Sample records for engineering approach applied

  1. Putting engineering back into protein engineering: bioinformatic approaches to catalyst design.

    PubMed

    Gustafsson, Claes; Govindarajan, Sridhar; Minshull, Jeremy

    2003-08-01

    Complex multivariate engineering problems are commonplace and not unique to protein engineering. Mathematical and data-mining tools developed in other fields of engineering have now been applied to analyze sequence-activity relationships of peptides and proteins and to assist in the design of proteins and peptides with specified properties. Decreasing costs of DNA sequencing in conjunction with methods to quickly synthesize statistically representative sets of proteins allow modern heuristic statistics to be applied to protein engineering. This provides an alternative approach to expensive assays or unreliable high-throughput surrogate screens.

  2. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  3. Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Cost, Thomas L.; Hofmann, Martin O.

    1990-01-01

    A prototype of an expert system was developed which applies qualitative or model-based reasoning to the task of post-test analysis and diagnosis of data resulting from a rocket engine firing. A combined component-based and process theory approach is adopted as the basis for system modeling. Such an approach provides a framework for explaining both normal and deviant system behavior in terms of individual component functionality. The diagnosis function is applied to digitized sensor time-histories generated during engine firings. The generic system is applicable to any liquid rocket engine but was adapted specifically in this work to the Space Shuttle Main Engine (SSME). The system is applied to idealized data resulting from turbomachinery malfunction in the SSME.

  4. Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    2002-01-01

    This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.

  5. Systems metabolic engineering strategies for the production of amino acids.

    PubMed

    Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning

    2017-06-01

    Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.

  6. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  7. Aristotle and Autism: Reconsidering a Radical Shift to Virtue Ethics in Engineering.

    PubMed

    Furey, Heidi

    2017-04-01

    Virtue-based approaches to engineering ethics have recently received considerable attention within the field of engineering education. Proponents of virtue ethics in engineering argue that the approach is practically and pedagogically superior to traditional approaches to engineering ethics, including the study of professional codes of ethics and normative theories of behavior. This paper argues that a virtue-based approach, as interpreted in the current literature, is neither practically or pedagogically effective for a significant subpopulation within engineering: engineers with high functioning autism spectrum disorder (ASD). Because the main argument for adopting a character-based approach is that it could be more successfully applied to engineering than traditional rule-based or algorithmic ethical approaches, this oversight is problematic for the proponents of the virtue-based view. Furthermore, without addressing these concerns, the wide adoption of a virtue-based approach to engineering ethics has the potential to isolate individuals with ASD and to devalue their contributions to moral practice. In the end, this paper gestures towards a way of incorporating important insights from virtue ethics in engineering that would be more inclusive of those with ASD.

  8. Engaging Students in Applied Electromagnetics at the University of San Diego

    ERIC Educational Resources Information Center

    Lumori, M. L. D.; Kim, E. M.

    2010-01-01

    Two possible topical approaches that have been applied to teaching an upper-division undergraduate electrical engineering applied electromagnetics course are presented. Each approach was applied to one of two offerings of the course, taught in different semesters. In either case, the course includes the study of electromagnetic theory and…

  9. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    PubMed

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.

  10. Revisiting Approaches to Learning in Science and Engineering: A Case Study

    ERIC Educational Resources Information Center

    Gynnild, V.; Myrhaug, D.

    2012-01-01

    Several studies have applied the dichotomy of deep and surface approaches to learning in a range of disciplinary contexts. Existing questionnaires have largely assumed the existence of these constructs; however, in a recent study Case and Marshall (2004) described two additional context-specific approaches to learning in engineering. The current…

  11. Tissue engineering and regenerative medicine in applied research: a year in review of 2014.

    PubMed

    Lin, Xunxun; Huang, Jia; Shi, Yuan; Liu, Wei

    2015-04-01

    Tissue engineering and regenerative medicine (TERM) remains to be one of the fastest growing fields, which covers a wide scope of topics of both basic and applied biological researches. This overview article summarized the advancements in applied researches of TERM area, including stem cell-mediated tissue regeneration, material science, and TERM clinical trial. These achievements demonstrated the great potential of clinical regenerative therapy of tissue/organ disease or defect through stem cells and tissue engineering approaches.

  12. Engineering for Liberal Arts and Engineering Students.

    ERIC Educational Resources Information Center

    The Weaver, 1986

    1986-01-01

    Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…

  13. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  14. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  15. Combustion system CFD modeling at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-03-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  16. Biocatalysis engineering: the big picture.

    PubMed

    Sheldon, Roger A; Pereira, Pedro C

    2017-05-22

    In this tutorial review we describe a holistic approach to the invention, development and optimisation of biotransformations utilising isolated enzymes. Increasing attention to applied biocatalysis is motivated by its numerous economic and environmental benefits. Biocatalysis engineering concerns the development of enzymatic systems as a whole, which entails engineering its different components: substrate engineering, medium engineering, protein (enzyme) engineering, biocatalyst (formulation) engineering, biocatalytic cascade engineering and reactor engineering.

  17. An engineering design approach to systems biology.

    PubMed

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  18. Orion Flight Test 1 Architecture: Observed Benefits of a Model Based Engineering Approach

    NASA Technical Reports Server (NTRS)

    Simpson, Kimberly A.; Sindiy, Oleg V.; McVittie, Thomas I.

    2012-01-01

    This paper details how a NASA-led team is using a model-based systems engineering approach to capture, analyze and communicate the end-to-end information system architecture supporting the first unmanned orbital flight of the Orion Multi-Purpose Crew Exploration Vehicle. Along with a brief overview of the approach and its products, the paper focuses on the observed program-level benefits, challenges, and lessons learned; all of which may be applied to improve system engineering tasks for characteristically similarly challenges

  19. The Theory of Planned Behaviour Applied to Search Engines as a Learning Tool

    ERIC Educational Resources Information Center

    Liaw, Shu-Sheng

    2004-01-01

    Search engines have been developed for helping learners to seek online information. Based on theory of planned behaviour approach, this research intends to investigate the behaviour of using search engines as a learning tool. After factor analysis, the results suggest that perceived satisfaction of search engine, search engines as an information…

  20. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  1. A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2009-01-01

    A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.

  2. An industrial engineering approach to laboratory automation for high throughput screening

    PubMed Central

    Menke, Karl C.

    2000-01-01

    Across the pharmaceutical industry, there are a variety of approaches to laboratory automation for high throughput screening. At Sphinx Pharmaceuticals, the principles of industrial engineering have been applied to systematically identify and develop those automated solutions that provide the greatest value to the scientists engaged in lead generation. PMID:18924701

  3. New Project System for Undergraduate Electronic Engineering

    ERIC Educational Resources Information Center

    Chiu, Dirk M.; Chiu, Shen Y.

    2005-01-01

    A new approach to projects for undergraduate electronic engineering in an Australian university has been applied successfully for over 10 years. This approach has a number of projects running over three year period. Feedback from past graduates and their managers has confirmed that these projects train the students well, giving them the ability…

  4. PBL-SEE: An Authentic Assessment Model for PBL-Based Software Engineering Education

    ERIC Educational Resources Information Center

    dos Santos, Simone C.

    2017-01-01

    The problem-based learning (PBL) approach has been successfully applied to teaching software engineering thanks to its principles of group work, learning by solving real problems, and learning environments that match the market realities. However, the lack of well-defined methodologies and processes for implementing the PBL approach represents a…

  5. Quantitative Tracking of Combinatorially Engineered Populations with Multiplexed Binary Assemblies.

    PubMed

    Zeitoun, Ramsey I; Pines, Gur; Grau, Willliam C; Gill, Ryan T

    2017-04-21

    Advances in synthetic biology and genomics have enabled full-scale genome engineering efforts on laboratory time scales. However, the absence of sufficient approaches for mapping engineered genomes at system-wide scales onto performance has limited the adoption of more sophisticated algorithms for engineering complex biological systems. Here we report on the development and application of a robust approach to quantitatively map combinatorially engineered populations at scales up to several dozen target sites. This approach works by assembling genome engineered sites with cell-specific barcodes into a format compatible with high-throughput sequencing technologies. This approach, called barcoded-TRACE (bTRACE) was applied to assess E. coli populations engineered by recursive multiplex recombineering across both 6-target sites and 31-target sites. The 31-target library was then tracked throughout growth selections in the presence and absence of isopentenol (a potential next-generation biofuel). We also use the resolution of bTRACE to compare the influence of technical and biological noise on genome engineering efforts.

  6. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    PubMed

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Expanding the metabolic engineering toolbox with directed evolution.

    PubMed

    Abatemarco, Joseph; Hill, Andrew; Alper, Hal S

    2013-12-01

    Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Engineering of Engineering Education: Curriculum Development from a Designer's Point of View

    ERIC Educational Resources Information Center

    Rompelman, Otto; De Graaff, Erik

    2006-01-01

    Engineers have a set of powerful tools at their disposal for designing robust and reliable technical systems. In educational design these tools are seldom applied. This paper explores the application of concepts from the systems approach in an educational context. The paradigms of design methodology and systems engineering appear to be suitable…

  9. A Flipped Mode Teaching Approach for Large and Advanced Electrical Engineering Courses

    ERIC Educational Resources Information Center

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-01-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper…

  10. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  11. Pilot-Scale Laboratory Instruction for Chemical Engineering: The Specific Case of the Pilot-Unit Leading Group

    ERIC Educational Resources Information Center

    Billet, Anne-Marie; Camy, Severine; Coufort-Saudejaud, Carole

    2010-01-01

    This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In…

  12. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications.

    PubMed

    Li, Yang; Li, Ling; Chen, Zhi-Nan; Gao, Ge; Yao, Rui; Sun, Wei

    2017-07-31

    Remarkable achievements have been made since induced pluripotent stem cells (iPSCs) were first introduced in 2006. Compared with non-pluripotent stem cells, iPSC research faces several additional complexities, such as the choice of extracellular matrix proteins, growth and differentiation factors, as well as technical challenges related to self-renewal and directed differentiation. Overcoming these challenges requires the integration of knowledge and technologies from multiple fields including cell biology, biomaterial science, engineering, physics and medicine. Here, engineering-derived iPSC approaches are reviewed according to three aspects of iPSC studies: preparation, expansion, differentiation and applications. Engineering strategies, such as 3D systems establishment, cell-matrix mechanics and the regulation of biophysical and biochemical cues, together with engineering techniques, such as 3D scaffolds, cell microspheres and bioreactors, have been applied to iPSC studies and have generated insightful results and even mini-organs such as retinas, livers and intestines. Specific results are given to demonstrate how these approaches impact iPSC behavior, and related mechanisms are discussed. In addition, cell printing technologies are presented as an advanced engineering-derived approach since they have been applied in both iPSC studies and the construction of diverse tissues and organs. Further development and possible innovations of cell printing technologies are presented in terms of creating complex and functional iPSC-derived living tissues and organs.

  13. Surface Immobilization of Engineered Nanomaterials for in Situ Study of their Environmental Transformations and Fate

    EPA Science Inventory

    The transformation and environmental fate of engineered nanomaterials (ENMs) is the focus of intense research due to concerns about their potential impacts in the environment as a result of their uniquely engineered properties. Many approaches are being applied to investigate th...

  14. The Applied Mathematics for Power Systems (AMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less

  15. An application of modern control theory to jet propulsion systems. [considering onboard computer

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1975-01-01

    The control of an airbreathing turbojet engine by an onboard digital computer is studied. The approach taken is to model the turbojet engine as a linear, multivariable system whose parameters vary with engine operating environment. From this model adaptive closed-loop or feedback control laws are designed and applied to the acceleration of the turbojet engine.

  16. Engineering responsive supramolecular biomaterials: Toward smart therapeutics.

    PubMed

    Webber, Matthew J

    2016-09-01

    Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.

  17. Hybrid computational and experimental approach for the study and optimization of mechanical components

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1998-05-01

    Increased demands on the performance and efficiency of mechanical components impose challenges on their engineering design and optimization, especially when new and more demanding applications must be developed in relatively short periods of time while satisfying design objectives, as well as cost and manufacturability. In addition, reliability and durability must be taken into consideration. As a consequence, effective quantitative methodologies, computational and experimental, should be applied in the study and optimization of mechanical components. Computational investigations enable parametric studies and the determination of critical engineering design conditions, while experimental investigations, especially those using optical techniques, provide qualitative and quantitative information on the actual response of the structure of interest to the applied load and boundary conditions. We discuss a hybrid experimental and computational approach for investigation and optimization of mechanical components. The approach is based on analytical, computational, and experimental resolutions methodologies in the form of computational, noninvasive optical techniques, and fringe prediction analysis tools. Practical application of the hybrid approach is illustrated with representative examples that demonstrate the viability of the approach as an effective engineering tool for analysis and optimization.

  18. Irreversible thermodynamic analysis and application for molecular heat engines

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Açıkkalp, Emin

    2017-09-01

    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  19. Implementing Problem-Based Learning in Introductory Engineering Courses: A Qualitative Investigation of Facilitation Strategies

    ERIC Educational Resources Information Center

    Nicole Hunter, Deirdre-Annaliese

    2015-01-01

    Increasing pressure to transform teaching and learning of engineering is supported by mounting research evidence for the value of learner-centered pedagogies. Despite this evidence, engineering faculty are often unsuccessful in applying such teaching approaches often because they lack the necessary knowledge to customize these pedagogies for their…

  20. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2014-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  1. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  2. RDD-100 and the systems engineering process

    NASA Technical Reports Server (NTRS)

    Averill, Robert D.

    1994-01-01

    An effective systems engineering approach applied through the project life cycle can help Langley produce a better product. This paper demonstrates how an enhanced systems engineering process for in-house flight projects assures that each system will achieve its goals with quality performance and within planned budgets and schedules. This paper also describes how the systems engineering process can be used in combination with available software tools.

  3. A controls engineering approach for analyzing airplane input-output characteristics

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas

    1991-01-01

    An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.

  4. The Evaluation of Rekeying Protocols Within the Hubenko Architecture as Applied to Wireless Sensor Networks

    DTIC Science & Technology

    2009-03-01

    SENSOR NETWORKS THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and...hierarchical, and Secure Lock within a wireless sensor network (WSN) under the Hubenko architecture. Using a Matlab computer simulation, the impact of the...rekeying protocol should be applied given particular network parameters, such as WSN size. 10 1.3 Experimental Approach A computer simulation in

  5. Designing Biomimetic Materials from Marine Organisms.

    PubMed

    Nichols, William T

    2015-01-01

    Two biomimetic design approaches that apply biological solutions to engineering problems are discussed. In the first case, motivation comes from an engineering problem and the key challenge is to find analogous biological functions and map them into engineering materials. We illustrate with an example of water pollution remediation through appropriate design of a biomimetic sponge. In the second case, a biological function is already known and the challenge is to identify the appropriate engineering problem. We demonstrate the biological approach with marine diatoms that control energy and materials at their surface providing inspiration for a number of engineering applications. In both cases, it is essential to select materials and structures at the nanoscale to control energy and materials flows at interfaces.

  6. The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire

    NASA Astrophysics Data System (ADS)

    Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.

    2016-02-01

    The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.

  7. Adding a visualization feature to web search engines: it's time.

    PubMed

    Wong, Pak Chung

    2008-01-01

    It's widely recognized that all Web search engines today are almost identical in presentation layout and behavior. In fact, the same presentation approach has been applied to depicting search engine results pages (SERPs) since the first Web search engine launched in 1993. In this Visualization Viewpoints article, I propose to add a visualization feature to Web search engines and suggest that the new addition can improve search engines' performance and capabilities, which in turn lead to better Web search technology.

  8. An eLearning Standard Approach for Supporting PBL in Computer Engineering

    ERIC Educational Resources Information Center

    Garcia-Robles, R.; Diaz-del-Rio, F.; Vicente-Diaz, S.; Linares-Barranco, A.

    2009-01-01

    Problem-based learning (PBL) has proved to be a highly successful pedagogical model in many fields, although it is not that common in computer engineering. PBL goes beyond the typical teaching methodology by promoting student interaction. This paper presents a PBL trial applied to a course in a computer engineering degree at the University of…

  9. Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.

    PubMed

    Gawthrop, Peter J

    2017-04-01

    Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.

  10. Human factors and systems engineering approach to patient safety for radiotherapy.

    PubMed

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  11. 23 CFR 661.5 - What definitions apply to this regulation?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...

  12. 23 CFR 661.5 - What definitions apply to this regulation?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...

  13. 23 CFR 661.5 - What definitions apply to this regulation?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...

  14. 23 CFR 661.5 - What definitions apply to this regulation?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...

  15. 23 CFR 661.5 - What definitions apply to this regulation?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prescribed scope of work. Preliminary engineering (PE) means planning, survey, design, engineering, and... survey staking functions considered necessary for effective control of the construction operations... carrying capacity (comparison of the original design load to the State legal load), clearance, or approach...

  16. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    PubMed

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production.

  17. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    PubMed

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  18. Using Cognitive Load Theory to Interpret Student Difficulties with a Problem-Based Learning Approach to Engineering Education: A Case Study

    ERIC Educational Resources Information Center

    Peters, Michael

    2015-01-01

    This article reports on an investigation with first year undergraduate Product Design and Management students within a School of Engineering and Applied Science. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill-formed problem…

  19. Towards a Unified Theory of Engineering Education

    ERIC Educational Resources Information Center

    Salcedo Orozco, Oscar H.

    2017-01-01

    STEM education is an interdisciplinary approach to learning where rigorous academic concepts are coupled with real-world lessons and activities as students apply science, technology, engineering, and mathematics in contexts that make connections between school, community, work, and the global enterprise enabling STEM literacy (Tsupros, Kohler and…

  20. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.

  1. Shaping the Future Landscape: Catchment Systems Engineering and the Decision Support Matrix Approach

    NASA Astrophysics Data System (ADS)

    Hewett, Caspar; Quinn, Paul; Wilkinson, Mark; Wainwright, John

    2017-04-01

    Land degradation is widely recognised as one of the great environmental challenges facing humanity today, much of which is directly associated with human activity. The negative impacts of climate change and of the way in which we have engineered the landscape through, for example, agriculture intensification and deforestation, need to be addressed. However, the answer is not a simple matter of doing the opposite of current practice. Nor is non-intervention a viable option. There is a need to bring together approaches from the natural and social sciences both to understand the issues and to act to solve real problems. We propose combining a Catchment Systems Engineering (CSE) approach that builds on existing approaches such as Natural Water Retention Measures, Green infrastructure and Nature-Based Solutions with a multi-scale framework for decision support that has been successfully applied to diffuse pollution and flood risk management. The CSE philosophy follows that of Earth Systems Engineering and Management, which aims to engineer and manage complex coupled human-natural systems in a highly integrated, rational manner. CSE is multi-disciplinary, and necessarily involves a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. It offers a rational approach which accepts the fact that we need to engineer and act to improve the functioning of the existing catchment entity on which we rely. The decision support framework proposed draws on physical and mathematical modelling; Participatory Action Research; and demonstration sites at which practical interventions are implemented. It is predicated on the need to work with stakeholders to co-produce knowledge that leads to proactive interventions to reverse the land degradation we observe today while sustaining the agriculture humanity needs. The philosophy behind CSE and examples of where it has been applied successfully are presented. The Decision Support Matrix (DSM) approach is introduced as a way to engage stakeholders at all scales, helping to inform decision making and motivate intervention. Two existing visualization and communication tools produced using the DSM approach are discussed: The FARM (Floods and Agriculture Risk Matrix) and CAVERTI (Communication And Visualizing Erosion-associated Risks to Infrastructure). Such tools can play a central role in encouraging a more holistic engineering approach to managing catchment system function that combines food production with a reversal of land degradation, providing a 'win-win' situation for all.

  2. Applying systems engineering methodologies to the micro- and nanoscale realm

    NASA Astrophysics Data System (ADS)

    Garrison Darrin, M. Ann

    2012-06-01

    Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.

  3. Engineering approaches to immunotherapy.

    PubMed

    Swartz, Melody A; Hirosue, Sachiko; Hubbell, Jeffrey A

    2012-08-22

    As the science of immunology grows increasingly mechanistic, motivation for developing quantitative, design-based engineering approaches has also evolved, both for therapeutic interventions and for elucidating immunological pathways in human disease. This has seeded the nascent field of "immunoengineering," which seeks to apply engineering analyses and design approaches to problems in translational immunology. For example, cell engineers are creating ways to tailor and use immune cells as living therapeutics; protein engineers are devising new methods of rapid antibody discovery; biomaterials scientists are guiding vaccine delivery and immune-cell activation with novel constructs; and systems immunologists are deciphering the evolution and maintenance of T and B cell receptor repertoires, which could help guide vaccine design. The field is multidisciplinary and collaborative, with engineers and immunologists working together to better understand and treat disease. We discuss the scientific progress in this young, yet rapidly evolving research area, which has yielded numerous start-up companies that are betting on impact in clinical and commercial translation in the near future.

  4. A Planning Approach of Engineering Characteristics Based on QFD-TRIZ Integrated

    NASA Astrophysics Data System (ADS)

    Liu, Shang; Shi, Dongyan; Zhang, Ying

    Traditional QFD planning method compromises contradictions between engineering characteristics to achieve higher customer satisfaction. However, this compromise trade-off can not eliminate the contradictions existing among the engineering characteristics which limited the overall customer satisfaction. QFD (Quality function deployment) integrated with TRIZ (the Russian acronym of the Theory of Inventive Problem Solving) becomes hot research recently for TRIZ can be used to solve contradictions between engineering characteristics which construct the roof of HOQ (House of quality). But, the traditional QFD planning approach is not suitable for QFD integrated with TRIZ for that TRIZ requires emphasizing the contradictions between engineering characteristics at problem definition stage instead of compromising trade-off. So, a new planning approach based on QFD / TRIZ integration is proposed in this paper, which based on the consideration of the correlation matrix of engineering characteristics and customer satisfaction on the basis of cost. The proposed approach suggests that TRIZ should be applied to solve contradictions at the first step, and the correlation matrix of engineering characteristics should be amended at the second step, and at next step IFR (ideal final result) must be validated, then planning execute. An example is used to illustrate the proposed approach. The application indicated that higher customer satisfaction can be met and the contradictions between the characteristic parameters are eliminated.

  5. Tailoring Systems Engineering Projects for Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Belvin, Keith

    2013-01-01

    NASA maintains excellence in its spaceflight systems by utilizing rigorous engineering processes based on over 50 years of experience. The NASA systems engineering process for flight projects described in NPR 7120.5E was initially developed for major flight projects. The design and development of low-cost small satellite systems does not entail the financial and risk consequences traditionally associated with spaceflight projects. Consequently, an approach is offered to tailoring of the processes such that the small satellite missions will benefit from the engineering rigor without overly burdensome overhead. In this paper we will outline the approaches to tailoring the standard processes for these small missions and describe how it will be applied in a proposed small satellite mission.

  6. Risk Identification and Visualization in a Concurrent Engineering Team Environment

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Shishko, Robert

    2010-01-01

    Incorporating risk assessment into the dynamic environment of a concurrent engineering team requires rapid response and adaptation. Generating consistent risk lists with inputs from all the relevant subsystems and presenting the results clearly to the stakeholders in a concurrent engineering environment is difficult because of the speed with which decisions are made. In this paper we describe the various approaches and techniques that have been explored for the point designs of JPL's Team X and the Trade Space Studies of the Rapid Mission Architecture Team. The paper will also focus on the issues of the misuse of categorical and ordinal data that keep arising within current engineering risk approaches and also in the applied risk literature.

  7. A Model-Based Approach to Developing Your Mission Operations System

    NASA Technical Reports Server (NTRS)

    Smith, Robert R.; Schimmels, Kathryn A.; Lock, Patricia D; Valerio, Charlene P.

    2014-01-01

    Model-Based System Engineering (MBSE) is an increasingly popular methodology for designing complex engineering systems. As the use of MBSE has grown, it has begun to be applied to systems that are less hardware-based and more people- and process-based. We describe our approach to incorporating MBSE as a way to streamline development, and how to build a model consisting of core resources, such as requirements and interfaces, that can be adapted and used by new and upcoming projects. By comparing traditional Mission Operations System (MOS) system engineering with an MOS designed via a model, we will demonstrate the benefits to be obtained by incorporating MBSE in system engineering design processes.

  8. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  9. Laser engines operating by resonance absorption. [thermodynamic feasibility study

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Pechersky, M. J.

    1976-01-01

    Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.

  10. Understanding immunology via engineering design: the role of mathematical prototyping.

    PubMed

    Klinke, David J; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and "fitness for use," can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

  11. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering.

    PubMed

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.

  12. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering

    PubMed Central

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch. PMID:26989897

  13. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less

  14. Intelligent Decisions? Intelligent Support? Agenda and Participants for the Internal Workshop on Intelligent Decision Support Systems : Retrospects and Prospects, August 29 - September 2, 2005, Certosa di Pontignano (Siena), Italy

    DTIC Science & Technology

    2005-09-01

    ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE ..................100 27. SHARPLE, SARAH (WITH COX, GEMMA & STEDMON...104 30. TANGO, FABIO: CONCEPT OF AUTONOMIC COMPUTING APPLIED TO TRANSPORTATION ISSUES: THE SENSITIVE CAR .....105 31. TAYLOR, ROBERT: POSITION...SYSTEMS ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE Today’s automation systems are typically introduced

  15. Professional development for design-based learning in engineering education: a case study

    NASA Astrophysics Data System (ADS)

    Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim

    2015-01-01

    Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects. We conducted an intervention for the professional development of the DBL teachers in the Mechanical Engineering and the Electrical Engineering departments. We used the Experiential Learning Cycle as an educational model for the professionalisation programme. The findings show that the programme encouraged teachers to apply the DBL theoretical framework. However, there are some limitations with regard to specific project characteristics. Further research into supporting teachers to develop open-ended and multidisciplinary activities in the projects that support learning is recommended.

  16. The methods of formaldehyde emission testing of engine: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Geng, Peng; Cao, Erming; Wei, Lijiang

    2015-12-01

    A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.

  17. A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun

    2012-01-01

    One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.

  18. An Integrated Optimal Estimation Approach to Spitzer Space Telescope Focal Plane Survey

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, D.

    2004-01-01

    This paper discusses an accurate and efficient method for focal plane survey that was used for the Spitzer Space Telescope. The approach is based on using a high-order 37-state Instrument Pointing Frame (IPF) Kalman filter that combines both engineering parameters and science parameters into a single filter formulation. In this approach, engineering parameters such as pointing alignments, thermomechanical drift and gyro drifts are estimated along with science parameters such as plate scales and optical distortions. This integrated approach has many advantages compared to estimating the engineering and science parameters separately. The resulting focal plane survey approach is applicable to a diverse range of science instruments such as imaging cameras, spectroscopy slits, and scanning-type arrays alike. The paper will summarize results from applying the IPF Kalman Filter to calibrating the Spitzer Space Telescope focal plane, containing the MIPS, IRAC, and the IRS science Instrument arrays.

  19. The use of mathematical models in teaching wastewater treatment engineering.

    PubMed

    Morgenroth, E; Arvin, E; Vanrolleghem, P

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.

  20. Does Sequence Matter? Productive Failure and Designing Online Authentic Learning for Process Engineering

    ERIC Educational Resources Information Center

    Lai, Polly K.; Portolese, Alisha; Jacobson, Michael J.

    2017-01-01

    This paper presents a study that applied both "productive failure" (PF) and "authentic learning" instructional approaches in online learning activities for early-career process engineers' professional development. This study compares participants learning with either a PF (low-to-high [LH]) or a more traditional (high-to-low)…

  1. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  2. Responsibility ascriptions in technology development and engineering: three perspectives.

    PubMed

    Doorn, Neelke

    2012-03-01

    In the last decades increasing attention is paid to the topic of responsibility in technology development and engineering. The discussion of this topic is often guided by questions related to liability and blameworthiness. Recent discussions in engineering ethics call for a reconsideration of the traditional quest for responsibility. Rather than on alleged wrongdoing and blaming, the focus should shift to more socially responsible engineering, some authors argue. The present paper aims at exploring the different approaches to responsibility in order to see which one is most appropriate to apply to engineering and technology development. Using the example of the development of a new sewage water treatment technology, the paper shows how different approaches for ascribing responsibilities have different implications for engineering practice in general, and R&D or technological design in particular. It was found that there was a tension between the demands that follow from these different approaches, most notably between efficacy and fairness. Although the consequentialist approach with its efficacy criterion turned out to be most powerful, it was also shown that the fairness of responsibility ascriptions should somehow be taken into account. It is proposed to look for alternative, more procedural ways to approach the fairness of responsibility ascriptions. © The Author(s) 2009. This article is published with open access at Springerlink.com

  3. Improvements in algal lipid production: a systems biology and gene editing approach.

    PubMed

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  4. An Assessment Methodology to Evaluate In-Flight Engine Health Management Effectiveness

    NASA Astrophysics Data System (ADS)

    Maggio, Gaspare; Belyeu, Rebecca; Pelaccio, Dennis G.

