Currently available medical engineering degrees in the UK. Part 1: Undergraduate degrees.
Joyce, T
2009-05-01
This paper reviews mechanical-engineering-based medical engineering degrees which are currently provided at undergraduate level in the UK. At present there are 14 undergraduate degree programmes in medical engineering, offered by the University of Bath, University of Birmingham, University of Bradford, Cardiff University, University of Hull, Imperial College London, University of Leeds, University of Nottingham, University of Oxford, Queen Mary University of London, University of Sheffield, University of Southampton, University of Surrey, and Swansea University. All these undergraduate courses are delivered on a full-time basis, both 3 year BEng and 4 year MEng degrees. Half of the 14 degree courses share a core first 2 years with a mechanical engineering stream. The other seven programmes include medical engineering modules earlier in their degrees. Within the courses, a very wide range of medical-engineering-related modules are offered, although more common modules include biomaterials, biomechanics, and anatomy and physiology.
New Principles and Basic Approaches for the Curricula of Engineering Degree Courses.
ERIC Educational Resources Information Center
Gargione, Luiz Antonio
This paper presents new principles and basic approaches for the curricula of engineering degree courses. The accentuated evolution of engineering, the fast technological transformations and, still, the impact provoked by government regulations in the field of education in Brazil have called attention to these issues. Following these changes, it…
Distance Teaching of Environmental Engineering Courses at the Open University.
ERIC Educational Resources Information Center
Porteous, Andrew; Nesaratnam, Suresh T.; Anderson, Judith
1997-01-01
Describes two integrated distance learning environmental engineering degree courses offered by the environmental engineering group of the Open University in Great Britain. Discusses admission requirements for courses, advantages offered by distance learning, professional accreditation, site visits, and tutors. (AIM)
Enhancing Engineering Education through Engineering Management
ERIC Educational Resources Information Center
Pence, Kenneth R.; Rowe, Christopher J.
2012-01-01
Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…
Problem-Based Learning in Engineering Ethics Courses
ERIC Educational Resources Information Center
Kirkman, Robert
2016-01-01
I describe the first stages of a process of design research in which I employ problem-based learning in a course in engineering ethics, which fulfills a requirement for students in engineering degree programs. The aim of the course is to foster development of particular cognitive skills contributing to moral imagination, a capacity to notice,…
Evolution of Project-Based Learning in Small Groups in Environmental Engineering Courses
ERIC Educational Resources Information Center
Requies, Jesús M.; Agirre, Ion; Barrio, V. Laura; Graells, Moisès
2018-01-01
This work presents the assessment of the development and evolution of an active methodology (Project-Based Learning--PBL) implemented on the course "Unit Operations in Environmental Engineering", within the bachelor's degree in Environmental Engineering, with the purpose of decreasing the dropout rate in this course. After the initial…
Currently available medical engineering degrees in the UK. Part 2: Postgraduate degrees.
Joyce, T
2009-05-01
This paper considers taught medical engineering MSc degrees, based on mechanical engineering, which are provided in the UK. Currently there are 19 institutions which provide such postgraduate degree programmes. These are the University of Aberdeen, University of Bath, University of Bradford, Brunel University, University of Dundee, University of Hull, Imperial College London, Keele University, King's College London, University of Leeds, University of Liverpool, University of Nottingham, University of Oxford, Queen Mary University of London, University of Southampton, University of Strathclyde, University of Surrey, University of Ulster, and University of Warwick. While most courses are delivered on a 1 year full-time basis, other delivery modes are also available. Relatively few modules are offered as distance learning or short courses. A wide range of modules are offered by the various universities for the different taught MSc degrees. Common modules include biomaterials and biomechanics. The medical-engineering-related modules offered by a number of universities are also made available to students on allied MSc programmes and undergraduate degrees in medical engineering.
Situated Mathematics Teaching within Electrical Engineering Courses
ERIC Educational Resources Information Center
Hennig, Markus; Mertsching, Bärbel; Hilkenmeier, Frederic
2015-01-01
The initial phase of undergraduate engineering degree programmes often comprises courses requiring mathematical expertise which in some cases clearly exceeds school mathematics, but will be imparted only later in mathematics courses. In this article, an approach addressing this challenge by way of example within a "fundamentals of electrical…
ERIC Educational Resources Information Center
Olmedo-Torre, Noelia; Farrerons Vidal, Oscar
2017-01-01
We present a strategy for the acquisition and assessment of autonomous learning conducted as part of the Graphic Expression in Engineering (GE) degree course during the first quarter at the Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona (EUETIB). The strategy employed is the puzzle technique in the classroom and multiple-choice…
DOT National Transportation Integrated Search
2000-12-01
As part of an effort to establish a Louisiana professional Masters degree in Civil Engineering, with a concentration in transportation engineering, it has been proposed that a number of courses should be offered on different Louisiana campuses thr...
Remote sensing programs and courses in engineering and water resources
NASA Technical Reports Server (NTRS)
Kiefer, R. W.
1981-01-01
The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.
Introducing Optical Concepts in Electrical Engineering.
ERIC Educational Resources Information Center
Daneshvar, K.; Coleman, R.
The expansion in the fields of optical engineering and optoelectronics has made it essential to introduce optical engineering concepts into undergraduate courses and curricula. Because of limits on the number of course requirements for the BS degree, it is not clear how these topics should be introduced without replacing some of the traditional…
Polymerization Reactor Engineering.
ERIC Educational Resources Information Center
Skaates, J. Michael
1987-01-01
Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)
[Master course in biomedical engineering].
Jobbágy, Akos; Benyó, Zoltán; Monos, Emil
2009-11-22
The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.
The fully integrated biomedical engineering programme at Eindhoven University of Technology.
Slaaf, D W; van Genderen, M H P
2009-05-01
The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.
Biomedical Engineering Curriculum: A Comparison Between the USA, Europe and Australia
2001-10-25
Medicine. The Australian course is typically BSc/BE or BE/M( BME )Eng combined degree. The US degrees are often stand alone in terms of employment...opportunities. The Australian degrees tend to provide the graduate with employment opportunities both inside and outside the BME career path. The percentages...genomics for example. The percentages of each Australian U/G course that contains compulsory BME course work varies from 0 to 25%. For the 5 year
Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University
NASA Astrophysics Data System (ADS)
Perry, Jonathan; Bassichis, William
Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.
ERIC Educational Resources Information Center
Estévez-Ayres, Iria; Alario-Hoyos, Carlos; Pérez-Sanagustín, Mar; Pardo, Abelardo; Crespo-García, Raquel M.; Leony, Derick; Parada G., Hugo A.; Delgado-Kloos, Carlos
2015-01-01
In the last decade, engineering education has evolved in many ways to meet society demands. Universities offer more flexible curricula and put a lot of effort on the acquisition of professional engineering skills by the students. In many universities, the courses in the first years of different engineering degrees share program and objectives,…
NASA Astrophysics Data System (ADS)
Hu, Feng; Zhou, Jin-peng; Wang, Xing-shu
2017-08-01
Aiming at the deficiency of the traditional postgraduate education mode for professional degree, such as the conflict between work and study, restricted supply and demand and poor efficiency of course teaching, the emergence of Massive Open Online Course (MOOC) which has large scale, online and open features can make up for the shortage of traditional professional degree postgraduate education mode by introducing MOOC teaching mode. However, it is still a fangle to integrate MOOC into the traditional postgraduate education for professional degree and there are no standard methods for reference in the construction of MOOC courses as well as the corresponding evaluations. In this paper, the construction method and practical experience of MOOC courses for professional degree postgraduate education are discussed in details, based on the MOOC course of Introduction to Engineering Optics. Firstly, the principle of MOOC course contents for professional degree postgraduate education is introduced from the aspects of students' demand, MOOC features and practical applications. Secondly, the optimization of MOOC teaching mode is discussed in order to improve the teaching quality and learning efficiency. Thirdly, in order to overcome the deficiency of current MOOC examination schemes, a novel MOOC evaluation scheme is proposed which is capable of assessing students' learning attitude as well as their ability and performance differences. Finally, a practical summary is given about how to integrate the MOOC teaching mode into the postgraduate education for professional degree, including the constructions of teaching team, course system as well as other factors. From the paper, we can conclude that the integration of MOOC teaching mode into the postgraduate education for professional degree will improve the teaching quality and efficiency.
An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy
ERIC Educational Resources Information Center
Russo, D.; Fagan, R. D.; Hesjedal, T.
2011-01-01
The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…
Soils and Foundations: A Syllabus.
ERIC Educational Resources Information Center
Long, Melvin J.
The teaching guide and course outline for a 12-week course in soils and foundations is designed to help student technicians in a two-year associate degree civil engineering technology program to obtain entry level employment as highway engineering aides, soil testing technicians, soil mappers, or construction inspectors. The seven teaching units…
Introducing Ethical, Social and Environmental Issues in ICT Engineering Degrees
ERIC Educational Resources Information Center
Miñano, Rafael; Aller, Celia Fernández; Anguera, Áurea; Portillo, Eloy
2015-01-01
This paper describes the experience of introducing ethical, social and environmental issues in undergraduate ICT engineering degrees at the Universidad Politécnica de Madrid. The experience before the Bologna Process was concentrated on developing elective courses related mainly on the field of the International Development Cooperation. The…
Active Methodologies in a Queueing Systems Course for Telecommunication Engineering Studies
ERIC Educational Resources Information Center
Garcia, J.; Hernandez, A.
2010-01-01
This paper presents the results of a one-year experiment in incorporating active methodologies in a Queueing Systems course as part of the Telecommunication Engineering degree at the University of Zaragoza, Spain, during the period of adaptation to the European Higher Education Area. A problem-based learning methodology has been introduced, and…
ERIC Educational Resources Information Center
Khoza, Samuel Dumazi
2017-01-01
Engineering Graphics and Design is a technological subject which is offered in the Bachelor of Education degree from third to fourth year of the degree course. Fourth year pre-service teachers find EGD difficult to teach because of various reasons. Therefore the aim of the paper was to investigate fourth year pre-service teachers' pedagogical…
Perception of the Acquisition of Generic Competences in Engineering Degrees
ERIC Educational Resources Information Center
Olmedo-Torre, Noelia; Martínez, María Martínez; Perez-Poch, Antoni; García, Beatriz Amante
2018-01-01
The aim of this paper is to analyze what generic competencies at the "Universitat Politécnica de Catalunya" (UPC BarcelonaTech) are most evaluated by the teaching staff belonging to the first curricular block of industrial engineering degree courses at the Barcelona "Escola Universitaria d'Enginyeria Técnica Industrial," and…
ERIC Educational Resources Information Center
Murphy, Francis S.
2005-01-01
Education of potential professional engineers should take account of the type of employment that they will eventually obtain. The quality of an engineering degree course can be judged by assessing whether the correct balance of "essential attributes" has been effectively obtained. This case study is concerned with assessing the balance…
A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering
ERIC Educational Resources Information Center
Calvo, Isidro; Cabanes, Itziar; Quesada, Jeronimo; Barambones, Oscar
2018-01-01
This paper describes the design of an industrial informatics course, following the project-based learning methodology, and reports the experience of four academic years (from 2012-13 to 2015-16). Industrial Informatics is a compulsory course taught in the third year of the B.Sc. degree in industrial electronics and automation engineering at the…
NASA Astrophysics Data System (ADS)
Arce, A.; Caniego, J.; Vazquez, J.; Serrano, A.; Tarquis, A. M.; Cartagena, M. C.
2012-04-01
The Bologna process is to improve the quality of education, mobility, diversity and the competitiveness and involves three fundamental changes: transform of the structure of titles, changing in methods of teaching and implementation of the systems of quality assurance. Once that the new degrees have been implemented with this structure, and began at E.T.S. of Agriculture Engineering (ETSIA) at Madrid from 2010-2011 course, the main aim of this work is to deeply study the changes in teaching methodology as well as progressively implementation of the educational planning of the three new degrees: Engineering and Agronomic Graduate, Food Industry Engineering Graduate and Agro-environmental Graduate. Each one of them presents 240 ECTS with a common first course and will have access to an official Master in Agronomic Engineering. As part as an educational innovation project awarded by the Technical University of Madrid (UPM) to improve educational quality, the second course has been designed with the main objective to continue the educative model implemented last course. This model identifies several teaching activities and represents a proper teaching style at ETSIA-UPM. At the same time, a monitoring and development coordination plans have been established. On the other hand, a procedure to extinguish the earlier plans of Agriculture Engineering was also defined. Other activities related to this Project were the information improvement of the grades, in particular at High Schools centers, improving the processes of reception, counseling and tutoring and mentoring. Likewise, cooperative working workshops and programs to support the teaching of English language were implemented. Satisfaction surveys and opinion polls were done to professors and students involved in first course in order to test several aspects of this project. The students surveys were analyzed taking in account the academic results and their participation in mentoring activities giving a highly satisfactory level. In general, the professors gave the same result although they pointed out certain discontent respect to some circumstances giving some solutions to correct these problems.
Wind Energy Workforce Development: Engineering, Science, & Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc
2013-03-29
Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Mastersmore » degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.« less
Situated mathematics teaching within electrical engineering courses
NASA Astrophysics Data System (ADS)
Hennig, Markus; Mertsching, Bärbel; Hilkenmeier, Frederic
2015-11-01
The initial phase of undergraduate engineering degree programmes often comprises courses requiring mathematical expertise which in some cases clearly exceeds school mathematics, but will be imparted only later in mathematics courses. In this article, an approach addressing this challenge by way of example within a fundamentals of electrical engineering course is presented. The concept focuses on gaining specific mathematical knowledge and competencies in the technical context of this course. For this purpose, a complementary blended learning scenario centring around a web-based learning platform and involving an adaptation of the course was developed. The concept particularly considers the heterogeneity of today's student groups and is discussed with regard to related approaches, didactical considerations, and technical implementation. For the interventions, the results of a questionnaire-based evaluation proving students' acceptance and positive influence on examination performance are presented.
Bringing Outreach into the Engineering Classroom--A Mass and Heat Transfer Course Project
ERIC Educational Resources Information Center
Eniola-Adefeso, Omolola
2010-01-01
One major contributing factor to the low number of students receiving degrees in engineering is the two decades of steady decline in student enrollment in engineering disciplines. Evidence in the literature suggests that this decline can be linked to K-12 students' lack of knowledge of engineering careers and their perception of engineering as…
NASA Astrophysics Data System (ADS)
Malm, Joakim; Bryngfors, Leif; Mörner, Lise-Lotte
2016-09-01
Supplemental Instruction (SI) can be an efficient way of improving student success in difficult courses. Here, a study is made on SI attached to difficult first-year engineering courses. The results show that both the percentage of students passing a difficult first-year engineering course, and scores on the course exams are considerably higher for students attending SI, compared to students not attending. The study also shows that a higher percentage of female students attend SI, compared to male students. However, both genders seem to benefit to the same degree as a result of attending SI meetings. Also all students, independent of prior academic ability, benefit from attending SI. A qualitative study suggests that SI meetings provide elements important for understanding course material, which are missing from other scheduled learning opportunities in the courses.
ERIC Educational Resources Information Center
Lowenstein, Michael Z.; Orsak, Charles
Phase 1 of a project in curriculum design and course development identified and is now developing a two-year solar engineering curriculum in response to the immediate need for trained solar manpower as indicated by research. The student-centered curriculum involves courses flowing from device to theory, intermixing of support and technical courses…
NASA Astrophysics Data System (ADS)
Kimball, Jorja; Cole, Bryan; Hobson, Margaret; Watson, Karan; Stanley, Christine
This paper reports findings on gender that were part of a larger study reviewing time to completion of course work that includes the first two semesters of calculus, chemistry, and physics, which are often considered the stumbling points or "barrier courses" to an engineering baccalaureate degree. Texas A&M University terms these courses core body of knowledge (CBK), and statistical analysis was conducted on two cohorts of first-year enrolling engineering students at the institution. Findings indicate that gender is statistically significantly related to completion of CBK with female engineering students completing required courses faster than males at the .01 level (p = 0.008). Statistical significance for gender and ethnicity was found between white male and white female students at the .01 level (p = 0.008). Descriptive analysis indicated that of the five majors studied (chemical, civil, computer, electrical, and mechanical engineering), women completed CBK faster than men, and African American and Hispanic women completed CBK faster than males of the same ethnicity.
Competences in demand within the Spanish agricultural engineering sector
NASA Astrophysics Data System (ADS)
Perdigones, Alicia; Valera, Diego Luis; Moreda, Guillermo Pedro; García, Jose Luis
2014-09-01
The Rural Engineering Department (Technical University of Madrid) ran three competence surveys during the 2006-2007 and 2007-2008 academic years and evaluated: (1) the competences gained by agricultural engineer's degree and agricultural technical engineer's degree students (360 respondents); (2) the competences demanded by agricultural employers (50 farming sector employers); (3) competences required by farming sector professionals and former students (70 professionals). The surveys show significant differences between what competences agricultural employers require of graduates and the competences they acquire during their agricultural engineering degree courses. Recruiters are looking for generic competences such as the ability to coordinate groups and place less importance on knowledge of engineering, biology, applied economics and legislation. Of the computer-related competences, those most in demand by sector professionals were related to the use of Microsoft Office/Excel (used by 79% of professionals). Surveys were used to redesign some subjects of the degrees.
Designing for Enhanced Conceptual Understanding in an Online Physics Course
ERIC Educational Resources Information Center
Dunlap, Joanna C.; Furtak, Thomas E.; Tucker, Susan A.
2009-01-01
The calculus-based, introductory physics course is the port of entry for any student interested in pursuing a college degree in the sciences, mathematics, or engineering. There is increasing demand for online delivery options that make the course more widely available, especially those that use best practices in student engagement. However,…
ERIC Educational Resources Information Center
Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.
2015-01-01
Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…
A Case Study: Problem-Based Learning for Civil Engineering Students in Transportation Courses
ERIC Educational Resources Information Center
Ahern, A. A.
2010-01-01
This paper describes two case studies where problem-based learning (PBL) has been introduced to undergraduate civil engineering students in University College Dublin. PBL has recently been put in place in the penultimate and final year transport engineering classes in the civil engineering degree in University College Dublin. In this case study,…
NASA Astrophysics Data System (ADS)
Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki
2017-06-01
Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He received the B.S. degree in metallurgical engineering from Seoul National University, Seoul, South Korea, in 1974, and the M.S. and Ph.D. degrees in material science and engineering from Stanford University, Stanford, CA, USA, in 1980 and 1983, respectively. He is currently a Professor with the Department of Materials Science and Engineering, Seoul National University, Seoul.
ERIC Educational Resources Information Center
Garland, Marshall; Rapaport, Amie
2017-01-01
Taking advanced high school courses predicts such postsecondary outcomes as enrolling in college, persisting in college courses, and completing a degree. In Texas, where Hispanic students make up 51 percent of the student population, their access to and enrollment in advanced courses is an ongoing concern despite recent gains. In particular,…
ERIC Educational Resources Information Center
Downs, Holly A.
2011-01-01
Enormous demands for online degrees in higher education have increased the pressure on universities to launch web courses and degrees quickly and, at times, without properly attending to the quality of these ventures. There is scarce research that defines which quality indicators are used to assess cyberlearning environments, how different…
Review of Gender Differences in Learning Styles: Suggestions for STEM Education
ERIC Educational Resources Information Center
Kulturel-Konak, Sadan; D'Allegro, Mary Lou; Dickinson, Sarah
2011-01-01
Women have made great strides in baccalaureate degree obtainment, out numbering men by over 230,000 conferred baccalaureate degrees in 2008. However, the proportion of earned degrees for women in some of the Science, Technology, Engineering, and Mathematics (STEM) courses continues to lag behind male baccalaureate completions (National Science…
A Project-Based Learning Approach to Programmable Logic Design and Computer Architecture
ERIC Educational Resources Information Center
Kellett, C. M.
2012-01-01
This paper describes a course in programmable logic design and computer architecture as it is taught at the University of Newcastle, Australia. The course is designed around a major design project and has two supplemental assessment tasks that are also described. The context of the Computer Engineering degree program within which the course is…
Promoting Girls' Awareness and Interest in Engineering
ERIC Educational Resources Information Center
Lawrence, Deborah A.; Mancuso, Tina A.
2012-01-01
Multiple initiatives have been launched to try to widen the pipeline for women to enter engineering careers, including reviews of gender differences in enrollment in technology and pre-engineering courses from middle school through doctoral degrees. National agencies have also studied some of the social and cultural forces at play with regard to…
ERIC Educational Resources Information Center
Van Biesen, Leo Pierre; Rahier, Hubert; Vanherzeele, Herman; Willem, Rudolph; Hubin, Annick; Veretennicoff, Irina; Deblauwe, Nico; Ponet, Mireille
2009-01-01
The Bologna process has triggered an important change in the course outline towards a sustainable, transparent and quality-driven European education system. In Belgium, engineering education had to be completely revised. The transformation of the former system, leading to the degree of academic engineer after five years of study, into the typical…
NASA Technical Reports Server (NTRS)
Charity, Pamela C.; Klein, Paul B.; Wadhwa, Bhushan
1995-01-01
The Cleveland State University Minority Engineering Program Pipeline consist of programs which foster engineering career awareness, academic enrichment, and professional development for historically underrepresented minority studies. The programs involved are the Access to Careers in Engineering (ACE) Program for high school pre-engineering students: the LINK Program for undergraduate students pursuing degree which include engineering; and the PEP (Pre-calculus Enrichment Program) and EPIC (Enrichment Program in Calculus) mathematics programs for undergraduate academic enrichment. The pipeline is such that high school graduates from the ACE Program who enroll at Cleveland State University in pursuit of engineering degrees are admitted to the LINK Program for undergraduate level support. LINK Program students are among the minority participants who receive mathematics enrichment through the PEP and EPIC Programs for successful completion of their engineering required math courses. THese programs are interdependent and share the goal of preparing minority students for engineering careers by enabling them to achieve academically and obtain college degree and career related experience.
Zum Problem der Hochschulreform in Spanien: Einige ausgewahlte Daten.
ERIC Educational Resources Information Center
Val, Jose Cajide; Philipp, Rita Radl; Castro, Ana Porto
1998-01-01
Investigates the teaching, research, and management entailed in four new degree programs--physics, agricultural engineering, agricultural food-processing technology, and pharmacy courses--at Spain's University of Santiago de Compostela. Reports students' opinions of reforms in these courses, revealing dissatisfaction with facilities for practical…
Weeded Out? Gendered Responses to Failing Calculus.
Sanabria, Tanya; Penner, Andrew
2017-06-01
Although women graduate from college at higher rates than men, they remain underrepresented in science, technology, engineering, and mathematics (STEM) fields. This study examines whether women react to failing a STEM weed-out course by switching to a non-STEM major and graduating with a bachelor's degree in a non-STEM field. While competitive courses designed to weed out potential STEM majors are often invoked in discussions around why students exit the STEM pipeline, relatively little is known about how women and men react to failing these courses. We use detailed individual-level data from the National Educational Longitudinal Study (NELS) Postsecondary Transcript Study (PETS): 1988-2000 to show that women who failed an introductory calculus course are substantially less likely to earn a bachelor's degree in STEM. In doing so, we provide evidence that weed-out course failure might help us to better understand why women are less likely to earn degrees.
Weeded Out? Gendered Responses to Failing Calculus
Sanabria, Tanya; Penner, Andrew
2018-01-01
Although women graduate from college at higher rates than men, they remain underrepresented in science, technology, engineering, and mathematics (STEM) fields. This study examines whether women react to failing a STEM weed-out course by switching to a non-STEM major and graduating with a bachelor’s degree in a non-STEM field. While competitive courses designed to weed out potential STEM majors are often invoked in discussions around why students exit the STEM pipeline, relatively little is known about how women and men react to failing these courses. We use detailed individual-level data from the National Educational Longitudinal Study (NELS) Postsecondary Transcript Study (PETS): 1988–2000 to show that women who failed an introductory calculus course are substantially less likely to earn a bachelor’s degree in STEM. In doing so, we provide evidence that weed-out course failure might help us to better understand why women are less likely to earn degrees. PMID:29616148
Building inclusive engineering identities: implications for changing engineering culture
NASA Astrophysics Data System (ADS)
Atadero, Rebecca A.; Paguyo, Christina H.; Rambo-Hernandez, Karen E.; Henderson, Heather L.
2018-05-01
Ongoing efforts to broaden the participation of women and people of colour in engineering degree programmes and careers have had limited success. This paper describes a different approach to broadening participation that seeks to work with all students and develop inclusive engineering identities. Researchers worked with the instructors of two first-year engineering courses to integrate curriculum activities designed to promote the formation of engineering identities and build an appreciation for how diversity and inclusion strengthen engineering practice. Multilevel modelling results indicated positive effects of the intervention on appreciation for diversity but no effects on engineering identity, and qualitative results indicated students learned the most about diversity not through one of the intervention activities, but through team projects in the courses. We also describe lessons learned in how to teach engineering students about diversity in ways that are relevant to engineering.
Student attraction to engineering through flexibility and breadth in the curriculum
NASA Astrophysics Data System (ADS)
Alpay, E.
2013-03-01
Several European universities provide entry to general engineering studies prior to degree specialisation. The potential advantages of such entry include the provision of a broader foundation in engineering fundamentals, the option for students to defer specialisation until a greater awareness of the different engineering disciplines and the preparation of students for a more versatile career. In this paper, the attractiveness of general engineering (specifically in the first year of study) is explored through a national (UK) survey on pre-university students. Attention is given to gauging student enthusiasm for flexibility in engineering specialisation, combined degree options and exposure to other non-technical courses. The findings indicate that a general engineering programme is highly attractive to students who are currently considering an engineering degree. The programme is also attractive to some students who had previously not considered engineering. For both sets of students, the desire for education on broader topics is indicated, specifically in areas of leadership, teamwork and business skills, and more generally self-awareness and personal development.
Preparing the entry-level materials professional in the 1990s
NASA Astrophysics Data System (ADS)
Geiger, Gordon H.
1989-05-01
It is time that universities stop using the excuse that industry does not want a five-year-engineering-degree graduate. Industry does not have any choice since it can only select from the available talent pool. At present, materials graduates with four-year degrees often lack the critical tools necessary to perform the non-engineering jobs that are frequently offered. Courses such as statistics, process control and management will help remedy this situation. Today, the individual with a master of science degree, having spent over five years in school, still lacks many essential non-engineering skills. Worse, many students in master's degree programs graduate with a primarily science background and have not taken the full basic engineering curriculum. For this reason, there is no comparison between the current, research-oriented M.S. degree and the proposed master of engineering degree. The outlined curriculum allows for a continuation of many current programs in materials while providing a transition to a five-year, first professional degree. The program allows the student to choose, after four years of education, whether he or she really wants to obtain a professional degree. Further, the four-year degree recipient enters the field with a better education than is available at present, and industry is supplied with a better-educated mix of degree recipients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Martin L.; /SLAC
This paper outlines what an individual engineer or scientist can do to increase her or his creativity. It then describes what educators can do and makes two proposals: (a) Reduce the number of courses required for undergraduate and graduate degrees in engineering and science and (b) change the nature of laboratory courses and Ph. D. research so that students have the freedom to try out their own ideas, with the expectation that they will make mistakes and will both expand their creativity and learn more, by doing.
An eLearning Standard Approach for Supporting PBL in Computer Engineering
ERIC Educational Resources Information Center
Garcia-Robles, R.; Diaz-del-Rio, F.; Vicente-Diaz, S.; Linares-Barranco, A.
2009-01-01
Problem-based learning (PBL) has proved to be a highly successful pedagogical model in many fields, although it is not that common in computer engineering. PBL goes beyond the typical teaching methodology by promoting student interaction. This paper presents a PBL trial applied to a course in a computer engineering degree at the University of…
Use of WIRIS Quizzes in an Online Calculus Course
ERIC Educational Resources Information Center
Calm, Remei; Masià, Ramon; Olivé, Carme; Parés, Núria; Pozo, Francesc; Ripoll, Jordi; Sancho-Vinuesa, Teresa
2017-01-01
Calculus courses often present a large number of difficulties to undergraduate students of scientific studies, especially in engineering degrees. These difficulties are sometimes related to teaching and assessment strategies. In this paper, a teaching innovation experience is presented within the framework of the Universitat Oberta de Catalunya.…
Introduction to Flight: An Experiment in Adult Education.
ERIC Educational Resources Information Center
Aviation/Space, 1979
1979-01-01
This is a three-day refresher course. Its intended audience is composed of personnel active in aerospace related fields, but who may not have a degree in aerospace engineering, and aerospace engineers who want to review the fundamentals of flight and gain a historical perspective. (BB)
Multidisciplinary Graduate Education in Bioprocess Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark A. Eiteman
2006-04-18
This report describes the accomplishments of the University of Georgia in establishing an academic program geared toward the emerging biobased products industry. By virtue of its strengths and structure, the University of Georgia is particularly well-suited for developing a program focused on plant- and microbial-based bioproducts, and it was in this general area that this program was developed. The program had several unique characteristics. First, we implemented a distinguished lecture series that brought outstanding scientists and engineers to our University to interact with students and share their vision of the biobased economy. Second, we offered industrially-oriented and multidisciplinary courses thatmore » provided students with a broad background on various facets of biobased business and technology. Third, we provided the students with opportunities to expand beyond the classroom by engaging in research lab rotations and industrial internships. Fourth, each student was engaged in a creative research project as led by a multidisciplinary faculty team. Throughout the implementation of these activities, we maintained a student-centered, mentoring approach to education. The most tangible outcome of this project was the graduation of two students who participated in a variety of scholarly activities, culminating in research toward the completion of a thesis and dissertation. Both research projects involved the use of microorganisms to produce industrial products from agricultural substrates via fermentation processes. The research advanced our understanding of microorganisms as used for industrial processes and products, as described in several articles published in scholarly journals and presentations made at scientific conferences (see information on pp. 14-15). Another outcome is one graduate course, Fermentation Engineering Laboratory, which is a unique experiential and multidisciplinary course. This course will be offered in the future as an elective to graduate students in several engineering and science degree programs. Other significant developments have arisen as direct or indirect consequences of this project. The University of Georgia has established a B.S. Biochemical Engineering degree and an M.S. Biochemical Engineering degree. A strong component of these degree programs is education toward a biobased economy. We will integrate particularly positive components of this project (such as the distinguished lecture series) into these degree programs. The University of Georgia is establishing a Center for Biorefining and Carbon Cycling. This multidisciplinary Center houses a pilot scale biorefinery, comprising a pyrolysis unit and an ethanol plant. Together with new faculty positions that are currently being advertised, this project has encouraged the University of Georgia to assume a leadership role in the preparation of students in the biobased industries of the future.« less
NASA Astrophysics Data System (ADS)
Hussain, I. S.; Azlee Hamid, Fazrena
2017-08-01
Technical skills are one of the attributes, an engineering student must attain by the time of graduation, as per recommended by Engineering Accreditation Council (EAC). This paper describes the development of technical skills, Programme Outcome (PO) number 5, in students taking the Bachelor of Electrical Power Engineering (BEPE) programme in Universiti Tenaga Nasional (UNITEN). Seven courses are identified to address the technical skills development. The course outcomes (CO) of the courses are designed to instill the relevant technical skills with suitable laboratory activities. Formative and summative assessments are carried out to gauge students’ acquisition of the skills. Finally, to measure the attainment of the technical skills, key course concept is used. The concept has been implemented since 2013, focusing on improvement of the programme instead of the cohort. From the PO attainment analysis method, three different levels of PO attainment can be calculated: from the programme level, down to the course and student levels. In this paper, the attainment of the courses mapped to PO5 is measured. It is shown that Power Electronics course, which is the key course for PO5, has a strong attainment at above 90%. PO5 of other six courses are also achieved. As a conclusion, by embracing outcome-based education (OBE), the BEPE programme has a sound method to develop technical psychomotor skills in the degree students.
Colleges Offer New Alternative-Energy Degrees, Fueled by Student Demand
ERIC Educational Resources Information Center
Basken, Paul
2009-01-01
More U.S. college students are enrolling in power- and energy-engineering courses, but the increase is not enough to meet the need, says a new report by the IEEE, the professional association of electrical engineers. About 45% of engineers at electric utilities are expected to retire or leave their jobs within five years, creating as many as…
Collaborative Teamwork in Crossdisciplinarity
ERIC Educational Resources Information Center
Laberge, Renée-Pascale
2016-01-01
Polytechnique Montréal has integrated an approach of teamwork in its twelve engineering programs, in the bachelor's degree program since 2005. Students must take a compulsory 45 hours course on teamwork and are then accompanied with team coaching throughout the four years program, in all the engineering integration projects. These integration…
The Need for Plastics Education.
ERIC Educational Resources Information Center
Society of Plastics Engineers, Inc., Stamford, CT.
In view of a lack of trained personnel in the industry, the Plastics Education Foundation proposes that educators (1) add more plastics programs, (2) establish plastics engineering degrees at appropriate 4-year institutions, (3) add plastics processing technology to current engineering curricula, and (4) interest younger students in courses and/or…
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1936-01-01
An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.
How Do Freshman Engineering Students Reflect an Online Calculus Course?
ERIC Educational Resources Information Center
Boz, Burcak; Adnan, Muge
2017-01-01
Improved access to technology has led to an increase in the number of online courses and degree programs in higher education. Despite continuous progress, little attention is paid to "understanding" students prior to implementation of learning and teaching processes. Being a valuable input for design of online learning environments and…
ERIC Educational Resources Information Center
Darwish, Naif A.; Qasim, Muhammad
2016-01-01
In academia, smooth progression of students significantly depends on the way curricula are developed and organized. Curricula or study plans with high degree of interconnectivity between courses, multiple prerequisites, and hierarchically structured courses tend to complicate the smooth progress of the enrolled students. In this work, a rigorous…
Design of a Competitive and Collaborative Learning Strategy in a Communication Networks Course
ERIC Educational Resources Information Center
Regueras, L. M.; Verdu, E.; Verdu, M. J.; de Castro, J. P.
