Science.gov

Sample records for engineering deployment engineering

  1. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  2. 78 FR 775 - Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... Employment and Training Administration Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Hunt Valley, MD; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering)...

  3. 78 FR 12359 - Goodman Networks, Inc., Core Network Engineering (Deployment Engineering) Division Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Employment and Training Administration Goodman Networks, Inc., Core Network Engineering (Deployment Engineering) Division Including Workers in the Core Network Engineering (Deployment Engineering) Division in... of Goodman Networks, Inc., Core Network Engineering (Deployment Engineering) Division,...

  4. Activist engineering: changing engineering practice by deploying praxis.

    PubMed

    Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E

    2015-02-01

    In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?

  5. Emergency deployment of genetically engineered veterinary vaccines in Europe.

    PubMed

    Ramezanpour, Bahar; de Foucauld, Jean; Kortekaas, Jeroen

    2016-06-24

    On the 9th of November 2015, preceding the World Veterinary Vaccine Congress, a workshop was held to discuss how veterinary vaccines can be deployed more rapidly to appropriately respond to future epizootics in Europe. Considering their potential and unprecedented suitability for surge production, the workshop focussed on vaccines based on genetically engineered viruses and replicon particles. The workshop was attended by academics and representatives from leading pharmaceutical companies, regulatory experts, the European Medicines Agency and the European Commission. We here outline the present regulatory pathways for genetically engineered vaccines in Europe and describe the incentive for the organization of the pre-congress workshop. The participants agreed that existing European regulations on the deliberate release of genetically engineered vaccines into the environment should be updated to facilitate quick deployment of these vaccines in emergency situations. PMID:27208587

  6. Intelligent quality function deployment system in concurrent engineering environment

    NASA Astrophysics Data System (ADS)

    Lin, Zhihang; Che, Ada

    1998-10-01

    This paper describes work being undertaken in the development of an intelligent distributed quality function deployment (IDQFD) system, which supports product design team to transfer and deployment the `Voice of Customer' through `House of Quality' into the various stages of product planning, engineering and manufacturing. The requirement modeling of products, the optimization in QFD are indicated. The framework of the system, including QFD tools and platform for distributed collaborative work in QFD, is described. The strategy and methods for the collaboration processing in QFD process are presented. It shows promise for application in practice.

  7. In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Shintate, Kyoji; Usui, Motofumi; Tsujihata, Akio

    2009-11-01

    This paper describes design, ground testing, an in-orbit experiment, and a novel in-orbit operation for large deployable antenna reflectors (LDRs). Two LDRs (TX-LDR for transmitting and RX-LDR for receiving) are installed on Engineering Test Satellite VIII (ETS-VIII). The reflector design features that the antenna reflector whose aperture is 13 m in diameter (the mechanical dimension is 19m×17m) consists of 14 basic modules, and each basic module consists of a gold-plated molybdenum mesh, a system of cables, and a deployable frame structures. Several ground tests had been performed using a modular nature to advantage. Prior to the launch of ETS-VIII, we performed an in-orbit deployment experiment using LDREX-2 which consists of seven half-scale modules of LDR, to confirm evaluation accuracy. The LDREX-2 was launched by ARIANE 5 launch vehicle as a piggy-back payload. Deployment characteristics were measured to evaluate the accuracy of analytical prediction obtained by ground deployment testing. ETS-VIII was launched by H-IIA launch vehicle on 18 December 2006. After the successful injection into Geo Synchronous Orbit, the RX-LDR and the TX-LDR were successfully deployed on December 25th and 26th, respectively. We confirmed adequacy of the proposed design and ground verification methodology.

  8. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  9. Systematic Engine Uprate Technology Development and Deployment for Pipeline Compressor Engines through Increased Torque