    2002-01-01

    flight effectiveness of candidate engine health management system concepts. A next generation engine health management system will be required to be both reliable and robust in terms of anomaly detection capability. The system must be able to operate successfully in the hostile, high-stress engine system environment. This implies that its system components, such as the instrumentation, process and control, and vehicle interface and support subsystems, must be highly reliable. Additionally, the system must be able to address a vast range of possible engine operation anomalies through a host of different types of measurements supported by a fast algorithm/architecture processing capability that can identify "true" (real) engine operation anomalies. False anomaly condition reports for such a system must be essentially eliminated. The accuracy of identifying only real anomaly conditions has been an issue with the Space Shuttle Main Engine (SSME) in the past. Much improvement in many of the technologies to address these areas is required. The objectives of this study were to identify and demonstrate a consistent assessment methodology that can evaluate the capability of next generation engine health management system concepts to respond in a correct, timely manner to alleviate an operational engine anomaly condition during flight. Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, identified a probabilistic modeling approach to assess engine health management system concept effectiveness using a deterministic anomaly-time event assessment modeling approach that can be applied in the engine preliminary design stage of development to assess engine health management system concept effectiveness. Much discussion in this paper focuses on the formulation and application approach in performing this assessment. This includes detailed discussion of key modeling assumptions, the overall assessment methodology approach identified, and the identification of key supporting engine health management system concept design/operation and fault mode information required to utilize this methodology. At the paper's conclusion, discussion focuses on a demonstration benchmark study that applied this methodology to the current SSME health management system. A summary of study results and lessons learned are provided. Recommendations for future work in this area are also identified at the conclusion of the paper. * Please direct all correspondence/communication pertaining to this paper to Dennis G. Pelaccio, Science

  5. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.

  6. Engineering therapies in the CNS: what works and what can be translated.

    PubMed

    Shoffstall, Andrew J; Taylor, Dawn M; Lavik, Erin B

    2012-06-25

    Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Engineering Therapies in the CNS: What works and what can be translated

    PubMed Central

    Shoffstall, Andrew J.; Taylor, Dawn M.; Lavik, Erin B.

    2012-01-01

    Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS. PMID:22330751

  8. Proposing an Evidence-Based Strategy for Software Requirements Engineering.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2016-01-01

    This paper discusses an evidence-based approach to software requirements engineering. The approach is called evidence-based, since it uses publications on the specific problem as a surrogate for stakeholder interests, to formulate risks and testing experiences. This complements the idea that agile software development models are more relevant, in which requirements and solutions evolve through collaboration between self-organizing cross-functional teams. The strategy is exemplified and applied to the development of a Software Requirements list used to develop software systems for patient registries.

  9. Integration of pyrotechnics into aerospace systems

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  10. Semantic Clustering of Search Engine Results

    PubMed Central

    Soliman, Sara Saad; El-Sayed, Maged F.; Hassan, Yasser F.

    2015-01-01

    This paper presents a novel approach for search engine results clustering that relies on the semantics of the retrieved documents rather than the terms in those documents. The proposed approach takes into consideration both lexical and semantics similarities among documents and applies activation spreading technique in order to generate semantically meaningful clusters. This approach allows documents that are semantically similar to be clustered together rather than clustering documents based on similar terms. A prototype is implemented and several experiments are conducted to test the prospered solution. The result of the experiment confirmed that the proposed solution achieves remarkable results in terms of precision. PMID:26933673

  11. Hydrodynamic cavitation: from theory towards a new experimental approach

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Gervino, Gianpiero

    2009-09-01

    Hydrodynamic cavitation is analysed by a global thermodynamics principle following an approach based on the maximum irreversible entropy variation that has already given promising results for open systems and has been successfully applied in specific engineering problems. In this paper we present a new phenomenological method to evaluate the conditions inducing cavitation. We think this method could be useful in the design of turbo-machineries and related technologies: it represents both an original physical approach to cavitation and an economical saving in planning because the theoretical analysis could allow engineers to reduce the experimental tests and the costs of the design process.

  12. Cell delivery in regenerative medicine: the cell sheet engineering approach.

    PubMed

    Yang, Joseph; Yamato, Masayuki; Nishida, Kohji; Ohki, Takeshi; Kanzaki, Masato; Sekine, Hidekazu; Shimizu, Tatsuya; Okano, Teruo

    2006-11-28

    Recently, cell-based therapies have developed as a foundation for regenerative medicine. General approaches for cell delivery have thus far involved the use of direct injection of single cell suspensions into the target tissues. Additionally, tissue engineering with the general paradigm of seeding cells into biodegradable scaffolds has also evolved as a method for the reconstruction of various tissues and organs. With success in clinical trials, regenerative therapies using these approaches have therefore garnered significant interest and attention. As a novel alternative, we have developed cell sheet engineering using temperature-responsive culture dishes, which allows for the non-invasive harvest of cultured cells as intact sheets along with their deposited extracellular matrix. Using this approach, cell sheets can be directly transplanted to host tissues without the use of scaffolding or carrier materials, or used to create in vitro tissue constructs via the layering of individual cell sheets. In addition to simple transplantation, cell sheet engineered constructs have also been applied for alternative therapies such as endoscopic transplantation, combinatorial tissue reconstruction, and polysurgery to overcome limitations of regenerative therapies and cell delivery using conventional approaches.

  13. Bayesian-information-gap decision theory with an application to CO 2 sequestration

    DOE PAGES

    O'Malley, D.; Vesselinov, V. V.

    2015-09-04

    Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less

  14. Engineering design in the primary school: applying stem concepts to build an optical instrument

    NASA Astrophysics Data System (ADS)

    King, Donna; English, Lyn D.

    2016-12-01

    Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts. As such, this study examined the learning that occurred when fifth-grade students completed an optical engineering activity using an iterative engineering design model. Through a qualitative methodology using a case study design, we analysed multiple data sources including students' design sketches from eight focus groups. Three key findings emerged: first, the collaborative process of the first design sketch enabled students to apply core STEM concepts to model construction; second, during the construction stage students used experimentation for the positioning of lenses, mirrors and tubes resulting in a simpler 'working' model; and third, the redesign process enabled students to apply structural changes to their design. The engineering design model was useful for structuring stages of design, construction and redesign; however, we suggest a more flexible approach for advanced applications of STEM concepts in the future.

  15. Engineering of routes to heparin and related polysaccharides.

    PubMed

    Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2012-01-01

    Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.

  16. USNCTAM perspectives on mechanics in medicine

    PubMed Central

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D.; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S.; Hughes, Thomas J. R.; Kamm, Roger D.; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-01-01

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. PMID:24872502

  17. An Application of Reverse Engineering to Automatic Item Generation: A Proof of Concept Using Automatically Generated Figures

    ERIC Educational Resources Information Center

    Lorié, William A.

    2013-01-01

    A reverse engineering approach to automatic item generation (AIG) was applied to a figure-based publicly released test item from the Organisation for Economic Cooperation and Development (OECD) Programme for International Student Assessment (PISA) mathematical literacy cognitive instrument as part of a proof of concept. The author created an item…

  18. A generic strategy for pharmacological caging of growth factors for tissue engineering.

    PubMed

    Karlsson, Maria; Lienemann, Philipp S; Sprossmann, Natallia; Heilmann, Katharina; Brummer, Tilman; Lutolf, Matthias P; Ehrbar, Martin; Weber, Wilfried

    2013-07-07

    The caging of small molecules has revolutionized biological research by providing a means to regulate a wide range of processes. Here we report on a generic pharmacological method to cage proteins in a similar fashion. The present approach is of value in both fundamental and applied research, e.g. in tissue engineering.

  19. Factors Affecting Cheating-Behavior at Undergraduate-Engineering

    ERIC Educational Resources Information Center

    Starovoytova, Diana; Namango, Saul

    2016-01-01

    This study is a fraction of a larger research on cheating in exams at the School of Engineering (SOE). The study design used a descriptive survey approach and a document analysis. A designed confidential self report questioner was applied as the main instrument for this study, with the sample size of 100 subjects, and a response rate of 95%. The…

  20. The Company Approach to Software Engineering Project Courses

    ERIC Educational Resources Information Center

    Broman, D.; Sandahl, K.; Abu Baker, M.

    2012-01-01

    Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…

  1. Identifying Engineering Students' English Sentence Reading Comprehension Errors: Applying a Data Mining Technique

    ERIC Educational Resources Information Center

    Tsai, Yea-Ru; Ouyang, Chen-Sen; Chang, Yukon

    2016-01-01

    The purpose of this study is to propose a diagnostic approach to identify engineering students' English reading comprehension errors. Student data were collected during the process of reading texts of English for science and technology on a web-based cumulative sentence analysis system. For the analysis, the association-rule, data mining technique…

  2. Performance of discrete heat engines and heat pumps in finite time

    PubMed

    Feldmann; Kosloff

    2000-05-01

    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.

  3. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    PubMed Central

    Klinke, David J.; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412

  4. An application of object-oriented knowledge representation to engineering expert systems

    NASA Technical Reports Server (NTRS)

    Logie, D. S.; Kamil, H.; Umaretiya, J. R.

    1990-01-01

    The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.

  5. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation applications such as model-based diagnostic, controls, and life usage calculations. The advantage of the innovation is the significant reduction in estimation errors that it can provide relative to the conventional approach of selecting a subset of health parameters to serve as the model tuning parameter vector. Because this technique needs only to be performed during the system design process, it places no additional computation burden on the onboard Kalman filter implementation. The technique has been developed for aircraft engine onboard estimation applications, as this application typically presents an under-determined estimation problem. However, this generic technique could be applied to other industries using gas turbine engine technology.

  6. Limitations of fluorescence spectroscopy to characterize organic matter in engineered systems

    NASA Astrophysics Data System (ADS)

    Korak, J.

    2017-12-01

    Fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in engineered systems, such as drinking water, municipal wastewater and industrial water treatment. While fluorescence data collected in water treatment applications has led to the development of strong empirical relationships between fluorescence responses and process performance, the use of fluorescence to infer changes in the underlying organic matter chemistry is often oversimplified and applied out of context. Fluorescence only measures a small fraction of DOM as fluorescence quantum yields are less than 5% for many DOM sources. Relying on fluorescence as a surrogate for DOM presence, character or reactivity may not be appropriate for systems where small molecular weight, hydrophilic constituents unlikely to fluoresce are important. In addition, some methods rely on interpreting fluorescence signals at different excitation wavelengths as a surrogate for operationally-defined humic- and fulvic-acids in lieu of traditional XAD fractionation techniques, but these approaches cannot be supported by other lines of evidence considering natural abundance and fluorescence quantum yields of these fractions. These approaches also conflict with parallel factor analysis (PARAFAC), a statistical approach that routinely identifies fluorescence components with dual excitation behavior. Lastly, methods developed for natural systems are often applied out of context to engineered systems. Fluorescence signals characteristic of phenols or indoles are often interpreted as indicators for biological activity in natural systems due to fluorescent amino acids and peptides, but this interpretation is may not be appropriate in engineering applications where non-biological sources of phenolic functional groups may be present. This presentation explores common fluorescence interpretation approaches, discusses the limitations and provides recommendations related to engineered systems.

  7. Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology

    PubMed Central

    Bodle, Josephine C.; Hanson, Ariel D.

    2011-01-01

    This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267

  8. Whole-organ re-engineering: a regenerative medicine approach to digestive organ replacement.

    PubMed

    Yagi, Hiroshi; Soto-Gutierrez, Alejandro; Kitagawa, Yuko

    2013-06-01

    Recovery from end-stage organ failure presents a challenge for the medical community, considering the limitations of extracorporeal assist devices and the shortage of donors when organ replacement is needed. There is a need for new methods to promote recovery from organ failure and regenerative medicine is an option that should be considered. Recent progress in the field of tissue engineering has opened avenues for potential clinical applications, including the use of microfluidic devices for diagnostic purposes, and bioreactors or cell/tissue-based therapies for transplantation. Early attempts to engineer tissues produced thin, planar constructs; however, recent approaches using synthetic scaffolds and decellularized tissue have achieved a more complex level of tissue organization in organs such as the urinary bladder and trachea, with some success in clinical trials. In this context, the concept of decellularization technology has been applied to produce whole organ-derived scaffolds by removing cellular content while retaining all the necessary vascular and structural cues of the native organ. In this review, we focus on organ decellularization as a new regenerative medicine approach for whole organs, which may be applied in the field of digestive surgery.

  9. Proving the suitability of magnetoelectric stimuli for tissue engineering applications.

    PubMed

    Ribeiro, C; Correia, V; Martins, P; Gama, F M; Lanceros-Mendez, S

    2016-04-01

    A novel approach for tissue engineering applications based on the use of magnetoelectric materials is presented. This work proves that magnetoelectric Terfenol-D/poly(vinylidene fluoride-co-trifluoroethylene) composites are able to provide mechanical and electrical stimuli to MC3T3-E1 pre-osteoblast cells and that those stimuli can be remotely triggered by an applied magnetic field. Cell proliferation is enhanced up to ≈ 25% when cells are cultured under mechanical (up to 110 ppm) and electrical stimulation (up to 0.115 mV), showing that magnetoelectric cell stimulation is a novel and suitable approach for tissue engineering allowing magnetic, mechanical and electrical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Charting the Impact of Federal Spending for Education Research: A Bibliometric Approach

    ERIC Educational Resources Information Center

    Milesi, Carolina; Brown, Kevin L.; Hawkley, Louise; Dropkin, Eric; Schneider, Barbara L.

    2014-01-01

    Impact evaluation plays a critical role in determining whether federally funded research programs in science, technology, engineering, and mathematics are wise investments. This paper develops quantitative methods for program evaluation and applies this approach to a flagship National Science Foundation-funded education research program, Research…

  11. A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines.

    PubMed

    Sánchez Lasheras, Fernando; García Nieto, Paulino José; de Cos Juez, Francisco Javier; Mayo Bayón, Ricardo; González Suárez, Victor Manuel

    2015-03-23

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  12. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    PubMed Central

    Lasheras, Fernando Sánchez; Nieto, Paulino José García; de Cos Juez, Francisco Javier; Bayón, Ricardo Mayo; Suárez, Victor Manuel González

    2015-01-01

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines. PMID:25806876

  13. Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities.

    PubMed

    Quo, Chang F; Kaddi, Chanchala; Phan, John H; Zollanvari, Amin; Xu, Mingqing; Wang, May D; Alterovitz, Gil

    2012-07-01

    Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.

  14. Investigating students' view on STEM in learning about electrical current through STS approach

    NASA Astrophysics Data System (ADS)

    Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study aims to investigate Grade 11 students' views on Science Technology Engineering Mathematics (STEM) with the integration of learning about electrical current based on Science Technology Society (STS) approach [8]. The participants were 60 Grade 11 students in Demonstration Secondary School, Khon Kaen University, Khon Kaen Province, Thailand. The methodology is in the respect of interpretive paradigm. The teaching and learning about Electrical Current through STS approach carried out over 6 weeks. The Electrical Current unit through STS approach was developed based on framework[8] that consists of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision making, and (5) socialization stage. To start with, the question "what if this world is lack of electricity" was challenged in the class in order to move students to find the problem of how to design Electricity Generation from Clean Energy. Students were expected to apply scientific and other knowledge to design of Electricity Generation. Students' views on STEM were collected during their learning by participant' observation and students' tasks. Their views on STEM were categorized when they applied their knowledge for designing the Electricity Generation. The findings indicated that students cooperatively work to solve the problem when applying knowledge about the content of Science and Mathematics and processing skill of Technology and Engineering. It showed that students held the integration of science, technology, engineering and mathematics to design their possible solutions in learning about Electrical Current. The paper also discusses implications for science teaching and learning through STS in Thailand.

  15. Understanding engineering professionalism: a reflection on the rights of engineers.

    PubMed

    Stieb, James A

    2011-03-01

    Engineering societies such as the National Society of Professional Engineers (NSPE) and associated entities have defined engineering and professionalism in such a way as to require the benefit of humanity (NSPE 2009a, Engineering Education Resource Document. NSPE Position Statements. Governmental Relations). This requirement has been an unnecessary and unfortunate "add-on." The trend of the profession to favor the idea of requiring the benefit of humanity for professionalism violates an engineer's rights. It applies political pressure that dissuades from inquiry, approaches to new knowledge and technologies, and the presentation, publication, and use of designs and research findings. Moreover, a more politically neutral definition of engineering and/or professionalism devoid of required service or benefit to mankind does not violate adherence to strong ethical standards.

  16. 75 FR 15326 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines AGENCY: Federal... the final stages of approach. The investigation of the incident has established that, under certain...), with a proposed AD. The proposed AD applies to Rolls-Royce plc RB211-Trent 500, 700, and 800 series...

  17. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  18. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone.

    PubMed

    Xue, Jixin; Feng, Bei; Zheng, Rui; Lu, Yang; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Yanzhong; Zhang, Wen Jie

    2013-04-01

    Tissue engineering approach continuously requires for emerging strategies to improve the efficacy in repairing and regeneration of tissue defects. Previously, we developed a sandwich model strategy for cartilage engineering, using the combination of acellular cartilage sheets (ACSs) and chondrocytes. However, the process for the preparation of ACSs is complicated, and it is also difficult to obtain large ACSs. The aim of this study was to engineer cartilage with precise three-dimensional (3-D) structures by applying electrospun fibrous membranes of gelatin/polycaprolactone (GT/PCL). We first prepared the electrospun GT/PCL membranes into rounded shape, and then seeded chondrocytes in the sandwich model. After in vitro and in vivo cultivation, the newly formed cartilage-like tissues were harvested. Macroscopic observations and histological analysis confirmed that the engineering of cartilage using the electrospun GT/PCL membranes was feasible. An ear-shaped cartilage was then constructed in the sandwich model, with the help of an ear-shaped titanium alloy mold. After 2 weeks of culture in vitro and 6 weeks of subcutaneous incubation in vivo, the ear-shaped cartilage largely maintained their original shape, with a shape similarity up to 91.41% of the titanium mold. In addition, the engineered cartilage showed good elasticity and impressive mechanical strength. These results demonstrated that the engineering of 3-D cartilage in a sandwich model using electrospun fibrous membranes was a facile and effective approach, which has the potential to be applied for the engineering of other tissues with complicated 3-D structures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mapping edge-based traffic measurements onto the internal links in MPLS network

    NASA Astrophysics Data System (ADS)

    Zhao, Guofeng; Tang, Hong; Zhang, Yi

    2004-09-01

    Applying multi-protocol label switching techniques to IP-based backbone for traffic engineering goals has shown advantageous. Obtaining a volume of load on each internal link of the network is crucial for traffic engineering applying. Though collecting can be available for each link, such as applying traditional SNMP scheme, the approach may cause heavy processing load and sharply degrade the throughput of the core routers. Then monitoring merely at the edge of the network and mapping the measurements onto the core provides a good alternative way. In this paper, we explore a scheme for traffic mapping with edge-based measurements in MPLS network. It is supposed that the volume of traffic on each internal link over the domain would be mapped onto by measurements available only at ingress nodes. We apply path-based measurements at ingress nodes without enabling measurements in the core of the network. We propose a method that can infer a path from the ingress to the egress node using label distribution protocol without collecting routing data from core routers. Based on flow theory and queuing theory, we prove that our approach is effective and present the algorithm for traffic mapping. We also show performance simulation results that indicate potential of our approach.

  20. Linking engineering and medicine: fostering collaboration skills in interdisciplinary teams.

    PubMed

    Khoo, Michael C K

    2012-07-01

    Biomedical engineering embodies the spirit of combining disciplines. The engineer's pragmatic approach to--and appetite for--solving problems is matched by a bounty of technical challenges generated in medical domains. From nanoscale diagnostics to the redesign of systems of health-care delivery, engineers have been connecting advances in basic and applied science with applications that have helped to improve medical care and outcomes. Increasingly, however, integrating these areas of knowledge and application is less individualistic and more of a team sport. Success increasingly relies on a direct focus on practicing and developing collaboration skills in interdisciplinary teams. Such an approach does not fit easily into individual-focused, discipline-based programs. Biomedical engineering has done its fair share of silo busting, but new approaches are needed to inspire interdisciplinary teams to form around challenges in particular areas. Health care offers a wide variety of complex challenges across an array of delivery settings that can call for new interdisciplinary approaches. This was recognized by the deans of the University of Southern California's (USC's) Medical and Engineering Schools when they began the planning process, leading to the creation of the Health, Technology, and Engineering (HTE@USC or HTE for short) program. “Health care and technology are changing rapidly, and future physicians and engineers need intellectual tools to stay ahead of this change,” says Carmen A. Puliafito, dean of the Keck School of Medicine. His goal is to train national leaders in the quest for devices and processes to improve health care.

  1. Rocket Engine Health Management: Early Definition of Critical Flight Measurements

    NASA Technical Reports Server (NTRS)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.

    2003-01-01

    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  2. The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    NASA Technical Reports Server (NTRS)

    Evers, Ken H.; Bachert, Robert F.

    1987-01-01

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.

  3. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  4. Regenerative endodontics as a tissue engineering approach: past, current and future.

    PubMed

    Malhotra, Neeraj; Mala, Kundabala

    2012-12-01

    With the reported startling statistics of high incidence of tooth decay and tooth loss, the current interest is focused on the development of alternate dental tissue replacement therapies. This has led to the application of dental tissue engineering as a clinically relevant method for the regeneration of dental tissues and generation of bioengineered whole tooth. Although, tissue engineering approach requires the three main key elements of stem cells, scaffold and morphogens, a conductive environment (fourth element) is equally important for successful engineering of any tissue and/or organ. The applications of this science has evolved continuously in dentistry, beginning from the application of Ca(OH)(2) in vital pulp therapy to the development of a fully functional bioengineered tooth (mice). Thus, with advances in basic research, recent reports and studies have shown successful application of tissue engineering in the field of dentistry. However, certain practical obstacles are yet to be overcome before dental tissue regeneration can be applied as evidence-based approach in clinics. The article highlights on the past achievements, current developments and future prospects of tissue engineering and regenerative therapy in the field of endodontics and bioengineered teeth (bioteeth). © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  5. Engineering approximations in welding: Bridging the gap between the speculation and simulation

    DOE PAGES

    Robino, Charles V.

    2016-01-15

    During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less

  6. Engineering approximations in welding: Bridging the gap between the speculation and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robino, Charles V.

    During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less

  7. A heuristic approach to optimization of structural topology including self-weight

    NASA Astrophysics Data System (ADS)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2018-01-01

    Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.

  8. Who should pay for biomedical-engineering technology development?

    NASA Astrophysics Data System (ADS)

    Varnado, Samuel G.

    1994-12-01

    It is an enigma that the introduction of technology has led to improvements in productivity in practically every area of endeavor except the field of medicine. This paper asserts that properly applied technology, based on a systems engineering approach, can help reduce the cost while maintaining the quality of health care delivery. Achieving this goal will require more cooperation and coordination at the Federal level to insure that a focused systems approach is used in applying and developing technology that will lead to cost reduction. It is further asserted that much of the technology that could help reduce costs resides in the DoD and the DOE and has not historically been of prime interest to the NIH. Several dual use applications are presented that show how defense related technology can benefit the field of medicine.

  9. USNCTAM perspectives on mechanics in medicine.

    PubMed

    Bao, Gang; Bazilevs, Yuri; Chung, Jae-Hyun; Decuzzi, Paolo; Espinosa, Horacio D; Ferrari, Mauro; Gao, Huajian; Hossain, Shaolie S; Hughes, Thomas J R; Kamm, Roger D; Liu, Wing Kam; Marsden, Alison; Schrefler, Bernhard

    2014-08-06

    Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. A Blended Learning Approach to Teach Fluid Mechanics in Engineering

    ERIC Educational Resources Information Center

    Rahman, Ataur

    2017-01-01

    This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand…

  11. A flipped mode teaching approach for large and advanced electrical engineering courses

    NASA Astrophysics Data System (ADS)

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-05-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper presents a novel selective flipped mode teaching approach designed for large and advanced courses that has two aspects: (i) it provides selective flipping of a few topics, while delivering others in traditional face-to-face teaching, to provide an effective trade-off between the two approaches according to the demands of individual topics and (ii) it introduces technology-enabled live in-class quizzes to obtain instant feedback and facilitate collaborative problem-solving exercises. The proposed approach was implemented for a large fourth year course in electrical power engineering over three successive years and the criteria for selecting between the flipped mode teaching and traditional teaching modes are outlined. Results confirmed that the proposed approach improved both students' academic achievements and their engagement in the course, without overloading them during the teaching period.

  12. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    PubMed

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  13. Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Ernst, F.; Zwick, J.; Schlaefer, T.; Cook, D.; Nassenstein, K.; Schwenk, A.; Schreiber, F.; Wenz, T.; Flores, G.; Hahn, M.

    2008-09-01

    Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface—piston rings—lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly low-alloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.

  14. The Systems Test Architect: Enabling The Leap From Testable To Tested

    DTIC Science & Technology

    2016-09-01

    engineering process requires an interdisciplinary approach, involving both technical and managerial disciplines applied to the synthesis and integration...relationship between the technical and managerial aspects of systems engineering. TP-2003-020-01 describes measurement as having the following...it is evident that DOD makes great strides to tackle both the managerial and technical aspects of test and evaluation within the systems

  15. Professional Development for Design-Based Learning in Engineering Education: A Case Study

    ERIC Educational Resources Information Center

    Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim

    2015-01-01

    Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects.…

  16. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    PubMed

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-10-23

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  17. NASA's J-2X Engine Builds on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jimmy R.

    2006-01-01

    In January 2006, NASA streamlined its U.S. Vision for Space Exploration hardware development approach for replacing the Space Shuttle after it is retired in 2010. The revised CLV upper stage will use the J-2X engine, a derivative of NASA s Apollo Program Saturn V s S-II and S-IVB main propulsion, which will also serve as the Earth Departure Stage (EDS) engine. This paper gives details of how the J- 2X engine effort mitigates risk by building on the Apollo Program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. It is well documented that propulsion is historically a high-risk area. NASA s risk reduction strategy for the J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development efforts. In addition, NASA and its industry partner, Rocketdyne, which originally built the J-2, have tapped into their extensive databases and are applying lessons conveyed firsthand by Apollo-era veterans of America s first round of Moon missions in the 1960s and 1970s. NASA s development approach for the J-2X engine includes early requirements definition and management; designing-in lessons learned from the 5-2 heritage programs; initiating long-lead procurement items before Preliminary Desi& Review; incorporating design features for anticipated EDS requirements; identifying facilities for sea-level and altitude testing; and starting ground support equipment and logistics planning at an early stage. Other risk reduction strategies include utilizing a proven gas generator cycle with recent development experience; utilizing existing turbomachinery ; applying current and recent main combustion chamber (Integrated Powerhead Demonstrator) and channel wall nozzle (COBRA) advances; and performing rigorous development, qualification, and certification testing of the engine system, with a philosophy of "test what you fly, and fly what you test". These and other active risk management strategies are in place to deliver the J-2X engine for LEO and lunar return missions as outlined in the U.S. Vision for Space Exploration.

  18. Water supply pipe dimensioning using hydraulic power dissipation

    NASA Astrophysics Data System (ADS)

    Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.

    2017-07-01

    Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.

  19. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  20. Effort to Accelerate MBSE Adoption and Usage at JSC

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Izygon, Michel; Okron, Shira; Garner, Larry; Wagner, Howard

    2016-01-01

    This paper describes the authors' experience in adopting Model Based System Engineering (MBSE) at the NASA/Johnson Space Center (JSC). Since 2009, NASA/JSC has been applying MBSE using the Systems Modeling Language (SysML) to a number of advanced projects. Models integrate views of the system from multiple perspectives, capturing the system design information for multiple stakeholders. This method has allowed engineers to better control changes, improve traceability from requirements to design and manage the numerous interactions between components. As the project progresses, the models become the official source of information and used by multiple stakeholders. Three major types of challenges that hamper the adoption of the MBSE technology are described. These challenges are addressed by a multipronged approach that includes educating the main stakeholders, implementing an organizational infrastructure that supports the adoption effort, defining a set of modeling guidelines to help engineers in their modeling effort, providing a toolset that support the generation of valuable products, and providing a library of reusable models. JSC project case studies are presented to illustrate how the proposed approach has been successfully applied.

  1. Optimized tuner selection for engine performance estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)

    2013-01-01

    A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.

  2. Survey on the use of smart and adaptive engineering systems in medicine.

    PubMed

    Abbod, M F; Linkens, D A; Mahfouf, M; Dounias, G

    2002-11-01

    In this paper, the current published knowledge about smart and adaptive engineering systems in medicine is reviewed. The achievements of frontier research in this particular field within medical engineering are described. A multi-disciplinary approach to the applications of adaptive systems is observed from the literature surveyed. The three modalities of diagnosis, imaging and therapy are considered to be an appropriate classification method for the analysis of smart systems being applied to specified medical sub-disciplines. It is expected that future research in biomedicine should identify subject areas where more advanced intelligent systems could be applied than is currently evident. The literature provides evidence of hybridisation of different types of adaptive and smart systems with applications in different areas of medical specifications. Copyright 2002 Elsevier Science B.V.

