogen bonding. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Preparation of tritium-labeled optical isomers of amino acids by ligand exchange chromatography on polyacrylamide sorbent containing L-phenylalanine groupings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotarev, Yu.A.; Penkina, V.I.; Dostavalov, I.N.

    Tritium-labeled optically active amino acids are obtained by resolving racemates of the corresponding amino acids by chromatography on a chiral polyacrylamide sorbent, filled with copper ions. The chiral sorbent is obtained by the action of formaldehyde and L-phenylalanine on a Biogel P-4 polyacrylamide gel in an alkaline medium. Data are given on the ligand exchange chromatography of amino acids on this sorbent, depending on the degree of filling of the sorbent by copper ions and the concentration of the eluent. Conditions were selected for the quantitative resolution of racemates of amino acids and examples are given of a preparative obtainingmore » of tritium labeled optical isomers of amino acids.« less

  20. Process for preparing zinc oxide-based sorbents

    DOEpatents

    Gangwal, Santosh Kumar [Cary, NC; Turk, Brian Scott [Durham, NC; Gupta, Raghubir Prasad [Durham, NC

    2011-06-07

    The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  1. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  2. Reactivity improvement of Ca(OH)2 sorbent using diatomaceous earth (DE) from Aceh Province

    NASA Astrophysics Data System (ADS)

    Mariana, M.; Mahidin, M.; Mulana, F.; Agam, T.; Hafdiansyah, F.

    2018-04-01

    In this study, the diatomaceous earth (DE) from Aceh Province was used to increase the reactivity of Ca(OH)2sorbent. The high silica (SiO2) content of about 97% in the diatomaceous earth allows the increasing reactivity of Ca(OH)2sorbent by forming calcium silicate hydrate (CSH). The CSH improved the porosity characteristic of the sorbent. The improvement process was performed by mixing Ca(OH)2sorbent, diatomaceous earth and water in a beaker glass at the Ca(OH)2/DE weight ratio of 1:10 for 2 hand then dried at 120 °C for 24 h. The dried sorbent was calcined at 500 °C and 800 °C for 2 h. The activated sorbent was characterized using Scanning Electron Microscopy (SEM) for the morphological properties; X- Ray Diffraction (XRD) for the materials characteristics. The adsorption capacity of thesorbent was tested by methylene blue adsorption. The results showed that the Ca(OH)2/DEsorbent had a higher porosity than the Ca(OH)2 adsorbent.The results also showed that Ca(OH)2/DE which was calcined at higher temperature of 800 °C had a higher adsorption capacity compared to Ca(OH)2/DE which was calcined at lower temperature of 500 °C.

  3. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    PubMed

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Carbon capture test unit design and development using amine-based solid sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, Ronald W.; Spenik, James L.; Shadle, Lawrence J.

    This study presents the design and development of a reactor system and the subsequent modifications to evaluate an integrated process to scrub carbon dioxide (CO 2) from synthetic flue gas using amine based solid sorbents. The paper presents the initial system design and then discusses the various changes implemented to address the change in sorbent from a 180 μm Geldart group B material to a 115 μm Geldart group A material as well as issues discovered during experimental trials where the major obstacle in system operation was the ability to maintain a constant circulation of a solid sorbent stemming frommore » this change in sorbent material. The system primarily consisted of four fluid beds, through which an amine impregnated solid sorbent was circulated and adsorption, pre-heat, regeneration, and cooling processes occurred. Instrumentation was assembled to characterize thermal, hydrodynamic, and gas adsorption performance in this integrated unit. A series of shakedown tests were performed and the configuration altered to meet the needs of the sorbent performance and achieve desired target capture efficiencies. Finally, methods were identified, tested, and applied to continuously monitor critical operating parameters including solids circulation rate, adsorbed and desorbed CO 2, solids inventories, and pressures.« less

  5. CO₂ sorption kinetics of scaled-up polyethylenimine-functionalized mesoporous silica sorbent.

    PubMed

    Al-Marri, M J; Khader, M M; Tawfik, M; Qi, G; Giannelis, E P

    2015-03-31

    Two CO2 solid sorbents based on polyethylenimine, PEI (M(n) ∼ 423 and 10K), impregnated into mesoporous silica (MPS) foam prepared in kilogram quantities via a scale-up process were synthesized and systematically characterized by a range of analytical and surface techniques. The mesoporous silica sorbent impregnated with lower molecular weight PEI, PEI-423/MPS, showed higher capacity toward CO2 sorption than the sorbent functionalized with the higher molecular weight PEI (PEI-10K/MPS). On the other hand, PEI-10K/MPS exhibited higher thermal stability than PEI-423/MPS. The kinetics of CO2 adsorption on both PEI/MPS fitted well with a double-exponential model. According to this model CO2 adsorption can be divided into two steps: the first is fast and is attributed to CO2 adsorption on the sorbent surface; the second is slower and can be related to the diffusion of CO2 within and between the mesoporous particles. In contrast, the desorption process obeyed first-order kinetics with activation energies of 64.3 and 140.7 kJ mol(-1) for PEI-423/MPS and PEI-10K/MPS, respectively. These studies suggest that the selection of amine is critical as it affects not only sorbent capacity and stability but also the energy penalty associated with sorbent regeneration.

  6. Novel Process for Removal and Recovery of Vapor Phase Mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwell, Collin; Roberts, Daryl L; Albiston, Jason

    We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Resultsmore » In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task I-1, we found that the particulate and monolith forms of the sorbent were thermally stable and durable and would repeatedly sorb and desorb 100% of the mercury, including mercuric chloride, with low pressure drop and short residence times at realistic flue gas conditions.« less

  7. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  8. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance assessment; (vi) Public comments requesting specific engineered barriers; (vii) The increased or..., after consideration of one or more of the factors in paragraph (c)(1) of this section, the Department... without evaluating the remaining factors in paragraph (c)(1) of this section, then any compliance...

  9. Predicting sorption of organic acids to a wide range of carbonized sorbents

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model may serve as a base to estimate the environmental fate of organic acids in the presence of carbonized sorbents such as biochar, and help assess (i) the potential application of biochar for remediation purposes and (ii) the potential effect of biochar addition to soil.

  10. Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture.

    PubMed

    Donat, Felix; Florin, Nicholas H; Anthony, Edward J; Fennell, Paul S

    2012-01-17

    Calcium looping is a high-temperature CO(2) capture technology applicable to the postcombustion capture of CO(2) from power station flue gas, or integrated with fuel conversion in precombustion CO(2) capture schemes. The capture technology uses solid CaO sorbent derived from natural limestone and takes advantage of the reversible reaction between CaO and CO(2) to form CaCO(3); that is, to achieve the separation of CO(2) from flue or fuel gas, and produce a pure stream of CO(2) suitable for geological storage. An important characteristic of the sorbent, affecting the cost-efficiency of this technology, is the decay in reactivity of the sorbent over multiple CO(2) capture-and-release cycles. This work reports on the influence of high-temperature steam, which will be present in flue (about 5-10%) and fuel (∼20%) gases, on the reactivity of CaO sorbent derived from four natural limestones. A significant increase in the reactivity of these sorbents was found for 30 cycles in the presence of steam (from 1-20%). Steam influences the sorbent reactivity in two ways. Steam present during calcination promotes sintering that produces a sorbent morphology with most of the pore volume associated with larger pores of ∼50 nm in diameter, and which appears to be relatively more stable than the pore structure that evolves when no steam is present. The presence of steam during carbonation reduces the diffusion resistance during carbonation. We observed a synergistic effect, i.e., the highest reactivity was observed when steam was present for both calcination and carbonation.

  11. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  12. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  13. Development of Advanced Environmental Barrier Coatings for SiC/SiC Composites at NASA GRC: Prime-Reliant Design and Durability Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2017-01-01

    Environmental barrier coatings (EBCs) are considered technologically important because of the critical needs and their ability to effectively protect the turbine hot-section SiC/SiC ceramic matrix composite (CMC) components in harsh engine combustion environments. The development of NASA's advanced environmental barrier coatings have been aimed at significantly improved the coating system temperature capability, stability, erosion-impact, and CMAS resistance for SiC/SiC turbine airfoil and combustors component applications. The NASA environmental barrier coating developments have also emphasized thermo-mechanical creep and fatigue resistance in simulated engine heat flux and environments. Experimental results and models for advanced EBC systems will be presented to help establishing advanced EBC composition design methodologies, performance modeling and life predictions, for achieving prime-reliant, durable environmental coating systems for 2700-3000 F engine component applications. Major technical barriers in developing environmental barrier coating systems and the coating integration with next generation composites having further improved temperature capability, environmental stability, EBC-CMC fatigue-environment system durability will be discussed.

  14. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  15. ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    The paper discusses the enhancement of reactivity in surfactant-modified sorbents for S02 control. Injecting calcium-based sorbents into the post-flame zone of utility boilers can achieve S02 captures of 50-60% at a stoichiometry of 2. Calcium hydroxide-- Ca(OH)2--appears to be t...

  16. INFLUENCE OF SOLVENT AND SORBENT CHARACTERISTICS ON DISTRIBUTION OF PENTACHLOROPHENOL IN OCTANOL-WATER AND SOIL-WATER SYSTEMS

    EPA Science Inventory

    Sorbent and solvent characteristics influencing sorption of pentachlorophenol (PCP) were investigated. Analysis of aqueous sorption data for several sorbents over a broad pH range suggested hydrophobic sorption of neutral PCP predominates at pH 7. At pH > 7, sorption of the penta...

  17. LOW CONCENTRATION MERCURY SORPTION MECHANISMS AND CONTROL BY CALCIUM-BASED SORBENTS; APPLICATION IN COAL-FIRED PROCESSES

    EPA Science Inventory

    The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...

  18. THE EFFECT OF STORAGE CONDITIONS ON HANDLING AND SO2 REACTIVITY OF CA(OH)2-BASED SORBENTS

    EPA Science Inventory

    The article gives results of an investigation of the effect of relative humidity (RH), time, and aeration during calcium hydroxide -- Ca(OH)2--storage for its effect on sorbent handling and reactivity with sulfur dioxide (SO2). nvestigated was the effect of sorbent storage condit...

  19. Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams

    DOEpatents

    Siriwardane, Ranjani

    2004-06-01

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  20. Ecologically pure sorbents for power system of Myanmar

    NASA Astrophysics Data System (ADS)

    Nikitina, I. S.; Moryganova, Y. A.; Maung, Ko Ko; Arefeva, E. A.

    2017-11-01

    Currently, one of the most important problems of the thermal power plant, and many industrial enterprises in different countries is a wastewater treatment for oil products. When choosing the good sorbents is necessary to consider not only the properties and efficiency of the recommended materials, but also the cost, the possibility of environmentally friendly disposal of used sorbents and the possibility of using secondary resources. The purpose of this paper is to study the possibility of using agricultural waste in Myanmar as the sorbents in wastewater treatment containing oil products. The results of experiments have confirmed that rice hulls, and coconut fiber can be effectively used as the sorbents in wastewater treatment containing oil products at concentrations up to 10 mg/l. According to comparative analysis with the conventional sorbent-activated birch carbon (BAC-A) in the Russian power industry has shown that coconut fiber has very good sorption capacity and it is available to use as the raw materials for industries, which does not require to regenerate after using it and can be directly recycled in the factory.

  1. Thief process for the removal of mercury from flue gas

    DOEpatents

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  2. Design of Aminopolymer Structure to Enhance Performance and Stability of CO2 Sorbents: Poly(propylenimine) vs Poly(ethylenimine).

    PubMed

    Pang, Simon H; Lee, Li-Chen; Sakwa-Novak, Miles A; Lively, Ryan P; Jones, Christopher W

    2017-03-15

    Studies on aminopolymer/oxide composite materials for direct CO 2 capture from air have often focused on the prototypical poly(ethylenimine) (PEI) as the aminopolymer. However, it is known that PEI will oxidatively degrade at elevated temperatures. This degradation has been ascribed to the presence of secondary amines, which, when oxidized, lose their CO 2 capture capacity. Here, we demonstrate the use of small molecule poly(propylenimine) (PPI) in linear and dendritic architectures supported in silica as adsorbent materials for direct CO 2 capture from air. Regardless of amine loading or aminopolymer architecture, the PPI-based sorbents are found to be more efficient for CO 2 capture than PEI-based sorbents. Moreover, PPI is found to be more resistant to oxidative degradation than PEI, even while containing secondary amines, as supported by FTIR, NMR, and ESI-MS studies. These results suggest that PPI-based CO 2 sorbents may allow for longer sorbent working lifetimes due to an increased tolerance to sorbent regeneration conditions and suggest that the presence of secondary amines may not mean that all aminopolymers will oxidatively degrade.

  3. Cleaning oil refining drainage waters out of emulsified oil products with thermic treated cedar nut shell

    NASA Astrophysics Data System (ADS)

    Pyatanova, P. A.; Adeeva, L. N.

    2017-08-01

    It was elaborated the ability of the sorbent produced by thermic treatment of cedar nut shell to destruct model and real first kind (direct) emulsions in static and dynamic conditions. In static conditions optimal ratio sorbent-emulsion with the original concentration of oil products 800 mg/l was in the range of 2.0 g per 100 ml of emulsion which corresponds to the level of treatment 94.9%. The time of emulsion destruction was 40 minutes. This sorbent is highly active in dynamic processes of oil-contaminated water treatment, the level of treatment 96.0% is being achieved. Full dynamic sorptive capacity of the sorbent is 0.85 g/g. Sorbent based on the thermic treated cedar nut shell can be elaborated as sorptive filter element of local treatment facilities of oil refining and petrochemical processes. After the treatment with this sorbent of drainage waters of oil refinery in dynamic conditions the concentration of oil products became less than mpc on oil products for waste waters coming to biological treatment.

  4. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood.

    PubMed

    Hossain, G S M; McLaughlan, R G

    2012-09-01

    Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol < 4-chlorophenol < 2, 4-dichlorophenol, which correlates well with solute hydrophobicity, although the relative differences were much less for coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.

  5. Development of magnetic micro-solid phase extraction for analysis of phthalate esters in packaged food.

    PubMed

    Makkliang, Fonthip; Kanatharana, Proespichaya; Thavarungkul, Panote; Thammakhet, Chongdee

    2015-01-01

    A novel, simple and low cost magnetic multi-walled carbon nanotubes-poly (vinyl alcohol) cryogel-micro-solid phase extraction (magnetic-MWCNTs-PVA cryogel-μ-SPE) sorbent was synthesized by incorporating magnetic particles and MWCNTs into a PVA cryogel. The magnetic-MWCNTs-PVA cryogel-μ-SPE sorbent developed, with a large surface area and macro-porous structure, provided good sorbent-to-sorbent reproducibility (%RSD<8) and each sorbent could be used up to 30 times (%RSD<6). This sorbent was applied for the extraction of dibutyl phthalate (DBP) and di-2-(ethylhexyl) phthalate (DEHP) in packaged food prior to analysis by gas chromatograph coupled with flame ionisation detector (GC-FID). The concentration of DBP and DEHP in hot-water samples from plastic bags were found in the range 0.04-0.15 μg mL(-1) and 0.03-0.20 μg mL(-1), respectively, but only DEHP was found in clear chicken soup samples in the range 0.02-0.07 μg mL(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization.