    SciTech Connect

    Dennis Schmitt; Daniel Olsen

    2005-09-30

    Three methods were utilized to analyze key components of slow-speed, large-bore, natural gas integral engines. These three methods included the application of computational fluid dynamics (CFD), dynamic modal analysis using finite element analysis (FEA), and a stress analysis method also using FEA. The CFD analysis focuses primarily on the fuel mixing in the combustion chamber of a TLA engine. Results indicate a significant increase in the homogeneity of the air and fuel using high-pressure fuel injection (HPFI) instead of standard low-pressure mechanical gas admission valve (MGAV). A modal analysis of three engine crankshafts (TLA-6, HBA-6, and GMV-10) is developed and presented. Results indicate that each crankshaft has a natural frequency and corresponding speed that is well away from the typical engine operating speed. A frame stress analysis method is also developed and presented. Two different crankcases are examined. A TLA-6 crankcase is modeled and a stress analysis is performed. The method of dynamic load determination, model setup, and the results from the stress analysis are discussed. Preliminary results indicate a 10%-15% maximum increase in frame stress due to a 20% increase in HP. However, the high stress regions were localized. A new hydraulically actuated mechanical fuel valve is also developed and presented. This valve provides equivalent high-energy (supersonic) fuel injection comparable to a HPFI system, at 1/5th of the natural gas fuel pressure. This valve was developed in cooperation with the Dresser-Rand Corporation.

  10. Deployment of e-health services - a business model engineering strategy.

    PubMed

    Kijl, Björn; Nieuwenhuis, Lambert J M; Huis in 't Veld, Rianne M H A; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R

    2010-01-01

    We designed a business model for deploying a myofeedback-based teletreatment service. An iterative and combined qualitative and quantitative action design approach was used for developing the business model and the related value network. Insights from surveys, desk research, expert interviews, workshops and quantitative modelling were combined to produce the first business model and then to refine it in three design cycles. The business model engineering strategy provided important insights which led to an improved, more viable and feasible business model and related value network design. Based on this experience, we conclude that the process of early stage business model engineering reduces risk and produces substantial savings in costs and resources related to service deployment.

  11. Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Tsujihata, Akio; Hamamoto, Naokazu; Homma, Masanori

    2000-07-01

    Large deployable antenna reflectors for Engineering Test Satellite VIII (ETS-VIII) are now stated in the critical design phase. The Fourteen 4.8m modules, which construct a 19.2 m × 16.7 m (13m aperture) antenna reflector, have been fabricated as Engineering Models. Ground testing for the fourteen modules will be performed until next spring. This paper describes results of critical design for the antenna reflectors and their validation plans. Each module consists of a gold-plated molybdenum mesh surface, spacially determined cable network, and a deployable truss structure as a supporting structure. Stowed size is 1 m (diameter) × 4 m (height). In stowed configuration, the lowest eigen frequencies of the antenna reflector are 47 Hz (longitudinal) and 69 Hz (lateral) respectively. The lowest eigen frequency is 0.14 Hz. Solar ray transparency of the reflector structure is designed to be more than 85% to avoid excessive solar pressure torque. Weight of each reflector is expected to be less than 100 kg. In addition, we will perform a piggyback deployment experiment in transfer orbit using the second stage of the first flight H-II A vehicle in 2000. Half scale seven modules antenna reflector will be used to validate its deployment reliability. Design, analysis and test results of LDR-P are also introduced in this paper.

  12. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    NASA Technical Reports Server (NTRS)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  13. Can 100Gb/s wavelengths be deployed using 10Gb/s engineering rules?

    NASA Astrophysics Data System (ADS)

    Saunders, Ross; Nicholl, Gary; Wollenweber, Kevin; Schmidt, Ted

    2007-09-01

    A key challenge set by carriers for 40Gb/s deployments was that the 40Gb/s wavelengths should be deployable over existing 10Gb/s DWDM systems, using 10Gb/s link engineering design rules. Typical 10Gb/s link engineering rules are: 1. Polarization Mode Dispersion (PMD) tolerance of 10ps (mean); 2. Chromatic Dispersion (CD) tolerance of +/-700ps/nm 3. Operation at 50GHz channel spacing, including transit through multiple cascaded [R]OADMs; 4. Optical reach up to 2,000km. By using a combination of advanced modulation formats and adaptive dispersion compensation (technologies rarely seen at 10Gb/s outside of the submarine systems space), vendors did respond to the challenge and broadly met this requirement. As we now start to explore feasible technologies for 100Gb/s optical transport, driven by 100GE port availability on core IP routers, the carrier challenge remains the same. 100Gb/s links should be deployable over existing 10Gb/s DWDM systems using 10Gb/s link engineering rules (as listed above). To meet this challenge, optical transport technology must evolve to yet another level of complexity/maturity in both modulation formats and adaptive compensation techniques. Many clues as to how this might be achieved can be gained by first studying sister telecommunications industries, e.g. satellite (QPSK, QAM, LDCP FEC codes), wireless (advanced DSP, MSK), HDTV (TCM), etc. The optical industry is not a pioneer of new ideas in modulation schemes and coding theory, we will always be followers. However, we do have the responsibility of developing the highest capacity "modems" on the planet to carry the core backbone traffic of the Internet. As such, the key to our success will be to analyze the pros and cons of advanced modulation/coding techniques and balance this with the practical limitations of high speed electronics processing speed and the challenges of real world optical layer impairments. This invited paper will present a view on what advanced technologies are likely