2011-01-01
In this paper, an educational methodology based on collaborative and competitive learning is proposed. The suggested approach has been successfully applied to an undergraduate communication networks course, which is part of the core curriculum of the three-year degree in telecommunications engineering at the University of Valladolid in Spain. This…
Chemistry teaching in the new degrees of Agricultural Engineering
NASA Astrophysics Data System (ADS)
Arce, Augusto; Tarquis, Ana Maria; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen
2013-04-01
The academic year 2011-12 is the second one implementing Bologna process in ETSI at the subjects of Agricultural Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate Environmental and engineering Graduate in Biotechnology, for it has been necessary to design and implement new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, implement new evaluation systems that promote continued participation active student and the development of educational materials to support the subjects of chemistry designed new degrees within the EEES. In addition to the above actions, an assessment test prior chemistry knowledge has been made to all students who enter into Agricultural Grades, improving laboratory practices and the comparative study of academic obtained by the students of the new grades in the subjects of chemistry during the year 2011-12 compared to the 2010-11 academic year. More than 15,000 data have showed a good correlation between the student's prior knowledge, the level test performed, test scores, the overall success rate of the course and the abandonment of the different degrees. Academic results show a higher percentage of students enrolled and presented on a greater number of passes on students enrolled in the 2011-12 academic year for students enrolled in the previous academic year. The improved results have influenced the actions taken and the level of knowledge with students entering. Finally, we propose possible solutions to fix these results in future courses, aiming to improve the degree of efficiency, success and significant absenteeism in the first year as it will condition the dropout rate of these new degrees. Acknowledgements: Proyecto de Innovación Educativa N° IE02054-11/12 UPM. 2012.
Motivation and Emotions in Competition Systems for Education: An Empirical Study
ERIC Educational Resources Information Center
Muñoz-Merino, Pedro J.; Molina, Manuel Fernández; Muñoz-Organero, Mario; Kloos, Carlos Delgado
2014-01-01
A lack of student motivation is a problem in many courses in electrical engineering. Introducing competition between students can enhance their motivation, but it can also generate negative emotions. This paper presents an empirical study of students in a telecommunications engineering degree; it measured their level of motivation, and their…
Analysis of Introducing Active Learning Methodologies in a Basic Computer Architecture Course
ERIC Educational Resources Information Center
Arbelaitz, Olatz; José I. Martín; Muguerza, Javier
2015-01-01
This paper presents an analysis of introducing active methodologies in the Computer Architecture course taught in the second year of the Computer Engineering Bachelor's degree program at the University of the Basque Country (UPV/EHU), Spain. The paper reports the experience from three academic years, 2011-2012, 2012-2013, and 2013-2014, in which…
ERIC Educational Resources Information Center
Rodenbusch, Stacia E.; Hernandez, Paul R.; Simmons, Sarah L.; Dolan, Erin L.
2016-01-01
National efforts to transform undergraduate biology education call for research experiences to be an integral component of learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engaging students in research at a scale that is not possible through apprenticeships in faculty research…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Carl; Bohmann, Leonard; Naber, Jeffrey
2013-01-30
1) How the project adds to the education of engineering students in the area of vehicle electrification: This project created and implemented a significant interdisciplinary curriculum in HEV engineering that includes courses focused on the major components (engines, battery cells, e-machines, and power electronics). The new curriculum, rather uniquely, features two new classes and two new labs that emphasize a vehicle level integration of a hybrid electric powertrain that parallels the vehicle development process used by the OEMs - commercial grade software is used to design a hybrid electric vehicle, hardware-in-the-loop testing is performed on each component until the entiremore » powertrain is optimized, the calibration is flashed to a vehicle, ride-and-drives are executed including on board data acquisition. In addition, nine existing courses were modified by adding HEV material to the courses. 2) The educational effectiveness and economic feasibility of the new curriculum: The new courses are offered at both the undergraduate and graduate levels. They are listed across the college in mechanical, chemical, electrical, and materials science and engineering. They are offered both on campus and to distance learning students. Students across the college of engineering and at all degree levels are integrating these courses into their degree programs. Over the three year project the course enrollments on-campus has totaled 1,249. The distance learning enrollments has totaled 315. With such robust enrollments we absolutely expect that these courses will be in the curriculum for the long run. 3) How the project is otherwise of benefit to the public: One outcome of the project is the construction of the Michigan Tech Mobile Lab. Two complete HEV dynamometer test cells, and four work stations are installed in the 16.2 meter Mobile Laboratory and hauled by a class 8 truck. The Mobile Lab is used to teach the university courses. It is also used to deliver short courses to industry, K-12 outreach, and public education. In 2012 the Mobile Lab participated in 22 outreach events, locally, throughout Michigan, and including events in Washington DC, Illinois, and Wisconsin. The Mobile Lab is a hit wherever it goes. In 2013 we will partner with the US Army TARDEC and be featured in their Green Warrior Convoy, a ten city tour starting in Detroit and finishing in Washington DC.« less
Miñano, Rafael; Uruburu, Ángel; Moreno-Romero, Ana; Pérez-López, Diego
2017-02-01
This paper presents an experience in developing professional ethics by an approach that integrates knowledge, teaching methodologies and assessment coherently. It has been implemented for students in both the Software Engineering and Computer Engineering degree programs of the Technical University of Madrid, in which professional ethics is studied as a part of a required course. Our contribution of this paper is a model for formative assessment that clarifies the learning goals, enhances the results, simplifies the scoring and can be replicated in other contexts. A quasi-experimental study that involves many of the students of the required course has been developed. To test the effectiveness of the teaching process, the analysis of ethical dilemmas and the use of deontological codes have been integrated, and a scoring rubric has been designed. Currently, this model is also being used to develop skills related to social responsibility and sustainability for undergraduate and postgraduate students of diverse academic context.
Case study of a problem-based learning course of physics in a telecommunications engineering degree
NASA Astrophysics Data System (ADS)
Macho-Stadler, Erica; Jesús Elejalde-García, Maria
2013-08-01
Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.
Teaching Logistics without Formal Classes: A Case Study
ERIC Educational Resources Information Center
Carravilla, Maria Antonia; Oliveira, Jose Fernando
2004-01-01
This paper describes a case study concerning the teaching of logistics in the Computers and Electrical Engineering degree at FEUP. The logistics course is taken in the last semester of the degree and there are no lectures given by the teachers. All the learning strategy is based upon the autonomous learning capacity of the students, following the…
Optical engineering capstone design projects with industry sponsors
NASA Astrophysics Data System (ADS)
Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.
2014-09-01
Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.
Automatic Evaluation of Practices in Moodle for Self Learning in Engineering
ERIC Educational Resources Information Center
Sánchez, Carles; Ramos, Oriol; Márquez, Patricia; Marti, Enric; Rocarias, Jaume; Gil, Debora
2015-01-01
The first years in engineering degree courses are usually made of large groups with a low teacher-student ratio. Overcrowding in classrooms hinders continuous assessment much needed to promote independent learning. Therefore, there is a need to apply some kind of automatic evaluation to facilitate the correction of exercises outside the classroom.…
A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering
ERIC Educational Resources Information Center
Hassan, Houcine; Domínguez, Carlos; Martínez, Juan-Miguel; Perles, Angel; Capella, Juan-Vicente; Albaladejo, José
2015-01-01
This paper presents a multidisciplinary problem-based learning (PBL) project consisting of the development of a robot arm prototype and the implementation of its control system. The project is carried out as part of Industrial Informatics (II), a compulsory third-year course in the Automation and Electronic Engineering (AEE) degree program at the…
A BSc level option in biomedical electronics.
Gergely, S
1979-01-01
1. The application of electronic instruments in medical diagnosis and therapy is well established. 2. There is a demand for electronic engineers both in industry and in the Health Service at all ranges of educational attainment. 3. It is possible to identify a set of objectives for a first degree course in Biomedical Electronics. An important element of this course should be the provision of practical experience in industry and in hospitals. 4. Such courses are available both in Europe and in the United States. Although the postgraduate course provision was satisfactory in the UK in the early seventies, only one full time undergraduate course was in operation. 5. A sandwich course can be designed in Biomedical Electronics as a major option of an existing BSc course in Electrical and Electronic Engineering. Provision can be made for entering and leaving the option. The option can be arranged to follow the guidelines laid down by the IEE for exemption from its educational requirements. 6. The option described started at the Lanchester Polytechnic in Coventry in September 1977.
Reaching Out: The Bachelor of Arts Degree In Physics
NASA Astrophysics Data System (ADS)
Hobson, Art
1996-05-01
Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.
Environmental engineering education: examples of accreditation and quality assurance
NASA Astrophysics Data System (ADS)
Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.
2013-12-01
Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In particular, the accreditation models of the multidisciplinary first cycle degree in Civil, Building and Environmental Engineering and the more specific second cycle degree in Environmental Engineering are discussed. The critical issues to assure the quality and the status of environmental engineering graduates, in terms of applying knowledge capacities and technical innovative competences, according to the more engineering focused EUR-ACE skill descriptors as well as with respect to the Dublin descriptors, at local and global scale are also compared. The involvement of the professional working world in the definition of goals in skills, of typical expectations of achievements and abilities is also described. The system for educating engineers in communicating knowledge and understanding, making informed judgments and choices, capacities to lifelong learning is in addition assessed. The promotion of innovative aspects related with the environmental engineering education, and of the role that science and technology could play in environmental engineering education is also taken into consideration.
Pathways to Science and Engineering Bachelor's Degrees for Men and Women.
Legewie, Joscha; DiPrete, Thomas A
2014-02-18
Despite the striking reversal of the gender gap in educational attainment and the near-gender parity in math performance, women pursue science and engineering (S/E) degrees at much lower rates than their male peers do. Current efforts to increase the number of women in these fields focus on different life-course periods but lack a clear understanding of the importance of these periods and how orientations toward S/E fields develop over time. In this article, we examine the gendered pathways to a S/E bachelor's degree from middle school to high school and college based on a representative sample from the 1973 to 1974 birth cohort. Using a counterfactual decomposition analysis, we determine the relative importance of these different life-course periods and thereby inform the direction of future research and policy. Our findings confirm previous research that highlights the importance of early encouragement for gender differences in S/E degrees, but our findings also attest to the high school years as a decisive period for the gender gap, while challenging the focus on college in research and policy. Indeed, if female high school seniors had the same orientation toward and preparation for S/E fields as their male peers, the gender gap in S/E degrees would be closed by as much as 82 percent.
3D CAD: A Plus for STEM Education
ERIC Educational Resources Information Center
Planchard, Marie
2007-01-01
At some point in their education, pre-engineering students will take physics and/or calculus. For many freshmen who aren't certain about their career paths, taking these courses is a litmus test to determine whether they have the aptitude or desire to pursue an engineering degree. Therein lies the challenge for many students in the U.S. Science,…
NASA Astrophysics Data System (ADS)
Arce, Augusto; Tarquis, Ana M.; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen
2014-05-01
The academic year 2012-13 is the third year of implementation of the Bologna process in ETSI Agricultural for the subjects Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate in Engineering Environmental and Biotechnology graduate. We have implemented new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, and teaching support materials and new laboratory practice developing has. It has also launched new continuous assessment systems that promote active student participation. A comparative study of academic achievements by students of the new grades in the subjects of chemistry during the last three academic years was performed to correlating the results obtained, the success rate and the drop out, and compare with the level of prior knowledge to those entering students. Possible solutions to try and fix these results in future courses are proposed Finally, the general competencies that contribute this course, how they are acquired and how they should be evaluated correctly are indicated. Acknowledgments: Innovation educative projects Nº IE02054-11/12 UPM. 2012
ERIC Educational Resources Information Center
Jordi Nebot, Lluïsa; Pàmies-Vilà, Rosa; Català Calderon, Pau; Puig-Ortiz, Joan
2013-01-01
This article examines new tutoring evaluation methods to be adopted in the course, Machine Theory, in the Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB, Universitat Politècnica de Catalunya). These new methods have been developed in order to facilitate teaching staff work and include students in the evaluation process.…
NASA Astrophysics Data System (ADS)
Arce, A.; Tarquis, A. M.; Cartagena, M. C.
2012-04-01
The Bologna Process is to improve the quality of education, mobility, diversity and the competitiveness and involves three fundamental changes: transform of the structure of titles, changing in methods of teaching and implementation of the systems of quality assurance. Once that titles structure given by the E.T.S. Agronomic Engineer (ETSIA) have been defined, and introduced new methods of learning, this work has focused in the third point: implementation of quality assurance systems as well as the new three titles planning that begins to impart at ETSIA, Madrid, during 2010-2011 course. The academic year 2010-2011 was the first year of implementation of the Bologna Process, this paper attempts to compare the academic results obtained by students in the three new degrees in the subject of Chemistry I and II compared with the results obtained in the same subject in the degree of Agronomic Engineer in the past four years. The academic results have been lower than expected and worse than in previous courses. The paper tries to account for these results based on the percentage of compliance with the guidance of teachers, and based on student participation and training prior to beginning the course. Finally, propose possible solutions to try to correct these results in future courses, with the aim of improving efficiency rates, success and absenteeism important in the first year since it will condition the dropout rate of these new degrees.
ERIC Educational Resources Information Center
Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.
2013-01-01
A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…
NASA Astrophysics Data System (ADS)
Taguas, E. V.; Redel, M. D.; Pérez, R.; Peña, A.
2009-04-01
The Bologna process is reaching its final stages and is causing controversy among students. The adaptation of European universities to the European Higher Education Area (EHEA) entails not only the modification of curricular programmes and the nomenclature and duration of degrees, but also the incorporation of new teaching strategies aimed at ensuring that students acquire transversal skills and aptitudes and at increasing student participation in the teaching-learning process. A number of surveys have been carried out during the last few courses among students doing degrees in engineering (Industrial Engineering, Agronomy Engineering and Forestry Engineering). These surveys include questions on their knowledge of Bologna process, its advantages and drawbacks, their opinion about optional masters or doctorate degrees, what perspectives their degrees have on the labour market and suggestions for improvement. Although the different degrees showed notable differences, the content of EHEA is well-known by less than 30% of students, while 40% of them state they know about their perspectives on the labour market. The main advantages of EHEA were related to the improvement of practical knowledge in the subjects, the recognition of degrees in Europe and wider working opportunities. The main drawbacks pointed out were worse and shorter training periods, higher costs and fiercer competition between different degrees. In addition, they suggested that the new degrees are better adjusted to the demands of the labour market. 60% and 40% of them, respectively, approved of Masters degrees and PhDs. These features should be taken into account to organize and improve the contents of the degrees as well as to involve the students in the future of University education.
Experiences Gained Creating a Biophysics Major at a Predominately Undergraduate Institution
NASA Astrophysics Data System (ADS)
Link, Justin; Herbert, Steven
2014-03-01
Xavier University, a liberal arts predominately undergraduate institution (PUI) located in Cincinnati, OH, implemented a Biophysics major in the Department of Physics in spring 2012. The program is built upon foundational physics courses and is unique due to the possible selection of upper-division courses that students elect to take towards their undergraduate degree. A capstone course is offered to bring all prior knowledge in the fundamental sciences together to approach complex problems in biology. Due to the flexibility of the program, it serves students well who are interested in pursuing advanced degrees in Biophysics or Biomedical Engineering. It also offers students interested in the health professions an alternate path towards medical school which can be advantageous in the application process. This session will express some of the advantages and challenges to creating such a program at a liberal arts PUI and discuss the capstone course within the major.
ERIC Educational Resources Information Center
Malm, Joakim; Bryngfors, Leif; Mörner, Lise-Lotte
2011-01-01
The customary way to determine whether an adopted Supplemental Instruction (SI) program has been successful or not is by comparing course results for two groups, SI attendees and non-attendees. The division of SI attendees and non-attendees is generally done rather arbitrarily by prescribing a minimum number of SI sessions a student has to attend…
Nuclear Power Plant Technician
ERIC Educational Resources Information Center
Randall, George A.
1975-01-01
The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)
Introducing future engineers to sustainable ecology problems: a case study
NASA Astrophysics Data System (ADS)
Filipkowski, A.
2011-12-01
The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and industrial design. The energy, which they consume, is increasing the greenhouse effect and the waste poisons the environment. So far, most courses on ecology are offered to specialists in environmental engineering. These courses are filled with many details. The Warsaw Academy of Computer Science, Management and Administration teaches students in the direction of management and production engineering. Upon completion, the students receive the degree of 'engineer'. Their future work will mainly concern management of different types of industrial enterprises and they will be responsible for organising it in such a way as to avoid a dangerous contribution to environmental pollution and climate change. This is why it was decided to introduce a new course entitled 'Principles of Ecology and Environmental Management'. This course is quite broad, concerning almost all technical, law and organisational aspects of the problem. The presentation is made in a spectacular way, aiming to convince students that their future activity must be environmentally friendly. It contains information about international activities in ecology, legal aspects concerning pollution, technical and information methods of monitoring and, finally, the description of 'green' solutions. Altogether, 27 hours of lectures and 15 hours of discussions and students' presentations complete the course. Details of this course are described in this paper.
Undergraduate environmental engineering education in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Bero, B.N.
1999-07-01
In this paper, the development process, present situations, causes of improvement, and trends of higher education of environmental engineering in China are discussed. Several education modes in environmental engineering in China are also presented. The development process can be divided into three stages: the beginning stage, the expansion stage, and the modification stage. The 1970's and early 1980's wake of environmental consciousness and serious pollution situation in China resulted in about 20 universities setting up an environmental engineering specialty. The late 1980's and middle 1990's job opportunities for undergraduates in China resulted in many universities' creation of the environmental engineeringmore » specialty from specialties such as geography, geology, hydrology, mining engineering, and mineral separation engineering where job opportunities were stagnant. At present, adjustment and improvement of environmental engineering education are urgently required because of the excessive increase of undergraduate number, change of job opportunities and implementation of five-work-day system in China. Other problems include how to determine the ratio of social science courses to engineering science courses, how to determine the relationship of fundamental and applied courses, and how to determine the specialized direction. Hunan University, as a typical university conferring an accredited Bachelor degree in Environmental Engineering in four academic years in China, has been improving the instruction schedule for undergraduate education in environmental engineering. The curricula of the three phases for undergraduates of environmental engineering specialty at Hunan University are presented as a case study.« less
NASA Astrophysics Data System (ADS)
McCavit, K.; Zellner, N. E. B.
2016-11-01
Albion College, a private, undergraduate-only, liberal arts college in Michigan, USA, has developed and implemented a low-cost peer-mentoring programme that blends personal and academic support to help students achieve academic success in the introductory courses required for the Physics Major or the Dual-Degree Program in Engineering. This enhanced mentoring programme provides much-needed assistance for undergraduate students to master introductory physics and mathematics coursework, to normalise the struggle of learning hard material, and to accept their identity as physics or engineering students (among other goals). Importantly, this programme has increased retention among entering science, technology, engineering and mathematics students at Albion College as they move through the introductory classes, as shown by a 20% increase in retention from first-semester to third-semester physics courses compared to years when this programme was not in place.
NASA Astrophysics Data System (ADS)
Perera, Janaki I.; Quinlivan, Brendan T.; Simonovich, Jennifer A.; Towers, Emily; Zadik, Oren H.; Zastavker, Yevgeniya V.
2012-02-01
In light of recent literature in educational psychology, this study investigates instructional support and students' autonomy at a small technical undergraduate school. Grounded theory is used to analyze twelve semi-structured open-ended interviews about engineering students' experiences in Introductory Mechanics that includes Lecture, Recitation, and Laboratory components. Using data triangulation with each course component as a unit of analysis, this study examines students' course enjoyment as a function of instructional support and autonomy. The Lecture utilizes traditional instructor-centered pedagogy with predominantly passive learning and no student autonomy. The Recitation creates an active learning environment through small group work with a moderate degree of autonomy. The Laboratory is designed around self-guided project-based activities with significant autonomy. Despite these differences, all three course components provide similar levels of instructional support. The data reveal that students enjoy the low autonomy provided by Lecture and Recitations while finding the Laboratory frustrating. Analyses indicate that the differences in autonomy contribute to students' misinterpretation of the three course components' value within the context of the entire course.
Video Outreach Graduate Program.
ERIC Educational Resources Information Center
Rigas, Anthony L.
The University of Idaho's video outreach graduate program is described. The program is designed to provide continuing education, credit courses, and graduate degree-granting programs anywhere in the state by producing these programs on video cassette and Betamax formats. Presently the Master of Engineering in electrical and Mechanical Engineering…
Environmental Biology Programs at the University of Illinois, Urbana-Champaign.
ERIC Educational Resources Information Center
Getz, Lowell L.
1987-01-01
Describes the programs of the Department of Ecology, Ethology, and Evolution at the University of Illinois (Urbana-Champaign). Focuses on the graduate degrees offered in environmental biology. Lists research interests and courses in plant biology, entomology, forestry, civil engineering, and landscape architecture. (TW)
The Advanced Composition Course at GMI.
ERIC Educational Resources Information Center
Swift, Marvin H.
The General Motors Institute (GMI), a wholly owned subsidiary of the General Motors Corporation, was created to provide leaders for its parent organization. GMI is a fully accredited undergraduate college that offers degrees in industrial, electrical, and mechanical engineering and in industrial administration. Since people in business and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Holloway
2005-09-30
Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participationmore » ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.« less
Lee, Gloria; Plaksin, Joseph; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle
2018-01-01
Drug discovery and development (DDD) is a collaborative, dynamic process of great interest to researchers, but an area where there is a lack of formal training. The Drug Development Educational Program (DDEP) at New York University was created in 2012 to stimulate an improved, multidisciplinary DDD workforce by educating early stage scientists as well as a variety of other like-minded students. The first course of the program emphasizes post-compounding aspects of DDD; the second course focuses on molecular signaling pathways. In five years, 196 students (candidates for PhD, MD, Master’s degree, and post-doctoral MD/PhD) from different schools (Medicine, Biomedical Sciences, Dentistry, Engineering, Business, and Education) completed the course(s). Pre/post surveys demonstrate knowledge gain across all course topics. 26 students were granted career development awards (73% women, 23% underrepresented minorities). Some graduates of their respective degree-granting/post-doctoral programs embarked on DDD related careers. This program serves as a framework for other academic institutions to develop compatible programs designed to train a more informed DDD workforce. PMID:29657854
NASA Astrophysics Data System (ADS)
Galan, Berta; Muñoz, Iciar; Viguri, Javier R.
2016-09-01
This paper shows the planning, the teaching activities and the evaluation of the learning and teaching process implemented in the Chemical Process Design course at the University of Cantabria, Spain. Educational methods to address the knowledge, skills and attitudes that students who complete the course are expected to acquire are proposed and discussed. Undergraduate and graduate engineers' perceptions of the methodology used are evaluated by means of a questionnaire. Results of the teaching activities and the strengths and weaknesses of the proposed case study are discussed in relation to the course characteristics. The findings of the empirical evaluation shows that the excessive time students had to dedicate to the case study project and dealing with limited information are the most negative aspects obtained, whereas an increase in the students' self-confidence and the practical application of the methodology are the most positive aspects. Finally, improvements are discussed in order to extend the application of the methodology to other courses offered as part of the chemical engineering degree.
Sato, Brian K.; Lee, Amanda K.; Alam, Usman; Dang, Jennifer V.; Dacanay, Samantha J.; Morgado, Pedro; Pirino, Giorgia; Brunner, Jo Ellen; Castillo, Leanne A.; Chan, Valerie W.; Sandholtz, Judith H.
2017-01-01
Despite the ubiquity of prerequisites in undergraduate science, technology, engineering, and mathematics curricula, there has been minimal effort to assess their value in a data-driven manner. Using both quantitative and qualitative data, we examined the impact of prerequisites in the context of a microbiology lecture and lab course pairing. Through interviews and an online survey, students highlighted a number of positive attributes of prerequisites, including their role in knowledge acquisition, along with negative impacts, such as perhaps needlessly increasing time to degree and adding to the cost of education. We also identified a number of reasons why individuals do or do not enroll in prerequisite courses, many of which were not related to student learning. In our particular curriculum, students did not believe the microbiology lecture course impacted success in the lab, which agrees with our analysis of lab course performance using a previously established “familiarity” scale. These conclusions highlight the importance of soliciting and analyzing student feedback, and triangulating these data with quantitative performance metrics to assess the state of science, technology, engineering, and mathematics curricula. PMID:28232587
Teaching introductory game development with unreal engine: Challenges, strategies, and experiences
NASA Astrophysics Data System (ADS)
Head, Nicholas A.
From the days of Pong to 100 million dollar projects such as the Grand Theft Auto franchise, video games have evolved significantly over the years. This evolution has also changed the way game development is viewed as a career. Today, video games are one of the most profitable forms of entertainment, and game development courses are appearing at universities around the world. Even with this growth, a degree from a university has yet to be an important factor in finding a job in game development (Owen, 2013). This thesis examines a method of creating and implementing an introductory gaming course and recommends ways to improve the curriculum. The main focus of the course was to introduce game development to the students. Each week, they were given an exercise that covered a different topic. Students also took part in a team project in which they were tasked with creating a complete game. The goal of the team projects was to expand the student's basic knowledge given to them from the exercises. Data was gathered on the students' subjective experiences with the class. This data and the class's overall performance were compared with past iterations of the course. New to the course was the Unreal Engine. Students used the latest version of the engine, Unreal Engine 4, to complete exercises. Not all students chose to use this engine for the team project. Instructor and students experiences with the engine were also recorded. While there were some problems implementing the engine within our lab environment, we were still able to execute the overall lesson plan. Even with the engine issues, the course had overall good performance. CGT 241, Introduction to 3D Animation, was shown to help the students to complete the course while CGT 215, Computer Graphics Programming I, did not provide enough information on game programming. Exercises were found to be helpful but students wanted a better understanding of how these skills can be applied to game development. Team projects also went well with most teams creating a functional project. Students wanted more time to complete projects along with a structured approach to the project. Confidence in game development and the Unreal Engine were not high but students were enthusiastic in continuing in the field of game development. Recommendations were made to the curriculum in order to fix some of the issues with the introductory course and help students find a career. In order to fix the gap between the programming course and the introductory game course, a video game programming course was recommended that focused on teaching students how code works with video game engines. An option to specialize was also recommended in order to see a higher level of understanding on game concepts and a higher level of quality of game projects. Changes to the higher courses were also made for a yearlong course where students would focus on a single project to publish. This would expand on the introductory course while also replicating the game development process.
Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive
ERIC Educational Resources Information Center
Bangera, Gita; Brownell, Sara E.
2014-01-01
Current approaches to improving diversity in scientific research focus on graduating more science, technology, engineering, and mathematics (STEM) majors, but graduation with a STEM undergraduate degree alone is not sufficient for entry into graduate school. Undergraduate independent research experiences are becoming more or less a prerequisite…
ERIC Educational Resources Information Center
Castleman, Benjamin L.; Long, Bridget Terry; Mabel, Zachary
2018-01-01
Although workers in science, technology, engineering, and math (STEM) fields earn above-average wages, the number of college graduates prepared for STEM jobs lags behind employer demand. A key question is how to recruit and retain college students in STEM majors. We offer new evidence on the role of financial aid in supporting STEM attainment.…
Communicating Microbiology Concepts from Multiple Contexts through Poster Presentations.
Gruss, Amy Borello
2018-01-01
Accredited environmental engineering degrees require graduates to be able to apply their scholarship to concepts of professional practice and design. This transferable skill of relating what you learn in one setting to another situation is vital for all professions, not just engineering. A course project involving designing and presenting a professional poster was implemented to enhance student mastery in Environmental Engineering Microbiology while also developing communication and transferable skills vital for all majors. Students were asked to read a contemporary non-fiction book relating to microbiology and expand upon the book's thesis by integrating course content, news articles, and peer-reviewed journal articles. They then were required to present this information in class using a professional poster. Students felt the project allowed them to synthesize and organize information, analyze ideas, and integrate ideas from various sources. These transferable skills are vital for students and professionals alike to be able to communicate advanced information and master a topic.
SpeedyTime_7-Minus_Eighty_Degrees_Laboratory_Freezer_for_ ISS
2017-08-23
SpeedyTime 7 – Minus Eighty Degrees Laboratory Freezer for ISS Cutting-edge science is on the daily menu on board the International Space Station, but where do the astronauts store their lab results before they’re shipped back to Earth? In one of a dozen large freezers, of course: in this SpeedyTime segment, Expedition 52 flight engineer Jack Fischer shines a light on the MELFI, Minus Eighty Degrees Laboratory Freezer for ISS. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Preparing technicians for engineering materials technology
NASA Technical Reports Server (NTRS)
Jacobs, James A.; Metzloff, Carlton H.
1990-01-01
A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.
Rodenbusch, Stacia E.; Hernandez, Paul R.; Simmons, Sarah L.; Dolan, Erin L.
2016-01-01
National efforts to transform undergraduate biology education call for research experiences to be an integral component of learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engaging students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are few if any studies that examine the long-term effects of participating in CUREs on desired student outcomes, such as graduating from college and completing a science, technology, engineering, and mathematics (STEM) major. One CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year undergraduates over the past decade. Using propensity score–matching to control for student-level differences, we tested the effect of participating in FRI on students’ probability of graduating with a STEM degree, probability of graduating within 6 yr, and grade point average (GPA) at graduation. Students who completed all three semesters of FRI were significantly more likely than their non-FRI peers to earn a STEM degree and graduate within 6 yr. FRI had no significant effect on students’ GPAs at graduation. The effects were similar for diverse students. These results provide the most robust and best-controlled evidence to date to support calls for early involvement of undergraduates in research. PMID:27252296
Closing Achievement Gaps with a Utility-Value Intervention: Disentangling Race and Social Class
ERIC Educational Resources Information Center
Harackiewicz, Judith M.; Canning, Elizabeth A.; Tibbetts, Yoi; Priniski, Stacy J.; Hyde, Janet S.
2015-01-01
Many college students abandon their goal of completing a degree in science, technology, engineering, or math (STEM) when confronted with challenging introductory-level science courses. In the U.S., this trend is more pronounced for underrepresented minority (URM) and first-generation (FG) students, and contributes to persisting racial and…
Understanding the STEM Pipeline. Working Paper 125
ERIC Educational Resources Information Center
Sass, Tim R.
2015-01-01
I investigate the determinants of high school completion and college attendance, the likelihood of taking science, technology, engineering or math (STEM) courses in the first year of college and the probability of earning a degree in a STEM field. The focus is on women and minorities, who tend to be underrepresented in STEM fields. Tracking four…
Innovations in Science Education in Europe
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2001-12-01
At many European Universities, the retention of skilled science graduates is hindered mainly by organisational structures. In particular, women students are often under-represented in sciences, and career progression is in general difficult. The linear system of knowhow transfer is inefficient from the pedagogical point of view and unsatisfactory for many students. Owing to fast changes in society and the working environment, a re-building of curricula in tertiary education (including University Education) has begun. Conceptual visions aim at influencing the investment in the largely untapped human capital and preparing the students for quick adaptation and enhanced flexiblity. Traditional methods of classroom teaching and knowhow transfer are increasingly complemented by New Learning Technologies and Mentoring. The EU Project INDECS (Potentials of Interdisciplinary Degree Courses in Engineering, Information Technology, Natural and Socio-Economic Sciences in a Changing Society) examines such pedagogical aspects in European degree courses combining engineering, IT, physical sciences and socio-economic sciences. Inclusion of specific IT and social science topics in modular form is examined. How innovation in University Teaching will meet the attractiveness to both students and employers in Europe is major focus of the study.
Scott, A B; Miller, J M; Collins, C C
1992-01-01
We inserted a silicone rubber elastic band along the course of a paralyzed lateral rectus and of a paralyzed superior oblique to restore alignment and to provide a spring against which the antagonist could pull. The lateral rectus band has been in place for 7 years. It provides alignment and a field of single binocular vision of 20 degrees. The superior oblique band has been in place for 17 months. It provides alignment and single vision over 30 degrees from the primary position except for a restriction in upgaze-adduction to 25 degrees (Brown syndrome) and in downgaze-adduction to 20 degrees. Such engineered elastic bands are a useful addition to current surgical techniques for management of cases of paralysis and restriction.
Electric Utility Transmission and Distribution Line Engineering Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter McKenny
2010-08-31
Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science hasmore » established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experience in running a power system simulator and an exposure to various utility-related professions and craft trades.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miers, Scott A.; Blough, Jason R.
The objective of this study was to evaluate the effects of E15 on current and legacy snowmobile engines and vehicles that could occur due to misfueling by the vehicle owner. Three test scenarios were conducted to evaluate the impact of E15, including cold-start performance and emissions, on-snow vehicle driveability, and laboratory exhaust emissions over the useful life of the engine. The eightengines tested represent current and legacy product that may exhibit sensitivity to increased ethanol blended in gasoline. Because a limited number of snowmobile engines were evaluated for this test program, the results are not statistically significant. However, the broadmore » range of engine and mixture preparation technologies, combined with the various test scenarios provide preliminaryinformation to assess potential issues with E15 use in snowmobiles. Cold-start tests were performed at -6.7 degrees C (20 degrees F), -17.8 degrees C (0 degrees F), and -28.9 degrees C (-20 degrees F). The evaluation included time to start or number of pulls to start, engine speed, exhaust gas temperature, and start-up engine emissions concentrations. Statistically significant differences instarting times were not observed for most vehicles. Snowmobile driveability was analyzed using a subjective evaluation on a controlled test course. The drivers could not easily discern which fuel the snowmobiles were using during the subjective evaluation. Durability tests were conducted to measure the emissions and performance of the snowmobiles over the useful life of the vehicles (5,000miles). There were no fuel-related engine failures on E0 or E15. Carbon monoxide emissions were generally reduced by E15 relative to E0, by from 10% to 35%. Occasional misfueling of snowmobiles with E15 is not likely to cause noticeable or immediate problems for consumers. E15 is not approved for snowmobile use, and observations made during this study support the U.S. Environmental ProtectionAgency's decision to not approve E15 for snowmobiles.« less
ERIC Educational Resources Information Center
Rhodes, Ashley E.