    PubMed

    Zhang, Y; Liu, B S; Zhang, F M; Zhang, Z F

    2013-03-15

    Several MCM-41 materials were synthesized at different conditions by hydrothermal procedure using cheap and easily available industrial water glass as silica source. Fe doped manganese-based oxide/MCM-41 sorbents were prepared by a sol-gel method. The effects of loadings of metal oxide, Fe/Mn molar ratios over MCM-41 and reaction temperature on the performance of sorbent for hot coal gas desulfurization were investigated. Various techniques such as BET, XRD, XPS, LRS and HRTEM were used to characterize the sorbents. The result indicated Fe(3+) ions could occupy a position of Mn(3+) in cubic lattice of Mn2O3 and the (FexMn2-x)O3 solid solution is mainly active phase of sorbent. Moreover, the result of nine successive sulfurization-regeneration cycles of sorbent showed high sulfur adsorption capacity and endurable stability of FeMn4Ox/MCM-41 for H2S removal. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWemore » was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant’s Martin Lake Steam Electric Station and Xcel Energy’s Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, sorbents AX, F, and BN, were selected for evaluation using the 1 kW pilot at Sherco. Sorbent AX was operated in batch mode and performed similarly to sorbent R (i.e. could achieve up to 90% removal when given adequate regeneration time). Sorbent BN was not expected to be subject to the same mass diffusion limitations as experienced with sorbent R. When sorbent BN was used in continuous mode the steady state CO{sub 2} removal was approximately double that of sorbent R, which highlighted the importance of sorbents without kinetic limitations. Many different processes and equipment designs exist that may be applicable for postcombustion CO{sub 2} capture using solids in a temperature-swing system. A thorough technology survey was completed to identify the most promising options, which were grouped and evaluated based on the four main unit operations involved with sorbent based capture: Adsorption; Heating and cooling, or heat transfer; Conveying; Desorption. The review included collecting information from a wide variety of sources, including technology databases, published papers, advertisements, web searches, and vendor interviews. Working with power producers, scoring sheets were prepared and used to compare the different technology options. Although several technologies were interesting and promising, those that were selected for the final conceptual design were commercially available and performed multiple steps simultaneously. For the adsorption step, adsorption and conveying were both accomplished in a circulating fluidized bed. A rotary kiln was selected for desorption and cooling because it can simultaneously accomplish conveying and effective heat transfer. The final technology selection was used to complete preliminary costs assessments for a conceptual 500 MW CO{sub 2} capture process. The high level cost analysis was completed to determine the key cost drivers. The conceptual sorbent-based capture options yielded significant energy penalty and cost savings versus an aqueous amine system. Specifically, the estimated levelized cost of electricity (LCOE) for final concept design without a CO{sub 2} laden/lean sorbent heat exchanger or any other integration, was over 30% lower than that of the MEA capture process. However, this cost savings was not enough to meet the DOE’s target of ≤35% increase in LCOE. In order to reach this target, the incremental LCOE due to the CO{sub 2} capture can be no higher than 2.10 ¢/kWh above the LCOE of the non-capture equivalent power plant (6.0 ¢/kWh). Although results of the 1 kWe pilot evaluations suggest that the initial full-scale concept design must be revisited to address the technical targets, the cost assessment still provides a valuable high-level estimate of the potential costs of a solids-based system. A sensitivity analysis was conducted to determine the cost drivers and the results of the sensitivity analysis will be used to direct future technology development efforts. The overall project objective was to assess the viability and accelerate development of a solid-based post-combustion CO{sub 2} capture technology that can be retrofit to the existing fleet of coal-fired power plants. This objective was successfully completed during the project along with several specific budget period goals. Based on sorbent screening and a full-scale equipment evaluation, it was determined that solid sorbents for post-combustion capture is promising and warrants continued development efforts. Specifically, the lower sensible heat could result in a significant reduction in the energy penalty versus solvent based capture systems, if the sorbents can be paired with a process and equipment that takes advantage of the beneficial sorbent properties. It was also determined that a design using a circulating fluidized bed adsorber with rotary kilns for heating during regeneration, cooling, and conveying highlighted the advantage of sorbents versus solvents. However, additional technology development and cost reductions will be required to meet the DOE’s final technology goal of 90% CO{sub 2} capture with ≤35% increase in the cost of electricity. The cost analysis identified specific targets for the capital and operating costs, which will be used as the targets for future technology development efforts.« less

  8. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation.

    PubMed

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien" impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types.

  9. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  10. Zinc oxide-based sorbents and processes for preparing and using same

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad

    2005-10-04

    Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2 O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  11. Zinc-oxide-based sorbents and processes for preparing and using same

    DOEpatents

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  12. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Engineered barriers. 194.44 Section...

  13. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Engineered barriers. 194.44 Section...

  14. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impact on worker exposure to radiation both during and after incorporation of engineered barriers; (iii... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the..., after consideration of one or more of the factors in paragraph (c)(1) of this section, the Department...

  15. Biodiesel Performance with Modern Engines. Cooperative Research and Development Final Report, CRADA Number CRD-05-153

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert

    NREL and the National Biodiesel Board (NBB) will work cooperatively to assess the effects of biodiesel blends on the performance of modern diesel engines and emissions control systems meeting increasingly strict emissions standards. This work will include research to understand the impact of biodiesel blends on the operation and durability of particle filters and NOx control sorbents/catalysts, to quantify the effect on emission control systems performance, and to understand effects on engine component durability. Work to assess the impact of biodiesel blends on real world fleet operations will be performed. Also, research to develop appropriate ASTM standards for biodiesel qualitymore » and stability will be conducted. The cooperative project will involve engine testing and fleet evaluation studies at NREL using biodiesel from a variety of sources. In addition, NREL will work with NBB to set up an Industrial Steering Committee to design the scope for the various projects and to provide technical oversight to these projects. NREL and NBB will cooperatively communicate the study results to as broad an audience as possible.« less

  16. SOx/NOx sorbent and process of use

    DOEpatents

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  17. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    DOEpatents

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  18. NASA - Johnson Space Center's New Capabilities for Air Purification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  19. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts

    DOEpatents

    Krutka, Holly; Sjostrom, Sharon; Morris, William J.

    2016-03-08

    The objective of this invention is to develop a method to reclaim functional sites on a CO.sub.2 sorbent that have reacted with an acid gas (other than CO.sub.2) to form heat stable salts (HSS). HSS are a significant concern for dry sorbent based CO.sub.2 capture because over time the buildup of HSS will reduce the overall functionality of the CO.sub.2 sorbent. A chemical treatment can remove the non-CO.sub.2 acid gas and reclaim functional sites that can then be used for further CO.sub.2 adsorption.

  20. SOX/NOX sorbent and process of use

    DOEpatents

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1995-05-09

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths. 3 figs.

  1. SOX/NOX sorbent and process of use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-01-01

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  2. SOx/NOx sorbent and process of use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  3. Hydrologic behavior of two engineered barriers following extreme wetting.

    PubMed

    Porro, I

    2001-01-01

    Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage-evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary-biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared with pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared with thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.

  4. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitpas, G; Benard, P; Klebanoff, L E

    2014-07-01

    While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifyingmore » the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.« less

  5. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups.

    PubMed

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin

    2016-07-01

    Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.

  6. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    PubMed

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Activation and characterization of waste coffee grounds as bio-sorbent

    NASA Astrophysics Data System (ADS)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  8. A novel molybdenum disulfide nanosheet self-assembled flower-like monolithic sorbent for solid-phase extraction with high efficiency and long service life.

    PubMed

    Ran, Fanpeng; Liu, Hongmei; Wang, Xiaoqi; Guo, Yong

    2017-07-21

    A novel material consisting of molybdenum disulfide (MoS 2 ) nanosheet that self-assemble into flower-like microspheres which aggregate to form a monolithic matrix with a micro or nano-scaled mesopore structure was successfully synthesized and used as an efficient sorbent for solid-phase extraction (SPE) due to its large specific adsorption area and good stability. The extraction properties of the as-prepared sorbent were evaluated by high-performance liquid chromatography with variable wavelength detection (HPLC-VWD) by analyzing four flavonoids (apigenin, quercetin, luteolin, and kaempferol). Under optimal conditions, the LODs and LOQs were found to be in the ranges of 0.1-0.25 and 0.4-0.5μgL -1 , respectively, and wide linear ranges were obtained with correlation coefficients (R) ranging from 0.9991 to 0.9996. Compared with commercial C18 and Alumina-N sorbents, the as-prepared sorbent showed high extraction efficiency at different concentrations of flavonoids. After 100 uses, the extraction ability of the self-assembled MoS 2 nanosheet monolithic sorbent had no evident decline, denoting a long service life. Finally, the SPE-HPLC-VWD method using the as-prepared sorbent was applied to flavonoid analysis in beverage samples with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 40 CFR 194.44 - Engineered barriers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prevent or substantially delay the movement of water or waste toward the accessible environment; (ii) The... reduced total system costs; (viii) The impact, if any, on other waste disposal programs from the... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Engineered barriers. 194.44 Section 194...

  10. Laboratory Barriers in Science, Engineering, and Mathematics for Students with Disabilities.

    ERIC Educational Resources Information Center

    Heidari, Farzin

    This report addresses the barriers college students with disabilities face in the laboratory setting. In engineering, mathematics, and science education most courses require laboratory work which may pose challenges to those with disabilities. Instructors should be aware of the individual needs of students with disabilities and make necessary…

  11. Employees' Perceptions of Barriers to Participation in Training and Development in Small Engineering Businesses

    ERIC Educational Resources Information Center

    Susomrith, Pattanee; Coetzer, Alan

    2015-01-01

    Purpose: This paper aims to investigate barriers to employee participation in voluntary formal training and development opportunities from the perspective of employees in small engineering businesses. Design/methodology/approach: An exploratory qualitative methodology involving data collection via site visits and in-depth semi-structured…

  12. Screening of Danofloxacin residue in bovine tissue by terbium-sensitized luminescence on C18 sorbent strips

    USDA-ARS?s Scientific Manuscript database

    Danofloxacin (DANO) residue in bovine muscle was screened at 200 ng/g by terbium-sensitized luminescence (TSL) directly measured on 10x6 mm C18 sorbent strips. The analyte was first adsorbed on sorbent surface by immersion in defatted homogenates. After reagent application and desiccation, TSL was d...

  13. EVALUATION OF FGD DRY INJECTION SORBENTS AND ADDITIVES - VOLUME 2 - PILOT PLANT EVALUATION OF HIGH REACTIVITY SORBENTS

    EPA Science Inventory

    The report describes a mini-pilot test program to investigate potential new sorbents and processes for dry SO2 removal. Initial tests showed that the 85 cu m/h pilot plant could be used successfully to evaluate both spray dryer and dry injection processes using traditional calciu...

  14. 40 CFR Table 8 to Subpart Ddddd of... - Demonstrating Continuous Compliance

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...(c). 5. Dry Scrubber Sorbent or Carbon Injection Rate a. Collecting the sorbent or carbon injection... the data to 3-hour block averages; and c. Maintaining the 3-hour average sorbent or carbon injection... established during the performance test according to §§ 63.7530(c). 7. Fuel Pollutant Content a. Only burning...

  15. 40 CFR Table 8 to Subpart Ddddd of... - Demonstrating Continuous Compliance

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...(c). 5. Dry Scrubber Sorbent or Carbon Injection Rate a. Collecting the sorbent or carbon injection... the data to 3-hour block averages; and c. Maintaining the 3-hour average sorbent or carbon injection... established during the performance test according to §§ 63.7530(c). 7. Fuel Pollutant Content a. Only burning...

  16. 40 CFR Table 7 to Subpart Jjjjjj... - Demonstrating Continuous Compliance

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.1140. 4. Dry scrubber sorbent or carbon injection rate a. Collecting the sorbent or carbon injection rate monitoring system data for the dry scrubber according to §§ 63.11224 and 63.11220; and b... injection rate at or above the minimum sorbent or carbon injection rate as defined in § 63.11237. 5...

  17. 40 CFR Table 3 to Subpart Jjjjjj... - Operating Limits for Boilers With Emission Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as defined in § 63.11237. 4. Dry sorbent or activated carbon injection control Maintain the 30-day rolling average sorbent or activated carbon injection rate at or above the minimum sorbent injection rate or minimum activated carbon injection rate as defined in § 63.11237. When your boiler operates at...

  18. 40 CFR Table 8 to Subpart Ddddd of... - Demonstrating Continuous Compliance

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...(c). 5. Dry Scrubber Sorbent or Carbon Injection Rate a. Collecting the sorbent or carbon injection... the data to 3-hour block averages; and c. Maintaining the 3-hour average sorbent or carbon injection... established during the performance test according to §§ 63.7530(c). 7. Fuel Pollutant Content a. Only burning...

  19. 40 CFR Table 7 to Subpart Jjjjjj... - Demonstrating Continuous Compliance

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.1140. 4. Dry scrubber sorbent or carbon injection rate a. Collecting the sorbent or carbon injection rate monitoring system data for the dry scrubber according to §§ 63.11224 and 63.11220; and b... injection rate at or above the minimum sorbent or carbon injection rate as defined in § 63.11237. 5...

  20. Optimizing the Costs of Solid Sorbent-Based CO 2 Capture Process Through Heat Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, Sharon

    2016-03-18

    The focus of this project was the ADAsorb™ CO 2 Capture Process, a temperature-swing adsorption process that incorporates a three-stage fluidized bed as the adsorber and a single-stage fluidized bed as the regenerator. ADAsorb™ system was designed, fabricated, and tested under DOE award DEFE0004343. Two amine-based sorbents were evaluated in conjunction with the ADAsorb™ process: “BN”, an ion-exchange resin; and “OJ”, a metal organic framework (MOF) sorbent. Two cross heat exchanger designs were evaluated for use between the adsorber and regenerator: moving bed and fluidized bed. The fluidized bed approach was rejected fairly early in the project because the additionalmore » electrical load to power blowers or fans to overcome the pressure drop required for fluidization was estimated to be nominally three times the electrical power that could be generated from the steam saved through the use of the cross heat exchanger. The Energy Research Center at Lehigh University built and utilized a process model of the ADAsorb™ capture process and integrated this model into an existing model of a supercritical PC power plant. The Lehigh models verified that, for the ADAsorb™ system, the largest contributor to parasitic power was lost electrical generation, which was primarily electric power which the host plant could not generate due to the extraction of low pressure (LP) steam for sorbent heating, followed by power for the CO 2 compressor and the blower or fan power required to fluidize the adsorber and regenerator. Sorbent characteristics such as the impacts of moisture uptake, optimized adsorption and regeneration temperature, and sensitivity to changes in pressure were also included in the modeling study. Results indicate that sorbents which adsorb more than 1-2% moisture by weight are unlikely to be cost competitive unless they have an extremely high CO 2 working capacity that well exceeds 15% by weight. Modeling also revealed that reductions in adsorber pressure drop could negatively affect the CO 2 adsorption characteristics for sorbents with certain isobar adsorption characteristics like sorbent BN. Thus, reductions in pressure drop do not provide the efficiency benefits expected. A techno-economic assessment conducted during the project revealed that without heat integration, the a metal organic framework (MOF) sorbent used in conjunction with the ADAsorb™ process provided the opportunity for improved performance over the benchmark MEA process. While the addition of a cross heat exchanger and heat integration was found to significantly improve net unit heat rate, the additional equipment costs required to realize these improvements almost always outweighed the improvement in performance. The exception to this was for a supported amine sorbent and the addition of a moving bed cross heat exchanger alone or in conjunction with waste heat from the compressor used for supplemental regenerator heating. Perhaps one of the most important points to be drawn from the work conducted during this project is the significant influence of sorbent characteristics alone on the projected COE and LCOE associated with the ADAsorb™ process, and the implications associated with future improvements to solid sorbent CO 2 capture. The results from this project suggest that solid sorbent CO 2 capture will continue to see performance gains and lower system costs as further sorbent improvements are realized.« less

  1. Regenerable cement sorbent for recycle fluidized-bed combustion systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, H.J.; Steinberg, M.

    1985-04-01

    Agglomerated cement sorbent pellets (ACS) were investigated as a regenerable sorbent for the purpose of removing SO/sub 2/ in a circulating fluidized-bed combustion (CFBC) system. The systems concept is to use an intermediate size sorbent pellet so that fine flyash can be separated from the sorbent at the top end of the CFBC and the coarse gangue can be separated from the sorbent remaining in the bottom end. In this study, basic experimental data were obtained on the sulfur capture capacity and regenerability of the ACS pellets as a function of the concentration of flyash mixed with the pellets andmore » as a function of temperature. Thermogravimetric Analysis (TGA) was used for this purpose. A 40 mm bench-scale fluidized-bed unit operated with a simulated combustion gas mixture was used to determine the attrition resistance of the pellets. The results indicate that 30-100 mesh ACS pellets at 958/sup 0/C (1756/sup 0/F) maintain a 55-60% sulfation capacity mixed with coal flyash concentration up to 75% by weight. The sorbent pellets were 100% regenerable and did not lose reactivity in repeated cyclical sulfation and regeneration tests. At higher temperatures up to 1158/sup 0/C (2116/sup 0/F) reactivity towards SO/sub 2/ declines due to sintering of the flyash on the surface of the ACS pellets. Tests showed good attrition resistance with only 1% loss per cycle in cyclical operation. These initial basic results indicate that ACS pellets are potentially useful as a recoverable and regenerable high capacity SO/sub 2/ sorbent in a circulating fluidized-bed combustion system. 5 refs., 7 figs., 8 tabs.« less

  2. In situ studies of materials for high temperature CO2 capture and storage.

    PubMed

    Dunstan, Matthew T; Maugeri, Serena A; Liu, Wen; Tucker, Matthew G; Taiwo, Oluwadamilola O; Gonzalez, Belen; Allan, Phoebe K; Gaultois, Michael W; Shearing, Paul R; Keen, David A; Phillips, Anthony E; Dove, Martin T; Scott, Stuart A; Dennis, John S; Grey, Clare P

    2016-10-20

    Carbon capture and storage (CCS) offers a possible solution to curb the CO 2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO 2 capture, such as the CaO-CaCO 3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.

  3. Solid-phase extraction of galloyl- and caffeoylquinic acids from natural sources (Galphimia glauca and Arnicae flos) using pure zirconium silicate and bismuth citrate powders as sorbents inside micro spin columns.