  14. The integration of quality function deployment and Kansei Engineering: An overview of application

    NASA Astrophysics Data System (ADS)

    Lokman, Anitawati Mohd; Awang, Ahmad Azran; Omar, Abdul Rahman; Abdullah, Nur Atiqah Sia

    2016-02-01

    As a result of today's globalized world and robust development of emerging markets, consumers are able to select from an endless number of products that are mostly similar in terms of design and properties, as well as equivalent in function and performance. The survival of businesses in a competitive ambience requires innovation, consumer loyalty, and products that are easily identifiable by consumers. Today's manufacturers have started to employ customer research instruments to survive in the highly industrialized world—for example, Conjoint Analysis, Design of Experiments and Semantic Design of Environment. However, this work only attempts to concentrate on Kansei Engineering and Quality Function Deployment. Kansei Engineering (KE) is deemed as the most appropriate method to link consumers' feelings, emotions or senses to the properties of a product because it translates people's impressions, interests, and feelings to the solutions of product design. Likewise, Quality Function Deployment (QFD) enables clearer interpretation of the needs of consumers, better concepts or products, and enhanced communication to internal operations that must then manufacture and deliver the product or services. The integration of both KE and QFD is believed possible, as many product manufacturers and businesses have started to utilize systematized methods to translate consumers' needs and wants into processes and products. Therefore, this work addresses areas of various integrations of KE and QFD processes in the industry, in an effort to assist an integration of KE and QFD. This work aims to provide evidence on the integration mechanism to enable successful incorporation of consumer's implicit feelings and demands into product quality improvement, and simultaneously providing an overview of both KE and QFD from the perspective of a novice.

  15. Investigating the Quality of Mental Models Deployed by Undergraduate Engineering Students in Creating Explanations: The Case of Thermally Activated Phenomena

    ERIC Educational Resources Information Center

    Fazio, Claudio; Battaglia, Onofrio Rosario; Di Paola, Benedetto

    2013-01-01

    This paper describes a method aimed at pointing out the quality of the mental models undergraduate engineering students deploy when asked to create explanations for phenomena or processes and/or use a given model in the same context. Student responses to a specially designed written questionnaire are quantitatively analyzed using…

  16. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  17. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect

    Dixon, D.

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  18. Systems Engineering Lessons Learned from Solar Array Structures and Mechanisms Deployment

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Kraft, Thomas

    2013-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the Engineering Directorate at LaRC. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  19. Engineering Task Plan for Development and Fabrication and Deployment of Nested Fixed Depth Fluidic Sampling and At Tank Analysis Systems

    SciTech Connect

    BOGER, R.M.

    2000-10-30

    This engineering task plan identifies the resources, responsibilities, and schedules for the development and deployment of a mobile, variable depth sampling system and an at-tank analysis system. The mobile, variable depth sampling system concept was developed after a cost assessment indicated a high cost for multiple deployments of the nested, fixed-depth sampling system. The sampling will provide double-shell tank (DST) staging tank waste samples for assuring the readiness of the waste for shipment to the LAW/HLW plant for treatment and immobilization. The at-tank analysis system will provide ''real-time'' assessments of the samples' chemical and physical properties. These systems support the Hanford Phase 1B vitrification project.

  20. Programming System for the Applications of Deployment Methods in an Engineering Company

    NASA Astrophysics Data System (ADS)

    Komák, Martin; Králik, Marian

    2014-12-01

    This paper describes a software system for the application of spacing methods in engineering companies. As input, the system uses the material flows of the planned production. The solution is based on the triangle net method, which has been modified in this design. The main idea of the modifications of this method is to create a system that would locate each machine workplace based on a comparison and evaluation of all the possible locations in the given space. The system offers the possibility of creating a custom database of machine workplaces. The graphical output shows how the machine workplaces are spaced and the materials flow between them.

  1. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  2. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  3. Engineering Practice and Engineering Ethics.