  3. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  4. Systems Engineering for Space Exploration Medical Capabilities

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  5. Beyond Diversity as Usual: Expanding Critical Cultural Approaches to Marginalization in Engineering Education

    NASA Astrophysics Data System (ADS)

    Secules, Stephen

    In general, what we think of as "diversity work" in undergraduate engineering education focuses in the following ways: more on the overlooked assets of minority groups than on the acts of overlooking, more on the experiences of marginalized groups than on the mechanisms of marginalization by dominant groups, more on supporting and increasing minority student retention than on critiquing and remediating the systems which lead minority students to leave engineering. This dissertation presents a series of arguments which push beyond a status quo understanding of diversity in engineering education. The first approach the dissertation takes up is to problematize educational facts around failure by interrogating their roots in interactions and cultural norms in an engineering classroom. In another argument, the dissertation places the engineering classroom cultural norms of competition, whiteness, and masculinity in a critical historical context of the discipline at large. Finally, I demonstrate how engaging students in a critique of marginalizing educational culture can be an important source of agency. In addition to applying and demonstrating the value of specific novel approaches in engineering education, the dissertation contributes to the research community by discussing the respective affordances between these and other possible scholarly approaches to culture and marginalization in education. I also suggest how a consideration of the taken-for-granted culture of engineering education can be an important tool for instructors seeking to gain insight into persistent educational problems. In addition, this dissertation makes implications for diversity support practice, envisioning new forms of support programming rooted in intersectionality and critical praxis.

  6. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  7. Tissue engineering in dentistry.

    PubMed

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C

    2014-08-01

    of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the interests of the patients who could possibly be helped by applying stem cell-based therapies should be carefully assessed against current ethical concerns regarding the moral status of the early embryo. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Human life support during interplanetary travel and domicile. I - System approach

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh

    1989-01-01

    The importance of mission-driven system definition and assessment for extraterrestrial human life support is examined. The tricotyledon theory for system engineering is applied to the physiochemical life support system of the Pathfinder project. The rationale and methodology for adopting the systems approach is discussed. The assessment of the system during technology development is considered.

  9. Bioenvironmental Engineering: An Interdisciplinary Approach to Training Environmental Engineers at Rutgers University

    NASA Astrophysics Data System (ADS)

    Uchrin, Christoph; Krogmann, Uta; Gimenez, Daniel

    2010-05-01

    It is becoming increasingly apparent that environmental problems have become extremely complex, involving inter- and multidisciplinary expertise. Furthermore, the nature of environmental episodes requires practitioners who are flexible in designing appropriate solution approaches. As a result, there is a high demand for environmental engineering graduates in the professional sector as well as graduate schools. At Rutgers University, we have designed and are now delivering an undergraduate curriculum that melds a strong background in basic and applied sciences with a rigorous sequence of design oriented engineering courses, all focused on producing graduates who view the environment in a holistic sense, rather than a narrow, medium oriented manner. Since the implementation of the program in 2004 student numbers have doubled and half of the students graduate with honors. The undergraduate program is complemented by the new Environmental Engineering option of the Graduate Program in Environmental Sciences. The undergraduate program and the graduate option are served by a highly committed faculty of seven full-time members and one part-time member.

  10. Principles of Sociology in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Andrews, James G.; Larsen, Jordan A.

    2017-01-01

    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, often with different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated with all relevant information informing system decisions. Robert K. Merton studied the sociological principles of the sciences and the sociological principles he developed apply to systems engineering. Concepts such as specification of ignorance, common terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that should be employed by the systems engineer. In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, insider-outsider behavior, unintended consequences, and the self-fulfilling prophecy. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information. This also helps identify key sociological barriers to information flow through the organization. This paper will discuss this theoretical basis for the application of sociological principles to systems engineering.

  11. Course Design and Student Responses to an Online PBL Course in 3D Modelling for Mining Engineers

    ERIC Educational Resources Information Center

    McAlpine, Iain; Stothard, Phillip

    2005-01-01

    To enhance a course in 3D Virtual Reality (3D VR) modelling for mining engineers, and to create the potential for off campus students to fully engage with the course, a problem based learning (PBL) approach was applied to the course design and all materials and learning activities were provided online. This paper outlines some of the theoretical…

  12. An Event-driven, Value-based, Pull Systems Engineering Scheduling Approach

    DTIC Science & Technology

    2012-03-01

    engineering in rapid response environments has been difficult, particularly those where large, complex brownfield systems or systems of systems exist and...where large, complex brownfield systems or systems of systems exist and are constantly being updated with both short and long term software enhancements...2004. [13] B. Boehm, “Applying the Incremental Commitment Model to Brownfield System Development,” Proceedings, CSER, 2009. [14] A. Borshchev and A

  13. CloudSat system engineering: techniques that point to a future success

    NASA Technical Reports Server (NTRS)

    Basilio, R. R.; Boain, R. J.; Lam, T.

    2002-01-01

    Over the past three years the CloutSat Project, a NASA Earth System Science Pathfinder mission to provide from space the first global survey of cloud profiles and cloud physical properties, has implemented a successful project system engineering approach. Techniques learned through heuristic reasoning of past project events and professional experience were applied along with select methods recently touted to increase effectiveness without compromising effiency.

  14. Tissue Engineering in Orthopaedics

    PubMed Central

    Tatara, Alexander M.; Mikos, Antonios G.

    2016-01-01

    ➤ It is important to carefully select the most appropriate combination of scaffold, signals, and cell types when designing tissue engineering approaches for an orthopaedic pathology. ➤ Although clinical studies in which the tissue engineering paradigm has been applied in the treatment of orthopaedic diseases are limited in number, examining them can yield important lessons. ➤ While there is a rapid rate of new discoveries in the basic sciences, substantial regulatory, economic, and clinical issues must be overcome with more consistency to translate a greater number of technologies from the laboratory to the operating room. PMID:27385687

  15. Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations

    DTIC Science & Technology

    2012-10-16

    unidirectional fiber - reinforced composites, Computer Methods in Applied Mechanics and Engineering 217 (2012) 247-261. [44] S. A. Silling, M. Epton...numerical testing for different grid widths to horizon ratios , (4) development of an approach to add another material variable in the given approach...partition of unity principle, (3) numerical testing for different grid widths to horizon ratios , (4) development of an approach to add another

  16. Systems management techniques and problems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Report is reviewed which discusses history and trends of systems management, its basic principles, and nature of problems that lend themselves to systems approach. Report discusses systems engineering as applied to weapons acquisition, ecology, patient monitoring, and retail merchandise operations.

  17. Engineering dynamic pathway regulation using stress-response promoters.

    PubMed

    Dahl, Robert H; Zhang, Fuzhong; Alonso-Gutierrez, Jorge; Baidoo, Edward; Batth, Tanveer S; Redding-Johanson, Alyssa M; Petzold, Christopher J; Mukhopadhyay, Aindrila; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D

    2013-11-01

    Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.

  18. Application of physics engines in virtual worlds

    NASA Astrophysics Data System (ADS)

    Norman, Mark; Taylor, Tim

    2002-03-01

    Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.

  19. From stem to roots: Tissue engineering in endodontics

    PubMed Central

    Kala, M.; Banthia, Priyank; Banthia, Ruchi

    2012-01-01

    The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon. Key words:Regenerative, tissue engineering, stem cells, scaffold. PMID:24558528

  20. Understanding the leaky engineering pipeline: Motivation and job adaptability of female engineers

    NASA Astrophysics Data System (ADS)

    Saraswathiamma, Manjusha Thekkedathu

    This dissertation is a mixed-method study conducted using qualitative grounded theory and quantitative survey and correlation approaches. This study aims to explore the motivation and adaptability of females in the engineering profession and to develop a theoretical framework for both motivation and adaptability issues. As a result, this study endeavors to design solutions for the low enrollment and attenuation of female engineers in the engineering profession, often referred to as the "leaky female engineering pipeline." Profiles of 123 female engineers were studied for the qualitative approach, and 98 completed survey responses were analyzed for the quantitative approach. The qualitative, grounded-theory approach applied the constant comparison method; open, axial, and selective coding was used to classify the information in categories, sub-categories, and themes for both motivation and adaptability. The emergent themes for decisions motivating female enrollment include cognitive, emotional, and environmental factors. The themes identified for adaptability include the seven job adaptability factors: job satisfaction, risk- taking attitude, career/skill development, family, gender stereotyping, interpersonal skills, and personal benefit, as well as the self-perceived job adaptability factor. Illeris' Three-dimensional Learning Theory was modified as a model for decisions motivating female enrollment. This study suggests a firsthand conceptual parallelism of McClusky's Theory of Margin for the adaptability of female engineers in the profession. Also, this study attempted to design a survey instrument to measure job adaptability of female engineers. The study identifies two factors that are significantly related to job adaptability: interpersonal skills (< p = 0.01) and family (< p = 0.05); gender stereotyping and personal benefit are other factors that are also significantly (< p = 0.1) related.

  1. Metabolic engineering to guide evolution - Creating a novel mode for L-valine production with Corynebacterium glutamicum.

    PubMed

    Schwentner, Andreas; Feith, André; Münch, Eugenia; Busche, Tobias; Rückert, Christian; Kalinowski, Jörn; Takors, Ralf; Blombach, Bastian

    2018-03-06

    Evolutionary approaches are often undirected and mutagen-based yielding numerous mutations, which need elaborate screenings to identify relevant targets. We here apply Metabolic engineering to Guide Evolution (MGE), an evolutionary approach evolving and identifying new targets to improve microbial producer strains. MGE is based on the idea to impair the cell's metabolism by metabolic engineering, thereby generating guided evolutionary pressure. It consists of three distinct phases: (i) metabolic engineering to create the evolutionary pressure on the applied strain followed by (ii) a cultivation phase with growth as straightforward screening indicator for the evolutionary event, and (iii) comparative whole genome sequencing (WGS), to identify mutations in the evolved strains, which are eventually re-engineered for verification. Applying MGE, we evolved the PEP and pyruvate carboxylase-deficient strain C. glutamicum Δppc Δpyc to grow on glucose as substrate with rates up to 0.31 ± 0.02 h -1 which corresponds to 80% of the growth rate of the wildtype strain. The intersection of the mutations identified by WGS revealed isocitrate dehydrogenase (ICD) as consistent target in three independently evolved mutants. Upon re-engineering in C. glutamicum Δppc Δpyc, the identified mutations led to diminished ICD activities and activated the glyoxylate shunt replenishing oxaloacetate required for growth. Intracellular relative quantitative metabolome analysis showed that the pools of citrate, isocitrate, cis-aconitate, and L-valine were significantly higher compared to the WT control. As an alternative to existing L-valine producer strains based on inactivated or attenuated pyruvate dehydrogenase complex, we finally engineered the PEP and pyruvate carboxylase-deficient C. glutamicum strains with identified ICD mutations for L-valine production by overexpression of the L-valine biosynthesis genes. Among them, C. glutamicum Δppc Δpyc ICD G407S (pJC4ilvBNCE) produced up to 8.9 ± 0.4 g L-valine L -1 , with a product yield of 0.22 ± 0.01 g L-valine per g glucose. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Vascularization strategies for tissue engineers.

    PubMed

    Dew, Lindsey; MacNeil, Sheila; Chong, Chuh Khiun

    2015-01-01

    All tissue-engineered substitutes (with the exception of cornea and cartilage) require a vascular network to provide the nutrient and oxygen supply needed for their survival in vivo. Unfortunately the process of vascular ingrowth into an engineered tissue can take weeks to occur naturally and during this time the tissues become starved of essential nutrients, leading to tissue death. This review initially gives a brief overview of the processes and factors involved in the formation of new vasculature. It then summarizes the different approaches that are being applied or developed to overcome the issue of slow neovascularization in a range of tissue-engineered substitutes. Some potential future strategies are then discussed.

  3. Biomimetic approach to cardiac tissue engineering.

    PubMed

    Radisic, M; Park, H; Gerecht, S; Cannizzaro, C; Langer, R; Vunjak-Novakovic, G

    2007-08-29

    Here, we review an approach to tissue engineering of functional myocardium that is biomimetic in nature, as it involves the use of culture systems designed to recapitulate some aspects of the actual in vivo environment. To mimic the capillary network, subpopulations of neonatal rat heart cells were cultured on a highly porous elastomer scaffold with a parallel array of channels perfused with culture medium. To mimic oxygen supply by haemoglobin, the culture medium was supplemented with a perfluorocarbon (PFC) emulsion. Constructs cultivated in the presence of PFC contained higher amounts of DNA and cardiac markers and had significantly better contractile properties than control constructs cultured without PFC. To induce synchronous contractions of cultured constructs, electrical signals mimicking those in native heart were applied. Over only 8 days of cultivation, electrical stimulation induced cell alignment and coupling, markedly increased the amplitude of synchronous construct contractions and resulted in a remarkable level of ultrastructural organization. The biomimetic approach is discussed in the overall context of cardiac tissue engineering, and the possibility to engineer functional human cardiac grafts based on human stem cells.

  4. The European water framework directive: water quality classification and implications to engineering planning.

    PubMed

    Achleitner, Stefan; De Toffol, Sara; Engelhard, Carolina; Rauch, Wolfgang

    2005-04-01

    The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission-water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach--at least on a temporary basis.

  5. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  6. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system energy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modeling, System Robustness, and Value Modeling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  7. Application of iterative robust model-based optimal experimental design for the calibration of biocatalytic models.

    PubMed

    Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar

    2017-09-01

    The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.

  8. A modular approach to creating large engineered cartilage surfaces.

    PubMed

    Ford, Audrey C; Chui, Wan Fung; Zeng, Anne Y; Nandy, Aditya; Liebenberg, Ellen; Carraro, Carlo; Kazakia, Galateia; Alliston, Tamara; O'Connell, Grace D

    2018-01-23

    Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Complex Approach to Conceptual Design of Machine Mechanically Extracting Oil from Jatropha curcas L. Seeds for Biomass-Based Fuel Production

    PubMed Central

    Mašín, Ivan

    2016-01-01

    One of important sources of biomass-based fuel is Jatropha curcas L. Great attention is paid to the biofuel produced from the oil extracted from the Jatropha curcas L. seeds. A mechanised extraction is the most efficient and feasible method for oil extraction for small-scale farmers but there is a need to extract oil in more efficient manner which would increase the labour productivity, decrease production costs, and increase benefits of small-scale farmers. On the other hand innovators should be aware that further machines development is possible only when applying the systematic approach and design methodology in all stages of engineering design. Systematic approach in this case means that designers and development engineers rigorously apply scientific knowledge, integrate different constraints and user priorities, carefully plan product and activities, and systematically solve technical problems. This paper therefore deals with the complex approach to design specification determining that can bring new innovative concepts to design of mechanical machines for oil extraction. The presented case study as the main part of the paper is focused on new concept of screw of machine mechanically extracting oil from Jatropha curcas L. seeds. PMID:27668259

  10. Usability Testing and Redesign of Library Web Pages at Lund University, Faculty of Engineering: A Case Study Applying a Two-Phase, Systematic Quality Approach

    ERIC Educational Resources Information Center

    Persson, Ann-Christin; Langh, Maria; Nilsson, Jessica

    2010-01-01

    Introduction: The Lund University Faculty of Engineering's LibQual+[R] survey 2007 showed that students and faculty had difficulties finding the information they needed at the libraries' Websites. To be able to improve the Websites, we needed to find out how the users navigated the Websites, as well as what content they needed. Method: Twenty-four…

  11. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    PubMed Central

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668

  12. The importance of meta-ethics in engineering education.

    PubMed

    Haws, David R

    2004-04-01

    Our shared moral framework is negotiated as part of the social contract. Some elements of that framework are established (tell the truth under oath), but other elements lack an overlapping consensus (just when can an individual lie to protect his or her privacy?). The tidy bits of our accepted moral framework have been codified, becoming the subject of legal rather than ethical consideration. Those elements remaining in the realm of ethics seem fragmented and inconsistent. Yet, our engineering students will need to navigate the broken ground of this complex moral landscape. A minimalist approach would leave our students with formulated dogma--principles of right and wrong such as the National Society for Professional Engineers (NSPE) Code of Ethics for Engineers--but without any insight into the genesis of these principles. A slightly deeper, micro-ethics approach would teach our students to solve ethical problems by applying heuristics--giving our students a rational process to manipulate ethical dilemmas using the same principles simply referenced a priori by dogma. A macro-ethics approach--helping students to inductively construct a posteriori principles from case studies--goes beyond the simple statement or manipulation of principles, but falls short of linking personal moral principles to the larger, social context. Ultimately, it is this social context that requires both the application of ethical principles, and the negotiation of moral values--from an understanding of meta-ethics. The approaches to engineering ethics instruction (dogma, heuristics, case studies, and meta-ethics) can be associated with stages of moral development. If we leave our students with only a dogmatic reaction to ethical dilemmas, they will be dependent on the ethical decisions of others (a denial of their fundamental potential for moral autonomy). Heuristics offers a tool to deal independently with moral questions, but a tool that too frequently reduces to casuistry when rigidly applied to "simplified" dilemmas. Case studies, while providing a context for engineering ethics, can encourage the premature analysis of specific moral conduct rather than the development of broad moral principles--stifling our students' facility with meta-ethics. Clearly, if a moral sense is developmental, ethics instruction should lead our students from lower to higher stages of moral development.

  13. Methods for determining the internal thrust of scramjet engine modules from experimental data

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.

    1990-01-01

    Methods for calculating zero-fuel internal drag of scramjet engine modules from experimental measurements are presented. These methods include two control-volume approaches, and a pressure and skin-friction integration. The three calculation techniques are applied to experimental data taken during tests of a version of the NASA parametric scramjet. The methods agree to within seven percent of the mean value of zero-fuel internal drag even though several simplifying assumptions are made in the analysis. The mean zero-fuel internal drag coefficient for this particular engine is calculated to be 0.150. The zero-fuel internal drag coefficient when combined with the change in engine axial force with and without fuel defines the internal thrust of an engine.

  14. Applying the systems engineering approach to video over IP projects : workshop.

    DOT National Transportation Integrated Search

    2011-12-01

    In 2009, the Texas Transportation Institute produced for the Texas Department of Transportation a document : called Video over IP Design Guidebook. This report summarizes an implementation of that project in the : form of a workshop. The workshop was...

  15. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  16. Engineering fluid flow using sequenced microstructures

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino

    2013-05-01

    Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.

  17. Models, validation, and applied geochemistry: Issues in science, communication, and philosophy

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2012-01-01

    Models have become so fashionable that many scientists and engineers cannot imagine working without them. The predominant use of computer codes to execute model calculations has blurred the distinction between code and model. The recent controversy regarding model validation has brought into question what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of validation may be common in engineering practice and seems useful in legal practice but it is contrary to scientific practice and brings into question our understanding of science and how it can best be applied to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in general. This review summarizes arguments against using the phrase model validation and examines efforts to validate models for high-level radioactive waste management and for permitting and monitoring open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to distinguish logical from temporal prediction. Another problem stems from the difference in the engineering approach contrasted with the scientific approach. The reductionist influence on the way we approach environmental investigations also limits our ability to model the interconnected nature of reality. Guidelines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘validation’ is strongly discouraged when discussing model reliability.

  18. Systems Engineering for Space Exploration Medical Capabilities

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; hide

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  19. Using Computers in Fluids Engineering Education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  20. Organ Bioprinting: Are We There Yet?

    PubMed

    Gao, Guifang; Huang, Ying; Schilling, Arndt F; Hubbell, Karen; Cui, Xiaofeng

    2018-01-01

    About 15 years ago, bioprinting was coined as one of the ultimate solutions to engineer vascularized tissues, which was impossible to accomplish using the conventional tissue fabrication approaches. With the advances of 3D-printing technology during the past decades, one may expect 3D bioprinting being developed as much as 3D printing. Unfortunately, this is not the case. The printing principles of bioprinting are dramatically different from those applied in industrialized 3D printing, as they have to take the living components into account. While the conventional 3D-printing technologies are actually applied for biological or biomedical applications, true 3D bioprinting involving direct printing of cells and other biological substances for tissue reconstruction is still in its infancy. In this progress report, the current status of bioprinting in academia and industry is subjectively evaluated. The progress made is acknowledged, and the existing bottlenecks in bioprinting are discussed. Recent breakthroughs from a variety of associated fields, including mechanical engineering, robotic engineering, computing engineering, chemistry, material science, cellular biology, molecular biology, system control, and medicine may overcome some of these current bottlenecks. For this to happen, a convergence of these areas into a systemic research area "3D bioprinting" is needed to develop bioprinting as a viable approach for creating fully functional organs for standard clinical diagnosis and treatment including transplantation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Building a Community Memory in Communities of Practice of E-Learning: A Knowledge Engineering Approach

    ERIC Educational Resources Information Center

    Sarirete, Akila; Chikh, Azeddine; Noble, Elizabeth

    2011-01-01

    Purpose: The purpose of this paper is to define a community memory for a virtual communities of practice (CoP) based on organizational learning (OL) concept and ontologies. Design/methodology/approach: The paper focuses on applying the OL concept to virtual CoP and proposes a framework for building the CoP memory by identifying several layers of…

  2. Morphology Transition Engineering of ZnO Nanorods to Nanoplatelets Grafted Mo8O23-MoO2 by Polyoxometalates: Mechanism and Possible Applicability to other Oxides.

    PubMed

    Abdelmohsen, Ahmed H; Rouby, Waleed M A El; Ismail, Nahla; Farghali, Ahmed A

    2017-07-19

    A new fundamental mechanism for reliable engineering of zinc oxide (ZnO) nanorods to nanoplatelets grafted Mo 8 O 23 -MoO 2 mixed oxide with controlled morphology, composition and precise understanding of the nanoscale reaction mechanism was developed. These hybrid nanomaterials are gaining interest due to their potential use for energy, catalysis, biomedical and other applications. As an introductory section, we demonstrate a new expansion for the concept 'materials engineering' by discussing the fabrication of metal oxides nanostructures by bottom-up approach and carbon nanoparticles by top-down approach. Moreover, we propose a detailed mechanism for the novel phenomenon that was experienced by ZnO nanorods when treated with phosphomolybdic acid (PMA) under ultra-sonication stimulus. This approach is expected to be the basis of a competitive fabrication approach to 2D hybrid nanostructures. We will also discuss a proposed mechanism for the catalytic deposition of Mo 8 O 23 -MoO 2 mixed oxide over ZnO nanoplatelets. A series of selection rules (SRs) which applied to ZnO to experience morphology transition and constitute Abdelmohsen theory for morphology transition engineering (ATMTE) will be demonstrated through the article, besides a brief discussion about possibility of other oxides to obey this theory.

  3. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less

  4. Research approach to teaching groundwater biodegradation in karst aquifers

    USGS Publications Warehouse

    King, L.; Byl, T.; Painter, R.

    2006-01-01

    TSU in partnership with the USGS has conducted extensive research regarding biode??gradation of contaminants in karst aquifers. This research resulted in the development of a numerical approach to modeling biodegradation of contaminants in karst aquifers that is taught to environmental engineering students in several steps. First, environmental engineering students are taught chemical-reaction engineering principles relating to a wide variety of environmental fate and transport issues. Second, as part of TSU's engineering course curriculum, students use a non-ideal flow laboratory reactor system and run a tracer study to establish residence time distribution (RTD). Next, the students couple that formula to a first-order biodegradation rate and predict the removal of a biodegradable contaminant as a function of residence time. Following this, students are shown data collected from karst bedrock wells that suggest that karst aquifers are analogous to non-ideal flow reactors. The students are challenged to develop rates of biodegradation through lab studies and use their results to predict biodegradaton at an actual contaminated karst site. Field studies are also conducted to determine the accuracy of the students' predictions. This academic approach teaches biodegradation processes, rate-kinetic processes, hydraulic processes and numerical principles. The students are able to experience how chemical engineering principles can be applied to other situations, such as, modeling biodegradation of contaminants in karst aquifers. This paper provides background on the chemical engineering principles and karst issues used in the research-enhanced curriculum. ?? American Society for Engineering Education, 2006.

  5. Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    PubMed Central

    Kim, Joonhoon; Reed, Jennifer L.; Maravelias, Christos T.

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering. PMID:21949695

  6. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.

    PubMed

    Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering.

  7. Cost-Benefit Analysis Methodology: Install Commercially Compliant Engines on National Security Exempted Vessels?

    DTIC Science & Technology

    2015-11-05

    impact analyses) satisfactorily encompasses the fundamentals of environmental health risk and can be applied to all mobile and stationary equipment...regulations. This paper does not seek to justify the EPA MHB approach, but explains the fundamentals and describes how the MHB concept can be...satisfactorily encompasses the fundamentals of environmental health risk and can be applied to all mobile and stationary equipment types. 15. SUBJECT TERMS

  8. Mobile Security: A Systems Engineering Framework for Implementing Bring Your Own Device (BYOD) Security through the Combination of Policy Management and Technology

    ERIC Educational Resources Information Center

    Zahadat, Nima

    2016-01-01

    With the rapid increase of smartphones and tablets, security concerns have also been on the rise. Traditionally, Information Technology (IT) departments set up devices, apply security, and monitor them. Such approaches do not apply to today's mobile devices due to a phenomenon called Bring Your Own Device or BYOD. Employees find it desirable to…

  9. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  10. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  11. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  12. Exploration Medical Capability System Engineering Introduction and Vision

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Reilly, J.

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.

  13. Seal Technology Development for Advanced Component for Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    2008-01-01

    Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.

  14. Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly.

    PubMed

    Schiele, Nathan R; Koppes, Ryan A; Chrisey, Douglas B; Corr, David T

    2013-05-01

    Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon, ligament, and other fibrous soft tissues.

  15. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  16. Aircraft control forces and EMG activity in a C-130 Hercules during strength-critical maneuvers.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-03-01

    The force levels required to operate aircraft controls should be readily generated by pilots, without undue fatigue or exertion. However, maximum pilot applied forces, as specified in aircraft design standards, were empirically derived from the subjective comments of test pilots, and may not be applicable for the majority of pilots. Further, experienced RNZAF Hercules flying instructors have indicated that endurance and fatigue are problems for Hercules pilots. The aim of this study was to quantify aircraft control forces during emergency maneuvers in a Hercules aircraft and compare these forces with design standards. In addition, EMG data were recorded as an indicator of muscle fatigue during flight. Six subjects were tested in a C-130 Hercules aircraft. The maneuvers performed were low-level dynamic flight, one engine-off straight-and-level flight, and a two-engines-off simulated approach. The variables recorded were pilot-applied forces and EMG activity. Left rudder pedal force and vastus lateralis activity were both significantly greater during engine-off maneuvers than during low-level dynamic flight (p < 0.05). Maximum aircraft control forces for all controls were within 10% of the design standards. The mean EMG activity across all muscles and maneuvers was 26% MVC, with a peak of 61% MVC in vastus lateralis during the two-engine-off approach. The median frequency of the vastus lateralis EMG signal decreased 13.0% and 16.0% for the one engine-off and two-engine-off maneuvers, respectively. The forces required to fly a Hercules aircraft during emergency maneuvers are similar to the aircraft design standards. However, the levels of vastus lateralis muscle activation observed during the engine-off maneuvers can be sustained for approximately 1 min only. Thus, if two engines fail more than 1 min before landing, pilots may have to alternate control of the aircraft to share the workload and enable the aircraft to land safely.

  17. A comparison of two conformal mapping techniques applied to an aerobrake body

    NASA Technical Reports Server (NTRS)

    Hommel, Mark J.

    1987-01-01

    Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.

  18. Nanofiber scaffold gradients for interfacial tissue engineering.

    PubMed

    Ramalingam, Murugan; Young, Marian F; Thomas, Vinoy; Sun, Limin; Chow, Laurence C; Tison, Christopher K; Chatterjee, Kaushik; Miles, William C; Simon, Carl G

    2013-02-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues.

  19. Combining System Safety and Reliability to Ensure NASA CoNNeCT's Success

    NASA Technical Reports Server (NTRS)

    Havenhill, Maria; Fernandez, Rene; Zampino, Edward

    2012-01-01

    Hazard Analysis, Failure Modes and Effects Analysis (FMEA), the Limited-Life Items List (LLIL), and the Single Point Failure (SPF) List were applied by System Safety and Reliability engineers on NASA's Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project. The integrated approach involving cross reviews of these reports by System Safety, Reliability, and Design engineers resulted in the mitigation of all identified hazards. The outcome was that the system met all the safety requirements it was required to meet.

  20. Genetic engineering and sustainable production of ornamentals: current status and future directions.

    PubMed

    Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate

    2012-07-01

    Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.