    PubMed

    Hussain, Shah; Schönbichler, Stefan A; Güzel, Yüksel; Sonderegger, Harald; Abel, Gudrun; Rainer, Matthias; Huck, Christian W; Bonn, Günther K

    2013-10-01

    Galloyl- and caffeoylquinic acids are among the most important pharmacological active groups of natural compounds. This study describes a pre-step in isolation of some selected representatives of these groups from biological samples. A selective solid-phase extraction (SPE) method for these compounds may help assign classes and isomer designations within complex mixtures. Pure zirconium silicate and bismuth citrate powders (325 mesh) were employed as two new sorbents for optimized SPE of phenolic acids. These sorbents possess electrostatic interaction sites which accounts for additional interactions for carbon acid moieties as compared to hydrophilic and hydrophobic sorbents alone. Based on this principle, a selective SPE method for 1,3,4,5-tetragalloylquinic acid (an anti-HIV and anti-asthamatic agent) as a starting compound was developed and then deployed upon other phenolic acids with success. The recoveries and selectivities of both sorbents were compared to most commonly applied and commercially available sorbents by using high performance liquid chromatography. The nature of interaction between the carrier sorbent and the acidic target molecules was investigated by studying hydrophilic (silica), hydrophobic (C18), mixed-mode (ionic and hydrophobic: Oasis(®) MAX) and predominantly electrostatic (zirconium silicate) materials. The newly developed zirconium silicate and bismuth citrate stationary phases revealed promising results for the selective extraction of galloyl- and caffeoylquinic acids from natural sources. It was observed that zirconium silicate exhibited maximum recovery and selectivity for tetragalloylquinic acid (84%), chlorogenic acid (82%) and dicaffeoylquinic acid (94%) among all the tested sorbents. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Spectroscopic Investigation into Oxidative Degradation of Silica-Supported Amine Sorbents for CO2 Capture

    PubMed Central

    Srikanth, Chakravartula S; Chuang, Steven S C

    2012-01-01

    Oxidative degradation characteristics of silica-supported amine sorbents with varying amounts of tetraethylenepentamine (TEPA) and polyethylene glycol (PEG; P200 or P600 represents PEG with molecular weights of 200 or 600) have been studied by IR and NMR spectroscopy. Thermal treatment of the sorbents and liquid TEPA at 100 °C for 12 h changed their color from white to yellow. The CO2 capture capacity of the TEPA/SiO2 sorbents (i.e., SiO2-supported TEPA with a TEPA/SiO2 ratio of 25:75) decreased by more than 60 %. IR and NMR spectroscopy studies showed that the yellow color of the degraded sorbents resulted from the formation of imide species. The imide species, consisting of NH associated with two C—O functional groups, were produced from the oxidation of methylene groups in TEPA. Imide species on the degraded sorbent are not capable of binding CO2 due to its weak basicity. The addition of P200 and P600 to the supported amine sorbents improved both their CO2 capture capacities and oxidative degradation resistance. IR spectroscopy results also showed that TEPA was immobilized on the SiO2 surface through hydrogen bonding between amine groups and the silanol groups of SiO2. The OH groups of PEG interact with NH2/NH of TEPA through hydrogen bonding. Hydrogen bonds disperse TEPA on SiO2 and block O2 from accessing TEPA for oxidation. Oxidative degradation resistance and CO2 capture capacity of the supported amine sorbents can be optimized through adjusting the ratio of hydroxyl to amine groups in the TEPA/PEG mixture. PMID:22744858

  5. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  6. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  7. Novel Sorbent to Clean Up Biogas for CHPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alptekin, Gökhan O.; Jayataman, Ambalavanan; Schaefer, Matthew

    2015-05-30

    In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H 2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the largemore » organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.« less

  8. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, T.; Sjostrom, S.; Smith, J.

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine themore » mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.« less

  9. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2009-07-30

    In this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO. Infrared spectroscopic results indicated the formation of both sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) species due to the catalytic role played by CeO(2). Apart from that, the catalytic activity of the RHA/CaO/CeO(2) sorbent was found to be closely related to its physical properties (specific surface area, total pore volume and average pore diameter).

  10. Long Duration Sorbent Testbed

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Knox, James C.; Long, David A.; Miller, Lee; Cmaric, Gregory; Thomas, John

    2016-01-01

    The Long Duration Sorbent Testbed (LDST) is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to Earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.

  11. Multi-functional sorbents for the simultaneous removal of sulfur and lead compounds from hot flue gases.

    PubMed

    Zhao, Yi; Lin, Wen-Chiang

    2003-10-01

    A multi-functional sorbent is developed for the simultaneous removal of PbCl(2) vapor and sulfur dioxide from the combustion gases. The sorbent is tested in a bench-scale reactor at the temperature of 700 degrees C, using simulated flue gas (SFG) containing controlled amounts of PbCl(2) and SO(2) compounds. The removal characteristics of PbCl(2) and SO(2), individually and in combination, are investigated. The results show that the mechanism of capture by the sorbent is not a simple physical adsorption process but seems to involve a chemical reaction between the Ca-based sorbent and the contaminants from the simulated flue gas. The porous product layer in the case of individual SO(2) sorption is in a molten state at the reaction temperature. In contrast, the combined sorption of lead and sulfur compounds generates a flower-shaped polycrystalline product layer.

  12. Experimental investigation of various vegetable fibers as sorbent materials for oil spills.

    PubMed

    Annunciado, T R; Sydenstricker, T H D; Amico, S C

    2005-11-01

    Oil spills are a global concern due to their environmental and economical impact. Various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85goil/g sorbent (in 24hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application.

  13. Oxidizer Scoping Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chancellor, Christopher John

    2016-11-07

    The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scopingmore » studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.« less

  14. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  15. Strongly hydrogen-bond acidic polymer and methods of making and using

    DOEpatents

    Grate, Jay W.; Kaganove, Steven N.

    2000-01-01

    The present invention is a sorbent polymer with the (AB)n sequence where the fluorinated interactive A segment is fluoroalkyl-substituted bisphenol and the oligosiloxane B segment is an oligodimethylsiloxane. More specifically, the fluoroalkyl-substituted bisphenol contains two allyl groups and the oligodimethylsiloxane has terminal Si--H groups. The sorbent polymer may be used as thin films on a variety of chemical sensors, or as a component of a thin film on a chemical sensor. Crosslinked sorbent polymers are processable into stable thin films on sensor devices. Sorbent polymers are also useful in sensor arrays, in surface acoustic wave sensors, and in cladding of optical fibers. Sensor arrays provide better selectivity than single sensors and permit identification and quantification of more than one species in a mixture. The sorbent polymer is synthesized by hydrosilylation polymerization which is achieved by catalyzed heating.

  16. 3D graphene-based nanostructured materials as sorbents for cleaning oil spills and for the removal of dyes and miscellaneous pollutants present in water.

    PubMed

    Riaz, Muhammad Adil; McKay, Gordon; Saleem, Junaid

    2017-12-01

    Oil spills over seawater and dye pollutants in water cause economic and environmental damage every year. Among various methods to deal oil spill problems, the use of porous materials has been proven as an effective strategy. In recent years, graphene-based porous sorbents have been synthesized to address the shortcomings associated with conventional sorbents such as their low uptake capacity, slow sorption rate, and non-recyclability. This article reviews the research undertaken to control oil spillage using three-dimensional (3D) graphene-based materials. The use of these materials for removal of dyes and miscellaneous environmental pollutants from water is explored and the application of various multifunctional 3D oil sorbents synthesized by surface modification technique is presented. The future prospects and limitations of these materials as sorbents are also discussed.

  17. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Zaher; Brentnall, William

    1995-01-01

    Thermal barrier coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in providing thermal protection and increasing engine efficiencies. TBC life requirements for aircraft engines are typically less than those required for industrial gas turbines. This paper describes current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's is reviewed. Areas of concern from the engine designer's and materials engineer's perspective are identified and evaluated. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and highly effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  18. Ameliorer les performances environnementales des centrales a charbon pulverise via la co-combustion de combustible derive de dechets

    NASA Astrophysics Data System (ADS)

    Vekemans, Odile Geraldine

    Coal supplies around 28% of the world's energy needs and produces some 40% of the world's electricity. In the United States, close to 650 coal power plants currently produce electricity from coal, the majority of witch are equipped with pulverized coal boilers build in the 80's. Due to coal's intrinsic content in nitrogen and sulfur, its combustion is associated with high levels of NOx and SO2 emissions, that are responsible, among other thing, for acid rains. In order to help reduce SO2 emissions of coal power plant, this thesis focuses on the behaviour of a novel feedstock called ReEF(TM) or ReEngineered Feedstock(TM), developed by the company Accordant Energy LLCRTM, that combines non recyclable waste and alkaline sorbent. Since waste have a high calorific value and do not contain sulfur, and since alkaline sorbents (such as limestone) are able to react with SO2 and capture it in solid state, co-combustion of ReEF(TM) and coal could reduce SO2 emissions inside the furnace chamber itself. This technology easy to implement, as it requires a limited initial investment and limited additional space, could help avoid the construction of costly flue gas treatment unit downstream from the furnace. However, careless combustion of this engineered fuel could have disastrous consequences for the coal power plant owners. This thesis, then, deliver one among the first experimental study of co-combustion of coal and ReEF(TM) in conditions characteristic of pulverized coal boilers. As a first step, in order to get familiarize with the feedstock under study, the thermal degradation of a ReEF(TM) without sorbent and of its components is analyzed by thermogravimetry. With the analysis of more than 70 samples at heating rates ranging from 5°C/min to 400°C/min we are able to conclude that ReEF(TM) thermal degradation can be seen as the independent thermal degradation of its components, as long as heat transfer limitations are taken into account. Thus, no substantial chemical interactions between ReEF(TM) components take place during its devolatilization. During the second step of this study, performances of the co-firing of coal and sorbent are compared to that of co-combustion of coal and ReEF(TM) without sorbent. This is carried out in a reactor specially build for this study, capable of reproducing the contact mode between gas and particles, the concentrations, the temperature gradient and the pressure typical of pulverized coal boiler. SO2 emissions reduction around 20% are observed in presence of CaCO3 and of Ca(OH)2 compared to the coal baseline, reduction that generally increased with the increase of sorbent molar ratio compared to sulfur (also called stoic). As for the co-combustion of 20%th of ReEF(TM) and coal, a SO2 emission reduction around 20% is also measured, with no clear effect of ReEF(TM) composition (fiber to plastic ratio). On the other hand, the HCl level that is negligible during coal combustion with and without sorbent, reaches around 20ppm in presence of ReEF(TM), and increases proportionally with the ReEF(TM) plastic content. The first step of this work consists in the study of the co-combustion of coal and ReEF(TM) containing limestone (CaCO3), a mix of sodium bicarbonate (NaHCO3) and limestone, as well as a mix of trona (Na2CO3.NaHCO3.H2O) and limestone. The amount of sorbent in the ReEF(TM) as well as the feeding parameters are adjusted to reach a 20%th feeding of ReEF(TM) compared to coal, to inject sorbents at a stoic of 1, 2 and 2.5 and to obtain Na/Ca molar ratios of 0, 0.1 with trona and NaHCO3, and 0.5 with NaHCO 3 only. Globally, as in the case of sorbent alone, the increase of the total stoic of the feed leads to increased SO2 capture. For a given stoic, to combine waste and limestone in the ReEF(TM), compared to using limestone alone, allows to reach higher levels of SO2 emissions reduction. The combination of sodium-based and calcium-based sorbent even leads to record SO2 emissions reduction of more than 50% with trona, and more than 40% with NaHCO3, at gas residence time in the reactor four time smaller than typical residence time of PCB. Furthermore, the lower fuel-N content of the ReEF(TM), compared to coal, also leads to lower NOx emissions. Combustion of ReEF(TM) with trona is even associated with NOx emissions reduction of more than 50%, possibly due to sodium induced NO reduction. Finally, regarding HCl emissions, chlorine capture by the sorbents leads to HCl levels comparable to that of coal alone. Even if, from the point of view of pollutant emissions, the results are promising, co-feeding ReEF(TM) with sorbent was nonetheless associated with heavy formation of melted ash deposits in the reactor. Deposition probes are used to compare the magnitude of the deposition in function of the ReEF(TM) sorbent composition. With those probes, we are able to figure out that slag formation is quite severe in presence of NaHCO3, and all the more that the Na/Ca ratio is high, but is less severe in presence of limestone alone, and isn't at all problematic in presence of trona. Those results all seem to indicate that co-combustion of coal and 20%th ReEF(TM) containing limestone and trona at a Na/Ca ratio of 0.1 and at a total stoic of 2 is the most adequate composition for application in existing PCB. In all those experiments a single measure of the emissions at the exit of the reactor is conducted, the emissions being associated with a federate of gas and solid and a temperature profile along the reactor. In order to gain insight regarding the behaviour of the gas and the particles inside the reactor, a phenomenological model combining more than 30 reaction kinetics is developed. This model allows us, without any fitting parameter, to predict the CO2, SO2 and NOx emissions measured at the outlet of the reactor. This model is easily adapted to the different ReEF(TM) compositions and was able to take into account the various particle sizes. The model is then used to evaluate potential SO2 emissions reduction that could be obtain with ReEF(TM) co-combustion for a residence time and a temperature profile measured in an existing pulverized coal boiler. Those simulations indicate that SO2 emissions reduction up to 85% could be obtain at the exit of the furnace chamber with a 20%th coal feed substitution by ReEF(TM) containing limestone and trona. Co-combustion of ReEF(TM) in pulverized coal boiler is therefore sensible from the point of view of pulverized coal boiler environmental performances, as long as the ReEF(TM) composition is chosen wisely and is tested beforehand in conditions similar to that of PCB. Furthermore, since ReEF(TM) co-combustion allows electricity production at high efficiency from waste, it is also sensible in terms of waste energetic valorization.

  19. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    EPA Science Inventory

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  20. Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream

    DOEpatents

    Olson, Edwin S; Pavlish, John H

    2015-04-21

    The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.

  1. Innovative nano-layered solid sorbents for CO2 capture.

    PubMed

    Li, Bingyun; Jiang, Bingbing; Fauth, Daniel J; Gray, McMahan L; Pennline, Henry W; Richards, George A

    2011-02-14

    Nano-layered sorbents for CO(2) capture, for the first time, were developed using layer-by-layer nanoassembly. A CO(2)-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO(2) adsorption and desorption properties and their CO(2) capture capacity increased with increasing nano-layers of the CO(2)-adsorbing polymer.

  2. Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream

    DOEpatents

    Olson, Edwin S.; Pavlish, John Henry

    2017-05-30

    The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.

  3. Method for high temperature mercury capture from gas streams

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  4. Sox/Nox Sorbent And Process Of Use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-06-27

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  5. Sox/Nox Sorbent And Process Of Use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1996-12-17

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  6. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Watson, David W.; Wingard, Charles D.; West, Phillip W.; Cmarik, Gregory E.; Miller, Lee A.

    2016-01-01

    Advanced Exploration Systems are integral to crewed missions beyond low earth orbit and beyond the moon. The long-term goal is to reach Mars and return to Earth, but current air revitalization systems are not capable of extended operation within the mass, power, and volume requirements of such a mission. Two primary points are the mechanical stability of sorbent pellets and recovery of sorbent productivity after moisture exposure in the event of a leak. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds.

  7. Sorption and selective chromatographic properties of isomer-selective composite sorbent based on a eutectic mixture of nematic liquid crystals and perbenzoylated β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Onuchak, L. A.; Kapralova, T. S.; Kuraeva, Yu. G.; Belousova, Z. P.; Stepanova, R. F.

    2015-12-01

    Mesomorphic, sorption, and selective properties of a three-component sorbent based on a mixture of nematic ( N) liquid crystals of 4-methoxy-4'-ethoxyazoxybenzene (MEAB) and 4,4'-diethoxyazoxybenzene (azoxyphenetol, AOP) of an eutectic composition and heptakis-(2,3,6-tri- O-benzoyl)-β-cyclodextrin (Bz-β-CD) are studied. For 30 organic compounds of different classes with linear and cyclic molecular structures, including optical isomers of limonene, pinene, camphene, and butanediol-2,3, thermodynamic functions are determined for their gas-phase sorption using a three-component MEAB-AOP-Bz-β- CD sorbent (62: 28: 10 wt %). It is found that the investigated sorbent possesses high structural selectivity (αp/m = 1.128-1.059, 100-130°C, N) and moderate enantioselectivity (1.07-1.02) within a broad temperature range (95-170°C) including both mesomorphic and isotropic phases of the sorbent. It is shown that the enantioselectivity of the sorbent is apparent under conditions of both increasing retention when a chiral Bz-β-CD additive is introduced into the MEAB-AOP system (limonenes, pinenes, camphenes) and decreasing retention (butanediols-2,3).

  8. Stability of lanthanum oxide-based H 2S sorbents in realistic fuel processor/fuel cell operation

    NASA Astrophysics Data System (ADS)

    Valsamakis, Ioannis; Si, Rui; Flytzani-Stephanopoulos, Maria

    We report that lanthana-based sulfur sorbents are an excellent choice as once-through chemical filters for the removal of trace amounts of H 2S and COS from any fuel gas at temperatures matching those of solid oxide fuel cells. We have examined sorbents based on lanthana and Pr-doped lanthana with up to 30 at.% praseodymium, having high desulfurization efficiency, as measured by their ability to remove H 2S from simulated reformate gas streams to below 50 ppbv with corresponding sulfur capacity exceeding 50 mg S g sorbent -1 at 800 °C. Intermittent sorbent operation with air-rich boiler exhaust-type gas mixtures and with frequent shutdowns and restarts is possible without formation of lanthanide oxycarbonate phases. Upon restart, desulfurization continues from where it left at the end of the previous cycle. These findings are important for practical applications of these sorbents as sulfur polishing units of fuel gases in the presence of small or large amounts of water vapor, and with the regular shutdown/start-up operation practiced in fuel processors/fuel cell systems, both stationary and mobile, and of any size/scale.

