Sample records for engineering chemical engineering

  1. Chemical Engineering in the "BIO" World.

    PubMed

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela; Abbiati, Roberto Andrea; Barba, Anna Angela; Boisen, Anja; Brucato, Valerio; Ghersi, Giulio; Caccavo, Diego; Cascone, Sara; Caserta, Sergio; Elvassore, Nicola; Giomo, Monica; Guido, Stefano; Lamberti, Gaetano; Larobina, Domenico; Manca, Davide; Marizza, Paolo; Tomaiuolo, Giovanna; Grassi, Gabriele

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Chemical Engineering Students: A Distinct Group among Engineers

    ERIC Educational Resources Information Center

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  3. The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    2009-01-01

    The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…

  4. Modern Cast Irons in Chemical Engineering

    DTIC Science & Technology

    1934-11-09

    fl’ceew. T I SOCIETY OF CHEMICAL INDUSTRY CHEMICAL ENGINEERING GROUP MODERN CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to chemical or thermal resistance. Small blow-holes Any...consideration of modern cast irons in chemical seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition

  5. Curriculum Assessment as a Direct Tool in ABET Outcomes Assessment in a Chemical Engineering Programme

    ERIC Educational Resources Information Center

    Abu-Jdayil, Basim; Al-Attar, Hazim

    2010-01-01

    The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…

  6. Chemical Engineering in Education and Industry.

    ERIC Educational Resources Information Center

    Wei, James

    1986-01-01

    Provides an historical overview of the origins, developments, and contributions of chemical engineering. Reviews the roles of the university and industry in the education of chemical engineers. Includes a listing of the major advances of chemical engineering since World War II. (ML)

  7. Nolan Wilson | NREL

    Science.gov Websites

    Nolan Wilson Nolan Wilson Postdoctoral Researcher-Chemical Engineering Nolan.Wilson@nrel.gov | 303 Ph.D., Chemical and Biomolecular Engineering, Clemson University, 2014 M.S., Chemical and Biomolecular Engineering, Clemson University, 2012 B.S., Chemical Engineering, Auburn University, 2007 Professional

  8. Richard T. (Rick) Elander | NREL

    Science.gov Websites

    T. (Rick) Elander Photo of Rick Elander Richard Elander Researcher VI-Chemical Engineering Chemicals and AIChE Annual Meeting, multiple years Education M.S., Chemical Engineering (Biochemical Engineering), Colorado State University B.S., Chemical Engineering, University of Pennsylvania Professional

  9. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    ERIC Educational Resources Information Center

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  10. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  11. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2017-03-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  12. Xiaowen Chen | NREL

    Science.gov Websites

    Xiaowen Chen Photo of Xiaowen Chen Xiaowen Chen Researcher IV-Chemical Engineering Xiaowen.Chen Education Ph.D., Chemical Engineering, University of Maine, 2009 M.S., Chemical Engineering, University of Maine, 2005 B.S., Chemical Engineering in Polymer Science and Technology, Nanjing University of Science

  13. Improving the Practical Education of Chemical and Pharmaceutical Engineering Majors in Chinese Universities

    ERIC Educational Resources Information Center

    Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu

    2014-01-01

    Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…

  14. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds

    ERIC Educational Resources Information Center

    Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.

    2015-01-01

    Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…

  16. John Lewis | NREL

    Science.gov Websites

    Lewis John Lewis John Lewis Researcher IV-Chemical Engineering John.Lewis@nrel.gov | 303-275-3021 Education Ph.D. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1996 M.S. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1993 B.S. Chemical Engineering, Texas A&M

  17. The Chemical Engineering behind How Carbonated Beverages Go Flat: A Hands-On Experiment for Freshmen Students

    ERIC Educational Resources Information Center

    Hohn, Keith L.

    2007-01-01

    A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…

  18. Report of the Polymer Core Course Committee: Polymer Principles for the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Offers suggestions for introducing polymer topics into: (1) introductory chemical engineering; (2) transport phenomena and unit operations; (3) chemical engineering thermodynamics; and (4) reaction engineering. Also included for each area are examples of textbooks in current use and a few typical problems. (JN)

  19. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    ERIC Educational Resources Information Center

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  20. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Fabrication of Novel Porous Chitosan Matrices as Scaffolds for Bone Tissue Engineering

    DTIC Science & Technology

    2005-01-01

    Tissue Engineering Tao Jianga, Cyril M. Pilaneb, Cato T. Laurencina’b"c’ * a Department of Chemical Engineering , University of Virginia, Charlottesville...Chair of Orthopaedic Surgery Professor of Biomedical and Chemical Engineering 400 Ray C. Hunt Drive, Suite 330 University of Virginia Charlottesville...an alternative therapeutic approach for skeletal regeneration. Tissue engineering has been defined as the application of biological, chemical , and

  2. Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models

    NASA Astrophysics Data System (ADS)

    Ocampo-García, A.; Barranco-Jiménez, M. A.; Angulo-Brown, F.

    2017-12-01

    A branch of finite-time thermodynamics (FTT) is the thermoeconomical analysis of simplified power plant models. The most studied models are those of the Curzon-Ahlborn (CA) and Novikov-Chambadal types. In the decade of 90's of the past century, the FTT analysis of thermal engines was extended to chemical engines. In the present paper we made a thermoeconomical analysis of heat engines and chemical engines of the CA and Novikov types. This study is carried out for isothermal endoreversible chemical engine models with a linear mass transfer law and under three different modes of thermodynamic performance (maximum power, maximum ecological function and maximum efficient power).

  3. Synthesis and Characterization of Block Copolymers with Unique Chemical Functionalities and Entropically-Hindering Moieties

    DTIC Science & Technology

    2017-08-14

    Synthesis and Characterization of Sulfonated Amine Block Copolymers for Energy Efficient Applications". Chemical Engineering Symposium, University of...Specialty Separations” Oral Presentation during the 2014 Chemical Engineering Department Symposium (Key Note Speaker), University of Puerto Rico, Mayaguez...Leadership Award in the College of Engineering of the University of Puerto Rico, May, 2015. 3. Distinguished Professor of Chemical Engineering

  4. Chemical Engineering Curricula for the Future: Synopsis of Proceedings of a U.S.-India Conference, January, 1988.

    ERIC Educational Resources Information Center

    Ramkrishna, D.; And Others

    1989-01-01

    This is a summary of a seminar for changing the undergraduate chemical engineering curriculum in India. Identifies and describes biotechnology, materials for structural and microelectronic catalysis, and new separation processes as emerging areas. Evaluates the current curriculum, including basic science, engineering lore, chemical engineering,…

  5. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov Websites

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  6. Chemical Engineering Division Activities

    ERIC Educational Resources Information Center

    Chemical Engineering Education, 1978

    1978-01-01

    The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)

  7. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    ERIC Educational Resources Information Center

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  8. Christopher Kinchin | NREL

    Science.gov Websites

    Kinchin Photo of Christopher Kinchin Christopher Kinchin Researcher III-Chemical Engineering . Education B.S., Chemical Engineering, Texas Tech University M.S., Chemical Engineering, University of North

  9. 75 FR 26049 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... conducted by ``a licensed professional engineer or foreign equivalent who works in the chemical engineering... chemical engineering field. EPA views renewable fuel production to fall generally within the chemical... basic organic chemical manufacturers. Industry 424690 5169 Chemical and allied products merchant...

  10. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    PubMed

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  11. Protein engineering approaches to chemical biotechnology.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  12. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  13. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    PubMed

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  14. A New Venture in Graduate Education: Co-Op Ph.D. Programme in Chemical Engineering.

    ERIC Educational Resources Information Center

    Fahidy, Thomas Z.

    1980-01-01

    Describes a cooperative Ph.D. program at the University of Waterloo, Ontario, Canada, in which industrial and governmental employers participate with the Department of Chemical Engineering in training chemical engineers. (CS)

  15. Progress in reforming chemical engineering education.

    PubMed

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  16. Scott Nicholson | NREL

    Science.gov Websites

    Nicholson Photo of Scott Nicholson Scott Nicholson Researcher I-Chemical Engineering through Industry (MFI) tool Education B.S. in chemical engineering with a minor in economics, Tufts Affiliations American Institute of Chemical Engineers

  17. Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective

    ERIC Educational Resources Information Center

    Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.

    2012-01-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…

  18. 10 CFR Appendix A to Part 725 - Categories of Restricted Data Available

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and radiation studies. b. Chemistry, chemical engineering and radiochemistry of all the elements and their compounds. Included are techniques and processes of chemical separations, radioactive waste..., including chemical engineering, processes and techniques. Reactor physics, engineering and criticality...

  19. Confined Detonations and Pulse Detonation Engines

    DTIC Science & Technology

    2003-01-01

    chemically reacting flow was described by the 2D Euler equations &q OF(q) +G(q) W (1) 75 CONFINED DETONATIONS AND PULSE DETONATION ENGINES where q = (p...DETONATIONS AND PULSE DETONATION ENGINES 5 CONCLUDING REMARKS Numerical investigations of RR and MR in a supersonic chemically reacting flows have...formalism of hetero- geneous medium mechanics supplemented with an overall chemical reaction was 141 CONFINED DETONATIONS AND PULSE DETONATION ENGINES

  20. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  1. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  2. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  3. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  4. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  5. Technician Career Opportunities in Engineering Technology.

    ERIC Educational Resources Information Center

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  6. Engineering chemical interactions in microbial communities.

    PubMed

    Kenny, Douglas J; Balskus, Emily P

    2018-03-05

    Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.

  7. At Age 100, Chemical Engineering Education Faces Changing World.

    ERIC Educational Resources Information Center

    Krieger, James

    1988-01-01

    Stresses the need for chemical engineering education to keep abreast of current needs. Explores the need for global economics, marketing strategy, product differentiation, and patent law in the curriculum. Questions the abilities of current chemical engineering graduate students in those areas. (MVL)

  8. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    ERIC Educational Resources Information Center

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  9. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    PubMed

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Job Prospects for Chemical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    After several lean years, chemical engineering (a popular discipline among women) is witnessing a higher job demand for new graduates. Companies show a trend toward specialty chemicals with resultant needs for more engineering talent. Other opportunities in the field include agriculture and food processing, environmental control, biotechnology,…

  11. Teaching Chemical Engineers about Teaching

    ERIC Educational Resources Information Center

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  12. Green engineering education through a U.S. EPA/academia collaboration.

    PubMed

    Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert

    2003-12-01

    The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.

  13. Advanced Computer Simulations of Military Incinerators

    DTIC Science & Technology

    2004-12-01

    Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in

  14. Saikrishna Mukkamala | NREL

    Science.gov Websites

    Saikrishna Mukkamala Saikrishna Mukkamala Researcher IV-Chemical Engineering Saikrishna.Mukkamala thermochemical, biochemical pathways Bio product and fuel characterization Education M.S. Chemical Engineering , University of Maine B.S. Chemical Engineering, JNTU-India Featured Publications S. Mukkamala, M.C. Wheeler

  15. Career Opportunities in Chemistry and Chemical Engineering.

    ERIC Educational Resources Information Center

    Glover, Trienne

    This pamphlet discusses career and employment opportunities in chemical engineering. Necessary college preparation is described and median salaries by degree are tabulated. Nontraditional careers in chemistry are also described. Future demand for chemists and chemical engineers is projected to 1985 and the availability of jobs for women and…

  16. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    PubMed

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  17. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  18. Chemical Engineering Education Revisited.

    ERIC Educational Resources Information Center

    Theodore, Louis

    1978-01-01

    The opinion is presented that chemical engineering education seems to emphasize the professor's research and/or professional interests with little regard for the real needs of the student who intends to become a practicing engineer. (BB)

  19. Hailey Boyer | NREL

    Science.gov Websites

    Hailey Boyer Photo of Hailey Boyer Hailey Boyer Undergraduate IV-Chemical Engineering Hailey.Boyer studying chemical engineering at the University of South Carolina. She was hired through as an intern at via the Hybrid-Sulfur process Electrochemical modeling Education B.S. Chemical Engineering, University

  20. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  1. Appropriate Programs for Foreign Students in U.S. Chemical Engineering Curricula.

    ERIC Educational Resources Information Center

    Findley, M. E.

    Chemical engineers in developing countries may need abilities in a number of diverse areas including management, planning, chemistry, equipment, processes, politics, and improvisation. Chemical engineering programs for foreign students can be arranged by informed advisers with student input for inclusion of some of these areas in addition to…

  2. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    ERIC Educational Resources Information Center

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  3. Frontiers in Chemical Engineering. Research Needs and Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…

  4. Enhancing the Undergraduate Computing Experience in Chemical Engineering CACHE Corporation

    ERIC Educational Resources Information Center

    Edgar, Thomas F.

    2006-01-01

    This white paper focuses on the integration and enhancement of the computing experience for undergraduates throughout the chemical engineering curriculum. The computing experience for undergraduates in chemical engineering should have continuity and be coordinated from course to course, because a single software solution is difficult to achieve in…

  5. An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2007-01-01

    Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…

  6. Work-Based Higher Degrees: Responding to the Knowledge Needs of Chemical Engineers

    ERIC Educational Resources Information Center

    Winberg, Christine

    2007-01-01

    University-workplace partnerships are strategies increasingly called for in higher education. This article reports on collaborative knowledge production between employed professional chemical engineers (registered for higher degrees) and their university-based supervisors (researchers in the field of chemical engineering). The study draws on a…

  7. Job Prospects for Chemical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    The job situation for new chemical engineers with bachelor's degrees is continuing to reflect the gradual improvement that began in 1983. However, companies are looking for graduates with technical expertise as well as marketing, sales, or communications skills. Smaller classes may lead to shortages of chemical engineering graduates in the future.…

  8. Introducing High School Students and Science Teachers to Chemical Engineering.

    ERIC Educational Resources Information Center

    Bayles, Taryn Melkus; Aguirre, Fernando J.

    1992-01-01

    Describes a summer institute for science teachers and their students in which the main goal was to increase enrollment in engineering and to encourage women and minority groups to increase their representation in the engineering workforce. Includes a description of typical chemical engineering jobs and general instruction in material balances,…

  9. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    ERIC Educational Resources Information Center

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  10. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    ERIC Educational Resources Information Center

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  11. 40 CFR 63.11950 - What emissions calculations must I use for an emission profile?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...

  12. 40 CFR 63.11950 - What emissions calculations must I use for an emission profile?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...

  13. 40 CFR 63.11950 - What emissions calculations must I use for an emission profile?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...

  14. Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering

    ERIC Educational Resources Information Center

    McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary

    2011-01-01

    Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…

  15. The Intersection of Gender and Race: Exploring Chemical Engineering Students' Attitudes

    ERIC Educational Resources Information Center

    Goodwin, Allison; Verdín, Dina; Kirn, Adam; Satterfield, Derrick

    2018-01-01

    We surveyed 342 first-year engineering students at four U.S. institutions interested in a chemical engineering career about their feelings of belonging in engineering, motivation, and STEM identities. We compared these students by both gender and race/ethnicity on these attitudinal factors. We found several significant differences in…

  16. The Use of the Software MATLAB To Improve Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Damatto, T.; Maegava, L. M.; Filho, R. Maciel

    In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…

  17. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  18. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    NASA Astrophysics Data System (ADS)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  19. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    NASA Astrophysics Data System (ADS)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  20. An Alternative Route to Chemical Engineering for Minority and Other Students.

    ERIC Educational Resources Information Center

    Cussler, E. L.

    The following three alternative ways in which minority group chemistry majors may be trained as chemical engineers are examined in this paper: (l) they are admitted as engineers and take the same courses as engineering students at the graduate level; (2) undergraduate courses are taken as part of the transition from chemistry to chemical…

  1. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    ERIC Educational Resources Information Center

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  2. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    ERIC Educational Resources Information Center

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  3. Heat Exchanger Lab for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  4. Introduction of Life Cycle Assessment and Sustainability Concepts in Chemical Engineering Curricula

    ERIC Educational Resources Information Center

    Gallego-Schmid, Alejandro; Schmidt Rivera, Ximena C.; Stamford, Laurence

    2018-01-01

    Purpose: The implementation of life cycle assessment (LCA) and carbon footprinting represents an important professional and research opportunity for chemical engineers, but this is not broadly reflected in chemical engineering curricula worldwide. This paper aims to present the implementation of a coursework that is easy to apply, free of cost,…

  5. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    ERIC Educational Resources Information Center

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  6. Peer-Assisted Tutoring in a Chemical Engineering Curriculum: Tutee and Tutor Experiences

    ERIC Educational Resources Information Center

    Kieran, Patricia; O'Neill, Geraldine

    2009-01-01

    Peer-Assisted Tutorials (PATs), a form of Peer-Assisted Learning (PAL), were introduced to a conventional 4-year honours degree programme in Chemical Engineering. PATs were designed to support students in becoming more self-directed in their learning, to develop student confidence in tackling Chemical Engineering problems and to promote effective…

  7. Federal Funding of Engineering Research and Development, 1980-1984.

    ERIC Educational Resources Information Center

    American Society of Mechanical Engineers, Washington, DC.

    Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…

  8. [Development of domain specific search engines].

    PubMed

    Takai, T; Tokunaga, M; Maeda, K; Kaminuma, T

    2000-01-01

    As cyber space exploding in a pace that nobody has ever imagined, it becomes very important to search cyber space efficiently and effectively. One solution to this problem is search engines. Already a lot of commercial search engines have been put on the market. However these search engines respond with such cumbersome results that domain specific experts can not tolerate. Using a dedicate hardware and a commercial software called OpenText, we have tried to develop several domain specific search engines. These engines are for our institute's Web contents, drugs, chemical safety, endocrine disruptors, and emergent response for chemical hazard. These engines have been on our Web site for testing.