2013-01-01
Compared to other nations, fewer American students are pursuing and completing degrees within the science, technology, engineering, and mathematics (STEM) fields. For the United States to remain competitive, the development of novel instructional techniques designed to reach students who might otherwise be lost from these majors is imperative.…
College Bound in Middle School & High School? How Math Course Sequences Matter
ERIC Educational Resources Information Center
Finkelstein, Neal; Fong, Anthony; Tiffany-Morales, Juliet; Shields, Patrick; Huang, Min
2012-01-01
As California competes for jobs in an increasingly competitive global economy, the state faces a looming shortage of highly educated workers (PPIC, 2012). For a variety of reasons, the need for individuals with degrees in science, technology, engineering, and mathematics (STEM) is of particular concern. Nowhere is this more true than in the…
ERIC Educational Resources Information Center
Ortiz, Octavio Ortiz; Pastor Franco, Juan Ángel; Alcover Garau, Pedro María; Herrero Martín, Ruth
2017-01-01
This paper describes a study of teaching a programming language in a C programming course by having students assemble and program a low-cost mobile robot. Writing their own programs to define the robot's behavior raised students' motivation. Working in small groups, students programmed the robots by using the control structures of structured…
Stereoscopic construction and practice of optoelectronic technology textbook
NASA Astrophysics Data System (ADS)
Zhou, Zigang; Zhang, Jinlong; Wang, Huili; Yang, Yongjia; Han, Yanling
2017-08-01
It is a professional degree course textbook for the Nation-class Specialty—Optoelectronic Information Science and Engineering, and it is also an engineering practice textbook for the cultivation of photoelectric excellent engineers. The book seeks to comprehensively introduce the theoretical and applied basis of optoelectronic technology, and it's closely linked to the current development of optoelectronic industry frontier and made up of following core contents, including the laser source, the light's transmission, modulation, detection, imaging and display. At the same time, it also embodies the features of the source of laser, the transmission of the waveguide, the electronic means and the optical processing methods.
An Investigation of Factors Affecting the Degree of Naïve Impetus Theory Application
NASA Astrophysics Data System (ADS)
Liu, Xiufeng; MacIsaac, Dan
2005-03-01
This study investigates factors affecting the degree of novice physics students' application of the naïve impetus theory. Six hundred and fourteen first-year university engineering physics students answered the Force Concept Inventory as a pre-test for their calculus-based course. We examined the degree to which students consistently applied the naïve impetus theory across different items. We used a 2-way repeated measures ANOVA and linear regression to analyze data coded from incorrect student responses. It was found that there were statistically significant main effects for item familiarity and item requirement for explanation vs. prediction on the measured degree of impetus theory application. Student course grades had no significant effect on impetus theory application. When faced with items that were unfamiliar and predictive, students appeared to rely on non-theoretical, knowledge-in-pieces reasoning. Reasoning characteristic of naïve theories was more frequently applied when students were completing familiar problem tasks that required explanation. When considering all the above factors simultaneously, we found that the degree of naïve impetus theory application by students is attributable to variables in the following order: familiarity, prediction, and explanation.
Mandatory coursework assignments can be, and should be, eliminated!
NASA Astrophysics Data System (ADS)
Haugan, John; Lysebo, Marius; Lauvas, Per
2017-11-01
Formative assessment can serve as a catalyst for increased student effort and student learning. Yet, many engineering degree programmes are dominated by summative assessment and make limited use of formative assessment. The present case study serves as an example on how formative assessment can be used strategically to increase student effort and improve student learning. Within five courses of an engineering bachelor degree programme in Norway, the mandatory coursework assignments were removed and replaced by formative-only assessment. To facilitate the formative assessment, weekly student peer-assessment sessions were introduced. The main findings include an increase in student study hours and improved student performance on the examinations. Finally, interviews were conducted by an external consultant in an effort to identify key factors that attributed to the positive outcome.
Program of Research in Aeronautics
NASA Technical Reports Server (NTRS)
1981-01-01
A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.
Iowa State University's undergraduate minor, online graduate certificate and resource center in NDE
NASA Astrophysics Data System (ADS)
Bowler, Nicola; Larson, Brian F.; Gray, Joseph N.
2014-02-01
Nondestructive evaluation is a `niche' subject that is not yet offered as an undergraduate or graduate major in the United States. The undergraduate minor in NDE offered within the College of Engineering at Iowa State University (ISU) provides a unique opportunity for undergraduate aspiring engineers to obtain a qualification in the multi-disciplinary subject of NDE. The minor requires 16 credits of course work within which a core course and laboratory in NDE are compulsory. The industrial sponsors of Iowa State's Center for Nondestructive Evaluation, and others, strongly support the NDE minor and actively recruit students from this pool. Since 2007 the program has graduated 10 students per year and enrollment is rising. In 2011, ISU's College of Engineering established an online graduate certificate in NDE, accessible not only to campus-based students but also to practicing engineers via the web. The certificate teaches the fundamentals of three major NDE techniques; eddy-current, ultrasonic and X-ray methods. This paper describes the structure of these programs and plans for development of an online, coursework-only, Master of Engineering in NDE and thesis-based Master of Science degrees in NDE.
Communicating Microbiology Concepts from Multiple Contexts through Poster Presentations †
2018-01-01
Accredited environmental engineering degrees require graduates to be able to apply their scholarship to concepts of professional practice and design. This transferable skill of relating what you learn in one setting to another situation is vital for all professions, not just engineering. A course project involving designing and presenting a professional poster was implemented to enhance student mastery in Environmental Engineering Microbiology while also developing communication and transferable skills vital for all majors. Students were asked to read a contemporary non-fiction book relating to microbiology and expand upon the book’s thesis by integrating course content, news articles, and peer-reviewed journal articles. They then were required to present this information in class using a professional poster. Students felt the project allowed them to synthesize and organize information, analyze ideas, and integrate ideas from various sources. These transferable skills are vital for students and professionals alike to be able to communicate advanced information and master a topic. PMID:29904521
Effective STEM Programs for Adolescent Girls: Three Approaches and Many Lessons Learned
ERIC Educational Resources Information Center
Mosatche, Harriet S.; Matloff-Nieves, Susan; Kekelis, Linda; Lawner, Elizabeth K.
2013-01-01
While women's participation in math and physical science continues to lag to some degree behind that of men, the disparity is much greater in engineering and computer science. Though boys may outperform girls at the highest levels on math and science standardized tests, girls tend to get better course grades in math and science than boys do.…
From Intent to Action: An Iterative Engineering Process
ERIC Educational Resources Information Center
Mouton, Patrice; Rodet, Jacques; Vacaresse, Sylvain
2015-01-01
Quite by chance, and over the course of a few haphazard meetings, a Master's degree in "E-learning Design" gradually developed in a Faculty of Economics. Its original and evolving design was the result of an iterative process carried out, not by a single Instructional Designer (ID), but by a full ID team. Over the last 10 years it has…
ERIC Educational Resources Information Center
Estébanez, Raquel Pérez
2017-01-01
In the way of continuous improvement in teaching methods this paper explores the effects of Cooperative Learning (CL) against Traditional Learning (TL) in academic performance of students in higher education in two groups of the first course of Computer Science Degree at the university. The empirical study was conducted through an analysis of…
ERIC Educational Resources Information Center
Jernigan, S. R.; Fahmy, Y.; Buckner, G. D.
2009-01-01
This paper details a successful and inexpensive implementation of a remote laboratory into a distance control systems course using readily available hardware and software. The physical experiment consists of a beach ball and a dc blower; the control objective is to make the height of the aerodynamically levitated beach ball track a reference…
ERIC Educational Resources Information Center
Hoepner, Cynthia Colon
2010-01-01
President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country.…
NASA Astrophysics Data System (ADS)
Yatchmeneff, Michele
The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to successfully complete advanced high school and college-level mathematics and science courses prior to high school graduation. This study was designed to examine the motivations of Alaska Native high school students who participated in the ANSEP Precollege components to take advanced mathematics and science courses in high school or before college. Participants were 30 high school or college students, 25 of whom were Alaska Native, who were currently attending or had attended Alaska Native Science & Engineering Program (ANSEP) Precollege components in high school. Self-determination theory was used as this study's theoretical framework to develop the semi-structured interview questions and also analyze the interviews. A thematic approach was used to analyze the interviews. The results of this study indicated that ANSEP helped the Alaska Native high school students gain a sense of autonomy, competence, and relatedness in order to be motivated to take advanced mathematics and science courses in high school or before college. In particular, Alaska Native high school students described that relatedness was an important element to them being motivated to take advanced mathematics and science courses. More specifically, participants reported that the Alaska Native community developed at the ANSEP Building and the relationships they developed with their Alaska Native high school peers and staff played an influential role in the motivation of these students. These findings are important because research suggests that autonomy and competence are more important elements than relatedness because they generate or maintain intrinsic motivation. Alaska Native high school students reported that ANSEP was more successful in helping them gain a sense of competence and relatedness than at helping them gain a sense of autonomy. More specifically, the reason the participants did not feel ANSEP developed their sense of autonomy was because ANSEP restricted their actions during the ANSEP Precollege study sessions. My study implies that Alaska Native students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. Educators and STEM program leaders should incorporate elements of belonging into the educational environments they develop for their Alaska Native students. Future research should be conducted to determine if other racial minority students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. My study also indicated that Alaska Native students were motivated to take advanced mathematics and science courses by knowing ANSEP would support them in future programming because of its longitudinal approach. Funding agencies of STEM programs should consider funding programs that provide a longitudinal approach to help Alaska Native students' sense of competence grow. Future research should include studying other STEM programs to determine if they are motivating their students to take and succeed in advanced mathematics and science courses.
Design and Assessment of an Associate Degree-Level Plant Operations Technical Education Program
NASA Astrophysics Data System (ADS)
Selwitz, Jason Lawrence
Research was undertaken to develop and evaluate an associate degree-level technical education program in Plant Operations oriented towards training students in applied science, technology, engineering, and mathematics (STEM) skills and knowledge relevant to a spectrum of processing industries. This work focuses on four aspects of the curriculum and course development and evaluation research. First, the context of, and impetus for, what was formerly called vocational education, now referred to as technical or workforce education, is provided. Second, the research that was undertaken to design and evaluate an associate degree-level STEM workforce education program is described. Third, the adaptation of a student self-assessment of learning gains instrument is reviewed, and an analysis of the resulting data using an adapted logic model is provided, to evaluate the extent to which instructional approaches, in two process control/improvement-focused courses, were effective in meeting course-level intended learning outcomes. Finally, eight integrative multiscale exercises were designed from two example process systems, wastewater treatment and fast pyrolysis. The integrative exercises are intended for use as tools to accelerate the formation of an operator-technician's multiscale vision of systems, unit operations, underlying processes, and fundamental reactions relevant to multiple industries. Community and technical colleges serve a vital function in STEM education by training workers for medium- and high-skilled technical careers and providing employers the labor necessary to operate and maintain thriving business ventures. Through development of the curricular, course, and assessment-related instruments and tools, this research helps ensure associate degree-level technical education programs can engage in a continual process of program evaluation and improvement.
Morehouse Physics & Dual Degree Engineering Program: We C . A . R . E . Approach
NASA Astrophysics Data System (ADS)
Rockward, Willie S.
2015-03-01
Growing the physics major at any undergraduate institution, especially Morehouse College - a private, all-male, liberal arts HBCU, can be very challenging. To address this challenge at Morehouse, the faculty and staff in the Department of Physics and Dual Degree Engineering Program (Physics & DDEP) are applying a methodology and pedagogical approach called ``We C . A . R . E '' which stands for Curriculum,Advisement,Recruitment/Retention/Research, andExtras. This approach utilizes an integrated strategy of cultural (family-orientated), collaborative (shared-governance), and career (personalized-pathways) modalities to provide the momentum of growing the physics major at Morehouse from 10-12 students to over 100 students in less than 5 years. Physics & DDEP at Morehouse, creatively, altered faculty course assignments, curriculum offerings, and departmental policies while expanding research projects, student organizations, and external collaborations. This method supplies a variety of meaningful, academic and research experiences for undergraduates at Morehouse and thoroughly prepares students for graduate studies or professional careers in STEM disciplines. Thus, a detailed overview of the ``We C . A . R . E . '' approach will be presented along with the Physics & DDEP vision, alterations and expansions in growing the physics major at Morehouse College. Department of Physics and Dual Degree Engineering Program, Atlanta, Georgia 30314.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-07
This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M -more » List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.« less
Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maji, A. K.; Thomson, Bruce M.; Samani, Zohrab A.
1992-04-07
This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M -more » List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.« less
UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model
NASA Astrophysics Data System (ADS)
Thorsen, D.
2017-12-01
Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.
Recruitment and Retention of Indians in Science and Engineering (RISE)
NASA Technical Reports Server (NTRS)
Karnawat, Sunil
1997-01-01
Fifteen students from Turtle Mountain Community College were selected to participate in activities of the RISE project last summer. Eight students successfully completed project activities and received stipends for their participation. These eight students are (1) Jamie Gable, (2) John Morin, (3) Patrick Belgarde, (4) Jason Laducer, (5) Alex Johnson, (6) Eric Houle, (7) Gary Renault, and (8) Kenny DeCoteau. In the fall of 1998, Jamie Gable and Gary Renault went to North Dakota State University to pursue their undergraduate degrees in mechanical engineering, and John Morin and Alex Johnson joined the University of North Dakota's electrical engineering and industrial technology programs, respectively. Remaining four students will continue to participate in the RISE activities this year and transfer to the universities next year. Seven students who failed to complete the RISE project activities during the current award period are encouraged to participate again this fall. The RISE students were enrolled in a special course called "Introduction to Engineering Materials." The project director, Dr. Kamawat, taught the course on Saturdays and Sundays. Theoretical and mathematical background on engineering materials and careers in various engineering professions were discussed in this course. The students attended guest lectures given by engineers and professors and visited local industries. In addition, the students went to North Dakota State University (NDSU) at Fargo, ND, and the University of Minnesota (UMN) at Minneapolis, MN, to tour their engineering departments. At NDSU, they conducted laboratory tests on various engineering materials, such as concrete, steel, wood, plastics, and carbon composites. The students investigated the mechanical behavior of these materials under various loading conditions, collected data, interpreted data, identified possible errors, determined the mechanical properties, and wrote reports on their findings. The students created posters describing their results on the behavior of engineering material. The posters were displayed in the TMCC's student lounge.
ERIC Educational Resources Information Center
Marti, Enric; Gil, Debora; Gurguí, Antoni; Hernández-Sabaté, Aura; Rocarías, Jaume; Poveda, Ferran
2015-01-01
This report presents the organisation of PBL (Project Based Learning) for a subject included in the IT engineering degree course. It is the result of 10 years of experience of the implantation and continuous improvement of the PBL class structure. The latest innovations include the experience of part-time monitoring with PBL groups using the Open…
ERIC Educational Resources Information Center
Minkara, Mona S.; Weaver, Michael N.; Gorske, Jim; Bowers, Clifford R.; Merz, Kenneth M., Jr.
2015-01-01
There exists a sparse representation of blind and low-vision students in science, technology, engineering and mathematics (STEM) fields. This is due in part to these individuals being discouraged from pursuing STEM degrees as well as a lack of appropriate adaptive resources in upper level STEM courses and research. Mona Minkara is a rising fifth…
A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree
ERIC Educational Resources Information Center
de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel
2017-01-01
Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…
Williams loads the MELFI for the Nutrition Experiment during Expedition 15
2007-06-01
ISS015-E-10572 (1 June 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, inserts test samples in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as a part of the Nutritional Status Assessment (Nutrition) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.
Chamitoff works with the MELFI in the U.S. Laboratory during Expedition 17
2008-09-27
ISS017-E-017541 (27 Sept. 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as part of the Nutritional Status Assessment (NUTRITION) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.
Chamitoff works with the MELFI in the U.S. Laboratory during Expedition 17
2008-09-27
ISS017-E-017539 (27 Sept. 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as part of the Nutritional Status Assessment (NUTRITION) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.
Anderson works on the NUTRITION Experiment in the US Lab during Expedition 15
2007-06-25
ISS015-E-13670 (25 June 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, works with the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as part of the Nutritional Status Assessment (NUTRITION) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.
Anderson works on the NUTRITION Experiment in the US Lab during Expedition 15
2007-06-25
ISS015-E-13695 (25 June 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, works with the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as part of the Nutritional Status Assessment (NUTRITION) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.
Improving student learning in calculus through applications
NASA Astrophysics Data System (ADS)
Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.
2011-07-01
Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.
NASA Astrophysics Data System (ADS)
Wolfe, B.
2012-12-01
The overwhelming majority of students at 2-year colleges take geoscience courses (e.g. physical geology or physical geography) to fulfill part of the general education requirements of the Associates in Arts degree or General Education certificates for transfer to a 4-year school. It is common in community college earth science programs to have a relatively small number of students continuing on to major in geoscience programs at their transfer 4-year institution. To increase interest and retention in geosciences courses, we have developed a two prong approach - one aimed at students looking to transfer to a 4-year institution and the other aimed at students in the often overlooked career and technical education (CTE) programs. In the case of transfer students, we employ a "high touch" approach in introductory Physical Geology courses. This includes raising awareness of geoscience related careers combined with faculty mentor and advisor activities for students who express interest in science on their admission forms or in discussions of potential careers in science in first-year experience courses. Faculty mentorships have been very effective, not only in recruiting students to consider careers in geology, but also in advising a curriculum for students necessary to be successful upon transfer to a 4-year institution (such as completing college level chemistry, physics, and calculus courses prior to transfer). The second approach focuses on students pursuing certificates and degrees in CTE energy-related programs (such as HVAC, industrial engineering technology, electrician, and utility linemen). To increase awareness of vocational related geoscience careers, many of which require a good foundation in the vocational training students are currently pursing, we developed a foundation energy course - Energy and the Environment - which fulfills both the science general education component of the AA degree for students looking to transfer as well as CTE students. The curriculum focuses on fundamental concepts of energy generation and environmental impact, including analysis of energy fundamentals, fossil fuel exploration and use, atmospheric pollution, global climate change, nuclear energy, alternative energy sources, and energy conservation, all of which are directly related to geologic processes. This new course is part of newly created energy certificate programs in Photovoltaics, energy efficiency, and solar thermal - with the intention of expanding to AAS degrees in each.
Russian University Education in Nuclear Safeguards and Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.
2009-03-15
As safeguards and security (S&S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC&A). As part of the U.S. Department of Energy’s (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S&S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S&S personnel. The Educationmore » Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S&S Graduate Program is available only at MEPhI and is the world’s first S&S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S&S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5½ year Engineering Degree Program (EDP) in S&S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program’s first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S&S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills. The project has also supported the instruction of policy-oriented nonproliferation courses at various Russian universities. These courses are targeted towards future workers in the nuclear field to help build an effective nonproliferation awareness within the nuclear complex. A long-range goal of this project is to assist the educational programs at MEPhI and TPU in becoming self-sustainable and therefore able to maintain the three degree programs without DOE support. This paper describes current development of these education programs and new initiatives. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical S&S degree programs.« less
Preparing minority undergraduate students for successful science careers.
NASA Astrophysics Data System (ADS)
Akundi, Murty
2008-03-01
Xavier University of Louisiana is well known for being number one in graduating the most minority students in physical and biological sciences. The reason for this success is built on the concept of Standards with Sympathy in the Sciences (Triple S). This is an outgrowth of over twenty years of planning and development by the Xavier science faculty to devise a program for preparing and retaining students in the sciences and engineering. Xavier has been successfully conducting for over ten years, Summer Science Academy (SSA) for middle and high school students; Science Technology, Engineering and Mathematics (STEM) Scholars and Howard Hughes Biomedical programs for in-coming freshmen. Recently, through a grant from NSF, we have developed the Experiential Problem-solving and Analytical Reasoning (EPsAR) summer bridge program for in-coming freshmen who were given conditional admission to the university (i.e., those students who scored below the acceptable range for placement into degree mathematics courses). In this program, EPsAR participants will be engaged in problem-solving and critical thinking activities for eight hours per day, five days per week, for six weeks. Additionally, an interdisciplinary approach is taken to convey the mathematical skills learned to relate to physics, chemistry, biology, and computer science. Sixty-six students have participated in the last two years in the EPsAR program. During the first year 23 of 28 students successfully bi-passed the algebra review course and were placed into a degree credit course in mathematics. In the second year, thirty-one (31) of the 38 were advanced to a higher-level mathematics course. Twenty-three (23) out of 38 went on to degree credit math course. To retain students in the sciences peer tutoring in all the science disciplines are made available to students throughout the day for 5 days per week. Faculty and students are available to give guidance to the needed students. The University has established a Graduate Placement Office and a Center for Undergraduate Research to facilitate students' pursuit of gradate studies. The results of these efforts indicate a 40 percent graduation rate in four years and increased to 90 percent in six years in the natural sciences and 50 percent of these graduates pursue graduate/professional careers.
A Survey of the Job Profiles of Biomedical Informatics Graduates.
Macedo, Alessandra A; Ruiz, Evandro E S; Baranauskas, José A
2016-10-17
In 2003, the University of São Paulo established the first Biomedical Informatics (BMI) undergraduate course in Brazil. Our mission is to provide undergraduate students with formal education on the fundamentals of BMI and its applied methods. This undergraduate course offers theoretical aspects, practical knowledge and scientifically oriented skills in the area of BMI, enab- ling students to contribute to research and methodical development in BMI. Course coordinators, professors and students frequently evaluate the BMI course and the curriculum to ensure that alumni receive quality higher education. This study investigates (i) the main job activities undertake by USP BMI graduates, (ii) subjects that are fundamental important for graduates to pursue a career in BMI, and (iii) the course quality perceived by the alumni. Use of a structured questionnaire to conduct a survey involving all the BMI graduates who received their Bachelor degree before July, 2015 (attempted n = 205). One hundred and forty-five graduates (71 %) answered the questionnaire. Nine out of ten of our former students currently work as informaticians. Seventy-six graduates (52 %) work within the biomedical informatics field. Fifty-five graduates (38 %) work outside the biomedical informatics field, but they work in other IT areas. Ten graduates (7 %) do not work with BMI or any other informatics activities, and four (3 %) are presently unemployed. Among the 145 surveyed BMI graduates, 46 (32 %) and seven (5 %) hold a Master's degree and a PhD degree, respectively. Database Systems, Software Engineering, Introduction to Computer Science, Object-Oriented Programming, and Data Structures are regarded as the most important subjects during the higher education course. The majority of the graduates (105 or 72 %) are satisfied with the BMI education and training they received during the undergraduate course. More than half of the graduates from our BMI course work in their primary education area. Besides technical adequacy, the diverse job profiles, and the high level of satisfaction of our graduates indicate the importance of undergraduate courses specialized in the BMI domain are of utmost importance.
Final Progress Report for Award DE-FG07-05ID14637.pdf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathy Dixon
2012-03-09
2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less
14 CFR 63.43 - Flight engineer courses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...
14 CFR 63.43 - Flight engineer courses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...
14 CFR 63.43 - Flight engineer courses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...
14 CFR 63.43 - Flight engineer courses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...
14 CFR 63.43 - Flight engineer courses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...
An integrator final exam at the end of the engineering degrees to evaluate the acquired competences
NASA Astrophysics Data System (ADS)
Perdigones, A.; Sánchez, E.; Valiño, V.; Tarquis, A. M.
2010-05-01
In the last decade strong changes in the design of university degrees have occurred in Spain, affecting real competences acquired by graduates. The new degrees often provide students greater freedom in shaping their curriculum which results in many cases in a problem for their training. In engineering degrees of Spain, the final project, that allows to know the integrated skills of the students in engineering subjects, is not compulsory anymore; it can be substituted for other specific types of work that often do not involve skills valued by the companies of the industrial sector. This situation may create doubts about the real competences of the graduates. In the present study, a final exam (voluntary) has been carried out during three years to assess competences in engineering students in the last course of the degree in agricultural engineering (diploma of five years) and agricultural technical engineering (diploma of three years) at the Polytechnic University of Madrid (Spain). They took part 132 students in the years 2006, 2007 and 2008. The exam had a common format, with three parts assessing skills in construction, machinery and electrical installations. The results showed the evolution in the training of students, and the relationship between skills acquired and late differences in the learning process. The most important conclusions were that the attainment levels was lower than expected, but generally consistent with the training received by each group of students. In particular, the low number of hours of subjects in electrical installations in certain groups of students was evident when evaluating the skills acquired. The results indicated that they aim to increase the number of hours in certain subjects and groups of students, if a graduate is to get qualified. The authors recommend an examination similar to the raised, integrator type, in all programs that do not have any overall final assessment in order to conduct a quality control of graduates; this approach has the advantage that graduates may also obtain an additional final certificate with their level of competences towards their future professional work.
Thompson, Lara A; Adebayo, A Segun; Nian Zhang; Haghani, Sasan; Dowell, Kathleen; Shetty, Devdas
2016-08-01
Biomedical Engineering (BME) is a new, multidisciplinary, and rapidly growing field, however, the BME Workforce suffers from limited ethnic and gender diversity. Despite the demand and growth of this new field due to its public health importance, only 4 out of the 107 Historically Black Colleges and Universities (HBCUs) nationwide offers a Bachelor's of Science (B.S.) in Bio-Engineering related fields. In order to contribute to a growing BME Workforce, HBCUs need to react and offer more degree-programs relevant to BME. At the University of the District of Columbia (UDC), an HBCU and the District's only public institution for higher learning, we have recently established a new, degree program: Bachelor of Science in Biomedical Engineering (B.S. in BME) full-board approved in Fall 2014, with program activities initiated in Fall 2015. The educational goal of this program is to enhance the quality and diversity of the BME Workforce via student professional development, new and relevant BME courses, and BME scholarly activities (e.g., guest lectures and journal club sessions), ultimately to increase the number of ethnic minorities pursuing careers and degrees in BME. Through our program activities, we are aiming to meet the nation's demand to contribute to a diverse BME workforce, directed towards solving problems in human health. A secondary, but related goal, is to increase the diversity of STEM-related fields. This paper summarizes our initial, but encouraging, BME activity-related findings. However, this study will be longitudinal (on a multiple year time period) to observe the true outcomes of our initiative.
Development and Implementation of Degree Programs in Electric Drive Vehicle Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Simon
2013-09-30
The Electric-drive Vehicle Engineering (EVE) MS degree and graduate certificate programs have been continuing to make good progress, thanks to the funding and the guidance from DOE grant management group, the support from our University and College administrations, and to valuable inputs and feedback from our Industrial Advisory Board as well as our project partners Macomb Community College and NextEnergy. Table 1 below lists originally proposed Statement of Project Objectives (SOPO), which have all been completed successfully. Our program and course enrollments continue to be good and increasing, as shown in later sections. Our graduating students continue to get goodmore » job offers from local EV-related companies. Following the top recommendation from our Industrial Advisory Board, we were fortunate enough to be accepted into the prestigious EcoCAR2 (http://www.ecocar2.org/) North America university design competition, and have been having some modest success with the competition. But most importantly, EcoCAR2 offers the most holistic educational environment for integrating real-world engineering and design with our EVE graduate curriculum. Such integrations include true real-world hands-on course projects based on EcoCAR2 related tasks for the students, and faculty curricular and course improvements based on lessons and best practices learned from EcoCAR2. We are in the third and last year of EcoCAR2, and we have already formed a core group of students in pursuit of EcoCAR”3”, for which the proposal is due in early December.« less
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...
NASA Astrophysics Data System (ADS)
Wyer, Mary
Contemporary research on gender and persistence in undergraduate education in science and engineering has routinely focused on why students leave their majors rather than asking why students stay. This study compared three common ways of measuring persistence-commitment to major, degree aspirations, and commitment to a science or engineering career-and emphasized factors that would encourage students to persist, including positive images of scientists and engineers, positive attitudes toward gender equity in science and engineering, and positive classroom experiences. A survey was administered in classrooms to a total of 285 female and male students enrolled in two required courses for majors. The results indicate that the different measures of persistence were sensitive to different influences but that students' gender did not interact with their images, attitudes, and experiences in predicted ways. The study concludes that an individual student's gender may be a more important factor in explaining why some female students leave their science and engineering majors than in explaining why others stay.
Microcomputer Laboratory Design.
1983-03-01
Approved for public release, distribution unlimited 17. OiSTi Of OUTIO STATEMIEN (61 tile 41141f61 d "#Or d i 1806k 20. If |1 N RA""") WS. SUPPLEMENTARY...and implemented to support Airborne Digital Computation, AE 4641, a course involving a study of the methods used for digital computa- tion in...University, 1975 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING -from the NAVAL
ERIC Educational Resources Information Center
Castleman, Benjamin L.; Long, Bridget Terry; Mabel, Zachary A.
2014-01-01
The fastest growing supply of jobs in the United States today is in Science, Technology, Engineering, and Mathematics (STEM) fields. Yet despite the availability of work in STEM, there is not a sufficient supply of workers to fill open positions. Amidst the growing demand for STEM workers, educational achievement and attainment in STEM fields in…
NASA Astrophysics Data System (ADS)
Geraskin, N. I.; Kosilov, A. N.
2017-01-01
This paper describes the experience of teaching «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer and master degree programs and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academic Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of «Nuclear Knowledge Management» course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association «Consortium of ROSATOM supporting universities».
Nuclear Security Education Program at the Pennsylvania State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor
The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less
NASA Astrophysics Data System (ADS)
Castro, Sergio; Navarro, Rafael M.; Camacho, Emilio; Gallardo, Rosa; García-Ferrer, Alfonso; Pérez-Marín, M. Dolores; Peña, Adolfo; Taguas, Encarnación V.
2014-05-01
The incorporation of new students to undergraduate degrees is performed in different stages through a long, sequential enrollment process. The student integration to the new context of higher education including group work and new teaching methodologies lead to notable adaptation difficulties to this new educational environment. In fact, the highest rate of student failure in the Bachelor degree usually happens during the first courses. The Unit of Quality Evaluation/Monitoring of School of Agricultural and Forest Engineering (ETSIAM) has detected that these failure rates at first and second degree course may be reduced through the involvement of students in a support learning process, by increasing their skills and motivation as well as the contact with the University environment in the context of their future professional horizon. In order to establish a program of this type, it has been launched an Academic Support Program (ASP) at the ETSIAM. This program aims to achieve and reinforce the basic academic and personal skills/competences require by the Bologna's process (BC) and specific competences of the engineers on the area of Agriculture and Forestry in the European context. The ASP includes diferent bloks of seminars, lectures, collaborative work and discussion groups among students, professionals, professors and researchers and it has been designed based on these competences and tranversal contents in both degrees. These activities are planned in a common time for both degrees, out of teaching classes. In addition, a virtual space in Moodle has been created for discussion forums and preparation activities. Additional information about schedules, speakers and companies, presentations and other material are also provided. In the preliminary implementation of the ASP, we will present the results corresponding to the first year of this academic support program. We have conducted a survey among the students in order to have a first feedback about the impact of the ASP on their integration to University. As a general opinion, the students considered that the seminars were useful and interesting. Moreover, they appreciated that activities were open and attendance was not required. Student proposed new topics related with their professional development. This type of activities not only allows improving the satisfaction of the students but also connecting professors of different subjects and areas of knowledge with student and professional sector.
Perez-Felkner, Lara; Nix, Samantha; Thomas, Kirby
2017-01-01
Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. nationally representative longitudinal data to estimate gendered differences in girls' and boys' perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students' pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls' and boys' choices to pursue PEMC degrees, evaluating educational milestones over a 6-year period: advanced science course completion in secondary school and postsecondary major retention and selection. Our findings indicate even at the same levels of observed ability, girls' mathematics ability beliefs under challenge are markedly lower than those of boys. These beliefs matter over time, potentially tripling girls' chances of majoring in PEMC sciences, over and above biological science fields, all else being equal. Implications and potential interventions are discussed. PMID:28428762
Perez-Felkner, Lara; Nix, Samantha; Thomas, Kirby
2017-01-01
Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. nationally representative longitudinal data to estimate gendered differences in girls' and boys' perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students' pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls' and boys' choices to pursue PEMC degrees, evaluating educational milestones over a 6-year period: advanced science course completion in secondary school and postsecondary major retention and selection. Our findings indicate even at the same levels of observed ability, girls' mathematics ability beliefs under challenge are markedly lower than those of boys. These beliefs matter over time, potentially tripling girls' chances of majoring in PEMC sciences, over and above biological science fields, all else being equal. Implications and potential interventions are discussed.
Predicting Performance in a First Engineering Calculus Course: Implications for Interventions
ERIC Educational Resources Information Center
Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia
2015-01-01
At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take "Engineering Analysis I," a calculus-based engineering analysis course. After the…
A Case Study of a College-Wide First-Year Undergraduate Engineering Course
ERIC Educational Resources Information Center
Aloul, Fadi; Zualkernan, Imran; Husseini, Ghaleb; El-Hag, Ayman; Al-Assaf, Yousef
2015-01-01
Introductory engineering courses are either programme specific or expose students to engineering as a broad discipline by including materials from various engineering programmes. A common introductory engineering course that spans different engineering programmes raises challenges, including the high cost of resources as well as the lack of…
Education of biomedical engineering in Taiwan.
Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin
2014-01-01
Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.
Changing the Engineering Student Culture with Respect to Academic Integrity and Ethics.
VanDeGrift, Tammy; Dillon, Heather; Camp, Loreal
2017-08-01
Engineers create airplanes, buildings, medical devices, and software, amongst many other things. Engineers abide by a professional code of ethics to uphold people's safety and the reputation of the profession. Likewise, students abide by a code of academic integrity while learning the knowledge and necessary skills to prepare them for the engineering and computing professions. This paper reports on studies designed to improve the engineering student culture with respect to academic integrity and ethics. To understand the existing culture at a university in the USA, a survey based on a national survey about cheating was administered to students. The incidences of self-reported cheating and incidences of not reporting others who cheat show the culture is similar to other institutions. Two interventions were designed and tested in an introduction to an engineering course: two case studies that students discussed in teams and the whole class, and a letter of recommendation assignment in which students wrote about themselves (character, strengths, examples of ethical decisions) three years into the future. Students were surveyed after the two interventions. Results show that first-year engineering students appreciate having a code of academic integrity and they want to earn their degree without cheating, yet less than half of the students would report on another cheating student. The letter of recommendation assignment had some impact on getting students to think about ethics, their character, and their actions. Future work in changing the student culture will continue in both a top-down (course interventions) and bottom-up (student-driven interventions) manner.