  1. Quantifying Genome Editing Outcomes at Endogenous Loci using SMRT Sequencing

    PubMed Central

    Clark, Joseph; Punjya, Niraj; Sebastiano, Vittorio; Bao, Gang; Porteus, Matthew H

    2014-01-01

    SUMMARY Targeted genome editing with engineered nucleases has transformed the ability to introduce precise sequence modifications at almost any site within the genome. A major obstacle to probing the efficiency and consequences of genome editing is that no existing method enables the frequency of different editing events to be simultaneously measured across a cell population at any endogenous genomic locus. We have developed a novel method for quantifying individual genome editing outcomes at any site of interest using single molecule real time (SMRT) DNA sequencing. We show that this approach can be applied at various loci, using multiple engineered nuclease platforms including TALENs, RNA guided endonucleases (CRISPR/Cas9), and ZFNs, and in different cell lines to identify conditions and strategies in which the desired engineering outcome has occurred. This approach facilitates the evaluation of new gene editing technologies and permits sensitive quantification of editing outcomes in almost every experimental system used. PMID:24685129

  2. Modeling Complex Cross-Systems Software Interfaces Using SysML

    NASA Technical Reports Server (NTRS)

    Mandutianu, Sanda; Morillo, Ron; Simpson, Kim; Liepack, Otfrid; Bonanne, Kevin

    2013-01-01

    The complex flight and ground systems for NASA human space exploration are designed, built, operated and managed as separate programs and projects. However, each system relies on one or more of the other systems in order to accomplish specific mission objectives, creating a complex, tightly coupled architecture. Thus, there is a fundamental need to understand how each system interacts with the other. To determine if a model-based system engineering approach could be utilized to assist with understanding the complex system interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop an approach for performing cross-system behavior modeling. This paper presents the results of applying Model Based Systems Engineering (MBSE) principles using the System Modeling Language (SysML) to define cross-system behaviors and how they map to crosssystem software interfaces documented in system-level Interface Control Documents (ICDs).

  3. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. ECUT: Energy Conversion and Utilization Technologies program. Biocatalysis project

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of Universities, Industrial Companies and Government Research Laboratories. The Project's technical activities were organized into three work elements: molecular modeling and applied genetics; bioprocess engineering; and bioprocess design and assessment.

  5. Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping

    2018-07-01

    The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.

  6. A comparative study of the chondrogenic potential between synthetic and natural scaffolds in an in vivo bioreactor

    NASA Astrophysics Data System (ADS)

    Huang, Jung-Ju; Yang, Shu-Rui; Chu, I.-Ming; Brey, Eric M.; Hsiao, Hui-Yi; Cheng, Ming-Huei

    2013-10-01

    The clinical demand for cartilage tissue engineering is potentially large for reconstruction defects resulting from congenital deformities or degenerative disease due to limited donor sites for autologous tissue and donor site morbidities. Cartilage tissue engineering has been successfully applied to the medical field: a scaffold pre-cultured with chondrocytes was used prior to implantation in an animal model. We have developed a surgical approach in which tissues are engineered by implantation with a vascular pedicle as an in vivo bioreactor in bone and adipose tissue engineering. Collagen type II, chitosan, poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) were four commonly applied scaffolds in cartilage tissue engineering. To expand the application of the same animal model in cartilage tissue engineering, these four scaffolds were selected and compared for their ability to generate cartilage with chondrocytes in the same model with an in vivo bioreactor. Gene expression and immunohistochemistry staining methods were used to evaluate the chondrogenesis and osteogenesis of specimens. The result showed that the PLGA and PCL scaffolds exhibited better chondrogenesis than chitosan and type II collagen in the in vivo bioreactor. Among these four scaffolds, the PCL scaffold presented the most significant result of chondrogenesis embedded around the vascular pedicle in the long-term culture incubation phase.

  7. Synthetic biology through biomolecular design and engineering.

    PubMed

    Channon, Kevin; Bromley, Elizabeth H C; Woolfson, Derek N

    2008-08-01

    Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.

  8. Developing and Validating the Socio-Technical Model in Ontology Engineering

    NASA Astrophysics Data System (ADS)

    Silalahi, Mesnan; Indra Sensuse, Dana; Giri Sucahyo, Yudho; Fadhilah Akmaliah, Izzah; Rahayu, Puji; Cahyaningsih, Elin

    2018-03-01

    This paper describes results from an attempt to develop a model in ontology engineering methodology and a way to validate the model. The approach to methodology in ontology engineering is from the point view of socio-technical system theory. Qualitative research synthesis is used to build the model using meta-ethnography. In order to ensure the objectivity of the measurement, inter-rater reliability method was applied using a multi-rater Fleiss Kappa. The results show the accordance of the research output with the diamond model in the socio-technical system theory by evidence of the interdependency of the four socio-technical variables namely people, technology, structure and task.

  9. Receding horizon online optimization for torque control of gasoline engines.

    PubMed

    Kang, Mingxin; Shen, Tielong

    2016-11-01

    This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Designing under Constraints: Cell Phone Case Design Challenge

    ERIC Educational Resources Information Center

    Sutton, Kevin; Grubbs, Michael E.; Ernst, Jeremy

    2014-01-01

    Engineering design has been suggested as a viable instructional approach for Technology Education (TE) to intentionally provide students the opportunity to apply multidisciplinary concepts to solve ill-defined design challenges (Wells & Ernst, 2012; Sanders & Wells, 2010; Wicklein, 2006). Currently, the context for design challenges in TE…

  11. Standardization of domestic frying processes by an engineering approach.

    PubMed

    Franke, K; Strijowski, U

    2011-05-01

    An approach was developed to enable a better standardization of domestic frying of potato products. For this purpose, 5 domestic fryers differing in heating power and oil capacity were used. A very defined frying process using a highly standardized model product and a broad range of frying conditions was carried out in these fryers and the development of browning representing an important quality parameter was measured. Product-to-oil ratio, oil temperature, and frying time were varied. Quite different color changes were measured in the different fryers although the same frying process parameters were applied. The specific energy consumption for water evaporation (spECWE) during frying related to product amount was determined for all frying processes to define an engineering parameter for characterizing the frying process. A quasi-linear regression approach was applied to calculate this parameter from frying process settings and fryer properties. The high significance of the regression coefficients and a coefficient of determination close to unity confirmed the suitability of this approach. Based on this regression equation, curves for standard frying conditions (SFC curves) were calculated which describe the frying conditions required to obtain the same level of spECWE in the different domestic fryers. Comparison of browning results from the different fryers operated at conditions near the SFC curves confirmed the applicability of the approach. © 2011 Institute of Food Technologists®

  12. An applied study using systems engineering methods to prioritize green systems options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sonya M; Macdonald, John M

    2009-01-01

    For many years, there have been questions about the effectiveness of applying different green solutions. If you're building a home and wish to use green technologies, where do you start? While all technologies sound promising, which will perform the best over time? All this has to be considered within the cost and schedule of the project. The amount of information available on the topic can be overwhelming. We seek to examine if Systems Engineering methods can be used to help people choose and prioritize technologies that fit within their project and budget. Several methods are used to gain perspective intomore » how to select the green technologies, such as the Analytic Hierarchy Process (AHP) and Kepner-Tregoe. In our study, subjects applied these methods to analyze cost, schedule, and trade-offs. Results will document whether the experimental approach is applicable to defining system priorities for green technologies.« less

  13. Ultrahigh-performance liquid chromatography/electrospray ionization linear ion trap Orbitrap mass spectrometry of antioxidants (amines and phenols) applied in lubricant engineering.

    PubMed

    Kassler, Alexander; Pittenauer, Ernst; Doerr, Nicole; Allmaier, Guenter

    2014-01-15

    For the qualification and quantification of antioxidants (aromatic amines and sterically hindered phenols), most of them applied as lubricant additives, two ultrahigh-performance liquid chromatography (UHPLC) electrospray ionization mass spectrometric methods applying the positive and negative ion mode have been developed for lubricant design and engineering thus allowing e.g. the study of the degradation of lubricants. Based on the different chemical properties of the two groups of antioxidants, two methods offering a fast separation (10 min) without prior derivatization were developed. In order to reach these requirements, UHPLC was coupled with an LTQ Orbitrap hybrid tandem mass spectrometer with positive and negative ion electrospray ionization for simultaneous detection of spectra from UHPLC-high-resolution (HR)-MS (full scan mode) and UHPLC-low-resolution linear ion trap MS(2) (LITMS(2)), which we term UHPLC/HRMS-LITMS(2). All 20 analytes investigated could be qualified by an UHPLC/HRMS-LITMS(2) approach consisting of simultaneous UHPLC/HRMS (elemental composition) and UHPLC/LITMS(2) (diagnostic product ions) according to EC guidelines. Quantification was based on an UHPLC/LITMS(2) approach due to increased sensitivity and selectivity compared to UHPLC/HRMS. Absolute quantification was only feasible for seven analytes with well-specified purity of references whereas relative quantification was obtainable for another nine antioxidants. All of them showed good standard deviation and repeatability. The combined methods allow qualitative and quantitative determination of a wide variety of different antioxidants including aminic/phenolic compounds applied in lubricant engineering. These data show that the developed methods will be versatile tools for further research on identification and characterization of the thermo-oxidative degradation products of antioxidants in lubricants. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Polarimetric Glucose Sensing Using Brewster Reflection off of Eye Lens: Theoretical Analysis

    NASA Technical Reports Server (NTRS)

    Boeckle, Stefan; Rovati, Luigi; Ansari, Rafat R.

    2002-01-01

    An important task of in vivo polarimetric glucose sensing is to find an appropriate way to optically access the aqueous humor of the human eye. In this paper two different approaches are analyzed theoretically and applied to the eye model of Le Grand. First approach is the tangential path of Cote, et al. (G.L. Cot6, M.D. Fox, and R.B. Northrop: Noninvasive Optical Polarimetric Glucose Sensing Using a True Phase Measurement Technique. IEEE Transactions on Biomedical Engineering, vol. 39, no. 7, pp. 752-756, 1992.) and the second is a new scheme of this paper of applying Brewster reflection off the eye lens.

  15. Role of Biocatalysis in Sustainable Chemistry.

    PubMed

    Sheldon, Roger A; Woodley, John M

    2018-01-24

    Based on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology. This is largely a result of the spectacular advances in molecular biology and biotechnology achieved in the past two decades. Protein engineering has enabled the optimization of existing enzymes and the invention of entirely new biocatalytic reactions that were previously unknown in Nature. It is now eminently feasible to develop enzymatic transformations to fit predefined parameters, resulting in processes that are truly sustainable by design. This approach has successfully been applied, for example, in the industrial synthesis of active pharmaceutical ingredients. In addition to the use of protein engineering, other aspects of biocatalysis engineering, such as substrate, medium, and reactor engineering, can be utilized to improve the efficiency and cost-effectiveness and, hence, the sustainability of biocatalytic reactions. Furthermore, immobilization of an enzyme can improve its stability and enable its reuse multiple times, resulting in better performance and commercial viability. Consequently, biocatalysis is being widely applied in the production of pharmaceuticals and some commodity chemicals. Moreover, its broader application will be further stimulated in the future by the emerging biobased economy.

  16. Evaluation of particle-based flow characteristics using novel Eulerian indices

    NASA Astrophysics Data System (ADS)

    Cho, Youngmoon; Kang, Seongwon

    2017-11-01

    The main objective of this study is to evaluate flow characteristics in complex particle-laden flows efficiently using novel Eulerian indices. For flows with a large number of particles, a Lagrangian approach leads to accurate yet inefficient prediction in many engineering problems. We propose a technique based on Eulerian transport equation and ensemble-averaged particle properties, which enables efficient evaluation of various particle-based flow characteristics such as the residence time, accumulated travel distance, mean radial force, etc. As a verification study, we compare the developed Eulerian indices with those using Lagrangian approaches for laminar flows with and without a swirling motion and density ratio. The results show satisfactory agreement between two approaches. The accumulated travel distance is modified to analyze flow motions inside IC engines and, when applied to flow bench cases, it can predict swirling and tumbling motions successfully. For flows inside a cyclone separator, the mean radial force is applied to predict the separation of particles and is shown to have a high correlation to the separation efficiency for various working conditions. In conclusion, the proposed Eulerian indices are shown to be useful tools to analyze complex particle-based flow characteristics. Corresponding author.

  17. CellNet: Network Biology Applied to Stem Cell Engineering

    PubMed Central

    Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793

  18. Biocatalysts: application and engineering for industrial purposes.

    PubMed

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  19. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  20. Additional risk of end-of-the-pipe geoengineering technologies

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2014-05-01

    Humans are engineers, even the artists who engineer the surface of the globe. Should humans endeavour to engineer the Earth to counter climate change hazards? Striving towards 'global sustainability' will require to adjust the current production and consumption patterns. Contrary to an approach of global sustainability, 'geoengineering' deploys a 'technology fix' for the same purpose. Humans are much inclined to look for technological fixes for problems because well engineered technological methods have created modern societies. Thus, it seems obvious to apply an engineering solution to climate change issues too. In particular, as air pollution causing acid rains has been reduced by cleaner combustion processes or ozone destructing chemical coolants have been replaced by other substances. Common to these approaches was to reduce inputs into global or regional systems by withholding emission, replacing substances or limiting use cases for certain substances. Thus, the selected approach was a technological fix or regulatory measure targeting the 'start of the pipe'. However applying a 'start of the pipe' approach to climate change faces the issue that mankind should reduce inputs were its hurts, namely reducing radically energy that is produced from burning fossil fuels. Capping burning of fossil fuels would be disruptive for the economic structures or the consumption pattern of the developed and developing industrialised societies. Facing that dilemma, affordable geoengineering looks tempting for some. However geoengineering technologies, which counter climate change by other means than carbon capture at combustion, are of a different nature than the technological fixes and negotiated regulatory actions, which so far have been applied to limit threats to regional and global systems. Most of the proposed technologies target other parts of the climate system but the carbon-dioxide input into the atmosphere. Therefore, many geoengineering technologies differ qualitatively from the known successes. They do not tackle the initial cause, namely the carbon-dioxide inputs that are too high. This is their additional specific risk. 'The acceptability of geoengineering will be determined as much by social, legal and political issues as by scientific and technical factors', conclude Adam Corner and Nick Pidgeon (2010) when reviewing social and ethical implications of geoengineering the climate. It is to debate in that context that most geoengineering technologies are 'end of the pipe technologies', what involves an additional specific risk. Should these technologies be part of the toolbox to tackle anthropogenic climate change? Adam Corner and Nick Pidgeon 2010, Geoengineering the climate: The social and ethical implications, Environment Vol. 52.

  1. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less

  2. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems

    PubMed Central

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations. PMID:27242701

  3. Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.

    PubMed

    Nuñez, Isaac N; Matute, Tamara F; Del Valle, Ilenne D; Kan, Anton; Choksi, Atri; Endy, Drew; Haseloff, Jim; Rudge, Timothy J; Federici, Fernan

    2017-02-17

    Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.

  4. Free response approach in a parametric system

    NASA Astrophysics Data System (ADS)

    Huang, Dishan; Zhang, Yueyue; Shao, Hexi

    2017-07-01

    In this study, a new approach to predict the free response in a parametric system is investigated. It is proposed in the special form of a trigonometric series with an exponentially decaying function of time, based on the concept of frequency splitting. By applying harmonic balance, the parametric vibration equation is transformed into an infinite set of homogeneous linear equations, from which the principal oscillation frequency can be computed, and all coefficients of harmonic components can be obtained. With initial conditions, arbitrary constants in a general solution can be determined. To analyze the computational accuracy and consistency, an approach error function is defined, which is used to assess the computational error in the proposed approach and in the standard numerical approach based on the Runge-Kutta algorithm. Furthermore, an example of a dynamic model of airplane wing flutter on a turbine engine is given to illustrate the applicability of the proposed approach. Numerical solutions show that the proposed approach exhibits high accuracy in mathematical expression, and it is valuable for theoretical research and engineering applications of parametric systems.

  5. A systems-level approach for metabolic engineering of yeast cell factories.

    PubMed

    Kim, Il-Kwon; Roldão, António; Siewers, Verena; Nielsen, Jens

    2012-03-01

    The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Morehouse Physics & Dual Degree Engineering Program: We C . A . R . E . Approach

    NASA Astrophysics Data System (ADS)

    Rockward, Willie S.

    2015-03-01

    Growing the physics major at any undergraduate institution, especially Morehouse College - a private, all-male, liberal arts HBCU, can be very challenging. To address this challenge at Morehouse, the faculty and staff in the Department of Physics and Dual Degree Engineering Program (Physics & DDEP) are applying a methodology and pedagogical approach called ``We C . A . R . E '' which stands for Curriculum,Advisement,Recruitment/Retention/Research, andExtras. This approach utilizes an integrated strategy of cultural (family-orientated), collaborative (shared-governance), and career (personalized-pathways) modalities to provide the momentum of growing the physics major at Morehouse from 10-12 students to over 100 students in less than 5 years. Physics & DDEP at Morehouse, creatively, altered faculty course assignments, curriculum offerings, and departmental policies while expanding research projects, student organizations, and external collaborations. This method supplies a variety of meaningful, academic and research experiences for undergraduates at Morehouse and thoroughly prepares students for graduate studies or professional careers in STEM disciplines. Thus, a detailed overview of the ``We C . A . R . E . '' approach will be presented along with the Physics & DDEP vision, alterations and expansions in growing the physics major at Morehouse College. Department of Physics and Dual Degree Engineering Program, Atlanta, Georgia 30314.

  7. An environmental decision framework applied to marine engine control technologies.

    PubMed

    Corbett, James J; Chapman, David

    2006-06-01

    This paper develops a decision framework for considering emission control technologies on marine engines, informed by standard decision theory, with an open structure that may be adapted by operators with specific vessel and technology attributes different from those provided here. Attributes relate objectives important to choosing control technologies with specific alternatives that may meet several of the objectives differently. The transparent framework enables multiple stakeholders to understand how different subjective judgments and varying attribute properties may result in different technology choices. Standard scoring techniques ensure that attributes are not biased by subjective scoring and that weights are the primary quantitative input where subjective preferences are exercised. An expected value decision structure is adopted that considers probabilities (likelihood) that a given alternative can meet its claims; alternative decision criteria are discussed. Capital and annual costs are combined using a net present value approach. An iterative approach is advocated that allows for screening and disqualifying alternatives that do not meet minimum conditions for acceptance, such as engine warranty or U.S. Coast Guard requirements. This decision framework assists vessel operators in considering explicitly important attributes and in representing choices clearly to other stakeholders concerned about reducing air pollution from vessels. This general decision structure may also be applied similarly to other environmental controls in marine applications.

  8. Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay

    2012-01-01

    An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.

  9. Business Sustainability and Collective Intelligence

    ERIC Educational Resources Information Center

    Garrido, Paulo

    2009-01-01

    Purpose: The purpose of this paper is to analyze to which point collective intelligence (CI) concepts and ideas, as applied to organizations, can contribute to enlarge the conceptual basis for business sustainability (BS). Design/methodology/approach: The paper is written from an engineer-minded, systemic and cybernetic perspective. It begins by…

  10. An Evaluation of Text Mining Tools as Applied to Selected Scientific and Engineering Literature.

    ERIC Educational Resources Information Center

    Trybula, Walter J.; Wyllys, Ronald E.

    2000-01-01

    Addresses an approach to the discovery of scientific knowledge through an examination of data mining and text mining techniques. Presents the results of experiments that investigated knowledge acquisition from a selected set of technical documents by domain experts. (Contains 15 references.) (Author/LRW)

  11. Analyzing a Mature Software Inspection Process Using Statistical Process Control (SPC)

    NASA Technical Reports Server (NTRS)

    Barnard, Julie; Carleton, Anita; Stamper, Darrell E. (Technical Monitor)

    1999-01-01

    This paper presents a cooperative effort where the Software Engineering Institute and the Space Shuttle Onboard Software Project could experiment applying Statistical Process Control (SPC) analysis to inspection activities. The topics include: 1) SPC Collaboration Overview; 2) SPC Collaboration Approach and Results; and 3) Lessons Learned.

  12. The Students' Survey of Education for Sustainable Development Competencies: A Comparison among Faculties

    ERIC Educational Resources Information Center

    Biasutti, Michele; Surian, Alessio

    2012-01-01

    The paper reports research employing a quantitative approach to investigating the competences of university students about educating for sustainable development (ESD). Participants were 467 bachelor students of the following five areas: social sciences, educational sciences, applied sciences, engineering and health sciences. The Student Survey of…

  13. How to make mathematics relevant to first-year engineering students: perceptions of students on student-produced resources

    NASA Astrophysics Data System (ADS)

    Loch, Birgit; Lamborn, Julia

    2016-01-01

    Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering and multimedia students the task to 'make maths relevant' for first-year students. This approach is novel as we moved away from the traditional thinking that staff should produce these resources to students producing the same. These students have more recently undertaken first-year mathematical study themselves and can also provide a more mature student perspective to the task than first-year students. Two final-year engineering students and three final-year multimedia students worked on this project over the Australian summer term and produced two animated videos showing where concepts taught in first-year mathematics are applied by professional engineers. It is this student perspective on how to make mathematics relevant to first-year students that we investigate in this paper. We analyse interviews with higher year students as well as focus groups with first-year students who had been shown the videos in class, with a focus on answering the following three research questions: (1) How would students demonstrate the relevance of mathematics in engineering? (2) What are first-year students' views on the resources produced for them? (3) Who should produce resources to demonstrate the relevance of mathematics? There seemed to be some disagreement between first- and final-year students as to how the importance of mathematics should be demonstrated in a video. We therefore argue that it should ideally be a collaboration between higher year students and first-year students, with advice from lecturers, to produce such resources.

  14. Dynamic Loads Generation for Multi-Point Vibration Excitation Problems

    NASA Technical Reports Server (NTRS)

    Shen, Lawrence

    2011-01-01

    A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.

  15. Research and Innovation of Engineering Education in Europe the contribution of SEFI

    NASA Astrophysics Data System (ADS)

    Graaff, Erik De; Borri, Claudio

    The roots of engineering education lie in the workplace. It was not until the 19th century that higher engineering education moved to a more scholarly environment. True to its origins, research in the applied sciences never aimed at pure understanding alone. The goal of engineering investigations has always been to devise solutions to practice problems with a mixture of design, construction and innovation. If the establishing of a research tradition in engineering has taken quite a long time, the time needed to apply an academic mode of thinking to the approach to teaching and learning has been much longer. In fact, most of the design choices concerning the curricula in higher engineering education were made based on intuition, rather than on insight, until well over the half of the last century. Aiming at to support the development of engineering education in Europe, in 1973 the European Society of Engineering Education was established (labelled SEFI according to the French acronym Société. Européenne pour la Formation des Ingénieurs). Presently the society represents 196 institutional members. SEFI promotes cooperation between higher engineering education institutions and other scientific and international bodies on issues of research and development in Engineering Education, for instance through participating in European network projects such as the SOCRATES Thematic Network “TREE” (Teaching and Research in Engineering Education in Europe). SEFI is also engaged in policy development regarding engineering education publishing statements regarding issues like the Bologna process and the proposed European Institute of Technology. In the future SEFI aims to consolidate and strengthen its role in the European arena and to represent Europe on the Global stage.

  16. Design Learning of Teaching Factory in Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    Putra, R. C.; Kusumah, I. H.; Komaro, M.; Rahayu, Y.; Asfiyanur, E. P.

    2018-02-01

    The industrial world that is the target of the process and learning outcomes of vocational high school (SMK) has its own character and nuance. Therefore, vocational education institutions in the learning process should be able to make the appropriate learning approach and in accordance with the industrial world. One approach to learning that is based on production and learning in the world of work is by industry-based learning or known as Teaching Factory, where in this model apply learning that involves direct students in goods or service activities are expected to have the quality so it is worth selling and accepted by consumers. The method used is descriptive approach. The purpose of this research is to get the design of the teaching factory based on the competency requirements of the graduates of the spouse industry, especially in the engineering department. The results of this study is expected to be one of the choice of model factory teaching in the field of machinery engineering in accordance with the products and competencies of the graduates that the industry needs.

  17. A Systems Engineering Approach for Global Fleet Station Alternatives in the Gulf of Guinea

    DTIC Science & Technology

    2007-12-01

    Understanding that many types of risk lie within categories such as cost, funding, management, political, production, and schedule , we may apply the... schedule , to the Gulf of Guinea beginning in October of 2007. USS FORT MCHENRY, an amphibious Landing Ship Dock (LSD), affords greater storage...Kerzner, Project Management: A Systems Approach to Planning, Scheduling , and Controlling (New Jersey: John Wiley & Sons, Inc., 2006), 724. 103 5

  18. Determination of knock characteristics in spark ignition engines: an approach based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Yang, Jianguo; Zhou, Rui; Liang, Caiping

    2016-04-01

    Knock is one of the major constraints to improve the performance and thermal efficiency of spark ignition (SI) engines. It can also result in severe permanent engine damage under certain operating conditions. Based on the ensemble empirical mode decomposition (EEMD), this paper proposes a new approach to determine the knock characteristics in SI engines. By adding a uniformly distributed and finite white Gaussian noise, the EEMD can preserve signal continuity in different scales and therefore alleviates the mode-mixing problem occurring in the classic empirical mode decomposition (EMD). The feasibilities of applying the EEMD to detect the knock signatures of a test SI engine via the pressure signal measured from combustion chamber and the vibration signal measured from cylinder head are investigated. Experimental results show that the EEMD-based method is able to detect the knock signatures from both the pressure signal and vibration signal, even in initial stage of knock. Finally, by comparing the application results with those obtained by short-time Fourier transform (STFT), Wigner-Ville distribution (WVD) and discrete wavelet transform (DWT), the superiority of the EEMD method in determining knock characteristics is demonstrated.

  19. Physicochemical Control of Adult Stem Cell Differentiation: Shedding Light on Potential Molecular Mechanisms

    DTIC Science & Technology

    2010-01-01

    stem - cell -based biomedical and therapeutic applications, including tissue engineering, requires an understanding of the cell-cell and cell-environment interactions. To this end, recent efforts have been focused on the manipulation of adult stem cell differentiation using inductive soluble factors, designing suitable mechanical environments, and applying noninvasive physical forces. Although each of these different approaches has been successfully applied to regulate stem cell differentiation, it would be of great interest and

  20. SimBRS: A University/Industry Consortium Focused on Simulation Based Solutions for Ground Vehicles

    DTIC Science & Technology

    2009-07-29

    plan is to use the SimBRS contract mechanism to streamline a process that applies research funds into a managed program, that is cognizant to the... designs . Therefore, the challenge for the SimBRS team is to establish an approach based on the capacity of measured data and simulations to support ...by systematically relating appropriate results from measurements and applied research in engineering and science. In turn, basic research and

  1. Spanish language generation engine to enhance the syntactic quality of AAC systems

    NASA Astrophysics Data System (ADS)

    Narváez A., Cristian; Sastoque H., Sebastián.; Iregui G., Marcela

    2015-12-01

    People with Complex Communication Needs (CCN) face difficulties to communicate their ideas, feelings and needs. Augmentative and Alternative Communication (AAC) approaches aim to provide support to enhance socialization of these individuals. However, there are many limitations in current applications related with systems operation, target scenarios and language consistency. This work presents an AAC approach to enhance produced messages by applying elements of Natural Language Generation. Specifically, a Spanish language engine, composed of a grammar ontology and a set of linguistic rules, is proposed to improve the naturalness in the communication process, when persons with CCN tell stories about their daily activities to non-disabled receivers. The assessment of the proposed method confirms the validity of the model to improve messages quality.

  2. Re-engineering pre-employment check-up systems: a model for improving health services.

    PubMed

    Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin

    2011-01-01

    The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.

  3. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering.

    PubMed

    Daly, Andrew C; Cunniffe, Gráinne M; Sathy, Binulal N; Jeon, Oju; Alsberg, Eben; Kelly, Daniel J

    2016-09-01

    The ability to print defined patterns of cells and extracellular-matrix components in three dimensions has enabled the engineering of simple biological tissues; however, bioprinting functional solid organs is beyond the capabilities of current biofabrication technologies. An alternative approach would be to bioprint the developmental precursor to an adult organ, using this engineered rudiment as a template for subsequent organogenesis in vivo. This study demonstrates that developmentally inspired hypertrophic cartilage templates can be engineered in vitro using stem cells within a supporting gamma-irradiated alginate bioink incorporating Arg-Gly-Asp adhesion peptides. Furthermore, these soft tissue templates can be reinforced with a network of printed polycaprolactone fibers, resulting in a ≈350 fold increase in construct compressive modulus providing the necessary stiffness to implant such immature cartilaginous rudiments into load bearing locations. As a proof-of-principal, multiple-tool biofabrication is used to engineer a mechanically reinforced cartilaginous template mimicking the geometry of a vertebral body, which in vivo supported the development of a vascularized bone organ containing trabecular-like endochondral bone with a supporting marrow structure. Such developmental engineering approaches could be applied to the biofabrication of other solid organs by bioprinting precursors that have the capacity to mature into their adult counterparts over time in vivo. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching.

    PubMed

    Wang, Zhiyu; Luan, Deyan; Li, Chang Ming; Su, Fabing; Madhavi, Srinivasan; Boey, Freddy Yin Chiang; Lou, Xiong Wen

    2010-11-17

    Despite the significant advancement in making hollow structures, one unsolved challenge in the field is how to engineer hollow structures with specific shapes, tunable compositions, and desirable interior structures. In particular, top-down engineering the interiors inside preformed hollow structures is still a daunting task. In this work, we demonstrate a facile approach for the preparation of a variety of uniform hollow structures, including Cu(2)O@Fe(OH)(x) nanorattles and Fe(OH)(x) cages with various shapes and dimensions by template-engaged redox etching of shape-controlled Cu(2)O crystals. The composition can be readily modulated at different structural levels to generate other interesting structures such as Cu(2)O@Fe(2)O(3) and Cu@Fe(3)O(4) rattles, as well as Fe(2)O(3) and Fe(3)O(4) cages. More remarkably, this strategy enables top-down engineering the interiors of hollow structures as demonstrated by the fabrication of double-walled nanorattles and nanoboxes, and even box-in-box structures. In addition, this approach is also applied to form Au and MnO(x) based hollow structures.