    ERIC Educational Resources Information Center

    Lynch, William T.; Kline, Ronald

    2000-01-01

    Offers ways of applying science and technology studies to the teaching of engineering ethics. Suggests modifications of both detailed case studies on engineering disasters and hypothetical, ethical dilemmas employed in engineering ethics classes. (Author/CCM)

  4. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges

  5. Software-engineering challenges of building and deploying reusable problem solvers

    PubMed Central

    O’CONNOR, MARTIN J.; NYULAS, CSONGOR; TU, SAMSON; BUCKERIDGE, DAVID L.; OKHMATOVSKAIA, ANNA; MUSEN, MARK A.

    2012-01-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task–method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach. PMID:23565031

  6. Software-engineering challenges of building and deploying reusable problem solvers.

    PubMed

    O'Connor, Martin J; Nyulas, Csongor; Tu, Samson; Buckeridge, David L; Okhmatovskaia, Anna; Musen, Mark A

    2009-11-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task-method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach.

  7. Investigating the quality of mental models deployed by undergraduate engineering students in creating explanations: The case of thermally activated phenomena

    NASA Astrophysics Data System (ADS)

    Fazio, Claudio; Battaglia, Onofrio Rosario; Di Paola, Benedetto

    2013-12-01

    This paper describes a method aimed at pointing out the quality of the mental models undergraduate engineering students deploy when asked to create explanations for phenomena or processes and/or use a given model in the same context. Student responses to a specially designed written questionnaire are quantitatively analyzed using researcher-generated categories of reasoning, based on the physics education research literature on student understanding of the relevant physics content. The use of statistical implicative analysis tools allows us to successfully identify clusters of students with respect to the similarity to the reasoning categories, defined as “practical or everyday,” “descriptive,” or “explicative.” Through the use of similarity and implication indexes our method also enables us to study the consistency in students’ deployment of mental models. A qualitative analysis of interviews conducted with students after they had completed the questionnaire is used to clarify some aspects which emerged from the quantitative analysis and validate the results obtained. Some implications of this joint use of quantitative and qualitative analysis for the design of a learning environment focused on the understanding of some aspects of the world at the level of causation and mechanisms of functioning are discussed.

  8. Stirling engines

    SciTech Connect

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  9. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  10. Web Engineering

    SciTech Connect

    White, Bebo

    2003-06-23

    Web Engineering is the application of systematic, disciplined and quantifiable approaches to development, operation, and maintenance of Web-based applications. It is both a pro-active approach and a growing collection of theoretical and empirical research in Web application development. This paper gives an overview of Web Engineering by addressing the questions: (a) why is it needed? (b) what is its domain of operation? (c) how does it help and what should it do to improve Web application development? and (d) how should it be incorporated in education and training? The paper discusses the significant differences that exist between Web applications and conventional software, the taxonomy of Web applications, the progress made so far and the research issues and experience of creating a specialization at the master's level. The paper reaches a conclusion that Web Engineering at this stage is a moving target since Web technologies are constantly evolving, making new types of applications possible, which in turn may require innovations in how they are built, deployed and maintained.

  11. Engineering Liver

    PubMed Central

    Griffith, Linda G.; Wells, Alan; Stolz, Donna Beer

    2014-01-01

    Interest in “engineering liver” arises from multiple communities: therapeutic replacement; mechanistic models of human processes; and drug safety and efficacy studies. An explosion of micro- and nano-fabrication, biomaterials, microfluidic, and other technologies potentially afford unprecedented opportunity to create microphysiological models of human liver, but engineering design principles for how to deploy these tools effectively towards specific applications, including how to define the essential constraints of any given application (including available sources of cells, acceptable cost, and user-friendliness) are still emerging. Arguably less appreciated is the parallel growth in computational systems biology approaches towards these same problems – particularly, in parsing complex disease processes from clinical material, building models of response networks, and in how to interpret the growing compendium of data on drug efficacy and toxicology in patient populations. Here, we provide insight into how the complementary paths of “engineering liver” – experimental and computational – are beginning to interplay towards greater illumination of human disease states and technologies for drug development. PMID:24668880

  12. Re-engineering organizations for optimal deployment of smart materials and intelligent devices in civil infrastructure

    NASA Astrophysics Data System (ADS)

    El-Diraby, Tamer E.; Beheshti, Arzhang

    2002-06-01

    Smart materials and intelligent devices are promising to revolutionize data collection in civil infrastructure. However, their application has so far been very limited in scope. So far, there is no comprehensive mechanisms to integrate data generated by smart materials and intelligent devices into the overall IT systems of user organizations. This article outlines a framework for reengineering organizations for optimal utilization of smart materials and intelligent devices in the infrastructure development domain. The aim is to integrate data collection and management into the organizational culture. The framework includes three basic modules: assessing current practice, identifying level of deployment, and defining the needed actions.