Mountain Plains Learning Experience Guide: Automotive Repair. Course: Engine Repair.
ERIC Educational Resources Information Center
Schramm, C.; Osland, Walt
One of twelve individualized courses included in an automotive repair curriculum, this course covers theory and construction, inspection diagnoses, and service and overhaul of automotive engines. The course is comprised of five units: (1) Fundamentals of Four-Cycle Engines, (2) Engine Construction, (3) Valve Train, (4) Lubricating Systems, and (5)…
Engineering a General Education Program: Designing Mechanical Engineering General Education Courses
ERIC Educational Resources Information Center
Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.
2013-01-01
The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…
46 CFR 166.10 - Course of study for engineering students.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip the...
46 CFR 166.10 - Course of study for engineering students.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip the...
46 CFR 166.10 - Course of study for engineering students.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip the...
46 CFR 166.10 - Course of study for engineering students.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip the...
46 CFR 166.10 - Course of study for engineering students.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Course of study for engineering students. 166.10 Section... AND APPROVAL OF NAUTICAL SCHOOL SHIPS § 166.10 Course of study for engineering students. The course of study for engineering students shall include (a) all the instruction necessary to fully equip the...
The Incremental Launching Method for Educational Virtual Model
NASA Astrophysics Data System (ADS)
Martins, Octávio; Sampaio, A. Z.
This paper describes the application of virtual reality technology to the development of an educational model related to the construction of a bridge. The model allow the visualization of the physical progression of the work following a planned construction sequence, the observation of details of the form of every component of the works and carry the study of the type and method of operation of the equipment applied in the construction. The model admit interaction and then some degree of collaboration between students and teachers in the analyses of aspects concerning geometric forms, working methodology or other technical issues observed using the application. The model presents distinct advantage as educational aids in first-degree courses in Civil Engineering.
NASA Astrophysics Data System (ADS)
Fages, Volny; Albe, Virginie
2015-06-01
This paper proposes a study of the various ways in which social and ethical issues are integrated in the curricula of nanoscience and nanotechnology master degrees. During the last decade, new types of courses have appeared in science and technology universities, first in the United States and now reaching Europe and France, associating a call for interdisciplinarity with a strong convergence of science and industry and new ways of integrating social and/or human sciences in scientific curricula. These courses entitled "science and society", meant for science students, lean on (and participate in the construction of) specific ways of describing science, technology, and the social world, generally saturated with political values. The integration of these courses in science education, linked with a strong effort to specify new institutional organizations of scientific practice and education (in particular through political support of emerging fields like nanoscience, synthetic biology, or the cognitive sciences), may play an important role in the acculturation of future scientists and engineers to "good" scientific practices and discourses. The case of nanoscience and nanotechnology is particularly revealing of the changes which are now taking place in some universities. This paper will strive to identify different types of courses called "nano and society", taking examples from both French and American contexts, and linking them to more or less implicit socio-epistemic and political values.
Predictive validity of five cognitive skills tests among women receiving engineering training
NASA Astrophysics Data System (ADS)
Wittig, Michele Andrisin; Hennix Sasse, Sharon; Giacomi, Jean
This article addresses two sets of theoretical and practical issues related to increasing the percentage of women engineers. First, the measurement of women's aptitude for and changes in skills during engineering training was assessed. Five cognitive skills tests were administered in a one-group pretest-posttest design to 24 baccalaureate women enrolled in an eleven-month engineering training course. Significant increases in skills were shown on three of the five assessments. Scores on a mathematics anxiety scale and a measure of conservation of horizontality are also reported. Second, the relationship of academic and demographic information and cognitive skills to degree of success in the program is reported. Pretraining spatial visualization scores predicted posttraining GPA group membership. The results are compared and contrasted with those of studies of male undergraduates. Implications are drawn concerning the ways in which evaluations of such programs can contribute to our understanding of the changes in skills that occur with training in engineering and of the factors that predict success in such programs.
The Importance of Field in Understanding Persistence among Science and Engineering Majors
NASA Astrophysics Data System (ADS)
Wyer, Mary
Many contemporary studies of persistence in science and engineering majors find that students' gender is an important explanatory variable in understanding why students leave and stay in their majors. This study revisits an earlier report by this author to explore the relative impact of gender on persistence when field of major is held constant, using the same data as the earlier work, drawing on survey responses from 285 students in required biology and engineering courses. The author argues two points: that effects of field on students' persistence are often misinterpreted as gender effects and that gender is too often understood in the narrow sense of students' sex. The author finds that when field is taken into account, students' sex has little explanatory power for understanding persistence rates. In contrast, students' positive experiences with and positive attitudes about gender equity significantly enhance commitments to science and engineering majors, advanced degrees, and careers. The results suggest the need for field-specific interventions to promote the advancement of undergraduate women in science and engineering.
Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade, J.D.; Scheer, R.
1994-12-31
A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less
Introduction to Engineering. Course I: Challenges of Engineering. Course II: Engineering Projects.
ERIC Educational Resources Information Center
Barrier, Lynn P.
This guide, which is designed to be used in a two-course sequence, is intended to prepare college-bound high school juniors and seniors for engineering and related courses at the college level. The guide was developed as part of an experimental competency-based curriculum that integrates the high-tech applications of mathematics and science…
NASA Astrophysics Data System (ADS)
Carbajal, Sandy C.
Drawing from Latino/a Critical Race Theory and the related Community Cultural Wealth (CCW) model, I concentrate on three forms of CCW---aspirational, navigational, and resistance capital---for this qualitative study on the undergraduate experience of Latina students in Science, Technology, Engineering, and Mathematics (STEM) majors, focusing on strategies and achieving baccalaureate attainment. I interviewed ten Latina students and asked them questions regarding their educational experiences in STEM majors, what contributed to their degree completion, and the strategies they employed for achieving baccalaureate attainment. I identified and described six themes within the study (the underrepresentation of Latinas in STEM majors, the lack of preparation by academic programs for upper division courses, motivators, involvement, time management, and support networks) that, when combined, contributed to participants' degree attainment. This study concludes with implications for policy and practice that would allow universities to better assist Latinas in STEM majors to achieve baccalaureate attainment.
Increasing Minority Participation and Matriculation in the Geosciences at El Paso Community College
NASA Astrophysics Data System (ADS)
Villalobos, J. I.
2011-12-01
Community colleges currently serve 44% of all undergraduate students and 45% of all of all first time freshmen in the US. Hispanics now constitute 15% of the general population and 19% of the college population in the US. This increase has led to more institutions emerging as HSI (Hispanic Serving Institution) by the federal government. These facts illustrate the potential community colleges hold to encourage STEM (Science Technology Engineering and Math) majors to minorities as well as non-minorities. But the reality is the number of STEM degrees awarded at community colleges has not followed the same trends in enrollment. El Paso Community College (EPCC) currently enrolls 27,000 students with 85% of the student body being Hispanic. More than 130 programs of study are offered including an Associate of Science degree in Geological Sciences. Over the past three years we have implemented several initiatives in our effort to increase the number of Geological Science (GS) majors at EPCC. These efforts are aimed to decrease attrition rates of science majors by; streamlining the GS degree plan along with the process of course registration, introduce field-based research projects to students to allow hands on research, develop a work relationships with students and university faculty, increase the number of geology courses offered at EPCC including a field-based capstone course (GEOL 2407- Geological Field Methods), and strengthening the educational-bridge between the geological science departments of EPCC and University of Texas at El Paso.
Learning by doing at the Colorado School of Mines
NASA Astrophysics Data System (ADS)
Furtak, Thomas E.; Ruskell, Todd G.
2013-03-01
With over 260 majors, the undergraduate physics program at CSM is among the largest in the country. An underlying theme in this success is experiential learning, starting with a studio teaching method in the introductory calculus-based physics courses. After their second year students complete a 6-week full-time summer course devoted to hands-on practical knowledge and skills, including machine shop techniques, high-vacuum technology, applied optics, electronic control systems, and computational tools. This precedes a two-semester laboratory sequence that can be taught at an advanced level because of the students' experience. The required capstone senior course is a year-long open-ended challenge in which students partner with members of the faculty to work on authentic research projects, teaming with grad students or post-docs as contributing members to the department's externally funded scholarship. All of these features are important components of our B.S. degree, Engineering Physics, which is officially accredited by ABET.
NASA Astrophysics Data System (ADS)
Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.
2007-12-01
Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this existing course provided the necessary framework for the Afghan course, there were a number of challenges with tailoring the course material to the education level, experience, and needs of the Afghan students and faculty. These challenges were overcome, in part, during the imbedding process of US instructors within the NMAA faculty. On-site transfer of course material and knowledge proved a necessary step in the implementation of the course. The imbedding process enabled US instructors to discuss the course with current NMAA faculty and identify an implementation path that met the needs of the program while appreciating the uniqueness of the Afghan experience. Implementation of the course is on-going with reach-back capability for Afghan faculty to continue the mentoring relationship with their US colleagues. Challenges that arise during course implementation (e.g., wet lab deployments, field trip relevance) will be overcome and used as learning tools for future course offerings. Ultimately, this course will provide future leaders of Afghanistan with the educational tools to make informed environmental management decisions and will serve as a model for similar courses implemented throughout Afghanistan.
Hazardous Asteroids: Cloaking STEM Skills Training within an Attention-Grabbing Science/Math Course
NASA Astrophysics Data System (ADS)
Ryan, Eileen V.; Ryan, William H.
2015-11-01
A graduate-level course was designed and taught during the summer months from 2009 - 2015 in order to contribute to the training and professional development of K-12 teachers residing in the Southwest. The teachers were seeking Master’s degrees via the New Mexico Institute of Mining and Technology’s (NMT’s) Masters of Science Teaching (MST) program, and the course satisfied a science or math requirement. The MST program provides opportunities for in-service teachers to enhance their content backgrounds in science, mathematics, engineering, and technology (SMET). The ultimate goal is to assist teachers in gaining knowledge that has direct application in the classroom.The engaging topic area of near-Earth object (NEO) characterization studies was used to create a fun and exciting framework for mastering basic skills and concepts in physics and astronomy. The objective was to offer a class that had the appropriate science rigor (with an emphasis on mathematics) within a non-threatening format. The course, entitled “Hazardous Asteroids”, incorporates a basic planetary physics curriculum, with challenging laboratories that include a heavy emphasis on math and technology. Since the authors run a NASA-funded NEO research and follow-up program, also folded into the course is the use of the Magdalena Ridge Observatory’s 2.4-meter telescope so participants can take and reduce their own data on a near-Earth asteroid.In exit assessments, the participants have given the course excellent ratings for design and implementation, and the overall degree of satisfaction was high. This validates that a well-constructed (and rigorous) course can be effective in receptively reaching teachers in need of basic skills refreshment. Many of the teachers taking the course were employed in school districts serving at-risk or under-prepared students, and the course helped provide them with the confidence vital to developing new strategies for successful teaching.
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
ERIC Educational Resources Information Center
Cox, Monica F.; Berry, Carlotta A.; Smith, Karl A.
2009-01-01
This paper describes a graduate level engineering education course, "Leadership, Policy, and Change in Science, Technology, Engineering, and Mathematics (STEM) Education." Offered for the first time in 2007, the course integrated the perspectives of three instructors representing disciplines of engineering, education, and engineering education.…
Rodenbusch, Stacia E; Hernandez, Paul R; Simmons, Sarah L; Dolan, Erin L
2016-01-01
National efforts to transform undergraduate biology education call for research experiences to be an integral component of learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engaging students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are few if any studies that examine the long-term effects of participating in CUREs on desired student outcomes, such as graduating from college and completing a science, technology, engineering, and mathematics (STEM) major. One CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year undergraduates over the past decade. Using propensity score-matching to control for student-level differences, we tested the effect of participating in FRI on students' probability of graduating with a STEM degree, probability of graduating within 6 yr, and grade point average (GPA) at graduation. Students who completed all three semesters of FRI were significantly more likely than their non-FRI peers to earn a STEM degree and graduate within 6 yr. FRI had no significant effect on students' GPAs at graduation. The effects were similar for diverse students. These results provide the most robust and best-controlled evidence to date to support calls for early involvement of undergraduates in research. © 2016 S. Rodenbusch et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Engineering for Liberal Arts and Engineering Students.
ERIC Educational Resources Information Center
The Weaver, 1986
1986-01-01
Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…
A Course in Electrochemical and Corrosion Engineering.
ERIC Educational Resources Information Center
Van Zee, John
1985-01-01
Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)
A Course in Medicine and Clinical Engineering for Engineers.
ERIC Educational Resources Information Center
Webster, John G.
A biomedical engineering course at the University of Wisconsin is described. The course is a comprehensive survey designed to develop the student's ability to participate in the solution of medical problems, particularly in areas involving technology. Course objectives and lecture outlines are provided. (MLH)
Examining Physics Career Interests: Recruitment and Persistence into College
NASA Astrophysics Data System (ADS)
Lock, R. M.; Hazari, Z.; Sadler, P. M.; Sonnert, G.
2012-03-01
Compared to the undergraduate population, the number of students obtaining physics degrees has been declining since the 1960s. This trend continues despite the increasing number of students taking introductory physics courses in high school and college. Our work uses an ex-post facto design to study the factors that influence students' decision to pursue a career in physics at the beginning of college. These factors include high school physics classroom experiences, other science-related experiences, and students' career motivations. The data used in this study is drawn from the Persistence Research in Science and Engineering (PRiSE) Project, a large-scale study that surveyed a nationally representative sample of college/university students enrolled in introductory English courses about their interests and prior experiences in science.
Baier, André
2013-12-01
A group of engineering students at the Technical University of Berlin, Germany, designed a course on engineering ethics. The core element of the developed Blue Engineering course are self-contained teaching-units, "building blocks". These building blocks typically cover one complex topic and make use of various teaching methods using moderators who lead discussions, rather than experts who lecture. Consequently, the students themselves started to offer the credited course to their fellow students who take an active role in further developing the course themselves.
Marine Engine Mechanics. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Jones, Marion
Several intermediate performance objectives and corresponding criterion measures are presented for each of ten terminal objectives for a two-semester course (3 hours daily). This 540-hour intermediate course includes advanced troubleshooting techniques on outboard marine engines, inboard-outboard marine engines, inboard marine engines, boat…
NASA Astrophysics Data System (ADS)
Sethy, Satya Sundar
2017-11-01
'Professional Ethics' has been offered as a compulsory course to undergraduate engineering students in a premier engineering institution of India. It was noticed that students' perceptions and attitudes were frivolous and ornamental towards this course. Course instructors and institution authorities were motivated to find out the factors contributing to this awkwardness. For this purpose, a questionnaire was prepared and administrated to 336 students registered for the July-November 2014 semester. The study found two factors contributing to students' indifference towards the Professional Ethics course. First, most of the students did not have self-interest to join the engineering programme, and while pursuing their study, they decided to switch to a different field upon completion of their engineering study. Second, students who desired to be engineers in their future believed that engineering code of ethics is not really referred to in most of the engineering jobs, and therefore Professional Ethics course is only meant for classroom discussions.
Problem-based learning biotechnology courses in chemical engineering.
Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V
2006-01-01
We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.
Teaching Teachers to Teach Green Engineering
ERIC Educational Resources Information Center
Flynn, Ann Marie; Naraghi, Mohammad H.; Austin, Nicole; Helak, Sean; Manzer, Jarrod
2006-01-01
The work provides guidelines for instructors who wish to incorporate green engineering concepts into a typical non-green engineering course without diluting course content or modifying the course syllabus by identifying 5 critical elements necessary to the successful integration of green engineering concepts into any traditional, design-oriented,…
Learning intervention and the approach to study of engineering undergraduates
NASA Astrophysics Data System (ADS)
Solomonides, Ian Paul
The aim of the research was to: investigate the effect of a learning intervention on the Approach to Study of first year engineering degree students. The learning intervention was a local programme of learning to learn' workshops designed and facilitated by the author. The primary aim of these was to develop students' Approaches to Study. Fifty-three first year engineering undergraduates at The Nottingham Trent University participated in the workshops. Approaches to Study were quantified using data obtained from the Revised Approach to Study Inventory (RASI) which was also subjected to a validity and reliability study using local data. Quantitative outcomes were supplemented using a qualitative analysis of essays written by students during the workshops. These were analysed for detail regarding student Approach to Study. It was intended that any findings would inform the local system of Engineering Education, although more general findings also emerged, in particular in relation to the utility of the research instrument. It was concluded that the intervention did not promote the preferential Deep Approach and did not affect Approaches to Study generally as measured by the RASI. This concurred with previous attempts to change student Approaches to Study at the group level. It was also established that subsequent years of the Integrated Engineering degree course are associated with progressively deteriorating Approaches to Study. Students who were exposed to the intervention followed a similar pattern of deteriorating Approaches suggesting that the local course context and its demands had a greater influence over the Approach of students than the intervention did. It was found that academic outcomes were unrelated to the extent to which students took a Deep Approach to the local assessment demands. There appeared therefore to be a mis-match between the Approach students adopted to pass examinations and those that are required for high quality learning outcomes. It is suggested that more co-ordinated and coherent action for changing the local course demands is needed before an improvement in student Approaches will be observed. These conclusions were broadly supported by the results from the qualitative analysis which also indicated the dominating effects of course context over Approach. However, some students appeared to have gained from the intervention in that they reported being in a better position to evaluate their relationships with the course demands following the workshops. It therefore appeared that some students could be described as being in tension between the desire to take a Deep Approach and the adoption of less desirable Approaches as promoted and encouraged by the course context. It is suggested that questions regarding the integrity of the intervention are thereby left unresolved even though the immediate effects of it are quite clear. It is also suggested that the integrity of the research instrument is open to question in that the Strategic Approach to Study scale failed to be defined by one factor under common factor analysis. The intentional or motivational element which previously defined this scale was found to be associated with a Deep Approach factor within the local context. The Strategic Approach was found to be defined by skill rather than motivation. This indicated that some reinterpretation of the RASI and in particular the Strategic Approach to Study scale is needed.
Instructional Changes Adopted for an Engineering Course: Cluster Analysis on Academic Failure
Álvarez-Bermejo, José A.; Belmonte-Ureña, Luis J.; Martos-Martínez, África; Barragán-Martín, Ana B.; Simón-Márquez, María M.
2016-01-01
As first year students come from diverse backgrounds, basic skills should be accessible to everyone as soon as possible. Transferring such skills to these students is challenging, especially in highly technical courses. Ensuring that essential knowledge is acquired quickly promotes the student’s self-esteem and may positively influence failure rates. Metaphors can help do this. Metaphors are used to understand the unknown. This paper shows how we made a turn in student learning at the University of Almeria. Our hypothesis assumed that metaphors accelerate the acquisition of basic knowledge so that other skills built on that foundation are easily learned. With these goals in mind, we changed the way we teach by using metaphors and abstract concepts in a computer organization course, a technical course in the first year of an information technology engineering degree. Cluster analysis of the data on collective student performance after this methodological change clearly identified two distinct groups. These two groups perfectly matched the “before and after” scenarios of the use of metaphors. The study was conducted during 11 academic years (2002/2003 to 2012/2013). The 475 observations made during this period illustrate the usefulness of this change in teaching and learning, shifting from a propositional teaching/learning model to a more dynamic model based on metaphors and abstractions. Data covering the whole period showed favorable evolution of student achievement and reduced failure rates, not only in this course, but also in many of the following more advanced courses. The paper is structured in five sections. The first gives an introduction, the second describes the methodology. The third section describes the sample and the study carried out. The fourth section presents the results and, finally, the fifth section discusses the main conclusions. PMID:27895611
ERIC Educational Resources Information Center
Gero, Aharon
2017-01-01
A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…
A study of the factors affecting advancement and graduation for engineering students
NASA Astrophysics Data System (ADS)
Fletcher, John Thomas
The purpose of this study was, first, to determine whether a set of predictor variables could be identified from pre-enrollment and post-enrollment data that would differentiate students who advance to a major in engineering from non-advancers and, further, to determine if the predictor variables would differentiate students who graduate from the College of Engineering from non-graduates and graduates of other colleges at Auburn University. A second purpose was to determine if the predictor variables would correctly identify male and female students with the same degree of accuracy. The third purpose was to determine if there were significant relationships between the predictor variables studied and grades earned in a set of 15 courses that have enrollments over 100 students and are part of the pre-engineering curriculum. The population for this study was the 868 students who entered the pre-engineering program at Auburn University as freshmen during the Summer and Fall Quarters of 1991. The variables selected to differentiate the different groups were ACT scores, high school grade indices, and first quarter college grade point average. Two sets of classification matrices were developed using analysis and holdout samples that were divided based on sex. With respect to the question about advancement to the professional engineering program, structure coefficients derived from discriminant analysis procedures performed on all the cases combined indicated that first quarter college grade point average, high school math index, ACT math score, and high school science grade index were important predictor variables in classifying students who advanced to the professional engineering program and those who did not. Further, important structure coefficients with respect to graduation with a degree from the College of Engineering were first quarter college grade point average, high school math index, ACT math score, and high school science grade index. The results of this study indicated that significant differences existed in the model's ability to predict advancement and graduation for male and female students. This difference was not unexpected based on the male-dominated population. However, the models identified predicted at a high rate for both male and female students. Finally, many significant relationships were found to exist between the predictor variables and the 15 pre-engineering courses that were selected. The strength of the relationships ranged from a high of .82, p < .001 (Chemistry 103 grade with total high school grade index) to a low of .07, p > .05 (Chemistry 102 with ACT science score).
Development of university-industry partnerships in railroad engineering education
NASA Astrophysics Data System (ADS)
Lautala, Pasi T.
Rail transportation has been an important part of the North American transportation network since the 19th century and it continues to be a major contributor to the economic well-being and the global competitiveness of the U.S. The recent expansion in freight rail volumes and forecasts for continuous growth, together with more favorable attitudes for urban passenger rail present several challenges for the rail industry. One of the challenges is the availability of a well educated engineering workforce. The rail industry has recognized a need to attract new railroad professionals from various disciplines for management and technical positions, but most universities eliminated railroad engineering from their curricula after the recruitment levels faded several decades ago. Today, railroad expertise and related engineering courses exist at only a few universities and most students graduate without any exposure to rail topics. While industry representatives have expressed their concern about a future workforce, little data is available on the extent of the demand, on the characteristics and skills of preferred candidates, and on the role that universities can play. A benchmarking study was undertaken to investigate the demand for university engineering graduates and assess whether current methods are sufficient to attract, educate, recruit, train and retain engineering students in the railroad profession. Data was collected from industry human resources and training managers to define the quantitative and qualitative needs for railroad engineers. In addition, recently hired engineers working in the rail industry were surveyed to determine the extent of their university exposure in rail topics and how it affected their career choice. The surveys indicated an increase of over 300 percent in the annual recruitment for railroad engineers by the participating companies between 2002 and 2005. Recruitment levels are expected to remain high for the next five to ten years due to high demand for rail transportation and an older engineering workforce with the greatest demand for civil, electrical and mechanical engineers with bachelor's degrees. The rail industry and universities have grown apart over the past several decades, as rail programs and courses were abandoned at universities and there were very limited recruitment and research activities by the railroads at universities. Today, specialized course(s) in rail topics are offered at approximately three percent of ABET accredited civil engineering programs in the U.S. and only 16 percent of engineers who responded to the survey had received university exposure to rail topics. The research findings suggest that increased university participation has the potential to assist the rail industry in all aspects related to attracting, educating, recruiting, training and retaining engineering graduates. The primary advantages would be greater industry visibility and student knowledge in rail topics. Increased prior knowledge, on the other hand, improves the effectiveness of industry training programs and offers a potential for sizable training cost reductions. As a final conclusion, the research suggests that the most effective approach for developing future railroad engineers is a balancing act where the responsibilities should be shared by the rail industry and universities based on each others strengths. University participation should include multiple types and levels, including introductory lectures, co-op/internship programs, courses in railroad engineering, and a minor or certificate in railroad engineering that would include several courses. Due to the urgent demand for railroad engineers and time it takes to rebuild the expertise on campuses, the development process should begin immediately, be incremental, and utilize concepts, such as cooperation with other universities or engineer-in-residence, that reduce the demand of internal university resources. The challenges to the process, such as willingness of partners to understand each others needs and motivations for the relationship should be alleviated by developing performance goals and measures of success. While it is impossible to evaluate all aspects of university level railroad engineering education in one study, this research suggests that there are opportunities for a partnership between the rail industry and universities. The purpose of this research was to identify those opportunities and increase the understanding of the forces that shape the demand for railroad engineers and engineering education. The findings can be used both by the rail industry and the universities as they initiate change in the current processes and thrive to develop railroad engineers to meet the demands of the 21 st century.
ERIC Educational Resources Information Center
Barroso, Luciana R.; Morgan, James R.
2012-01-01
This paper describes the creation and evolution of an undergraduate dynamics and vibrations course for civil engineering students. Incorporating vibrations into the course allows students to see and study "real" civil engineering applications of the course content. This connection of academic principles to real life situations is in…
ERIC Educational Resources Information Center
Sethy, Satya Sundar
2017-01-01
"Professional Ethics" has been offered as a compulsory course to undergraduate engineering students in a premier engineering institution of India. It was noticed that students' perceptions and attitudes were frivolous and ornamental towards this course. Course instructors and institution authorities were motivated to find out the factors…
A Course in... Biochemical Engineering.
ERIC Educational Resources Information Center
Ng, Terry K-L.; And Others
1988-01-01
Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)
Standardized Curriculum for Small Engine Repair.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
This curriculum guide for small engine repair was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all small engine repair programs in the state. The guide contains objectives for small engine repair I and II courses. Units in course I…
ERIC Educational Resources Information Center
Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf
2015-01-01
Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related…
NASA Astrophysics Data System (ADS)
Nikolic, Sasha; Stirling, David; Ros, Montserrat
2018-07-01
Obtaining oral communication competency is an important skill for engineering students to prepare them for interacting and working in any professional setting. For engineers, it is also important to be able to present technical information to non-technical audiences. To ensure oral competency, a non-graded formative assessment approach using video with self- and peer assessment was introduced into a final-year engineering thesis course. A low workload approach was used due to growing student numbers and higher pressures on academic staff. A quasi-experimental design was used to investigate the differences between traditional delivery, self-assessment and combined self-assessment with peer feedback. The study found that the formative models were seen by students to help develop their presentation skills. However, the results showed no significant improvement compared to the traditional method. This could be due to previous presentation practice within the degree or more probable, the lack of incentive for weaker students to engage and improve due to the ungraded nature of the activity.
ERIC Educational Resources Information Center
Malm, Joakim; Bryngfors, Leif; Mörner, Lise-Lotte
2016-01-01
Supplemental Instruction (SI) can be an efficient way of improving student success in difficult courses. Here, a study is made on SI attached to difficult first-year engineering courses. The results show that both the percentage of students passing a difficult first-year engineering course, and scores on the course exams are considerably higher…
Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool
NASA Astrophysics Data System (ADS)
Sanchez Perez, J. F.; Conesa, M.; Alhama, I.
2016-11-01
Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.
Project-oriented teaching model about specialized courses in the information age
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Wang, Jinjiang; Tian, Qingguo; Wang, Yi; Cai, Huaiyu
2017-08-01
Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.
ERIC Educational Resources Information Center
Meyers, Kerry Lynn
2016-01-01
A 1 credit hour First-Year Engineering Course which provides background to students on the engineering disciplinary options available to them was redesigned to help inform the selection of their engineering major for future study. Initially, course administration was a large lecture class but was transformed into smaller classes that were…
14 CFR 91.179 - IFR cruising altitude or flight level.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230); or...
14 CFR 91.179 - IFR cruising altitude or flight level.
Code of Federal Regulations, 2010 CFR
2010-01-01
...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230); or...
Course content related to chronic wounds in nursing degree programs in Spain.
Romero-Collado, Angel; Raurell-Torreda, Marta; Zabaleta-del-Olmo, Edurne; Homs-Romero, Erica; Bertran-Noguer, Carme
2015-01-01
To analyze content related to chronic wounds in nursing degree programs in Spain. Cross-sectional descriptive study. Course descriptions available for online access during June and July of 2012 were reviewed for the 114 centers in Spain that offer a nursing degree, according to the official Registry of Universities, Centers, and Titles. Of the 114 centers with degree programs, 95 (83.3%) post course content online, which make it possible to analyze 2,258 courses. In 60 (63.1%) of these centers, none of the courses included the concept of pressure ulcer prevention, and the course content posted by 36 (37.9%) centers made no mention of their treatment. None of the course descriptions contained any reference to pain management in patients with chronic wounds. Of the 728 elective courses analyzed, only one was related to chronic wounds. This review of available information about nursing degree programs in Spain indicates that pain management in patients with chronic wounds is not addressed in any course, and more courses consider the treatment of pressure ulcers than their prevention. Degree programs responsible for the training of future nurses should be reviewed and revised as needed to ensure that graduates have acquired minimum basic competencies in the prevention and treatment of chronic wounds that help to decrease the theory-practice gap in this field. © 2014 Sigma Theta Tau International.
A Course in Medicine for Engineers
ERIC Educational Resources Information Center
Pimmel, Russell; Weed, H. R.
1974-01-01
Describes a course planned for bio-medical engineering students. Intended outcomes of the course include an understanding of medical problems, their courses, diagnosis and treatment, and an awareness of the physician's philosophy and approach. (GS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack S. Brenizer, Jr.
2003-01-17
The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs.more » Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.« less
The effects of computer-aided design software on engineering students' spatial visualisation skills
NASA Astrophysics Data System (ADS)
Kösa, Temel; Karakuş, Fatih
2018-03-01
The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.
ERIC Educational Resources Information Center
Bozkurt, Ipek; Helm, James
2013-01-01
This paper develops a systems engineering-based framework to assist in the design of an online engineering course. Specifically, the purpose of the framework is to provide a structured methodology for the design, development and delivery of a fully online course, either brand new or modified from an existing face-to-face course. The main strength…
NASA Astrophysics Data System (ADS)
Jacobitz, Frank; Schubert, Thomas
2013-11-01
Short-term, study-abroad, elective engineering courses were developed in order to raise the international awareness and global competency of engineering students. These Compact International Experience (CIE) courses were taught in response to a strong student desire for engineering study abroad courses and an effort by the home institution to internationalize its curriculum. An assessment of repeat offerings of two three-semester-unit courses on Topics in Fluid Mechanics and Advanced Electronic Circuit Design in a three-week time frame in France and Australia was performed. The goals of the two CIE courses are an effective teaching of their respective technical content as well as a student understanding of the cultural environment and the impact of engineering solutions from a global and societal viewpoint. In the repeat offerings, increased interaction with local industry was an additional goal. The CIE courses were assessed through surveys completed at the beginning and end of the courses, weekly student reflection papers, course evaluations, and formalized instructor observations. Based on the assessment performed, the two CIE courses have been found to be a valuable approach in the delivery of engineering technical electives combined with an international experience.
NASA Astrophysics Data System (ADS)
Gurtler, G.
2017-12-01
We discuss the challenges and achievements that a small HSI college had integrating undergraduate research experiences into an existing natural sciences program. Like most introductory college science courses, our natural science courses used textbooks, PowerPoint presentations, and lectures to illustrate basic scientific concepts. Though a collective decision was made by our science faculty to incorporate undergraduate research projects into various STEM courses, our greatest challenge was incorporating mandatory research courses into the degree plans of our Natural Science program. We found that students made considerable progress in understanding natural science by critically evaluating primary research articles and undertaking small research projects. Many of these student projects were conducted in cooperation with the Albuquerque District of the US Army Corps of Engineers, United States Geological Survey in Denver, and the National Ice Core Laboratory. These projects illustrated the effects of climate change on the water quality, sediment buildup, and biodiversity at local reservoirs. Other projects involved the analysis of ice core samples from Greenland and Antarctica. Students presented research posters at various research venues, including Community College Undergraduate Research Initiative colloquiums.
NASA Astrophysics Data System (ADS)
Gero, Aharon
2017-05-01
A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.
NASA Astrophysics Data System (ADS)
Maltese, Adam V.
While the number of Bachelor's degrees awarded annually has nearly tripled over the past 40 years (NSF, 2008), the same cannot be said for degrees in the STEM (science, technology, engineering and mathematics) fields. The Bureau of Labor Statistics projects that by the year 2014 the combination of new positions and retirements will lead to 2 million job openings in STEM (BLS, 2005). Thus, the research questions I sought to answer with this study were: (1)What are the most common enrollment patterns for students who enter into and exit from the STEM pipeline during high school and college? (2) Controlling for differences in student background and early interest in STEM careers, what are the high school science and mathematics classroom experiences that characterize student completion of a college major in STEM? Using data from NELS:88 I analyzed descriptive statistics and completed logistic regressions to gain an understanding of factors related to student persistence in STEM. Approximately 4700 students with transcript records and who participated in all survey rounds were included in the analyses. The results of the descriptive analysis demonstrated that most students who went on to complete majors in STEM completed at least three or four years of STEM courses during high school, and enrolled in advanced high school mathematics and science courses at higher rates. At almost every pipeline checkpoint indicators of the level of coursework and achievement were significant in predicting student completion of a STEM degree. The results also support previous research that showed demographic variables have little effect on persistence once the sample is limited to those who have the intrinsic ability and desire to complete a college degree. The most significant finding is that measures of student interest and engagement in science and mathematics were significant in predicting completion of a STEM degree, above and beyond the effects of course enrollment and performance. A final analysis, which involved the comparison of descriptive statistics for students who switched into and out of the STEM pipeline during high school, suggested that attitudes toward mathematics and science play a major role in choices regarding pipeline persistence.