  9. 77 FR 51786 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... to increasing the number and quality of the nation's scientists and engineers. Application... Engineering, Biosciences, Chemical Engineering, Chemistry, Civil Engineering, Cognitive, Neural, and...

  10. US Frontiers of Engineering Symposia

    DTIC Science & Technology

    2015-02-01

    Dr . Kristi Anseth, Distinguished Professor of Chemical and Biological Engineering and HHMI Assistant Investigator at the University of Colorado...speech was given by Dr . Alan I. Taub, professor of materials science and engineering at the University of Michigan, Report Documentation Page Form...at the Hotel du Pont in Wilmington, Delaware. Dr . Kristi Anseth, Distinguished Professor of Chemical and Biological Engineering and HHMI Assistant

  11. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    PubMed

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  12. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  13. Katherine Hurst | NREL

    Science.gov Websites

    , followed by the completion of a M.S. in Chemical Engineering from the Colorado School of Mines. She received her Ph.D. in Chemical Engineering. Her thesis, which was performed at NREL under the direction of 2001-2005 Ph.D. Chemical Engineering, Colorado School of Mines, Golden, CO Research Fellowship at the

  14. Granular Activated Carbon Performance Capability and Availability.

    DTIC Science & Technology

    1983-06-01

    services were surveyed to determine availability of data and to develop a strategy for later computerized searches: * Chemical Abstracts; * Engineering ...Chemical Abstracts; * Engineering Abstracts; * Environmental Abstracts; * Selected Water Resources Abstracts; * Pollution Abstracts; and * the U.S...chemicals addressed, and scientific and engineering methods used. Publications were also reviewed for quality and consistency with the bulk of available data

  15. Countermeasures to Hazardous Chemicals,

    DTIC Science & Technology

    1989-04-01

    Chemical Engineers (AIChE), 3. Hazardous Materials Advisery, Council (HMAC), (not the same as the Memphis/Shelby County HMAC), 4. American Petroleum...retired chemical engineers , will volunteer to avos t the I wcal communities in their pl. ining efforts. S1i !NSTITrTE OF HAZARDOUS MATERIALS MANAGEMENT The... chemicals may be considered to be a man-made wind. Such large gas volumes can be produced by blowcr equipment incorporating surplus jet engines . Such blowers

  16. Numerical Simulation of Chemical Weapon Detonations

    DTIC Science & Technology

    1996-08-01

    Engineers , is currently involved in the location, removal, and demilitarization of stockpiled and non-stockpiled chemical munitions. To support the...U.S. Army Corps of Engineers , is currently involved in the location, removal, and demilitarization of stockpiled and non-stockpiled chemical munitions...Length 6" As part of the development of a chemical agent confinement structure for use by the Huntsville Corps of Engineers , SwRI performed arena tests on

  17. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  18. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  19. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  20. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  1. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less

  3. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  4. New Directions for Biomedical Engineering

    ERIC Educational Resources Information Center

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  5. Tactical Unmanned Ground Vehicle Related Research References (BTA Study)

    DTIC Science & Technology

    1993-03-01

    draw bar pull - 4,297 lbs; Engine - 65 hp air cooled diesel engine ; dual electrical motors, hydrostatic drive; Observation - three closed-circuit...8217 Munitions and Chemical Command. Commander, U. S. Army Chemical Research, Development, and Engineering Center. 40..... "Unmanned Air Vehicles Payloads...8217 Larry Brantley Advanced Systems Concepts Office Research, Development, and Engineering Center MARCH 1993 edetone qArs nal, Alabama 35898-5000

  6. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  7. Overview of Pulse Detonation Propulsion Technology

    DTIC Science & Technology

    2001-04-01

    PROPULSION TECHNOLOGY M. L. Coleman CHEMICAL PROPULSION INFORMATION AGENCY THE JOHNS HOPKINS UNIVERSITY. WHITING SCHOOL OF ENGINEERING -COLUMBIA...U. 20 R. Santoro, "Advanced Propulsion Research: A Focus of the Penn State Propulsion Engineering Research Center," Chemical Propulsion Information...Detonation Engine ," AIAA 95-3155 (July 1995), U-A. NASA Marshall Space Flight Center Space Transportation Day 2000 Presentation Material, Advance Chemical

  8. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  9. English Language Publishing in Chemical Engineering Journals from an Indian Academic's Point of View--A Broad Scientific Perspective

    ERIC Educational Resources Information Center

    Palit, Sukanchan

    2016-01-01

    Scientific vision and scientific understanding in today's world are in the path of new glory. Chemical Engineering science is witnessing drastic and rapid changes. The metamorphosis of human civilization in this century is faced with vicious challenges. Progress of Chemical Engineering science, the vision of technology and the broad chemical…

  10. Chemical Engineering Data Analysis Made Easy with DataFit

    ERIC Educational Resources Information Center

    Brenner, James R.

    2006-01-01

    The outline for half of a one-credit-hour course in analysis of chemical engineering data is presented, along with a range of typical problems encountered later on in the chemical engineering curriculum that can be used to reinforce the data analysis skills learned in the course. This mini course allows students to be exposed to a variety of ChE…

  11. A Pharmacokinetic Study of the Effects of Stress on Chemical Exposure.

    DTIC Science & Technology

    2000-03-01

    CHEMICAL EXPOSURE THESIS Presented to the Faculty of the Graduate School of Engineering and Management of the Air Force Institute of Technology Air...EFFECTS OF STRESS ON CHEMICAL EXPOSURE THESIS Sierra H. Suhajda, B.S. Lieutenant, USAF Presented to the Faculty of the Graduate School of Engineering ...War Syndrome: Dueling studies focus on stress versus environmental exposures as cause of ills," Chemical and Engineering News, 75: 4-5 (13 January

  12. 40 CFR 65.64 - Group determination procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...

  13. 40 CFR 65.64 - Group determination procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...

  14. 40 CFR 65.64 - Group determination procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...

  15. 40 CFR 65.64 - Group determination procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...

  16. Who Would Have Thought? The Story of a Food Engineer.

    PubMed

    Lund, Daryl B

    2017-02-28

    Food engineering is a hybrid of food science and an engineering science, like chemical engineering in my particular case, resulting in the application of chemical engineering principles to food systems and their constituents. With the complexity of food and food processing, one generally narrows his or her interests, and my primary interests were in the kinetics of reactions important in foods, thermal processing, deposition of unwanted materials from food onto heated surfaces (fouling), and microwave heat transfer in baking. This review describes how I developed an interest in these topics and the contributions I have hopefully made to understanding food and to the application of engineering.

  17. Green Engineering Textbook and Training Modules

    EPA Pesticide Factsheets

    EPA's Green Engineering textbook, Green Engineering: Environmentally Conscious Design of Chemical Processes, is a college senior-to-graduate-level engineering textbook. The primary authors are Dr. David Allen and Dr. David Shonnard.

  18. Fuel Cell Car Design Project for Freshman Engineering Courses

    ERIC Educational Resources Information Center

    Duke, Steve R.; Davis, Virginia A.

    2014-01-01

    In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…

  19. Chemical Reaction Engineering Applications in Non-traditional Technologies. A Textbook Supplement.

    ERIC Educational Resources Information Center

    Savage, Phillip E.; Blaine, Steven

    1991-01-01

    A set of educational materials that have been developed which deal with chemical engineering applications in emerging technologies is described. The organization and the content of the supplemental textbook materials and how they can be integrated into an undergraduate reaction engineering course are discussed. (KR)

  20. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  1. 40 CFR 80.1450 - What are the registration requirements under the RFS program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical engineering field or related to renewable fuel production. (B) For a foreign renewable fuel... United States with professional work experience in the chemical engineering field or related to renewable... relating to recycling and waste management. (2) An independent third-party engineering review and written...

  2. 40 CFR 80.1450 - What are the registration requirements under the RFS program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical engineering field or related to renewable fuel production. (B) For a foreign renewable fuel... United States with professional work experience in the chemical engineering field or related to renewable... relating to recycling and waste management. (2) An independent third-party engineering review and written...

  3. 40 CFR 63.11925 - What are my initial and continuous compliance requirements for process vents?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... scale. (iv) Engineering assessment including, but not limited to, the following: (A) Previous test..., and procedures used in the engineering assessment shall be documented. (3) For miscellaneous process...

  4. 40 CFR 63.11925 - What are my initial and continuous compliance requirements for process vents?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... scale. (iv) Engineering assessment including, but not limited to, the following: (A) Previous test..., and procedures used in the engineering assessment shall be documented. (3) For miscellaneous process...

  5. 40 CFR 63.11925 - What are my initial and continuous compliance requirements for process vents?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... scale. (iv) Engineering assessment including, but not limited to, the following: (A) Previous test..., and procedures used in the engineering assessment shall be documented. (3) For miscellaneous process...

  6. 40 CFR 80.1450 - What are the registration requirements under the RFS program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... professional work experience in the chemical engineering field or related to renewable fuel production. (B) For... third-party engineering review and written report and verification of the information provided pursuant... professional engineer licensed in the United States with professional work experience in the chemical...

  7. 40 CFR 80.1450 - What are the registration requirements under the RFS program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemical engineering field or related to renewable fuel production. (B) For a foreign renewable fuel... United States with professional work experience in the chemical engineering field or related to renewable... relating to recycling and waste management. (2) An independent third-party engineering review and written...

  8. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    ERIC Educational Resources Information Center

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  9. Learning by Brewing: Beer Production Experiments in the Chemical Engineering Laboratory

    ERIC Educational Resources Information Center

    Cerretani, Colin; Kelkile, Esayas; Landry, Alexandra

    2017-01-01

    We discuss the successful creation and implementation of a biotechnology track within the chemical engineering unit operations course. The track focuses on engineering principles relevant to brewing. Following laboratory modules investigating heat transfer processes and yeast fermentation kinetics, student groups design and implement a project to…

  10. Understanding performance properties of chemical engines under a trade-off optimization: Low-dissipation versus endoreversible model

    NASA Astrophysics Data System (ADS)

    Tang, F. R.; Zhang, Rong; Li, Huichao; Li, C. N.; Liu, Wei; Bai, Long

    2018-05-01

    The trade-off criterion is used to systemically investigate the performance features of two chemical engine models (the low-dissipation model and the endoreversible model). The optimal efficiencies, the dissipation ratios, and the corresponding ratios of the dissipation rates for two models are analytically determined. Furthermore, the performance properties of two kinds of chemical engines are precisely compared and analyzed, and some interesting physics is revealed. Our investigations show that the certain universal equivalence between two models is within the framework of the linear irreversible thermodynamics, and their differences are rooted in the different physical contexts. Our results can contribute to a precise understanding of the general features of chemical engines.

  11. Engineering microbes for efficient production of chemicals

    DOEpatents

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  12. Development of a Spray System for an Unmanned Aerial Vehicle Platform

    DTIC Science & Technology

    2008-09-01

    Applied Engineering in Agriculture Vol. 25(6): 803‐809 2009 American Society of Agricultural and Biological Engineers ISSN 0883-8542 803...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 804 APPLIED ENGINEERING IN AGRICULTURE non‐chemical or least toxic chemical techniques...and electrically shielded (fig. 4). 806 APPLIED ENGINEERING IN AGRICULTURE Figure 2. Computer‐aided model and design of the tank with baffles, and

  13. Guest Editorial: The Professional Status of European Chemists and Chemical Engineers.

    PubMed

    Salzer, Reiner; Taylor, Philip; Majcen, Nineta H; De Angelis, Francesco; Wilmet, Sophie; Varella, Evangelia; Kozaris, Ioannis

    2015-07-06

    Which country pays its chemists and chemical engineers the highest salaries? Where can I find a new job quickest? Which chemical sub-discipline offers most jobs? Reliable answers for these and other questions have been derived from the first European employment survey for chemists and chemical engineers, which was carried out in 2013. Here we publish the first general evaluation of the results of this survey. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bio-Inspired Navigation of Chemical Plumes

    DTIC Science & Technology

    2006-07-01

    Bio-Inspired Navigation of Chemical Plumes Maynard J. Porter III, Captain, USAF Department of Electrical and Computer Engineering Air Force Institute...Li. " Chemical plume tracing via an autonomous underwater vehicle". IEEE Journal of Ocean Engineering , 30(2):428— 442, 2005. [6] G. A. Nevitt...Electrical and Computer Engineering Air Force Institute of Technology Dayton, OH 45433-7765, U.S.A. juan.vasquez@afit.edu May 31, 2006 Abstract - The

  15. Metabolic Engineering X Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Evan

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  16. Propulsion Technology Lifecycle Operational Analysis

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Rhodes, Russell E.

    2010-01-01

    The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.

  17. Engines with ideal efficiency and nonzero power for sublinear transport laws

    NASA Astrophysics Data System (ADS)

    Koning, Jesper; Indekeu, Joseph O.

    2016-11-01

    It is known that an engine with ideal efficiency (η = 1 for a chemical engine and e = eCarnot for a thermal one) has zero power because a reversible cycle takes an infinite time. However, at least from a theoretical point of view, it is possible to conceive (irreversible) engines with nonzero power that can reach ideal efficiency. Here this is achieved by replacing the usual linear transport law by a sublinear one and taking the step-function limit for the particle current (chemical engine) or heat current (thermal engine) versus the applied force. It is shown that in taking this limit exact thermodynamic inequalities relating the currents to the entropy production are not violated.

  18. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  19. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.

    PubMed

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium , Trichosporon , and Lipomyces . This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  20. New Laboratory Course for Senior-Level Chemical Engineering Students

    ERIC Educational Resources Information Center

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  1. Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2005-01-01

    There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…

  2. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...

  3. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...

  4. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...

  5. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...

  6. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...

  7. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...

  8. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...

  9. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... paragraph (b)(5) of this section. Engineering assessment may be used to estimate emissions from a batch... defined in paragraph (b)(5) of this section, through engineering assessment, as defined in paragraph (b)(6...

  10. Biomass as a Sustainable Energy Source: An Illustration of Chemical Engineering Thermodynamic Concepts

    ERIC Educational Resources Information Center

    Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.

    2006-01-01

    The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…

  11. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  12. Overview of rocket engine control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Musgrave, Jeffrey L.

    1991-01-01

    The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.

  13. Chemical Engineering in the Spectrum of Knowledge.

    ERIC Educational Resources Information Center

    Sutija, Davor P.; Prausnitz, John M.

    1990-01-01

    Provides three classroom examples showing students how chemical engineering techniques can supply partial answers to social questions, such as environmental issues. Examples are depletion of the ozone layer, nuclear winter, and air pollution by chemical solvents. (YP)

  14. Design and Control of Chemical Grouting : Volume 3 - Engineering Practice

    DOT National Transportation Integrated Search

    1983-04-01

    Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...

  15. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  16. Discussion on the Development of Green Chemistry and Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

  17. Military Engineers and Chemical Warfare Troops (Inzhenernye Voiska Khimicheskie Voiska),

    DTIC Science & Technology

    MILITARY FORCES(FOREIGN), *MILITARY ORGANIZATIONS, MILITARY ENGINEERING , INFANTRY, AMPHIBIOUS OPERATIONS, MINELAYING, ARMORED VEHICLES, NUCLEAR...RADIATION, DOSIMETERS, CHEMICAL WARFARE, PROTECTIVE CLOTHING, DECONTAMINATION, HEALTH PHYSICS.

  18. Chemical kinetics of octane sensitivity in a spark-ignition engine (Chemical Kinetics of Octane Sensitivity in a Spark Ignition Engine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, Charles K.; Mehl, Marco; Pitz, William J.

    This article uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the range of operating conditions that can be used in such engines. While the concept of octane numbers of different fuels has been familiar for many years, the variations of their values and their role in determining Octane Sensitivity have not been addressed previously in terms of the basicmore » structures of the fuel molecules. In particular, the importance of electron delocalization on low temperature hydrocarbon reactivity and its role in determining OS in engine fuel is described here for the first time. Finally, the role of electron delocalization on fuel reactivity and Octane Sensitivity is illustrated for a very wide range of engine fuel types, including n-alkane, 1-olefin, n-alcohol, and n-alkyl benzenes, and the unifying features of these fuels and their common trends, using existing detailed chemical kinetic reaction mechanisms that have been collected and unified to produce an overall model with unprecedented capabilities.« less

  19. Chemical kinetics of octane sensitivity in a spark-ignition engine (Chemical Kinetics of Octane Sensitivity in a Spark Ignition Engine)

    DOE PAGES

    Westbrook, Charles K.; Mehl, Marco; Pitz, William J.; ...

    2016-07-11

    This article uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the range of operating conditions that can be used in such engines. While the concept of octane numbers of different fuels has been familiar for many years, the variations of their values and their role in determining Octane Sensitivity have not been addressed previously in terms of the basicmore » structures of the fuel molecules. In particular, the importance of electron delocalization on low temperature hydrocarbon reactivity and its role in determining OS in engine fuel is described here for the first time. Finally, the role of electron delocalization on fuel reactivity and Octane Sensitivity is illustrated for a very wide range of engine fuel types, including n-alkane, 1-olefin, n-alcohol, and n-alkyl benzenes, and the unifying features of these fuels and their common trends, using existing detailed chemical kinetic reaction mechanisms that have been collected and unified to produce an overall model with unprecedented capabilities.« less

  20. Greg Wilson, D.Sc. | NREL

    Science.gov Websites

    Chemical Engineering from Washington University in St. Louis and a B.S. in Chemical Engineering from the Number 6,284,384. Gregory M. Wilson, et al., "Pressure Equalization System for Chemical Vapor

  1. Survey of Alternative Fuels for Corps of Engineers Diesel Engine Powered Dredges.

    DTIC Science & Technology

    1984-04-01

    due to its physical and chemical properties ; as a result, the extent of engine and fuel system modifications must be considered. Engine performance...17,200 17,629 18,884 Cetane Number 54 24 * 16 21 50 • Not available / 00 -30- H-Coal The physical properties shown in Table 4 would strongly...have the desirable physical and chemical properties been defined to make them totally acceptable as a fuel source. The 1973 oil embargo signaled the

  2. Challenges and opportunities in synthetic biology for chemical engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, YZ; Lee, JK; Zhao, HM

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  3. ["Two professions for a single task". The introduction of chemical engineering in Spain during the first Francoism].