  9. Combating oil spill problem using plastic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleem, Junaid, E-mail: junaidupm@gmail.com; Ning, Chao; Barford, John

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plasticmore » waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuanwen Zhao; Xiaoping Chen; Changsui Zhao

    The CO{sub 2} capture characteristics of dry potassium-based sorbents were investigated with thermogravimetric analysis (TGA) and a bubbling fluidized-bed reactor. Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as coconut activated charcoal (AC1), coal active carbon (AC2), silica gel (SG), and activated alumina (Al{sub 2}O{sub 3}). Sorbents such as K{sub 2}CO{sub 3}/AC1, K{sub 2}CO{sub 3}/AC2, and K{sub 2}CO{sub 3}/Al{sub 2}O{sub 3} showed excellent carbonation capacity; The total conversion rates of those sorbents were 97.2, 95.9, and 95.2%, respectively in the TG test, and 89.2, 87.9, and 87.6%, respectively, in the fluidized-bed test. However, K{sub 2}CO{sub 3}/SGmore » showed poor carbonation capacity, the total conversion rates were only 34.5 and 18.8%, respectively, in TG and fluidized-bed tests. The differences in carbonation capacity of those sorbents were analyzed by studying the microscopic structure and crystal structure of the supports and the sorbents with X-ray diffraction, scanning electron microscopy, and N{sub 2} adsorption tests. 23 refs., 10 figs.« less

  11. Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  12. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  13. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  14. Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering

    ERIC Educational Resources Information Center

    National Academies Press, 2007

    2007-01-01

    The United States economy relies on the productivity, entrepreneurship, and creativity of its people. To maintain its scientific and engineering leadership amid increasing economic and educational globalization, the United States must aggressively pursue the innovative capacity of all its people--women and men. However, women face barriers to…

  15. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  16. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  17. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  18. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  19. How Does Service Learning Increase and Sustain Interest in Engineering Education for Underrepresented Pre-Engineering College Students?

    ERIC Educational Resources Information Center

    Bosman, Lisa; Chelberg, Kelli; Winn, Ryan

    2017-01-01

    Many barriers exist for American Indian students pursuing STEM degree programs. However, federally recognized Tribal Colleges and Universities (TCUs) are uniquely suited to overcome these barriers because of their shared mission to provide 21st Century educational opportunities for American Indian students. Qualitative and quantitative findings…

  20. Pilot-scale testing of a new sorbent for combined SO{sub 2}/NO{sub x} removal. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, S. Jr.

    1994-06-01

    A new regenerable sorbent concept for SO{sub 2} and NOx removal was pilot-tested at Ohio Edison`s Edgewater generating station at a 1.5 to 2-MW(e) level. A radial panel-bed filter of a new dry, granular sorbent was exposed to flue gas and regenerated in an experimental proof-of-concept program. The project was successful in demonstrating the new sorbent`s ability to achieve 90% SO{sub 2} removal, 30% NOx removal, and over 80% removal of residual particulates with realistic approach temperatures and low pressure drops. Based on the results of this project, the retrofit cost of this technology is expected to be on the order ofmore » $$400 per ton of SO{sub 2} and $$900 per ton of NOx removed. This assumes that gas distribution is even and methane regeneration is used for a 30% average utilization. For a 2.5%-sulfur Ohio coal, this translates to a cost of approximately $17 per ton of coal. Two by-product streams were generated in the process that was tested: a solid, spent-sorbent stream and a highly-concentrated SO{sub 2} or elemental-sulfur stream. While not within the scope of the project, it was found possible to process these streams into useful products. The spent sorbent materials were shown to be excellent substrates for soil amendments; the elemental sulfur produced is innocuous and eminently marketable.« less

  1. Removal of sulfuric acid mist from lead-acid battery plants by coal fly ash-based sorbents.

    PubMed

    Shu, Yuehong; Wei, Xiangyu; Fang, Yu; Lan, Bingyan; Chen, Hongyu

    2015-04-09

    Sorbents from coal fly ash (CFA) activated by NaOH, CaO and H2O were prepared for H2SO4 mist removal from lead-acid battery plants. The effects of parameters including temperature, time, the ratios of CFA/activator and water/solid during sorbent preparation were investigated. It is found that the synthesized sorbents exhibit much higher removal capacity for H2SO4 mist when compared with that of raw coal fly ash and CaO except for H2O activated sorbent and this sorbent was hence excluded from the study because of its low capacity. The H2SO4 mist removal efficiency increases with the increasing of preparation time length and temperature. In addition, the ratios of CFA/activator and water/solid also impact the removal efficiency, and the optimum preparation conditions are identified as: a water/solid ratio of 10:1 at 120 °C for 10h, a CFA:CaO weight ratio of 10:1, and a NaOH solution concentration of 3 mol/L. The formation of rough surface structure and an increased surface area after NaOH/CaO activation favor the sorption of H2SO4 mist and possible sorption mechanisms might be electrostatic attractions and chemical precipitation between the surface of sorbents and H2SO4 mist. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting.

    PubMed

    Li, Feng; Du, Ping; Chen, Wei; Zhang, Shusheng

    2007-03-07

    A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu(2+), was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu(2+) adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu(2+). The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu(2+) in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption.

  3. Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters.

    PubMed

    Alhendal, Abdullah; Mengis, Stephanie; Matthews, Jacob; Malik, Abdul

    2016-10-14

    Nonhydrolytic sol-gel (NHSG) route was used for the creation of novel zirconia-polypropylene oxide (ZrO 2 -PPO) sol-gel hybrid sorbents in the form of surface coatings for the extraction and preconcentration of catecholamine neurotransmitters and molecules structurally related to their deaminated metabolites. In comparison to other sorbents made of inorganic transition metal oxides, the presented hybrid organic-inorganic sorbents facilitated reversible sorption properties that allowed for efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The presented sol-gel hybrid sorbents effectively overcame the major drawbacks of traditional silica- or polymer-based sorbents by providing superior pH stability (pH range: 0-14), and a variety of intermolecular interactions. Nonaqueous sol-gel treatment of PPO with ZrCl 4 was employed for the derivatization of the terminal hydroxyl groups on PPO, providing zirconium trichloride-containing end groups characterized by enhanced sol-gel reactivity. NHSG ZrO 2 -PPO sorbent provided excellent microextraction performance for catecholamines, low detection limits (5.6-9.6pM), high run-to-run reproducibility (RSD 0.6-5.1%), high desorption efficiency (95.0-99.5%) and high enrichment factors (∼1480-2650) for dopamine and epinephrine, respectively, extracted from synthetic urine samples. The presented sol-gel sorbents provided effective alternative to conventional extraction media providing unique physicochemical characteristics and excellent extraction capability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. MCM-41 support for ultrasmall γ-Fe 2O 3 nanoparticles for H 2S removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cara, C.; Rombi, E.; Musinu, A.

    In this paper, MCM-41 is proposed to build mesostructured Fe 2O 3-based sorbents as an alternative to other silica or alumina supports for mid-temperature H 2S removal. MCM-41 was synthesized as micrometric (MCM41_M) and nanometric (MCM41_N) particles and impregnated through an efficient two-solvent (hexane–water) procedure to obtain the corresponding γ-Fe 2O 3@MCM-41 composites. The active phase is homogeneously dispersed within the 2 nm channels in the form of ultrasmall maghemite nanoparticles assuring a high active phase reactivity. The final micrometric (Fe_MCM41_M) and nanometric (Fe_MCM41_N) composites were tested as sorbents for hydrogen sulphide removal at 300 °C and the results weremore » compared with a reference sorbent (commercial unsupported ZnO) and an analogous silica-based sorbent (Fe_SBA15). MCM-41 based sorbents, having the highest surface areas, showed superior performances that were retained after the first sulphidation cycle. Specifically, the micrometric sorbent (Fe_MCM41_M) showed a higher SRC value than the nanometric one (Fe_MCM41_N), due to the low stability of the nanosized particles over time caused by their high reactivity. Finally and furthermore, the low regeneration temperature (300–350 °C), besides the high removal capacity, renders MCM41-based systems an alternative class of regenerable sorbents for thermally efficient cleaning up processes in Integrated Gasification Combined Cycles (IGCC) systems.« less

  5. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.

    PubMed

    Zhang, F M; Liu, B S; Zhang, Y; Guo, Y H; Wan, Z Y; Subhan, Fazle

    2012-09-30

    A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700-850°C. The successive nine desulfurization-regeneration cycles at 800°C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn(2)O(3) particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800°C is 13.8 g S/100g sorbents, which is remarkably higher than these of 40 wt%LaFeO(3)/SBA-15 (4.8 g S/100g sorbents) and 50 wt%LaFe(2)O(x)/MCM-41 (5.58 g S/100g sorbents) used only at 500-550°C. This suggested that the loading of Mn(2)O(3) active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Effect of sorbent attrition on utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keener, T.C.; Khang, S.J.; Lee, S.K.

    1992-10-01

    During this period, the project has focused on two aspects of attrition; (1) mechanical attrition which is responsible for particle fracture whenever particles are moving with respect to a fixed reference frame, and (2) chemical attrition which can be responsible for particle fracture whenever particles undergo reactions. The experiments were conducted with calcium based sorbent materials. Two specific project objectives were identified and studied. The first of these was to determine the effect of temperature, particle velocity, and particle surface area on the extent of attrition in a circulating fluidized reactor. The second was to investigate if attrition could improvemore » sorbent utilization of typical calcium based sorbents of small size (<20 [mu]m). A sample of sulfated calcium hydroxide sorbent was obtained for attrition tests in a circulating fluidized bed reactor. Attempts at attriting this material in the fluidized bed were not successful, and no improvements in sorbent utilization were measured in subsequent TGA tests with the solids. However, an analysis of the other constituents in the particles revealed that a major portion of the hydroxide had been converted to calcium carbonate. This gave rise to the possibility that dolomitic hydroxide may have characteristics which may be beneficial and that improvements in utilization could be realized by means of chemical attrition. This is due to the thermal instability of magnesium carbonate at temperatures above 650[degree]F which means that magnesium oxide will be the major unreacted magnesium species in spent sorbent.« less

  7. Effect of sorbent attrition on utilization. Final report, August 1, 1991--August 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keener, T.C.; Khang, S.J.; Lee, S.K.

    1992-10-01

    During this period, the project has focused on two aspects of attrition; (1) mechanical attrition which is responsible for particle fracture whenever particles are moving with respect to a fixed reference frame, and (2) chemical attrition which can be responsible for particle fracture whenever particles undergo reactions. The experiments were conducted with calcium based sorbent materials. Two specific project objectives were identified and studied. The first of these was to determine the effect of temperature, particle velocity, and particle surface area on the extent of attrition in a circulating fluidized reactor. The second was to investigate if attrition could improvemore » sorbent utilization of typical calcium based sorbents of small size (<20 {mu}m). A sample of sulfated calcium hydroxide sorbent was obtained for attrition tests in a circulating fluidized bed reactor. Attempts at attriting this material in the fluidized bed were not successful, and no improvements in sorbent utilization were measured in subsequent TGA tests with the solids. However, an analysis of the other constituents in the particles revealed that a major portion of the hydroxide had been converted to calcium carbonate. This gave rise to the possibility that dolomitic hydroxide may have characteristics which may be beneficial and that improvements in utilization could be realized by means of chemical attrition. This is due to the thermal instability of magnesium carbonate at temperatures above 650{degree}F which means that magnesium oxide will be the major unreacted magnesium species in spent sorbent.« less

  8. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Yan, Feng; Li, Kaimin; Chen, Xuejing

    2015-06-16

    Capturing anthropogenic CO2 in a cost-effective and highly efficient manner is one of the most challenging issues faced by scientists today. Herein, we report a novel structure-reforming approach to convert steel slag, a cheap, abundant, and nontoxic calcium-rich industrial waste, as the only feedstock into superior CaO-based, self-stabilizing CO2 sorbents. The CO2 capture capacity of all the steel slag-derived sorbents was improved more than 10-fold compared to the raw slag, with the maximum uptake of CO2 achieving at 0.50 gCO2 gsorbent(-1). Additionally, the initial steel slag-derived sorbent could retain 0.25 gCO2 gsorbent(-1), that is, a decay rate of only 12% over 30 carbonation-calcination cycles, the excellent self-stabilizing property allowed it to significantly outperform conventional CaO, and match with most of the existing synthetic CaO-based sorbents. A synergistic effect that facilitated CO2 capture by CaO-based sorbents was clearly recognized when Mg and Al, the most common elements in steel slag, coexisted with CaO in the forms of MgO and Al2O3, respectively. During the calcium looping process, MgO served as a well spacer to increase the porosity of sorbents together with Al2O3 serving as a durable stabilizer to coresist the sintering of CaCO3 grains at high temperatures.

  9. MCM-41 support for ultrasmall γ-Fe 2O 3 nanoparticles for H 2S removal

    DOE PAGES

    Cara, C.; Rombi, E.; Musinu, A.; ...

    2017-07-08

    In this paper, MCM-41 is proposed to build mesostructured Fe 2O 3-based sorbents as an alternative to other silica or alumina supports for mid-temperature H 2S removal. MCM-41 was synthesized as micrometric (MCM41_M) and nanometric (MCM41_N) particles and impregnated through an efficient two-solvent (hexane–water) procedure to obtain the corresponding γ-Fe 2O 3@MCM-41 composites. The active phase is homogeneously dispersed within the 2 nm channels in the form of ultrasmall maghemite nanoparticles assuring a high active phase reactivity. The final micrometric (Fe_MCM41_M) and nanometric (Fe_MCM41_N) composites were tested as sorbents for hydrogen sulphide removal at 300 °C and the results weremore » compared with a reference sorbent (commercial unsupported ZnO) and an analogous silica-based sorbent (Fe_SBA15). MCM-41 based sorbents, having the highest surface areas, showed superior performances that were retained after the first sulphidation cycle. Specifically, the micrometric sorbent (Fe_MCM41_M) showed a higher SRC value than the nanometric one (Fe_MCM41_N), due to the low stability of the nanosized particles over time caused by their high reactivity. Finally and furthermore, the low regeneration temperature (300–350 °C), besides the high removal capacity, renders MCM41-based systems an alternative class of regenerable sorbents for thermally efficient cleaning up processes in Integrated Gasification Combined Cycles (IGCC) systems.« less

  10. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    PubMed

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  11. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  12. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Muto, Andrew

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precisionmore » Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO 2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO 2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat exchanger with a shell and tube reactor. A bench scale reactor system was then designed and constructed to test sorbent performance under more commercially relevant conditions. This system utilizes a tube-in tube reactor design containing approximately 250 grams sorbent and is able to operate under a wide range of temperature, pressure and flow conditions as needed to explore system performance under a variety of operating conditions. A variety of sorbent loading methods may be tested using the reactor design. Initial bench test results over 25 cycles showed very high sorbent stability (>99%) and sufficient capacity (>0.28 g CO 2/g sorbent) for an economical commercial-scale system. Initial technoeconomic evaluation of the proposed storage system show that the sorbent cost should not have a significant impact on overall system cost, and that the largest cost impacts come from the heat exchanger reactor and balance of plant equipment, including compressors and gas storage, due to the high temperatures for sCO 2 cycles. Current estimated system costs are $47/kWhth based on current material and equipment cost estimates.« less

  13. Engineered Barrier System: Physical and Chemical Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less

  14. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    NASA Astrophysics Data System (ADS)

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  15. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents.

    PubMed

    Shemwell, B; Levendis, Y A; Simons, G A

    2001-01-01

    This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300,000 (g gas/cm2/s/atm gas), respectively. Thus, the kinetics of the calcination reaction were found to be much faster (approximately 500 times) than those of the sulfation reaction examined previously in this laboratory.

  16. Evaluation of Thermal Barrier and PS-200 Self-Lubricating Coatings in an Air-Cooled Rotary Engine

    NASA Technical Reports Server (NTRS)

    Moller, Paul S.

    1995-01-01

    This project provides an evaluation of the feasibility and desirability of applying a thermal barrier coating overlaid with a wear coating on the internal surfaces of the combustion area of rotary engines. Many experiments were conducted with different combinations of coatings applied to engine components of aluminum, iron and titanium, and the engines were run on a well-instrumented test stand. Significant improvements in specific fuel consumption were achieved and the wear coating, PS-200, which was invented at NASA's Lewis Research Center, held up well under severe test conditions.

  17. JT90 thermal barrier coated vanes

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.

    1982-01-01

    The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.

  18. Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere

    DOEpatents

    DeVault, Robert C.; Fairchild, Phillip D.; Biermann, Wendell J.