Characterizing learning-through-service students in engineering by gender and academic year
NASA Astrophysics Data System (ADS)
Carberry, Adam Robert
Service is increasingly being viewed as an integral part of education nationwide. Service-based courses and programs are growing in popularity as opportunities for students to learn and experience their discipline. Widespread adoption of learning-through-service (LTS) in engineering is stymied by a lack of a body of rigorous research supporting the effectiveness of these experiences. In this study, I examine learning-through-service through a nationwide survey of engineering undergraduate and graduate students participating in a variety of LTS experiences. Students (N = 322) participating in some form of service -- service-learning courses or extra-curricular service programs -- from eighty-seven different institutions across the United States completed a survey measuring demographic information (institution, gender, academic year, age, major, and grade point average), self-perceived sources of learning (service and traditional coursework), engineering epistemological beliefs, personality traits, and self-concepts (self-efficacy, motivation, expectancy, and anxiety) toward engineering design. Responses to the survey were used to characterize engineering LTS students and identify differences in these variables in terms of gender and academic year. The overall findings were that LTS students perceived their service experience to be a beneficial source for learning professional skills and, to a lesser degree, technical skills, held moderately sophisticated engineering epistemological beliefs, and were generally outgoing, compassionate, and adventurous. Self-perceived sources of learning, epistemological beliefs, and personality traits were shown to be poor predictors of student engineering achievement. Self-efficacy, motivation, and outcome expectancy toward engineering design were generally high for all LTS students; most possessed rather low anxiety levels toward engineering design. These trends were generally consistent between genders and across the five academic years (first-year, sophomores, juniors, seniors, and graduate students) surveyed. Females had significantly more sophisticated epistemological beliefs, greater perceptions of service as a source of learning professional and technical skills, and higher anxiety toward engineering design. They also were significantly more extroverted and agreeable. Males had higher confidence, motivation, and expectancy for success toward engineering design. Across academic year it was seen that students varied in their engineering design self-concepts, except for motivation.
ERIC Educational Resources Information Center
Hazelton, Pam; Malone, Molly; Gardner, Anne
2009-01-01
Since 2001, the International Institute of Women in Engineering (IIWE) at EPF, Ecole d'ingenieurs generaliste, Sceaux, France, has conducted a 3 week short course for culturally and discipline diverse, recently graduated and final year engineering students. The aim of this course is to introduce young engineers to broad global concepts and issues…
A Multidimensional Software Engineering Course
ERIC Educational Resources Information Center
Barzilay, O.; Hazzan, O.; Yehudai, A.
2009-01-01
Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…
A Continuing Engineering Education Program Utilizing Video Tape
ERIC Educational Resources Information Center
Biedenbach, Joseph M.
1970-01-01
Radio Corporation of America has developed a series of courses on video tape for use with their engineering staffs at locations throughout the country. The courses include such topics as FORTRAN Programming, Engineering Mathematics, and Holography. Thirty-six course topics are proposed to date. (MF)
Develop railway engineering modules in UTK civil engineering undergraduate and graduate courses.
DOT National Transportation Integrated Search
2015-05-31
The importance of railway transport has long been recognized. However, no railway : engineering courses have been provided in the UTK civil engineering curricula. The : objective of this education project is to develop some railway engineering module...
ERIC Educational Resources Information Center
Morris, Richard; Childs, Peter; Hamilton, Tom
2007-01-01
Courses in product design are offered within the United Kingdom at the University of Brighton and the University of Sussex and in both cases are run within engineering departments alongside traditional engineering courses. This paper outlines some of the intrinsic pedagogic practices that are employed by these, and other, design courses. It…
NASA Astrophysics Data System (ADS)
Wyer, Mary Beth
2000-10-01
Contemporary research on persistence in undergraduate education in science and engineering has focused primarily on identifying the structural, social, and psychological barriers to participation by students in underrepresented groups. As a result, there is a wealth of data to document why students leave their majors, but there is little direct empirical data to support prevailing presumptions about why students stay. Moreover, researchers have used widely differing definitions and measures of persistence, and they have seldom explored field differences. This study compared three ways of measuring persistence. These constituted three criterion variables: commitment to major, degree aspirations, and commitment to a science/engineering career. The study emphasized social factors that encourage students to persist, including four predictor variables---(1) positive images of scientists/engineers, (2) positive attitudes toward gender and racial equality, (3) positive classroom experiences, and (4) high levels of social integration. In addition, because researchers have repeatedly documented the degree to which women are more likely than men to drop out of science and engineering majors, the study examined the potential impact of gender in relation to these predictor variables. A survey was administered in the classroom to a total of 285 students enrolled in a required course for either a biological sciences and or an engineering major. Predictor variables were developed from standard scales, including the Images of Science/Scientists Scale, the Attitudes toward Women Scale, the Women in Science Scale, and the Perceptions of Prejudice Scale. Based on logistic regression models, results indicate that positive images of scientists and engineers was significantly related to improving the odds of students having a high commitment to major, high degree aspirations, and high commitment to career. There was also evidence that positive attitudes toward gender and racial equality as well as positive classroom experiences improved the odds of students' having high degree aspirations. There was limited evidence to suggest the significance of gender in interaction with the predictor variables. There was tentative evidence that field differences may play a critical role in persistence. The study concludes on two points. The first is that gender may be a more important factor in explaining why some students leave their science and engineering majors than in explaining why others stay. The second is that research directed at improving diversity in science would benefit from discussion about the measures of persistence.
NASA Astrophysics Data System (ADS)
McCray, Wilmon Wil L., Jr.
The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization model and dashboard that demonstrates the use of statistical methods, statistical process control, sensitivity analysis, quantitative and optimization techniques to establish a baseline and predict future customer satisfaction index scores (outcomes). The American Customer Satisfaction Index (ACSI) model and industry benchmarks were used as a framework for the simulation model.
Quality control education in the community college
NASA Technical Reports Server (NTRS)
Greene, J. Griffen; Wilson, Steve
1966-01-01
This paper describes the Quality Control Program at Daytona Beach Junior College, including course descriptions. The program in quality control required communication between the college and the American Society for Quality Control (ASQC). The college has machinery established for certification of the learning process, and the society has the source of teachers who are competent in the technical field and who are the employers of the educational products. The associate degree for quality control does not have a fixed program, which can serve all needs, any more than all engineering degrees have identical programs. The main ideas which would be common to all quality control programs are the concept of economic control of a repetitive process and the concept of developing individual potentialities into individuals who are needed and productive.
Choosing STEM College Majors: Exploring the Role of Pre-College Engineering Courses
ERIC Educational Resources Information Center
Phelps, L. Allen; Camburn, Eric M.; Min, Sookweon
2018-01-01
Despite the recent policy proclamations urging state and local educators to implement integrated science, technology, engineering, and mathematics (STEM) curricula, relatively little is known about the role and impact of pre-college engineering courses within these initiatives. When combined with appropriate mathematics and science courses, high…
ERIC Educational Resources Information Center
Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.
2011-01-01
A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long…
Outsiders Looking In: Tutor Expertise in Engineering Writing
ERIC Educational Resources Information Center
Bengesai, Annah
2015-01-01
Drawing on an academic literacies approach, this article explores the representations of technical communication by non-content expert tutors teaching the Technical Communication for Engineering course at a South African university. The course is offered to all first year engineering students as a developmental academic literacy course. It is…
ERIC Educational Resources Information Center
Huckaba, Charles E.; Griffin, Ann
1983-01-01
Describes development of an interdisciplinary engineering course called "Social Aspects of the Technical Decision Process." Course content includes such interdisciplinary topics as alternative energy, ecology, and urban planning, which represent traditional engineering concepts. However, social and historical dimensions are built into topics.…
Teaching Continuum Mechanics in a Mechanical Engineering Program
ERIC Educational Resources Information Center
Liu, Yucheng
2011-01-01
This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…
College and University Earth System Science Education for the 21st Century (ESSE 21)
NASA Astrophysics Data System (ADS)
Johnson, D. R.; Ruzek, M.; Schweizer, D.
2002-12-01
The NASA/USRA Cooperative University-based Program in Earth System Science Education (ESSE), initiated over a decade ago through NASA support, has led in the creation of a nationwide collaborative effort to bring Earth system science into the undergraduate classroom. Forty-five ESSE institutions now offer over 120 Earth system courses each year, reaching thousands of students annually with interdisciplinary content. Through the course offerings by faculty from different disciplines and the organizational infrastructure of colleges and universities emphasizing cross disciplinary curricula, programs, degrees and departments, the ESSE Program has led in systemic change in the offering of a holistic view of Earth system science in the classroom. Building on this successful experience and collaborative infrastructure within and among colleges, universities and NASA partners, an expanded program called ESSE 21 is being supported by NASA to extend the legacy established during the last decade. Through its expanded focus including partnerships with under represented colleges and universities, the Program seeks to further develop broadly based educational resources, including shared courses, electronic learning materials and degree programs that will extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. Overall the thrust within the classrooms of colleges and universities is critical to extending and solidifying courses of study in Earth system and global change science. ESSE 21 solicits proposals from undergraduate institutions to create or adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, minors or degree tracks, and programs or departments that are self-sustaining in the coming decades. Interdisciplinary college and university teams are competitively selected through a peer-reviewed Call for Participation. ESSE 21 offers an infrastructure for an interactive community of educators and researchers including under represented participants that develops interdisciplinary Earth system science content utilizing NASA resources involving global change data, models, visualizations and electronic media and networks. The Program provides for evaluation and assessment guides to help assure the pedagogical effectiveness of materials developed. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system.
14 CFR 91.159 - VFR cruising altitude or flight level.
Code of Federal Regulations, 2010 CFR
2010-01-01
... magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude +500 feet (such as 3,500, 5,500, or 7,500); or (2) On a magnetic course of 180 degrees through 359 degrees, any even...
14 CFR 91.159 - VFR cruising altitude or flight level.
Code of Federal Regulations, 2011 CFR
2011-01-01
... magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude +500 feet (such as 3,500, 5,500, or 7,500); or (2) On a magnetic course of 180 degrees through 359 degrees, any even...
Degree Attainment. Snapshot™ Report, Winter 2015
ERIC Educational Resources Information Center
National Student Clearinghouse, 2015
2015-01-01
This Snapshot Report presents information on student degree attainment in science and engineering disciplines for 2004 and 2014. It offers data on the following: (1) Science and Engineering Degrees as Percentage of All Degrees; (2) Gender Distribution of Science and Engineering Degrees by Level; (3) Gender Distribution of Bachelor's Degrees in…
Development of Concept-Based Physiology Lessons for Biomedical Engineering Undergraduate Students
ERIC Educational Resources Information Center
Nelson, Regina K.; Chesler, Naomi C.; Strang, Kevin T.
2013-01-01
engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may…
Computing in Hydraulic Engineering Education
NASA Astrophysics Data System (ADS)
Duan, J. G.
2011-12-01
Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.
New Laboratory Course for Senior-Level Chemical Engineering Students
ERIC Educational Resources Information Center
Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.
2009-01-01
A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…
An Evaluation of HigherEd 2.0 Technologies in Undergraduate Mechanical Engineering Courses
ERIC Educational Resources Information Center
Orange, Amy; Heinecke, Walter; Berger, Edward; Krousgrill, Charles; Mikic, Borjana; Quinn, Dane
2012-01-01
Between 2006 and 2010, sophomore engineering students at four universities were exposed to technologies designed to increase their learning in undergraduate engineering courses. Our findings suggest that students at all sites found the technologies integrated into their courses useful to their learning. Video solutions received the most positive…
Examining Gender Inequality in a High School Engineering Course
ERIC Educational Resources Information Center
Riegle-Crumb, Catherine; Moore, Chelsea
2013-01-01
This paper examines gender inequality within the context of an upper-level high school engineering course recently offered in Texas. Data was collected from six high schools that serve students from a variety of backgrounds. Among the almost two hundred students who enrolled in this challenge-based engineering course, females constituted a clear…
Impact of an Engineering Case Study in a High School Pre-Engineering Course
ERIC Educational Resources Information Center
Rutz, Eugene; Shafer, Michelle
2011-01-01
Students at an all-girls high school who were enrolled in an introduction to engineering course were presented an engineering case study to determine if the case study affected their attitudes toward engineering and their abilities to solve engineering problems. A case study on power plants was implemented during a unit on electrical engineering.…
ERIC Educational Resources Information Center
Yadav, Devinder K.
2012-01-01
Universities offering aviation degree courses face a dilemma when integrating flying training, which is vocational skills training, into an academic degree programme. Whilst flying training for a pilot's licence is provided by flying schools regulated by a country's Civil Aviation Authority, the HE sector is responsible for the academic standards…
ERIC Educational Resources Information Center
Simm, David; Marvell, Alan; Schaaf, Rebecca; Winlow, Heather
2012-01-01
Over the last decade, some UK Geography Departments have diversified their range of courses to offer Foundation degrees (Fds), providing students with alternative routes through higher education (HE). These courses are delivered either offsite at further education colleges (FECs), embedded within an undergraduate programme at higher education…
The Engineer and the Societal Dilemma: An Interdisciplinary Approach.
ERIC Educational Resources Information Center
Coleman, Robert J.
The University of North Carolina's Electrical Engineering Department developed and delivered a course for undergraduate engineering students. The course integrated technical, social, and ethical perspectives on problems and issues faced in the world of practicing engineers. It achieved this integration by making use of professors in engineering,…
Engineers: Designers--No Alibis.
ERIC Educational Resources Information Center
Stevens, Susan A. R.; Wilkins, Linda C.
Engineering is the science, art, and business of designing and getting things done; engineers are required to make things happen through interpersonal relationships. At Monash University (Australia), a new course, Management for Engineers, was set up in 1990 to encourage a more holistic approach to the process of engineering. The course included…
Student Self-Efficacy in Introductory Project-Based Learning Courses
NASA Astrophysics Data System (ADS)
Pleiss, Geoffrey; Zastavker, Yevgeniya V.
2012-02-01
This study investigates first-year engineering students' self-efficacy in two introductory Project-Based Learning (PjBL) courses -- Physics (Mechanics) Laboratory and Engineering Design -- taught at a small technical institution. Twelve students participated in semi-structured open-ended interviews about their experiences in both courses. Analysis was performed using grounded theory. Results indicate that students had lower self-efficacy in Physics Lab than in Engineering Design. In Physics Lab, students reported high levels of faculty-supported scaffolding related to final project deliverables, which in turn established perceptions of an outcome-based course emphasis. Conversely, in Engineering Design, students observed high levels of scaffolding related to the intermediate project deliverables, highlighting process-centered aspects of the course. Our analyses indicate that this difference in student perceptions of course emphases -- resulting from the differences in scaffolding -- is a primary factor for the discrepancy in self-efficacy between Physics Lab and Engineering Design. Future work will examine how other variables (e.g., academic background, perception of community, gender) affect students' self-efficacy and perception of scaffolding in these PjBL courses.
NASA Astrophysics Data System (ADS)
Santiago, Marisol Mercado
Culturally responsive teaching has been argued to be effective in the education of Indigenous youth. This approach emphasizes the legitimacy of a group's cultural heritage, helps to associate abstract academic knowledge with the group's sociocultural context, seeks to incorporate a variety of strategies to engage students who have different learning styles, and strives to integrate multicultural information in the educational contents, among other considerations. In this work, I explore the outcomes of a culturally responsive introductory engineering short course that I developed and taught to Tibetan students at Tibetan Children's Village of Selakui (in Uttarakhand, India). Based on my ethnographic research in Tibetan communities in northern India, I examine two research questions: (a) What are the processes to develop and implement a pre-college culturally responsive introductory engineering course? and (b) How do Tibetan culture and Buddhism influence the engineering design and teamwork of the pre-college Tibetan students who took the course? I designed then taught the course that featured elementary lectures on sustainability, introductory engineering design, energy alternatives, and manufacturing engineering. The course also included a pre-college engineering design project through which Tibetan high school students investigated a problem at the school and designed a possible solution to it. Drawing from postcolonial studies, engineering studies, engineering and social justice, Buddhist studies, and Tibetan studies, I provide an analysis of my findings. Based on my findings, I conclude that my culturally responsive approach of teaching was an effective method to help students feel that their cultural background was respected and included in a pre-college engineering course; however, some students felt resistance toward the teaching approach. In addition, the culturally relevant content that connected with their ways of living in their school, Tibetan communities, and surroundings helped the students to relate to abstract concepts in familiar settings. Lastly, they appreciated that I brought to the course relevant information about technology and society in India (their host country), engineers' work in industry, technologies used in other contexts as well, and projects that show how engineers can help to alleviate poverty. The findings of my research can inform (a) educators who are interested in integrating culturally responsive activities in their teaching methods, (b) researchers or teachers in ethnic minority schools abroad, (c) educators interested in developing engineering activities or courses for underrepresented ethnic minorities, ethnic diasporas or refugee youth in the United States, and (d) facilitators at multicultural engineering summer camps in the United States.
Dang, Phuong N; Dwivedi, Neha; Phillips, Lauren M; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D; Murphy, William L; Alsberg, Eben
2016-02-01
Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance: This study demonstrates the regulation of chondrogenesis and osteogenesis with regard to endochondral bone formation in high-density stem cell systems through the controlled presentation of inductive factors from incorporated microparticles. This work lays the foundation for a rapidly implantable tissue engineering system that promotes bone repair via endochondral ossification, a pathway that can delay the need for a functional vascular network and has an intrinsic ability to promote angiogenesis. The modular nature of this system lends well to using different cell types and/or growth factors to induce endochondral bone formation, as well as the production of other tissue types. ©AlphaMed Press.
NASA Astrophysics Data System (ADS)
Medina, Silvia; Moratiel, Ruben; Tarquis, Ana Maria; María Durán, Jose
2013-04-01
For the past few decades, Spanish universities have been introduced gradually, the use of so-called New Technologies in the classroom. This is because its use contributes to improve outcomes in education at all levels. In this sense, it helps not only to expand knowledge as in traditional education, but teaches students to learn and encouraged them to be more independent, to develop and apply their knowledge in practice, their future employment use. The aim of this paper is to analyse the educational content and the degree of satisfaction students get through the use of a spreadsheet program to perform various practices of Agricultural Engineers courses of the Polytechnic University of Madrid. Weekly, the professor poses a practice with a detailed explanation of what is required and students have the opportunity to submit as many times as they want, over two weeks, the work developed. Students are encouraged to undertake individual work and to submit in the same day the exercise done because earlier is the presentation of results more opportunities to correct the mistakes. Regardless of students' knowledge on Excel, the professor explains each one of the Excel resources to be employed in the presented practice. Then, they have the opportunity to ask about them avoiding the scenario of not performing the practice due to ignore some Excel resources. The number of practices that are performed per year depend on the hours / credits that are assigned to each subject. On the other hand, to check the degree of student satisfaction with these practices, a anonymous questionnaire was performed consisting of 15 questions that can be grouped into four categories: consolidation of knowledge (4 questions), practice organization (7 questions), following indications (2 questions) and knowledge of Excel (2 questions). Results show high degree of students' satisfaction in their learning process and their applicability in the future. Acknowledgments Funded provided by educational innovation projects "Training of mentors' students in different subjects in the first degree and postgraduate ETSI Agrónomos" and "Students mentoring system in undergraduate and graduate courses at ETS Ingenieros Agrónomos" given by UPM are gratefully appreciated.
Where have all the graduates gone?
NASA Astrophysics Data System (ADS)
1999-03-01
Key facts and figures about the labour market for new graduates in the UK were published recently in the IES Annual Graduate Review 1998-99, which indicates that the demand for graduates amongst the traditional recruiters has continued to grow steadily, along with reports of recruitment difficulties. It is noteworthy that last year one in three graduates went into fixed-term or temporary appointments, while many of those who took up permanent jobs went into lower level work that did not make use of their graduate skills. Many graduates are taking more than a year, and sometimes up to three years, to find their way into permanent jobs and careers. Those graduating in computer science, engineering and mathematics, medicine and related subjects, or education have been the most likely to gain high level managerial, professional or technical jobs and have the lowest unemployment rates. In contrast, those with biological science, humanities, social sciences or creative arts degrees are most likely to be unemployed initially. Many new graduates commenced their jobs by earning salaries in the range £10 000-15 000, but they should of course continue to earn more than those lesser qualified, as well as having lower unemployment rates. Of the 400 000 students who graduated in 1998 (more than double the total of a decade ago), over half had first degrees and the rest undergraduate or postgraduate qualifications. Despite the growth, entry to the physical sciences, engineering and technology has been falling, as has the proportion on sandwich courses. Women now comprise the majority of entrants to first degrees but remain under-represented in mathematics, physical science and engineering or technology courses. Interestingly more than one in three students now has a paid job during their course; such work experience can be beneficial to their long-term job searches. In the longer term, numbers of graduates are expected to stay broadly constant over the next three years, followed by a slight growth in numbers. It is expected that the rising demand for graduates will be maintained but the number of openings for new graduates will not grow sufficiently quickly to absorb the higher numbers actually graduating. With the costs of a degree rising and the returns falling, students would be advised to be increasingly flexible in their investment in higher education and should view the long-term career options. Employers, on the other hand, will have the challenge of recruiting graduates with the right skills and competencies. Those in the greatest demand will combine intellectual with personal attributes and skills in areas such as team-working, motivation and communication, as well as the ability to continue learning. Such attributes will also be important for those in technical areas where good specialist knowledge will rarely be enough. Working and communicating with nonspecialist customers and colleagues is required more and more. Employers should also be focusing on their actual needs in recruits and what they can offer by way of jobs and careers, so that a more realistic match between recruits and jobs, with better long-term performance and retention, ensues. IES Annual Graduate Review 1998-99: the Key Facts by R Pearson et al (IES Report 354, January 1999, ISBN 1 85184 283 7) costs £27.50 and is obtainable from Grantham Book Services, Isaac Newton Way, Alma Park Industrial Estate, Grantham NG31 9SD (fax: 01476 541061).
NASA Astrophysics Data System (ADS)
Buxner, S.; Perera, V.; Mead, C.; Horodyskyj, L.; Semken, S. C.; Lopatto, D.; Anbar, A. D.
2016-12-01
General-education Science, Technology, Engineering, and Mathematics (STEM) courses are considered essential to a college education, in part, to train students to think critically and to make informed decisions about complex scientific issues such as climate change and public health. Therefore, the goals of these STEM courses go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life, and understanding the nature of science. The Classroom Undergraduate Research Experience (CURE) survey is frequently used to measure these attitudes, but it has not previously been used in an online, general education course. In this work, we administered the CURE survey for three semesters (N = 774) before and after completion of an online astrobiology course called Habitable Worlds. We compare students taking this course as part of fully-online degree programs (o-course) with those taking it as part of traditional undergraduate programs (i-course). More females and older students were among the o-course group, while overall the course had more white students than the Arizona State University average. Mean course grades were similar between the two groups but attitudes toward science differred significantly. O-course students began the course with more positive attitudes than i-course students, and o-course students also showed more positive changes at the end of the course. These differences suggest lesser intrinsic motivation among the i-course students. Additionally, pre-course attitudes correlated with final course grade for o-course students, but not for i-course students, which implies that success among o-course students is influenced by different factors than i-course students. Thus, effective student support strategies may differ for online-only students. Future work will include student interviews to better calibrate the CURE survey to online science courses.
Pereira, Dolores
2014-01-01
Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students “leak out” at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students’ preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man’s world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students’ education and future careers. PMID:25216254
Pereira, Dolores
2014-09-11
Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students "leak out" at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students' preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man's world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students' education and future careers.
A Multidisciplinary Course in Bioengineering.
ERIC Educational Resources Information Center
Bienkowski, Paul R.; And Others
1989-01-01
Outlines a graduate course, "Microbial Systems Analysis," for students in chemical and environmental engineering or engineering mechanics, as well as microbiology, ecology and biotechnology. Describes the objectives, structure and laboratory experiments for the course. (YP)
The Personal Computer in Mechanical Engineering Thermodynamics Courses.
ERIC Educational Resources Information Center
Romer, I. C., Jr.; Balmer, R. T.
1986-01-01
Describes experiences over several semesters with microcomputers in a mechanical engineering applied thermodynamics course. Includes course objectives, computer assignment structure, typical assignments, prewritten versus student-written software, and other topic areas. (JN)
Branding the bio/biomedical engineering degree.
Voigt, Herbert F
2011-01-01
The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.
Some Practical Approaches to a Course on Paraconsistent Logic for Engineers
ERIC Educational Resources Information Center
Lambert-Torres, Germano; de Moraes, Carlos Henrique Valerio; Coutinho, Maurilio Pereira; Martins, Helga Gonzaga; Borges da Silva, Luiz Eduardo
2017-01-01
This paper describes a non-classical logic course primarily indicated for graduate students in electrical engineering and energy engineering. The content of this course is based on the vision that it is not enough for a student to indefinitely accumulate knowledge; it is necessary to explore all the occasions to update, deepen, and enrich that…
Implementation of a Multidisciplinary Professional Skills Course at an Electrical Engineering School
ERIC Educational Resources Information Center
Gider, F.; Likar, B.; Kern, T.; Miklavcic, D.
2012-01-01
This paper describes a case study of an innovative approach to teaching at an engineering school. The postgraduate course "Project Work and Communication in Research and Development (R&D)" was developed at the Faculty of Electrical Engineering of the University of Ljubljana, Ljubljana, Slovenia. The main aim of the course was to make…
CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues
ERIC Educational Resources Information Center
Piergiovanni, Polly R.
2012-01-01
Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…
Peer-Led Team Learning in Mathematics Courses for Freshmen Engineering and Computer Science Students
ERIC Educational Resources Information Center
Reisel, John R.; Jablonski, Marissa R.; Munson, Ethan; Hosseini, Hossein
2014-01-01
Peer-led Team Learning (PLTL) is an instructional method reported to increase student learning in STEM courses. As mathematics is a significant hurdle for many freshmen engineering students, a PLTL program was implemented for students to attempt to improve their course performance. Here, an analysis of PLTL for freshmen engineering students in…
ERIC Educational Resources Information Center
Savaria, Michael; Monteiro, Kristina
2017-01-01
Men outnumber women in the enrollment of science, technology, engineering, and mathematics (STEM) undergraduate majors. Course syllabi are distributed to students during open enrollment and provide key insights into the courses. A critical discourse analysis of introductory engineering syllabi at a 4-year public university revealed limited to no…
Development of a Self-Instructional Course in Engineering Statics. Final Report.
ERIC Educational Resources Information Center
Alexander, Daniel E.
Reported is the development of a self-instructional course in engineering statics designed for engineering students that has been implemented in several institutions. There are 15 unit modules in the course divided into three different levels. Each unit begins with a description of general objectives. The unit is then divided into several subunits…
Impacts of a Summer Bridge Program in Engineering on Student Retention and Graduation
ERIC Educational Resources Information Center
Cançado, Luciana; Reisel, John R.; Walker, Cindy M.
2018-01-01
A summer bridge program was developed in an engineering program to advance the preparation of incoming freshmen students, particularly with respect to their math course placement. The program was intended to raise the initial math course placement of students who otherwise would begin their engineering studies in courses below Calculus I. One…
NASA Astrophysics Data System (ADS)
Großmann, Jürgen; Schmauss, Bernhard
2017-08-01
The Master's Program in Advanced Optical Technologies (MAOT) was established at the Friedrich-Alexander Universität Erlangen-Nürnberg in 2007 as part of the Elite Network of Bavaria (ENB), an initiative by the Bavarian State Government comprising about 40 elite Master's programs and doctoral programs. MAOT can be studied after a Bachelor in physics or an engineering subject. The Master's program realizes an innovative concept combining three core elements: (1) Interdisciplinarity: The program integrates courses and researchers from five engineering subjects and from physics. The degree of interdisciplinarity goes far beyond traditional programs. (2) Internationality: The program is taught entirely in English and special support is given to international students. (3). Individuality: The course curriculum was adapted at several points based on the experience in the initial years. The same is true for the way in which international students are supported and the type of support they need. The students are given an unusually high degree of freedom to develop an individual curriculum and to pursue research projects. Crucial experience and lessons learned are: (1) Lecturers and researchers have to be coordinated and the perspectives of the different disciplines have to be integrated within one program. Students must be guided in order to deal with the demands and challenges of the different disciplines. (2) International students need support with settling in Germany and with learning and working in a German cultural environment. They need support with administrative issues. Furthermore, they need to analyze and understand cultural differences and how they impact on the cooperation between lecturers and students and on the work in research groups. (3) Students must be helped to develop their own curriculum. They must learn how to combine their first-degree qualification with the specialized qualification which they gain after completing their Master's program. They need to develop the skills to match their preferences with what is realistic and feasible.
How Do Students' Accounts of Sociology Change over the Course of Their Undergraduate Degrees?
ERIC Educational Resources Information Center
Ashwin, Paul; Abbas, Andrea; McLean, Monica
2014-01-01
In this article we examine how students' accounts of the discipline of sociology change over the course of their undergraduate degrees. Based on a phenomenographic analysis of 86 interviews with 32 sociology and criminology students over the course of their undergraduate degrees, we constituted five different ways of accounting for sociology.…
Engineering the future with America's high school students
NASA Technical Reports Server (NTRS)
Farrance, M. A.; Jenner, J. W.
1993-01-01
The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.
46 CFR 11.516 - Service requirements for third assistant engineer of steam and/or motor vessels.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Graduation from the marine engineering course of a school of technology accredited by the Accreditation Board for Engineering and Technology, together with three months of service in the engine department of steam or motor vessels; (5) Graduation from the mechanical or electrical engineering course of a school...
Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula
ERIC Educational Resources Information Center
Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan
2006-01-01
A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…
Design and Assessment of an "Engineering" Course for Non-Majors
ERIC Educational Resources Information Center
Sorby, Sheryl A.; Oppliger, Douglas E.; Boersma, Norma
2006-01-01
As a profession, engineering is not well understood by the general public. Engineers are perceived as "geeks" who love math and who have few interests outside of technical work. In short, the engineering profession has an image problem. In order to counteract this negative stereotyping, an engineering course for non-majors was developed…
NASA Astrophysics Data System (ADS)
Samson, P. J.
2010-12-01
There is a large and growing body of research indicating that post-secondary education in science, technology, engineering, and mathematics (STEM) fields is failing to prepare citizens for the 21st century economy. Introductory STEM courses are vital for preparing science majors for their fields of study and are the only exposure to science many college students will receive, but the quality of teaching in these courses is often not informed by research on teaching and learning. Research universities play an especially prominent role in the design of introductory courses. While research and doctoral universities account for only about 6% of all higher education institutions, they confer 32 per cent of the baccalaureate degrees, and 56 per cent of the baccalaureates earned by recent recipients of science and engineering doctorates. By assuming that larger introductory classes occur at research institutions one can estimate that a dominant number of students receiving introductory instruction in the geosciences are probably occurring at research institutions. Moreover, research universities produce the majority of tenure-track faculty who will later teach at four-year colleges, so the role of research institutions in the influence of introductory course design is expected to be disproportionately large. While introductory courses at research universities play a influential role in how such courses are designed, the teaching of introductory courses is too often viewed as an undesirable assignment for instructors at those institutions. The effort seems unrewarding with incentives for improving teaching at research institutions perceived as modest at best, if not negative. It is commonly perceived that teaching introductory courses will decrease opportunities for teaching higher-level courses to graduate students and/or to conduct research. Furthermore, even for those interested in improving their pedagogical methods, current approaches to professional development are generally difficult to scale and/or costly to institutions and outside instructors' normal workflow. This presentation reports on the results of surveys of research university instructors in an attempt to quantify the state of the introductory course. The surveys attempt to identify common barriers to improvement. Based on these surveys strategies for how to best implement systemic change in introductory courses at research universities are presented in the hope of stimulating discussion and a call to action.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Academic skills. Competencies in English, reading, writing, speaking, mathematics, and computer skills that..., degree competencies (e.g., foreign language, computer literacy), and elective course options that... course requirements, degree competencies (e.g., foreign language, computer literacy), and elective course...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Academic skills. Competencies in English, reading, writing, speaking, mathematics, and computer skills that..., degree competencies (e.g., foreign language, computer literacy), and elective course options that... course requirements, degree competencies (e.g., foreign language, computer literacy), and elective course...
ERIC Educational Resources Information Center
Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina
2017-01-01
The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its…
Professional Skills in the Engineering Curriculum
ERIC Educational Resources Information Center
Mohan, Ashwin; Merle, Dominike; Jackson, Christa; Lannin, John; Nair, Satish S.
2010-01-01
Faculty from the Department of Electrical and Computer Engineering and the College of Education at the University of Missouri (MU), Columbia, developed a novel course for engineering graduate students emphasizing pedagogy and professional skills. The two-semester course sequence, titled "Preparing Engineering Faculty and Professionals,"…
NASA Astrophysics Data System (ADS)
McKinney, Meghan
2015-04-01
This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.
38 CFR 21.7672 - Measurement of courses not leading to a standard college degree.
Code of Federal Regulations, 2010 CFR
2010-07-01
... not leading to a standard college degree. 21.7672 Section 21.7672 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VOCATIONAL REHABILITATION AND EDUCATION Educational... to a standard college degree. (a) Overview. (1) Courses not leading to a standard college degree may...