    PubMed

    Toca, Angel

    2006-01-01

    Through the first half of the 20th century, chemical engineering was established as an academic option in the training of specialists for the North-American and European chemical industry, whereas it was not a special field of study in Spain until the 1990s. The reason for this delay was a battle of interests between chemist and industrial engineers to control this career during the first Francoism. This article will try to show the development and professionalization of specialists for the Spanish chemical industry.

  4. Challenges and opportunities in synthetic biology for chemical engineers

    PubMed Central

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925

  5. Challenges and opportunities in synthetic biology for chemical engineers.

    PubMed

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement.

  6. David Brandner | NREL

    Science.gov Websites

    chemical reaction engineering and transport phenomena Analytical analysis of complex bio-derived samples and Lignin Areas of Expertise Analytical analysis of complex samples Chemical reaction engineering and

  7. Engineering Graphene Mechanical Systems

    DTIC Science & Technology

    2012-07-05

    strength material. On the basis of chemical /defect manipulation and recrystallization this technique allows wide-range engineering of mechanical... Engineering Graphene Mechanical Systems Maxim K. Zalalutdinov,† Jeremy T. Robinson,*,† Chad E. Junkermeier,‡ James C. Culbertson, Thomas L. Reinecke...Information ABSTRACT: We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically

  8. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  9. Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)

    ERIC Educational Resources Information Center

    Bendig, Regina B.

    2009-01-01

    The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…

  10. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... engineering assessment, as described in paragraph (c)(2) of this section. (1) The owner or operator may choose... sample run. (2) The owner or operator may use engineering assessment to demonstrate compliance with the...

  11. CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues

    ERIC Educational Resources Information Center

    Piergiovanni, Polly R.

    2012-01-01

    Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…

  12. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  13. Differences in Chemical Engineering Student-Faculty Interactions by Student Age and Experience at a Large, Public, Research University

    ERIC Educational Resources Information Center

    Ciston, Shannon; Sehgal, Sanya; Mikel, Tressa; Carnasciali, Maria-Isabel

    2018-01-01

    Adult undergraduate students aged 25+ in engineering disciplines are an important demographic bringing a wealth of life experience to the classroom. This study uses qualitative data drawn from semi-structured interviews with two groups of undergraduate chemical engineering students at a large, public research university: adult students with…

  14. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    PubMed Central

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years. PMID:29167664

  15. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  16. Recent advances in systems metabolic engineering tools and strategies.

    PubMed

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An Assessment of Research-Doctorate Programs in the United States: Engineering.

    ERIC Educational Resources Information Center

    Jones, Lyle V., Ed.; And Others

    The quality of doctoral-level chemical engineering (N=79), civil engineering (N=74), electrical engineering (N=91), and mechanical engineering (N=82) programs at United States universities was assessed, using 16 measures. These measures focused on variables related to: (1) program size; (2) characteristics of graduates; (3) reputational factors…

  18. 46 CFR 107.305 - Plans and information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... systems. Marine Engineering (z) Plans required for marine engineering equipment and systems by Subchapter F of this chapter. Electrical Engineering (aa) Plans required for electrical engineering equipment... materials that do not conform to ABS or ASTM specifications, complete specifications, including chemical and...

  19. The Keller Plan: A Successful Experiment in Engineering Education.

    ERIC Educational Resources Information Center

    Koen, Billy; And Others

    1985-01-01

    Discusses the Keller Plan or personalized system of instruction (PSI), a mastery-oriented, self-paced, modular teaching strategy using student/peer proctors. Success for PSI in chemical engineering, operations research, electrical engineering, and nuclear engineering courses is explained. (DH)

  20. Metabolic engineering tools in model cyanobacteria.

    PubMed

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. An approach in building a chemical compound search engine in oracle database.

    PubMed

    Wang, H; Volarath, P; Harrison, R

    2005-01-01

    A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework.

  2. A Course in Electrochemical and Corrosion Engineering.

    ERIC Educational Resources Information Center

    Van Zee, John

    1985-01-01

    Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)

  3. Implementing a Systematic Process for Rapidly Embedding Sustainability within Chemical Engineering Education: A Case Study of James Cook University, Australia

    ERIC Educational Resources Information Center

    Sheehan, Madoc; Schneider, Phil; Desha, Cheryl

    2012-01-01

    Sustainability has emerged as a primary context for engineering education in the 21st Century, particularly the sub-discipline of chemical engineering. However, there is confusion over how to go about integrating sustainability knowledge and skills systemically within bachelor degrees. This paper addresses this challenge, using a case study of an…

  4. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    ERIC Educational Resources Information Center

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  5. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    ERIC Educational Resources Information Center

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  6. Biochemical Engineering Fundamentals

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1976-01-01

    Discusses a biochemical engineering course that is offered as part of a chemical engineering curriculum and includes topics that influence the behavior of man-made or natural microbial or enzyme reactors. (MLH)

  7. The hard start phenomena in hypergolic engines. Volume 4: The chemistry of hydrazine fuels and nitrogen tetroxide propellant systems

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    The various chemical reactions that occur and that could possibly occur in the RCS engines utilizing hydrazine-type fuel/nitrogen tetroxide propellant systems, prior to ignition (preignition), during combustion, and after combustion (postcombustion), and endeavors to relate the hard-start phenomenon to some of these reactions are discussed. The discussion is based on studies utilizing a variety of experimental techniques and apparatus as well as current theories of chemical reactions and reaction kinetics. The chemical reactions were studied in low pressure gas flow reactors, low temperature homogeneous- and heterogeneous-phase reactors, simulated two-dimensional (2-D) engines, and scaled and full size engines.

  8. The hard start phenomena in hypergolic engines. Volume 3: Physical and combustion characteristics of engine residuals

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    An investigation was conducted to determine the cause of starting problems in the hypergolic rocket engines of the Apollo reaction control (RCS) engines. The scope of the investigation was as follows: (1) to establish that chemical reactions occurred during the preignition and post combustion periods, (2) to identify the chemical species of the products of preignition and post combustion reaction, and (3) to determine the explosive nature of the identified species. The methods used in identifying the chemical products are described species. The infrared spectra, X-ray spectra, and other signatures of the compounds are presented. The physical and explosion characteristics of various hypergolic agents are reported.

  9. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    NASA Technical Reports Server (NTRS)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  10. Light-energy conversion in engineered microorganisms.

    PubMed

    Johnson, Ethan T; Schmidt-Dannert, Claudia

    2008-12-01

    Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.

  11. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  12. 15 CFR 1150.3 - Approved markings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Federal Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical... Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical Technology...

  13. 40 CFR 98.454 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...

  14. 40 CFR 98.454 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...

  15. 15 CFR 1150.3 - Approved markings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Federal Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical... Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical Technology...

  16. 40 CFR 98.454 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...

  17. 15 CFR 1150.3 - Approved markings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Federal Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical... Standard 595a may be obtained from the Office of Engineering and Technical Management, Chemical Technology...

  18. 40 CFR 98.454 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...

  19. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  20. A Summer Leadership Development Program for Chemical Engineering Students

    ERIC Educational Resources Information Center

    Simpson, Annie E.; Evans, Greg J.; Reeve, Doug

    2012-01-01

    The Engineering Leaders of Tomorrow Program (LOT) is a comprehensive curricular, co-curricular, extra-curricular leadership development initiative for engineering students. LOT envisions: "an engineering education that is a life-long foundation for transformational leaders and outstanding citizens." Academic courses, co-curricular certificate…

  1. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  2. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  3. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  4. Research Technology

    NASA Image and Video Library

    1998-09-16

    A team of engineers at Marshall Space Flight Center (MSFC) has designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket that produces lower thrust but has better thrust efficiency than the chemical combustion engines. This segmented array of mirrors is the solar concentrator test stand at MSFC for firing the thermal propulsion engines. The 144 mirrors are combined to form an 18-foot diameter array concentrator. The mirror segments are aluminum hexagons that have the reflective surface cut into it by a diamond turning machine, which is developed by MSFC Space Optics Manufacturing Technology Center.

  5. 40 CFR 63.11502 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: process knowledge, an engineering assessment, or test data. Byproduct means a chemical (liquid, gas, or... limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources...

  6. 40 CFR 63.11502 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: process knowledge, an engineering assessment, or test data. Byproduct means a chemical (liquid, gas, or... limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources...

  7. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... Engineering Command, Edgewood Chemical Biological Center (ECBC) AGENCY: Office of the Deputy Under Secretary... the Army, Army Research, Development and Engineering Command, Edgewood Chemical Biological Center... Biological Chemical Center, (RDCB-DPC-W), 5183 Blackhawk Road, Building 3330, Room 264, Aberdeen Proving...

  8. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals. Copyright © 2013 International Metabolic Engineering Society. All rights reserved.

  9. Chemical-text hybrid search engines.

    PubMed

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  10. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    PubMed

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  11. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  12. Science, Engineering Employment Up in 1970s.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1984

    1984-01-01

    Highlights findings from the National Science Foundation's "1982 Postcensal Survey of Natural and Social Scientists and Engineers." Indicates that, from 1972 to 1982, employment of scientists and engineers increased 4 percent per year. However, these employment gains do not reflect the picture for chemists or chemical engineers. (JN)

  13. Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.

    ERIC Educational Resources Information Center

    Cady, K. Bingham; And Others

    1988-01-01

    Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…

  14. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  15. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    PubMed

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  16. Chemical Facility Security: Reauthorization, Policy Issues, and Options for Congress

    DTIC Science & Technology

    2009-07-13

    Process Safety, American Institute of Chemical Engineers , before the Senate Committee on Environment and Public Works, June 21, 2006, S.Hrg. 109-1044. See...example, Testimony by Dennis C. Hendershot, Staff Consultant, Center for Chemical Process Safety, American Institute of Chemical Engineers , before...CRS Report for Congress Prepared for Members and Committees of Congress Chemical Facility Security: Reauthorization, Policy Issues, and

  17. A Study to Determine the Basic Science and Mathematics Topics Most Needed by Engineering Technology Graduates of Wake Technical Institute in Performing Job Duties.

    ERIC Educational Resources Information Center

    Edwards, Timothy I.; Roberson, Clarence E., Jr.

    A survey of 470 graduates of the six engineering technology programs at Wake Technical Institute--Architectural, Chemical, Civil Engineering, Computer, Electronic Engineering, and Industrial Engineering Technologies--and 227 of their employers was conducted in October, 1979, to determine the science and mathematics topics most needed by…

  18. An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel

    DOE PAGES

    Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; ...

    2013-02-01

    In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel’s acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long.« less

  19. Plasma Engines,

    DTIC Science & Technology

    1982-09-08

    low thrust, long duration power device, the plasma engine 6 has certain distinct advantages. For a chemical fuel rocket engine , a thrust of M.’)1...PLASMA ENGINES.CU) UNCLASSZICD FTO-ZIftS)T-0636-98 NL * UUUUU UUMile ~ FTD-ID(RS)T-0636-82 FOREIGN TECHNOLOGY DIVISION q 14 PLASMA ENGINES bv Sung...8 September 1982 MICROFICHE NR: FTD-82-C-001198 PLASMA ENGINES By: Sung Yuyang English pages: 7 Source: Hangkong Zhishi, March 1982, pp. 12-13 Country

  20. WCC Home - Women Chemists Committee

    Science.gov Websites

    National Awards." Chemical & Engineering News, February 22, 2016. *Jacobs, M. "ACS's Work is not Done." Chemical & Engineering News, February 1, 2016. WCC also contributed to the ACS Chemists Committee (WCC) is: "Empowering women throughout the chemical enterprise" The Women

  1. Use of Research-Based Instructional Strategies in Core Chemical Engineering Courses

    ERIC Educational Resources Information Center

    Prince, Michael; Borrego, Maura; Henderson, Charles; Cutler, Stephanie; Froyd, Jeff

    2013-01-01

    Traditional lecturing remains the most prevalent mode of instruction despite overwhelming research showing the increased effectiveness of many alternate instructional strategies. This study examines chemical engineering instructors' awareness and use of 12 such instructional strategies. The study also examines how chemical engineering…

  2. Design Projects of the Future

    ERIC Educational Resources Information Center

    Shaeiwitz, Joseph A.; Turton, Richard

    2006-01-01

    The chemical engineering profession is in the midst of a significant evolution, perhaps a revolution. As the profession moves toward product development and design and away from petroleum and chemical process development and design, a new paradigm for chemical engineering education is evolving. Therefore, a new generation of capstone design…

  3. From Petroleum to Penicillin. The First Hundred Years of Modern Chemical Engineering: 1859-1959.

    ERIC Educational Resources Information Center

    Burnett, J. N.

    1986-01-01

    Presents a description of the course "From Petroleum to Penicillin" which examines chemical engineering and the chemical industry from a scientific, social and symbolic view. Explains the goals, organization, and requirements of the course. Lists case study and lecture topics. (ML)

  4. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    NASA Astrophysics Data System (ADS)

    Spicer, C. W.; Holdren, M. W.; Riggin, R. M.; Lyon, T. F.

    1994-10-01

    Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi) on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  5. A Rational Method for Ranking Engineering Programs.

    ERIC Educational Resources Information Center

    Glower, Donald D.

    1980-01-01

    Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)

  6. Effective Engineering Outreach through an Undergraduate Mentoring Team and Module Database

    ERIC Educational Resources Information Center

    Young, Colin; Butterfield, Anthony E.

    2014-01-01

    The rising need for engineers has led to increased interest in community outreach in engineering departments nationwide. We present a sustainable outreach model involving trained undergraduate mentors to build ties with K-12 teachers and students. An associated online module database of chemical engineering demonstrations, available to educators…

  7. 40 CFR 1065.526 - Repeating of void modes or test intervals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or test intervals in any circumstances that would be inconsistent with good engineering judgment. For... that include hybrid energy storage features or emission controls that involve physical or chemical... follows: (1) If the engine has stalled or been shut down, restart the engine. (2) Use good engineering...

  8. Review of Nuclear Thermal Propulsion Ground Test Options

    NASA Technical Reports Server (NTRS)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  9. Metabolic engineering of yeast for production of fuels and chemicals.

    PubMed

    Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack

    2013-06-01

    Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The role of chemical engineering in medicinal research including Alzheimer's.

    PubMed

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases.

  11. Opportunities for Merging Chemical and Biological Synthesis

    PubMed Central

    Wallace, Stephen; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecule production. We highlight recent advances in combining enzymatic and non-enzymatic catalysis in vitro, discuss the application of design principles from organic chemistry for engineering non-biological reactivity into enzymes, and describe the development of biocompatible chemistry that can be interfaced with microbial metabolism. PMID:24747284

  12. Teresa Barnes, Ph.D. | NREL

    Science.gov Websites

    Engineering, Colorado School of Mines B.S. Chemical Engineering, University of Maryland Featured Publications studied plasma-assisted chemical vapor deposition chemistry and transparent conducting oxide growth as a exploring the fundamental limits of CdTe performance using molecular beam epitaxy. Education Ph.D. Chemical

  13. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...

  14. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...

  15. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...

  16. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...

  17. My contribution to broadening the base of chemical engineering.

    PubMed

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.

  18. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.

    PubMed

    Cai, Wenlong; Zhang, Wenjun

    2018-04-01

    Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chemical engineering challenges and investment opportunities in sustainable energy.

    PubMed

    Heller, Adam

    2008-01-01

    The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.

  20. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.

    PubMed

    Choi, Sol; Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2016-11-01

    To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. An Introduction to Thermal-Fluid Engineering

    NASA Astrophysics Data System (ADS)

    Warhaft, Zellman

    1998-01-01

    This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.

  2. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    NASA Astrophysics Data System (ADS)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.

  3. Nuclear Thermal Propulsion: Past, Present, and a Look Ahead

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2014-01-01

    NTR: High thrust high specific impulse (2 x LOXLH2 chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2 propellant which is then exhausted to produce thrust. Conventional chemical engine LH2 tanks, turbo pumps, regenerative nozzles and radiation-cooled shirt extensions used -- NTR is next evolutionary step in high performance liquid rocket engines.

  4. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    PubMed

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.

  5. Engineering microbial factories for synthesis of value-added products

    PubMed Central

    Du, Jing; Shao, Zengyi; Zhao, Huimin

    2011-01-01

    Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed. PMID:21526386

  6. Problem-based learning biotechnology courses in chemical engineering.

    PubMed

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  7. Recent advances and versatility of MAGE towards industrial applications.

    PubMed

    Singh, Vijai; Braddick, Darren

    2015-12-01

    The genome engineering toolkit has expanded significantly in recent years, allowing us to study the functions of genes in cellular networks and assist in over-production of proteins, drugs, chemicals and biofuels. Multiplex automated genome engineering (MAGE) has been recently developed and gained more scientific interest towards strain engineering. MAGE is a simple, rapid and efficient tool for manipulating genes simultaneously in multiple loci, assigning genetic codes and integrating non-natural amino acids. MAGE can be further expanded towards the engineering of fast, robust and over-producing strains for chemicals, drugs and biofuels at industrial scales.