    1990-01-01

    A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

  19. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOEpatents

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  20. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOEpatents

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  1. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOEpatents

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  2. Case Study Analysis of the Effect of Contextual Supports and Barriers on African American Students' Persistence in Engineering

    ERIC Educational Resources Information Center

    Montgomery, Lisa

    2009-01-01

    Using case study methodology (Stake, 2006), this research examined the environmental influences, or contextual supports and barriers, that were most influential in contributing to African American students' persistence in an engineering major. Social cognitive career theory provides the framework for understanding the role of contextual supports…

  3. Race and Gender Effects on Persistence, Barriers to Engineering and Life Goals by Middle School Children.

    ERIC Educational Resources Information Center

    Wood, Rose Morgan; Schaer, Barbara B.

    The under-representation of women and African Americans in engineering spurred the research documented in this study. This document reports the reults of a study investigating middle school (in a southeastern rural community) children's attitudes toward persistence, life goals and sex-stereotypes, as potential barriers to their pursuit of…

  4. Characterization of Sweetmeat Waste and Its Suitability for Sorption of As(III) in Aqueous Media.

    PubMed

    Islam, Md Mirajul; Adak, Asok; Paul, Prabir K

    2017-04-01

      Presence of arsenic in effluents from mining, mineral processing, and metal plating industries pose a serious health hazard to human beings. In this research, suitability of cheap sweetmeat waste (SMW), which is sweet industry byproduct, was investigated for the treatment of As(III). The physicochemical properties of the sorbent were characterized. The SEM images revealed highly heterogeneous sorbent surface. XRD analysis showed the presence of different polysaccharides mainly containing hydroxyl functional group. FTIR analysis was also performed to confirm the functional groups present in the sorbent. Batch experiments were conducted for kinetic analysis, effect of initial As(III) concentration, sorbent dose, electrolytes, pH, and temperature in order to understand sorption behavior. Presence of electrolyte, solution pH, and temperature were found to affect the performance of the sorbent. The sorption followed pseudo-second order reaction and Langmuir isotherm model best. The studies revealed SMW to be an efficient media for removal of As(III) from aqueous environment.

  5. Papaya Seeds as A Low-Cost Sorbent for Removing Cr(VI) from The Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Rahmawati, Atik; Marwoto, Putut; Karunia Z, Anita

    2016-08-01

    The presence of chromium (VI) contaminants and their toxicity in aqueous streams important environmental problems. Adsorption is one of the effective techniques that can be used for removing metal from wastewater. This research was initiated by preparing sorbent from papaya seeds and determining its functional group contents by using FT-IR. The adsorption process was carried out in a batch method. The study of adsorption aspects involved the pH, initial Cr (VI) concentration and contact time between Cr (VI) and sorbent. FT IR analysis results showed that the main functional groups are carbonyl, hydroxyl, and carboxylic. It was also found that the effective pH for Cr (VI) uptake is 2.0 and increasing contact time would increase the Cr (VI) uptake. In addition, the equilibrium was reached after 40 minutes interaction and the increase of initial chromium (VI) concentration would increase the sorbent uptake percentage. All these results indicated that papaya seed is a potential sorbent for removing Cr (VI) from aqueous solutions.

  6. Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study.

    PubMed

    Venkata Mohan, S; Chandrasekhar Rao, N; Karthikeyan, J

    2002-03-01

    This communication presents the results pertaining to the investigation conducted on color removal of trisazo direct dye, C.I. Direct Brown 1:1 by adsorption onto coal based sorbents viz. charfines, lignite coal, bituminous coal and comparing results with activated carbon (Filtrasorb-400). The kinetic sorption data indicated the sorption capacity of the different coal based sorbents. The sorption interaction of direct dye on to coal based sorbents obeys first-order irreversible rate equation and activated carbon fits with the first-order reversible rate equation. Intraparticle diffusion studies revealed the dye sorption interaction was complex and intraparticle diffusion was not only the rate limiting step. Isothermal data fit well with the rearranged Langmuir adsorption model. R(L) factor revealed the favorable nature of the isotherm of the dye-coal system. Neutral solution pH yielded maximum dye color removal. Desorption and interruption studies further indicated that the coal based sorbents facilitated chemisorption in the process of dye sorption while, activated carbon resulted in physisorption interaction.

  7. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  8. [Using of Spherocelle sorbents for construction of immobilized probiotics].

    PubMed

    Bondarenko, V M; Rybal'chenko, O V; Boldyrev, A G; Potokin, I L; Orlova, O G; Dobritsa, V P

    2009-01-01

    To assess sorption properties of Spherocelle beads consisting of particles of macroporous celiulose with various charges in relation to bacterial cells of manufacturing probiotic strains from different taxonomic groups. The following manufacturing strains: Bifidobacterium bifidum 1, Lactobacillus plantarum 8PA-3 and Escherichia coli M-17, as well as 3 variants of Spherocelles' matrix: neutral, with positive and negative charges, were used. Spherocelle globules DEAE with a positive charge of the matrix were successively used for designing of immobilized probiotic preparations. Efficacy of sorbent is determined by sorption of > or =1000 viable cells as well as bacterial metabolites interacting in conditions of sorbent-regulated pH on each globule with diameter 100-180 microm. It provides, on the one hand, prolonged viability of probiotic bacteria in culture fluid within 6 months and, on the other hand, optimal pharmacokinetics of preparation due to gradual desorption of metabolites from sorbent globules. Sorbent Spherocell DEAE is biocompatible with cells of manufacturing strains of lactobacilli, bifidobacteria and E. coli and recommended for designing of immobilized probiotics.

  9. Production of sorbent from paper industry solid waste for oil spill cleanup.

    PubMed

    Demirel Bayık, G; Altın, A

    2017-12-15

    The aim of the study is to select a cellulosic waste material from paper industry solid wastes and process it for sorbent production. Four different solid wastes were collected from a local paper production facility and rejects were selected due to its sorption capacity and processability. Oil sorption experiments were conducted according to the ASTM F 726-12 method. Effect of sorbent dosage, contact and dripping time, recovery of the oil, reusability of the sorbent and sorption from the water surface were also determined. Maximum oil sorption capacity was determined as 9.67, 12.92 and 12.84g/g for diesel oil, 0W30 and 10W30 motor oils respectively for the static test and 8.27, 10.45 and 11.69g/g for the dynamic test. An efficient and low-cost sorbent was produced from paper industry rejects that can be used on land and on water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hot Isostatic Pressing of Engineered Forms of I-AgZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Watkins, Thomas R.; Bruffey, Stephanie H.

    Hot isostatic pressing (HIP) is being considered for direct conversion of 129I-bearing materials to a radiological waste form. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary to comply with regulatory requirements regarding reprocessing facilities sited within the United States, and any iodine-containing media or solid sorbents generated by offgas abatement will require disposal. Zeolite minerals such as silver-exchanged mordenite (AgZ) have been studied as potential iodine sorbents and will contain 129I as chemisorbed AgI. Oak Ridge National Laboratory (ORNL) has conducted several recent studies on the HIP of both iodine-loadedmore » AgZ (I-AgZ) and other iodine-bearing zeolite minerals. The goal of these research efforts is to achieve a stable, highly leach resistant material that is reduced in volume as compared to bulk iodine-loaded I-AgZ. Through the use of HIP, it may be possible to achieve this with the addition of little or no additional materials (waste formers). Other goals for the process include that the waste form will be tolerant to high temperatures and pressures, not chemically hazardous, and that the process will result in minimal secondary waste generation. This document describes the preparation of 27 samples that are distinct from previous efforts in that they are prepared exclusively with an engineered form of AgZ that is manufactured using a binder. Iodine was incorporated solely by chemisorption. This base material is expected to be more representative of an operational system than were samples prepared previously with pure minerals.« less

  11. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOEpatents

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  12. High capacity immobilized amine sorbents

    DOEpatents

    Gray, McMahan L [Pittsburgh, PA; Champagne, Kenneth J [Fredericktown, PA; Soong, Yee [Monroeville, PA; Filburn, Thomas [Granby, CT

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  13. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    PubMed

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-06

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Rubber Fruit Shell (Hevea brasiliensis) as bio sorbent to remove FFA (Free Fatty Acid) content in CPO (Crude Palm Oil)

    NASA Astrophysics Data System (ADS)

    Pandia, S.; Sinaga, M. S.; Masyithah, Z.; Husin, A.; Nurfadilla, S.; Fitriani; Sipahutar, B. K. S.

    2018-02-01

    This study aimed to discover the effectiveness of the shell of rubber fruit as bio sorbent for removing FFA (Free Fatty Acid) content in CPO (Crude Palm Oil). Methods used in this study were pretreatment, activation (carbonating and chemically) and adsorption process at room temperature. In the beginning, the shell of rubber fruit was cleaned and dried under the sun. Then the shell was cut for about 0.5 cm of length and carbonated in a furnace for 1h at 600°C. After that, they were crushed to pass through 140 meshes and activated using three variations of chemical such as 6 of HNO3, 6N of KOH and 6N of H3PO4 at certain ratio as 1:3, 1:4, and 1:5 (b/v). The adsorption process was carried out using bio sorbent with the highest iodine number in varying bio sorbent dosage and contact time. The highest iodine number was 913.680 mg/g and obtained at the ratio of bio sorbent to 6N of KOH as 1:5. The best removal of FFA content was 91.94% and at 1% bio sorbent dose and 30 min of contact time.

  15. CO₂ uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds.

    PubMed

    Wang, Tsinghai; Xiao, Da-Cheng; Huang, Chih-Hung; Hsieh, Yi-Kong; Tan, Chung-Sung; Wang, Chu-Fang

    2014-04-15

    In this paper, we demonstrate a means of simultaneously solving two serious environmental issues by reutilization of calcinated mixture of pulverized waste oyster shells blending with poly(methyl methacrylate) (PMMA) nanospheres to prepare CaO-based sorbents for CO2 capture. After 10 cycles of isothermal carbonation/calcination at 750°C, the greatest CO2 uptake (0.19 g CO2/g sorbent) was that for the sorbent featuring 70 wt% of PMMA, which was almost three times higher than that (0.07 g CO2/g sorbent) of untreated waste oyster shell. The greater CO2 uptake was likely a result of particle size reduction and afterwards surface basicity enhancement and an increase in the volume of mesopores and macropores. Following simplified life cycle assessment, whose all input values were collected from our experimental results, suggested that a significant CO2 emission reduction along with lesser human health and ecosystems impacts would be achieved immediately once waste is reutilized. Most importantly, the CO2 uptake efficiency must be greater than 20% or sorbents prepared from limestone mining would eventually produce a net positive CO2 emission. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. High temperature regenerative H.sub.2 S sorbents

    NASA Technical Reports Server (NTRS)

    Flytani-Stephanopoulos, Maria (Inventor); Gavalas, George R. (Inventor); Tamhankar, Satish S. (Inventor)

    1988-01-01

    Efficient, regenerable sorbents for removal of H.sub.2 S from high temperature gas streams comprise porous, high surface area particles. A first class of sorbents comprise a thin film of binary oxides that form a eutectic at the temperature of the gas stream coated onto a porous, high surface area refractory support. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as a film of V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O coated on an alumina support. A second class of sorbents consist of particles of unsupported mixed oxides in the form of highly dispersed solid solutions of solid compounds characterized by small crystallite size, high porosity and relatively high surface area. The mixed oxide sorbents contain one Group IB, IIB or VIIB metal oxide such as copper, zinc or manganese and one or more oxides of Groups IIIA, VIB or VII such as aluminum, iron or molybdenum. The presence of iron or aluminum maintains the Group IB, IIB or VIIB metal in its oxidized state. Presence of molybdenum results in eutectic formation at sulfidation temperature and improves the efficiency of the sorbent.

  17. Carbon-Based Regenerable Sorbents for the Combined Carbon Dioxide and Ammonia Removal for the Primary Life Support System (PLSS)

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda

    2014-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.

  18. Long-Term Uptake of Phenol-Water Vapor Follows Similar Sigmoid Kinetics on Prehydrated Organic Matter- and Clay-Rich Soil Sorbents.

    PubMed

    Borisover, Mikhail; Bukhanovsky, Nadezhda; Lado, Marcos

    2017-09-19

    Typical experimental time frames allowed for equilibrating water-organic vapors with soil sorbents might lead to overlooking slow chemical reactions finally controlling a thermodynamically stable state. In this work, long-term gravimetric examination of kinetics covering about 4000 h was performed for phenol-water vapor interacting with four materials pre-equilibrated at three levels of air relative humidity (RHs 52, 73, and 92%). The four contrasting sorbents included an organic matter (OM)-rich peat soil, an OM-poor clay soil, a hydrophilic Aldrich humic acid salt, and water-insoluble leonardite. Monitoring phenol-water vapor interactions with the prehydrated sorbents, as compared with the sorbent samples in phenol-free atmosphere at the same RH, showed, for the first time, a sigmoid kinetics of phenol-induced mass uptake typical for second-order autocatalytic reactions. The apparent rate constants were similar for all the sorbents, RHs and phenol activities studied. A significant part of sorbed phenol resisted extraction, which was attributed to its abiotic oxidative coupling. Phenol uptake by peat and clay soils was also associated with a significant enhancement of water retention. The delayed development of the sigmoidal kinetics in phenol-water uptake demonstrates that long-run abiotic interactions of water-organic vapor with soil may be overlooked, based on short-term examination.

  19. Electrospun PVDF fibers and a novel PVDF/CoFe2O4 fibrous composite as nanostructured sorbent materials for oil spill cleanup

    NASA Astrophysics Data System (ADS)

    Dorneanu, Petronela Pascariu; Cojocaru, Corneliu; Olaru, Niculae; Samoila, Petrisor; Airinei, Anton; Sacarescu, Liviu

    2017-12-01

    In this work, pure polyvinylidene fluoride (PVDF) and PVDF/cobalt ferrite (CoFe2O4) magnetic fibrous composite were successfully prepared by electrospinning method for oil spill sorption applications. The pure spinel phase of CoFe2O4 and PVDF/CoFe2O4 composites were confirmed by X-ray diffraction analysis (XRD). Electrospun sorbent materials were characterized by scanning and transmission electron microscopy (SEM and TEM) as well as by contact angle measurements. In addition, the composite sorbent (PVDF/CoFe2O4) was characterized by magnetic measurements. It revealed good magnetic properties that are of real interest to facilitate the separation of the oil-loaded sorbent under the external magnetic field. Finally, the produced electrospun sorbents were tested for sorption of oily liquids, such as: decane, dodecane and commercial motor oils. We obtained good oil sorption capacity (between 9.751-23.615 g/g of pure PVDF) and (8.133-18.074 g/g for the magnetic composite) depending on the nature of oil tested. The present electrospun magnetic PVDF/CoFe2O4 fibrous composite could be potentially useful for the efficient removal of oil in water and recovery of sorbent material.

  20. The dissolution kinetics of industrial brine sludge wastes from a chlor-alkali industry as a sorbent for wet flue gas desulfurization (FGD).

    PubMed

    Masilela, E; Lerotholi, L; Seodigeng, T; Rutto, H

    2018-02-01

    The disposal of industrial brine sludge waste (IBSW) in chlor-alkali plants can be avoided by utilization of IBSW as a sorbent in wet flue gas desulfurization (FGD). The shrinking core model was used to determine the dissolution kinetics of IBSW, which is a vital step in wet FGD. The effects of solid-to-liquid ratio (m/v), temperature, pH, particle size, and stirring speed on the conversion and dissolution rate constant are determined. The conversion and dissolution rate constant decreases as the pH, particle size, and solid-to-liquid ratio are increased and increases as the temperature, concentration of acid, and stirring speed are increased. The sorbents before and after dissolution were characterized using x-ray fluorescence (XRF), x-ray diffraction (XRD), and scanning electron microscopy (SEM). An activation energy of 7.195 kJ/mol was obtained and the product layer diffusion model was found to be the rate-controlling step. The use of industrial brine sludge waste as an alternative sorbent in wet flue gas desulfurization can reduce the amounts of industrial wastes disposed of in landfills. This study has proved that the sorbent can contain up to 91% calcium carbonate and trace amounts of sulfate, magnesium, and so on. This can be used as new sorbent to reduce the amount of sulfur dioxide in the atmosphere and the by-product gypsum can be used in construction, as a plaster ingredient, as a fertilizer, and for soil conditioning. Therefore, the sorbent has both economic and environmental benefits.

  1. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Dong-Myung; Sun, Xin

    2013-09-01

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, causedmore » by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.« less

  2. Feasibility of CO₂/SO₂ uptake enhancement of calcined limestone modified with rice husk ash during pressurized carbonation.