  5. System engineering and management in a large and diverse multinational consortium

    NASA Astrophysics Data System (ADS)

    Wright, David; O'Sullivan, Brian; Thatcher, John; Renouf, Ian; Wright, Gillian; Wells, Martyn; Glasse, Alistair; Grozinger, Ulrich; Sykes, Jon; Smith, Dave; Eccleston, Paul; Shaughnessy, Bryan

    2008-07-01

    This paper elaborates the system engineering methods that are being successfully employed within the European Consortium (EC) to deliver the Optical System of the Mid Infa-Red Instrument (MIRI) to the James Webb Space Telescope (JWST). The EC is a Consortium of 21 institutes located in 10 European countries and, at instrument level, it works in a 50/50 partnership with JPL who are providing the instrument cooler, software and detector systems. The paper will describe how the system engineering approach has been based upon proven principles used in the space industry but applied in a tailored way that best accommodates the differences in international practices and standards with a primary aim of ensuring a cost-effective solution which supports all science requirements for the mission. The paper will recall how the system engineering has been managed from the definition of the system requirements in early phase B, through the successful Critical Design Review at the end of phase C and up to the test and flight build activities that are presently in progress. Communication and coordination approaches will also be discussed.

  6. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules.

    PubMed

    Topuz, Emel; van Gestel, Cornelis A M

    2016-01-01

    The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Systems Approach to Developing an Affordable Space Ground Transportation Architecture using a Commonality Approach

    NASA Technical Reports Server (NTRS)

    Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.

    2012-01-01

    This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.

  8. Evaluation of coupling approaches for thermomechanical simulations

    DOE PAGES

    Novascone, S. R.; Spencer, B. W.; Hales, J. D.; ...

    2015-08-10

    Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics,more » while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.« less

  9. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  10. A systems engineering approach to AIS accreditation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, L.M.; Hunteman, W.J.

    1994-04-01

    The systems engineering model provides the vehicle for communication between the developer and the customer by presenting system facts and demonstrating the system in an organized form. The same model provides implementors with views of the system`s function and capability. The authors contend that the process of obtaining accreditation for a classified Automated Information System (AIS) adheres to the typical systems engineering model. The accreditation process is modeled as a ``roadmap`` with the customer represented by the Designed Accrediting Authority. The ``roadmap`` model reduces the amount of accreditation knowledge required of an AIS developer and maximizes the effectiveness of participationmore » in the accreditation process by making the understanding of accreditation a natural consequence of applying the model. This paper identifies ten ``destinations`` on the ``road`` to accreditation. The significance of each ``destination`` is explained, as are the potential consequences of its exclusion. The ``roadmap,`` which has been applied to a range of information systems throughout the DOE community, establishes a paradigm for the certification and accreditation of classified AISs.« less

  11. Software Engineering Laboratory Ada performance study: Results and implications

    NASA Technical Reports Server (NTRS)

    Booth, Eric W.; Stark, Michael E.

    1992-01-01

    The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts.

  12. Nucleic Acid Engineering: RNA Following the Trail of DNA.

    PubMed

    Kim, Hyejin; Park, Yongkuk; Kim, Jieun; Jeong, Jaepil; Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2016-02-08

    The self-assembly feature of the naturally occurring biopolymer, DNA, has fascinated researchers in the fields of materials science and bioengineering. With the improved understanding of the chemical and structural nature of DNA, DNA-based constructs have been designed and fabricated from two-dimensional arbitrary shapes to reconfigurable three-dimensional nanodevices. Although DNA has been used successfully as a building block in a finely organized and controlled manner, its applications need to be explored. Hence, with the myriad of biological functions, RNA has recently attracted considerable attention to further the application of nucleic acid-based structures. This Review categorizes different approaches of engineering nucleic acid-based structures and introduces the concepts, principles, and applications of each technique, focusing on how DNA engineering is applied as a guide to RNA engineering.

  13. Concepts for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Thomas, Randy; Saus, Joseph

    2007-01-01

    Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.

  14. A Global Assessment of Stem Cell Engineering

    PubMed Central

    Loring, Jeanne F.; McDevitt, Todd C.; Palecek, Sean P.; Schaffer, David V.; Zandstra, Peter W.

    2014-01-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic–industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms. PMID:24428577

  15. A global assessment of stem cell engineering.

    PubMed

    Loring, Jeanne F; McDevitt, Todd C; Palecek, Sean P; Schaffer, David V; Zandstra, Peter W; Nerem, Robert M

    2014-10-01

    Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.

  16. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  17. Navier-Stokes computations with finite-rate chemistry for LO2/LH2 rocket engine plume flow studies

    NASA Technical Reports Server (NTRS)

    Dougherty, N. Sam; Liu, Baw-Lin

    1991-01-01

    Computational fluid dynamics methods have been developed and applied to Space Shuttle Main Engine LO2/LH2 plume flow simulation/analysis of airloading and convective base heating effects on the vehicle at high flight velocities and altitudes. New methods are described which were applied to the simulation of a Return-to-Launch-Site abort where the vehicle would fly briefly at negative angles of attack into its own plume. A simplified two-perfect-gases-mixing approach is used where one gas is the plume and the other is air at 180-deg and 135-deg flight angle of attack. Related research has resulted in real gas multiple-plume interaction methods with finite-rate chemistry described herein which are applied to the same high-altitude-flight conditions of 0 deg angle of attack. Continuing research plans are to study Orbiter wake/plume flows at several Mach numbers and altitudes during ascent and then to merge this model with the Shuttle 'nose-to-tail' aerodynamic and SRB plume models for an overall 'nose-to-plume' capability. These new methods are also applicable to future launch vehicles using clustered-engine LO2/LH2 propulsion.

  18. Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks.

    PubMed

    Dinjaski, Nina; Huang, Wenwen; Kaplan, David L

    2018-01-01

    Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.

  19. A Multifaceted Mathematical Approach for Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, F.; Anitescu, M.; Bell, J.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significantmore » impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.« less

  20. Human Systems Integration Competency Development for Navy Systems Commands

    DTIC Science & Technology

    2012-09-01

    cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences. KSA...cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences...requirements (as required). Fundamental cognizance of Applied Engineering / Psychology relative to knowledge engineering, training, team work, user

  1. Modeling Primary Atomization of Liquid Fuels using a Multiphase DNS/LES Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arienti, Marco; Oefelein, Joe; Doisneau, Francois

    2016-08-01

    As part of a Laboratory Directed Research and Development project, we are developing a modeling-and-simulation capability to study fuel direct injection in automotive engines. Predicting mixing and combustion at realistic conditions remains a challenging objective of energy science. And it is a research priority in Sandia’s mission-critical area of energy security, being also relevant to many flows in defense and climate. High-performance computing applied to this non-linear multi-scale problem is key to engine calculations with increased scientific reliability.

  2. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  3. Engineering Approaches to Illuminating Brain Structure and Dynamics

    PubMed Central

    Deisseroth, Karl; Schnitzer, Mark J.

    2017-01-01

    Historical milestones in neuroscience have come in diverse forms, ranging from the resolution of specific biological mysteries via creative experimentation to broad technological advances allowing neuroscientists to ask new kinds of questions. The continuous development of tools is driven with a special necessity by the complexity, fragility, and inaccessibility of intact nervous systems, such that inventive technique development and application drawing upon engineering and the applied sciences has long been essential to neuroscience. Here we highlight recent technological directions in neuroscience spurred by progress in optical, electrical, mechanical, chemical, and biological engineering. These research areas are poised for rapid growth and will likely be central to the practice of neuroscience well into the future. PMID:24183010

  4. Managing MDO Software Development Projects

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Salas, A. O.

    2002-01-01

    Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.

  5. Application of TRIZ approach to machine vibration condition monitoring problems

    NASA Astrophysics Data System (ADS)

    Cempel, Czesław

    2013-12-01

    Up to now machine condition monitoring has not been seriously approached by TRIZ1TRIZ= Russian acronym for Inventive Problem Solving System, created by G. Altshuller ca 50 years ago. users, and the knowledge of TRIZ methodology has not been applied there intensively. However, there are some introductory papers of present author posted on Diagnostic Congress in Cracow (Cempel, in press [11]), and Diagnostyka Journal as well. But it seems to be further need to make such approach from different sides in order to see, if some new knowledge and technology will emerge. In doing this we need at first to define the ideal final result (IFR) of our innovation problem. As a next we need a set of parameters to describe the problems of system condition monitoring (CM) in terms of TRIZ language and set of inventive principles possible to apply, on the way to IFR. This means we should present the machine CM problem by means of contradiction and contradiction matrix. When specifying the problem parameters and inventive principles, one should use analogy and metaphorical thinking, which by definition is not exact but fuzzy, and leads sometimes to unexpected results and outcomes. The paper undertakes this important problem again and brings some new insight into system and machine CM problems. This may mean for example the minimal dimensionality of TRIZ engineering parameter set for the description of machine CM problems, and the set of most useful inventive principles applied to given engineering parameter and contradictions of TRIZ.

  6. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  7. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  8. Enhancing Critical Thinking Via a Clinical Scholar Approach.

    PubMed

    Simpson, Vicki; McComb, Sara A; Kirkpatrick, Jane M

    2017-11-01

    Safety, quality improvement, and a systems perspective are vital for nurses to provide quality evidence-based care. Responding to the call to prepare nurses with these perspectives, one school of nursing used a clinical scholar approach, enhanced by systems engineering to more intentionally develop the ability to clinically reason and apply evidence-based practice. A two-group, repeated-measures control trial was used to determine the effects of systems engineering content and support on nursing students' clinical judgment and critical thinking skills. Findings indicated this approach had a positive effects on student's clinical judgment and clinical reasoning skills. This approach helped students view health care issues from a broader perspective and use evidence to guide solution development, enhancing the focus on evidence-based practice, and quality improvement. Intentional integration of an evidence-based, systems perspective by nursing faculty supports development of nurses who can function safely and effectively in the current health care system. [J Nurs Educ. 2017;56(11):679-682.]. Copyright 2017, SLACK Incorporated.

  9. What scaling means in wind engineering: Complementary role of the reduced scale approach in a BLWT and the full scale testing in a large climatic wind tunnel

    NASA Astrophysics Data System (ADS)

    Flamand, Olivier

    2017-12-01

    Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.

  10. Process improvement of pap smear tracking in a women's medicine center clinic in residency training.

    PubMed

    Calhoun, Byron C; Goode, Jeff; Simmons, Kathy

    2011-11-01

    Application of Six-Sigma methodology and Change Acceleration Process (CAP)/Work Out (WO) tools to track pap smear results in an outpatient clinic in a hospital-based residency-training program. Observational study of impact of changes obtained through application of Six-Sigma principles in clinic process with particular attention to prevention of sentinel events. Using cohort analysis and applying Six-Sigma principles to an interactive electronic medical record Soarian workflow engine, we designed a system of timely accession and reporting of pap smear and pathology results. We compared manual processes from January 1, 2007 to February 28, 2008 to automated processes from March 1, 2008 to December 31, 2009. Using the Six-Sigma principles, CAP/WO tools, including "voice of the customer" and team focused approach, no outlier events went untracked. Applying the Soarian workflow engine to track prescribed 7 day turnaround time for completion, we identified 148 pap results in 3,936, 3 non-gynecological results in 15, and 41 surgical results in 246. We applied Six-Sigma principles to an outpatient clinic facilitating an interdisciplinary team approach to improve the clinic's reporting system. Through focused problem assessment, verification of process, and validation of outcomes, we improved patient care for pap smears and critical pathology. © 2011 National Association for Healthcare Quality.

  11. Innovative Approach to Validation of Ultraviolet (UV) Reactors ...

    EPA Pesticide Factsheets

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & surface water pathogen inactivation including viruses for low-pressure and medium-pressure UV systems. Evaluation objectives of the study: Practical approach for validating LP and MP UV reactors for virus & cryptosporidium inactivation using various test microbes, i.e., MS2, B. pumilus, AD2, T1; Apply UV dose algorithms based on theory vs empirical that predict log-I and RED as a function of the UV sensitivity of the microbe (combined variable criteria), flow, lamp-sensor output, DL-ASCFs, w/wo UVT; Assess capabilities of test microbe for predicting target pathogen, assess credibility with second test microbe vs bracketing; Evaluate UV lamp sensor technology that accounts for germicidal contributions of low-and high-wavelength UV light within MP reactors; Address approaches for propagating and assaying AD2, B. pumilus, MS2, and methods for determining low and high wavelength ASCFs using collimated beam LP & MP UV lamps; Determine & apply low and high wavelength ASCFs to predict cryptosporidium and adenovirus credit using MS2, or B. pumilus, T1 test data; Simplify Validation-Factor (VF) analysis of uncertainties/biases; Develop recommendations document from recent lessons learned applicabl

  12. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.

  13. Understanding the Difficulties Faced by Engineering Undergraduates in Learning Mathematical Modelling

    ERIC Educational Resources Information Center

    Soon, Wanmei; Lioe, Luis Tirtasanjaya; McInnes, Brett

    2011-01-01

    The teaching of mathematics in Singapore continues, in most cases, to follow a traditional model. While this traditional approach has many advantages, it does not always adequately prepare students for University-level mathematics, especially applied mathematics. In particular, it does not cultivate the ability to deal with "non-routine…

  14. Refactoring a CS0 Course for Engineering Students to Use Active Learning

    ERIC Educational Resources Information Center

    Lokkila, Erno; Kaila, Erkki; Lindén, Rolf; Laakso, Mikko-Jussi; Sutinen, Erkki

    2017-01-01

    Purpose: The purpose of this paper was to determine whether applying e-learning material to a course leads to consistently improved student performance. Design/methodology/approach: This paper analyzes grade data from seven instances of the course. The first three instances were performed traditionally. After an intervention, in the form of…

  15. From Evidence to Impact: Recommendations for a Dissemination Support System

    ERIC Educational Resources Information Center

    Kreuter, Matthew W.; Wang, Monica L.

    2015-01-01

    While finding effective solutions to child and adolescent health problems is very much a scientific endeavor, getting those solutions into widespread practice largely is not. This paper applies lessons from business and engineering to highlight the shortcomings of current approaches to science translation. In challenging the status quo, the paper…

  16. Stateless Programming as a Motif for Teaching Computer Science

    ERIC Educational Resources Information Center

    Cohen, Avi

    2004-01-01

    With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…

  17. Systems Engineering 2015 Workshop | Wind | NREL

    Science.gov Websites

    Dhert, University of Michigan High-Fidelity Aerodynamic Shape Optimization for Wind Turbines Kristian ; Different design approaches are applied to determine the shape as well as the structural composition of the turbine that also found a significant trade-off between the lighter blades and a heavier tower moving from

  18. Computer Simulation of Compression and Energy Release upon Laser Irradiation of Cylindrically Symmetric Target

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.

    2017-12-01

    The paper is devoted to the theoretical and computational study of compression and energy release for magneto-inertial plasma confinement. This approach makes it possible to create new high-density plasma sources, apply them in materials science experiments, and use them in promising areas of power engineering.

  19. Evaluation of the Centres of Excellence in Higher Education

    ERIC Educational Resources Information Center

    Kettunen, Juha Matti

    2011-01-01

    This study presents an evaluation of the centres of excellence in higher education in Finland. This approach is an example of enhancement-led evaluation aiming to improve the long-term development of education. The study presents the Degree Programme in Civil Engineering of the Turku University of Applied Sciences, which was awarded the…

  20. Leading Change: Applying Change Management Approaches to Engage Students in Blended Learning

    ERIC Educational Resources Information Center

    Quinn, Diana; Amer, Yousef; Lonie, Anne; Blackmore, Kim; Thompson, Lauren; Pettigrove, Malcolm

    2012-01-01

    The Australian National University (ANU) and the University of South Australia (UniSA) have embarked on Federally-funded project to collaborate in the design, development and delivery of a range of undergraduate and postgraduate courses in engineering. The collaboration investigates new ways to bring together the strengths and discipline expertise…

  1. Systematically Identifying Relevant Research: Case Study on Child Protection Social Workers' Resilience

    ERIC Educational Resources Information Center

    McFadden, Paula; Taylor, Brian J.; Campbell, Anne; McQuilkin, Janice

    2012-01-01

    Context: The development of a consolidated knowledge base for social work requires rigorous approaches to identifying relevant research. Method: The quality of 10 databases and a web search engine were appraised by systematically searching for research articles on resilience and burnout in child protection social workers. Results: Applied Social…

  2. Seeking an Online Social Media Radar

    ERIC Educational Resources Information Center

    ter Veen, James

    2014-01-01

    Purpose: The purpose of this paper is to explore how the application of Systems Engineering tools and techniques can be applied to rapidly process and analyze the vast amounts of data present in social media in order to yield practical knowledge for Command and Control (C2) systems. Design/methodology/approach: Based upon comparative analysis of…

  3. Design of a Competitive and Collaborative Learning Strategy in a Communication Networks Course

    ERIC Educational Resources Information Center

    Regueras, L. M.; Verdu, E.; Verdu, M. J.; de Castro, J. P.

    2011-01-01

    In this paper, an educational methodology based on collaborative and competitive learning is proposed. The suggested approach has been successfully applied to an undergraduate communication networks course, which is part of the core curriculum of the three-year degree in telecommunications engineering at the University of Valladolid in Spain. This…

  4. 40 CFR 1068.510 - How do I prepare and apply my remedial plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... service identified by brand, trade, or corporate name unless we approved this approach with your original... other changes you will make to correct the affected engines/equipment. (3) A brief description of the... will determine the owners' names and addresses. (6) How you will notify owners; include copies of any...

  5. 40 CFR 1068.510 - How do I prepare and apply my remedial plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... service identified by brand, trade, or corporate name unless we approved this approach with your original..., adjustments, or other changes you will make to correct the affected engines/equipment. (3) A brief description.... (5) How you will determine the owners' names and addresses. (6) How you will notify owners; include...

  6. 40 CFR 1068.510 - How do I prepare and apply my remedial plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... service identified by brand, trade, or corporate name unless we approved this approach with your original..., adjustments, or other changes you will make to correct the affected engines/equipment. (3) A brief description.... (5) How you will determine the owners' names and addresses. (6) How you will notify owners; include...

  7. 40 CFR 1068.510 - How do I prepare and apply my remedial plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... service identified by brand, trade, or corporate name unless we approved this approach with your original..., adjustments, or other changes you will make to correct the affected engines/equipment. (3) A brief description.... (5) How you will determine the owners' names and addresses. (6) How you will notify owners; include...

  8. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities.

    PubMed

    Hama, Shinji; Yoshida, Ayumi; Tamadani, Naoki; Noda, Hideo; Kondo, Akihiko

    2013-05-01

    An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Probabilistic framework for product design optimization and risk management

    NASA Astrophysics Data System (ADS)

    Keski-Rahkonen, J. K.

    2018-05-01

    Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.

  10. Preventing healthcare-associated infections through human factors engineering.

    PubMed

    Jacob, Jesse T; Herwaldt, Loreen A; Durso, Francis T

    2018-05-24

    Human factors engineering (HFE) approaches are increasingly being used in healthcare, but have been applied in relatively limited ways to infection prevention and control (IPC). Previous studies have focused on using selected HFE tools, but newer literature supports a system-based HFE approach to IPC. Cross-contamination and the existence of workarounds suggest that healthcare workers need better support to reduce and simplify steps in delivering care. Simplifying workflow can lead to better understanding of why a process fails and allow for improvements to reduce errors and increase efficiency. Hand hygiene can be improved using visual cues and nudges based on room layout. Using personal protective equipment appropriately appears simple, but exists in a complex interaction with workload, behavior, emotion, and environmental variables including product placement. HFE can help prevent the pathogen transmission through improving environmental cleaning and appropriate use of medical devices. Emerging evidence suggests that HFE can be applied in IPC to reduce healthcare-associated infections. HFE and IPC collaboration can help improve many of the basic best practices including use of hand hygiene and personal protective equipment by healthcare workers during patient care.

  11. Generalized schemes for high throughput manipulation of the Desulfovibrio vulgaris Hildenborough genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabra, S.R.; Butland, G.; Elias, D.

    The ability to conduct advanced functional genomic studies of the thousands of sequenced bacteria has been hampered by the lack of available tools for making high- throughput chromosomal manipulations in a systematic manner that can be applied across diverse species. In this work, we highlight the use of synthetic biological tools to assemble custom suicide vectors with reusable and interchangeable DNA “parts” to facilitate chromosomal modification at designated loci. These constructs enable an array of downstream applications including gene replacement and creation of gene fusions with affinity purification or localization tags. We employed this approach to engineer chromosomal modifications inmore » a bacterium that has previously proven difficult to manipulate genetically, Desulfovibrio vulgaris Hildenborough, to generate a library of over 700 strains. Furthermore, we demonstrate how these modifications can be used for examining metabolic pathways, protein-protein interactions, and protein localization. The ubiquity of suicide constructs in gene replacement throughout biology suggests that this approach can be applied to engineer a broad range of species for a diverse array of systems biological applications and is amenable to high-throughput implementation.« less

  12. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies.

    PubMed

    Reichert, Johannes C; Epari, Devakara R; Wullschleger, Martin E; Saifzadeh, Siamak; Steck, Roland; Lienau, Jasmin; Sommerville, Scott; Dickinson, Ian C; Schütz, Michael A; Duda, Georg N; Hutmacher, Dietmar W

    2010-02-01

    Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties; however, they are limited in access and availability and associated with donor-site morbidity, hemorrhage, risk of infection, insufficient transplant integration, graft devitalization, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench-to-bedside translations are still infrequent as the process toward approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence, commercialization, is referred to as the "Valley of Death" and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes and scalable designs and to apply these in preclinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopedic bone engineering from bench to bedside by establishing a preclinical ovine critical-sized tibial segmental bone defect model, and we discuss our preliminary data relating to this decisive step.

  13. Engineering the just war: examination of an approach to teaching engineering ethics.

    PubMed

    Haws, David R

    2006-04-01

    The efficiency of engineering applied to civilian projects sometimes threatens to run away with the social agenda, but in military applications, engineering often adds a devastating sleekness to the inevitable destruction of life. The relative crudeness of terrorism (e.g., 9/11) leaves a stark after-image, which belies the comparative insignificance of random (as opposed to orchestrated) belligerence. Just as engineering dwarfs the bricolage of vernacular design 'moving us past the appreciation of brush-strokes, so to speak' the scale of engineered destruction makes it difficult to focus on the charred remains of individual lives. Engineers need to guard against the inappropriate military subsumption of their effort. Fortunately, the ethics of warfare has been an ongoing topic of discussion for millennia. This paper will examine the university core class I've developed (The Moral Dimensions of Technology) to meet accreditation requirements in engineering ethics, and the discussion with engineering and non-engineering students focused by the life of electrical engineer Vannevar Bush, with selected readings in moral philosophy from the Dao de Jing, Lao Tze, Cicero, Aurelius Augustinus, Kant, Annette Baier, Peter Singer, Elizabeth Anscombe, Philippa Foot, and Judith Thomson.

  14. Characterization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach.

    PubMed

    Fu, Zhibiao; Baker, Daniel; Cheng, Aili; Leighton, Julie; Appelbaum, Edward; Aon, Juan

    2016-05-01

    The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799-812, 2016. © 2016 American Institute of Chemical Engineers.

  15. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  16. Leveraging annotation-based modeling with Jump.

    PubMed

    Bergmayr, Alexander; Grossniklaus, Michael; Wimmer, Manuel; Kappel, Gerti

    2018-01-01

    The capability of UML profiles to serve as annotation mechanism has been recognized in both research and industry. Today's modeling tools offer profiles specific to platforms, such as Java, as they facilitate model-based engineering approaches. However, considering the large number of possible annotations in Java, manually developing the corresponding profiles would only be achievable by huge development and maintenance efforts. Thus, leveraging annotation-based modeling requires an automated approach capable of generating platform-specific profiles from Java libraries. To address this challenge, we present the fully automated transformation chain realized by Jump, thereby continuing existing mapping efforts between Java and UML by emphasizing on annotations and profiles. The evaluation of Jump shows that it scales for large Java libraries and generates profiles of equal or even improved quality compared to profiles currently used in practice. Furthermore, we demonstrate the practical value of Jump by contributing profiles that facilitate reverse engineering and forward engineering processes for the Java platform by applying it to a modernization scenario.

  17. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production.

    PubMed

    George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2014-08-01

    The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.

  18. Engineering peptide ligase specificity by proteomic identification of ligation sites.

    PubMed

    Weeks, Amy M; Wells, James A

    2018-01-01

    Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins, including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. Our methods provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.

  19. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes,more » mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.« less

  20. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    PubMed Central

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms PMID:28952565

  1. Prevention of esophageal strictures after endoscopic submucosal dissection

    PubMed Central

    Kobayashi, Shinichiro; Kanai, Nobuo; Ohki, Takeshi; Takagi, Ryo; Yamaguchi, Naoyuki; Isomoto, Hajime; Kasai, Yoshiyuki; Hosoi, Takahiro; Nakao, Kazuhiko; Eguchi, Susumu; Yamamoto, Masakazu; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have recently been accepted as less invasive methods for treating patients with early esophageal cancers such as squamous cell carcinoma and dysplasia of Barrett’s esophagus. However, the large defects in the esophageal mucosa often cause severe esophageal strictures, which dramatically reduce the patient’s quality of life. Although preventive endoscopic balloon dilatation can reduce dysphagia and the frequency of dilatation, other approaches are necessary to prevent esophageal strictures after ESD. This review describes several strategies for preventing esophageal strictures after ESD, with a particular focus on anti-inflammatory and tissue engineering approaches. The local injection of triamcinolone acetonide and other systemic steroid therapies are frequently used to prevent esophageal strictures after ESD. Tissue engineering approaches for preventing esophageal strictures have recently been applied in basic research studies. Scaffolds with temporary stents have been applied in five cases, and this technique has been shown to be safe and is anticipated to prevent esophageal strictures. Fabricated autologous oral mucosal epithelial cell sheets to cover the defective mucosa similarly to how commercially available skin products fabricated from epidermal cells are used for skin defects or in cases of intractable ulcers. Fabricated autologous oral-mucosal-epithelial cell sheets have already been shown to be safe. PMID:25386058

  2. New approaches to increase intestinal length: Methods used for intestinal regeneration and bioengineering

    PubMed Central

    Shirafkan, Ali; Montalbano, Mauro; McGuire, Joshua; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of intestinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neo-formed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option. PMID:27011901

  3. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  4. Kinetic modeling of cell metabolism for microbial production.

    PubMed

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  6. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  7. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  8. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  9. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  10. Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.

    PubMed

    Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.

  11. CellNet: network biology applied to stem cell engineering.

    PubMed

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The European Project Semester at ISEP: the challenge of educating global engineers

    NASA Astrophysics Data System (ADS)

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-05-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.

  13. Representation and presentation of requirements knowledge

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Feather, Martin S.; Harris, David R.

    1992-01-01

    An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.

  14. Re-engineering Islet Cell Transplantation

    PubMed Central

    Fotino, Nicoletta; Fotino, Carmen; Pileggi, Antonello

    2015-01-01

    We are living exciting times in the field of beta cell replacement therapies for the treatment of diabetes. While steady progress has been recorded thus far in clinical islet transplantation, novel approaches are needed to make cell-based therapies more reproducible and leading to long-lasting success. The multiple facets of diabetes impose the need for a transdisciplinary approach to attain this goal, by targeting immunity, promoting engraftment and sustained functional potency. We discuss herein the emerging technologies applied to beta cell replacement therapies. PMID:25814189

  15. Recent advances in gene-enhanced bone tissue engineering.

    PubMed

    Betz, Volker M; Kochanek, Stefan; Rammelt, Stefan; Müller, Peter E; Betz, Oliver B; Messmer, Carolin

    2018-03-30

    The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years. Copyright © 2018 John Wiley & Sons, Ltd.

  16. A gene network simulator to assess reverse engineering algorithms.

    PubMed

    Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2009-03-01

    In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.

  17. Model-Based Systems Engineering for Capturing Mission Architecture System Processes with an Application Case Study - Orion Flight Test 1

    NASA Technical Reports Server (NTRS)

    Bonanne, Kevin H.

    2011-01-01

    Model-based Systems Engineering (MBSE) is an emerging methodology that can be leveraged to enhance many system development processes. MBSE allows for the centralization of an architecture description that would otherwise be stored in various locations and formats, thus simplifying communication among the project stakeholders, inducing commonality in representation, and expediting report generation. This paper outlines the MBSE approach taken to capture the processes of two different, but related, architectures by employing the Systems Modeling Language (SysML) as a standard for architecture description and the modeling tool MagicDraw. The overarching goal of this study was to demonstrate the effectiveness of MBSE as a means of capturing and designing a mission systems architecture. The first portion of the project focused on capturing the necessary system engineering activities that occur when designing, developing, and deploying a mission systems architecture for a space mission. The second part applies activities from the first to an application problem - the system engineering of the Orion Flight Test 1 (OFT-1) End-to-End Information System (EEIS). By modeling the activities required to create a space mission architecture and then implementing those activities in an application problem, the utility of MBSE as an approach to systems engineering can be demonstrated.