  8. Computational fluid dynamics: An engineering tool?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D., Jr.

    1982-06-01

    Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.

  9. Weapon System Software Acquisition and Support: A Theory of System Structure and Behavior.

    DTIC Science & Technology

    1982-03-01

    Labs, Raytheon, FMC Inorganic Chemicals Division, Motorola Military Electroncs, Hughes Aircraft, General Dynamics/Fort Worth, Grumman and IBM, among...Organization Engineering Manpower M-16A Engineers Authorized ENGEN Expected Nunber of M-17 Engineers Engineers LEI Level of Engineers M-17A Engineers...productivity sector are listed below: ENGEX.K=ENGEX.J+DT(ENGCT.JK-REXEL.JK -RREA.JK) M-21,Level ENGEN =LEI M-17N,Initial ENGTOT=LEI M-18N,Initial ENGEX=LEI M

  10. Applications of hybrid and digital computation methods in aerospace-related sciences and engineering. [problem solving methods at the University of Houston

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Motard, R. L.

    1978-01-01

    The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.

  11. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  12. A Chemical Engineer's Perspective on Health and Disease

    PubMed Central

    Androulakis, Ioannis P.

    2014-01-01

    Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems. PMID:25506103

  13. The Benefits of Nuclear Thermal Propulsion (NTP) in an Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Mccurdy, David R.

    2014-01-01

    NTR: High thrust high specific impulse (2 x LOXLH2chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2propellant which is then exhausted to produce thrust. Conventional chemical engine LH2tanks, turbopumps, regenerative nozzles and radiation-cooled shirt extensions used --NTR is next evolutionary step in high performance liquid rocket engines During the Rover program, a common fuel element tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968) NASA and DOE are using this same approach: design, build, ground then flight test a small engine using a common fuel element that is scalable to a larger 25 klbf thrust engine needed for human missions

  14. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    PubMed

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  15. Research Technology

    NASA Image and Video Library

    1997-02-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  16. The Navy/NASA Engine Program (NNEP89): Interfacing the program for the calculation of complex Chemical Equilibrium Compositions (CEC)

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford

    1991-01-01

    The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.

  17. An Approach to Help Departments Meet the New ABET Process Safety Requirements

    ERIC Educational Resources Information Center

    Vaughen, Bruce K.

    2012-01-01

    The proposed program criteria changes by the Accreditation Board for Engineering and Technology, Inc. (ABET), for chemical, biochemical, biomolecular, and similarly named programs includes a fundamental awareness expectation of the hazards involved in chemical processing for a graduating chemical engineer. As of July 2010, these four new words…

  18. Medium-Throughput Screen of Microbially Produced Serotonin via a G-Protein-Coupled Receptor-Based Sensor.

    PubMed

    Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela

    2017-10-17

    Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.

  19. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    PubMed

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13 C Metabolic Flux Analysis ( 13 C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13 C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13 C-MFA and illustrate how 13 C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  20. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.

    PubMed

    Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T

    2017-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. 40 CFR 721.6498 - Modified polyisocyanates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical... efficient and well-maintained application equipment, engineering controls and personal protective equipment.... Engineering controls should serve as the first, most effective means of reducing airborne polyisocyanate and...

  2. 1983 Employment Outlook.

    ERIC Educational Resources Information Center

    Sanders, Howard J., Ed.

    1982-01-01

    Presents findings on employment situations for chemists and chemical engineers, focusing on: (1) comparison of chemists and chemical engineers; (2) salaries; (3) career planning; and (4) demand, indicated to be decidedly less than in previous years as a result of the deep business recession. (JN)

  3. Chemists, Engineers Probe Mutual Problems.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Summarizes recommendations made in a workshop sponsored by the American Chemical Society concerning issues involving the diverging viewpoints of chemistry and chemical engineering. Includes recommendations regarding curricula, salary differences, and the need to change attitudes of chemistry faculty toward industry and industrial chemistry. (CS)

  4. The Impact of Structured Writing and Developing Awareness of Learning Preferences on the Performance and Attitudes of Engineering Teams

    ERIC Educational Resources Information Center

    Dahm, Kevin; Newell, James; Newell, Heidi; Harvey, Roberta

    2009-01-01

    This paper discusses efforts to develop metacognition in teams of engineering students by: first, exploring personal learning patterns, and second, ongoing biweekly journaling exercises. Thirty-three junior and senior engineering students (30 chemical engineer, one each from mechanical, civil and electrical) working on semester-long projects in…

  5. Project CAD as of July 1978: CAD support project, situation in July 1978

    NASA Technical Reports Server (NTRS)

    Boesch, L.; Lang-Lendorff, G.; Rothenberg, R.; Stelzer, V.

    1979-01-01

    The structure of Computer Aided Design (CAD) and the requirements for program developments in past and future are described. The actual standard and the future aims of CAD programs are presented. The developed programs in: (1) civil engineering; (2) mechanical engineering; (3) chemical engineering/shipbuilding; (4) electrical engineering; and (5) general programs are discussed.

  6. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  7. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  8. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  9. Chemical Facility Security: Reauthorization, Policy Issues, and Options for Congress

    DTIC Science & Technology

    2010-11-15

    American Institute of Chemical Engineers , before the Senate Committee on Environment and Public Works, June 21, 2006, S.Hrg. 109-1044. See also...American Institute of Chemical Engineers , before the Senate Committee on Environment and Public Works, June 21, 2006, S.Hrg. 109-1044. 57 The DHS...CRS Report for Congress Prepared for Members and Committees of Congress Chemical Facility Security: Reauthorization, Policy Issues, and

  10. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  11. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    PubMed

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  12. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    EPA Science Inventory

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...

  13. Activities Related to Systems Engineering

    DTIC Science & Technology

    2004-12-01

    competencies include weapons technology including WMD; information management; modeling and simulation; operations analysis; chemical and explosive sciences...thesis students) are drawn from engineering, es • Th s on: s 19. University of Idaho at Idaho Falls Loc o daho ems Engineering; Certificate in n

  14. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  15. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  16. Engineering for the 21st century: synthetic biology.

    PubMed

    Munnelly, Kevin

    2013-05-17

    For years, scientists have hoped that biology would find its engineering counterpart--a series of principles that could be used as reliably as chemical engineering is for chemistry. Thanks to major advances in synthetic biology, those hopes may soon be realized.

  17. Conceptests for a Chemical Engineering Thermodynamics Course

    ERIC Educational Resources Information Center

    Falconer, John L.

    2007-01-01

    Examples of conceptests and suggestions for preparing them for use in an undergraduate, chemical engineering thermodynamics course are presented. Conceptests, combined with hand-held transmitters (clickers), is an effective method to engage students in class. This method motivates students, improves their functional understanding of…

  18. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  19. MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING PLANT. MTR AND ITS ATTACHMENTS IN FOREGROUND. ETR BEYOND TO RIGHT. INL NEGATIVE NO. 56-4100. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. 78 FR 22527 - Army Science Board Request for Information on Technology and Core Competencies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ...); Edgewood Chemical Biological Command (ECBC); Natick Soldier Research, Development & Engineering Center...; C4ISR; Night Vision; Chemical/Biological Warfare; and Soldier Systems. The study will focus on...); Armament Research, Development & Engineering Center (ARDEC); Aviation & Missile Research, Development...

  1. Sustainability in Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Glassey, Jarka; Haile, Sue

    2012-01-01

    Purpose: The purpose of this paper is to describe a concentrated strategy to embed sustainability teaching into a (chemical) engineering undergraduate curriculum throughout the whole programme. Innovative teaching approaches in subject-specific context are described and their efficiency investigated. Design/methodology/approach: The activities in…

  2. A Program in Semiconductor Processing.

    ERIC Educational Resources Information Center

    McConica, Carol M.

    1984-01-01

    A graduate program at Colorado State University which focuses on integrated circuit processing is described. The program utilizes courses from several departments while allowing students to apply chemical engineering techniques to an integrated circuit fabrication research topic. Information on employment of chemical engineers by electronics…

  3. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds.

    PubMed

    Li, Yi; Zhang, Hua; Zhao, Zongshan; Tian, Yong; Liu, Kun; Jie, Feifan; Zhu, Liang; Chen, Huanwen

    2018-05-01

    Particulate matters (PMs) emitted by automobile exhaust contribute to a significant fraction of the global PMs. Extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed to explore the molecular dependence of PMs collected from exhaust gases produced at different vehicle engine speeds. The mass spectral fingerprints of the organic compounds embedded in differentially sized PMs (e.g., 0.22-0.45, 0.45-1.00, 1.00-2.00, 2.00-3.00, 3.00-5.00, and 5.00-10.00μm) generated at different engine speeds (e.g., 1000, 1500, 2000, 2500, and 3000r/min) were chemically profiled in the mass range of mass to charge ratio (m/z) 50-800. Organic compounds, including alcohols, aldehydes, and esters, were detected in all the PMs tested, with varied concentration levels for each individual PM sample. At relatively low engine speeds (≤1500r/min), the total amount of organic species embedded in PMs of 0.22-1.00μm was greater than in PMs of other sizes, while more organic species were found in PMs of 5.00-10.00μm at high engine speeds (≥3000r/min), indicating that the organic compounds distributed in different sizes of PMs strongly correlated with the engine speed. The experimental data showed that the EAPCI-MS technique enables molecular characterization of PMs in exhaust, revealing the chemical dependence of PMs on the engine speeds (i.e., the combustion conditions) of automobiles. Copyright © 2017. Published by Elsevier B.V.

  4. Use of bacterial co-cultures for the efficient production of chemicals.

    PubMed

    Jones, J Andrew; Wang, Xin

    2017-12-02

    The microbial production of chemicals has traditionally relied on a single engineered microbe to enable the complete bioconversion of substrate to final product. Recently, a growing fraction of research has transitioned towards employing a modular co-culture engineering strategy using multiple microbes growing together to facilitate a divide-and-conquer approach for chemical biosynthesis. Here, we review key success stories that leverage the unique advantages of co-culture engineering, while also addressing the critical concerns that will limit the wide-spread implementation of this technology. Future studies that address the need to monitor and control the population dynamics of each strain module, while maintaining robust flux routes towards a wide range of desired products will lead the efforts to realize the true potential of co-culture engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    NASA Astrophysics Data System (ADS)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. • Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. • Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. • Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. • Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic systems and tissue engineering; nanotechnology for drug delivery and imaging; bionanotechnology in cancer and cardiovascular disease; nanostructured biomaterials; nanotechnology in bioengineering; nanofabrication of biosensing devices. We are pleased to present a selection of research papers in this special issue of Nanotechnology on behalf of the Nanoscale Science and Engineering Forum (NSEF). NSEF was established in 2001 as a new division of AIChE to promote nanotechnology efforts in chemical engineering. The chemical engineering discipline deals with the production and processing of chemicals and materials, and does so through a fundamental understanding of the core issues of transport, thermodynamics, and kinetics that exist at multiple length scales. Thus, it should come as no surprise that chemical engineers have been pursuing nanotechnology research for the last fifty years. For example, fuel production has benefited immensely from improved catalysts in which their pore structure is controlled with nanoscale precision, and polymer properties have been improved by controlling the polymer supramolecular structure at the nanometre scale. Chemical engineering will continue to make important contributions to nanotechnology, and will play a critical role in the transition from basic science and engineering research to commercial applications. We would like to thank all of the authors who contributed to this special issue; the three NSEF poster presentation award winners for their papers (Sureshkumar, Sunkara, and Rinaldi groups); Dr Nina Couzin, Publisher of Nanotechnology, for her support and enthusiasm for this project; Drs Sharon Glotzer and Dan Coy who chaired the topical conference; and Drs Meyya Meyyappan and Brett Cruden (NASA Ames Research Center) for their assistance in the initial planning stages. We also take this opportunity to thank the many people and organizations who have supported the 2004 topical conference along the way, which include all the session chairs, Hyperion Catalysis International, Inc., Nanophase Technologies, Inc., and the executive board of the NSEF.

  6. Computing Properties Of Chemical Mixtures At Equilibrium

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  7. Computers in Engineering Teaching.

    ERIC Educational Resources Information Center

    Rushby, N. J.

    This bibliography cites 26 books, papers, and reports dealing with various uses of computers in engineering education; and describes several computer programs available for use in teaching aeronautical, chemical, civil, electrical and electronic, mechanical, and nuclear engineering. Each computer program entry is presented by name, author,…

  8. Chemical Reaction Engineering: Current Status and Future Directions.

    ERIC Educational Resources Information Center

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  9. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    ERIC Educational Resources Information Center

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  10. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    NASA Astrophysics Data System (ADS)

    Gajewski, Juliusz B.; Głogowski, Marek J.; Paszkowski, Maciej; Czarnik-Matusewicz, Bogusława

    2011-06-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  11. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.

    PubMed

    Singh, Milind; Berkland, Cory; Detamore, Michael S

    2008-12-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches.

  12. Study of small turbofan engines applicable to single-engine light airplanes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, G.L.

    1976-09-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  13. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.

  14. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    ERIC Educational Resources Information Center

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  15. Fusion Power—A Chemical Engineering View of the Integrated Enterprise

    NASA Astrophysics Data System (ADS)

    Manganaro, James L.

    2003-03-01

    The purpose of this article was to achieve the beginning of an understanding of the integrated fusion enterprise from raw materials through power generation to decommissioning and waste disposal. The particular view point is that of a technically trained person who is only casually acquainted with the field. Emphasis is given to the chemical engineering aspects of controlled fusion power. It is concluded that there are indeed many areas in which the discipline of chemical engineering may contribute to the fusion effort. These areas include separation technology by physical and chemical means, heat and mass transfer in a packed bed blanket, tritium removal from molten coolants, distillation technology for isotope separation, and preparation of deuterium and lithium feed materials.

  16. Graduate Training Program in Ocean Engineering. Final Report.

    ERIC Educational Resources Information Center

    Frey, Henry R.

    Activities during the first three years of New York University's Ocean Engineering Program are described including the development of new courses and summaries of graduate research projects. This interdepartmental program at the master's level includes aeronautics, chemical engineering, metallurgy, and physical oceanography. Eleven courses were…

  17. 40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...

  18. 40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...

  19. 40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...

  20. 40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...

  1. 40 CFR 63.1412 - Continuous process vent applicability assessment procedures and methods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... values, and engineering assessment control applicability assessment requirements are to be determined... by using the engineering assessment procedures in paragraph (k) of this section. (f) Volumetric flow...

  2. Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment

    PubMed Central

    2013-01-01

    Engineering the cellular microenvironment has great potential to create a platform technology toward engineering of tissue and organs. This study aims to engineer a neural microenvironment through fabrication of three-dimensional (3D) engineered collagen matrixes mimicking in-vivo-like conditions. Collagen was chemically modified with a pentapeptide epitope consisting of isoleucine-lysine-valine-alanine-valine (IKVAV) to mimic laminin structure supports of the neural extracellular matrix (ECM). Three-dimensional collagen matrixes with and without IKVAV peptide modification were fabricated by freeze-drying technology and chemical cross-linking with glutaraldehyde. Structural information of 3D collagen matrixes indicated interconnected pores structure with an average pore size of 180 μm. Our results indicated that culture of dorsal root ganglion (DRG) cells in 3D collagen matrix was greatly influenced by 3D culture method and significantly enhanced with engineered collagen matrix conjugated with IKVAV peptide. It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration. PMID:23705903

  3. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy

    NASA Astrophysics Data System (ADS)

    Li, Chao; Tao, Fei; Ni, Jun; Wang, Yu; Yao, Feng; Xu, Ping

    2015-05-01

    It is increasingly attractive to engineer cyanobacteria for bulk production of chemicals from CO2. However, cofactor bias of cyanobacteria is different from bacteria that prefer NADH, which hampers cyanobacterial strain engineering. In this study, the key enzyme D-lactate dehydrogenase (LdhD) from Lactobacillus bulgaricus ATCC11842 was engineered to reverse its favored cofactor from NADH to NADPH. Then, the engineered enzyme was introduced into Synechococcus elongatus PCC7942 to construct an efficient light-driven system that produces D-lactic acid from CO2. Mutation of LdhD drove a fundamental shift in cofactor preference towards NADPH, and increased D-lactate productivity by over 3.6-fold. We further demonstrated that introduction of a lactic acid transporter and bubbling CO2-enriched air also enhanced D-lactate productivity. Using this combinational strategy, increased D-lactate concentration and productivity were achieved. The present strategy may also be used to engineer cyanobacteria for producing other useful chemicals.

  4. HBCUs and Chemical Engineering: Analysis of Baccalaureate Programs

    ERIC Educational Resources Information Center

    Reeves, Sheena; Thompson, Audie

    2018-01-01

    Historically Black Colleges and Universities (HBCUs) provide significant STEM degrees to African Americans. Initiatives toward increasing diversity in STEM fields have been implemented by government and industry leaders. HBCUs annually award over 20% of all African American baccalaureate chemical engineering degrees. This speaks volume to the…

  5. Drug Transport and Pharmacokinetics for Chemical Engineers

    ERIC Educational Resources Information Center

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  6. Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

    EPA Science Inventory

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...