    PubMed

    Chen, Huichao; Zhao, Changsui; Ren, Qiangqiang

    2012-01-01

    The calcination/carbonation cycle using calcium-based sorbents appears to be a viable method for carbon dioxide (CO₂) capture from combustion gases. Recent attempts to improve the CO₂/SO₂ uptake of a calcium-based sorbent modified by using rice husk ash (RHA) in the hydration process have succeeded in enhancing its effectiveness. The optimal mole ratio of RHA to calcined limestone (M(Si/Ca)) was adjusted to 0.2. The cyclic CO₂ capture characteristics and the SO₂ uptake activity of the modified sorbent were evaluated in a calcination/pressurized carbonation reactor system. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) spectrum of the sorbent were also taken to supplement the study. The results showed that the carbonation conversion was greatly increased for the sorbent with M(Si/Ca) ratio of 0.2. For this sorbent formulation the optimal operating conditions were 700-750 °C and 0.5-0.7 MPa. CO₂ absorption was not proportional to CO₂ concentration in the carbonation atmosphere, but was directly related to reaction time. The CO₂ uptake decreased in the presence of SO₂. SO₂ uptake increased, and the total calcium utilization was maintained over multiple cycles. Analysis has shown that the silicate component is evenly or well distributed, and this serves as a framework to prevent sintering, thus preserving the available microstructure for reaction. The sorbent also displayed high activity to SO₂ absorption and could be used to capture CO₂ and SO₂ simultaneously. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    PubMed

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions.

    PubMed

    Shiu, Ruei-Feng; Lee, Chon-Lin; Hsieh, Ping-Yen; Chen, Chi-Shuo; Kang, Yun-Yi; Chin, Wei-Chun; Tai, Nyan-Hwa

    2018-05-15

    Mechanical recovery of oils using oil sorbents is one of the most important approaches to manage marine oil spills. However, the properties of the oils spilled into sea are influenced by external environmental conditions. In this study, we present a graphene-based (GB) sponge as a novel sorbent for crude oil removal and compare its performance with that of a commercial sorbent sheet under various environmental parameters. The GB sponge with excellent superhydrophobic and superoleophilic characteristics is demonstrated to be an efficient sorbent for crude oils, with high sorption capacity (up to 85-95 times its weight) and good reusability. The crude-oil-sorption capacity of our GB sponge is remarkably higher (about 4-5 times) than that of the commercial sheet and most other previously reported sponge sorbents. Moreover, several challenging environmental conditions were examined for their effects on the sorption performance, including the weathering time of oils, seawater temperature, and turbulence (wave effect). The results show that the viscosity of the oil increased with increasing weathering time or decreasing temperature; therefore, the sorption rate seemed to decrease with longer weathering times and lower temperatures. Turbulence can facilitate inner sorption and promote higher oil sorption. Our results indicate that the extent of the effects of weather and other environmental factors on crude oil should be considered in the assessment of the effective adsorption capacity and efficiency of sorbents. The present work also highlights the widespread potential applications of our GB sponge in marine spilled-oil cleanup and hydrophobic solvent removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  6. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-04

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was observed among the sorbents investigated.

  7. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry.

    PubMed

    Brown, Veronica M; Crump, Derrick R; Plant, Neil T; Pengelly, Ian

    2014-07-11

    The standard method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air (ISO 16000-6:2011) specifies sampling onto the sorbent Tenax TA followed by analysis using thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The informative Annex D to the standard suggests the use of multi-sorbent samplers to extend the volatility range of compounds which can be determined. The aim of this study was to investigate the storage performance of Tenax TA and two multi-sorbent tubes loaded with a mixture of nine VOCs of relevance for material emissions testing. The sorbent combinations tested were quartz wool/Tenax TA/Carbograph™ 5TD and quartz wool/Tenax TA/Carbopack™ X. A range of loading levels, loading conditions (humidities and air volume), storage times (1-4 weeks) and storage conditions (refrigerated and ambient) were investigated. Longer term storage trials (up to 1 year) were conducted with Tenax TA tubes to evaluate the stability of tubes used for proficiency testing (PT) of material emissions analyses. The storage performance of the multi-sorbent tubes tested was found to be equal to that for Tenax TA, with recoveries after 4 weeks storage of within about 10% of the amounts loaded. No consistent differences in recoveries were found for the different loading or storage conditions. The longer term storage trials also showed good recovery for these compounds, although two other compounds, hexanal and BHT, were found to be unstable when stored on Tenax TA. The results of this study provide confidence in the stability of nine analytes for up to 4 weeks on two multi-sorbent tubes for material emissions testing and the same compounds loaded on Tenax TA sorbent for a recently introduced PT scheme for material emissions testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at thismore » site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less

  9. Ceramic thermal barrier coatings for electric utility gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  10. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    PubMed

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD) (4.2-26.3 ng L -1 ) for environmentally important analytes including polycyclic aromatic hydrocarbons, ketones and aliphatic hydrocarbons. In CME-GC experiments (n = 5), the capillary-to-capillary RSD value was ∼2.1%; such a low RSD value is indicative of excellent reproducibility of the sol-gel method used for the preparation of these CME coatings. The dual-ligand sol-gel coating provided stable performance in capillary microextraction of analytes from saline samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A qualitative, interprofessional analysis of barriers to and facilitators of implementation of the Department of Veterans Affairs' Clostridium difficile prevention bundle using a human factors engineering approach.

    PubMed

    Yanke, Eric; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2018-03-01

    Clostridium difficile infection (CDI) is increasingly prevalent, severe, and costly. Adherence to infection prevention practices remains suboptimal. More effective strategies to implement guidelines and evidence are needed. Interprofessional focus groups consisting of physicians, resident physicians, nurses, and health technicians were conducted for a quality improvement project evaluating adherence to the Department of Veterans Affairs' (VA) nationally mandated C difficile prevention bundle. Qualitative analysis with a visual matrix display identified barrier and facilitator themes guided by the Systems Engineering Initiative for Patient Safety model, a human factors engineering approach. Several themes, encompassing both barriers and facilitators to bundle adherence, emerged. Rapid turnaround time of C difficile polymerase chain reaction testing was a facilitator of timely diagnosis. Too few, poorly located, and cluttered sinks were barriers to appropriate hand hygiene. Patient care workload and the time-consuming process of contact isolation precautions were also barriers to adherence. Multiple work system components serve as barriers to and facilitators of adherence to the VA CDI prevention bundle among an interprofessional group of health care workers. Organizational factors appear to significantly influence bundle adherence. Interprofessional perspectives are needed to identify barriers to and facilitators of bundle implementation, which is a necessary first step to address adherence to bundled infection prevention practices. Published by Elsevier Inc.

  12. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  13. Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles.

    PubMed

    Wang, Chongqing; Wang, Hui

    2018-02-01

    Novel sorbent (HBC) is prepared by introducing nano-particles (Maghemite and EDTA functionalized layered double hydroxides) on biochar surface. FTIR, XRD, SEM and EDS are used to characterize the biochar nanocomposites. Pb(II) sorption is highly dependent on solution pH. Sorption kinetics and isotherms indicate that Pb(II) sorption onto the sorbents follows pseudo-second order model and Langmuir isotherm. The maximum sorption capacity of Pb(II) onto HBC is up to146.84 mg g -1 , higher than previously reported sorbents. The magnetic particles enable easy separation of HBC from aqueous solution by external magnetic fields. HBC can be used as effective sorbent for removal of heavy metals from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  15. Experimentally validated mathematical model of analyte uptake by permeation passive samplers.

    PubMed

    Salim, F; Ioannidis, M; Górecki, T

    2017-11-15

    A mathematical model describing the sampling process in a permeation-based passive sampler was developed and evaluated numerically. The model was applied to the Waterloo Membrane Sampler (WMS), which employs a polydimethylsiloxane (PDMS) membrane as a permeation barrier, and an adsorbent as a receiving phase. Samplers of this kind are used for sampling volatile organic compounds (VOC) from air and soil gas. The model predicts the spatio-temporal variation of sorbed and free analyte concentrations within the sampler components (membrane, sorbent bed and dead volume), from which the uptake rate throughout the sampling process can be determined. A gradual decline in the uptake rate during the sampling process is predicted, which is more pronounced when sampling higher concentrations. Decline of the uptake rate can be attributed to diminishing analyte concentration gradient within the membrane, which results from resistance to mass transfer and the development of analyte concentration gradients within the sorbent bed. The effects of changing the sampler component dimensions on the rate of this decline in the uptake rate can be predicted from the model. Performance of the model was evaluated experimentally for sampling of toluene vapors under controlled conditions. The model predictions proved close to the experimental values. The model provides a valuable tool to predict changes in the uptake rate during sampling, to assign suitable exposure times at different analyte concentration levels, and to optimize the dimensions of the sampler in a manner that minimizes these changes during the sampling period.

  16. Determination of tricresyl phosphate air contamination in aircraft.

    PubMed

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be <5 μg m(-3) compared with the 8-h time-weighted average exposure limit of 100 μg m(-3) for tri-o-cresyl phosphate. The highest concentrations were found at high engine power. Although TCP contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  17. Barriers to the utilization of synthetic fuels for transportation

    NASA Technical Reports Server (NTRS)

    Parker, H. W.; Reilly, M. J.

    1981-01-01

    The principal types of engines for transportation uses are reviewed and the specifications for conventional fuels are compared with specifications for synthetic fuels. Synfuel processes nearing the commercialization phase are reviewed. The barriers to using synfuels can be classified into four groups: technical, such as the uncertainty that a new engine design can satisfy the desired performance criteria; environmental, such as the risk that the engine emissions cannot meet the applicable environmental standards; economic, including the cost of using a synfuel relative to conventional transportation fuels; and market, involving market penetration by offering new engines, establishing new distribution systems and/or changing user expectations.

  18. Thermal barrier coatings for aircraft engines: History and directions

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1995-01-01

    Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined. The discussion focuses on those advances that led first to their use for component life extension and more recently as an integral part of airfoil design. It is noted that development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlY TBC's is emphasized in addition to observations fundamentally related to their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA is also noted.

  19. Education in Engineering and Ecohydrology for Fish Passage

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D.; Towler, B.

    2011-12-01

    Historical fish migration routes linking feeding and spawning habitats have been significantly impacted by culverts, dikes, dams, and other barriers on waterways throughout the world. For example an estimated 2.5 million barriers to fish migration exist in the United States. In recent years, there has been an increased focus on removing or mitigating these barriers as an efficient mechanism to restore habitat. Effective design and implementation of these measures requires specialists with skills at the intersection of engineering, hydrology and biology. Recognizing the need for a cadre of engineers with the additional skills in hydraulics and ecohydrology needed to analyze and design solutions for enhancing fish passage in streams and rivers, the University of Massachusetts Amherst now offers a Master of Science in Civil Engineering (MSCE) degree with a specialization in Fish Passage Engineering. The curriculum is offered in conjunction with the U.S. Fish and Wildlife Service and is informed by the recommendations of the Curriculum Working Group of the Bioengineering Section of the American Fisheries Society. The curriculum is offered through the Department of Civil and Environmental Engineering. This presentation will describe the motivation for the degree, the content of coursework and the challenges inherent in developing an interdisciplinary education program spanning biogeosciences and engineering.

  20. Assessment of Solid Sorbent Systems for Post-Combustion Carbon Dioxide Capture at Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Glier, Justin C.

    In an effort to lower future CO2 emissions, a wide range of technologies are being developed to scrub CO2 from the flue gases of fossil fuel-based electric power and industrial plants. This thesis models one of several early-stage post-combustion CO2 capture technologies, solid sorbent-based CO2 capture process, and presents performance and cost estimates of this system on pulverized coal power plants. The spreadsheet-based software package Microsoft Excel was used in conjunction with AspenPlus modelling results and the Integrated Environmental Control Model to develop performance and cost estimates for the solid sorbent-based CO2 capture technology. A reduced order model also was created to facilitate comparisons among multiple design scenarios. Assumptions about plant financing and utilization, as well as uncertainties in heat transfer and material design that affect heat exchanger and reactor design were found to produce a wide range of cost estimates for solid sorbent-based systems. With uncertainties included, costs for a supercritical power plant with solid sorbent-based CO2 capture ranged from 167 to 533 per megawatt hour for a first-of-a-kind installation (with all costs in constant 2011 US dollars) based on a 90% confidence interval. The median cost was 209/MWh. Post-combustion solid sorbent-based CO2 capture technology is then evaluated in terms of the potential cost for a mature system based on historic experience as technologies are improved with sequential iterations of the currently available system. The range costs for a supercritical power plant with solid sorbent-based CO2 capture was found to be 118 to 189 per megawatt hour with a nominal value of 163 per megawatt hour given the expected range of technological improvement in the capital and operating costs and efficiency of the power plant after 100 GW of cumulative worldwide experience. These results suggest that the solid sorbent-based system will not be competitive with currently available liquid amine-systems in the absence of significant new improvements in solid sorbent properties and process system design to reduce the heat exchange surface area in the regenerator and cross-flow heat exchanger. Finally, the importance of these estimates for policy makers is discussed.

  1. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: an in vitro study.

    PubMed

    Wester, Maarten; Simonis, Frank; Gerritsen, Karin G; Boer, Walther H; Wodzig, Will K; Kooman, Jeroen P; Joles, Jaap A

    2013-09-01

    Continuous dialysis could provide benefit by constant removal of potassium and phosphate. This study investigates the suitability of specific potassium and phosphate sorbents for incorporation in an extracorporeal device by capacity and regenerability testing. Capacity testing was performed in uraemic plasma. Regenerability was tested for potassium sorbents, with adsorption based on cationic exchange for sodium, with 0.1 M and 1.0 M NaCl. To regenerate phosphate sorbents, with adsorption based on anionic exchange, 0.1 M and 1.0 M NaHCO3 and NaOH were used. Subsequently, sodium polystyrene divinylbenzene sulphonate (RES-A) and iron oxide hydroxide (FeOOH) beads were incorporated in a cartridge for testing in bovine blood using a recirculating blood circuit and a dialysis circuit separated by a high-flux dialyzer (dynamic setup). Preloading was tested to assess whether this could limit calcium and magnesium adsorption. In the batch-binding assays, zirconium phosphate most potently adsorbed potassium (0.44 ± 0.05 mmol/g) and RES-A was the best regenerable potassium sorbent (92.9 ± 5.7% with 0.1 M NaCl). Zirconium oxide hydroxide (ZIR-hydr) most potently adsorbed phosphate (0.23 ± 0.05 mmol/g) and the polymeric amine sevelamer carbonate was the best regenerable sorbent (85.7 ± 5.2% with 0.1 M NaHCO3). In the dynamic setup, a potassium adsorption of 10.72 ± 2.06 mmol in 3 h was achieved using 111 g of RES-A and a phosphate adsorption of 4.73 ± 0.53 mmol in 3 h using 55 g of FeOOH. Calcium and magnesium preloading was shown to reduce the net adsorption in 3 h from 3.57 ± 0.91 to -0.29 ± 1.85 and 1.02 ± 0.05 to -0.31 ± 0.18 mmol, respectively. RES-A and FeOOH are suitable, regenerizable sorbents for potassium and phosphate removal in dialysate regeneration. Use of zirconium carbonate and ZIR-hydr may further increase phosphate adsorption, but may compromise sorbent regenerability. Use of polymeric amines for phosphate adsorption may enhance sorbent regenerability. Calcium and magnesium preloading considerably reduced net adsorption of these ions.

  2. 40 CFR 60.36e - Inspection guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...

  3. 40 CFR 60.36e - Inspection guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...

  4. 40 CFR 60.36e - Inspection guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...

  5. Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.

    2015-01-01

    Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.

  6. A MS, SEM-EDX and XRD study of Ti or Cu-doped zinc ferrites as regenerable sorbents for hot coal gas desulfurization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; García, E.; Alonso, L.; Palacios, J. M.

    2000-02-01

    Kinetic studies in thermobalance carried out by several authors previously have shown that small concentrations of TiO 2 or CuO can increase substantially the overall sulfidation rate of zinc ferrites, as regenerable sorbents for hot coal gas desulfurization. These oxides modify the textural properties of both the fresh or regenerated and the sulfided sorbent, modifying consequently the sulfidation rate because it is a partially diffusion-controlled process. However, by using grain models it is shown that most of the observed changes are due to changes in the intrinsic reactivity of the sorbent. Detailed studies of characterization in previous papers using different techniques have failed in revealing differential chemical changes that could be associated with a different behavior. In fact, the only significant changes observed in these studies were an apparent disappearance in fresh sorbents calcined at very high temperatures of the Raman effect, and a slight shift of the XPS binding energy of Fe levels, indicating a probable site migration and/or a change of the oxidation state. These characterization results, however, were not completely conclusive and additional efforts should be undertaken. In this paper more sensitive techniques such as Mössbauer spectroscopy (MS), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDX), have been used for the characterization of fresh, regenerated and sulfided sorbents. The study shows that the addition of TiO 2 or CuO induce substantial structural changes in zinc ferrites that can explain their apparent enhancing effect on the overall sulfidation reactivity. Additionally, this effect is decreased as the number of sulfidation-regeneration cycles increases, probably explaining the performance decay exhibited by these sorbents in multicycle tests in a fixed bed reactor.