NASA Astrophysics Data System (ADS)
Perera, Viranga; Mead, Chris; Buxner, Sanlyn; Horodyskyj, Lev; Semken, Steven; Lopatto, David; Anbar, Ariel
2016-10-01
General-education Science, Technology, Engineering, and Mathematics (STEM) courses are accepted as essential to a college education. An often cited reason is to train a scientifically literate populace who can think critically and make informed decisions about complex issues such as climate change, health care, and atomic energy. Goals of these STEM courses, therefore, go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life and understanding the nature of science. To gauge if such non-content learning outcomes are being met in our course, an online astrobiology course called Habitable Worlds, we administered the Classroom Undergraduate Research Experience (CURE) survey to students. The survey was administered before and after completion of the course for three semesters starting with the Fall 2014 semester and ending with the Fall 2015 semester (N = 774). A factor analysis indicated three factors on attitudes: toward science education, toward the interconnectedness of science with non-science fields, and toward the nature of science. Here we present some differences between students enrolled in online degree programs (o-course) and those enrolled in traditional undergraduate programs (i-course). While mean course grades were similar, changes in attitudes toward science differ significantly between o-course and i-course students. The o-course students began the course with more positive attitudes across all three factors than the i-course students. Their attitudes toward science education improved during the course, while the i-course students showed no change. Attitudes toward the other two factors declined in both populations during the course, but declines were smaller among o-course students. These differences may indicate lesser intrinsic motivation among the i-course students. The CURE survey has not been used before in an online course; therefore, we will continue to examine factor analysis, student interviews, and expert review data to validate it for online science courses.
The Design of a Primary Flight Trainer using Concurrent Engineering Concepts
NASA Technical Reports Server (NTRS)
Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.
1993-01-01
Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.
Predictors of Associate's Degree Completion in Engineering and Engineering Technologies
NASA Astrophysics Data System (ADS)
Reys-Nickel, Lynsey L.
The purpose of this ex post facto study was to describe completers and non-completers of associate's degree programs in engineering and engineering technologies and determine whether and to what extent completion in these programs is a function of selected student-related variables and institutional variables. Data from the 2004/2009 Beginning Postsecondary Students Longitudinal Study (BPS: 04/09) of associate's degree completers and non-completers in engineering and engineering technologies were accessed and analyzed through PowerStats, a web-based data analysis tool from National Center for Education Statistics (NCES). Descriptive data indicated that, proportionally, engineering and engineering technologies completers were mostly White, married, middle income, employed part-time, enrolled full-time, did not hold a high school diploma or certificate, completed Trigonometry/Algebra II, had a father who's highest education level was an associate's degree, but did not know their mother's highest level of education, completed remedial coursework, and started college with the goal of earning an associate's degree. While more males enrolled in the programs, males and females demonstrated similar completion rates, proportionally--with females showing a slightly higher percentage of completion. Results from the logistic regression further indicated that the variables significant to completion in associate's degree programs in engineering and engineering technologies were gender and enrollment size. Findings suggested that female students were more likely to earn the degree, and that the larger the institution, the more likely the student would become a completer. However, since a major limitation of the study was the small weighted sample size, the results of the study are inconclusive in terms of the extent to which the findings can be generalized to the population of students in associate's degree programs in engineering and engineering technologies. This study fills a gap in the literature of what is known about engineering and engineering technician students. It also contributes to the body of research on an understudied STEM educational and professional pathway, the associate's degree in engineering and engineering technologies.
ERIC Educational Resources Information Center
Sextos, Anastasios G.
2014-01-01
This paper presents the structure of an undergraduate course entitled "programming techniques and the use of specialised software in structural engineering" which is offered to the fifth (final) year students of the Civil Engineering Department of Aristotle University Thessaloniki in Greece. The aim of this course is to demonstrate the…
ERIC Educational Resources Information Center
Halyo, Nesim; Le, Qiang
2011-01-01
This paper describes the implementation of a revised freshman engineering course, "Introduction to Engineering," at Hampton University and the observations of the instructors during its implementation. The authors collaborated with Auburn University faculty in jointly implementing the same course material at both universities. The revised course…
Chemical Engineering Data Analysis Made Easy with DataFit
ERIC Educational Resources Information Center
Brenner, James R.
2006-01-01
The outline for half of a one-credit-hour course in analysis of chemical engineering data is presented, along with a range of typical problems encountered later on in the chemical engineering curriculum that can be used to reinforce the data analysis skills learned in the course. This mini course allows students to be exposed to a variety of ChE…
Table-Top Robotics for Engineering Design
ERIC Educational Resources Information Center
Wilczynski, Vincent; Dixon, Gregg; Ford, Eric
2005-01-01
The Mechanical Engineering Section at the U.S. Coast Guard Academy has developed a comprehensive activity based course to introduce second year students to mechanical engineering design. The culminating design activity for the course requires students to design, construct and test robotic devices that complete engineering challenges. Teams of…
Incorporating Engineering Design Challenges into STEM Courses
ERIC Educational Resources Information Center
Householder, Daniel L., Ed.; Hailey, Christine E., Ed.
2012-01-01
Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…
A Graduate Course in Polymer Processing.
ERIC Educational Resources Information Center
Middleman, Stanley
1978-01-01
This course, offered by the departments of chemical engineering and polymer science and engineering at the University of Massachusetts, is mainly a course in applied fluid dynamics with an emphasis on flow pressures dominated by viscous effects. (BB)
The Case for Developing Professional Master's Degrees to Compete in the Business World
NASA Astrophysics Data System (ADS)
Bozler, Hans M.
2002-04-01
Graduate education in most physics programs is oriented towards preparing students for research careers even though the majority of the students do not actively pursue research after graduation. This research orientation causes physics graduate programs to lose potential students. In addition science-trained professionals are often underrepresented in corporate decision making. Meanwhile, many physics graduates at all levels supplement their skills by taking courses in professional schools (engineering, law, and business). A survey of our graduates shows that combinations of knowledge and skills from physics and applied disciplines including business often form the basis for successful careers. The objective of our new Professional Master's in Physics for Business Applications program is to streamline this education by combining disciplines so that physics graduates can rapidly move into decision making positions within business and industry. We combine a traditional physics curriculum with courses that add to problem solving and computational skills. Students take courses in our Business School and also do an internship. Our physics courses are kept at the same level as those taken by Ph.D. students. The business courses are selected from offerings by the Marshall School of Business to their own MBA students. The progress and problems associated with the development of curriculum, recruiting, and placement will be discussed.
Retention, Success, and Satisfaction of Engineering Students Based on the First-Year Experience
ERIC Educational Resources Information Center
Prendergast, Lydia Q.
2013-01-01
A project-based course for first-year engineering students, called Engineering Exploration, was created an implemented with the goals of increasing retention, providing professional skills, increasing interest about engineering, and to aide in choosing an engineering major. Over 100 students have taken the course since its inception in Fall 2009.…
Enhancing Engineering Computer-Aided Design Education Using Lectures Recorded on the PC
ERIC Educational Resources Information Center
McGrann, Roy T. R.
2006-01-01
Computer-Aided Engineering (CAE) is a course that is required during the third year in the mechanical engineering curriculum at Binghamton University. The primary objective of the course is to educate students in the procedures of computer-aided engineering design. The solid modeling and analysis program Pro/Engineer[TM] (PTC[R]) is used as the…
Small Engine Repair Course Outline.
ERIC Educational Resources Information Center
DeClouet, Fred
Small engines as referred to here are engines used on lawn mowers, chain saws, power plants, outboards, and cycles. It does not include engines used on automobiles. The course outlined is intended to show how small two-cycle and four-cycle gas engines are constructed, how they operate, what goes wrong, and how to service and repair them. It is…
Examining Gender Inequality In A High School Engineering Course.
Riegle-Crumb, Catherine; Moore, Chelsea
2013-01-01
This paper examines gender inequality within the context of an upper-level high school engineering course recently offered in Texas. Data was collected from six high schools that serve students from a variety of backgrounds. Among the almost two hundred students who enrolled in this challenge-based engineering course, females constituted a clear minority, comprising only a total of 14% of students. Quantitative analyses of surveys administered at the beginning of the school year (Fall 2011) revealed statistically significant gender gaps in personal attitudes towards engineering and perceptions of engineering climate. Specifically, we found that compared to males, females reported lower interest in and intrinsic value for engineering, and expressed less confidence in their engineering skills. Additionally, female students felt that the classroom was less inclusive and viewed engineering occupations as less progressive. Gender disparities on all of these measures did not significantly decrease by the end of the school year (Spring 2012). Findings suggest that efforts to increase the representation of women in the engineering pipeline via increasing exposure in secondary education must contend not only with obstacles to recruiting high school girls into engineering courses, but must also work to remedy gender differences in engineering attitudes within the classroom.
Examining Gender Inequality In A High School Engineering Course
Moore, Chelsea
2014-01-01
This paper examines gender inequality within the context of an upper-level high school engineering course recently offered in Texas. Data was collected from six high schools that serve students from a variety of backgrounds. Among the almost two hundred students who enrolled in this challenge-based engineering course, females constituted a clear minority, comprising only a total of 14% of students. Quantitative analyses of surveys administered at the beginning of the school year (Fall 2011) revealed statistically significant gender gaps in personal attitudes towards engineering and perceptions of engineering climate. Specifically, we found that compared to males, females reported lower interest in and intrinsic value for engineering, and expressed less confidence in their engineering skills. Additionally, female students felt that the classroom was less inclusive and viewed engineering occupations as less progressive. Gender disparities on all of these measures did not significantly decrease by the end of the school year (Spring 2012). Findings suggest that efforts to increase the representation of women in the engineering pipeline via increasing exposure in secondary education must contend not only with obstacles to recruiting high school girls into engineering courses, but must also work to remedy gender differences in engineering attitudes within the classroom. PMID:25568814
ERIC Educational Resources Information Center
Hengstler, Dennis D.; And Others
Differences between the traditional college-age students and adults enrolled in credit courses in degree and non-degree programs at a public southeast, urban university were studied. Surveys were sent to 433 non-degree-seeking students enrolled in credit courses, 441 traditional college-age degree-seeking students, and 429 degree-seeking students…
Virtual Rover Takes its First Turn
2004-01-13
This image shows a screenshot from the software used by engineers to drive the Mars Exploration Rover Spirit. The software simulates the rover's movements across the martian terrain, helping to plot a safe course for the rover. The virtual 3-D world around the rover is built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige. This image depicts the state of the rover before it backed up and turned 45 degrees on Sol 11 (01-13-04). http://photojournal.jpl.nasa.gov/catalog/PIA05063
Understanding the gender gap: Social cognitive changes during an introductory stem course.
Hardin, Erin E; Longhurst, Melanie O
2016-03-01
Despite robust support for the basic theoretical model of social cognitive career theory (Lent, Brown, & Hackett, 1994) and predictions that, for example, increases (or declines) in self-efficacy would lead to subsequent increases (or declines) in interest, there has been surprisingly little longitudinal research that has directly examined the extent to which members of different groups (e.g., women and men) actually do experience changes in critical social-cognitive variables over time early in their curricula in the fields of science, technology, engineering, and mathematics (STEM). Knowing the extent to which such changes occur in typical introductory undergraduate courses is important for targeting interventions to increase persistence of underrepresented groups in STEM. We measured social-cognitive-career-theory-relevant variables near the middle and at the end of the 1st semester of a gateway introductory chemistry course and found that women had lower STEM self-efficacy, coping self-efficacy, and STEM interest than did men, even after controlling for actual course performance. Although there were no detrimental changes across the semester for women or men, men experienced a small but significant increase in their perceived support for pursuing a STEM degree, whereas women did not. (c) 2016 APA, all rights reserved).
Some Specifications for a Computer-Oriented First Course in Electrical Engineering.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Reported are specifications for a computer-oriented first course in electrical engineering giving new direction to the development of texts and alternative courses of study. Guidelines for choice of topics, a statement of fundamental concepts, pitfalls to avoid, and some sample course outlines are given. The study of circuits through computer…
Where Are We Now? Statistics on Capstone Courses Nationwide
ERIC Educational Resources Information Center
Howe, Susannah
2010-01-01
Capstone design courses are an increasingly common component of engineering curricula nationwide, but how much do we really know about the current practices? How do capstone courses differ across departments and institutions? How have capstone courses changed in the past 10 years? This paper highlights data from a survey of engineering capstone…
ICT-Aided Engineering Courses: A Multi-Campus Course Management
ERIC Educational Resources Information Center
Dana-Picard, Thierry; Kidron, Ivy; Komar, Meir; Steiner, Joseph
2006-01-01
Jerusalem College of Technology (JCT) is a multi-campus institution with identical syllabi for courses in every campus. Moreover, learning at JCT requires at the same time synchronous and asynchronous learning and teaching. For some introductory courses in Mathematics for Engineering students, websites have been built and now upgraded in order to…
NASA Technical Reports Server (NTRS)
Ankenman, Bruce; Ermer, Donald; Clum, James A.
1994-01-01
Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.
ERIC Educational Resources Information Center
Gerlick, Robert Edward
2010-01-01
The research presented in this manuscript was focused on the development of assessments for engineering design outcomes. The primary goal was to support efforts by the Transferrable Integrated Design Engineering Education (TIDEE) consortium in developing assessment instruments for multidisciplinary engineering capstone courses. Research conducted…
Teaching Agile Software Engineering Using Problem-Based Learning
ERIC Educational Resources Information Center
El-Khalili, Nuha H.
2013-01-01
Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…
High School Student Modeling in the Engineering Design Process
ERIC Educational Resources Information Center
Mentzer, Nathan; Huffman, Tanner; Thayer, Hilde
2014-01-01
A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts…
Gutierrez, Claudia; Paulosky, Meaghan; Aguinaldo, Angeline; Gerhart, Jackie
2017-01-01
While the field of engineering as a whole is largely male-dominated, biomedical engineering (BME) is one area poised to overturn this trend. Women in the United States were awarded only 20% of all engineering B.S. degrees in 2015; in BME, however, 40.9% of the degree recipients were women. This stands in stark contrast to the more traditional fields of mechanical and electrical engineering, where women were awarded just 13.2% and 12.5% of B.S. degrees, respectively. This trend toward more female participation in BME continues at both the M.S. and Ph.D. degree levels. In fact, in 2015, BME had the highest percentage of female engineering M.S. degree recipients in the United States of all engineering disciplines, according to the American Society for Engineering Education (Figure 1).
NASA Astrophysics Data System (ADS)
Alsagheer, Abdullah
This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design methodology, I interviewed 12 engineers who have recently experienced the senior design course at Kuwait University and are presently working in industry. From the analysis, four basic themes emerged that further delineate the focus of the entire study. The themes are 1) need for the capstone course, 2) applicability of and problems with the capstone course, 3) industry problems with training, and 4) students' attitudes toward the capstone course. The study concludes that participants are not transferring engineering skills; rather, they are transferring all types of instructions they have been given during their course of study at the university. A frequent statement is that the capstone course should be improved and specifically that it is necessary to improve upon the timing, schedule, teachers' behavior, contents, and format. The study concludes that Kuwaiti engineers on the whole face problems with time management and management support. The study includes some implications for Kuwait University and recommendations that can provide significant support for the development of the Senior Design (Capstone) Course. For examples: the project must be divided into phases to ensure timely completion of deliverables. In order to motivate students for hard work and to achieve true transfer of learning, Kuwait University is required to communicate with certain organizations to place its students at their research centers for capstone projects. All universities, including Kuwait University, should hire faculty specifically to run the capstone course. In conclusion, the study includes some suggestions for further research studies focused on issues related to the Senior Design (Capstone) Course. Future researchers should focus on developing the project-based course in earlier stages of students' educational program by investigating more about the relationship between student achievement and the market demand.
ERIC Educational Resources Information Center
Stojanovic, G.; Savic, S.; Zivanov, L.
2009-01-01
The course "Materials in Electrical Engineering" is a core course in the Mechatronics curriculum at the Faculty of Technical Sciences, University of Novi Sad, Serbia. In the past, this course was comprehensive and mainly theory-based. Teaching methods used in this course had not been changed for many years, and were mainly based on a…
A Course in Colloid and Surface Science.
ERIC Educational Resources Information Center
Scamehorn, John F.
1984-01-01
Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)
Disciplines. Course HP08b: Part Time BA Degree Programme.
ERIC Educational Resources Information Center
Griffith Univ., Brisbane (Australia). School of Humanities.
This course, one of 16 sequential courses comprising phase one of a part-time Bachelor of Arts degree program in Australian Studies, deals with the ways in which knowledge is historically classified into distinct fields. The example used is the 19th century demarcation between science and psuedo-science. The course is designed for independent…
NASA Technical Reports Server (NTRS)
Rose, W. I.; Paces, J. B.; Chesner, C. A.; Pletka, B. J.; Hellawell, A.; Kawatra, S. K.; Pilling, J. E.
1990-01-01
A new course was developed and instituted in the spring quarter of 1989 dealing with topics related to space resource utilization and related engineering. The course development required a concerted, coordinated effort, because a similar course which might be used as a guide could not be identified anywhere and the interdisciplinary perspective that was required was not identified anywhere on the university campus. Students in the class worked on interdisciplinary design projects which culminated in papers and oral presentations. Each of the six design groups consisted of several engineers with different disciplinary roots. The entire course lecture sequence, about 50 hours in all, was videotaped. Discussed here are the authors' experiences in developing the course, including the course syllabus and speaker list.
ERIC Educational Resources Information Center
Pierre, J. W.; Tuffner, F. K.; Anderson, J. R.; Whitman, D. L.; Ula, A. H. M. S.; Kubichek, R. F.; Wright, C. H. G.; Barrett, S. F.; Cupal, J. J.; Hamann, J. C.
2009-01-01
This paper describes a one-credit laboratory course for freshmen majoring in electrical and computer engineering (ECE). The course is motivational in nature and exposes the students to a wide range of areas of electrical and computer engineering. The authors believe it is important to give freshmen a broad perspective of what ECE is all about, and…
ERIC Educational Resources Information Center
Zandvoort, H.; Van Hasselt, G. J.; Bonnet, J. A. B. A. F.
2008-01-01
We present our experience, spanning more than 10 years of teaching a course on "ethics and engineering" for a group of MSc programmes in applied sciences at Delft University of Technology. The course is taught by a team of teachers from the faculty of Applied Sciences and from the department of Philosophy of the Faculty of Technology,…
ERIC Educational Resources Information Center
Dinehart, David W.; Gross, Shawn P.
2010-01-01
The primary role of a civil engineer is to serve the community; thus, it is essential that students understand the impact of engineering projects on, and the context of engineering projects within, society. One goal of an engineering capstone design course should be to mesh the technical knowledge of the discipline with an encompassing engineering…
ERIC Educational Resources Information Center
Fox, Garey A.; Weckler, Paul; Thomas, Dan
2015-01-01
In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and transfer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…
ERIC Educational Resources Information Center
Fleischmann, Corinna; Nakagawa, Elizabeth; Kelley, Tyler
2016-01-01
As the National Science Foundation and engineers throughout the world seek to strengthen the future of the engineering profession, the Civil Engineering (CE) program at the United States Coast Guard Academy embodies this initiative with a student focused approach. One course in particular, Materials for Civil and Construction Engineers (CE…
A Short Course in Problems in Applied Science and Engineering.
ERIC Educational Resources Information Center
Nicholson, H. W.
1987-01-01
Provides a description of a concentrated four-week term course that provided students with opportunities of association with applied science and engineering professionals. Reviews the program's organizational structure, project requirements, and summarizes students reactions to the course. (ML)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirley, Duveen
1999-05-04
The survey of "Nuclear Engineering Enrollments and Degrees, 1998" was sent to 45 institutions offering a major in nuclear engineering or an option program in another discipline or department (for example, electrical or mechanical engineering) equivalent to a major that qualifies the graduates to perform as nuclear engineers. This document provides statistical data on undergraduate and graduate enrollments and degrees, employment and post-graduation plans, and foreign national participation.
NASA Astrophysics Data System (ADS)
Licciardello, Feliciana; Consoli, Simona; Atlaw, Tigist; Nicastro, Roberto; Brígido, Consuelo C.; Lorite, Ángela; Taguas, Encarnación V.
2014-05-01
The co-operation between Universities located in different countries, promoting similar topics and teaching methodologies, is paramount in the educational training to meet the objectives of the Bologna Process and developing new skills matching the labor market requirements. With this focus, the work herein presented contributes to both these aims, by implementing, in two Universities courses in Spain and Italy, a joint methodology in Hydrology. Both courses present common matters related with hydrological engineering projects. "Water Resources Management in Agriculture" is the course name at the University of Catania, Italy whereas "Software and tools in Engineering projects" is the subject tough for the students of Forest Engineering in the Agronomist and Forest Engineering School of the University of Cordoba. This work presents an experience whose main objective is to involve the students into the technical knowledge and skill acquisition by a competition, following the philosophy of football leagues which are quite appreciated in both countries. Basically, we have prepared a practical case of hydrological design which two-student groups have to solve. The best teams of each country have to play the international final match, which will take place by videoconference. The awards for the winners in each country are merits for their curricula such as the participation in the EGU Assembly 2014 and a certificate of winners. The practical case is based on the Curve Number method developed by the Soil Conservation Service (1972) in order to compute abstractions from storm rainfall and calculate design hydrographs (CN-SCS method). The CN-SCS method is one of the most used methods for implementing hydrological studies of a catchment aimed for example at assessing management practices and hydro-geological risk plans as well as water resources protection measures. In general hydro-geological risk assessment and modeling studies are necessary for a reliable urban planning in order to manage and reduce the ¬flooding and land-sliding risk. Flood and landslide maps qualitatively and quantitatively identify urban and natural features affecting the sustainable social, economic and industrial development. These studies imply the use of last generation tools and datasets for the land surveying characterization also through remote sensed topographic data (DTM, DSM, LIDAR, ASTER and Laser Scanner), hydrologic/hydraulic modeling (commercial and experimental rainfall/runoff numerical models, algorithms for 1D and 2D hydrodynamic routing) and GIS mapping. In both the university courses in Italy and Spain, after completing the hydrological studies, the students were trained into a procedure based on the CN -SCS method; in the period October 2013 - January 2014. To evaluate the usefulness of the teaching experience, a pull about the degree of interest and the ability and skills acquired was given to the students before and later the course. . Thus experience has been quite motivating for students and teachers. For instance, an Ethiopian student frequenting the Italian course was one of the two selected students for the Italian university course; this could help in diffusing the methodology also in countries that are still not included in the Bologna Process. The evaluation of the practical case implementation as well as the results of the final test showed that, due to the introduction of this methodology in these Spanish and Italian courses, the level of knowledge about hydrological engineering projects as well as the interest and the capability by students of facing an hydrological study for controlling floods or managing resources increased significantly. REFERENCES: USDA Soil Conservation Service, 1972. National Engineering Handbook, Section 4, Hydrology. US Government Printing Office, Washington, DC, 544.
The history of psychology course in Spanish psychology curricula: Past, present, future.
Chisvert-Perales, Mauricio; Monteagudo-Soto, María J; Mestre, Vicenta
2016-05-01
Since the university education of psychologists began in Spain in 1954, the history of psychology course has been included in the curriculum. In the first few years, only half of the curricula offered the course. From 1973 to 2007, the universities' organization and regulation underwent successive reforms that involved changes in the curricula, decreeing specific national guidelines for each degree and establishing a minimum set of common required courses, called core courses, including the history of psychology. In 2007, the European Higher Education Area was set up, transforming the 5-year bachelor's degrees into 4-year degrees and eliminating the required guidelines, with each university being able to define the content of their curricula. The Dean's Conference for Psychology agreed on some recommendations related to core courses, which continued to include the history of psychology and were adopted by the majority of the universities. In 2015, the government established a new national regulation that makes it possible for each university to voluntarily reduce the length of the bachelor's degree to 3 years. Some psychology historians believe that this hypothetical reduction in the length of the degree, along with the already existing general tendency to prioritize applied or practical courses over basic or fundamental ones, could produce an appropriate scenario for the disappearance of the history of psychology course in some universities. (c) 2016 APA, all rights reserved).
Empowering Engineering College Staff to Adopt Active Learning Methods
NASA Astrophysics Data System (ADS)
Pundak, David; Rozner, Shmaryahu
2008-04-01
There is a growing consensus that traditional instruction in basic science courses, in institutions of higher learning, do not lead to the desired results. Most of the students who complete these courses do not gain deep knowledge about the basic concepts and develop a negative approach to the sciences. In order to deal with this problem, a variety of methods have been proposed and implemented, during the last decade, which focus on the "active learning" of the participating students. We found that the methods developed in MIT and NCSU were fruitful and we adopted their approach. Despite research-based evidence of the success of these methods, they are often met by the resistance of the academic staff. This article describes how one institution of higher learning organized itself to introduce significant changes into its introductory science courses, as well as the stages teachers undergo, as they adopt innovative teaching methods. In the article, we adopt the Rogers model of the innovative-decision process, which we used to evaluate the degree of innovation adoption by seven members of the academic staff. An analysis of interview and observation data showed that four factors were identified which influence the degree innovation adoption: (1) teacher readiness to seriously learn the theoretical background of "active learning"; (2) the development of an appropriate local model, customized to the beliefs of the academic staff; (3) teacher expertise in information technologies, and (4) the teachers' design of creative solutions to problems that arose during their teaching.
van de Poel, I R; Zandvoort, H; Brumsen, M
2001-04-01
This article reports on the development and teaching of compulsory courses on ethics and engineering at Delft University of Technology (DUT). Attention is paid to the teaching goals, the educational setup and methods, the contents of the courses, involvement of staff from engineering schools, experiences to date, and challenges for the future. The choices made with respect to the development and teaching of the courses are placed within the European and Dutch context and are compared and contrasted with the American situation and experiences.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document provides a study guide for a three-credit-hour fundamentals of chemistry course for marine engineer majors. The course is composed of 17 minicourses including: chemical reactions, atomic theory, solutions, corrosion, organic chemistry, water pollution, metric system, and remedial mathematics skills. Course grading, objectives,…
Attitudes and Perceptions of Students in a Systems Engineering E-Learnig Course
ERIC Educational Resources Information Center
de Vega, Carolina Armijo; McAnally-Salas, Lewis; Lavigne, Gilles
2009-01-01
In this paper is reported the attitudes and perception of students in a systems Engineering e-learning course and a teacher with more than six years of experience teaching online courses. The paper reports the teacher and students' perceptions about the e-learning courses experience. Personalized interviews with some of the students were carried…
ERIC Educational Resources Information Center
Marshall, Jill; Bhasin, Amit; Boyles, Stephen; David, Bernard; James, Rachel; Patrick, Anita
2018-01-01
Our study used a natural experiment to compare a project-based cornerstone course with the traditionally-taught introductory course in civil engineering. During the study, two sections of the course were organized around an overarching project, the design of an event center, and the remaining sections used guest lectures, a textbook, and…
Effect of Continuous Assessment on Learning Outcomes on Two Chemical Engineering Courses: Case Study
ERIC Educational Resources Information Center
Tuunila, R.; Pulkkinen, M.
2015-01-01
In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning…
The Company Approach to Software Engineering Project Courses
ERIC Educational Resources Information Center
Broman, D.; Sandahl, K.; Abu Baker, M.
2012-01-01
Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…
Course Design and Student Responses to an Online PBL Course in 3D Modelling for Mining Engineers
ERIC Educational Resources Information Center
McAlpine, Iain; Stothard, Phillip
2005-01-01
To enhance a course in 3D Virtual Reality (3D VR) modelling for mining engineers, and to create the potential for off campus students to fully engage with the course, a problem based learning (PBL) approach was applied to the course design and all materials and learning activities were provided online. This paper outlines some of the theoretical…
NASA Astrophysics Data System (ADS)
Riihimaki, C. A.; Sealfon, C. D.; Paine, E. N.; O'Donnell, F. C.; Caylor, K. K.; Wilcove, D. S.
2012-12-01
The Science and Engineering Education Initiative at Princeton University aims to inspire and prepare all undergraduates, irrespective of their majors, to become scientifically and technologically literate citizens and decision-makers. Launched by the faculty on the Council on Science and Technology in September 2011, the initiative involves revising and creating science and engineering courses that emphasize the role of science in society. The course "Fundamentals of Environmental Studies" will serve as a model course for the initiative starting with revisions to the course in Fall 2012. Given the general interest undergraduates have for sustainability topics and the obvious connections between sustainability and society, this course should generate ample interest from students across the campus. We have begun the Initiative by defining student-centered learning goals and surveying students' attitudes towards science and engineering. Course by course, we are also gradually applying research-based teaching methods to better align course activities with learning goals, assessing learning gains, and creating a repository of successful methods and courses. Among the changes to "Fundamentals of Environmental Studies" will be a greater emphasis on science communication, such as incorporating an assignment in which students track the evolution of communicating a research project, from journal article to newspaper coverage to editorials.
Student Opinions and Perceptions of Undergraduate Thermodynamics Courses in Engineering
ERIC Educational Resources Information Center
Ugursal, V. Ismet; Cruickshank, Cynthia A.
2015-01-01
Thermodynamics is a fundamental foundation of all engineering disciplines. A vast majority of engineering undergraduate programmes contain one or more courses on thermodynamics, and many engineers use thermodynamics every day to analyse or design energy systems. However, there is extensive anecdotal evidence as well as a wide range of published…
Automotive Engines; Automotive Mechanics I: 9043.03.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This individualized, self-paced course for independent study in engine principles has been adapted from military curriculum materials for vocational education use. The course provides the student with basic information on engine principles including different kinds of combustion engines, lubrication systems, and cooling systems. It is organized…
The Accuracy of Student Grading in First-Year Engineering Courses
ERIC Educational Resources Information Center
Van Hattum-Janssen, Natascha; Pacheco, Jose Augusto; Vasconcelos, Rosa Maria
2004-01-01
Assessment has become a powerful tool to change student learning. In a project of the Council of Engineering Courses of the University of Minho, Portugal, students of textile engineering, apparel engineering and industrial electronics increased their participation in every aspect of their assessment process. The traditional exam was changed to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prausnitz, John
2005-06-01
In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director ofmore » the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.« less
38 CFR 21.4250 - Course and licensing and certification test approval; jurisdiction and notices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (other than a flight course) not leading to a standard college degree, it must also approve the class... chooses to approve a resident course (other than a flight course) not leading to a standard college degree.... chapter 30, 32, 33, or 35 offered by an institution of higher learning not located in a State; (iv) Any...
38 CFR 21.4250 - Course and licensing and certification test approval; jurisdiction and notices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (other than a flight course) not leading to a standard college degree, it must also approve the class... chooses to approve a resident course (other than a flight course) not leading to a standard college degree.... chapter 30, 32, 33, or 35 offered by an institution of higher learning not located in a State; (iv) Any...
38 CFR 21.4250 - Course and licensing and certification test approval; jurisdiction and notices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (other than a flight course) not leading to a standard college degree, it must also approve the class... chooses to approve a resident course (other than a flight course) not leading to a standard college degree.... chapter 30, 32, 33, or 35 offered by an institution of higher learning not located in a State; (iv) Any...
NASA Astrophysics Data System (ADS)
Liu, Yucheng
2017-11-01
In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.
ERIC Educational Resources Information Center
Norfolk Public Schools, VA.
This instructional guide includes the curriculum for two complete and separate courses to be taught at the associate degree level. The first six units of the guide are the course content for a 2-3 semester hour course, "Transition from Licensed Practical Nurse (LPN) to Associate Degree Nursing (ADN)." The entire content of the guide, 19…
Increasing student confidence in technical and professional skills through project based learning
NASA Astrophysics Data System (ADS)
Robinson, Alice L.
This work focuses on developing undergraduate students' technical and professional skills through a project-based spiral curriculum in the Agricultural & Biological Engineering department at Purdue that can be implemented campus wide. Through this curriculum, Purdue engineers will be prepared for leadership roles in responding to the global technological, economic, and societal challenges of the 21st century by exposure to the relationships between engineering and its impacts on real world needs and challenges. Project-based learning uses projects as the focus of instruction and has shown increased understanding, motivation, and confidence through application of engineering principles to real-world problems. The strength of a spiral curriculum is that it continually revisits basic ideas and themes with increasing complexity and sophistication. The proposed spiral curriculum incorporates the target attributes of the Purdue Engineer of 2020 through project based courses during sophomore, junior, and senior year. These courses will build on concepts taught during first year engineering as well. The Engineer of 2020 (NAE and Purdue) target attributes include strong technical and professional skills to solve societal and technological burdens. A prototype course has been developed, taught, and evaluated during the previous two fall semesters in the sophomore level of the Biological and Food Process Engineering curriculum. The target students met 3 hours a week in a traditional lecture setting plus 2 hours a week in a project based lab setting. The control group met only 3 hours a week in a traditional lecture setting. Peer and self assessment results from student surveys show increased confidence in every area surveyed. Focus groups revealed student reactions to the course. Students enjoyed the course but felt it difficult to handle ambiguity with project work. Future work includes course revisions to the content, assessment, and pedagogy of the prototype class, development of the remaining project courses in the curriculum, and increasing graduate student instruction in the courses to gain teaching and leadership experience.
Seeing through the lens of social justice: A threshold for engineering
NASA Astrophysics Data System (ADS)
Kabo, Jens David
In recent times the need for educational research dedicated to engineering education has been recognised. This PhD project is a contribution to the development of engineering education scholarship and the growing body of engineering education research. In this project it was recognised that problem solving is a central activity to engineering. However, it was also recognised that the conditions for doing engineering are changing, especially in light of pressing issues of poverty and environmental sustainability that humanity currently faces, and as a consequence, engineering education needs to emphasise problem definition to a greater extent. One mechanism for achieving this, which has been adopted by some engineering educators in recent years, is through courses that explicitly relate engineering to social justice. However, creating this relationship requires critical interdisciplinary thinking that is alien to most engineering students. In this dissertation it is suggested that for engineering students, and more generally, engineers, looking at their practice and profession through a social justice lens might be seen as a threshold that needs to be crossed. By studying the variation present among students in three different courses at three different North American universities, the intention was to understand how students approach and internalise social justice as a perspective on engineering and/or develop their abilities to think critically. A conceptual model to frame the study was developed by combining elements of threshold concept theory and the educational research methodology, phenomenographic variation theory. All three of the courses studied operated on a similar basic pedagogical model, however, the courses were framed differently, with social justice in the foreground or in the background with the focus on, in one case, ethics and in the other, sustainability. All courses studied appeared to be successful in encouraging engineering students to engage in critical thinking and a similar general trend in the development of students' conceptions of social justice was observed in each of the three courses. However, it does appear that if one is interested in developing an articulated understanding of social justice, with respect to engineering, that an explicit focus on social justice is preferable.