  7. How Much Safety Do We Need in ChE Education?

    ERIC Educational Resources Information Center

    Mewis, Jan

    1984-01-01

    Discusses aims, objectives, and content of a safety course for chemical engineering students. Course emphasizes awareness of hazards, basic concepts and principles of safety engineering, and the ability to recognize, assess, and remedy specific risks occurring in chemical plants. Course implementation is also discussed. (JN)

  8. Combustion characteristics of various fuels during research octane number testing on an instrumented CFR F1/F2 engine

    DOE PAGES

    Kolodziej, Christopher P.; Wallner, Thomas

    2017-04-01

    The Cooperative Fuels Research (CFR) engine is the long-established standard for characterization of fuel knock resistance in spark-ignition internal combustion engines. Despite its measurements of RON and MON being widely used, there is little understanding of what governs the CFR octane rating for fuels of various chemical compositions compared to primary reference fuels (iso-octane and n-heptane). Some detailed combustion characteristics were measured on a highly instrumented CFR F1/F2 engine during RON testing of fuels with significantly different chemical composition. Our results revealed differences in the cylinder pressure and temperature conditions, as well as knocking characteristics.

  9. Combustion characteristics of various fuels during research octane number testing on an instrumented CFR F1/F2 engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Christopher P.; Wallner, Thomas

    The Cooperative Fuels Research (CFR) engine is the long-established standard for characterization of fuel knock resistance in spark-ignition internal combustion engines. Despite its measurements of RON and MON being widely used, there is little understanding of what governs the CFR octane rating for fuels of various chemical compositions compared to primary reference fuels (iso-octane and n-heptane). Some detailed combustion characteristics were measured on a highly instrumented CFR F1/F2 engine during RON testing of fuels with significantly different chemical composition. Our results revealed differences in the cylinder pressure and temperature conditions, as well as knocking characteristics.

  10. Engineered Barrier System: Physical and Chemical Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less

  11. Optimizing Chemical-Vapor-Deposition Diamond for Nitrogen-Vacancy Center Ensemble Magnetrometry

    DTIC Science & Technology

    2017-06-01

    Ju Li Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering...Sciences, U. S. Air Force Academy (2015) Submitted to the Department of Nuclear Science and Engineering in partial fulfillment of the requirements for the...degree of Master of Science in Nuclear Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 c○ Massachusetts Institute of

  12. Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.

    PubMed

    Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C

    2008-03-15

    Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.

  13. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    PubMed Central

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies. PMID:26050989

  14. Intra-Engine Trace Species Chemistry

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.; Lukachko, S. P.; Chobot, A.; Miake-Lye, R. C.; Brown, R.

    2002-01-01

    Prompted by the needs of downstream plume-wake models, the Massachusetts Institute of Technology (MIT) and Aerodyne Research Incorporated (ART) initiated a collaborative effort, with funding from the NASA AEAP, to develop tools that would assist in understanding the fundamental drivers of chemical change within the intra-engine exhaust flow path. Efforts have been focused on the development of a modeling methodology that can adequately investigate the complex intra-engine environment. Over the history of this project, our research has increasingly pointed to the intra-engine environment as a possible site for important trace chemical activity. Modeling studies we initiated for the turbine and exhaust nozzle have contributed several important capabilities to the atmospheric effects of aviation assessment. These include a more complete understanding of aerosol precursor production, improved initial conditions for plume-wake modeling studies, and a more comprehensive analysis of ground-based test cell and in-flight exhaust measurement data. In addition, establishing a physical understanding of important flow and chemical processes through computational investigations may eventually assist in the design of engines to reduce undesirable species.

  15. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2017-08-01

    Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  17. Energetic Combustion Devices for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  18. The prediction of nozzle performance and heat transfer in hydrogen/oxygen rocket engines with transpiration cooling, film cooling, and high area ratios

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Hoffman, Joe D.

    1993-01-01

    An advanced engineering computational model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multi-species, chemically reacting and diffusing Navier-Stokes equations are modelled, finite difference approach that is tailored to be conservative in an axisymmetric coordinate system for both the inviscid and viscous terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and transpiration cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent plug-and-spool rocket engine analysis cases performed. Further, the Soret term was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration cooled rocket engine.

  19. Cyanobacterial metabolic engineering for biofuel and chemical production.

    PubMed

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Phenomenographic Study: First Year Chemical Engineering Students' Conceptions of Energy in Dissolution Processes.

    ERIC Educational Resources Information Center

    Lyle, Kenneth S.; Robinson, William R.

    2002-01-01

    Describes the work of Ebenezer and Fraser as an example of the use of phenomenographic research in categorizing concepts of the factors involved in the dissolution of ionic compounds by students entering a first-year chemical engineering course at a university in South Africa. (MM)

  1. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  2. A Course on Energy Technology and Policy

    ERIC Educational Resources Information Center

    Edgar, Thomas F.

    2007-01-01

    The emerging energy situation in the United States puts chemical engineering at the forefront of the large research and education effort that will need to be undertaken during the next 20 years. Chemical engineering undergraduates and graduate students will need to be literate on energy alternatives and the interconnection of technology,…

  3. Rurality as an Asset for Inclusive Teaching in Chemical Engineering

    ERIC Educational Resources Information Center

    Gomez, Jamie; Svihla, Vanessa

    2018-01-01

    We developed and tested a pedagogical strategy--asset-based design challenges--to enhance diversity in early chemical engineering coursework. Using qualitative methods, we found first-year students justified high-cost solutions with ethical arguments; teams that included rural expertise argued instead for economically-viable solutions. In the…

  4. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes

    ERIC Educational Resources Information Center

    Bucala, Veronica; Pina, Juliana

    2007-01-01

    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  5. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    ERIC Educational Resources Information Center

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  6. Interactive Mathematica Simulations in Chemical Engineering Courses

    ERIC Educational Resources Information Center

    Falconer, John L.; Nicodemus, Garret D.

    2014-01-01

    Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…

  7. A Vision of the Chemical Engineering Curriculum of the Future

    ERIC Educational Resources Information Center

    Armstrong, Robert C.

    2006-01-01

    A dramatic shift in chemical engineering undergraduate education is envisioned, based on discipline-wide workshop discussions that have taken place over the last two years. Faculty from more than 53 universities and industry representatives from 19 companies participated. Through this process broad consensus has been developed regarding basic…

  8. From Petroleum to Penicillin. The First Hundred Years of Modern Chemical Engineering 1859-1959.

    ERIC Educational Resources Information Center

    Burnett, J. Nicholas

    1986-01-01

    Describes a chemical engineering course for liberal arts students that is taught from a scientific, social, and symbolic perspective. A summary of the early days of oil refining is included as representative of one of the major content segments of the course. (ML)

  9. An Internet-Based Distributed Laboratory for Interactive Chemical Engineering Education

    ERIC Educational Resources Information Center

    Guo, Jing; Kettler, David J.; Al-Dahhan, Muthanna

    2007-01-01

    A common undergraduate chemical engineering experiment has been modified for on-line operation over the Internet. By adopting rapidly changing Internet and object component technologies, we developed a novel approach combining the Internet and regular laboratory equipment. The client-server applications use a Visual Basic and Labtech programming…

  10. Experience Gained during the Adaptation of Classical ChE Subjects to the Bologna Plan in Europe: The Case of Chemical Reactors

    ERIC Educational Resources Information Center

    Ponsa, Sergio; Sanchez, Antoni

    2011-01-01

    At present, due to the overall adaptation to the European Higher Education Area (EHEA), a new concept regarding the teaching methodology was thought to be essential for engineering subjects. In this paper we describe our experience teaching the altered content of the courses on two classical subjects; Chemical Reactors (Chemical Engineering) and…

  11. The Future of Metabolic Engineering and Synthetic Biology: Towards a Systematic Practice

    PubMed Central

    Yadav, Vikramaditya G.; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-01-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as ‘multivariate modular metabolic engineering’ (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. PMID:22629571

  12. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    PubMed

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  13. NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program

    NASA Technical Reports Server (NTRS)

    Fishbach, Laurence H.; Gordon, Sanford

    1988-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  14. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  15. NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Gordon, S.

    1989-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  16. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    PubMed

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Poly(glycerol sebacate) - A Novel Biodegradable Elastomer for Tissue Engineering

    DTIC Science & Technology

    2002-04-01

    Langer’ ’Department of Chemical Engineering and 2Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A...for Tissue Engineering DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Materials...Materials Research Society NI 1.1 Poly(glycerol sebacate) - A Novel Biodegradable Elastomer for Tissue Engineering Yadong Wang,’ Barbara J. Sheppard,2 Robert

  18. Books on biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The books selected for this review could serve to establish or strengthen the background of the chemical engineer who seeks to enter the field of biotechnology, which is described as a field linking three different branches of science - microbiology, biochemistry and engineering. Nineteen books on biotechnology under the headings Science, Genetic Engineering, Biochemical Engineering, Biomass Energy, Directories and sourcebook are reviewed and titles of five other books received too late for comment given.

  19. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines.

    PubMed

    Kilic, Dogushan; Brem, Benjamin T; Klein, Felix; El-Haddad, Imad; Durdina, Lukas; Rindlisbacher, Theo; Setyan, Ari; Huang, Rujin; Wang, Jing; Slowik, Jay G; Baltensperger, Urs; Prevot, Andre S H

    2017-04-04

    Nonmethane organic gas emissions (NMOGs) from in-service aircraft turbine engines were investigated using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an engine test facility at Zurich Airport, Switzerland. Experiments consisted of 60 exhaust samples for seven engine types (used in commercial aviation) from two manufacturers at thrust levels ranging from idle to takeoff. Emission indices (EIs) for more than 200 NMOGs were quantified, and the functional group fractions (including acids, carbonyls, aromatics, and aliphatics) were calculated to characterize the exhaust chemical composition at different engine operation modes. Total NMOG emissions were highest at idling with an average EI of 7.8 g/kg fuel and were a factor of ∼40 lower at takeoff thrust. The relative contribution of pure hydrocarbons (particularly aromatics and aliphatics) of the engine exhaust decreased with increasing thrust while the fraction of oxidized compounds, for example, acids and carbonyls increased. Exhaust chemical composition at idle was also affected by engine technology. Older engines emitted a higher fraction of nonoxidized NMOGs compared to newer ones. Idling conditions dominated ground level organic gas emissions. Based on the EI determined here, we estimate that reducing idle emissions could substantially improve air quality near airports.

  20. The inevitable journey to being.

    PubMed

    Russell, Michael J; Nitschke, Wolfgang; Branscomb, Elbert

    2013-07-19

    Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrell's terminology, become ever more complicated-more chemical and less physical-as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is life's mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients-involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors-were imposed which functioned as the original 'carbon-fixing engine'. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: 'the pyrophosphatase engine'.

  1. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  2. Introductory Level Problems Illustrating Concepts in Pharmaceutical Engineering

    ERIC Educational Resources Information Center

    McIver, Keith; Whitaker, Kathryn; De Delva, Vladimir; Farrell, Stephanie; Savelski, Mariano J.; Slater, C. Stewart

    2012-01-01

    Textbook style problems including detailed solutions introducing pharmaceutical topics at the level of an introductory chemical engineering course have been created. The problems illustrate and teach subjects which students would learn if they were to pursue a career in pharmaceutical engineering, including the unique terminology of the field,…

  3. Scientific Manpower: Volume Compiles Data, Maps Trends.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1985

    1985-01-01

    Presents highlights from "The Technological Marketplace: Supply and Demand for Scientists and Engineers," a report which provides a synthesis of data found in 50 other reports. In addition, these data are analyzed and trends pointed out for such fields as chemistry, chemical engineering, and other science/engineering fields. (JN)

  4. 40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable to the process vent. (iv) Design analysis based on accepted chemical engineering principles..., dry standard cubic meters per minute, at a temperature of 20 °C. (g) Engineering assessment may be... the highest daily emission rate. (1) Engineering assessment includes, but is not limited to, the...

  5. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  6. 40 CFR 1065.526 - Repeating void modes or test intervals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or test intervals in any circumstances that would be inconsistent with good engineering judgment. For... that include hybrid energy storage features or emission controls that involve physical or chemical... shut down, restart the engine. (2) Use good engineering judgment to restart the test sequence using the...

  7. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  8. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...

  9. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... paragraph (d)(5) of this section. Engineering assessment may be used to estimate organic HAP emissions from... defined in paragraph (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6...

  10. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...

  11. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...

  12. 40 CFR 1065.526 - Repeating void modes or test intervals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or test intervals in any circumstances that would be inconsistent with good engineering judgment. For... that include hybrid energy storage features or emission controls that involve physical or chemical... shut down, restart the engine. (2) Use good engineering judgment to restart the test sequence using the...

  13. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... paragraph (d)(5) of this section. Engineering assessment may be used to estimate organic HAP emissions from... defined in paragraph (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6...

  14. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...

  15. Research approach to teaching groundwater biodegradation in karst aquifers

    USGS Publications Warehouse

    King, L.; Byl, T.; Painter, R.

    2006-01-01

    TSU in partnership with the USGS has conducted extensive research regarding biode??gradation of contaminants in karst aquifers. This research resulted in the development of a numerical approach to modeling biodegradation of contaminants in karst aquifers that is taught to environmental engineering students in several steps. First, environmental engineering students are taught chemical-reaction engineering principles relating to a wide variety of environmental fate and transport issues. Second, as part of TSU's engineering course curriculum, students use a non-ideal flow laboratory reactor system and run a tracer study to establish residence time distribution (RTD). Next, the students couple that formula to a first-order biodegradation rate and predict the removal of a biodegradable contaminant as a function of residence time. Following this, students are shown data collected from karst bedrock wells that suggest that karst aquifers are analogous to non-ideal flow reactors. The students are challenged to develop rates of biodegradation through lab studies and use their results to predict biodegradaton at an actual contaminated karst site. Field studies are also conducted to determine the accuracy of the students' predictions. This academic approach teaches biodegradation processes, rate-kinetic processes, hydraulic processes and numerical principles. The students are able to experience how chemical engineering principles can be applied to other situations, such as, modeling biodegradation of contaminants in karst aquifers. This paper provides background on the chemical engineering principles and karst issues used in the research-enhanced curriculum. ?? American Society for Engineering Education, 2006.

  16. A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.

    2015-01-01

    To better understand Cermet engine performance, examined historical material development reports two issues: High vaporization rate of UO2, High temperature chemical stability of UO2. Cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance. Few samples were tested above 2770 K. Results above 2770 K are ambiguous. Contemporary testing may clarify performance. Cermet sample testing during the NERVA Rover era. Important properties, melting temperature, vaporization rate, strength, Brittle-to-Ductile Transition, cermet sample test results, engine performance, location, peak temperature.

  17. Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors.

    PubMed

    Cho, Seunghee H; Kwon, Sun Sang; Yi, Jaeseok; Park, Won Il

    2016-01-01

    Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.

  18. Engineering electrical properties of graphene: chemical approaches

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  19. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    NASA Astrophysics Data System (ADS)

    L'Heureux, Zara E.

    This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first time, this thesis provides a mathematical analysis of scaling with a combination of both changing individual unit size and varying the total number of units produced. Different paths to meet a particular cumulative capacity are analyzed and show that total costs are path dependent and vary as a function of the unit size and number of units produced. The path dependence identified is fairly weak, however, and for all practical applications, the underlying scaling laws seem unaffected. This analysis continues to support the interest in pursuing designs built around small, modular infrastructure. Building on the observation that internal combustion engines are an inexpensive power-producing unit, the first optimization in this thesis focuses on quantifying the value of engine capacity committing to deliver power in the day-ahead electricity and reserve markets, specifically based on pricing from the New York Independent System Operator (NYISO). An optimization was written in Python to determine, based on engine cost, fuel cost, engine wear, engine lifetime, and electricity prices, when and how much of an engine's power should be committed to a particular energy market. The optimization aimed to maximize profit for the engine and generator (engine genset) system acting as a price-taker. The result is an annual profit on the order of \\$30 per kilowatt. The most value in the engine genset is in its commitments to the spinning reserve market, where power is often committed but not always called on to deliver. This analysis highlights the benefits of modularity in energy generation and provides one example where the system is so inexpensive and short-lived, that the optimization views the engine replacement cost as a consumable operating expense rather than a capital cost. Having the opportunity to incorporate incremental technological improvements in a system's infrastructure throughout its lifetime allows introduction of new technology with higher efficiencies and better designs. An alternative to traditionally large infrastructure that locks in a design and today's state-of-the-art technology for the next 50 - 70 years, is a system designed to incorporate new technology in a modular fashion. The modular engine genset system used for power generation is one example of how this works in practice. The largest single component of this thesis is modeling, designing, retrofitting, and testing a reciprocating piston engine used as a compressor. Motivated again by the low cost of an internal combustion engine, this work looks at how an engine (which is, in its conventional form, essentially a reciprocating compressor) can be cost-effectively retrofitted to perform as a small-scale gas compressor. In the laboratory, an engine compressor was built by retrofitting a one-cylinder, 79 cc engine. Various retrofitting techniques were incorporated into the system design, and the engine compressor performance was quantified in each iteration. Because the retrofitted engine is now a power consumer rather than a power-producing unit, the engine compressor is driven in the laboratory with an electric motor. Experimentally, compressed air engine exhaust (starting at elevated inlet pressures) surpassed 650 psia (about 45 bar), which makes this system very attractive for many applications in chemical engineering and refining industries. A model of the engine compressor system was written in Python and incorporates experimentally-derived parameters to quantify gas leakage, engine friction, and flow (including backflow) through valves. The model as a whole was calibrated and verified with experimental data and is used to explore engine retrofits beyond what was tested in the laboratory. Along with the experimental and modeling work, a techno-economic assessment is included to compare the engine compressor system with state-of-the-art, commercially-available compressors. Included in the financial analysis is a case study where an engine compressor system is modeled to achieve specific compression needs. The result of the assessment is that, indeed, the low engine cost, even with the necessary retrofits, provides a cost advantage over incumbent compression technologies. Lastly, this thesis provides an algorithm and case study for another application of small-scale units in energy infrastructure, specifically in energy storage. This study focuses on quantifying the value of small-scale, onsite energy storage in shaving peak power demands. This case study focuses on university-level power demands. The analysis finds that, because peak power is so costly, even small amounts of energy storage, when dispatched optimally, can provide significant cost reductions. This provides another example of the value of small-scale implementations, particularly in energy infrastructure. While the study focuses on flywheels and batteries as the energy storage medium, engine gensets could also be used to deliver power and shave peak power demands. The overarching goal of this thesis is to introduce small-scale, modular infrastructure, with a particular focus on the opportunity to retrofit and repurpose inexpensive, mass-manufactured internal combustion engines in new and unconventional applications. The modeling and experimental work presented in this dissertation show very compelling results for engines incorporated into both energy generation infrastructure and chemical engineering industries via compression technologies. The low engine cost provides an opportunity to add retrofits whilst remaining cost competitive with the incumbent technology. This work supports the claim that modular infrastructure, built on the indivisible unit of an internal combustion engine, can revolutionize many industries by providing a low-cost mechanism for rapid change and promoting small-scale designs.