  7. Suspension column for recovery and separation of substances using ultrasound-assisted retention of bead sorbents.

    PubMed

    Spivakov, Boris Ya; Shkinev, Valeriy M; Danilova, Tatiana V; Knyazkov, Nikolai N; Kurochkin, Vladimir E; Karandashev, Vasiliy K

    2012-12-15

    A novel approach to sorption recovery and separation of different substances is proposed which is based on the use of suspended bead sorbents instead of conventional packed beds of such sorbents. This makes it possible to employ small-sized beads which are trapped in a low-pressure column due to ultrasound-assisted retention, without any frits to hold the sorption material. A flow system including a separation mini-column, named herein a suspension column, has been developed and tested by the studies of solid phase extraction (SPE) of trace metals from bi-distilled water and sea water using a 150-μL column with a silica-based sorbent containing iminodiacetic groups (DIAPAK IDA) and having a grain size of 6 μm. The adsorption properties of DIAPAK IDA suspension (9.5mg) were evaluated through adsorption/desorption experiments, where the effect of solution pH and eluent on the SPE of trace metals were examined by ICP-MS or ICP-AES measurements. When sample solution was adjusted to pH 8.0 and 1 mol L(-1) nitric acid was used as eluent, very good recoveries of more than 90% were obtained for a number of elements in a single-step extraction. To demonstrate the versatility of the approach proposed and to show another advantage of ultrasonic field (acceleration of sorbate/sorbent interaction), a similar system was used for heterogeneous immunoassays of some antigens in ultrasonic field using agarose sorbents modified by corresponding antibodies. It has been shown that immunoglobulins, chlamidia, and brucellos bacteria can be quantitatively adsorbed on 15-μm sorbent (15 particles in 50 μL) and directly determined in a 50-μL mini-chamber using fluorescence detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    PubMed

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    PubMed

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) < or = 4 min), 1:10 for HD (t(1/2) < 2 min with molybdate), and 1:10 for GD (t(1/2) < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  10. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  11. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  12. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  13. Assessment of spent mushroom substrate as sorbent of fungicides: influence of sorbent and sorbate properties.

    PubMed

    Marín-Benito, Jesús M; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J

    2012-01-01

    The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Effects of sorbent attrition on utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keener, T.C.; Khang, Soon-Jai; Lee, S.K.

    1992-03-01

    Attrition of surface product levers of sulfite/sulfate may be the key to substantially increasing sorbent utilization in new dry scrubbing processes. This conclusion has been reached from research results obtained from new gas/solid contacting methods such as the Circulating Fluidized Bed Absorber and the Limestone Emission Control method. An additional savings may be reduced by the use of large initial sorbent, particle sizes which greatly reduces the cost of grinding and sorbent preparation. The objectives of project 1.7 were then to study attrition of sorbent particles in a systematic fashion in order to determine how to use attrition to increasemore » sorbent utilization. This was to be carried out by the construction of a bench scale fluidized bed where a series of experiments were to be conducted to measure attrition of lime and limestone samples. This has been accomplished and the project proceeded as anticipated. The results indicate that attrition differs for wet and dry conditions for certain sorbents and that these differences are substantial. Under dry conditions, the results of attrition tests on carefully characterized lime samples indicate that mechanical abrasion is the primary attrition mechanism. The rate of attrition is seen to be similar to a first order chemical reaction where the bed mass (or total surface area) is analagous to reactant concentration. A model for mechanical attrition is presented which expresses the rate constant in an Arrhenius type form proportional to a pseudo attrition activation energy and excess gas energy above a minimum level. The value of this pseudo attrition activation energy for lime has been found to be 106 KJ/KG. For the attrition of wetted lime particles in a fluidized bed. the attrition rate has been found to be directly related to the volumetric flow rate of injected water.« less

  15. Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    NASA Technical Reports Server (NTRS)

    Duderstadt, E. C.; Agarwal, P.

    1983-01-01

    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.

  16. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    PubMed

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.

  17. Bayesian Treed Calibration: An Application to Carbon Capture With AX Sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Lai, Kevin

    2017-01-02

    In cases where field or experimental measurements are not available, computer models can model real physical or engineering systems to reproduce their outcomes. They are usually calibrated in light of experimental data to create a better representation of the real system. Statistical methods, based on Gaussian processes, for calibration and prediction have been especially important when the computer models are expensive and experimental data limited. In this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard Gaussian process calibration methods to deal with non-stationarity computer models and/or their discrepancy from the field (or experimental) data. Ourmore » proposed method partitions both the calibration and observable input space, based on a binary tree partitioning, into sub-regions where existing model calibration methods can be applied to connect a computer model with the real system. The estimation of the parameters in the proposed model is carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different strategies have been applied to improve mixing. We illustrate our method in two artificial examples and a real application that concerns the capture of carbon dioxide with AX amine based sorbents. The source code and the examples analyzed in this paper are available as part of the supplementary materials.« less

  18. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson; Husson, Scott M.

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  19. Feasibility Study for the Use of Green, Bio-Based, Efficient Reactive Sorbent Material to Neutralize Chemical Warfare Agents

    DTIC Science & Technology

    2012-08-02

    REPORT Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents 14. ABSTRACT 16...way cellulose, lignin and hemicelluloses interact as well as whole wood dissolution occurs in ILs. The present project was conducted to 1. REPORT...Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents Report Title ABSTRACT Over the

  20. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    PubMed Central

    Manovic, Vasilije; Anthony, Edward J.

    2010-01-01

    This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use. PMID:20948952

  1. Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent

    PubMed Central

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field. PMID:22235178

  2. Development of a Rapid Cycling CO2 and H2O Removal Sorbent

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Paul, Heather L.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the Extravehicular Activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all CO2 and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration including long duration exploration missions requiring regenerable technologies and possibly the Crew Exploration Vehicle (CEV) spacecraft. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date.

  3. Preparation of dye waste-barium sulfate hybrid adsorbent and application in organic wastewater treatment.

    PubMed

    Hu, Zhang-Jun; Xiao, Yan; Zhao, Dan-Hua; Shen, Yu-Lin; Gao, Hong-Wen

    2010-03-15

    A new hybrid material was developed by the template-free hybridization of weak acidic pink red B (APRB, C.I. 18073) with BaSO(4). The composition and structure of the material were determined and characterized. In contrast to conventional sorbents, the hybrid material has a specific surface area of 0.89 m(2)/g, but it contains lots of negative charges and lipophilic groups as the basis of specific adsorption. The efficient removal of cationic dyes and persistent organic pollutants (POPs) indicates that it has an improved adsorption capacity and selectivity with a short removal time less than 2 min; while the hybrid sorbents fit the Langmuir isotherm model, and follow the octanol-water partition law. Instead of using APRB reagent, an APRB-producing wastewater was reused to prepare the cost-effective sorbent, and the equilibrium adsorption capacities of which reached 222 and 160 mg/g for EV and BPR, respectively. The sorbents was then used to treat three wastewater samples with satisfactory results of over 97% decolonization and 88% COD-decreasing. In addition, the hybrid sorbent was regenerated from sludge over five cycles, and its adsorption capacity was not appreciably changed. This work has developed a simple and eco-friendly method for synthesizing a practical and efficient sorbent. (c) 2009 Elsevier B.V. All rights reserved.

  4. Potassium-based sorbents from fly ash for high-temperature CO2 capture.

    PubMed

    Sanna, Aimaro; Maroto-Valer, M Mercedes

    2016-11-01

    Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO 2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li 2 CO 3 and Ca(OH) 2 to evaluate their effect on CO 2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO 2 uptake of 1.45 mmol CO 2 /g sorbent for K-FA 1:1 at 700 °C. The CO 2 sorption was enhanced by the presence of Li 2 CO 3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO 2 /g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li 2 CO 3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO 2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO 2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO 2 uptake and reaction rates over 10 cycles.

  5. Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO2 Capture.

    PubMed

    Yan, Feng; Jiang, Jianguo; Li, Kaimin; Liu, Nuo; Chen, Xuejing; Gao, Yuchen; Tian, Sicong

    2017-07-05

    High-temperature sorption of CO 2 via calcium looping has wide applications in postcombustion carbon capture, sorption-enhanced hydrogen production, and inherent energy storage. However, fast deactivations of CaO sorbents and low CO 2 uptake in the fast carbonation stage are major drawbacks of this technology. For the first time, we developed a green approach through the reuse of nanosilica derived from coal fly ash (CFA) to enhance both the cyclic CO 2 uptakes and the sorption kinetics of CaO sorbents. The as-synthesized nanosilica-supported CaO sorbent showed superior cyclic stability even under realistic carbonation/calcination conditions, and maintained a final CO 2 uptake of 0.20 g(CO 2 ) g(sorbent) -1 within short carbonation time, markedly increased by 155% over conventional CaO sorbent. Significantly, it also exhibited very fast sorption rate and could achieve almost 90% of the total CO 2 uptake within ∼20 s after the second cycle, which is critical for practical applications. These positive effects were attributed to the formation of larnite (Ca 2 SiO 4 ) and the physical nanostructure of silica, which could yield and keep abundant reactive small pores directly exposed to CO 2 throughout multiple cycles. The proposed strategy, integrating the on-site recycling of CFA, appears to be promising for CO 2 abatement from coal-fired power plants.

  6. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  7. 33 CFR 155.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR... sorbents; (3) Sorbents including booms, sweeps, pads, blankets, drums and plastic bags; (4) Personnel...

  8. 33 CFR 155.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR... sorbents; (3) Sorbents including booms, sweeps, pads, blankets, drums and plastic bags; (4) Personnel...

  9. 33 CFR 155.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR... sorbents; (3) Sorbents including booms, sweeps, pads, blankets, drums and plastic bags; (4) Personnel...

  10. 33 CFR 155.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR... sorbents; (3) Sorbents including booms, sweeps, pads, blankets, drums and plastic bags; (4) Personnel...

  11. 33 CFR 155.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR... sorbents; (3) Sorbents including booms, sweeps, pads, blankets, drums and plastic bags; (4) Personnel...

  12. Evaluation of Subsurface Engineered Barriers at Waste Sites Volumes 1 and 2

    EPA Pesticide Factsheets

    This report provides the U.S. Environmental Protection Agency’s (EPA) waste programs with a national retrospective analysis of barrier field performance, as well as information that useful in developing guidance on the use and evaluation of barrier systems

  13. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.

    PubMed

    Yang, Xunan; Chen, Shanshan; Zhang, Renduo

    2014-01-01

    Free-floating aquatic plants Pistia stratiotes and Eichhornia crassipes are well-known invasive species in the tropics and subtropics. The aim of this study was to utilize the plants as cost-effective and environmentally friendly oil sorbents. Multilevel wrinkle structure of P. stratiotes leaf (PL), rough surface of E. crassipes leaf (EL), and box structure of E. crassipes stalk (ES) were observed using the scanning electron microscope. The natural hydrophobic structures and capillary rise tests supported the idea to use P. stratiotes and E. crassipes as oil sorbents. Experiments indicated that the oil sorption by the plants was a fast process. The maximum sorption capacities for different oils reached 5.1-7.6, 3.1-4.8, and 10.6-11.7 g of oil per gram of sorbent for PL, EL, and ES, respectively. In the range of 5-35 °C, the sorption capacities of the plants were not significantly different. These results suggest that the plants can be used as efficient oil sorbents.

  14. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 2, Subtask 2.2: Design optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.

    1994-12-01

    The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed thatmore » the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.« less

  15. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    PubMed

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents.

    PubMed

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Donat, Felix; Schäublin, Robin; Kierzkowska, Agnieszka; Müller, Christoph R

    2018-06-19

    Calcium looping, a CO 2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO 2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO 2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents' CO 2 capacity and ensured a stable CO 2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO 2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO 2 uptake of the limestone-derived reference material by ~500%.

  17. Molecularly imprinted polymer online solid-phase extraction coupled with high-performance liquid chromatography-UV for the determination of three sulfonamides in pork and chicken.

    PubMed

    He, Jinxing; Wang, Shuo; Fang, Guozhen; Zhu, Huaping; Zhang, Yan

    2008-05-14

    A selective imprinted amino-functionalized silica gel sorbent was prepared by combining a surface molecular imprinting technique with a sol-gel process for online solid-phase extraction-HPLC determination of three trace sulfonamides in pork and chicken muscle. The imprinted functionalized silica gel sorbent exhibited selectivity and fast kinetics for the adsorption and desorption of sulfonamides. With a sample loading flow rate of 4 mL min (-1) for 12.5 min, enhancement factors and detection limits for three sulfonamides ( S/ N = 3) were achieved. The precision (RSD) for nine replicate online sorbent extractions of 5 microg L (-1) sulfonamides was less than 4.5%. The sorbent also offered good linearity ( r (2) > 0.99) for online solid-phase extraction of trace levels of sulfonamides. The method was applied to the determination of sulfonamides in pork and chicken muscle samples. The prepared polymer sorbent shows promise for online solid-phase extraction for HPLC determination of trace levels of sulfonamides in pork and chicken samples.

  18. Polyethylenimine-magadiite layered silicate sorbent for CO2 capture.

    PubMed

    Vieira, Rômulo B; Pastore, Heloise O

    2014-02-18

    This paper describes the preparation of a Layered Silicate Sorbent (LSS) for CO2 capture using the layered silicate magadiite and organo-magadiite modified with polyethylenimine (PEI). The sorbents were characterized and revealed the presence of PEI as well as its interaction with CO2 at low temperatures. The thermal stability of sorbents was confirmed by thermogravimetry experiments, and the adsorption capacity was evaluated by CO2-TPD experiments. Two kinds of PEI are present in the sorbent, one exposed PEI layer that is responsible for higher CO2 adsorption because its sites are external and another one, bulky PEI, capable of low CO2 adsorption due to the internal position of sites. The contribution of the exposed PEI layer may be increased by a previous exchange of CTA(+), but the presence of the surfactant decreased the total adsorption capacity. MAG-PEI25 reached a maximum adsorption capacity of 6.11 mmol g(-1) at 75 °C for 3 h of adsorption and showed a kinetic desorption of around 15 min at 150 °C.

  19. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    2014-06-01

    One of the important applications of yttria-stabilized zirconia (YSZ) is as a thermal barrier coating for gas turbine engines. While YSZ performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite-derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability, and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  20. 40 CFR 62.14442 - What must my inspection include?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; (15) Inspect bypass stack components; (16) Ensure proper calibration of thermocouples, sorbent feed... calibration of thermocouples, sorbent feed systems and any other monitoring equipment; and (3) Include...

  1. 40 CFR 62.14442 - What must my inspection include?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; (15) Inspect bypass stack components; (16) Ensure proper calibration of thermocouples, sorbent feed... calibration of thermocouples, sorbent feed systems and any other monitoring equipment; and (3) Include...

  2. CO2 removal by solid amine sorbents. 1: Experimental studies of amine resin IR-45 with regard to spacecraft applications. 2: Computer program for predicting the transient performance of solid amine sorbent systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Hwang, K. C.

    1973-01-01

    The sorbent behavior of solid amine resin IR-45 with regard to potential use in regenerative CO2-removal systems for manned spacecraft is considered. Measurements of equilibrium sorption capacity of IR-45 for water and for CO2 are reported, and the dynamic mass transfer behavior of IR-45 beds is studied under conditions representative of those expected in a manned spacecraft. A digital computer program was written for the transient performance prediction of CO2 removal systems comprised of solid amine beds. Also evaluated are systems employing inorganic molecular-sieve sorbents. Tests show that there is definitely an effect of water loading on the absorption rate.

  3. Influence of porogen nature on the kinetic and potential efficiencies of divinylbenzene-based monolithic sorbents in gas chromatography

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Shiryaeva, V. E.; Popova, T. P.; Kanat'eva, A. Yu.; Kurganov, A. A.

    2015-02-01

    It has been shown that using Poppe curves for characterization of monolithic sorbents makes it possible to optimize conditions for both the synthesis of monoliths intended for high-speed analysis and achievement of the best separation efficiency. The influence of the nature of a porogen on the kinetic efficiency of monolithic sorbents in high-pressure gas chromatography has been considered. It has been found that the nature of the porogen alcohol determines to a considerable extent the structure of the monolith and its kinetic efficiency. The sorbents prepared with the use of octanol-1 and dodecanol-1 have shown the best kinetic characteristics; however, minimal HETP values have been observed for the columns prepared using hexanol-1 as a porogen.

  4. Low-Cost Options for Moderate Levels of Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon Sjostrom

    2008-02-09

    This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. Asmore » no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.« less

  5. Delay time and Hartman effect in strain engineered graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi, E-mail: xchen@shu.edu.cn; Deng, Zhi-Yong; Ban, Yue, E-mail: yban@shu.edu.cn

    2014-05-07

    Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.

  6. Environmental Barrier Coating Fracture, Fatigue and High-Heat-Flux Durability Modeling and Stochastic Progressive Damage Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nemeth, Noel N.

    2017-01-01

    Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.

  7. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests (in air), to investigate the water vapor effect. All cyclic tests were conducted using a 60-min hot-time temperature.

  8. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    1990-01-01

    Advanced ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  9. Carbon dioxide separation using adsorption with steam regeneration

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  10. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  11. Nonlinear gas chromatography as a way of studying inhomogeneous sorbents

    NASA Astrophysics Data System (ADS)

    Kotel'nikova, T. A.