  18. A comparative study of multivariable robustness analysis methods as applied to integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Lovell, T. A.; Schmidt, David K.

    1993-01-01

    Three multivariable robustness analysis methods are compared and contrasted. The focus of the analysis is on system stability and performance robustness to uncertainty in the coupling dynamics between two interacting subsystems. Of particular interest is interacting airframe and engine subsystems, and an example airframe/engine vehicle configuration is utilized in the demonstration of these approaches. The singular value (SV) and structured singular value (SSV) analysis methods are compared to a method especially well suited for analysis of robustness to uncertainties in subsystem interactions. This approach is referred to here as the interacting subsystem (IS) analysis method. This method has been used previously to analyze airframe/engine systems, emphasizing the study of stability robustness. However, performance robustness is also investigated here, and a new measure of allowable uncertainty for acceptable performance robustness is introduced. The IS methodology does not require plant uncertainty models to measure the robustness of the system, and is shown to yield valuable information regarding the effects of subsystem interactions. In contrast, the SV and SSV methods allow for the evaluation of the robustness of the system to particular models of uncertainty, and do not directly indicate how the airframe (engine) subsystem interacts with the engine (airframe) subsystem.

  19. Test Planning Approach and Lessons

    NASA Technical Reports Server (NTRS)

    Parkinson, Douglas A.; Brown, Kendall K.

    2004-01-01

    As NASA began technology risk reduction activities and planning for the next generation launch vehicle under the Space Launch Initiative (SLI), now the Next Generation Launch Technology (NGLT) Program, a review of past large liquid rocket engine development programs was performed. The intent of the review was to identify any significant lessons from the development testing programs that could be applied to current and future engine development programs. Because the primary prototype engine in design at the time of this study was the Boeing-Rocketdyne RS-84, the study was slightly biased towards LOX/RP-1 liquid propellant engines. However, the significant lessons identified are universal. It is anticipated that these lessons will serve as a reference for test planning in the Engine Systems Group at Marshall Space Flight Center (MSFC). Towards the end of F-1 and J-2 engine development testing, NASA/MSFC asked Rocketdyne to review those test programs. The result was a document titled, Study to Accelerate Development by Test of a Rocket Engine (R-8099). The "intent (of this study) is to apply this thinking and learning to more efficiently develop rocket engines to high reliability with improved cost effectivenes" Additionally, several other engine programs were reviewed - such as SSME, NSTS, STME, MC-1, and RS-83- to support or refute the R-8099. R-8099 revealed two primary lessons for test planning, which were supported by the other engine development programs. First, engine development programs can benefit from arranging the test program for engine system testing as early as feasible. The best test for determining environments is at the system level, the closest to the operational flight environment. Secondly, the component testing, which tends to be elaborate, should instead be geared towards reducing risk to enable system test. Technical risk can be reduced at the component level, but the design can only be truly verified and validated after engine system testing.

  20. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  1. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  2. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites.

    PubMed

    Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura

    2014-12-30

    Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.

  3. Tissue engineering strategies applied in the regeneration of the human intervertebral disk.

    PubMed

    Silva-Correia, Joana; Correia, Sandra I; Oliveira, Joaquim M; Reis, Rui L

    2013-12-01

    Low back pain (LBP) is one of the most common painful conditions that lead to work absenteeism, medical visits, and hospitalization. The majority of cases showing signs of LBP are due to age-related degenerative changes in the intervertebral disk (IVD), which are, in fact, associated with multiple spine pathologies. Traditional and more conservative procedures/clinical approaches only treat the symptoms of disease and not the underlying pathology, thus limiting their long-term efficiency. In the last few years, research and development of new approaches aiming to substitute the nucleus pulposus and annulus fibrosus tissue and stimulate its regeneration has been conducted. Regeneration of the damaged IVD using tissue engineering strategies appears particularly promising in pre-clinical studies. Meanwhile, surgical techniques must be adapted to this new approach in order to be as minimally invasive as possible, reducing recovering time and side effects associated to traditional surgeries. In this review, the current knowledge on IVD, its associated pathologies and current surgical procedures are summarized. Furthermore, it also provides a succinct and up-to-date overview on regenerative medicine research, especially on the newest tissue engineering strategies for IVD regeneration. © 2013.

  4. Systems Engineering Processes Applied to Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering Center (TARDEC)

    DTIC Science & Technology

    2010-08-19

    UNCLASSIFIED Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering...DATES COVERED - 4. TITLE AND SUBTITLE Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research...release, distribution unlimited 13. SUPPLEMENTARY NOTES Presented at NDIAs Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 17 22

  5. A qualitative approach to systemic diagnosis of the SSME

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.; Maul, William A.

    1993-01-01

    A generic software architecture has been developed for posttest diagnostics of rocket engines, and is presently being applied to the posttest analysis of the SSME. This investigation deals with the Systems Section module of the architecture, which is presently under development. Overviews of the manual SSME systems analysis process and the overall SSME diagnostic system architecture are presented.

  6. From, by, and for the OSSD: Software Engineering Education Using an Open Source Software Approach

    ERIC Educational Resources Information Center

    Huang, Kun; Dong, Yifei; Ge, Xun

    2006-01-01

    Computing is a complex, multidisciplinary field that requires a range of professional proficiencies. Computing students are expected to develop in-depth knowledge and skills, integrate and apply their knowledge flexibly to solve complex problems, and work successfully in teams. However, many students who graduate with degrees in computing fail to…

  7. Dimensions of Human-Work Domain Interaction: A Preliminary Analysis for the Design of a Corporate Digital Library.

    ERIC Educational Resources Information Center

    Xie, Hong

    2003-01-01

    Applies the cognitive system engineering approach to investigate human-work interaction at a corporate setting. Reports preliminary analysis of data collected from diary analysis and interview of 20 subjects. Results identify three dimensions for each of four interactive activities involved in human-work interaction and their relationships.…

  8. The Teaching of Creativity in Information Systems Programmes at South African Higher Education Institutions

    ERIC Educational Resources Information Center

    Turpin, Marita; Matthee, Machdel; Kruger, Anine

    2015-01-01

    The development of problem solving skills is a shared goal in science, engineering, mathematics and technology education. In the applied sciences, problems are often open-ended and complex, requiring a multidisciplinary approach as well as new designs. In such cases, problem solving requires not only analytical capabilities, but also creativity…

  9. The Use of Video-Taped Lectures and Web-Based Communications in Teaching: A Distance-Teaching and Cross-Atlantic Collaboration Experiment.

    ERIC Educational Resources Information Center

    Herder, P. M.; Subrahmanian, E.; Talukdar, S.; Turk, A. L.; Westerberg, A. W.

    2002-01-01

    Explains distance education approach applied to the 'Engineering Design Problem Formulation' course simultaneously at the Delft University of Technology (the Netherlands) and at Carnegie Mellon University (CMU, Pittsburgh, USA). Uses video taped lessons, video conferencing, electronic mails and web-accessible document management system LIRE in the…

  10. Solar Stirling receiver alternatives for the terrestrial solar application

    NASA Technical Reports Server (NTRS)

    Stearns, J.

    1986-01-01

    Concept studies have been completed for four dish-Stirling receivers, i.e., solar only and thermal storage receiver, each of which is either directly coupled or indirectly (heat pipe) coupled to the Stirling engine. The results of these studies are to be applied to systems benefit/cost analysis to determine the most desirable development approach.

  11. A New Equation: How Encore Careers in Math and Science Education Equal More Success for Students

    ERIC Educational Resources Information Center

    Foster, Elizabeth

    2010-01-01

    Shifts in the work force (both in education and more broadly) provide an opportunity to apply other creative approaches in the quest for more effective STEM (science, technology, engineering, and mathematics) teaching. Increasingly, professionals change careers and explore new and varied professional opportunities, rather than remain in a single…

  12. Ash deposits - Initiating the change from empiricism to generic engineering. Part 2: Initial results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, R.A.; Wagoner, C.L.

    1986-01-01

    The goal is to develop and use calculations and measurements from several engineering disciplines that exceed the demonstrated limitations of present empirical techniques for predicting slagging/fouling behavior. In Part I of this paper, general relationships were presented for assessing effects of deposits and sootblowing on the real-time performance of heat transfer surfaces in pilot- and commercial-scale steam generators. In Part 2, these concepts are applied to the gas-side fouling of heat exchanger tubes. Deposition and heat transfer are calculated for superheater tubes in laboratory and utility furnaces. Numerical results for deposit thickness and heat flux are presented. Comparisons with datamore » show agreement, demonstrating that the broad-base engineering approach is promising.« less

  13. Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids.

    PubMed

    Xu, Jun-Wei; Zhong, Jian-Jiang

    2015-01-01

    Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum.

  14. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  15. Engineering approaches to illuminating brain structure and dynamics.

    PubMed

    Deisseroth, Karl; Schnitzer, Mark J

    2013-10-30

    Historical milestones in neuroscience have come in diverse forms, ranging from the resolution of specific biological mysteries via creative experimentation to broad technological advances allowing neuroscientists to ask new kinds of questions. The continuous development of tools is driven with a special necessity by the complexity, fragility, and inaccessibility of intact nervous systems, such that inventive technique development and application drawing upon engineering and the applied sciences has long been essential to neuroscience. Here we highlight recent technological directions in neuroscience spurred by progress in optical, electrical, mechanical, chemical, and biological engineering. These research areas are poised for rapid growth and will likely be central to the practice of neuroscience well into the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering.

    PubMed

    Duisit, Jérôme; Amiel, Hadrien; Wüthrich, Tsering; Taddeo, Adriano; Dedriche, Adeline; Destoop, Vincent; Pardoen, Thomas; Bouzin, Caroline; Joris, Virginie; Magee, Derek; Vögelin, Esther; Harriman, David; Dessy, Chantal; Orlando, Giuseppe; Behets, Catherine; Rieben, Robert; Gianello, Pierre; Lengelé, Benoît

    2018-06-01

    Human ear reconstruction is recognized as the emblematic enterprise in tissue engineering. Up to now, it has failed to reach human applications requiring appropriate tissue complexity along with an accessible vascular tree. We hereby propose a new method to process human auricles in order to provide a poorly immunogenic, complex and vascularized ear graft scaffold. 12 human ears with their vascular pedicles were procured. Perfusion-decellularization was applied using a SDS/polar solvent protocol. Cell and antigen removal was examined by histology and DNA was quantified. Preservation of the extracellular matrix (ECM) was assessed by conventional and 3D-histology, proteins and cytokines quantifications. Biocompatibility was assessed by implantation in rats for up to 60 days. Adipose-derived stem cells seeding was conducted on scaffold samples and with human aortic endothelial cells whole graft seeding in a perfusion-bioreactor. Histology confirmed cell and antigen clearance. DNA reduction was 97.3%. ECM structure and composition were preserved. Implanted scaffolds were tolerated in vivo, with acceptable inflammation, remodeling, and anti-donor antibody formation. Seeding experiments demonstrated cell engraftment and viability. Vascularized and complex auricular scaffolds can be obtained from human source to provide a platform for further functional auricular tissue engineered constructs, hence providing an ideal road to the vascularized composite tissue engineering approach. The ear is emblematic in the biofabrication of tissues and organs. Current regenerative medicine strategies, with matrix from donor tissues or 3D-printed, didn't reach any application for reconstruction, because critically missing a vascular tree for perfusion and transplantation. We previously described the production of vascularized and cell-compatible scaffolds, from porcine ear grafts. In this study, we ---- applied findings directly to human auricles harvested from postmortem donors, providing a perfusable matrix that retains the ear's original complexity and hosts new viable cells after seeding. This approach unlocks the ability to achieve an auricular tissue engineering approach, associated with possible clinical translation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Recent Progress on Systems and Synthetic Biology Approaches to Engineer Fungi As Microbial Cell Factories.

    PubMed

    Amores, Gerardo Ruiz; Guazzaroni, María-Eugenia; Arruda, Letícia Magalhães; Silva-Rocha, Rafael

    2016-04-01

    Filamentous fungi are remarkable organisms naturally specialized in deconstructing plant biomass and this feature has a tremendous potential for biofuel production from renewable sources. The past decades have been marked by a remarkable progress in the genetic engineering of fungi to generate industry-compatible strains needed for some biotech applications. In this sense, progress in this field has been marked by the utilization of high-throughput techniques to gain deep understanding of the molecular machinery controlling the physiology of these organisms, starting thus the Systems Biology era of fungi. Additionally, genetic engineering has been extensively applied to modify wellcharacterized promoters in order to construct new expression systems with enhanced performance under the conditions of interest. In this review, we discuss some aspects related to significant progress in the understating and engineering of fungi for biotechnological applications, with special focus on the construction of synthetic promoters and circuits in organisms relevant for industry. Different engineering approaches are shown, and their potential and limitations for the construction of complex synthetic circuits in these organisms are examined. Finally, we discuss the impact of engineered promoter architecture in the single-cell behavior of the system, an often-neglected relationship with a tremendous impact in the final performance of the process of interest. We expect to provide here some new directions to drive future research directed to the construction of high-performance, engineered fungal strains working as microbial cell factories.

  18. Automated and Adaptable Quantification of Cellular Alignment from Microscopic Images for Tissue Engineering Applications

    PubMed Central

    Xu, Feng; Beyazoglu, Turker; Hefner, Evan; Gurkan, Umut Atakan

    2011-01-01

    Cellular alignment plays a critical role in functional, physical, and biological characteristics of many tissue types, such as muscle, tendon, nerve, and cornea. Current efforts toward regeneration of these tissues include replicating the cellular microenvironment by developing biomaterials that facilitate cellular alignment. To assess the functional effectiveness of the engineered microenvironments, one essential criterion is quantification of cellular alignment. Therefore, there is a need for rapid, accurate, and adaptable methodologies to quantify cellular alignment for tissue engineering applications. To address this need, we developed an automated method, binarization-based extraction of alignment score (BEAS), to determine cell orientation distribution in a wide variety of microscopic images. This method combines a sequenced application of median and band-pass filters, locally adaptive thresholding approaches and image processing techniques. Cellular alignment score is obtained by applying a robust scoring algorithm to the orientation distribution. We validated the BEAS method by comparing the results with the existing approaches reported in literature (i.e., manual, radial fast Fourier transform-radial sum, and gradient based approaches). Validation results indicated that the BEAS method resulted in statistically comparable alignment scores with the manual method (coefficient of determination R2=0.92). Therefore, the BEAS method introduced in this study could enable accurate, convenient, and adaptable evaluation of engineered tissue constructs and biomaterials in terms of cellular alignment and organization. PMID:21370940

  19. KSC-04pd1449

    NASA Image and Video Library

    2004-07-06

    KENNEDY SPACE CENTER, FLA. - - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, approaches the top of the mobile service tower on Pad 17-B, Cape Canaveral Air Force Station. The engine will be mated with the first stage of the Delta II, which is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

  20. Economic development evaluation based on science and patents

    NASA Astrophysics Data System (ADS)

    Jokanović, Bojana; Lalic, Bojan; Milovančević, Miloš; Simeunović, Nenad; Marković, Dusan

    2017-09-01

    Economic development could be achieved through many factors. Science and technology factors could influence economic development drastically. Therefore the main aim in this study was to apply computational intelligence methodology, artificial neural network approach, for economic development estimation based on different science and technology factors. Since economic analyzing could be very challenging task because of high nonlinearity, in this study was applied computational intelligence methodology, artificial neural network approach, to estimate the economic development based on different science and technology factors. As economic development measure, gross domestic product (GDP) was used. As the science and technology factors, patents in different field were used. It was found that the patents in electrical engineering field have the highest influence on the economic development or the GDP.

  1. Wavelength Independent Optical Lithography and Microscopy

    DTIC Science & Technology

    1990-10-30

    Engineering Physics H. Barshatzky (1985 - present) Cornell, School of Applied & Engineering Physics I. Walton (1987 - 1988) National Semiconductor...Santa Clara, California R. Chen (1989 - 1990) Digital Equipment Corporation S. Boedecker (1990 - present) Cornell, School of Applied & Engineering Physics...H. Chen (1990 - present) Cornell, Department of Materials Science and Engineering M. Park (1987) Cornell, School of Applied & Engineering Physics M. Tornai (1988) UCLA, Dept. Medical Physics,

  2. Challenges for Engineering Design, Construction, and Maintenance of Infrastructure in Afghanistan

    DTIC Science & Technology

    2010-11-01

    applied engineering expertise that collectively can solve challenging infra- structure problems. USACE-ERDC’s researchers and engineers are field...Development Center (ERDC) possesses a unique combination of basic research and applied engineering expertise that collectively can solve challenging...restoration, and other projects. The USACE Engineer Research and Development Center (ERDC) possesses a unique combination of basic research and applied

  3. Adaptive Modeling of the International Space Station Electrical Power System

    NASA Technical Reports Server (NTRS)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  4. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    PubMed

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  5. Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering

    PubMed Central

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-01-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. PMID:25344492

  6. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications.

    PubMed

    Choi, Andrew; Seo, Kyoung Duck; Kim, Do Wan; Kim, Bum Chang; Kim, Dong Sung

    2017-02-14

    Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.

  7. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. Brad

    1995-01-01

    Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less

  9. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  10. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. B.

    1995-01-01

    Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  11. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  12. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  13. 40 CFR 1039.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1039.640 Section 1039.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Special Compliance Provisions § 1039.640 What special provisions apply to branded engines? The...

  14. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass

    DOE PAGES

    Aznar, Aude; Chalvin, Camille; Shih, Patrick M.; ...

    2018-01-09

    Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. Here, we have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase andmore » the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. In conclusion, the results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.« less

  15. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aznar, Aude; Chalvin, Camille; Shih, Patrick M.

    Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. Here, we have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase andmore » the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. In conclusion, the results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.« less

  16. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody.

    PubMed

    Monnet, Céline; Jorieux, Sylvie; Souyris, Nathalie; Zaki, Ouafa; Jacquet, Alexandra; Fournier, Nathalie; Crozet, Fabien; de Romeuf, Christophe; Bouayadi, Khalil; Urbain, Rémi; Behrens, Christian K; Mondon, Philippe; Fontayne, Alexandre

    2014-01-01

    While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGen™) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling(®) platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.

  17. How can climate change and engineered water conveyance affect sediment dynamics in the San Francisco Bay-Delta system?

    USGS Publications Warehouse

    Achete, Fernanda; Van der Wegen, Mick; Roelvink, Jan Adriaan; Jaffe, Bruce E.

    2017-01-01

    Suspended sediment concentration is an important estuarine health indicator. Estuarine ecosystems rely on the maintenance of habitat conditions, which are changing due to direct human impact and climate change. This study aims to evaluate the impact of climate change relative to engineering measures on estuarine fine sediment dynamics and sediment budgets. We use the highly engineered San Francisco Bay-Delta system as a case study. We apply a process-based modeling approach (Delft3D-FM) to assess the changes in hydrodynamics and sediment dynamics resulting from climate change and engineering scenarios. The scenarios consider a direct human impact (shift in water pumping location), climate change (sea level rise and suspended sediment concentration decrease), and abrupt disasters (island flooding, possibly as the results of an earthquake). Levee failure has the largest impact on the hydrodynamics of the system. Reduction in sediment input from the watershed has the greatest impact on turbidity levels, which are key to primary production and define habitat conditions for endemic species. Sea level rise leads to more sediment suspension and a net sediment export if little room for accommodation is left in the system due to continuous engineering works. Mitigation measures like levee reinforcement are effective for addressing direct human impacts, but less effective for a persistent, widespread, and increasing threat like sea level rise. Progressive adaptive mitigation measures to the changes in sediment and flow dynamics resulting from sea level rise may be a more effective strategy. Our approach shows that a validated process-based model is a useful tool to address long-term (decades to centuries) changes in sediment dynamics in highly engineered estuarine systems. In addition, our modeling approach provides a useful basis for long-term, process-based studies addressing ecosystem dynamics and health.

  18. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.

  19. PHOTOSPHERE EMISSION FROM A HYBRID RELATIVISTIC OUTFLOW WITH ARBITRARY DIMENSIONLESS ENTROPY AND MAGNETIZATION IN GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, He; Zhang, Bing, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hug18@psu.edu

    2015-03-10

    In view of the recent Fermi observations of gamma-ray burst (GRB) prompt emission spectra, we develop a theory of photosphere emission of a hybrid relativistic outflow with a hot fireball component (defined by dimensionless entropy η) and a cold Poynting-flux component (defined by magnetization σ{sub 0} at the central engine). We consider the scenarios both without and with sub-photospheric magnetic dissipations. Based on a simplified toy model of jet dynamics, we develop two approaches: a 'bottom-up' approach to predict the temperature (for a non-dissipative photosphere) and luminosity of the photosphere emission and its relative brightness for a given pair ofmore » (η, σ{sub 0}); and a 'top-down' approach to diagnose central engine parameters (η and σ{sub 0}) based on the observed quasi-thermal photosphere emission properties. We show that a variety of observed GRB prompt emission spectra with different degrees of photosphere thermal emission can be reproduced by varying η and σ{sub 0} within the non-dissipative photosphere scenario. In order to reproduce the observed spectra, the outflows of most GRBs need to have a significant σ, both at the central engine and at the photosphere. The σ value at 10{sup 15} cm from the central engine (a possible non-thermal emission site) is usually also greater than unity, so that internal-collision-induced magnetic reconnection and turbulence (ICMART) may be the mechanism to power the non-thermal emission. We apply our top-down approach to GRB 110721A and find that the temporal evolution behavior of its blackbody component can be well interpreted with a time-varying (η, σ{sub 0}) at the central engine, instead of invoking a varying engine base size r {sub 0} as proposed by previous authors.« less

  20. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis

    PubMed Central

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization. PMID:29377956

  1. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis.

    PubMed

    Zu, Xianghuan; Yang, Chuanlei; Wang, Hechun; Wang, Yinyan

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization.

  2. Probable Maximum Precipitation in the U.S. Pacific Northwest in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaodong; Hossain, Faisal; Leung, Lai-Yung

    2017-12-22

    The safety of large and aging water infrastructures is gaining attention in water management given the accelerated rate of change in landscape, climate and society. In current engineering practice, such safety is ensured by the design of infrastructure for the Probable Maximum Precipitation (PMP). Recently, several physics-based numerical modeling approaches have been proposed to modernize the conventional and ad hoc PMP estimation approach. However, the underlying physics has not been investigated and thus differing PMP estimates are obtained without clarity on their interpretation. In this study, we present a hybrid approach that takes advantage of both traditional engineering wisdom andmore » modern climate science to estimate PMP for current and future climate conditions. The traditional PMP approach is improved and applied to outputs from an ensemble of five CMIP5 models. This hybrid approach is applied in the Pacific Northwest (PNW) to produce ensemble PMP estimation for the historical (1970-2016) and future (2050-2099) time periods. The new historical PMP estimates are verified by comparing them with the traditional estimates. PMP in the PNW will increase by 50% of the current level by 2099 under the RCP8.5 scenario. Most of the increase is caused by warming, which mainly affects moisture availability, with minor contributions from changes in storm efficiency in the future. Moist track change tends to reduce the future PMP. Compared with extreme precipitation, ensemble PMP exhibits higher internal variation. Thus high-quality data of both precipitation and related meteorological fields (temperature, wind fields) are required to reduce uncertainties in the ensemble PMP estimates.« less

  3. Model Based Document and Report Generation for Systems Engineering

    NASA Technical Reports Server (NTRS)

    Delp, Christopher; Lam, Doris; Fosse, Elyse; Lee, Cin-Young

    2013-01-01

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  4. Vulnerability survival analysis: a novel approach to vulnerability management

    NASA Astrophysics Data System (ADS)

    Farris, Katheryn A.; Sullivan, John; Cybenko, George

    2017-05-01

    Computer security vulnerabilities span across large, enterprise networks and have to be mitigated by security engineers on a routine basis. Presently, security engineers will assess their "risk posture" through quantifying the number of vulnerabilities with a high Common Vulnerability Severity Score (CVSS). Yet, little to no attention is given to the length of time by which vulnerabilities persist and survive on the network. In this paper, we review a novel approach to quantifying the length of time a vulnerability persists on the network, its time-to-death, and predictors of lower vulnerability survival rates. Our contribution is unique in that we apply the cox proportional hazards regression model to real data from an operational IT environment. This paper provides a mathematical overview of the theory behind survival analysis methods, a description of our vulnerability data, and an interpretation of the results.

  5. Model based document and report generation for systems engineering

    NASA Astrophysics Data System (ADS)

    Delp, C.; Lam, D.; Fosse, E.; Lee, Cin-Young

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  6. New Techniques for Deep Learning with Geospatial Data using TensorFlow, Earth Engine, and Google Cloud Platform

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2017-12-01

    Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.

  7. An automated approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  8. Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign

    PubMed Central

    Carrera, Javier; Fernández del Carmen, Asun; Fernández-Muñoz, Rafael; Rambla, Jose Luis; Pons, Clara; Jaramillo, Alfonso; Elena, Santiago F.; Granell, Antonio

    2012-01-01

    Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites. PMID:22685389

  9. Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.

    PubMed

    Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou

    2014-06-25

    We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.

  10. Health systems engineering fellowship: curriculum and program development.

    PubMed

    Watts, Bradley V; Shiner, Brian; Cully, Jeffrey A; Gilman, Stuart C; Benneyan, James C; Eisenhauer, William

    2015-01-01

    Industrial engineering and related disciplines have been used widely in improvement efforts in many industries. These approaches have been less commonly attempted in health care. One factor limiting application is the limited workforce resulting from a lack of specific education and professional development in health systems engineering (HSE). The authors describe the development of an HSE fellowship within the United States Department of Veterans Affairs, Veterans Health Administration (VA). This fellowship includes a novel curriculum based on specifically established competencies for HSE. A 1-year HSE curriculum was developed and delivered to fellows at several VA engineering resource centers over several years. On graduation, a majority of the fellows accepted positions in the health care field. Challenges faced in developing the fellowship are discussed. Advanced educational opportunities in applied HSE have the potential to develop the workforce capacity needed to improve the quality of health care. © 2014 by the American College of Medical Quality.

  11. 40 CFR 1051.645 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1051.645 Section 1051.645 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Provisions § 1051.645 What special provisions apply to branded engines? The following provisions apply if you...

  12. Synthetic biology meets tissue engineering

    PubMed Central

    Davies, Jamie A.; Cachat, Elise

    2016-01-01

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  13. Cost effective simulation-based multiobjective optimization in the performance of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Aittokoski, Timo; Miettinen, Kaisa

    2008-07-01

    Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.

  14. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  15. An overview of game-based learning in building services engineering education

    NASA Astrophysics Data System (ADS)

    Alanne, Kari

    2016-03-01

    To ensure proper competence development and short graduation times for engineering students, it is essential that the study motivation is encouraged by new learning methods. In game-based learning, the learner's engagement is increased and learning is made meaningful by applying game-like features such as competition and rewarding through virtual promotions or achievement badges. In this paper, the state of the art of game-based learning in building services engineering education at university level is reviewed and discussed. A systematic literature review indicates that educational games have been reported in the field of related disciplines, such as mechanical and civil engineering. The development of system-level educational games that realistically simulate work life in building services engineering is still in its infancy. Novel rewarding practices and more comprehensive approaches entailing the state-of-the-art information tools such as building information modelling, geographic information systems, building management systems and augmented reality are needed in the future.

  16. A Complete Approach for Recombinant Protein Expression Training: From Gene Cloning to Assessment of Protein Functionality

    ERIC Educational Resources Information Center

    Novo, M. Teresa Marques; Soares-Costa, Andrea; de Souza, Antonia Q. L.; Figueira, Ana Carolina M.; Molina, Gustavo C.; Palacios, Carlos A.; Kull, Claudia R.; Monteiro, Izabel F.; Baldan-Pineda, Paulo H.; Henrique-Silva, Flavio

    2005-01-01

    A practical course was given to undergraduate biology students enrolled in the elective course "Introduction to Genetic Engineering" at the Federal University of Sao Carlos (UFSCar), Sao Paulo, Brazil. The goal of the course was to teach current molecular biology tools applied to a real research situation that could be reported by the…

  17. Using Screening Level Environmental Life Cycle Assessment to Aid Decision Making: A Case Study of a College Annual Report

    ERIC Educational Resources Information Center

    Ingwersen, Wesley W.; Curran, Mary Ann; Gonzalez, Michael A.; Hawkins, Troy R.

    2012-01-01

    Purpose: The purpose of this study is to compare the life cycle environmental impacts of the University of Cincinnati College of Engineering and Applied Sciences' current printed annual report to a version distributed via the internet. Design/methodology/approach: Life cycle environmental impacts of both versions of the report are modeled using…

  18. Engineering Robust Yeasts for Biorefinery Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taek Soon; Niles, Brad; Chow, Ruthie

    2016-06-22

    Isoprene is highly-valued terpene based-chemical feedstock and can be derived from either petroleum or from fermentation of plant biomass. This project enabled more efficient isoprene fermentation using renewable resources and at yields that can compete economically with non-renewable sources. This Phase I project applied a novel synthetic biology approach, the Artificial Positive Feedback Loop (APFL) technology, to improve production yields of isoprene.