  20. The Navy/NASA Engine Program (NNEP89): A user's manual

    NASA Technical Reports Server (NTRS)

    Plencner, Robert M.; Snyder, Christopher A.

    1991-01-01

    An engine simulation computer code called NNEP89 was written to perform 1-D steady state thermodynamic analysis of turbine engine cycles. By using a very flexible method of input, a set of standard components are connected at execution time to simulate almost any turbine engine configuration that the user could imagine. The code was used to simulate a wide range of engine cycles from turboshafts and turboprops to air turborockets and supersonic cruise variable cycle engines. Off design performance is calculated through the use of component performance maps. A chemical equilibrium model is incorporated to adequately predict chemical dissociation as well as model virtually any fuel. NNEP89 is written in standard FORTRAN77 with clear structured programming and extensive internal documentation. The standard FORTRAN77 programming allows it to be installed onto most mainframe computers and workstations without modification. The NNEP89 code was derived from the Navy/NASA Engine program (NNEP). NNEP89 provides many improvements and enhancements to the original NNEP code and incorporates features which make it easier to use for the novice user. This is a comprehensive user's guide for the NNEP89 code.

  1. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications.

    PubMed

    Park, Young-Kyoung; Nicaud, Jean-Marc; Ledesma-Amaro, Rodrigo

    2018-03-01

    Moving our society towards a bioeconomy requires efficient and sustainable microbial production of chemicals and fuels. Rhodotorula (Rhodosporidium) toruloides is a yeast that naturally synthesizes substantial amounts of specialty chemicals and has been recently engineered to (i) enhance its natural production of lipids and carotenoids, and (ii) produce novel industrially relevant compounds. The use of R. toruloides by companies and research groups has exponentially increased in recent years as a result of recent improvements in genetic engineering techniques and the availability of multiomics information on its genome and metabolism. This review focuses on recent engineering approaches in R. toruloides for bioproduction and explores its potential as a biotechnological chassis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modularization of genetic elements promotes synthetic metabolic engineering.

    PubMed

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  4. Generic Skill Development and Learning/Assessment Process: Use of Rubrics and Student Validation

    ERIC Educational Resources Information Center

    Iborra Urios, Montserrat; Ramirez Rangel, Eliana; Bringué Tomàs, Roger; Tejero Salvador, Javier; Cunill García, Fidel; Fité Piquer, Carles

    2015-01-01

    To fulfill the European Higher Education context in the subject of the Chemical Engineering Undergraduate Degree of University of Barcelona named "Chemical Engineering Experimentation II" team work, written and oral communication generic skills were developed and assessed by means of rubrics. In order to appraise the methodological…

  5. Molecular Modeling as a Self-Taught Component of a Conventional Undergraduate Chemical Reaction Engineering Course

    ERIC Educational Resources Information Center

    Rothe, Erhard W.; Zygmunt, William E.

    2016-01-01

    We inserted a self-taught molecular modeling project into an otherwise conventional undergraduate chemical-reaction-engineering course. Our objectives were that students should (a) learn with minimal instructor intervention, (b) gain an appreciation for the relationship between molecular structure and, first, macroscopic state functions in…

  6. Incorporating Computational Chemistry into the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Wilcox, Jennifer

    2006-01-01

    A graduate-level computational chemistry course was designed and developed and carried out in the Department of Chemical Engineering at Worcester Polytechnic Institute in the Fall of 2005. The thrust of the course was a reaction assignment that led students through a series of steps, beginning with energetic predictions based upon fundamental…

  7. Approaches to Learning in a Second Year Chemical Engineering Course.

    ERIC Educational Resources Information Center

    Case, Jennifer M.; Gunstone, Richard F.

    2003-01-01

    Investigates student approaches to learning in a second year chemical engineering course by means of a qualitative research project which utilized interview and journal data from a group of 11 students. Identifies three approaches to learning: (1) conceptual; (2) algorithmic; and (3) information-based. Presents student responses to a series of…

  8. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  9. Chemical Engineering and Instructional Computing: Are They in Step? (Part 2).

    ERIC Educational Resources Information Center

    Seider, Warren D.

    1988-01-01

    Describes the use of "CACHE IBM PC Lessons for Courses Other than Design and Control" as open-ended design oriented problems. Presents graphics from some of the software and discusses high-resolution graphics workstations. Concludes that computing tools are in line with design and control practice in chemical engineering. (MVL)

  10. A Project-based Spiral Curriculum for Introductory Courses in ChE: Part 2. Implementation.

    ERIC Educational Resources Information Center

    Dixon, Anthony G.; Clark, William M.; DiBiasio, David

    2000-01-01

    Reports the development, delivery, and assessment of a project-based spiral curriculum for the first sequence chemical engineering courses. Technical proficiency of students under the spiral curriculum was equal to or better than that of students under a traditional curriculum. Attitudes toward chemical engineering and teamwork were better, and…

  11. Water--1970. Chemical Engineering Progress Symposium Series No. 107, Volume 67, 1971.

    ERIC Educational Resources Information Center

    Cecil, Lawrence K., Ed.

    Due to the tremendous interest in all phases of environmental control, particularly with reference to water pollution control, the American Institute of Chemical Engineers (AIChE) is attempting to provide the lay public with accurate information about water resources so they may react with proper knowledge and constructive activity. This anthology…

  12. Exploring Simulator Use in the Preparation of Chemical Engineers

    ERIC Educational Resources Information Center

    Yerrick, Randy; Lund, Carl; Lee, Yonghee

    2013-01-01

    In this manuscript, we report the impact of students' usage of a simulator in the preparation of chemical engineers. This case study was conducted using content pretest and posttests, survey questionnaires, interviews, classroom observations, and an analysis of students' written response to design problems. Results showed the use of simulator was…

  13. Chemical Sciences and Engineering - US China Electric Vehicle and Battery

    Science.gov Websites

    Technology Workshop Argonne National Laboratory Chemical Sciences & Engineering DOE Logo Photo Gallery Hotels Maps Bus Schedule Contact Us TCS Building and Conference Center, Argonne National Lab TCS Building and Conference Center United States Flag China flag 2011 U.S.-China Electric Vehicle

  14. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  15. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  16. Design and Analysis of Questionnaires for Survey Skills in Chemical Engineering

    ERIC Educational Resources Information Center

    Lucas Yagüe, Susana; Coca Sanz, Mónica; González Benito, Gerardo; Cartón López, Ángel; Urueña Alonso, Miguel Ángel; García Cubero, Mª Teresa

    2011-01-01

    The new reorganization of university education has involved relevant changes in teaching and learning methodologies in order to help students to learn more effectively and to develop important skills and competences demanded by the professional world. In this sense the new configuration of the degree in Chemical Engineering required the…

  17. Newton's Laws, Euler's Laws and the Speed of Light

    ERIC Educational Resources Information Center

    Whitaker, Stephen

    2009-01-01

    Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…

  18. Incorporating Computer-Aided Software in the Undergraduate Chemical Engineering Core Courses

    ERIC Educational Resources Information Center

    Alnaizy, Raafat; Abdel-Jabbar, Nabil; Ibrahim, Taleb H.; Husseini, Ghaleb A.

    2014-01-01

    Introductions of computer-aided software and simulators are implemented during the sophomore-year of the chemical engineering (ChE) curriculum at the American University of Sharjah (AUS). Our faculty concurs that software integration within the curriculum is beneficial to our students, as evidenced by the positive feedback received from industry…

  19. Development of Chemical Engineering Course Methods Using Action Research: Case Study

    ERIC Educational Resources Information Center

    Virkki-Hatakka, Terhi; Tuunila, Ritva; Nurkka, Niina

    2013-01-01

    This paper reports on the systematic development of a teaching methodology for two chemical engineering courses. The aim was to improve the quality of teaching to achieve expected learning outcomes more effectively. The development was carried out over a period of several years based on an action research methodology with data systematically…

  20. Pretest uncertainty analysis for chemical rocket engine tests

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    A parametric pretest uncertainty analysis has been performed for a chemical rocket engine test at a unique 1000:1 area ratio altitude test facility. Results from the parametric study provide the error limits required in order to maintain a maximum uncertainty of 1 percent on specific impulse. Equations used in the uncertainty analysis are presented.

  1. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition (Preface)

    EPA Science Inventory

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  2. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    ERIC Educational Resources Information Center

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  3. Chemical Processing Department monthly report, September 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-10-18

    The September, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  4. Teaching Technical Writing in a Lab Course in Chemical Engineering

    ERIC Educational Resources Information Center

    Lombardo, Stephen J.

    2010-01-01

    Techniques are presented for improving the technical writing of chemical engineering students enrolled in an undergraduate laboratory course. The principles of writing covered are adopted from the book, Style: Lessons in Clarity and Grace, by Joseph M. Williams: General examples of writing are taken from this book and then are recast into examples…

  5. Microfluidics and Microfabrication in a Chemical Engineering Lab

    ERIC Educational Resources Information Center

    Archer, Shivaun D.

    2011-01-01

    Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…

  6. Comparative lung toxicity of engineered nanomaterials (ENM) utilizing in vitro, ex vivo and in vivo approaches

    EPA Science Inventory

    Background: Although engineered nanomaterials (ENM) are currently regulated either in the context of a new chemical, or as a new use of an existing chemical, hazard assessment is still to a large extent reliant on information from historical toxicity studies of the parent compoun...

  7. Chemical Processing Department monthly report, November 1957

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1957-12-23

    The November, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)

  8. Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering

    PubMed Central

    Singh, Milind; Berkland, Cory

    2008-01-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field—biomimetic, interfacial, and functional tissue engineering—by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell–protein–biomaterial interactions in a more native tissue–like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches. PMID:18803499

  9. Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review.

    PubMed

    Johnson, Tylor J; Gibbons, Jaimie L; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2016-11-01

    The rapid increase in worldwide population coupled with the increasing demand for fossil fuels has led to an increased urgency to develop sustainable sources of energy and chemicals from renewable resources. Using microorganisms to produce high-value chemicals and next-generation biofuels is one sustainable option and is the focus of much current research. Cyanobacteria are ideal platform organisms for chemical and biofuel production because they can be genetically engineered to produce a broad range of products directly from CO 2 , H 2 O, and sunlight, and require minimal nutrient inputs. The purpose of this review is to provide an overview on advances that have been or could be made to improve strains of cyanobacteria for industrial purposes. First, the benefits of using cyanobacteria as a platform for chemical and biofuel production are discussed. Next, an overview of cyanobacterial strain improvements by genetic engineering is provided. Finally, mutagenesis techniques to improve the industrial potential of cyanobacteria are described. Along with providing an overview on various areas of research that are currently being investigated to improve the industrial potential of cyanobacteria, this review aims to elucidate potential targets for future research involving cyanobacteria as an industrial microorganism. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1357-1371, 2016. © 2016 American Institute of Chemical Engineers.

  10. Efficiency at maximum power of a chemical engine.

    PubMed

    Hooyberghs, Hans; Cleuren, Bart; Salazar, Alberto; Indekeu, Joseph O; Van den Broeck, Christian

    2013-10-07

    A cyclically operating chemical engine is considered that converts chemical energy into mechanical work. The working fluid is a gas of finite-sized spherical particles interacting through elastic hard collisions. For a generic transport law for particle uptake and release, the efficiency at maximum power η(mp) [corrected] takes the form 1/2+cΔμ+O(Δμ(2)), with 1∕2 a universal constant and Δμ the chemical potential difference between the particle reservoirs. The linear coefficient c is zero for engines featuring a so-called left/right symmetry or particle fluxes that are antisymmetric in the applied chemical potential difference. Remarkably, the leading constant in η(mp) [corrected] is non-universal with respect to an exceptional modification of the transport law. For a nonlinear transport model, we obtain η(mp) = 1/(θ + 1) [corrected], with θ > 0 the power of Δμ in the transport equation.

  11. ThermoData Engine Database - Pure Compounds and Binary Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 103b NIST ThermoData Engine Version 6.0 - Pure CompoThermoData Engine Database - Pure Compounds and Binary Mixtures (PC database for purchase)   This database contains property data for more than 21,000 pure compounds, 37,500 binary mixtures, 10,000 ternary mixtures, and 6,000 chemical reactions.

  12. 75 FR 3183 - Approval and Promulgation of Air Quality Implementation Plan: Kentucky; Approval Section 110(a)(1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...) Federal motor vehicle control program; (2) fleet turnover of automobiles; (3) low reid vapor pressure of... vehicles standard; (6) large nonroad diesel engines rule; (7) nonroad spark ignition engines and recreational engines standard; (8) point source emission reductions; (9) Air Products and Chemicals -21-157...

  13. Howard University Engineers Success: Interdisciplinary Study Keeps Howard on the Cutting Edge

    ERIC Educational Resources Information Center

    Chew, Cassie M.

    2004-01-01

    According to Engineering Workforce Commission annual reports, in 1999 Howard University graduated 108 students, 92 of whom were African American, in its chemical, civil, electrical, and mechanical engineering programs and computer science programs. After two more years of graduating approximately 100 students across programs, in 2002, according to…

  14. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be... obtained through direct measurement, as defined in paragraph (b)(5) of this section, through engineering...

  15. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be... obtained through direct measurement, as defined in paragraph (b)(5) of this section, through engineering...

  16. 40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...

  17. 40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...

  18. 40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analysis based on accepted chemical engineering principles, measurable process parameters, or physical or... minute, at a temperature of 20 °C. (g) Engineering assessment may be used to determine the TOC emission...) Engineering assessment includes, but is not limited to, the following: (i) Previous test results provided the...

  19. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be... obtained through direct measurement, as defined in paragraph (b)(5) of this section, through engineering...

  20. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be... obtained through direct measurement, as defined in paragraph (b)(5) of this section, through engineering...

  1. Growth of Solid Solutions of Aluminum Nitride and Silicon Carbide by Metalorganic Chemical Vapor Deposition

    DTIC Science & Technology

    1992-08-27

    Materials Science Center of Excellence REPORT NUMBER Howard University School of Engineering MSRCE ONR 1 2300 6th St., N.W. Washington, D.C. 20059 9...Research Center of Excellence, Department of Electrical Engineering, School of Engineering, Howard University , Washington, D.C., USA Abstract We report

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klipstein, David H.; Robinson, Sharon

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  3. Co-Optimization of Fuels & Engines: Fuel Blendstocks with the Potential to Optimize Future Gasoline Engine Performance; Identification of Five Chemical Families for Detailed Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John T; Holladay, John; Wagner, Robert

    The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners withmore » increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.« less

  4. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    NASA Astrophysics Data System (ADS)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  5. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    PubMed

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  6. Functional groups of ecosystem engineers: a proposed classification with comments on current issues.

    PubMed

    Berke, Sarah K

    2010-08-01

    Ecologists have long known that certain organisms fundamentally modify, create, or define habitats by altering the habitat's physical properties. In the past 15 years, these processes have been formally defined as "ecosystem engineering", reflecting a growing consensus that environmental structuring by organisms represents a fundamental class of ecological interactions occurring in most, if not all, ecosystems. Yet, the precise definition and scope of ecosystem engineering remains debated, as one should expect given the complexity, enormity, and variability of ecological systems. Here I briefly comment on a few specific current points of contention in the ecosystem engineering concept. I then suggest that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers. Finally, I suggest some conceptual model frameworks that could apply broadly within these functional groups.

  7. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.

    PubMed

    Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C

    2009-01-01

    Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  8. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    PubMed

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Antibiotic Algae by Chemical Surface Engineering.

    PubMed

    Kerschgens, Isabel P; Gademann, Karl

    2018-03-02

    Chemical cell-surface engineering is a tool for modifying and altering cellular functions. Herein, we report the introduction of an antibiotic phenotype to the green alga Chlamydomonas reinhardtii by chemically modifying its cell surface. Flow cytometry and confocal microscopy studies demonstrated that a hybrid of the antibiotic vancomycin and a 4-hydroxyproline oligomer binds reversibly to the cell wall without affecting the viability or motility of the cells. The modified cells were used to inhibit bacterial growth of Gram-positive Bacillus subtilis cultures. Delivery of the antibiotic from the microalgae to the bacterial cells was verified by microscopy. Our studies provide compelling evidence that 1) chemical surface engineering constitutes a useful tool for the introduction of new, previously unknown functionality, and 2) living microalgae can serve as new platforms for drug delivery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  11. Systems biology of industrial microorganisms.