    2017-10-01

    A way of organizing and processing the results from gas-chromatographic experiments to obtain chromatographic retention characteristics for a fixed concentration of sorbate in the gas phase or on the surface of the sorbent is proposed and substantiated. The suitability and expediency of such retention characteristics for describing the sorption properties of inhomogenous sorbents is demonstrated using a wide variety of adsorbents of different natures (activated carbons, swelling and nonswelling polymers, silicas and their silver derivatives) as examples.

  12. Interaction of organic contaminants with natural clay type geosorbents: potential use as geologic barrier in urban landfill.

    PubMed

    Sánchez-Jiménez, N; Sevilla, M T; Cuevas, J; Rodríguez, M; Procopio, J R

    2012-03-01

    The aim of this work is to characterize the capability of several clay materials as preservative of organic pollution for use as landfill barrier. Interaction of representative organic pollutants with different polarity and water solubility (atrazine, benzamide, methomyl, paraquat and toluene) with several clay materials coming from several locations of Spain were studied. Batch suspension method was used to study the pesticide adsorption onto the clay sorbents in solution conditions that simulate the composition of a young leachate in its aerobic acetogenic stage (pH=5 and I=0.15) The obtained data of the analytes sorption were modelized by several sorption isotherm models, and the best fitted data were got with a generalized Langmuir adsorption isotherm. The higher maxima adsorptions were observed for paraquat (50-62 mmol kg(-1)) and toluene (19-34 mmol kg(-1)) whereas more hydrophobic compounds present lower adsorption (0.7-2.5 mmol kg(-1)). Paraquat is the compound that presents the higher bonding coefficients. Therefore these clays could be used as components of the multibarriers in controlled urban landfill. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Resonant tunneling diode based on band gap engineered graphene antidot structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palla, Penchalaiah, E-mail: penchalaiah.palla@vit.ac.in; Ethiraj, Anita S.; Raina, J. P.

    The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green’s Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved themore » Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.« less

  14. Fixing atmospheric CO2 by environment adaptive sorbent and renewable energy

    NASA Astrophysics Data System (ADS)

    Wang, T.; Liu, J.; Ge, K.; Fang, M.

    2014-12-01

    Fixing atmospheric CO2, followed by geologic storage in remote areas is considered an environmentally secure approach to climate mitigation. A moisture swing sorbent was investigated in the laboratory for CO2 capture at a remote area with humid and windy conditions. The energy requirement of moisture swing absorption could be greatly reduced compared to that of traditional high-temperature thermal swing, by assuming that the sorbent can be naturally dried and regenerated at ambient conditions. However, for currently developed moisture swing materials, the CO2 capacity would drop significantly at high relative humidity. The CO2 capture amount can be reduced by the poor thermodynamics and kinetics at high relative humidity or low temperature. Similar challenges also exist for thermal or vacuum swing sorbents. Developing sorbent materials which adapt to specific environments, such as high humidity or low temperature, can ensure sufficient capture capacity on the one hand, and realize better economics on the other hand (Figure 1) .An environment adaptive sorbent should have the abilities of tunable capacity and fast kinetics at extreme conditions, such as high humidity or low temperature. In this presentation, the possibility of tuning CO2 absorption capacity of a polymerized ionic liquid material is discussed. The energy requirement evaluation shows that tuning the CO2 binding energy of sorbent, rather than increasing the temperature or reducing the humidity of air, could be much more economic. By determining whether the absorption process is controlled by physical diffusion controlled or chemical reaction, an effective approach to fast kinetics at extreme conditions is proposed. A shrinking core model for mass transfer kinetics is modified to cope with the relatively poor kinetics of air capture. For the studied sample which has a heterogeneous structure, the kinetic analysis indicates a preference of sorbent particle size optimization, rather than support layer optimization. Chemical reaction kinetics could be enhanced by stronger binding energy or higher temperature. However, the total kinetics can only be significantly improved by chemical reaction enhancement if the physical diffusion is fast enough.

  15. Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity.

    PubMed

    Đolić, Maja B; Rajaković-Ognjanović, Vladana N; Štrbac, Svetlana B; Dimitrijević, Suzana I; Mitrić, Miodrag N; Onjia, Antonije E; Rajaković, Ljubinka V

    2017-10-25

    The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu 2+ - and Zn 2+ - ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu 2+ - ions, were 15.90 and 3.60mg/g, respectively, while for the materials activated by Zn 2+ - ions, the corresponding capacities were 14.00 and 4.72mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu 2+ -, and Zn 2+ -activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu 2+ - and Zn 2+ -activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Greener, meaner diesels sport thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, M.F.; Parker, D.W.

    1992-05-01

    The highly reliable diesel engine has long been the workhorse of the transportation, industrial power, utility, and marine industries. Demand for diesels is expected to accelerate well into the next century, driven by the engine's ability to economically produce power in almost any environment. Increasingly stringent environmental, efficiency, and durability requirements, however, present new challenges to diesel engine manufacturers and operators. This paper reports that many of these challenges can be met entirely, or in part, by thermal barrier coatings (TBCs). Diesel engine TBCs are plasma-spray-applied ceramics, which insulate combustion system components, such as pistons, valves, and piston fire decks,more » from heat and thermal shock.« less

  17. Engineering species-like barriers to sexual reproduction.

    PubMed

    Maselko, Maciej; Heinsch, Stephen C; Chacón, Jeremy M; Harcombe, William R; Smanski, Michael J

    2017-10-12

    Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter.Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a 'species-like' barrier to reproduction between two otherwise compatible populations.

  18. A design perspective on thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Soechting, F. O.

    1999-12-01

    This article addresses the challenges for maximizing the benefit of thermal barrier coatings for turbine engine applications. The perspective is from the viewpoint of a customer, a turbine airfoil designer who is continuously challenged to increase the turbine inlet temperature capability for new products while maintaining cooling flow levels or even reducing them. This is a fundamental requirement for achieving increased engine thrust levels. Developing advanced material systems for the turbine flowpath airfoils, such as high-temperature nickel-base superalloys or thermal barrier coatings to insulate the metal airfoils from the hot flowpath environment, is one approach to solve this challenge. The second approach is to increase the cooling performance of the turbine airfoil, which enables increased flowpath temperatures and reduced cooling flow levels. Thermal barrier coatings have been employed in jet engine applications for almost 30 years. The initial application was on augmentor liners to provide thermal protection during afterburner operation. However, the production use of thermal barrier coatings in the turbine section has only occurred in the past 15 years. The application was limited to stationary parts and only recently incorporated on the rotating turbine blades. This lack of endorsement of thermal barrier coatings resulted from the poor initial duratbility of these coatings in high heat flux environments. Significant improvements have been made to enhance spallation resistance and erosion resistance, which has resulted in increased reliability of these coatings in turbine applications.

  19. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Z. Z.; Hsu, L. L.; Brentnall, W. D.

    1995-01-01

    Thermal Barrier Coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in allowing higher turbine inlet temperatures. TBC life requirements for aircraft engines are typically less than those required in industrial gas turbines. The use of TBC's for industrial gas turbines can increase if durability and longer service life can be successfully demonstrated. This paper will describe current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's will also be reviewed. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and high effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  20. Thermal barrier coatings for gas-turbine engine applications.

    PubMed

    Padture, Nitin P; Gell, Maurice; Jordan, Eric H

    2002-04-12

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.

  1. Valorisation of post-sorption materials: Opportunities, strategies, and challenges.

    PubMed

    Harikishore Kumar Reddy, D; Vijayaraghavan, K; Kim, Jeong Ae; Yun, Yeoung-Sang

    2017-04-01

    Adsorption is a facile, economic, eco-friendly and low-energy requiring technology that aims to separate diverse compounds (ions and molecules) from one phase to another using a wide variety of adsorbent materials. To date, this technology has been used most often for removal/recovery of pollutants from aqueous solutions; however, emerging post-sorption technologies are now enabling the manufacture of value-added key adsorption products that can subsequently be used for (i) fertilizers, (ii) catalysis, (iii) carbonaceous metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds. These new strategies ensure the sustainable valorisation of post-sorption materials as an economically viable alternative to the engineering of other green chemical products because of the ecological affability, biocompatibility, and widespread accessibility of post-sorption materials. Fertilizers and feed additives manufactured using sorption technology contain elements such as N, P, Cu, Mn, and Zn, which improve soil fertility and provide essential nutrients to animals and humans. This green and effective approach to managing post-sorption materials is an important step in reaching the global goals of sustainability and healthy human nutrition. Post-sorbents have also been utilized for the harvesting of metal nanoparticles via modern catalytic pyrolysis techniques. The resulting materials exhibited a high surface area (>1000m 2 /g) and are further used as catalysts and adsorbents. Together with the above possibilities, energy production from post-sorbents is under exploration. Many of the vital 3E (energy, environment, and economy) problems can be addressed using post-sorption materials. In this review, we summarize a new generation of applications of post-adsorbents as value-added green chemical products. At the end of each section, scientific challenges, further opportunities, and issues related to toxicity are discussed. We believe this critical evaluation not only delivers essential contextual information to researchers in the field but also stimulates new ideas and applications to further advance post-sorbent applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. 105-KE Isolation Barrier Leak Rate Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCracken, K.J.

    1995-06-14

    This Acceptance Test Report (ATR) contains the completed and signed Acceptance Procedure (ATP) for the 105-KE Isolations Barrier Leak Rate Test. The Test Engineer`s log, the completed sections of the ATP in the Appendix for Repeat Testing (Appendix K), the approved WHC J-7s (Appendix H), the data logger files (Appendices T and U), and the post test calibration checks (Appendix V) are included.

  3. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  4. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  5. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  6. The applications of populus fiber in removal of Cr(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Miaomiao; Gong, Yumei; Lyu, Aichao; Liu, Yuanfa; Zhang, Hong

    2016-10-01

    The surface modification of natural materials to be applied in removal of Cr(VI) from aqueous solutions has attracted much attention. A natural sorbent for Cr(VI) based on natural populus fibers (PF) is prepared by transforming the cyano groups (AN) in polyacrylonitriles (PAN) grafted from PF into amidoxime groups (AO), which has strong ability to attract and chelate heavy metal ions. The prepared sorbent is characterized by Fourier Transform Infrared Spectra (FT-IR), thermogravimetric analysis (TGA), solid-state nuclear magnetic resonance (13C NMR) and scanning electron microscope (SEM). As potassium dichromate solution (K2Cr2O7) is used as a target solution for detecting adsorption capacity of the sorbent, the adsorption kinetics of the sorbent for chromiun is consistent with the pseudo-second-order kinetic model by analyzing the adsorption amount as a function of the sorbent dispersed duration in solution at pH = 2. The expected adsorption mechanism is that the Cr(VI) in anionic ions Cr2O72- and HCrO4- are adsorbed through electrostatic attraction but when Cr(VI) is reduced to Cr(III) by AO, the electronegative nitrogen and oxygen in AO chelate it through coordination bond. The as-prepared PF derivant with high adsorption efficiency of chromium 180.5 mg/g (3.47 mmol/g), low cost, reusability and greenly preparation process suggests that the development of natural PF as a sorbent in removal of Cr(VI) from aqueous solutions is a destined significant approach.

  7. [Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].

    PubMed

    Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying

    2013-05-01

    A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.

  8. Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II)

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun

    2014-01-01

    A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g-1, respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L-1 EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results.

  9. Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II).

    PubMed

    Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun

    2014-01-03

    A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g(-1), respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L(-1) EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGES

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  11. Analysis and design of a calcium-based sulfur sorbent for applications in integrated gasification combined cycle energy systems

    NASA Astrophysics Data System (ADS)

    Hasler, David Johann Ludwig

    The reactivity of various Ca-based sorbent materials in pelletized form with H2S or CO2 was investigated at high temperatures (750--880°C). An extensive study was conducted to compare the performance of sorbent pellets derived from plaster of Paris and limestone. Multicycle absorption and regeneration tests showed that plaster-based pellets out performed the limestone-based pellets primarily due to a higher surface area and mesoporosity. The effect of pore-modifiers on the reactivity of limestone with H 2S was investigated by incorporating additives such as cornstarch, graphite and polyvinylalcohol (PVA) in the sorbent. Multicycle sulfidation and regeneration tests of the modified sorbent showed that starch did not improve the reactivity of the limestone, graphite reduced the reactivity, while PVA improved it. The effect of the chemical additives MgO and SrO on the performance of CaO-based sorbent pellets was investigated. The effect of MgO was tested by starting with materials that contained MgCO3 in a natural form, such as dolomite. The effect of SrO was tested by starting with SrCO 3 either co-precipitated with CaCO3 or by wet-mixing SrCO 3 with limestone in slurry form. The MgO was found to improve the thermal stability of the CaO-based sorbent but lowered the overall absorption capacity of the material when reacted with CO2 or H2S, while SrO decreased the thermal stability of the sorbent when it was reacted with CO2; no absorption tests were run with H2S. A study of the performance of pelletized CaO-based cores coated with a refractory material such as alumina and limestone or alumina and kaolin was conducted. The reactivity of the core and shell pellets with H2S was determined. The strength and durability of the pellets were determined by using crushing strength analysis and abrasion resistance tests. Pellets coated with either alumina and limestone or alumina and kaolin proved to be strong and adequate for use in industrial reactors. A semi-empirical mathematical model was developed to represent the reaction of H2S with a sorbent pellet. The model was based on the well-known shrinking core model and it was applied successfully for the analysis of both pellet cores and core and shell pellets reacting with H2S.

  12. Environmental and Mechanical Stability of Environmental Barrier Coated SA Tyrannohex SiC Composites Under Simulated Turbine Engine Environments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay

    2014-01-01

    The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.

  13. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  14. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY ...

    EPA Pesticide Factsheets

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on July 19-20, 1994. There were 16 technical presentations in three sessions, and a panel discussion between six research experts. The workshop was a forum for the exchange of ideas and information on the use of sorbents to control air emissions of acid gases (sulfur dioxide, nitrogen oxides, and hydrogen chloride); mercury and dioxins; and toxic metals, primarily from fossil fuel combustion. A secondary purpose for conducting the workshop was to help guide EPA's research planning activities. A general theme of the workshop was that a strategy of controlling many pollutants with a single system rather than systems to control individual pollutants should be a research goal. Some research needs cited were: hazardous air pollutant removal by flue gas desulfurization systems, dioxin formation and control, mercury control, waste minimization, impact of ash recycling on metals partitioning, impact of urea and sorbents on other pollutants, high temperature filtration, impact of coal cleaning on metals partitioning, and modeling dispersion of sorbents in flue gas. information

  15. Development Status of Amine-based, Combined Humidity, CO2, and Trace Contaminant Control System for CEV

    NASA Technical Reports Server (NTRS)

    Smith, Fred; Perry, Jay; Nalette, Tim; Papale, William

    2006-01-01

    Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T. As part of the original project effort, basic sorbent development was continued with the University of Connecticut and dynamic equilibrium trace contaminant adsorption characteristics were evaluated by NASA. This paper summarizes the University sorbent research effort, the basic trace contaminant loading characteristics of the SA9T sorbent, design support testing, and the status of the full-scale system hardware design and manufacturing effort.

  16. Rapid Cycling CO2 and H2O Removal System for EMU

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Cates, Matthew; Dubovik, Margarita; Gershanovich, Yevgenia; Paul, Heather; Thomas, Gretchen

    2006-01-01

    NASA's planned future missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the EMU is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The CO2 and humidity control unit in the existing PLSS design is relatively large, since it has to remove 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. (TDA) is developing a compact, regenerable sorbent-based system to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts. The results of a preliminary system analysis are also included, showing the size and volume reductions provided by the new system.

  17. Method of preparation of a CO.sub.2 removal sorbent with high chemical stability during multiple cycles

    DOEpatents

    Siriwardane, Ranjani V.; Rosencwaig, Shira

    2015-07-14

    Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.

  18. Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  19. Monitoring long-term evolution of engineered barrier systems using magnets: Magnetic response.

    PubMed

    Rigonat, N; Isnard, O; Harley, S L; Butler, I B

    2018-01-05

    Remote and non-destructive monitoring of the stability and performance of Engineered Barrier Systems for Geological Disposal Facility of is gaining considerable importance in establishing the safety cases for Higher Activity Wastes disposal. This study offers an innovative use of mineral magnetism for monitoring groundwater saturation of the barrier. Four mixtures of permanent magnets (Nd-Fe-B, coated and uncoated; SmCo and AlNiCo) and bentonite were reacted for 4, 8 and 12 months with mildly-saline, high-pH leachates, representing the fluids saturating a time-evolved engineered barrier. Coupled hysteresis and thermomagnetic analyses demonstrate how Nd-Fe-B feature a time-dependent transition from square-like ferromagnetic to superparamagnetic loop via pot-bellied and wasp-waist loops, whereas SmCo and AlNiCo do not show so extensive corrosion-related variations of the intrinsic and extrinsic magnetic properties. This study allowed to identify magnetic materials suitable for shorter- (Nd-Fe-B) and longer-term (SmCo and AlNiCo) monitoring purposes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

Top