  19. From STEM to STEAM: How Early Childhood Educators Can Apply Fred Rogers' Approach

    ERIC Educational Resources Information Center

    Sharapan, Hedda

    2012-01-01

    For many in early childhood education, STEAM is a new term. It began in this decade as STEM, an acronym for Science, Technology, Engineering, and Math. These curriculum areas have become a major focus in education because of the concern that the United States is falling behind in scientific innovation. With a new and familiar addition to the…

  20. Development of Detailed and Reduced Kinetics Mechanisms for Surrogates of Petroleum-Derived and Synthetic Jet Fuels

    DTIC Science & Technology

    2014-12-04

    is determined with an on-line, continuous NDIR analyzer and O2 is measured using an electrochemical oxygen sensor . 8 3.1.2 Modelling Approach...hydrocarbons were discussed. Additionally, the possibility to extend the reach of JetSurF model and apply it for models of soot formation in gas turbine engines was addressed.

  1. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  2. Generalized Schemes for High Throughput Manipulation of the Desulfovibrio vulgaris Hildenborough Genome.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabra, Swapnil; Butland, Gareth; Elias, Dwayne A

    The ability to conduct advanced functional genomic studies of the thousands of 38 sequenced bacteria has been hampered by the lack of available tools for making high39 throughput chromosomal manipulations in a systematic manner that can be applied across 40 diverse species. In this work, we highlight the use of synthetic biological tools to 41 assemble custom suicide vectors with reusable and interchangeable DNA parts to 42 facilitate chromosomal modification at designated loci. These constructs enable an array 43 of downstream applications including gene replacement and creation of gene fusions with 44 affinity purification or localization tags. We employed thismore » approach to engineer 45 chromosomal modifications in a bacterium that has previously proven difficult to 46 manipulate genetically, Desulfovibrio vulgaris Hildenborough, to generate a library of 47 662 strains. Furthermore, we demonstrate how these modifications can be used for 48 examining metabolic pathways, protein-protein interactions, and protein localization. The 49 ubiquity of suicide constructs in gene replacement throughout biology suggests that this 50 approach can be applied to engineer a broad range of species for a diverse array of 51 systems biological applications and is amenable to high-throughput implementation.« less

  3. Design approach of an aquaculture cage system for deployment in the constructed channel flow environments of a power plant

    PubMed Central

    Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.

    2018-01-01

    This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954

  4. Multilayered Magnetic Gelatin Membrane Scaffolds

    PubMed Central

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  5. Multilayered Magnetic Gelatin Membrane Scaffolds.

    PubMed

    Samal, Sangram K; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-10-21

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications.

  6. Engineering innovation in healthcare: technology, ethics and persons.

    PubMed

    Bowen, W Richard

    2011-01-01

    Engineering makes profound contributions to our health. Many of these contributions benefit whole populations, such as clean water and sewage treatment, buildings, dependable sources of energy, efficient harvesting and storage of food, and pharmaceutical manufacture. Thus, ethical assessment of these and other engineering activities has often emphasized benefits to communities. This is in contrast to medical ethics, which has tended to emphasize the individual patient affected by a doctor's actions. However technological innovation is leading to an entanglement of the activities, and hence ethical responsibilities, of healthcare professionals and engineering professionals. The article outlines three categories of innovation: assistive technologies, telehealthcare and quasi-autonomous systems. Approaches to engineering ethics are described and applied to these innovations. Such innovations raise a number of ethical opportunities and challenges, especially as the complexity of the technology increases. In particular the design and operation of the technologies require engineers to seek closer involvement with the persons benefiting from their work. Future innovation will require engineers to have a good knowledge of human biology and psychology. More particularly, healthcare engineers will need to prioritize each person's wellbeing, agency, human relationships and ecological self rather than technology, in the same way that doctors prioritize the treatment of persons rather than their diseases.

  7. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  8. Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids

    PubMed Central

    Xu, Jun-Wei; Zhong, Jian-Jiang

    2015-01-01

    Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum. PMID:26588475

  9. Computational aero-acoustics for fan duct propagation and radiation. Current status and application to turbofan liner optimisation

    NASA Astrophysics Data System (ADS)

    Astley, R. J.; Sugimoto, R.; Mustafi, P.

    2011-08-01

    Novel techniques are presented to reduce noise from turbofan aircraft engines by optimising the acoustic treatment in engine ducts. The application of Computational Aero-Acoustics (CAA) to predict acoustic propagation and absorption in turbofan ducts is reviewed and a critical assessment of performance indicates that validated and accurate techniques are now available for realistic engine predictions. A procedure for integrating CAA methods with state of the art optimisation techniques is proposed in the remainder of the article. This is achieved by embedding advanced computational methods for noise prediction within automated and semi-automated optimisation schemes. Two different strategies are described and applied to realistic nacelle geometries and fan sources to demonstrate the feasibility of this approach for industry scale problems.

  10. Evaluation of FCS self and peer-assessment approach based on Cooperative and Engineering Design learning.

    PubMed

    Cvetkovic, Dean

    2013-01-01

    The Cooperative Learning in Engineering Design curriculum can be enhanced with structured and timely self and peer assessment teaching methodologies which can easily be applied to any Biomedical Engineering curriculum. A study was designed and implemented to evaluate the effectiveness of this structured and timely self and peer assessment on student team-based projects. In comparing the 'peer-blind' and 'face-to-face' Fair Contribution Scoring (FCS) methods, both had advantages and disadvantages. The 'peer-blind' self and peer assessment method would cause high discrepancy between self and team ratings. But the 'face-to-face' method on the other hand did not have the discrepancy issue and had actually proved to be a more accurate and effective, indicating team cohesiveness and good cooperative learning.

  11. SHARP's systems engineering challenge: rectifying integrated product team requirements with performance issues in an evolutionary spiral development acquisition

    NASA Astrophysics Data System (ADS)

    Kuehl, C. Stephen

    2003-08-01

    Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics requirements specifications. Utilizing the draft NAVAIR SE guideline handbook and the ANSI/EIA-632 standard: Processes for Engineering a System, a systems engineering tailored process approach was adopted for the accelerated SHARP EMD prgram. Tailoring SE processes in this accelerated product delivery environment provided unique opportunities to be technically creative in the establishment of a product performance baseline. This paper provides an historical overview of the systems engineering activities spanning the prototype phase through the EMD SHARP program phase, the performance requirement capture activities and refinement process challenges, and what SE process improvements can be applied to future SHARP-like programs adopting a compressed, evolutionary spiral development acquisition paradigm.

  12. Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering

    PubMed Central

    Boccaccio, A.; Ballini, A.; Pappalettere, C.; Tullo, D.; Cantore, S.; Desiate, A.

    2011-01-01

    Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014. Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance. In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated. PMID:21278921

  13. Demand for interdisciplinary laboratories for physiology research by undergraduate students in biosciences and biomedical engineering.

    PubMed

    Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J

    2008-12-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.

  14. Biological materials: a materials science approach.

    PubMed

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Systems metabolic engineering in an industrial setting.

    PubMed

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  16. Generic comparison of protein inference engines.

    PubMed

    Claassen, Manfred; Reiter, Lukas; Hengartner, Michael O; Buhmann, Joachim M; Aebersold, Ruedi

    2012-04-01

    Protein identifications, instead of peptide-spectrum matches, constitute the biologically relevant result of shotgun proteomics studies. How to appropriately infer and report protein identifications has triggered a still ongoing debate. This debate has so far suffered from the lack of appropriate performance measures that allow us to objectively assess protein inference approaches. This study describes an intuitive, generic and yet formal performance measure and demonstrates how it enables experimentalists to select an optimal protein inference strategy for a given collection of fragment ion spectra. We applied the performance measure to systematically explore the benefit of excluding possibly unreliable protein identifications, such as single-hit wonders. Therefore, we defined a family of protein inference engines by extending a simple inference engine by thousands of pruning variants, each excluding a different specified set of possibly unreliable identifications. We benchmarked these protein inference engines on several data sets representing different proteomes and mass spectrometry platforms. Optimally performing inference engines retained all high confidence spectral evidence, without posterior exclusion of any type of protein identifications. Despite the diversity of studied data sets consistently supporting this rule, other data sets might behave differently. In order to ensure maximal reliable proteome coverage for data sets arising in other studies we advocate abstaining from rigid protein inference rules, such as exclusion of single-hit wonders, and instead consider several protein inference approaches and assess these with respect to the presented performance measure in the specific application context.

  17. Procurement engineering - the productivity factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargerstock, S.B.

    1993-01-01

    The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment.more » Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station.« less

  18. Inverse problems in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Karwowski, Jacek

    Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.

  19. Human factors systems approach to healthcare quality and patient safety

    PubMed Central

    Carayon, Pascale; Wetterneck, Tosha B.; Rivera-Rodriguez, A. Joy; Hundt, Ann Schoofs; Hoonakker, Peter; Holden, Richard; Gurses, Ayse P.

    2013-01-01

    Human factors systems approaches are critical for improving healthcare quality and patient safety. The SEIPS (Systems Engineering Initiative for Patient Safety) model of work system and patient safety is a human factors systems approach that has been successfully applied in healthcare research and practice. Several research and practical applications of the SEIPS model are described. Important implications of the SEIPS model for healthcare system and process redesign are highlighted. Principles for redesigning healthcare systems using the SEIPS model are described. Balancing the work system and encouraging the active and adaptive role of workers are key principles for improving healthcare quality and patient safety. PMID:23845724

  20. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.

    PubMed

    Alam, Md Nur; Akbar, M Ali

    2013-01-01

    The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.

  1. A Proposal of Product Development Collaboration Method Using User Support Information and its Experimental Evaluation

    NASA Astrophysics Data System (ADS)

    Tanaka, Mitsuru; Kataoka, Masatoshi; Koizumi, Hisao

    As the market changes more rapidly and new products continue to get more complex and multifunctional, product development collaboration with competent partners and leading users is getting more important to come up with new products that are successful in the market in a timely manner. ECM (engineering chain management) and SCM (supply chain management) are supply-side approaches toward this collaboration. In this paper, we propose a demand-side approach toward product development collaboration with users based on the information gathered through user support interactions. The approach and methodology proposed here was applied to a real data set, and its effectiveness was verified.

  2. Robust Spatial Approximation of Laser Scanner Point Clouds by Means of Free-form Curve Approaches in Deformation Analysis

    NASA Astrophysics Data System (ADS)

    Bureick, Johannes; Alkhatib, Hamza; Neumann, Ingo

    2016-03-01

    In many geodetic engineering applications it is necessary to solve the problem of describing a measured data point cloud, measured, e. g. by laser scanner, by means of free-form curves or surfaces, e. g., with B-Splines as basis functions. The state of the art approaches to determine B-Splines yields results which are seriously manipulated by the occurrence of data gaps and outliers. Optimal and robust B-Spline fitting depend, however, on optimal selection of the knot vector. Hence we combine in our approach Monte-Carlo methods and the location and curvature of the measured data in order to determine the knot vector of the B-Spline in such a way that no oscillating effects at the edges of data gaps occur. We introduce an optimized approach based on computed weights by means of resampling techniques. In order to minimize the effect of outliers, we apply robust M-estimators for the estimation of control points. The above mentioned approach will be applied to a multi-sensor system based on kinematic terrestrial laserscanning in the field of rail track inspection.

  3. A DMAIC approach for process capability improvement an engine crankshaft manufacturing process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa

    2014-05-01

    The define-measure-analyze-improve-control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of crankshaft. This statistical process control study starts with selection of the critical-to-quality (CTQ) characteristic in the define stratum. The next stratum constitutes the collection of dimensional measurement data of the CTQ characteristic identified. This is followed by the analysis and improvement strata where the various quality control tools like Ishikawa diagram, physical mechanism analysis, failure modes effects analysis and analysis of variance are applied. Finally, the process monitoring charts are deployed at the workplace for regular monitoring and control of the concerned CTQ characteristic. By adopting DMAIC approach, standard deviation is reduced from 0.003 to 0.002. The process potential capability index ( C P) values improved from 1.29 to 2.02 and the process performance capability index ( C PK) values improved from 0.32 to 1.45, respectively.

  4. Building confidence in quantitative systems pharmacology models: An engineer's guide to exploring the rationale in model design and development.

    PubMed

    Timmis, J; Alden, K; Andrews, P; Clark, E; Nellis, A; Naylor, B; Coles, M; Kaye, P

    2017-03-01

    This tutorial promotes good practice for exploring the rationale of systems pharmacology models. A safety systems engineering inspired notation approach provides much needed rigor and transparency in development and application of models for therapeutic discovery and design of intervention strategies. Structured arguments over a model's development, underpinning biological knowledge, and analyses of model behaviors are constructed to determine the confidence that a model is fit for the purpose for which it will be applied. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  5. Strong field-matching effects in superconducting YBa2Cu3O7-δ films with vortex energy landscapes engineered via masked ion irradiation

    NASA Astrophysics Data System (ADS)

    Swiecicki, I.; Ulysse, C.; Wolf, T.; Bernard, R.; Bergeal, N.; Briatico, J.; Faini, G.; Lesueur, J.; Villegas, Javier E.

    2012-06-01

    We have developed a masked ion irradiation technique to engineer the energy landscape for vortices in oxide superconductors. This approach associates the possibility to design the landscape geometry at the nanoscale with the unique capability to adjust the depth of the energy wells for vortices. This enabled us to unveil the key role of vortex channeling in modulating the amplitude of the field matching effects with the artificial energy landscape, and to make the latter govern flux dynamics over an unusually wide range of temperatures and applied fields for high-temperature superconducting films.

  6. Molecular and chemical engineering of bacteriophages for potential medical applications.

    PubMed

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  7. Software support environment design knowledge capture

    NASA Technical Reports Server (NTRS)

    Dollman, Tom

    1990-01-01

    The objective of this task is to assess the potential for using the software support environment (SSE) workstations and associated software for design knowledge capture (DKC) tasks. This assessment will include the identification of required capabilities for DKC and hardware/software modifications needed to support DKC. Several approaches to achieving this objective are discussed and interim results are provided: (1) research into the problem of knowledge engineering in a traditional computer-aided software engineering (CASE) environment, like the SSE; (2) research into the problem of applying SSE CASE tools to develop knowledge based systems; and (3) direct utilization of SSE workstations to support a DKC activity.

  8. Recommender engine for continuous-time quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Huang, Li; Yang, Yi-feng; Wang, Lei

    2017-03-01

    Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.

  9. Engineering and public health at CDC.

    PubMed

    Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J

    2006-12-22

    Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.

  10. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2004-01-01

    In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.

  11. GoWeb: a semantic search engine for the life science web.

    PubMed

    Dietze, Heiko; Schroeder, Michael

    2009-10-01

    Current search engines are keyword-based. Semantic technologies promise a next generation of semantic search engines, which will be able to answer questions. Current approaches either apply natural language processing to unstructured text or they assume the existence of structured statements over which they can reason. Here, we introduce a third approach, GoWeb, which combines classical keyword-based Web search with text-mining and ontologies to navigate large results sets and facilitate question answering. We evaluate GoWeb on three benchmarks of questions on genes and functions, on symptoms and diseases, and on proteins and diseases. The first benchmark is based on the BioCreAtivE 1 Task 2 and links 457 gene names with 1352 functions. GoWeb finds 58% of the functional GeneOntology annotations. The second benchmark is based on 26 case reports and links symptoms with diseases. GoWeb achieves 77% success rate improving an existing approach by nearly 20%. The third benchmark is based on 28 questions in the TREC genomics challenge and links proteins to diseases. GoWeb achieves a success rate of 79%. GoWeb's combination of classical Web search with text-mining and ontologies is a first step towards answering questions in the biomedical domain. GoWeb is online at: http://www.gopubmed.org/goweb.

  12. A New Approach in Applying Systems Engineering Tools and Analysis to Determine Hepatocyte Toxicogenomics Risk Levels to Human Health.

    PubMed

    Gigrich, James; Sarkani, Shahryar; Holzer, Thomas

    2017-03-01

    There is an increasing backlog of potentially toxic compounds that cannot be evaluated with current animal-based approaches in a cost-effective and expeditious manner, thus putting human health at risk. Extrapolation of animal-based test results for human risk assessment often leads to different physiological outcomes. This article introduces the use of quantitative tools and methods from systems engineering to evaluate the risk of toxic compounds by the analysis of the amount of stress that human hepatocytes undergo in vitro when metabolizing GW7647 1 over extended times and concentrations. Hepatocytes are exceedingly connected systems that make it challenging to understand the highly varied dimensional genomics data to determine risk of exposure. Gene expression data of peroxisome proliferator-activated receptor-α (PPARα) 2 binding was measured over multiple concentrations and varied times of GW7647 exposure and leveraging mahalanombis distance to establish toxicity threshold risk levels. The application of these novel systems engineering tools provides new insight into the intricate workings of human hepatocytes to determine risk threshold levels from exposure. This approach is beneficial to decision makers and scientists, and it can help reduce the backlog of untested chemical compounds due to the high cost and inefficiency of animal-based models.

  13. 76 FR 68634 - Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines AGENCY: Federal Aviation... ``(c) This AD applies to * * * and CF6-80A3 turbofan engines with left-hand links * * *.'' to ``(c) This AD applies to * * * and CF6-80A3 turbofan engines, including engines marked on the engine data...

  14. The hybrid thermography approach applied to architectural structures

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.

    2017-07-01

    This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.

  15. The McBride Honors Program in Public Affairs for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Harrison, W. J.; Miller, R. L.; Olds, B. M.; Sacks, A. B.

    2006-12-01

    The McBride Honors Program in Public Affairs at The Colorado School of Mines (CSM), instituted in 1978, is an award-winning exemplar in the liberal arts which provides a select number of CSM engineering students an opportunity to cross the boundaries of their technical expertise in engineering and applied science, and to gain the understanding and appreciation of the contexts in which engineering and applied science and all human systems reside, and specifically to explore and integrate the social, cultural, ethical and environmental implications of their future professional judgments and their roles as citizens in varied and complex settings. The 27 semester-hour program of seminars, courses, and off-campus activities features small seminars; a cross-disciplinary approach; and opportunities for one-on-one faculty tutorials, instruction and practice in oral and written communication, a Washington, D.C. public policy seminar, a practicum experience (internship or foreign study). Circumstances external to the McBride Program itself, which include the development and growth of the field of Public Affairs nationally and the persistence of legacy courses, have created the need to revitalize and refocus the historically cross-departmental Program. A recent curriculum reform effort has achieved a more thoroughly interdisciplinary learning experience to educate engineers and scientists who, as called for in the National Academy of Engineering's The Engineer of 2020 "will assume leadership positions from which they can serve as positive influences in the making of public policy and in the administration of government and industry". In this presentation we showcase best practices in curriculum reform, exemplified by a seminar in National policy analysis where students and faculty have recently investigated federal science funding decisions in support of natural hazards including earthquakes, tsunamis, wildland fires, and pandemic disease.

  16. Conceptional Considerations to Energy Balance and Global Warming Potential of Soil Bioengineering Structures

    NASA Astrophysics Data System (ADS)

    von der Thannen, Magdalena; Paratscha, Roman; Smutny, Roman; Lampalzer, Thomas; Strauss, Alfred; Rauch, Hans Peter

    2016-04-01

    Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. In this context soil bioengineering techniques are often used as standalone solutions or in combination with conventional engineering structures. It is a construction technique that uses biological components for hydraulic and civil engineering solutions. In general it pursues the same objectives as conventional civil engineering structures. Currently the used assessment methods for soil bioengineering structures are referencing technically, ecologically and socio-economically. In a modern engineering approach additionally, environmental impacts and potential added values should be considered. The research project E-Protect aims at developing Environmental Life Cycle Assessment (LCA) models for this special field of alpine protective constructions. Both, the Cumulative Energy Demand (CED) and the Global Warming Potential (GWP) should be considered in an Environmental LCA over the whole life cycle of an engineering structure. The life cycle itself can be divided into three phases: the construction phase, the use phase and the end of life phase. The paper represents a concept to apply an Environmental LCA model for soil bioengineering structures. Beside the construction phase of these structures particular attention will be given to the use phase. It is not only important in terms of engineering effects but also plays an important role for positive carbon footprint due to the growing plants of soil bioengineering structures in contrast to conventional structures. Innovative Environmental LCA models will be applied to soil bioengineering structures which provide a new transparency for the responsible planners and stakeholders, by pointing out the total consumption of resources in all construction phases and components.

  17. Implementation of STEAM Education to Improve Mastery Concept

    NASA Astrophysics Data System (ADS)

    Liliawati, W.; Rusnayati, H.; Purwanto; Aristantia, G.

    2018-01-01

    Science Technology Engineering, Art, Mathematics (STEAM) is an integration of art into Science Technology Engineering, Mathematics (STEM). Connecting art to science makes learning more effective and innovative. This study aims to determine the increase in mastery of the concept of high school students after the application of STEAM education in learning with the theme of Water and Us. The research method used is one group Pretest-posttest design with students of class VII (n = 37) junior high school. The instrument used in the form of question of mastery of concepts in the form of multiple choices amounted to 20 questions and observation sheet of learning implementation. The results of the study show that there is an increase in conceptualization on the theme of Water and Us which is categorized as medium (=0, 46) after the application of the STEAM approach. The conclusion obtained that by applying STEAM approach in learning can improve the mastery of concept

  18. A multidimensional approach to examine student interdisciplinary learning in science and engineering in higher education

    NASA Astrophysics Data System (ADS)

    Spelt, Elisabeth Jacoba Hendrika; Luning, Pieternelleke Arianne; van Boekel, Martinus A. J. S.; Mulder, Martin

    2017-11-01

    Preparing science and engineering students to work in interdisciplinary teams necessitates research on teaching and learning of interdisciplinary thinking. A multidimensional approach was taken to examine student interdisciplinary learning in a master course on food quality management. The collected 615 student experiences were analysed for the cognitive, emotional, and social learning dimensions using the learning theory of Illeris. Of these 615 experiences, the analysis showed that students reported 214, 194, and 207 times on, respectively, the emotional, the cognitive, and the social dimension. Per learning dimension, key learning experiences featuring interdisciplinary learning were identified such as 'frustrations in selecting and matching disciplinary knowledge to complex problems' (emotional), 'understanding how to apply theoretical models or concepts to real-world situations' (cognitive), and 'socially engaging with peers to recognise similarities in perceptions and experiences' (social). Furthermore, the results showed that students appreciated the cognitive dimension relatively more than the emotional and social dimensions.

  19. Synthetic biology platform technologies for antimicrobial applications.

    PubMed

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Reversibly constraining spliceosome-substrate complexes by engineering disulfide crosslinks.

    PubMed

    McCarthy, Patrick; Garside, Erin; Meschede-Krasa, Yonatan; MacMillan, Andrew; Pomeranz Krummel, Daniel

    2017-08-01

    The spliceosome is a highly dynamic mega-Dalton enzyme, formed in part by assembly of U snRNPs onto its pre-mRNA substrate transcripts. Early steps in spliceosome assembly are challenging to study biochemically and structurally due to compositional and conformational dynamics. We detail an approach to covalently and reversibly constrain or trap non-covalent pre-mRNA/protein spliceosome complexes. This approach involves engineering a single disulfide bond between a thiol-bearing cysteine sidechain and a proximal backbone phosphate of the pre-mRNA, site-specifically modified with an N-thioalkyl moiety. When distance and angle between reactants is optimal, the sidechain will react with the single N-thioalkyl to form a crosslink upon oxidation. We provide protocols detailing how this has been applied successfully to trap an 11-subunit RNA-protein assembly, the human U1 snRNP, in complex with a pre-mRNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Computational approaches for rational design of proteins with novel functionalities

    PubMed Central

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes. PMID:24688643

  2. Numerical Prediction of Combustion-induced Noise using a hybrid LES/CAA approach

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias; Pitsch, Heinz; Kaltenbacher, Manfred

    2006-11-01

    Noise generation in technical devices is an increasingly important problem. Jet engines in particular produce sound levels that not only are a nuisance but may also impair hearing. The noise emitted by such engines is generated by different sources such as jet exhaust, fans or turbines, and combustion. Whereas the former acoustic mechanisms are reasonably well understood, combustion-generated noise is not. A methodology for the prediction of combustion-generated noise is developed. In this hybrid approach unsteady acoustic source terms are obtained from an LES and the propagation of pressure perturbations are obtained using acoustic analogies. Lighthill's acoustic analogy and a non-linear wave equation, accounting for variable speed of sound, have been employed. Both models are applied to an open diffusion flame. The effects on the far field pressure and directivity due to the variation of speed of sound are analyzed. Results for the sound pressure level will be compared with experimental data.

  3. Gesellschaft fuer angewandte Mathematik und Mechanik, Scientific Annual Meeting, Universitaet Stuttgart, Federal Republic of Germany, Apr. 13-17, 1987, Reports

    NASA Astrophysics Data System (ADS)

    Recent advances in the analytical and numerical treatment of physical and engineering problems are discussed in reviews and reports. Topics addressed include fluid mechanics, numerical methods for differential equations, FEM approaches, and boundary-element methods. Consideration is given to optimization, decision theory, stochastics, actuarial mathematics, applied mathematics and mathematical physics, and numerical analysis.

  4. Web 2.0 as Catalyst: Virtually Reaching Out to Users and Connecting Them to Library Resources and Services

    ERIC Educational Resources Information Center

    Xiao, Norah

    2008-01-01

    This article is based on services to library users in the area of chemistry at the Science and Engineering (S&E) Library of the University of Southern California (USC), to which I applied various new technologies as outreach approaches. Various Web 2.0 technologies such as a blog, tags, YouTube, RSS feeds, Instant Messaging, online…

  5. Multi-scale Modeling of the Evolution of a Large-Scale Nourishment

    NASA Astrophysics Data System (ADS)

    Luijendijk, A.; Hoonhout, B.

    2016-12-01

    Morphological predictions are often computed using a single morphological model commonly forced with schematized boundary conditions representing the time scale of the prediction. Recent model developments are now allowing us to think and act differently. This study presents some recent developments in coastal morphological modeling focusing on flexible meshes, flexible coupling between models operating at different time scales, and a recently developed morphodynamic model for the intertidal and dry beach. This integrated modeling approach is applied to the Sand Engine mega nourishment in The Netherlands to illustrate the added-values of this integrated approach both in accuracy and computational efficiency. The state-of-the-art Delft3D Flexible Mesh (FM) model is applied at the study site under moderate wave conditions. One of the advantages is that the flexibility of the mesh structure allows a better representation of the water exchange with the lagoon and corresponding morphological behavior than with the curvilinear grid used in the previous version of Delft3D. The XBeach model is applied to compute the morphodynamic response to storm events in detail incorporating the long wave effects on bed level changes. The recently developed aeolian transport and bed change model AeoLiS is used to compute the bed changes in the intertidal and dry beach area. In order to enable flexible couplings between the three abovementioned models, a component-based environment has been developed using the BMI method. This allows a serial coupling of Delft3D FM and XBeach steered by a control module that uses a hydrodynamic time series as input (see figure). In addition, a parallel online coupling, with information exchange in each timestep will be made with the AeoLiS model that predicts the bed level changes at the intertidal and dry beach area. This study presents the first years of evolution of the Sand Engine computed with the integrated modelling approach. Detailed comparisons are made between the observed and computed morphological behaviour for the Sand Engine on an aggregated as well as sub-system level.

  6. Usability Methods for Ensuring Health Information Technology Safety: Evidence-Based Approaches. Contribution of the IMIA Working Group Health Informatics for Patient Safety.

    PubMed

    Borycki, E; Kushniruk, A; Nohr, C; Takeda, H; Kuwata, S; Carvalho, C; Bainbridge, M; Kannry, J

    2013-01-01

    Issues related to lack of system usability and potential safety hazards continue to be reported in the health information technology (HIT) literature. Usability engineering methods are increasingly used to ensure improved system usability and they are also beginning to be applied more widely for ensuring the safety of HIT applications. These methods are being used in the design and implementation of many HIT systems. In this paper we describe evidence-based approaches to applying usability engineering methods. A multi-phased approach to ensuring system usability and safety in healthcare is described. Usability inspection methods are first described including the development of evidence-based safety heuristics for HIT. Laboratory-based usability testing is then conducted under artificial conditions to test if a system has any base level usability problems that need to be corrected. Usability problems that are detected are corrected and then a new phase is initiated where the system is tested under more realistic conditions using clinical simulations. This phase may involve testing the system with simulated patients. Finally, an additional phase may be conducted, involving a naturalistic study of system use under real-world clinical conditions. The methods described have been employed in the analysis of the usability and safety of a wide range of HIT applications, including electronic health record systems, decision support systems and consumer health applications. It has been found that at least usability inspection and usability testing should be applied prior to the widespread release of HIT. However, wherever possible, additional layers of testing involving clinical simulations and a naturalistic evaluation will likely detect usability and safety issues that may not otherwise be detected prior to widespread system release. The framework presented in the paper can be applied in order to develop more usable and safer HIT, based on multiple layers of evidence.