    PubMed

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  12. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, W. Brian; Jones, J. Andrew; Bennett, R. Kyle

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolyticmore » intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.« less

  13. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli

    DOE PAGES

    Whitaker, W. Brian; Jones, J. Andrew; Bennett, R. Kyle; ...

    2016-11-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolyticmore » intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.« less

  14. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    PubMed

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  15. The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution.

    PubMed

    John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A

    2018-06-01

    This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.

  16. Advanced Chemical Modeling for Turbulent Combustion Simulations

    DTIC Science & Technology

    2012-05-03

    premixed combustion. The chemistry work proposes a method for defining jet fuel surrogates, describes how different sub- mechanisms can be incorporated...Chemical Modeling For Turbulent Combustion Simulations Final Report submitted by: Heinz Pitsch (PI) Stanford University Mechanical Engineering Flow Physics...predict the combustion characteristics of fuel oxidation and pollutant emissions from engines . The relevant fuel chemistry must be accurately modeled

  17. Mitigating the Mathematical Knowledge Gap between High School and First Year University Chemical Engineering Mathematics Course

    ERIC Educational Resources Information Center

    Basitere, Moses; Ivala, Eunice

    2015-01-01

    This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…

  18. Conceptual Framework to Help Promote Retention and Transfer in the Introductory Chemical Engineering Course

    ERIC Educational Resources Information Center

    Hanyak, Michael E., Jr.

    2015-01-01

    In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…

  19. The Power of Peer Mentoring in Enabling a Diverse and Inclusive Environment in a Chemical Engineering Graduate Program

    ERIC Educational Resources Information Center

    Bôas Fávero, Cláudio Vilas; Moran, Shannon; Eniola-Adefeso, Omolola

    2018-01-01

    The Chemical Engineering graduate program at the University of Michigan implemented a peer mentoring program for PhD students, with the goal of fostering department inclusivity and improved academic outcomes through facilitated social and academic activities in diverse, small groups. In this article, we detail the peer mentoring program…

  20. Finding Hidden Chemistry in Ancient Egyptian Artifacts: Pigment Degradation Taught in a Chemical Engineering Course

    ERIC Educational Resources Information Center

    Gime´nez, Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled "Technological and Scientific…

  1. A Multi-Institution Study of Student Demographics and Outcomes in Chemical Engineering

    ERIC Educational Resources Information Center

    Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.; Brawner, Catherine E.; Long, Russell A.

    2014-01-01

    Using a large multi-institutional dataset, we describe demographics and outcomes for students starting in and transferring into chemical engineering (ChE). In this dataset, men outnumber women in ChE except among black students. While ChE starters graduate in ChE at rates comparable to or above their racial/ethnic population average for…

  2. Pilot-Scale Laboratory Instruction for Chemical Engineering: The Specific Case of the Pilot-Unit Leading Group

    ERIC Educational Resources Information Center

    Billet, Anne-Marie; Camy, Severine; Coufort-Saudejaud, Carole

    2010-01-01

    This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In…

  3. Effect of Continuous Assessment on Learning Outcomes on Two Chemical Engineering Courses: Case Study

    ERIC Educational Resources Information Center

    Tuunila, R.; Pulkkinen, M.

    2015-01-01

    In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning…

  4. Class and Home Problems: Humidification, a True "Home" Problem for p. Chemical Engineer

    ERIC Educational Resources Information Center

    Condoret, Jean-Stephane

    2012-01-01

    The problem of maintaining hygrothermal comfort in a house is addressed using the chemical engineer's toolbox. A simple dynamic modelling proved to give a good description of the humidification of the house in winter, using a domestic humidifier. Parameters of the model were identified from a simple experiment. Surprising results, especially…

  5. Systems metabolic engineering strategies for the production of amino acids.

    PubMed

    Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning

    2017-06-01

    Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.

  6. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    PubMed

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for producing silicon from dichlorosilane in a 1,000 MT/yr plant was continued. Progress and status for the chemical engineering analysis of the HSC process are reported for the primary process design engineering activities: base case conditions (85%), reaction chemistry (85%), process flow diagram (60%), material balance (60%), energy balance (30%), property data (30%), equipment design (20%) and major equipment list (10%). Engineering design of the initial distillation column (D-01, stripper column) in the process was initiated. The function of the distillation column is to remove volatile gases (such as hydrogen and nitrogen) which are dissolved in liquid chlorosilanes. Initial specifications and results for the distillation column design are reported including the variation of tray requirements (equilibrium stages) with reflux ratio for the distillation.

  8. A review on chitosan centred scaffolds and their applications in tissue engineering.

    PubMed

    Ahmed, Shakeel; Annu; Sheikh, Javed; Ali, Akbar

    2018-05-03

    The diversity and availability of biopolymer and increased clinical demand for safe scaffolds lead to an increased interest in fabricating scaffolds in order to achieve fruitful progress in tissue engineering. Due to biocompatibility, biodegradability, inherent antimicrobial character, chitosan has drawn ample consideration in recent years. Chitosan is a biopolymer obtained by de-acetylation of chitin extracted from shells of crustaceans and fungi. Due to the presence of reactive functionality in the molecular chain chitosan can be modified either chemically or physically to fabricate the tailor-made scaffolds having desired properties for tissue engineering centered applications. In this review chitosan, its properties and role either virgin, chemically or physically modified, 2D or 3D scaffolds for tissue engineering application have been highlighted. Copyright © 2017. Published by Elsevier B.V.

  9. When You Can’t Beat ’em, Join ’em: Leveraging ComplexityScience for Innovative Solutions

    DTIC Science & Technology

    2017-08-21

    chemical reactions : • Belousov-Zhabotinskii reaction ... Engineering (ARE) Technical Interchange Meeting by: Dr. Josef Schaff, NAVAIR 4.5 DISTRIBUTION STATEMENT A • Commander’s intent: Networked Navy & the intent...Physics undergrad, software engineering jobs in comms, video games, robotics • Started NAWCAD (NADC) as a computer scientist / engineer

  10. Student Chemical Engineering Reflective ePortfolios--ChE Student Perceptions of Learning from Reflective ePortfolio Creation

    ERIC Educational Resources Information Center

    Cherrstrom, Catherine A.; Raisor, Cindy; Fowler, Debra

    2015-01-01

    Engineering educators and employers value and prioritize communication skills, but developing and assessing such skills in engineering programs is challenging. Reflective ePortfolios provide opportunities to enhance communication skills. The purpose of this three-­year qualitative case study was to investigate the use of reflective ePortfolios in…

  11. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.

    PubMed

    Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan

    2016-05-01

    Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.

  12. A fungicide-responsive kinase as a tool for synthetic cell fate regulation.

    PubMed

    Furukawa, Kentaro; Hohmann, Stefan

    2015-08-18

    Engineered biological systems that precisely execute defined tasks have major potential for medicine and biotechnology. For instance, gene- or cell-based therapies targeting pathogenic cells may replace time- and resource-intensive drug development. Engineering signal transduction systems is a promising, yet presently underexplored approach. Here, we exploit a fungicide-responsive heterologous histidine kinase for pathway engineering and synthetic cell fate regulation in the budding yeast Saccharomyces cerevisiae. Rewiring the osmoregulatory Hog1 MAPK signalling system generates yeast cells programmed to execute three different tasks. First, a synthetic negative feedback loop implemented by employing the fungicide-responsive kinase and a fungicide-resistant derivative reshapes the Hog1 activation profile, demonstrating how signalling dynamics can be engineered. Second, combinatorial integration of different genetic parts including the histidine kinases, a pathway activator and chemically regulated promoters enables control of yeast growth and/or gene expression in a two-input Boolean logic manner. Finally, we implemented a genetic 'suicide attack' system, in which engineered cells eliminate target cells and themselves in a specific and controllable manner. Taken together, fungicide-responsive kinases can be applied in different constellations to engineer signalling behaviour. Sensitizing engineered cells to existing chemicals may be generally useful for future medical and biotechnological applications. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Nanoparticles for bone tissue engineering.

    PubMed

    Vieira, Sílvia; Vial, Stephanie; Reis, Rui L; Oliveira, J Miguel

    2017-05-01

    Tissue engineering (TE) envisions the creation of functional substitutes for damaged tissues through integrated solutions, where medical, biological, and engineering principles are combined. Bone regeneration is one of the areas in which designing a model that mimics all tissue properties is still a challenge. The hierarchical structure and high vascularization of bone hampers a TE approach, especially in large bone defects. Nanotechnology can open up a new era for TE, allowing the creation of nanostructures that are comparable in size to those appearing in natural bone. Therefore, nanoengineered systems are now able to more closely mimic the structures observed in naturally occurring systems, and it is also possible to combine several approaches - such as drug delivery and cell labeling - within a single system. This review aims to cover the most recent developments on the use of different nanoparticles for bone TE, with emphasis on their application for scaffolds improvement; drug and gene delivery carriers, and labeling techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:590-611, 2017. © 2017 American Institute of Chemical Engineers.

  14. Photosynthetic CO2 Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria.

    PubMed

    Lee, Hyun Jeong; Choi, Jaeyeon; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Kim, Yunje; Woo, Han Min

    2017-02-15

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to fatty acid-derived chemicals that are widely used in the food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered for the first time to produce fatty acid ethyl esters (FAEEs) from CO 2 . Due to the lack of an endogenous ethanol production pathway and wax ester synthase (AftA) activity in the wild-type cyanobacterium, we metabolically engineered S. elongatus PCC 7942 by expressing heterologous AftA and introducing the ethanol pathway, resulting in detectable peaks of FAEEs. To enhance FAEE production, a heterologous phosphoketolase pathway was introduced in the FAEE-producing strain to supply acetyl-CoA. Subsequent optimization of the cyanobacterial culture with a hexadecane overlay resulted in engineered S. elongatus PCC 7942 that produced photosynthetic FAEEs (10.0 ± 0.7 mg/L/OD 730 ) from CO 2 . This paper is the first report of photosynthetic production of FAEEs from CO 2 in cyanobacteria.

  15. The Prediction of Nozzle Performance and Heat Transfer in Hydrogen/Oxygen Rocket Engines with Transpiration Cooling, Film Cooling, and High Area Ratios

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Hoffman, Joe D.

    1994-01-01

    An advanced engineering computational model has been developed to aid in the analysis of chemical rocket engines. The complete multispecies, chemically reacting and diffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and Dufour energy transfer terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film-cooled nozzle, and a transpiration-cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film-cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. It is demonstrated that thermal diffusion has a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle and was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration-cooled rocket engine.

  16. Prospects of microbial cell factories developed through systems metabolic engineering.

    PubMed

    Gustavsson, Martin; Lee, Sang Yup

    2016-09-01

    While academic-level studies on metabolic engineering of microorganisms for production of chemicals and fuels are ever growing, a significantly lower number of such production processes have reached commercial-scale. In this work, we review the challenges associated with moving from laboratory-scale demonstration of microbial chemical or fuel production to actual commercialization, focusing on key requirements on the production organism that need to be considered during the metabolic engineering process. Metabolic engineering strategies should take into account techno-economic factors such as the choice of feedstock, the product yield, productivity and titre, and the cost effectiveness of midstream and downstream processes. Also, it is important to develop an industrial strain through metabolic engineering for pathway construction and flux optimization together with increasing tolerance to products and inhibitors present in the feedstock, and ensuring genetic stability and strain robustness under actual fermentation conditions. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  18. Robert McCormick | NREL

    Science.gov Websites

    and combustion kinetics, fuel effects on engine efficiency, and the impact of new fuels on air , and fuel effects on pollutant emissions Education Ph.D., Chemical Engineering, University of Wyoming

  19. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  20. Fuzzy simulation in concurrent engineering

    NASA Technical Reports Server (NTRS)

    Kraslawski, A.; Nystrom, L.

    1992-01-01

    Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.

  1. Combustion dynamics in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Mclain, W. H.

    1971-01-01

    A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.

  2. Expanding the metabolic engineering toolbox with directed evolution.

    PubMed

    Abatemarco, Joseph; Hill, Andrew; Alper, Hal S

    2013-12-01

    Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  4. Class and Home Problems: Modeling of an Industrial Anaerobic Digester: A Case Study for Undergraduate Students

    ERIC Educational Resources Information Center

    Durruty, Ignacio; Ayude, María A.

    2014-01-01

    The case study discussed in this work is used at the chemical reaction engineering course, offered in fifth-year of the chemical engineering undergraduate program at National University of Mar del Plata (UNMdP). A serial-parallel reaction system based on the anaerobic degradation of particulate-containing potato processing wastewater is presented.…

  5. Development and Application of 3D Printed Mesoreactors in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Tabassum, Tahseen; Iloska, Marija; Scuereb, Daniel; Taira, Noriko; Jin, Chongguang; Zaitsev, Vladimir; Afshar, Fara; Kim, Taejin

    2018-01-01

    3D printing technology has an enormous potential to apply to chemical engineering education. In this paper, we describe several designs of 3D printed mesoreactors (Y-shape, T-shape, and Long channel shape) using the following steps: reactor sketching, CAD modeling, and reactor printing. With a focus on continuous plug flow mesoreactors (PFRs, i.d.…

  6. Pressure for Fun: A Course Module for Increasing Chemical Engineering Students' Excitement and Interest in Mechanical Parts

    ERIC Educational Resources Information Center

    Scarbrough, Will J.; Case, Jennifer M.

    2006-01-01

    A new module in a first year mechanical drawing course was designed with the primary goal of exciting chemical engineering students about mechanical things. Other goals included increasing student ability and confidence to explain how things work. A variety of high intensity, hands-on, facilitated group activities using pumps and valves were…

  7. Integrating Environmental Management in Chemical Engineering Education by Introducing an Environmental Management System in the Student's Laboratory

    ERIC Educational Resources Information Center

    Montanes, Maria T.; Palomares, Antonio E.

    2008-01-01

    In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…

  8. A Comparative Analysis between Direct and Indirect Measurement of Year I Integrated Project

    ERIC Educational Resources Information Center

    Abdullah, Siti Rozaimah Sheikh; Mohamad, Abu Bakar; Anuar, Nurina; Markom, Masturah; Ismail, Manal; Rosli, Masli Irwan; Hasan, Hassimi Abu

    2013-01-01

    The Integrated Project (IP) has been practised in the Department of Chemical and Process Engineering (JKKP) since the 2006/2007 session. Initially, the IP is only implemented for the Year II students for both Chemical (KK) and Biochemical Engineering (KB) programmes. Previously, the Year 1 curriculum was only based on the common faculty courses.…

  9. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    ERIC Educational Resources Information Center

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  10. Specific and Optional Curriculum: An Experience in the Undergraduate Program of Chemical Engineering in Cienfuegos University, Cuba

    ERIC Educational Resources Information Center

    Martínez, Yolanda García; Velázquez, Claudia Alvarado; Castillo, Rolando Delgado

    2016-01-01

    This paper pursues to define the pillars for designing the specific (SC) and optional curricula (OC) of Unit Operations and Processes (UOP) Discipline in the Chemical Engineering Program. To achieve this objective a methodology was developed, which was characterized by the participation of every member in the educational process: professors,…

  11. Ideas to Consider for New Chemical Engineering Educators: Part 1 (Courses Offered Earlier in the Curriculum)

    ERIC Educational Resources Information Center

    Keith, Jason M.; Silverstein, David L.; Visco, Donald P., Jr.

    2009-01-01

    Chemical engineering faculty members are often asked to teach a core course that they have not taught before. The immediate thought is to come up with some new ideas to revolutionize that core course in ways that will engage students and maximize learning. This paper summarizes the authors' selection of the most effective, innovative approaches…

  12. De Novo Metabolic Engineering and the Promise of Synthetic DNA

    NASA Astrophysics Data System (ADS)

    Klein-Marcuschamer, Daniel; Yadav, Vikramaditya G.; Ghaderi, Adel; Stephanopoulos, Gregory N.

    The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.

  13. Application of genetically engineered microbial whole-cell biosensors for combined chemosensing.

    PubMed

    He, Wei; Yuan, Sheng; Zhong, Wen-Hui; Siddikee, Md Ashaduzzaman; Dai, Chuan-Chao

    2016-02-01

    The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.

  14. Unemployment Rises Slightly for Chemists.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1982

    1982-01-01

    Results of a National Science Foundation survey indicate that developing shortages of science and engineering graduates in the current labor force for the most part do not apply to chemists and chemical engineers. (Author/JN)

  15. 40 CFR 1065.320 - Fuel-flow calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacturer's instructions and use good engineering judgment to repeat the calibration. (b) You may also develop a procedure based on a chemical balance of carbon or oxygen in engine exhaust. (c) You may remove...

  16. 40 CFR 1065.320 - Fuel-flow calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacturer's instructions and use good engineering judgment to repeat the calibration. (b) You may also develop a procedure based on a chemical balance of carbon or oxygen in engine exhaust. (c) You may remove...

  17. 40 CFR 68.56 - Maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL... testing procedures shall follow recognized and generally accepted good engineering practices. The...' recommendations, industry standards or codes, good engineering practices, and prior operating experience. ...

  18. 40 CFR 68.56 - Maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL... testing procedures shall follow recognized and generally accepted good engineering practices. The...' recommendations, industry standards or codes, good engineering practices, and prior operating experience. ...

  19. 40 CFR 68.56 - Maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL... testing procedures shall follow recognized and generally accepted good engineering practices. The...' recommendations, industry standards or codes, good engineering practices, and prior operating experience. ...

  20. 40 CFR 1065.320 - Fuel-flow calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturer's instructions and use good engineering judgment to repeat the calibration. (b) You may also develop a procedure based on a chemical balance of carbon or oxygen in engine exhaust. (c) You may remove...