Why do different people choose different university degrees? Motivation and the choice of degree
Skatova, Anya; Ferguson, Eamonn
2014-01-01
Different people choose undergraduate degrees to study at university for different reasons. To date, there have been limited attempts to identify individual differences in motivation that drive undergraduate degree choice. We identified that people choose university degrees for four reasons: career concerns (Career), intrinsic interest in the subject (Interest), an opportunity to help others (Helping) and because they are looking for an easy option to get into higher education (Loafing). We investigated whether these motivations apply to the choice of undergraduate degree in two samples: (1) undergraduate (N = 989) and (2) prospective (N = 896) students. We developed the Motivations Influencing Course Choice (MICC) questionnaire to measure these motivations. Scales of Helping, Career, Loafing, and Interest showed good psychometric properties, showed validity with respect to general life goals and personality traits, and predicted actual and prospective degree choices. We demonstrated that medical degrees were chosen due to a mixture of Helping and Career, while engineering degrees were associated with Career and low Interest in the degree. The choice of arts and humanities degrees was driven by Interest and low concern about future career, accompanied with high Loafing. We also demonstrated gender differences: females were high in Helping (both samples) and Interest (only in the undergraduate sample) motivation, while males scored higher in Career (only in the undergraduate sample) and Loafing (both samples). The findings can feed into both theoretical accounts of proximal motivation as well as provide help to improve degree programmes at universities and support better career advice. PMID:25431561
Public health engineering education in India: current scenario, opportunities and challenges.
Hussain, Mohammad Akhtar; Sharma, Kavya; Zodpey, Sanjay
2011-01-01
Public health engineering can play an important and significant role in solving environmental health issues. In order to confront public health challenges emerging out of environmental problems we need adequately trained public health engineers / environmental engineers. Considering the current burden of disease attributable to environmental factors and expansion in scope of applications of public health / environmental engineering science, it is essential to understand the present scenario of teaching, training and capacity building programs in these areas. Against this background the present research was carried out to know the current teaching and training programs in public health engineering and related disciplines in India and to understand the potential opportunities and challenges available. A systematic, predefined approach was used to collect and assemble the data related to various teaching and training programs in public health engineering / environmental engineering in India. Public health engineering / environmental engineering education and training in the country is mainly offered through engineering institutions, as pre-service and in-service training. Pre-service programs include diploma, degree (graduate) and post-graduate courses affiliated to various state technical boards, institutes and universities, whereas in-service training is mainly provided by Government of India recognized engineering and public health training institutes. Though trainees of these programs acquire skills related to engineering sciences, they significantly lack in public health skills. The teaching and training of public health engineering / environmental engineering is limited as a part of public health programs (MD Community Medicine, MPH, DPH) in India. There is need for developing teaching and training of public health engineering or environmental engineering as an interdisciplinary subject. Public health institutes can play an important and significant role in this regard by engaging themselves in initiating specialized programs in this domain.
Advertising Post-Experience Courses in Science and Engineering
ERIC Educational Resources Information Center
Thomas, Edward
1978-01-01
Describes ten different forms of advertising that have been used to recruit scientists and engineers to residential postexperience courses. Reports the results of a survey conducted to assess the relative cost-benefit of each advertising method in attracting adult students to specialized postexperience courses. (EM)
Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.
Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami
2009-06-01
Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.
Case Study of a Small Scale Polytechnic Entrepreneurship Capstone Course Sequence
ERIC Educational Resources Information Center
Webster, Rustin D.; Kopp, Richard
2017-01-01
A multidisciplinary entrepreneurial senior capstone has been created for engineering technology students at a research I land-grant university statewide extension. The two semester course sequence welcomes students from Mechanical Engineering Technology, Electrical Engineering Technology, Computer Graphics Technology, and Organizational…
Opportunity to Participate in ESSE 21: The 2003 Call for Participation
NASA Astrophysics Data System (ADS)
Ruzek, M.; Johnson, D. R.
2003-12-01
Earth System Science Education for the 21st Century (ESSE 21), sponsored by NASA through the Universities Space Research Association (USRA), is a collaborative undergraduate/graduate education program offering small grants to colleges and universities to engage a diverse interdisciplinary community of faculty and scientists in the development of courses, curricula and degree programs and sharing of learning resources focused on the fundamental understanding and application of Earth system principles for the classroom and laboratory. Through an expanded focus including partnerships with minority institutions, ESSE 21 is further developing broadly based courses, educational resources, electronic learning materials and degree programs that extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing the fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. The thrust to establish Earth system and global change science within the classrooms of colleges and universities is critical to laying and extending the foundation for knowledge-based decision making in the 21st century by both scientists and society in an effort to achieve sustainability. ESSE 21 released a Call for Participation (CFP) in the Fall of 2002 soliciting proposals from undergraduate institutions to create and adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. In February 2003, twelve college and university teams were competitively selected through the CFP as the Year 1 and Year 2 Program participants. Eight of the participating teams are from minority institutions. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, degree tracks or programs, and departments that are self-sustaining in the coming decades. ESSE 21 offers an expanded infrastructure for an interactive community of educators and researchers including minority participants that develops interdisciplinary Earth system science content. Emphasis is on the utilization of NASA resources involving global change data, models, visualizations and electronic media and networks. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system. The next Call for Participation will be released in late 2003.
Brief 76 Nuclear Engineering Enrollments and Degrees Survey, 2015 Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2015 Nuclear Engineering Enrollments and Degrees Survey reports degrees granted between September 1, 2014 and August 31, 2015. Enrollment information refers to the fall term 2015. The enrollments and degrees data comprises students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-five academic programs reported having nuclear engineering programs during 2015, and data was received from all thirty-five programs. The report includes enrollment information on undergraduate students and graduate students and information by degree level for post-graduation plans.
Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-03-15
The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.
ERIC Educational Resources Information Center
Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.
2013-01-01
Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…
An Alternative Route to Chemical Engineering for Minority and Other Students.
ERIC Educational Resources Information Center
Cussler, E. L.
The following three alternative ways in which minority group chemistry majors may be trained as chemical engineers are examined in this paper: (l) they are admitted as engineers and take the same courses as engineering students at the graduate level; (2) undergraduate courses are taken as part of the transition from chemistry to chemical…
An Introduction of Finite Element Method in the Engineering Teaching at the University of Camaguey.
ERIC Educational Resources Information Center
Napoles, Elsa; Blanco, Ramon; Jimenez, Rafael; Mc.Pherson, Yoanka
This paper illuminates experiences related to introducing finite element methods (FEM) in mechanical and civil engineering courses at the University of Camaguey in Cuba and provides discussion on using FEM in postgraduate courses for industry engineers. Background information on the introduction of FEM in engineering teaching is focused on…
The Effects of Spatial Visualization Skill Training on Gender and Retention in Engineering.
ERIC Educational Resources Information Center
Devon, Richard; Engel, Renata; Turner, Geoffrey
1998-01-01
Engineering students were given a mental rotation test at the beginning and end of their first-year engineering course and again several years later to assess the relationship between spatial visualization skill and retention in engineering. No relationship was found between task scores and retention; however, a course in design and graphics…
High School Engineering and Technology Education Integration through Design Challenges
ERIC Educational Resources Information Center
Mentzer, Nathan
2011-01-01
This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…
ERIC Educational Resources Information Center
Hilley, Robert
This curriculum guide contains teacher and student materials for a course on outboard-engine boat systems and service for power product equipment technician occupations. The course contains the following four units of instruction: (1) Outboard-Engine Design and Identification; (2) Operation and Service of Engine-Support Systems; (3) Operation and…
ERIC Educational Resources Information Center
Roediger, Jeanette
A project was undertaken to research and acquire the instructional sources needed for a course in ethics for community college associate degree nursing students and to develop such a course. Addressed in the individual units of the course were the following topics: bioethics and ethical decision making, basic ethical concepts and principles,…
Designing a hands-on brain computer interface laboratory course.
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2016-08-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.
An Exploratory Look at Graduate Public Relations Education.
ERIC Educational Resources Information Center
Aldoory, Linda; Toth, Elizabeth L.
2000-01-01
Conducts a content analysis of web pages to examine 26 United States Masters degree programs in public relations for their degree requirements, core courses, public relations courses, and optional courses. Finds a lack of adherence to the recommendations of the Foundation for Public Relations Research and Education. (NH)
ERIC Educational Resources Information Center
Mulvey, Patrick; Nicholson, Starr
2014-01-01
Interest in astronomy degrees in the U.S. remains strong, with astronomy enrollments at or near all-time highs for the 2012-13 academic year. The total number of students taking an introductory astronomy course at a degree-granting physics or astronomy department is approaching 200,000. Enrollments in introductory astronomy courses have been…
ERIC Educational Resources Information Center
Simonite, Vanessa
2000-01-01
Considers implications of modularization of first degree courses in the United Kingdom, especially the effects of different systems for selecting and combining module marks on students' degree classifications. Discusses the effects of different systems of aggregation on student marks in different modules and ultimately on class placement and…
Offshore Wind Energy Systems Engineering Curriculum Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.
2012-12-31
Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This coursemore » was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.« less
Grade Validity of Online Quantitative Courses
ERIC Educational Resources Information Center
Faurer, Judson C.
2013-01-01
Are prospective employers getting "quality" educated, degreed applicants and are academic institutions that offer online degree programs ensuring the quality control of the courses/programs offered? The issue specifically addressed in this paper is not with all institutions offering degrees through online programs or even with all online…
Grade Validity of Online Quantitative Courses
ERIC Educational Resources Information Center
Faurer, Judson C.
2009-01-01
Are prospective employers getting "quality" educated degreed applicants and are academic institutions that offer online degree programs ensuring the quality control of the courses/programs offered? The issue specifically addressed in this paper is not with all institutions offering degrees through online programs or even with all online…
The development of a digital logic concept inventory
NASA Astrophysics Data System (ADS)
Herman, Geoffrey Lindsay
Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to identify the important and difficult concepts to include on the DLCI. To discover and describe common student misconceptions, we interviewed students who had completed a digital logic course. Students vocalized their thoughts as they solved digital logic problems. We analyzed the interview data using a qualitative grounded theory approach. We have administered the DLCI at several institutions and have checked the validity, reliability, and bias of the DLCI with classical testing theory procedures. These procedures consisted of follow-up interviews with students, analysis of administration results with statistical procedures, and expert feedback. We discuss these results and present the DLCI's potential for providing a meaningful tool for comparing student learning at different institutions.
Right tail increasing dependence between scores
NASA Astrophysics Data System (ADS)
Fernández, M.; García, Jesús E.; González-López, V. A.; Romano, N.
2017-07-01
In this paper we investigate the behavior of the conditional probability Prob(U > u|V > v) of two records coming from students of an undergraduate course, where U is the score of calculus I, scaled in [0, 1] and V is the score of physics scaled in [0, 1], the physics subject is part of the admission test of the university. For purposes of comparison, we consider two different undergraduate courses, electrical engineering and mechanical engineering, during nine years, from 2003 to 2011. Through a Bayesian perspective we estimate Prob(U > u|V > v) year by year and course by course. We conclude that U is right tail increasing in V, in both courses and for all the years. Moreover, over these nine years, we observe different ranges of variability for the estimated probabilities of electrical engineering when compared to the estimated probabilities of mechanical engineering.
Teaching Sustainability Analysis in Electrical Engineering Lab Courses
ERIC Educational Resources Information Center
Braun, D.
2010-01-01
Laboratory courses represent an incompletely tapped opportunity to teach sustainability concepts. This work introduces and evaluates a simple strategy used to teach sustainability concepts in electrical engineering laboratory courses. The technique would readily adapt to other disciplines. The paper presents assessment data and a wiki containing…
How Much Safety Do We Need in ChE Education?
ERIC Educational Resources Information Center
Mewis, Jan
1984-01-01
Discusses aims, objectives, and content of a safety course for chemical engineering students. Course emphasizes awareness of hazards, basic concepts and principles of safety engineering, and the ability to recognize, assess, and remedy specific risks occurring in chemical plants. Course implementation is also discussed. (JN)
Development of a Traditional/Computer-aided Graphics Course for Engineering Technology.
ERIC Educational Resources Information Center
Anand, Vera B.
1985-01-01
Describes a two-semester-hour freshman course in engineering graphics which uses both traditional and computerized instruction. Includes course description, computer graphics topics, and recommendations. Indicates that combining interactive graphics software with development of simple programs gave students a better foundation for upper-division…
The Effectiveness of Contextual Learning on Physics Achievement in Career Technical Education
NASA Astrophysics Data System (ADS)
Arcand, Scott Andrew
The purpose of this casual-comparative study was to determine if students being taught the Minnesota Science Physics Standards via contextual learning methods in Project Lead the Way (PLTW) Principles of Engineering or the PLTW Aerospace Engineering courses, taught by a Career Technical Education (CTE) teacher, achieve at the same rate as students in a physics course taught by a science teacher. The PLTW courses only cover the standards taught in the first trimester of physics. The PLTW courses are two periods long for one trimester. Students who successfully pass the PLTW Principles of Engineering course or the PLTW Engineering Aerospace course earn one-half credit in physics and one-half elective credit. The instrument used to measure student achievement was the district common summative assessment for physics. The Common Summative Assessment scores were pulled from the data warehouse from the first trimester of the 2013-2014 school year. Implications of the research address concepts of contextual learning especially in the Career Technical Education space. The mean score for Physics students (30.916) and PLTW Principles of Engineering students (32.333) was not statistically significantly different. Students in PLTW Principles of Engineering achieved at the same rate as students in physics. Due to the low rate of students participating in the Common Summative Assessment in PTLW Aerospace (four out of seven students), there is not enough data to determine if there is a significant difference in the Physics A scores and PLTW Aerospace Engineering scores.
DOT National Transportation Integrated Search
2009-02-01
The main objective of this project was to develop instructional engineering projects that utilize the newly-offered PACE software GT-POWER for engine simulations in combustion-related courses at the Missouri University of Science and Technology. Stud...
Graduate Training Program in Ocean Engineering. Final Report.
ERIC Educational Resources Information Center
Frey, Henry R.
Activities during the first three years of New York University's Ocean Engineering Program are described including the development of new courses and summaries of graduate research projects. This interdepartmental program at the master's level includes aeronautics, chemical engineering, metallurgy, and physical oceanography. Eleven courses were…
Design and Development of a Course in Professionalism and Ethics for CDIO Curriculum in China.
Fan, Yinghui; Zhang, Xingwei; Xie, Xinlu
2015-10-01
At Shantou University (STU) in 2008, a stand-alone engineering ethics course was first included within a Conceive-Design-Implement-Operate (CDIO) curriculum to address the scarcity of engineering ethics education in China. The philosophy of the course design is to help students to develop an in-depth understanding of social sustainability and to fulfill the obligations of engineers in the twenty-first century within the context of CDIO engineering practices. To guarantee the necessary cooperation of the relevant parties, we have taken advantage of the top-down support from the STU administration. Three themes corresponding to contemporary issues in China were chosen as the course content: engineers' social obligations, intellectual property and engineering safety criteria. Some popular pedagogies are used for ethics instruction such as case studies and group discussions through role-playing. To impart the diverse expertise of the practical professional practice, team teaching is adopted by interdisciplinary instructors with strong qualifications and industrial backgrounds. Although the assessment of the effectiveness of the course in enhancing students' sense of ethics is limited to assignment reports and class discussions, our endeavor is seen as positive and will continue to sustain the CDIO reform initiatives of STU.
Can we (control) Engineer the degree learning process?
NASA Astrophysics Data System (ADS)
White, A. S.; Censlive, M.; Neilsen, D.
2014-07-01
This paper investigates how control theory could be applied to learning processes in engineering education. The initial point for the analysis is White's Double Loop learning model of human automation control modified for the education process where a set of governing principals is chosen, probably by the course designer. After initial training the student decides unknowingly on a mental map or model. After observing how the real world is behaving, a strategy to achieve the governing variables is chosen and a set of actions chosen. This may not be a conscious operation, it maybe completely instinctive. These actions will cause some consequences but not until a certain time delay. The current model is compared with the work of Hollenbeck on goal setting, Nelson's model of self-regulation and that of Abdulwahed, Nagy and Blanchard at Loughborough who investigated control methods applied to the learning process.
NASA Astrophysics Data System (ADS)
Kent, M.; Egger, A. E.; Bruckner, M. Z.; Manduca, C. A.
2014-12-01
Over 100,000 students obtain a bachelor's degree in education every year; these students most commonly encounter the geosciences through a general education course, and it may be the only geoscience course they ever take. However, the Next Generation Science Standards (NGSS) contain much more Earth science content than previous standards. In addition, the NGSS emphasize the use of science and engineering practices in the K-12 classroom. Future teachers need to experience learning science as a scientist, through a hands-on, activity-based learning process, in order to give them the skills they need to teach science that same way in the future. In order to be successful at teaching the NGSS, both current and future teachers will need more than a single course in geoscience or science methods. As a result, there is now a key opportunity for geoscience programs to play a vital role in strengthening teacher preparation programs, both through introductory courses and beyond. To help programs and individual faculty take advantage of this opportunity, we have developed a set of web-based resources, informed by participants in the InTeGrate program as well as by faculty in exemplary teacher preparation programs. The pages address the program-level task of creating engaging and effective courses for teacher preparation programs, with the goal of introducing education majors to the active pedagogies and geoscience methods they will later use in their own classrooms. A collection of exemplary Teacher Preparation programs is also included. Additional pages provide information on what it means to be an "expert thinker" in the geosciences and how individual faculty and teachers can explicitly teach these valuable skills that are reflected in the science and engineering practices of the NGSS. Learn more on the InTeGrate web site about preparing future teachers: serc.carleton.edu/integrate/programs/teacher_prep.htmland training expert thinkers: serc.carleton.edu/integrate/teaching_materials/expert_thinkers.html
ERIC Educational Resources Information Center
Marstrander, Jan H.; Talbot, Thomas F.
1975-01-01
Discusses the television broadcasting of a refresher course in mathematics and engineering fundamentals for those preparing to take the Engineer-in-Training (EIT) State Board Examination in Alabama. (MLH)
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course outline has been prepared as a guide to help the trainee acquire the knowledge and skills associated with the overhaul, inspection, and repair of reciprocating engines. This course is the first of two and must be completed first. Successful completion of these courses and others will provide the trainee with the knowledge and skills…
ERIC Educational Resources Information Center
Tyson, Will
2012-01-01
Interviews with faculty, administrators, staff, and students at four engineering programs reveal the role of undergraduate student employment on retention and timely degree completion among engineering students. Dueling narratives reveal how student approaches to earning an engineering degree differ greatly from faculty, administrator, and staff…
Small Engine Maintenance and Repair, Course Description.
ERIC Educational Resources Information Center
Hunt, Edward B.; Anderson, Floyd L.
Prepared by an instructor and curriculum specialists, this course of study was designed to meet individual needs of the dropout and/or hard-core unemployed youth by providing skill training, related information, and supportive services knowledge in small engine maintenance and repair. Students enrolled in this course work independently on a…
Implementation of a Project-Based Telecommunications Engineering Design Course
ERIC Educational Resources Information Center
Aliakbarian, Hadi; Soh, Ping Jack; Farsi, Saeed; Xu, Hantao; Van Lil, Emmanuel H. E. M. J. C.; Nauwelaers, Bart K. J. C.; Vandenbosch, Guy A. E.; Schreurs, Dominique M. M.-P.
2014-01-01
This paper describes and discusses the implementation of a project-based graduate design course in telecommunications engineering. This course, which requires a combination of technical and soft skills for its completion, enables guided independent learning (GIL) and application of technical knowledge acquired from classroom learning. Its main…
Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Jones, Marion
Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…
Engineering Design EDUCATION: When, What, and HOW
ERIC Educational Resources Information Center
Khalaf, Kinda; Balawi, Shadi; Hitt, George Wesley; Radaideh, Ahmad
2013-01-01
This paper presents an innovative, interdisciplinary, design-and-build course created to improve placement, content, and pedagogy for introductory engineering design education. Infused at the freshman level, the course aims to promote expert design thinking by using problem-based learning (PBL) as the mode of delivery. The course is structured to…
Experiences in Developing an Experimental Robotics Course Program for Undergraduate Education
ERIC Educational Resources Information Center
Jung, Seul
2013-01-01
An interdisciplinary undergraduate-level robotics course offers students the chance to integrate their engineering knowledge learned throughout their college years by building a robotic system. Robotics is thus a core course in system and control-related engineering education. This paper summarizes the experience of developing robotics courses…
Impact Assessment of Problem-Based Learning in an Engineering Science Course
ERIC Educational Resources Information Center
Nasr, Karim J.; Ramadan, Bassem H.
2008-01-01
This paper presents the development and implementation of Problem-Based Learning (PBL) in an engineering thermodynamics course at Kettering University. In this project, the thermodynamics course was restructured as modules presenting practical applications first, whereas principles were introduced just-in-time and as encountered. Theoretical…
Engineering education for the 1980's: A speculation
NASA Technical Reports Server (NTRS)
Covert, E. E.
1975-01-01
The development of a course of study is briefly examined from two points of view. The first represents the background that would seem to be needed for a fledgling engineer upon his entry into the engineering profession and would allow him to complete successfully his on-the-job training, or engineering internship as it were. The second represents that which must be provided on the basis of the students background from secondary school. It is suggested that a course of study viewed in this way is never fixed, but rather evolves continuously. A particular evolving course of study is briefly discussed.
46 CFR 11.101 - Purpose of regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... officer, second engineer officer (first assistant engineer), officer in charge of an engineering watch... C of this part prescribe the requirements applicable to— (1) Each approved training course, if the training course is to be acceptable as a partial substitute for service or for a required examination, or...
Greening the Engineering and Technology Curriculum via Real Life Hands-on Projects
USDA-ARS?s Scientific Manuscript database
This paper aims at demonstrating how greening efforts can be embedded into science and engineering courses without major curricular changes. In this regard, examples of final projects assigned in a statistical quality control, a 500-level, graduate engineering course, focusing on campus sustainabili...
Investigating Knowledge Creation Technology in an Engineering Course
ERIC Educational Resources Information Center
Jalonen, Satu; Lakkala, Minna; Paavola, Sami
2011-01-01
The aim of the present study was to examine the technological affordances of a web-based collaborative learning technology, Knowledge Practices Environment (KPE), for supporting different dimensions of knowledge creation processes. KPE was used by engineering students in a practically oriented undergraduate engineering course. The study…
The Relationship between Barrier Courses and Persistence in Engineering
ERIC Educational Resources Information Center
Suresh, Radhika
2007-01-01
Attrition in engineering programs continues to be an important issue for universities across the country. This study examined the connection between student performance in barrier courses and persistence in engineering. Quantitative results showed that high school academic experience, student behaviors (including study habits, work habits, coping…
ERIC Educational Resources Information Center
AlSagheer, Abdullah
2010-01-01
This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design…
ERIC Educational Resources Information Center
BALABANIAN, NORMAN; LEPAGE, WILBUR R.
THIS INSTRUCTIONAL PROGRAM, A ONE-YEAR COURSE IN ELECTRICAL ENGINEERING SEEKS TO REMEDY LONG-STANDING INADEQUACIES IN AMERICAN ENGINEERING EDUCATION, WHICH HAVE EXISTED BECAUSE ENGINEERING TEACHERS' HAVE LACKED AWARENESS OF (1) INTRICACIES OF THE LEARNING PROCESS, AND (2) ADVANCES IN BEHAVIORAL SCIENCE RELATED TO THE EDUCATIONAL PROCESS. IN THE…
Curriculum optimization of College of Optical Science and Engineering
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui
2017-08-01
The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.
A Comparison of the Development and Delivery of Two Short-Term Study-Abroad Thermal Sciences Courses
NASA Astrophysics Data System (ADS)
Jacobitz, Frank
2014-11-01
Short-term study-abroad engineering courses provide an opportunity to increase the international awareness and global competency of engineering students. Two different approaches have been taken in the past years in the development and delivery of two three-week long thermal sciences courses. A senior-level elective Topics in Fluid Mechanics course was taught twice in Marseille (France) in January 2010 and 2013. A sophomore-level Introduction to Thermal Sciences course was offered in London (United Kingdom) in July 2014. Both courses were developed due to a strong student desire for engineering study-abroad courses and an effort by the home institution to internationalize its curriculum. The common goals of the two courses are an effective teaching of their respective technical content combined with a meaningful international experience. The two courses differed in their respective settings: Topics in Fluid Mechanics was taught at Aix-Marseille University and included strong interactions with local faculty and students. Introduction to Thermal Sciences, however, was taught in a cluster of seven courses offered by the home institution in London. The courses were assessed using surveys, student reflection papers, course evaluations, and instructor observations.
75 FR 136 - Privacy Act of 1974; Systems of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
..., management of students in civilian institution programs, and course management for civil engineering... civilian institution programs, and course management for civil engineering education programs. Also...
NASA Astrophysics Data System (ADS)
Wendell, Kristen Bethke; Lee, Hee-Sun
2010-12-01
Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.
Student Engagement in a Compulsory Introductory Physiology Course
ERIC Educational Resources Information Center
Brown, S. J.; White, S.; Bowmar, A.; Power, N.
2017-01-01
Appropriate instruments are required to determine student engagement on an undergraduate course, and in this study we evaluated a 23 item Student Course Engagement Questionnaire (SCEQ) administered to undergraduate students studying a Bachelor of Sport and Recreation degree. These students were in the first semester of a 3 year degree, and were…
Applicability of Online Education to Large Undergraduate Engineering Courses
NASA Astrophysics Data System (ADS)
Bir, Devayan Debashis
With the increase in undergraduate engineering enrollment, many universities have chosen to teach introductory engineering courses such as Statics of Engineering and Mechanics of Materials in large classes due to budget limitations. With the overwhelming literature against traditionally taught large classes, this study aims to see the effects of the trending online pedagogy. Online courses are the latest trend in education due to the flexibility they provide to students in terms of schedule and pace of learning with the added advantage of being less expensive for the university over a period. In this research, the effects of online lectures on engineering students' course performances and students' attitudes towards online learning were examined. Specifically, the academic performances of students enrolled in a traditionally taught, lecture format Mechanics of Materials course with the performance of students in an online Mechanics of Materials course in summer 2016 were compared. To see the effect of the two different teaching approaches across student types, students were categorized by gender, enrollment status, nationality, and by the grades students obtained for Statics, one of the prerequisite courses for Mechanics of Materials. Student attitudes towards the online course will help to keep the process of continuously improving the online course, specifically, to provide quality education through the online medium in terms of course content and delivery. The findings of the study show that the online pedagogy negatively affects student academic performance when compared to the traditional face-to-face pedagogy across all categories, except for the high scoring students. Student attitudes reveal that while they enjoyed the flexibility schedule and control over their pace of studying, they faced issues with self-regulation and face-to-face interaction.
NASA Astrophysics Data System (ADS)
Simonovich, Jennifer A.; Towers, Emily; Zastavker, Yevgeniya V.
2012-02-01
Project-based learning (PjBL) has been shown to improve students' performance and satisfaction with their coursework, particularly in science and engineering courses. Specific aspects of PjBL that contribute to this improvement are student autonomy, course scaffolding, and instructor support. This study investigates two PjBL courses required for engineering majors at a small technical school, Introductory Mechanics Laboratory and Introductory Engineering Design. The three data sources used in this work are classroom observations (one laboratory and four design sessions) and semi-structured in-depth interviews with twelve students and six faculty. Grounded theory approach is used in a two-step fashion by (1) analyzing each data set individually and (2) performing full triangulation of all three data sets. In this talk, we demonstrate the relationship between faculty intentions and student perceptions regarding the three PjBL aspects -- student autonomy, course scaffolding, and instructor support -- within the context of these two courses. We further discuss implications for the course design and professional development of faculty.
NASA Astrophysics Data System (ADS)
Vessel, Kanika Nicole
2011-12-01
There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.
A community-based, interdisciplinary rehabilitation engineering course.
Lundy, Mary; Aceros, Juan
2016-08-01
A novel, community-based course was created through collaboration between the School of Engineering and the Physical Therapy program at the University of North Florida. This course offers a hands-on, interdisciplinary training experience for undergraduate engineering students through team-based design projects where engineering students are partnered with physical therapy students. Students learn the process of design, fabrication and testing of low-tech and high-tech rehabilitation technology for children with disabilities, and are exposed to a clinical experience under the guidance of licensed therapists. This course was taught in two consecutive years and pre-test/post-test data evaluating the impact of this interprofessional education experience on the students is presented using the Public Service Motivation Scale, Civic Actions Scale, Civic Attitudes Scale, and the Interprofessional Socialization and Valuing Scale.
Designing a Hands-On Brain Computer Interface Laboratory Course
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2017-01-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946
NASA Astrophysics Data System (ADS)
Meltzer, David E.
2007-01-01
As part of an investigation into student learning of thermodynamics, we have probed the reasoning of students enrolled in introductory and advanced courses in both physics and chemistry. A particular focus of this work has been put on the learning difficulties encountered by physics, chemistry, and engineering students enrolled in an upper-level thermal physics course that included many topics also covered in physical chemistry courses. We have explored the evolution of students' understanding as they progressed from the introductory course through more advanced courses. Through this investigation we have gained insights into students' learning difficulties in thermodynamics at various levels. Our experience in addressing these learning difficulties may provide insights into analogous pedagogical issues in upper-level courses in both engineering and chemistry which focus on the theory and applications of thermodynamics.
Can instruction in engineering ethics change students' feelings about professional responsibility?
Hashemian, Golnaz; Loui, Michael C
2010-03-01
How can a course on engineering ethics affect an undergraduate student's feelings of responsibility about moral problems? In this study, three groups of students were interviewed: six students who had completed a specific course on engineering ethics, six who had registered for the course but had not yet started it, and six who had not taken or registered for the course. Students were asked what they would do as the central character, an engineer, in each of two short cases that posed moral problems. For each case, the role of the engineer was successively changed and the student was asked how each change altered his or her decisions about the case. Students who had completed the ethics course considered more options before making a decision, and they responded consistently despite changes in the cases. For both cases, even when they were not directly involved, they were more likely to feel responsible and take corrective action. Students who were less successful in the ethics course gave answers similar to students who had not taken the course. This latter group of students seemed to have weaker feelings of responsibility: they would say that a problem was "not my business." It appears that instruction in ethics can increase awareness of responsibility, knowledge about how to handle a difficult situation, and confidence in taking action.
ERIC Educational Resources Information Center
Tang, Shensheng
2014-01-01
Microcontrollers is a required course in most Electrical, Computer, and Mechanic Engineering (Technology) programs at U.S. universities. Most engineering courses (e.g., microcontrollers), by nature, introduce abstract concepts, definitions, and models, and use primarily lectures and readings (words, symbols) to transmit information. This…
Efficient Optoelectronics Teaching in Undergraduate Engineering Curriculum
ERIC Educational Resources Information Center
Matin, M. A.
2005-01-01
The Engineering Department's vision for undergraduate education for the next century is to develop a set of laboratory experiences that are thoughtfully sequenced and integrated to promote the full development of students in all courses. Optoelectronics is one of the most important and most demanding courses in Electrical and Computer Engineering.…
An Undergraduate Electrical Engineering Course on Computer Organization.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…
Occupational Sequences: Auto Engines 1. AT 121.
ERIC Educational Resources Information Center
Korb, A. W.; And Others
In an attempt to individualize an automotive course, the Vocational-Technical Division of Northern Montana College has developed Occupational Sequences for an engine rebuilding course. Occupational Sequences, a learning or teaching aid, is an analysis of numbered operations involved in engine rebuilding. Job sheets, included in the book, provide a…
Personality Profiles and Selection for Courses.
ERIC Educational Resources Information Center
Barker, Dennis
1989-01-01
Personality profiles for 364 civil engineers were compared to the British Norms for the 16PF Questionnaire. Civil engineers differ from the British norms on 5 of the 20 factors derived from the questionnaire. These factors indicate the questions on which to concentrate when selecting students for civil engineering courses. (Author/MLW)
Microprocessors in U.S. Electrical Engineering Departments, 1974-1975.
ERIC Educational Resources Information Center
Sloan, M. E.
Drawn from a survey of engineering departments known to be teaching microprocessor courses, this paper shows that the adoption of microprocessors by Electrical Engineering Departments has been rapid compared with their adoption of minicomputers. The types of courses that are being taught can be categorized as: surveys of microprocessors, intensive…
NASA Technical Reports Server (NTRS)
Pellerano, Fernando
2015-01-01
This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.
Enhancing the Undergraduate Computing Experience in Chemical Engineering CACHE Corporation
ERIC Educational Resources Information Center
Edgar, Thomas F.
2006-01-01
This white paper focuses on the integration and enhancement of the computing experience for undergraduates throughout the chemical engineering curriculum. The computing experience for undergraduates in chemical engineering should have continuity and be coordinated from course to course, because a single software solution is difficult to achieve in…
Process Systems Engineering Education: Learning by Research
ERIC Educational Resources Information Center
Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.
2009-01-01
In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…
Empowering Engineering Students through Employability Skills
ERIC Educational Resources Information Center
Kaushal, Urvashi
2016-01-01
A professional course program like engineering strives to get the maximum number of its students placed through campus interviews. While communication skills have been added in all the engineering courses with the aim to improve their performance in placement, the syllabus mostly concentrates on the development of four language skills. The…
An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores
ERIC Educational Resources Information Center
O'Connor, Kim C.
2007-01-01
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
NASA Astrophysics Data System (ADS)
Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz
2017-01-01
The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy levels are assigned in accordance with the CO-PO mapping. Finally, the course has to fulfill the International Engineering Alliance (IEA) Graduate Attributes of the Washington Accord.