  7. Health technopole: innovation applied to clinical engineering & health technology management education.

    PubMed

    Vilcahuaman, L; Rivas, R

    2010-01-01

    In the Peruvian Health System, Clinical Engineering does not exist as a topic of intervention. 59% of biomedical equipment is officially classified as operational, however next to apply the correct classification methodology and include security issues, only 10% of the equipment are suitable for use in patients. The serious consequences for patients, is opposite to the increased public investment in the health sector. Reversing this context leads to structural changes at all levels of the organization and they will be achievable only through an appropriate educational program. A strategy focused on joint of capacities called Health Technopole has managed to implement an innovative Model of Education in Healthcare Technology Management HTM and Clinical Engineering CE aimed at solving this problem. The proposal focused on strategies to strengthen the educational goals such as creating HTM & CE Units in hospitals, the implementation of the methodology: Problem Based Learning and Project Management in HTM & CE in classroom and on line courses. The process includes an effective interaction with global organizations through teleconferences, Internships, Workshops and Seminars. A key component was the sustained multidisciplinary approach. Health Technopole CENGETS is an expert adviser for the Ministry of Health and is called for trainings, design training programs for regional governments and also supports global organizations such as PAHO / WHO and ORAS / CONHU. The proposal of innovation applied to HTM & CE Education is effective and is a benchmark for similar countries.

  8. Probable Maximum Precipitation in the U.S. Pacific Northwest in a Changing Climate: PMP UNDER CLIMATE CHANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby

    The safety of large and aging water infrastructures is gaining attention in water management given the accelerated rate of change in landscape, climate and society. In current engineering practice, such safety is ensured by the design of infrastructure for the Probable Maximum Precipitation (PMP). Recently, several physics-based numerical modeling approaches have been proposed to modernize the conventional and ad hoc PMP estimation approach. However, the underlying physics has not been investigated and thus differing PMP estimates are obtained without clarity on their interpretation. In this study, we present a hybrid approach that takes advantage of both traditional engineering wisdom andmore » modern climate science to estimate PMP for current and future climate conditions. The traditional PMP approach is improved and applied to outputs from an ensemble of five CMIP5 models. This hybrid approach is applied in the Pacific Northwest (PNW) to produce ensemble PMP estimation for the historical (1970-2016) and future (2050-2099) time periods. The new historical PMP estimates are verified by comparing them with the traditional estimates. PMP in the PNW will increase by 50% of the current level by 2099 under the RCP8.5 scenario. Most of the increase is caused by warming, which mainly affects moisture availability, with minor contributions from changes in storm efficiency in the future. Moist track change tends to reduce the future PMP. Compared with extreme precipitation, ensemble PMP exhibits higher internal variation. Thus high-quality data of both precipitation and related meteorological fields (temperature, wind fields) are required to reduce uncertainties in the ensemble PMP estimates.« less

  9. Noise Generation by Fans with Supersonic Tip Speeds

    NASA Technical Reports Server (NTRS)

    Glegg, Stewart; Envia, Edmane (Technical Monitor)

    2003-01-01

    Fan noise continues to be a significant issue for commercial aircraft engines and there still exists a requirement for improved understanding of the fundamental issues associated with fan noise source mechanisms. At the present time, most of the prediction methods identify the dominant acoustic sources to be associated with the stator vanes or blade trailing edges which are downstream of the fan face. However recent studies have shown that acoustic waves are significantly attenuated as they propagate upstream through a rotor, and if the appropriate corrections are applied, sound radiation from the engine inlet is significantly underpredicted. The prediction models can only be applied to fans with subsonic tip speeds. In contrast, most aircraft engines have fan tip speeds which are transonic and this implies an even higher attenuation for upstream propagating acoustic waves. Consequently understanding how sound propagates upstream through the fan is an important, and not well understood phenomena. The objective of this study is to provide improved insight into the upstream propagation effects through a rotor which are relevant to full scale engines. The focus of this study is on broadband fan noise generated by boundary layer turbulence interacting with the trailing edges of the fan blades. If this source mechanism is important upstream of the fan, the sound must propagate upstream through a transonic non uniform flow which includes large gradients and non linearities. Developing acoustic propagation models in this type of flow is challenging and currently limited to low frequency applications, where the frequency is of the same order as the blade passing frequency of the fan. For trailing edge noise, much higher frequencies are relevant and so a suitable approach needs to be developed, which is not limited by an unacceptably large computational effort. In this study we are in the process of developing a computational method which applies for the high frequencies of interest, and allows for any type of flow field associated with the fan. In this progress report the approach to be used and the basic equations will be presented. Some initial results will be given, but these are preliminary and need further verification.

  10. Optical ptychographic microscopy for quantitative anisotropic phase imaging

    NASA Astrophysics Data System (ADS)

    Anthony, N.; Cadenazzi, G.; Nugent, K. A.; Abbey, B.

    2016-12-01

    Ptychography has recently been adapted for the recovery of the complete Jones matrix of an anisotropic specimen, using a vectorial form of the Ptychographic Iterative Engine (vPIE) for a set of linearly polarized probes. Here we show that this method can be applied to the recovery of the in-plane components of the elastic strain tensor in a diametrically compressed disc. The advantages and disadvantages of vPIE for the recovery of strain information from `real-world' samples is discussed as well as the potential for this approach to be applied to the characterization of the mechanical properties of optically transparent materials

  11. Handwritten document age classification based on handwriting styles

    NASA Astrophysics Data System (ADS)

    Ramaiah, Chetan; Kumar, Gaurav; Govindaraju, Venu

    2012-01-01

    Handwriting styles are constantly changing over time. We approach the novel problem of estimating the approximate age of Historical Handwritten Documents using Handwriting styles. This system will have many applications in handwritten document processing engines where specialized processing techniques can be applied based on the estimated age of the document. We propose to learn a distribution over styles across centuries using Topic Models and to apply a classifier over weights learned in order to estimate the approximate age of the documents. We present a comparison of different distance metrics such as Euclidean Distance and Hellinger Distance within this application.

  12. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...

  13. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...

  14. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... standards apply as specified in 40 CFR part 94 for engines originally manufactured in model years 2004...

  15. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... standards apply as specified in 40 CFR part 94 for engines originally manufactured in model years 2004...

  16. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...

  17. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    PubMed

    Waltman, Ludo; van Raan, Anthony F J; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  18. Exploring the Relationship between the Engineering and Physical Sciences and the Health and Life Sciences by Advanced Bibliometric Methods

    PubMed Central

    Waltman, Ludo; van Raan, Anthony F. J.; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the ‘EPS-HLS interface’ is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade. PMID:25360616

  19. 40 CFR 1048.401 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines that have gone into service? 1048.401 Section 1048.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.401 What testing requirements apply to my engines that have...

  20. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  1. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  2. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  3. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  4. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  5. 40 CFR 1054.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1054.640 Section 1054.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... EQUIPMENT Special Compliance Provisions § 1054.640 What special provisions apply to branded engines? The...

  6. 40 CFR 1048.635 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1048.635 Section 1048.635 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Compliance Provisions § 1048.635 What special provisions apply to branded engines? The following provisions...

  7. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... VESSELS Special Compliance Provisions § 1045.640 What special provisions apply to branded engines? The...

  8. 40 CFR 1039.107 - What evaporative emission standards and requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1048 that apply to spark-ignition engines, as follows: (a) Follow the steps in 40 CFR 1048.245 to show...-IGNITION ENGINES Emission Standards and Related Requirements § 1039.107 What evaporative emission standards and requirements apply? There are no evaporative emission standards for diesel-fueled engines, or...

  9. 40 CFR 1051.510 - What special provisions apply for testing ATV engines? [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply for... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test Procedures § 1051.510 What special provisions apply for testing ATV engines? [Reserved] ...

  10. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    PubMed

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Micro/nano-engineering to control growth of neuronal cells and tissue engineering applied to the central nervous system].

    PubMed

    Béduer, Amélie; Vaysse, Laurence; Loubinoux, Isabelle; Vieu, Christophe

    2013-01-01

    Central nervous system pathologies are often characterized by the loss of cell populations. A promising therapy now being developed consists in using bioactive materials, associating grafted cells to biopolymers which provide a scaffold for the in vitro building of new tissues, to be implanted in vivo. In the present article, the state of the art of this field, at crossroads between microtechnology and neuroscience, is described in detail; thereafter our own approach and results about interactions between adult human neural stem cells and microstructured polymers are summarized and discussed. In a second part, some central nervous system repair strategies, based on cerebral tissue engineering, are presented. We will report the main results of our studies to work out and characterize in vivo a cerebral bioprosthesis. © Société de Biologie, 2014.

  12. The Flow Engine Framework: A Cognitive Model of Optimal Human Experience

    PubMed Central

    Šimleša, Milija; Guegan, Jérôme; Blanchard, Edouard; Tarpin-Bernard, Franck; Buisine, Stéphanie

    2018-01-01

    Flow is a well-known concept in the fields of positive and applied psychology. Examination of a large body of flow literature suggests there is a need for a conceptual model rooted in a cognitive approach to explain how this psychological phenomenon works. In this paper, we propose the Flow Engine Framework, a theoretical model explaining dynamic interactions between rearranged flow components and fundamental cognitive processes. Using an IPO framework (Inputs – Processes – Outputs) including a feedback process, we organize flow characteristics into three logically related categories: inputs (requirements for flow), mediating and moderating cognitive processes (attentional and motivational mechanisms) and outputs (subjective and objective outcomes), describing the process of the flow. Comparing flow with an engine, inputs are depicted as flow-fuel, core processes cylinder strokes and outputs as power created to provide motion. PMID:29899807

  13. Early Formulation Model-centric Engineering on NASA's Europa Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, Ivair; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    The proposed Jupiter Europa Orbiter and Jupiter Ganymede Orbiter missions were formulated using current state-of-the-art MBSE facilities: - JPL's TeamX, Rapid Mission Architecting - ESA's Concurrent Design Facility - APL's ACE Concurrent Engineering Facility. When JEO became an official "pre-project" in Sep 2010, we had already developed a strong partnership with JPL's Integrated Model Centric Engineering (IMCE) initiative; decided to apply Architecting and SysML-based MBSE from the beginning, begun laying these foundations to support work in Phase A. Release of Planetary Science Decadal Survey and FY12 President's Budget in March 2011 changed the landscape. JEO reverted to being a pre-phase A study. A conscious choice was made to continue application of MBSE on the Europa Study, refocused for early formulation. This presentation describes the approach, results, and lessons.

  14. Design the Cost Approach in Trade-Off's for Structural Components, Illustrated on the Baseline Selection of the Engine Thrust Frame of Ariane 5 ESC-B

    NASA Astrophysics Data System (ADS)

    Appolloni, L.; Juhls, A.; Rieck, U.

    2002-01-01

    Designing for value is one of the very actual upcoming methods for design optimization, which broke into the domain of aerospace engineering in the late 90's. In the frame of designing for value two main design philosophies exist: Design For Cost and Design To Cost. Design To Cost is the iterative redesign of a project until the content of the project meets a given budget. Designing For Cost is the conscious use of engineering process technology to reduce life cycle cost while satisfying, and hopefully exceeding, customer demands. The key to understanding cost, and hence to reducing cost, is the ability to measure cost accurately and to allocate it appropriately to products. Only then can intelligent decisions be made. Therefore the necessity of new methods as "Design For Value" or "Design For Competitiveness", set up with a generally multidisciplinary approach to find an optimized technical solution driven by many parameters, depending on the mission scenario and the customer/market needs. Very often three, but not more than five parametric drivers are sufficient. The more variable exist, the higher is in fact the risk to find just a sub-optimized local and not the global optimum, and the less robust is the found solution against change of input parameters. When the main parameters for optimization have been identified, the system engineer has to communicate them to all design engineers, who shall take care of these assessment variables during the entire design and decision process. The design process which has taken to the definition of the feasible structural concepts for the Engine Thrust Frame of the Ariane 5 Upper Cryogenic Stage ESC-B follows these most actual design philosophy methodologies, and combines a design for cost approach, to a design to cost optimization loop. Ariane 5 is the first member of a family of heavy-lift launchers. It aims to evolve into a family of launchers that responds to the space transportation challenges of the 21st century. New upper stages, along with modifications to the main cryogenic stage and solid boosters, will increase performance and meet demands of a changing market. A two-steps approach was decided for future developments of the launcher upper stage, in order to increase the payload lift capability of Ariane 5. The first step ESC-A is scheduled for first launch in 2002. As later step ESC-B shall grow up to 12 tons in GTO orbit, with multiple restart capability, i.e. re-ignitable engine. Ariane 5 ESC-B first flight is targeted for 2006. It will be loaded with 28 metric tons of liquid oxygen and liquid hydrogen and powered by a new expander cycle engine "Vinci". The Vinci engine will be connected to the tanks of the ESC-B stage via the structure named from the designers ETF, or Engine Thrust Frame. In order to develop a design concept for the ETF component a trade off was performed, based on the most modern system engineering methodologies. This paper will describe the basis of the system engineering approach in the design to cost process, and illustrate such approach as it has been applied during the trade off for the baseline selection of the Engine Thrust Frame of Ariane 5 ESC-B.

  15. 40 CFR 1045.610 - What provisions apply to using engines already certified to Small SI emission standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROPULSION MARINE ENGINES AND VESSELS Special Compliance Provisions § 1045.610 What provisions apply to using... persons in the same manner as if these engines were not used as propulsion marine engines. (d) You may use...

  16. 40 CFR 1045.610 - What provisions apply to using engines already certified to Small SI emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROPULSION MARINE ENGINES AND VESSELS Special Compliance Provisions § 1045.610 What provisions apply to using... persons in the same manner as if these engines were not used as propulsion marine engines. (d) You may use...

  17. 40 CFR 1045.610 - What provisions apply to using engines already certified to Small SI emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROPULSION MARINE ENGINES AND VESSELS Special Compliance Provisions § 1045.610 What provisions apply to using... persons in the same manner as if these engines were not used as propulsion marine engines. (d) You may use...

  18. 40 CFR 1045.610 - What provisions apply to using engines already certified to Small SI emission standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROPULSION MARINE ENGINES AND VESSELS Special Compliance Provisions § 1045.610 What provisions apply to using... persons in the same manner as if these engines were not used as propulsion marine engines. (d) You may use...

  19. 40 CFR 1045.610 - What provisions apply to using engines already certified to Small SI emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROPULSION MARINE ENGINES AND VESSELS Special Compliance Provisions § 1045.610 What provisions apply to using... persons in the same manner as if these engines were not used as propulsion marine engines. (d) You may use...

  20. Ethical aspects of the mitigation obstruction argument against climate engineering research.

    PubMed

    Morrow, David R

    2014-12-28

    Many commentators fear that climate engineering research might lead policy-makers to reduce mitigation efforts. Most of the literature on this so-called 'moral hazard' problem focuses on the prediction that climate engineering research would reduce mitigation efforts. This paper focuses on a related ethical question: Why would it be a bad thing if climate engineering research obstructed mitigation? If climate engineering promises to be effective enough, it might justify some reduction in mitigation. Climate policy portfolios involving sufficiently large or poorly planned reductions in mitigation, however, could lead to an outcome that would be worse than the portfolio that would be chosen in the absence of further climate engineering research. This paper applies three ethical perspectives to describe the kinds of portfolios that would be worse than that 'baseline portfolio'. The literature on climate engineering identifies various mechanisms that might cause policy-makers to choose these inferior portfolios, but it is difficult to know in advance whether the existence of these mechanisms means that climate engineering research really would lead to a worse outcome. In the light of that uncertainty, a precautionary approach suggests that researchers should take measures to reduce the risk of mitigation obstruction. Several such measures are suggested. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Mathematical modeling of the Stirling engine in terms of applying the composition of the power complex containing non-conventional and renewable energy

    NASA Astrophysics Data System (ADS)

    Gaponenko, A. M.; Kagramanova, A. A.

    2017-11-01

    The opportunity of application of Stirling engine with non-conventional and renewable sources of energy. The advantage of such use. The resulting expression for the thermal efficiency of the Stirling engine. It is shown that the work per cycle is proportional to the quantity of matter, and hence the pressure of the working fluid, the temperature difference and, to a lesser extent, depends on the expansion coefficient; efficiency of ideal Stirling cycle coincides with the efficiency of an ideal engine working on the Carnot cycle, which distinguishes a Stirling cycle from the cycles of Otto and Diesel underlying engine. It has been established that the four input parameters, the only parameter which can be easily changed during operation, and which effectively affects the operation of the engine is the phase difference. Dependence of work per cycle of the phase difference, called the phase characteristic, visually illustrates mode of operation of Stirling engine. The mathematical model of the cycle of Schmidt and the analysis of operation of Stirling engine in the approach of Schmidt with the aid of numerical analysis. To conduct numerical experiments designed program feature in the language MathLab. The results of numerical experiments are illustrated by graphical charts.

  2. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance ismore » straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.« less

  3. 40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1901 What testing requirements apply to my engines that have gone into service? (a) If you manufacture diesel heavy... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...

  4. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...(seconds) Engine speed Torque(percent) 1, 2 1a Steady-state 53 Engine governed 100. 1b Transition 20 Engine...

  5. Development of a Spray System for an Unmanned Aerial Vehicle Platform

    DTIC Science & Technology

    2008-09-01

    Applied Engineering in Agriculture Vol. 25(6): 803‐809 2009 American Society of Agricultural and Biological Engineers ISSN 0883-8542 803...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 804 APPLIED ENGINEERING IN AGRICULTURE non‐chemical or least toxic chemical techniques...and electrically shielded (fig. 4). 806 APPLIED ENGINEERING IN AGRICULTURE Figure 2. Computer‐aided model and design of the tank with baffles, and

  6. The Role of Tribology in the Development of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1997-01-01

    Gas-turbine-based aeropropulsion engines are technologically mature. Thus, as with any mature technology, revolutionary approaches will be needed to achieve the significant performance gains that will keep the U.S. propulsion manufacturers well ahead of foreign competition. One such approach is the development of oil-free turbomachinery utilizing advanced foil air bearings, seals, and solid lubricants. By eliminating oil-lubricated bearings and seals and supporting an engine rotor on an air film, significant improvements can be realized. For example, the entire oil system including pipes, lines, filters, cooler, and tanks could be removed, thereby saving considerable weight. Since air has no thermal decomposition temperature, engine systems could operate without excessive cooling. Also, since air bearings have no diameter-rpm fatigue limits (D-N limits), engines could be designed to operate at much higher speeds and higher density, which would result in a smaller aeropropulsion package. Because of recent advances in compliant foil air bearings and high temperature solid lubricants, these technologies can be applied to oil-free turbomachinery. In an effort to develop these technologies and to demonstrate a project along the path to an oil-free gas turbine engine, NASA has undertaken the development of an oil-free turbocharger for a heavy duty diesel engine. This turbomachine can reach 120000 rpm at a bearing temperature of 540 C (1000 F) and, in comparison to oil-lubricated bearings, can increase efficiency by 10 to 15 percent because of reduced friction. In addition, because there are no oil lubricants, there are no seal-leakage-induced emissions.

  7. Outlines on nanotechnologies applied to bladder tissue engineering.

    PubMed

    Alberti, C

    2012-01-01

    Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to inhibit a carcinogenic relapse in bladder prosthetic material. Facing the future, a full success of bladder tissue engineering will mainly depend on the progress of both biomaterial nanotechnologies and stem cell biology research.

  8. Rapid mixing of viscous liquids by electrical coiling

    PubMed Central

    Kong, Tiantian; Li, Jingmei; Liu, Zhou; Zhou, Zhuolong; Ng, Peter Hon Yu; Wang, Liqiu; Shum, Ho Cheung

    2016-01-01

    The control for the processing of precursor liquids determines whether the properties and functions of the final material product can be engineered. An inherent challenge of processing viscous liquids arises from their large resistance to deform. Here, we report on the discovery of an electric approach that can significantly contribute to address this challenge. The applied electric force can induce a straight viscous jet to coil, and the resulting coiling characteristics are governed by the electric stress. We demonstrate the promising use of electrical coiling in the rapid and efficient mixing of viscous liquids. Remarkably, the degree of mixing can be precisely adjusted by tuning the applied electric stress. Our approach of controlling the coiling electrically has important implications on applications such as dispensing and printing of resins, printing patterned surfaces and scaffolds, processing of food and generating non-woven fabrics. PMID:26860660

  9. Integrated approach to modeling long-term durability of concrete engineered barriers in LLRW disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Roy, D.M.; Mann, B.

    1995-12-31

    This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less

  10. Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a Wide Range of Biomaterial Selectivity

    PubMed Central

    Kang, Hyun-Wook

    2012-01-01

    Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications. PMID:22443315

  11. Evolutionary-based approaches for determining the deviatoric stress of calcareous sands

    NASA Astrophysics Data System (ADS)

    Shahnazari, Habib; Tutunchian, Mohammad A.; Rezvani, Reza; Valizadeh, Fatemeh

    2013-01-01

    Many hydrocarbon reservoirs are located near oceans which are covered by calcareous deposits. These sediments consist mainly of the remains of marine plants or animals, so calcareous soils can have a wide variety of engineering properties. Due to their local expansion and considerable differences from terrigenous soils, the evaluation of engineering behaviors of calcareous sediments has been a major concern for geotechnical engineers in recent years. Deviatoric stress is one of the most important parameters directly affecting important shearing characteristics of soils. In this study, a dataset of experimental triaxial tests was gathered from two sources. First, the data of previous experimental studies from the literature were gathered. Then, a series of triaxial tests was performed on calcareous sands of the Persian Gulf to develop the dataset. This work resulted in a large database of experimental results on the maximum deviatoric stress of different calcareous sands. To demonstrate the capabilities of evolutionary-based approaches in modeling the deviatoric stress of calcareous sands, two promising variants of genetic programming (GP), multigene genetic programming (MGP) and gene expression programming (GEP), were applied to propose new predictive models. The models' input parameters were the physical and in-situ condition properties of soil and the output was the maximum deviatoric stress (i.e., the axial-deviator stress). The results of statistical analyses indicated the robustness of these models, and a parametric study was also conducted for further verification of the models, in which the resulting trends were consistent with the results of the experimental study. Finally, the proposed models were further simplified by applying a practical geotechnical correlation.

  12. Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation

    DOE PAGES

    Wu, Weihua; Tran-Gyamfi, Mary Bao; Jaryenneh, James Dekontee; ...

    2016-08-24

    Recently the feasibility of conversion of algal protein to mixed alcohols has been demonstrated with an engineered E.coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening,more » more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the top five of YqhD mutants were selected for combination with two IlvC mutants with NADH as a cofactor for the modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E.coli strain, subtype AY3, with increased fusel alcohol yield of ~60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels.« less

  13. Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weihua; Tran-Gyamfi, Mary Bao; Jaryenneh, James Dekontee

    Recently the feasibility of conversion of algal protein to mixed alcohols has been demonstrated with an engineered E.coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening,more » more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the top five of YqhD mutants were selected for combination with two IlvC mutants with NADH as a cofactor for the modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E.coli strain, subtype AY3, with increased fusel alcohol yield of ~60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels.« less

  14. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this...

  15. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...

  16. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...

  17. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this...

  18. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...

  19. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this...

  20. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...

  1. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this chapter. This includes your...

  2. 40 CFR 59.603 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...

  3. 40 CFR 1068.5 - How must manufacturers apply good engineering judgment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this chapter. This includes your...

  4. The MEOW lunar project for education and science based on concurrent engineering approach

    NASA Astrophysics Data System (ADS)

    Roibás-Millán, E.; Sorribes-Palmer, F.; Chimeno-Manguán, M.

    2018-07-01

    The use of concurrent engineering in the design of space missions allows to take into account in an interrelated methodology the high level of coupling and iteration of mission subsystems in the preliminary conceptual phase. This work presents the result of applying concurrent engineering in a short time lapse to design the main elements of the preliminary design for a lunar exploration mission, developed within ESA Academy Concurrent Engineering Challenge 2017. During this program, students of the Master in Space Systems at Technical University of Madrid designed a low cost satellite to find water on the Moon south pole as prospect of a future human lunar base. The resulting mission, The Moon Explorer And Observer of Water/Ice (MEOW) compromises a 262 kg spacecraft to be launched into a Geostationary Transfer Orbit as a secondary payload in the 2023/2025 time frame. A three months Weak Stability Boundary transfer via the Sun-Earth L1 Lagrange point allows for a high launch timeframe flexibility. The different aspects of the mission (orbit analysis, spacecraft design and payload) and possibilities of concurrent engineering are described.

  5. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  6. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  7. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety, performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key Criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket-engines characteristics. This includes BME impacts on vehicle system weight, performance, design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  8. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  9. COED Transactions, Vol. X, No. 7 & 8, July/August 1978. Bridging Theory and Reality: Analog Simulation as an Aid to Heuristic Understanding.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    A particularly difficult area for many engineering students is the approximate nature of the relation between models and physical systems. This is notably true when the models consist of differential equations. An approach applied to this problem has been to use analog computers to assist in portraying the output of a model as it is progressively…

  10. Applying the Kanban Method in Problem-Based Project Work: A Case Study in A Manufacturing Engineering Bachelor's Programme at Aalborg University Copenhagen

    ERIC Educational Resources Information Center

    Balve, Patrick; Krüger, Volker; Tolstrup Sørensen, Lene

    2017-01-01

    Problem-based learning (PBL) has proven to be highly effective for educating students in an active and self-motivated manner in various disciplines. Student projects carried out following PBL principles are very dynamic and carry a high level of uncertainty, both conditions under which agile project management approaches are assumed to be highly…

  11. Systems thinking: what business modeling can do for public health.

    PubMed

    Williams, Warren; Lyalin, David; Wingo, Phyllis A

    2005-01-01

    Today's public health programs are complex business systems with multiple levels of collaborating federal, state, and local entities. The use of proven systems engineering modeling techniques to analyze, align, and streamline public health operations is in the beginning stages. The authors review the initial business modeling efforts in immunization and cancer registries and present a case to broadly apply business modeling approaches to analyze and improve public health processes.

  12. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  13. Chemical-text hybrid search engines.

    PubMed

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  14. Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine.

    PubMed

    Mir, Tanveer Ahmad; Nakamura, Makoto

    2017-06-01

    Three-dimensional (3D) printing technology has been used in industrial worlds for decades. Three-dimensional bioprinting has recently received an increasing attention across the globe among researchers, academicians, students, and even the ordinary people. This emerging technique has a great potential to engineer highly organized functional bioconstructs with complex geometries and tailored components for engineering bioartificial tissues/organs for widespread applications, including transplantation, therapeutic investigation, drug development, bioassay, and disease modeling. Although many specialized 3D printers have been developed and applied to print various types of 3D tissue constructs, bioprinting technologies still have several technical challenges, including high resolution distribution of cells, controlled deposition of bioinks, suitable bioink materials, maturation of cells, and effective vascularization and innervation within engineered complex structures. In this brief review, we discuss about bioprinting approach, current limitations, and possibility of future advancements for producing engineered bioconstructs and bioartificial organs with desired functionalities.

  15. Attracting Students to Fluid Mechanics with Coffee

    NASA Astrophysics Data System (ADS)

    Ristenpart, William

    2016-11-01

    We describe a new class developed at U.C. Davis titled "The Design of Coffee," which serves as a nonmathematical introduction to chemical engineering as illustrated by the process of roasting and brewing coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, conservation of energy, and fluid mechanics. The experiments lead to an engineering design competition where students strive to make the best tasting coffee using the least amount of energy - a classic engineering optimization problem, but one that is both fun and tasty. "The Design of Coffee" started as a freshmen seminar in 2013, and it has exploded in popularity: it now serves 1,533 students per year, and is the largest and most popular elective course at U.C. Davis. In this talk we focus on the class pedagogy as applied to fluid mechanics, with an emphasis on how coffee serves as an engaging and exciting topic for teaching students about fluid mechanics in an approachable, hands-on manner.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrall, Brian D.; Minard, Kevin R.; Teeguarden, Justin G.

    A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNL’s focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterialsmore » or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner.« less

  17. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  18. WISB: Warwick Integrative Synthetic Biology Centre.

    PubMed

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  19. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    PubMed

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  20. Integrating Human Factors into Crew Exploration Vehicle (CEV) Design

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina; Baggerman, Susan; Campbell, Paul

    2007-01-01

    The purpose of this design process is to apply Human Engineering (HE) requirements and guidelines to hardware/software and to provide HE design, analysis and evaluation of crew interfaces. The topics include: 1) Background/Purpose; 2) HE Activities; 3) CASE STUDY: Net Habitable Volume (NHV) Study; 4) CASE STUDY: Human Modeling Approach; 5) CASE STUDY: Human Modeling Results; 6) CASE STUDY: Human Modeling Conclusions; 7) CASE STUDY: Human-in-the-Loop Evaluation Approach; 8) CASE STUDY: Unsuited Evaluation Results; 9) CASE STUDY: Suited Evaluation Results; 10) CASE STUDY: Human-in-the-Loop Evaluation Conclusions; 11) Near-Term Plan; and 12) In Conclusion

Top