  1. 40 CFR 1065.320 - Fuel-flow calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturer's instructions and use good engineering judgment to repeat the calibration. (b) You may also develop a procedure based on a chemical balance of carbon or oxygen in engine exhaust. (c) You may remove...

  2. 40 CFR 1065.320 - Fuel-flow calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturer's instructions and use good engineering judgment to repeat the calibration. (b) You may also develop a procedure based on a chemical balance of carbon or oxygen in engine exhaust. (c) You may remove...

  3. 40 CFR 68.56 - Maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL... testing procedures shall follow recognized and generally accepted good engineering practices. The...' recommendations, industry standards or codes, good engineering practices, and prior operating experience. ...

  4. 40 CFR 68.56 - Maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL... testing procedures shall follow recognized and generally accepted good engineering practices. The...' recommendations, industry standards or codes, good engineering practices, and prior operating experience. ...

  5. A Multidisciplinary Course in Bioengineering.

    ERIC Educational Resources Information Center

    Bienkowski, Paul R.; And Others

    1989-01-01

    Outlines a graduate course, "Microbial Systems Analysis," for students in chemical and environmental engineering or engineering mechanics, as well as microbiology, ecology and biotechnology. Describes the objectives, structure and laboratory experiments for the course. (YP)

  6. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.

    PubMed

    Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R

    2011-04-15

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions.

  7. Key fuel properties and engine performances of diesel-ethanol blends, using tetrahydrofuran as surfactant additive

    NASA Astrophysics Data System (ADS)

    Molea, A.; Visuian, P.; Barabás, I.; Suciu, R. C.; Burnete, N. V.

    2017-10-01

    In this paper there were presented researches related to preparation and characterization of physicochemical properties of diesel-ethanol blends stabilized with tetrahydrofuran as surfactant, in order to be used as fuels in compression ignition engines. The main spray characteristics and engine performances of these blends were evaluated by using AVL Fire software. In the first stage of the studies, commercial diesel was mixed with ethanol, in different concentrations (between 2% and 15% v/v), followed by the addition of tetrahydrofuran (THF) until the blends were miscible, i.e. the blends were stabilized. The experiments were done at room temperature (22 °C). The obtained blends were characterized in order to determine the chemical composition and physicochemical properties, i.e. density, kinematic viscosity, surface tension. UV-Vis spectroscopy was utilized in order to determine a semi-quantitative evaluation regarding the chemical composition of the prepared blends and chemical interaction between diesel, ethanol and THF. Based on the determined properties, the fuel spray characteristics, engine performances and emission characteristics were evaluated by simulation using the AVL Fire software. The obtained results regarding physicochemical properties of blends were compared with diesel. Some improvements were observed when operating with the prepared blends compared to diesel with respect to engine performances and emission characteristics. Based on physicochemical evaluation and computer simulation, it was demonstrated that diesel-ethanol-tetrahydrofuran blends can be used as alternative fuel in compression ignition engines.

  8. Characterization of Transient Plasma Ignition Flame Kernel Growth for Varying Inlet Conditions

    DTIC Science & Technology

    2009-12-01

    unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Pulse detonation engines ( PDEs ) have the...Instruments NPS - Naval Postgraduate School PDC - Pulse Detonation Combustor PDE - Pulse Detonation Engine Phi The Greek letter Φ PSIA...produced little to no new chemical propulsion developments; only improvements to existing architectures. The Pulse Detonation Engine ( PDE ) is a

  9. Labor Markets for New Science and Engineering Graduates in Private Industry. Science Resources Studies Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Data are presented on labor market conditions for science and engineering graduates based on responses of 255 firms to mail and telephone surveys conducted in late fall of 1981. Highlights presented in table, chart, and text indicate: (1) definite and likely shortages were concentrated in the computer and engineering fields; (2) chemical,…

  10. A Study of Second-Year Engineering Students' Alternative Conceptions about Electric Potential, Current Intensity and Ohm's Law

    ERIC Educational Resources Information Center

    Periago, M. Cristina; Bohigas, Xavier

    2005-01-01

    The aim of this research was to evaluate and analyse second-year industrial engineering and chemical engineering students prior knowledge of conceptual aspects of "circuit theory". Specifically, we focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between them as expressed by Ohm's law.…

  11. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    PubMed

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Magnetic Resonance Imaging and Velocity Mapping in Chemical Engineering Applications.

    PubMed

    Gladden, Lynn F; Sederman, Andrew J

    2017-06-07

    This review aims to illustrate the diversity of measurements that can be made using magnetic resonance techniques, which have the potential to provide insights into chemical engineering systems that cannot readily be achieved using any other method. Perhaps the most notable advantage in using magnetic resonance methods is that both chemistry and transport can be followed in three dimensions, in optically opaque systems, and without the need for tracers to be introduced into the system. Here we focus on hydrodynamics and, in particular, applications to rheology, pipe flow, and fixed-bed and gas-solid fluidized bed reactors. With increasing development of industrially relevant sample environments and undersampling data acquisition strategies that can reduce acquisition times to <1 s, magnetic resonance is finding increasing application in chemical engineering research.

  13. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    PubMed

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    PubMed

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  15. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  16. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    PubMed

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    PubMed

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  18. Protein engineering for metabolic engineering: current and next-generation tools

    PubMed Central

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  19. Influence of gender in choosing a career amongst engineering fields: a survey study from Turkey

    NASA Astrophysics Data System (ADS)

    Bucak, Seyda; Kadirgan, Neset

    2011-10-01

    The aim of this study is to understand the motivating factors behind students' choices in their decision-making process and also get an insight on their perception of different engineering branches. A survey was prepared and the results were evaluated amongst 1163 answers. Two major influences on student's decision in their professional choices are shown to be career services and family members. Generally, students have claimed to choose a profession based on 'finding a job' and 'being happy'. Some engineering branches such as Genetic and Bioengineering, Chemical Engineering, Environmental Engineering and Industrial Engineering, are shown to be distinctly preferred by female students, whereas mechanical, civil and electronic engineering are favourites for male students. The survey results were also compared with the distribution of male and female students in various engineering departments. This study clearly shows that certain engineering branches are perceived as more appropriate for women and are thus favoured by female students, while those perceived as more appropriate for men are favoured by male students.

  20. Protein engineering for metabolic engineering: current and next-generation tools.

    PubMed

    Marcheschi, Ryan J; Gronenberg, Luisa S; Liao, James C

    2013-05-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Rocket Engines Displayed for 1966 Inspection at Lewis Research Center

    NASA Image and Video Library

    1966-10-21

    An array of rocket engines displayed in the Propulsion Systems Laboratory for the 1966 Inspection held at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis engineers had been working on chemical, nuclear, and solid rocket engines throughout the 1960s. The engines on display are from left to right: two scale models of the Aerojet M-1, a Rocketdyne J-2, a Pratt and Whitney RL-10, and a Rocketdyne throttleable engine. Also on display are several ejector plates and nozzles. The Chemical Rocket Division resolved issues such as combustion instability and screech, and improved operation of cooling systems and turbopumps. The 1.5-million pound thrust M-1 engine was the largest hydrogen-fueled rocket engine ever created. It was a joint project between NASA Lewis and Aerojet-General. Although much larger in size, the M-1 used technology developed for the RL-10 and J-2. The M-1 program was cancelled in late 1965 due to budget cuts and the lack of a post-Apollo mission. The October 1966 Inspection was the culmination of almost a year of events held to mark the centers’ 25th anniversary. The three‐day Inspection, Lewis’ first since 1957, drew 2000 business, industry, and government executives and included an employee open house. The visitors witnessed presentations at the major facilities and viewed the Gemini VII spacecraft, a Centaur rocket, and other displays in the hangar. In addition, Lewis’ newest facility, the Zero Gravity Facility, was shown off for the first time.

  2. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  3. A Stochastic Mixing Model for Predicting Emissions in a Direct Injection Diesel Engine.

    DTIC Science & Technology

    1986-09-01

    of chemical reactors. The fundamental concept of these models is coalescence/dis- persion micromixing . C1] Details of this method are provided in Appen...Togby,A.H., "Monte Carlo Methods of Simulating Micromixing in Chemical Reactors", Chemical Engineering Science, Vol.27, p.1 4 97, 1972. 46. Kattan,A...on a molecular level. 2. Micromixing or stream mixing refers to the mixing of particles on a molecular level. Until the coalescence and dispersion

  4. Engineering biocatalysts for production of commodity chemicals.

    PubMed

    Shanmugam, K T; Ingram, L O

    2008-01-01

    Lignocellulosic biomass is an attractive alternate to petroleum for production of both fuels and commodity chemicals. This conversion of biomass would require a new generation of microbial biocatalysts that can convert all the sugars present in the biomass to the desired compounds. In this review, the critical factors that need to be considered in engineering such microbial biocatalysts for cost-effective fermentation of sugars are discussed with specific emphasis on commodity chemicals such as lactic acid, succinic acid and acetic acid. (c) 2008 S. Karger AG, Basel

  5. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering.

    PubMed

    Jules, Matthieu

    2017-12-11

    Synthetic Biology (SB) aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (over)producing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM) to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5): e00976-17), which identified and characterized a pyruvate transport system in the Gram-positive (G +ve ) bacterium Bacillus subtilis , a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS) responsible for its induction is retro-inhibited by the level of pyruvate influx. Following up on the open question which is whether this retro-inhibition is a generic mechanism for TCSs, we will discuss the implications in metabolic engineering.

  6. 2006 Joint Chemical Biological, Radiological and Nuclear (CBRN) Conference and Exhibition

    DTIC Science & Technology

    2006-06-28

    methods that might counter or cancel our current military advantages • Defeat terrorist networks • Defend homeland in depth • Prevent acquisition or...Systems approach to the detection of chemical and biological agents with a focus on genetically engineered organisms ( GMOs )/genetically engineered...and possessing breakthrough technological capabilities intended to supplant U.S. advantages in particular operational domains. (capsize our power

  7. Distributive Learning in Introductory Chemical Engineering: University Students' Learning, Motivation, and Attitudes Using a CD-ROM

    ERIC Educational Resources Information Center

    Greene, Barbara A.; Dillon, Connie; Crynes, Billy

    2003-01-01

    This article reports a study in which student performance and approaches to study in a CD-ROM version of a chemical engineering course were examined. The study consists of three phases. The purpose of phase 1 was to evaluate of the efficacy of CD-ROM for this content and student population. Therefore, we compared the performance of students who…

  8. A Survey of the Role of Thermodynamics and Transport Properties in Chemical Engineering University Education in Europe and the USA

    ERIC Educational Resources Information Center

    Ahlstrom, Peter; Aim, Karel; Dohrn, Ralf; Elliott, J. Richard; Jackson, George; Jaubert, Jean-Noel; Macedo, Eugenia A.; Pokki, Juha-Pekka; Reczey, Kati; Victorov, Alexey; Zilnik, Ljudmila Fele; Economou, Ioannis G.

    2010-01-01

    A survey on the teaching of thermodynamics and transport phenomena in chemical engineering curricula in European and US Universities was performed and results are presented here. Overall, 136 universities and colleges responded to the survey, out of which 81 from Europe and 55 from the USA. In most of the institutions responding at least two…

  9. A Matter of Chemical Engineering (On Teaching an Intensive Course in Technical Communication for Undergraduates).

    ERIC Educational Resources Information Center

    Sullivan, Ralda M.

    Because the ability to write reports and make oral presentations is crucial to success, the Department of Chemical Engineering at the University of California (Berkeley) has set up an in-house, required course that is given every semester to about 60 students. Divided into three sections, one of which is for non-native speakers of English, the…

  10. Chemical propulsion - The old and the new challenges

    NASA Technical Reports Server (NTRS)

    Mccarty, J. P.; Lombardo, J. A.

    1973-01-01

    The historical background concerning the application of liquid propellant rockets is considered. Progress to date in chemical liquid propellant rocket engines can be summarized as an increase in performance through the use of more energetic propellant combinations and increased combustion pressure. New advances regarding liquid propellant rocket engines are related to the requirement for reusability in connection with the development of the Space Shuttle.

  11. Installation Restoration Program. Phase 1. Records Search, England AFB, Louisiana

    DTIC Science & Technology

    1983-05-01

    compound shown on Figure 4.3. No herbicides, expired DDT or other pesticides were stored at this site. Some battery acid was stored in plastic boxes...Union Carbide Corporation, Chemicals and Plastics Divi- sion, Environomental Engineering Department. As a pro- cess/project engineer performed...paper mill waste treatment facility. Project Manager on Solid and Hazardous Waste study for a diverse chemicals and plastics production facility

  12. Engineered Aptamers to Probe Molecular Interactions on the Cell Surface

    PubMed Central

    Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E.; Mallikaratchy, Prabodhika

    2017-01-01

    Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics. PMID:28850067

  13. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    PubMed

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Toward Genome-Based Metabolic Engineering in Bacteria.

    PubMed

    Oesterle, Sabine; Wuethrich, Irene; Panke, Sven

    2017-01-01

    Prokaryotes modified stably on the genome are of great importance for production of fine and commodity chemicals. Traditional methods for genome engineering have long suffered from imprecision and low efficiencies, making construction of suitable high-producer strains laborious. Here, we review the recent advances in discovery and refinement of molecular precision engineering tools for genome-based metabolic engineering in bacteria for chemical production, with focus on the λ-Red recombineering and the clustered regularly interspaced short palindromic repeats/Cas9 nuclease systems. In conjunction, they enable the integration of in vitro-synthesized DNA segments into specified locations on the chromosome and allow for enrichment of rare mutants by elimination of unmodified wild-type cells. Combination with concurrently developing improvements in important accessory technologies such as DNA synthesis, high-throughput screening methods, regulatory element design, and metabolic pathway optimization tools has resulted in novel efficient microbial producer strains and given access to new metabolic products. These new tools have made and will likely continue to make a big impact on the bioengineering strategies that transform the chemical industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    PubMed

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control.

    PubMed

    Dai, Dongjuan; Prussin, Aaron J; Marr, Linsey C; Vikesland, Peter J; Edwards, Marc A; Pruden, Amy

    2017-07-18

    The "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention. Herein we utilize an engineering perspective to advance understanding of the factors that shape the built environment exposome and its influence on human wellness and disease, while simultaneously informing development of a framework for intentionally controlling the exposome to protect public health. Historically, engineers have been focused on controlling chemical and physical contaminants and on eradicating microbes; however, there is a growing awareness of the role of "beneficial" microbes. Here we consider the potential to selectively control the materials and chemistry of the built environment to positively influence the microbial and chemical components of the indoor exposome. Finally, we discuss research gaps that must be addressed to enable intentional engineering design, including the need to define a "healthy" built environment exposome and how to control it.

  17. Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchholz, B A; Mueller, C J; Upatnieks, A

    2004-01-07

    The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 ({sup 14}C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with {sup 14}C. The {sup 14}C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO{sub 2} emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO{submore » 2} directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO{sub 2}. Because they can follow individual carbon atoms through a real combustion process, {sup 14}C isotope tracing studies help strengthen the connection between actual engine emissions and chemical-kinetic models of combustion and soot formation/oxidation processes.« less

  18. LES of Sooting Flames

    DTIC Science & Technology

    2006-12-01

    27], [28] on soot nucleation, and [29] on the soot formation in diesel engines . [27] discussed the unresolved problems in SOx, NOx , and soot...used LEM approach to study aerosol dynamics in engine exhaust plumes. Recently, [41] used detailed NOx mechanism combined with MOM to predict the...combustion engines . For instance, the laminar flamelet approach used by [43, 44, 45], allows the usage of a detailed chemical mechanism but is not

  19. Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration.

    PubMed

    Xu, Yachen; Peng, Jinliang; Dong, Xin; Xu, Yuhong; Li, Haiyan; Chang, Jiang

    2017-06-01

    Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs. Structural signals of aligned electrospun nanofibers play an important role in stimulating both of paracrine and gap junctional communication while chemical signals of BG ionic products mainly enhance paracrine effects. In vivo experiments reveal that the activated skin tissue engineering constructs significantly enhance wound healing as compared to control. This study indicates the advantages of synergistic effects between different bioactive signals of biomaterials can be taken to activate communication between different types of cells for obtaining tissue engineering constructs with improved functions. Tissue engineering can regenerate or replace tissue or organs through combining cells, biomaterials and growth factors. Normally, for repairing a specific tissue, only one type of cells, one kind of biomaterials, and specific growth factors are used to support cell growth. In this study, we proposed a novel tissue engineering approach by simply using co-cultured cells and combined biomaterial signals. Using a skin tissue engineering model, we successfully proved that the combined biomaterial signals such as surface nanostructures and bioactive ions could synergistically stimulate the cell-cell communication in co-culture system through paracrine effects and gap junction activation, and regulated expression of growth factors and extracellular matrix proteins, resulting in an activated tissue engineering constructs that significantly enhanced skin regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Biologically active chitosan systems for tissue engineering and regenerative medicine.

    PubMed

    Jiang, Tao; Kumbar, Sangamesh G; Nair, Lakshmi S; Laurencin, Cato T

    2008-01-01

    Biodegradable polymeric scaffolds are widely used as a temporary extracellular matrix in tissue engineering and regenerative medicine. By physical adsorption of biomolecules on scaffold surface, physical entrapment of biomolecules in polymer microspheres or hydrogels, and chemical immobilization of oligopeptides or proteins on biomaterials, biologically active biomaterials and scaffolds can be derived. These bioactive systems show great potential in tissue engineering in rendering bioactivity and/or specificity to scaffolds. This review highlights some of the biologically active chitosan systems for tissue engineering application and the associated strategies to develop such bioactive chitosan systems.

Top