Conceptual or procedural mathematics for engineering students at University of Samudra
NASA Astrophysics Data System (ADS)
Saiman; Wahyuningsih, Puji; Hamdani
2017-06-01
This study we investigate whether the emphasis in mathematics courses for engineering students would benefit from being more conceptually oriented than more procedurally oriented way of teaching. In this paper, we report in some detail from twenty-five engineering students comes from three departements ; mechanical engineering, civil engineering and industrial engineering. The aim was to explore different kinds of arguments regarding the role of mathematics in engineering courses, as well as some common across contexts. The result of interview showed that most of engineering students feel that conceptual mathematics is more important than procedural mathematics for their job the future.
Smith, Michelle L; Gurenlian, JoAnn R; Freudenthal, Jacqueline J; Farnsworth, Tracy J
2016-05-01
The aim of this study was to define the extent to which leadership and leadership skills are taught in dental hygiene degree completion programs by comparing stand-alone leadership courses/hybrid programs with programs that infuse leadership skills throughout the curricula. The study involved a mixed-methods approach using qualitative and quantitative data. Semi-structured interviews were conducted with program directors and faculty members who teach a stand-alone leadership course, a hybrid program, or leadership-infused courses in these programs. A quantitative comparison of course syllabi determined differences in the extent of leadership content and experiences between stand-alone leadership courses and leadership-infused curricula. Of the 53 U.S. dental hygiene programs that offer degree completion programs, 49 met the inclusion criteria, and 19 programs provided course syllabi. Of the program directors and faculty members who teach a stand-alone leadership course or leadership-infused curriculum, 16 participated in the interview portion of the study. The results suggested that competencies related to leadership were not clearly defined or measurable in current teaching. Reported barriers to incorporating a stand-alone leadership course included overcrowded curricula, limited qualified faculty, and lack of resources. The findings of this study provide a synopsis of leadership content and gaps in leadership education for degree completion programs. Suggested changes included defining a need for leadership competencies and providing additional resources to educators such as courses provided by the American Dental Education Association and the American Dental Hygienists' Association.
First Year Engineering Graphics Curricula in Major Engineering Colleges.
ERIC Educational Resources Information Center
Meyers, Frederick D.
2000-01-01
Investigates the commonalities and differences of graphics programs among nine universities in the United States by analyzing the course structure and reviewing attendance and course syllabi. (Author/YDS)
Testing as a Way to Monitor English as a Foreign Language Learning
ERIC Educational Resources Information Center
Becker, Anthony; Nekrasova-Beker, Tatiana; Petrashova, Tamara
2017-01-01
This study was conducted at a large technical university in Russia, which offers English language courses to students majoring in nine different degree programs. Each degree program develops and delivers its own English language curriculum. While all degree programs followed the same curriculum development model to design language courses, each…
The Ruptured Pipeline: Analysis of the Mining Engineering Faculty Pipeline
NASA Astrophysics Data System (ADS)
Poulton, M.
2011-12-01
The booming commodities markets of the past seven years have created an enormous demand for economic geologists, mining engineers, and extractive metallurgists. The mining sector has largely been recession proof due to demand drivers coming from developing rather than developed nations. The strong demand for new hires as well as mid-career hires has exposed the weakness of the U.S. university supply pipeline for these career fields. A survey of mining and metallurgical engineering faculty and graduate students was conducted in 2010 at the request of the Society for Mining, Metallurgy, and Exploration. The goals of the surveys were to determine the demographics of the U.S. faculty in mining and metallurgical engineering, the expected faculty turn over by 2010 and the potential supply of graduate students as the future professorate. All Mining Engineering and Metallurgical Engineering degrees in the U.S. are accredited by the Accreditation Board for Engineering and Technology (ABET) and the specific courses required are set by the sponsoring professional society, Society for Mining, Metallurgy, and Exploration. There are 13 universities in the U.S. that offer a degree in Mining Engineering accredited as Mining Engineering and 1 university that grants a Mining Engineering degree accredited under general engineering program requirements. Faculty numbers are approximately 87 tenure track positions with a total undergraduate enrollment of slightly over 1,000 in the 2008-2009 academic year. There are approximately 262 graduate students in mining engineering in the U.S. including 87 Ph.D. students. Mining Engineering department heads have identified 14 positions open in 2010 and 18 positions expected to be open in the next 5 years and an additional 21 positions open by 2020. The current survey predicts a 56% turn over in mining faculty ranks over the next 10 years but a retirement of 100% of senior faculty over 10 years. 63% of graduate students say they are interested in a university career at some point in their lives but only 6% of the PhD respondents had applied for the open positions. 69% of Ph.D. students in the survey had graduation dates that would have made them eligible to apply for the open positions. 51% of the responding graduate students are US citizens. Full time graduate student enrollment would have to increase by 75% in order to provide enough graduate students to meet tenure and promotion expectations for mining engineering faculty in the U.S. New research funding on the order of $17M per year would have to be supplied to sustain the mining engineering faculty at a level expected of most R1 engineering colleges. Salaries for new faculty hires are comparable to those offered to BSc graduates by industry. The difficulties in achieving tenure due to lack of government research funding have made academic careers unattractive. If a solution is not found soon to refill the faculty pipeline, the U.S. is in danger of losing nearly all of its capacity to educate students in mining engineering.
ERIC Educational Resources Information Center
Dahbi, M.
2015-01-01
In computer engineering education, specific English language practices are needed to enable computer engineering students to succeed in professional settings. This study was conducted for two purposes. First, it aimed at investigating to what extent the English courses offered to computer engineering students at the National School of Applied…
ERIC Educational Resources Information Center
Dahlgren, Madeleine Abrandt
2000-01-01
Compares the role of course objectives in relation to students' study strategies in problem-based learning (PBL). Results comprise data from three PBL programs at Linkopings University (Sweden), in physiotherapy, psychology, and computer engineering. Faculty provided course objectives to function as supportive structures and guides for students'…
A Bachelor of Engineering Technology Curriculum in Water Quality Management: Course Guides.
ERIC Educational Resources Information Center
Cole, Charles A.; And Others
Contained are course guides for a Bachelor of Engineering Technology (BET) Curriculum in Water Quality Management. Detailed course content, as well as instructional resources, are included in this volume. Each guide is written in behavioral terms using the instructional objective format. A suggested curriculum is shown with methods of…
Hazardous Waste Processing in the Chemical Engineering Curriculum.
ERIC Educational Resources Information Center
Dorland, Dianne; Baria, Dorab N.
1995-01-01
Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…
Incorporating Learning Outcomes into an Introductory Geotechnical Engineering Course
ERIC Educational Resources Information Center
Fiegel, Gregg L.
2013-01-01
The article describes the process of incorporating a set of learning outcomes into a geotechnical engineering course. The outcomes were developed using Bloom's taxonomy and define the knowledge, skills, and abilities the students are expected to achieve upon completion of the course. Each outcome begins with an action-oriented verb corresponding…
Gasoline Engine Mechanics. Performance Objectives. Basic Course.
ERIC Educational Resources Information Center
Jones, Marion
Several intermediate performance objectives and corresponding criterion measures are listed for each of five terminal objectives presented in this curriculum guide for a basic gasoline engine mechanics course at the secondary level. (For the intermediate course guide see CE 010 946.) The materials were developed for a two semester (2 hours daily)…
ERIC Educational Resources Information Center
Bussard, Ellen
A 3-year project was developed to increase students' abilities to perform competently as professional engineers. The project sought to infuse into existing courses concern for, practice with, and development of three competencies critical to professional success: problem-solving, communication, and value clarification. Eight elementary and…
ERIC Educational Resources Information Center
Kalkani, Efrossini C.; Boussiakou, Iris K.; Boussiakou, Leda G.
2004-01-01
The primary objective of this paper is to apply the educational theories of Kolb's experiential learning and Bloom's educational taxonomy in restructuring the course "Renewable energy engineering". The steps of the research procedure investigate the application of learning theories to the restructuring of the course and the introduction of…
Open Source Projects in Software Engineering Education: A Mapping Study
ERIC Educational Resources Information Center
Nascimento, Debora M. C.; Almeida Bittencourt, Roberto; Chavez, Christina
2015-01-01
Context: It is common practice in academia to have students work with "toy" projects in software engineering (SE) courses. One way to make such courses more realistic and reduce the gap between academic courses and industry needs is getting students involved in open source projects (OSP) with faculty supervision. Objective: This study…
Information Technologies in Higher Education: Lessons Learned in Industrial Engineering
ERIC Educational Resources Information Center
Delgado-Almonte, Milagros; Andreu, Hernando Bustos; Pedraja-Rejas, Liliana
2010-01-01
This article describes a teaching experience in which information and communication technologies were applied in five industrial engineering courses at the Universidad de Tarapaca in Chile. The paper compares the performance and course pass rates of the e-learning platform and portable pocket PC platform with those of the same courses teaching in…
ERIC Educational Resources Information Center
Kleine, Louis W.
The experimental pilot project was conducted to determine whether students who take the laboratory phase of an engineering technology applied electricity course in a mobile laboratory at branch schools demonstrate proficiency comparable to students who take the applied electricity course in permanent facilities at the parent institution. The…
A transformative model for undergraduate quantitative biology education.
Usher, David C; Driscoll, Tobin A; Dhurjati, Prasad; Pelesko, John A; Rossi, Louis F; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B
2010-01-01
The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions.
A Transformative Model for Undergraduate Quantitative Biology Education
Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.
2010-01-01
The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions. PMID:20810949
Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord
NASA Astrophysics Data System (ADS)
Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun
2017-08-01
Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.
Structure and Management of an Engineering Senior Design Course.
Tanaka, Martin L; Fischer, Kenneth J
2016-07-01
The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.
Core skills assessment to improve mathematical competency
NASA Astrophysics Data System (ADS)
Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní
2013-12-01
Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.
Student Activity and Learning Outcomes in a Virtual Learning Environment
ERIC Educational Resources Information Center
Romanov, Kalle; Nevgi, Anne
2008-01-01
The aim of the study was to explore the relationship between degree of participation and learning outcomes in an e-learning course on medical informatics. Overall activity in using course materials and degree of participation in the discussion forums of an online course were studied among 39 medical students. Students were able to utilise the…
Code of Federal Regulations, 2010 CFR
2010-07-01
... course in English as a second language, the educational level of instruction provided in that course is... complete a degree or certificate program; (2) The educational level of instruction provided in the noncredit or reduced credit remedial course is below the level needed to pursue successfully the degree or...
Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering
NASA Astrophysics Data System (ADS)
Wentling, Rose Mary; Camacho, Cristina
Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.
NASA Astrophysics Data System (ADS)
Kelly, Jacquelyn
Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.
Mechatronic system design course for undergraduate programmes
NASA Astrophysics Data System (ADS)
Saleem, A.; Tutunji, T.; Al-Sharif, L.
2011-08-01
Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.
ERIC Educational Resources Information Center
Yates, Heather N.
2012-01-01
This narrative qualitative study focused on the experiences of four women pursuing undergraduate engineering degrees and how the experiences affect their self-efficacy and in turn persistence in the degree. The use of narrative methodologies allowed the addition of the voice of the women engineering students to the study providing a more robust…
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees.
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees. PMID:26113823
Effectiveness of an ethics course delivered in traditional and non-traditional formats.
Feldhaus, Charles R; Fox, Patricia L
2004-04-01
This paper details a three-credit-hour undergraduate ethics course that was delivered using traditional, distance, and compressed formats. OLS 263: Ethical Decisions in Leadership is a 200-level course offered by the Department of Organizational Leadership and Supervision in the Purdue School of Engineering and Technology at Indiana University Purdue University Indianapolis (IUPUI). Students in engineering, technology, business, nursing, and other majors take the course. In an effort to determine student perceptions of course and instructor effectiveness, end-of-course student survey data were compared using data from traditional, distance, and compressed sections of the course. In addition, learning outcomes from the final course project were evaluated using a standardized assessment rubric and scores on the course project.
Curriculum Outline for Introduction to Engineering Chemistry. First Edition. Review Cycle-Annual.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This curriculum outline consists of behavioral objectives (called terminal and enabling objectives) for Introduction to Engineering Chemistry, a one-semester, post-secondary course consisting of four 1-hour lectures each week. Course goal is to introduce marine engineering students to the rudiments of basic/introductory inorganic chemistry. The…
Engineering Students' Conceptions of Entrepreneurial Learning as Part of Their Education
ERIC Educational Resources Information Center
Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso
2016-01-01
The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group…
Theo Jansen Project in Engineering Design Course and a Design Example
ERIC Educational Resources Information Center
Liu, Yucheng; Artigue, Aaron; Sommers, Jeremy; Chambers, Terence
2011-01-01
Objectives of a project-oriented mechanical engineering course, Engineering Design, were achieved through a design project, where students designed, built and demonstrated an extreme version of a basic Theo Jansen device. Through this project, junior students in the University of Louisiana fully developed the capability of applying mathematic and…
Heat Exchanger Lab for Chemical Engineering Undergraduates
ERIC Educational Resources Information Center
Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.
2015-01-01
Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…
Capstone Engineering Design Projects for Community Colleges
ERIC Educational Resources Information Center
Walz, Kenneth A.; Christian, Jon R.
2017-01-01
Capstone engineering design courses have been a feature at research universities and four-year schools for many years. Although such classes are less common at two-year colleges, the experience is equally beneficial for this population of students. With this in mind, Madison College introduced a project-based Engineering Design course in 2007.…
ERIC Educational Resources Information Center
Jones, Brett D.; Tendhar, Chosang; Paretti, Marie C.
2016-01-01
The purpose of this study was to examine whether students' perceptions in a first-year university engineering course affected their engineering identification, motivational beliefs, and engineering major and career goals. Based on current motivation models and theories, we hypothesized that students' perceptions of the components of the MUSIC…
ERIC Educational Resources Information Center
Meznarich, R. A.; Shava, R. C.; Lightner, S. L.
2009-01-01
Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…
An Engineering-Oriented Approach to the Introductory Differential Equations Course
ERIC Educational Resources Information Center
Pennell, S.; Avitabile, P.; White, J.
2009-01-01
The introductory differential equations course can be made more relevant to engineering students by including more of the engineering viewpoint, in which differential equations are regarded as systems with inputs and outputs. This can be done without sacrificing any of the usual topical coverage. This point of view is conducive to student…
Studies on the Use of Extramural Videopublished Materials in Continuing Education. Final Report.
ERIC Educational Resources Information Center
Sjogren, Douglas; And Others
The Engineering Renewal and Growth (ERG) program at Colorado State University (CSU) was designed for continuing education of engineers. The program used videotapes and coordinated written materials to deliver instruction to the practicing engineer. Courses were leased to individual students or industries in which students worked. The courses were…
Effect of a "Look-Ahead" Problem on Undergraduate Engineering Students' Concept Comprehension
ERIC Educational Resources Information Center
Goodman, Kevin; Davis, Julian; McDonald, Thomas
2016-01-01
In an effort to motivate undergraduate engineering students to prepare for class by reviewing material before lectures, a "Look-Ahead" problem was utilized. Students from two undergraduate engineering courses; Statics and Electronic Circuits, were assigned problems from course material that had not yet been covered in class. These…
Herbert Easterly auxiliary truck heater. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less
Herbert Easterly auxiliary truck heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle's primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less
NASA Astrophysics Data System (ADS)
Knobbs, C. G.; Grayson, D. J.
2012-06-01
There is mounting evidence to show that engineers need more than technical skills to succeed in industry. This paper describes a curriculum innovation in which so-called 'soft' skills, specifically inter-personal and intra-personal skills, were integrated into a final year mining engineering course. The instructional approach was designed to promote independent learning and to develop non-technical skills, essential for students on the threshold of becoming practising engineers. Three psychometric tests were administered at the beginning of the course to make students aware of their own and their classmates' characteristics. Substantial prescribed reading assignments preceded weekly group discussions. Several projects during the course required team work skills and application of content knowledge to real-world contexts. Results obtained from students' reflection papers, assignments related to 'soft' skills and end of course evaluations suggest that students' appreciation of the need for these skills, as well as their own perceived competence, increased during the course. Their ability to function as independent learners also increased.
Nuclear Engineering Enrollments and Degrees, 1982.
ERIC Educational Resources Information Center
Sweeney, Deborah H.; And Others
This report presents data on the number of students enrolled and the number of bachelor's, master's, and doctoral degrees awarded in academic year 1981-82 from 72 United States institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented as well are historical data for the last decade…
New High in Engineering Degree Production. Facts
ERIC Educational Resources Information Center
Connecticut Department of Higher Education (NJ1), 2010
2010-01-01
Several of the state's key industry sectors depend heavily on employees with advanced scientific, analytic and technical knowledge. Among the fields closely related to these sectors, engineering degrees have posted the largest gain. This paper presents details on the following facts: (1) 2009 represented a record high for engineering degrees; (2)…
NASA Astrophysics Data System (ADS)
Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina
2017-03-01
The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its historical roots. In Portugal, engineer education is done based on two different higher education subsystems, the university and the polytechnic. This study analyses how engineers' educational models, present in the two Portuguese higher education subsystems, influence and are reflected in the importance attached to students' ethic and civic education and in the role that this training plays. Although the data suggest the prevalence of the distinction between the two training models and the corresponding distinction of ethic and civic education that is incorporated in the curricula, it is also noted the existence of mixed feature courses in university education.
Are UK undergraduate Forensic Science degrees fit for purpose?
Welsh, Charles; Hannis, Marc
2011-09-01
In October 2009 Skills for Justice published the social research paper 'Fit for purpose?: Research into the provision of Forensic Science degree programmes in UK Higher Education Institutions.' The research engaged employers representing 95% of UK Forensic Science providers and 79% of UK universities offering Forensic Science or Crime Scene degree programmes. In addition to this, the research collected the views of 430 students studying these degrees. In 2008 there were approximately 9000 people working in the Forensic Science sector in the UK. The research found that the numbers of students studying Forensic Science or Crime Scene degrees in the UK have more than doubled since 2002-03, from 2191 in to 5664 in 2007-08. Over the same period there were twice as many females as males studying for these degrees. The research concluded that Forensic Science degree programmes offered by UK universities were of a good quality and they provided the student with a positive learning experience but the content was not relevant for Forensic Science employers. This echoed similar research by the former Government Department for Innovation, Universities and Skills on graduates from wider science, technology, engineering and mathematics degree programmes. The research also found that 75% of students studying Forensic Science or Crime Scene degrees expected to have a career in the Forensic Science sector, meaning that ensuring these courses are relevant for employers is a key challenge for universities. This paper reflects on the original research and discusses the implications in light of recent government policy. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course
2016-01-01
American Institute of Aeronautics and Astronautics 1 Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course...development costs, engine production costs, and scheduling (Byerley A. R., 2013) as well as the linkage between turbine inlet temperature, blade cooling...analysis SE majors have studied and how this is linked to the specific issues they must face in aircraft gas turbine engine design. Aeronautical and
[Research-oriented experimental course of plant cell and gene engineering for undergraduates].
Xiaofei, Lin; Rong, Zheng; Morigen, Morigen
2015-04-01
Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.
ERIC Educational Resources Information Center
Tatzl, Dietmar
2017-01-01
This article presents the design and evaluation of an intensive presentations course for aeronautical engineering students based on cyclic video recordings. The target group of this course in English for specific purposes (ESP) were undergraduate final-year students who needed to improve their presentation and foreign language skills to prepare…
ERIC Educational Resources Information Center
Jones, Brett D.; Epler, Cory M.; Mokri, Parastou; Bryant, Lauren H.; Paretti, Marie C.
2013-01-01
We identified and examined how the instructional elements of problem-based learning capstone engineering courses affected students' motivation to engage in the courses. We employed a two-phase, sequential, explanatory, mixed methods research design. For the quantitative phase, 47 undergraduate students at a large public university completed a…
ERIC Educational Resources Information Center
Herber, Daniel R.; Deshmukh, Anand P.; Mitchell, Marlon E.; Allison, James T.
2016-01-01
This paper presents an effort to revitalize a large introductory engineering course for incoming freshman students that teaches them analytical design through a project-based curriculum. This course was completely transformed from a seminar-based to a project-based course that integrates hands-on experimentation with analytical work. The project…
Cam Design Projects in an Advanced CAD Course for Mechanical Engineers
ERIC Educational Resources Information Center
Ault, H. K.
2009-01-01
The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…
ERIC Educational Resources Information Center
Grundbacher, R.; Hoetzel, J. E.; Hierold, C.
2009-01-01
A microelectro-mechanical systems (MEMS) laboratory course (MEMSlab) in the Mechanical and Process Engineering Department at the Swiss Federal Institute of Technology (ETH Zurich), is presented. The course has been taught for four years and has been attended primarily by Master's students from mechanical and electrical engineering; since fall…
Improving a Computer Networks Course Using the Partov Simulation Engine
ERIC Educational Resources Information Center
Momeni, B.; Kharrazi, M.
2012-01-01
Computer networks courses are hard to teach as there are many details in the protocols and techniques involved that are difficult to grasp. Employing programming assignments as part of the course helps students to obtain a better understanding and gain further insight into the theoretical lectures. In this paper, the Partov simulation engine and…
A Hands-On Freshman Survey Course to Steer Undergraduates into Microsystems Coursework and Research
ERIC Educational Resources Information Center
Eddings, M. A.; Stephenson, J. C.; Harvey, I. R.
2009-01-01
Full class loads and inflexible schedules can be a significant obstacle in the implementation of freshman survey courses designed to guide engineering students into emerging research areas such as micro- and nanosystems. A hands-on, interactive course was developed to excite freshmen early in their engineering program to pursue research and…
Faculty and Student Perceptions of the Content of Entrepreneurship Courses in Engineering Education
ERIC Educational Resources Information Center
Besterfield-Sacre, Mary; Zappe, Sarah; Shartrand, Angela; Hochstedt, Kirsten
2016-01-01
Entrepreneurship programs and courses in engineering education have steadily increased in the United States over the past two decades. However, the nature of these entrepreneurship courses and programs and the characteristics of the instructors who teach them are not yet well understood. The paper explores three research questions: 1) What content…
ERIC Educational Resources Information Center
Mena, Irene B.; Schmitz, Sven; McLaughlin, Dennis
2015-01-01
This paper describes the implementation and assessment of an aerospace engineering course in which undergraduate students worked on research projects with graduate research mentors. The course was created using the principles from cooperative learning and project-based learning, and consisted of students working in small groups on a complex,…
Effectiveness of Using a Video Game to Teach a Course in Mechanical Engineering
ERIC Educational Resources Information Center
Coller, B. D.; Scott, M. J.
2009-01-01
One of the core courses in the undergraduate mechanical engineering curriculum has been completely redesigned. In the new numerical methods course, all assignments and learning experiences are built around a video/computer game. Students are given the task of writing computer programs to race a simulated car around a track. In doing so, students…
ERIC Educational Resources Information Center
Fries, Ryan; Cross, Brad; Zhou, Jianpeng; Verbais, Chad
2017-01-01
Because many engineering programs use capstone design courses and value strong communication abilities, authors sought to identify how student written communication skills changed because of industry-sponsored capstone design projects. A student exit survey was collected at the end of the capstone design course during faculty-led projects and…
Writing in the Natural Sciences and Engineering: Implications for ESL Composition Courses.
ERIC Educational Resources Information Center
Braine, George
A study investigated the types of writing assignments commonly found in undergraduate natural sciences and engineering courses. The study was used as a basis for the development of composition courses for limited-English-speaking students in these fields, the most popular fields of study among foreign students. Eighty take-home assignments given…
Teaching business ethics to professional engineers.
Sauser, William I
2004-04-01
Without question "business ethics" is one of the hot topics of the day. Over the past months we have seen business after business charged with improper practices that violate commonly-accepted ethical norms. This has led to a loss of confidence in corporate management, and has had severe economic consequences. From many quarters business educators have heard the call to put more emphasis on ethical practices in their business courses and curricula. Engineering educators are also heeding this call, since the practice of engineering usually involves working for (or leading) a business and/or engaging in business transactions. In the summer of 2002, Auburn University's Engineering Professional Development program made the decision to produce--based on the author's Executive MBA course in Business Ethics--a distance-delivered continuing education program for professional engineers and surveyors. Participants across the USA now may use the course to satisfy continuing education requirements with respect to professional licensing and certification. This paper outlines the purpose and content of the course and describes its production, distribution, application, and evaluation.
Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.
Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less
NASA Astrophysics Data System (ADS)
Rulifson, Gregory A.
Engineers impact the lives of every person every day, and need to have a strong sense of social responsibility. Understanding what students think about social responsibility in engineering and their futures is very important. Further, by identifying influences that change these ideas and shape their conceptualizations, we can intervene to help prepare students for their responsibilities as part of the profession in the future. This thesis presents the experiences, in their own words, of 34 students who started in engineering. The study is composed of three parts: (i) engineering students' ideas about socially responsible engineering and what influenced these ideas, (ii) how students see themselves as future socially responsible engineers and how this idea changes over their first three years of college, and (iii) what social responsibility-related reasons students who leave engineering have for choosing a new major. Results show that students are complicated and have varied paths through and out of engineering studies. Students came up with their own ideas about socially responsible engineering that converged over the years on legal and safety related aspects of the profession. Relatedly, students identified with the engineering profession through internships and engineering courses, and rarely described socially responsible aspirations that could be accomplished with engineering. More often, those students who desired to help the disadvantaged through their engineering work left engineering. Their choice to leave was a combination of an unsupportive climate, disinterest in their classes, and a desire to combine their personal and professional social responsibility ambitions. If we want engineering students to push the engineering profession forward to be more socially responsible, we can identify the effective influences and develop a curriculum that encourages critical thinking about the social context and impacts of engineering. Additionally, a social responsibility-related curriculum could provide more opportunities for engagement that keeps those socially-motivated students in engineering. The engineering profession must also reflect these values to keep the new engineers working towards social responsibility and pushing the profession forward.
An evaluation of pharmacology curricula in Australian science and health-related degree programs.
Lloyd, Hilary; Hinton, Tina; Bullock, Shane; Babey, Anna-Marie; Davis, Elizabeth; Fernandes, Lynette; Hart, Joanne; Musgrave, Ian; Ziogas, James
2013-11-19
Pharmacology is a biomedical discipline taught in basic science and professional degree programs. In order to provide information that would facilitate pharmacology curricula to be refined and developed, and approaches to teaching to be updated, a national survey was undertaken in Australia that investigated pharmacology course content, teaching and summative assessment methods. Twenty-two institutions participated in a purpose-built online questionnaire, which enabled an evaluation of 147 courses taught in 10 different degrees. To enable comparison, degrees were grouped into four major degree programs, namely science, pharmacy, medicine and nursing. The pharmacology content was then classified into 16 lecture themes, with 2-21 lecture topics identified per theme. The resultant data were analysed for similarities and differences in pharmacology curricula across the degree programs. While all lecture themes were taught across degree programs, curriculum content differed with respect to the breadth and hours of coverage. Overall, lecture themes were taught most broadly in medicine and with greatest coverage in pharmacy. Reflecting a more traditional approach, lectures were a dominant teaching method (at least 90% of courses). Sixty-three percent of science courses provided practical classes but such sessions occurred much less frequently in other degree programs, while tutorials were much more common in pharmacy degree programs (70%). Notably, problem-based learning was common across medical programs. Considerable diversity was found in the types of summative assessment tasks employed. In science courses the most common form of in-semester assessment was practical reports, whereas in other programs pen-and-paper quizzes predominated. End-of-semester assessment contributed 50-80% to overall assessment across degree programs. The similarity in lecture themes taught across the four different degree programs shows that common knowledge- and competency-based learning outcomes can be defined for pharmacology. The authors contend that it is the differences in breadth and coverage of material for each lecture theme, and the differing teaching modes and assessment that characterise particular degree programs. Adoption of pharmacology knowledge-based learning outcomes that could be tailored to suit individual degree programs would better facilitate the sharing of expertise and teaching practice than the current model where pharmacology curricula are degree-specific.
Syllabus for an Associate Degree Program in Applied Marine Biology and Oceanography.
ERIC Educational Resources Information Center
Banerjee, Tapan
Included is a detailed outline of the content of each course required or offered as an elective in the associate degree program. With an 18 or 19 unit load each semester the program requires two years, and includes 64 hours at sea every semester. In addition to chemistry, physics, biology, and oceanography courses, there is a required course in…
Language and Society. Course HP06a: Part Time BA Degree Programme.
ERIC Educational Resources Information Center
Griffith Univ., Brisbane (Australia). School of Humanities.
This course, one of 16 sequential courses comprising phase one of a part-time Bachelor of Arts degree program in Australian Studies, examines a number of theoretical approaches to the study of language, particularly those which place language in a social context. It is designed for independent study combined with tutorial sessions. Chapter 1 is an…
ERIC Educational Resources Information Center
Buccelli, Pamela
Presented is a project that developed a competency-based clinical chemistry course for associate degree medical laboratory technicians (MLT) in a medical technology (MT) baccalaureate program. Content of the course was based upon competencies expected of medical technologists at career-entry as defined in the statements adopted in 1976 by the…
ERIC Educational Resources Information Center
Caruso, Marinella; Brown, Joshua
2014-01-01
"New Courses 2012" refers to a new course structure adopted by the University of Western Australia, which has established a three-year general Bachelor degree followed by professional degrees. Since its introduction, enrolments in languages have increased, in a context in which languages across Australia have found themselves "under…
ERIC Educational Resources Information Center
Bath, Caroline
2011-01-01
This paper aims to explore democratic values in higher education pedagogies, as related to an Early Childhood Studies (ECS) degree course in an English university. It seeks to find out what constitutes a multi-disciplinary course from both student and tutor perspectives. It is contextualised by the concepts of participation embedded in the idea of…
Villar, Feliciano; Giuliani, María Florencia; Serrat, Rodrigo
Population aging raises the need for specialised professionals to address the needs of the elderly. The aim of this paper is to describe the number, characteristics, and contents of the Master degree courses that are currently offered in Spain. There were 32 Master degree courses offered in the 2014-15 academic year. These required at least 60 ECTS (European Credit Transfer and Accumulation System). At least half of the course credits were based on contents directly related to old age, older people, or aging. An analysis was made that included, information on the institutional affiliation, official status, academic structure, and contents taught. A content analysis was performed on curriculum subjects, in order to classify the courses into multidisciplinary or specialised (with focus either on health, behavioural, or social sciences). Most of the courses required mandatory class attendance, and lasted one academic year (60 ECTS). They also included the completion of a final project and a practicum. The majority (59%) of Master degree courses were classified as multidisciplinary. Of the remaining ones, 19% were labelled as specialised in behavioural sciences, 16% in health sciences, and 2% in social sciences. The field of higher education in gerontology in Spain seems to be consolidated, taking into account indicators such as the number of courses offered, their territorial distribution, or the number of official Master degree courses. While the academic structure of the courses is quite similar, in contrast, their contents and nature are highly diverse, which responds to the different training needs. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
Easy method of matching fighter engine to airframe for use in aircraft engine design courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattingly, J.D.
1989-01-01
The proper match of the engine(s) to the airframe affects both aircraft size and life cycle cost. A fast and straightforward method is developed and used for the matching of fighter engine(s) to airframes during conceptual design. A thrust-lapse equation is developed for the dual-spool, mixed-flow, afterburning turbofan type of engine based on the installation losses of 'Aircraft Engine Design' and the performance predictions of the cycle analysis programs ONX and OFFX. Using system performance requirements, the effects of aircraft thrust-to-weight, wing loading, and engine cycle on takeoff weight are analyzed and example design course results presented. 5 refs.
NASA Astrophysics Data System (ADS)
Herman, Rhett; Ballowe, Abigail; Ashley, Joe
2017-11-01
Two students in a recent thermodynamics/statistical mechanics course needed to complete a course-related project to receive honors credit for the class. Such courses are typically theoretical, without an accompanying laboratory, although there are existing related hands-on exercises. The choice of the project was influenced by one student's desire to become a mechanical engineer after graduating while the other wanted a project that was "fun" without "just doing more calculations." The choice of this particular project was further refined by the future engineer's interest in the thermodynamics of car engines.
Gil-Martín, Luisa María; Hernández-Montes, Enrique; Segura-Naya, Armando
2010-06-01
A course in professional ethics for civil engineers was taught for the first time in Spain during the academic year 2007/08. In this paper a survey on the satisfaction and expectation of the course is presented. Surprisingly the students sought moral and ethical principles for their own ordinary lives as well as for their profession. Students were concerned about the law, but in their actions they were more concerned with their conscience, aware that it can be separate from the law.
FísicActiva: Applying Active Learning Strategies to a Large Engineering Lecture
ERIC Educational Resources Information Center
Auyuanet, Adriana; Modzelewski, Helena; Loureiro, Silvia; Alessandrini, Daniel; Míguez, Marina
2018-01-01
This paper presents and analyses the results obtained by applying Active Learning techniques in overcrowded Physics lectures at the University of the Republic, Uruguay. The course referred to is Physics 1, the first Physics course that all students of the Faculty of Engineering take in their first semester for all the Engineering-related careers.…
ERIC Educational Resources Information Center
Huett, Kim C.; Kawulich, Barbara
2015-01-01
Collaborating at two universities to improve teaching and learning in undergraduate engineering, an interdisciplinary team of researchers, instructors, and evaluators planned and implemented the use of multimedia case studies with students enrolled in an introductory engineering course. This qualitative action evaluation study focuses on results…
A Reactive Blended Learning Proposal for an Introductory Control Engineering Course
ERIC Educational Resources Information Center
Mendez, Juan A.; Gonzalez, Evelio J.
2010-01-01
As it happens in other fields of engineering, blended learning is widely used to teach process control topics. In this paper, the inclusion of a reactive element--a Fuzzy Logic based controller--is proposed for a blended learning approach in an introductory control engineering course. This controller has been designed in order to regulate the…
Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.
ERIC Educational Resources Information Center
Schlenker, Richard M.
Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…
Shaping Software Engineering Curricula Using Open Source Communities: A Case Study
ERIC Educational Resources Information Center
Bowring, James; Burke, Quinn
2016-01-01
This paper documents four years of a novel approach to teaching a two-course sequence in software engineering as part of the ABET-accredited computer science curriculum at the College of Charleston. This approach is team-based and centers on learning software engineering in the context of open source software projects. In the first course, teams…