  13. The James Webb Telescope Instrument Suite Layout: Optical System Engineering Considerations for a Large, Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Bos, Brent; Davila, Pam; Jurotich, Matthew; Hobbs, Gurnie; Lightsey, Paul; Contreras, Jim; Whitman, Tony

    2003-01-01

    The James Webb Space Telescope (JWST) is a space-based, infrared observatory designed to study the early stages of galaxy formation in the Universe. The telescope will be launched into an elliptical orbit about the second Lagrange point and passively cooled to 30-50 K to enable astronomical observations from 0.6 to 28 microns. A group from the NASA Goddard Space Flight Center and the Northrop Grumman Space Technology prime contractor team has developed an optical and mechanical layout for the science instruments within the JWST field of view that satisfies the telescope s high-level performance requirements. Four instruments required accommodation within the telescope's field of view: a Near-Infrared Camera (NIRCam) provided by the University of Arizona; a Near-Mared Spectrometer (NIRSpec) provided by the European Space Agency; a Mid-Infrared Instrument (MIRI) provided by the Jet Propulsion Laboratory and a European consortium; and a Fine Guidance Sensor (FGS) with a tunable filter module provided by the Canadian Space Agency. The size and position of each instrument's field of view allocation were developed through an iterative, concurrent engineering process involving the key observatory stakeholders. While some of the system design considerations were those typically encountered during the development of an infrared observatory, others were unique to the deployable and controllable nature of JWST. This paper describes the optical and mechanical issues considered during the field of view layout development, as well as the supporting modeling and analysis activities.

  14. Engineering Motion

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  15. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  16. Shockwave Engine: Wave Disk Engine

    SciTech Connect

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  17. Invisible Engineers

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  18. Information engineering

    SciTech Connect

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  19. Holistic Engineering

    ERIC Educational Resources Information Center

    Grasso, Domenico; Martinelli, David

    2007-01-01

    In this article, the authors discuss how to prepare high-quality engineers who are better equipped to serve in the changing global marketplace, and suggest educators in pursuing the holistic concept of the "unity of knowledge" that will yield a definition of engineering more fitting for the times ahead. The unity of knowledge is fundamentally…

  20. Systems Engineering

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando

    2015-01-01

    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  1. Electrochemical Engineering.

    ERIC Educational Resources Information Center

    Alkire, Richard C.

    1983-01-01

    Discusses engineering ramifications of electrochemistry, focusing on current/potential distribution, evaluation of trade-offs between influences of different phenomena, use of dimensionless numbers to assist in scale-over to new operating conditions, and economics. Also provides examples of electrochemical engineering education content related to…

  2. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  3. Genetic Engineering

    ERIC Educational Resources Information Center

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  4. Women Engineer.

    ERIC Educational Resources Information Center

    Neustadtl, Sara Jane

    This booklet is designed to provide information to girls about the nature of and possible career opportunities in engineering. Following a brief introduction in which the characteristics of engineers are outlined (such as ability to solve problems, interest in science/mathematics, and urge to make creative use of their intelligence), answers to…

  5. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  6. Electrochemical Engineering

    ERIC Educational Resources Information Center

    Alkire, Richard

    1976-01-01

    Discusses an electrochemical engineering course that combines transport phenomena and basic physical chemistry. Lecture notes and homework problems are used instead of a textbook; an outline of lecture topics is presented. (MLH)

  7. Harmonic engine

    DOEpatents

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  8. Engineering Geology

    ERIC Educational Resources Information Center

    Lee, Fitzhugh T.

    1974-01-01

    Briefly reviews the increasing application of geologic principles, techniques and data to engineering practices in the areas of land use and zoning controls, resource management energy programs and other fields. (BR)

  9. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  10. Photoreceptor engineering

    PubMed Central

    Ziegler, Thea; Möglich, Andreas

    2015-01-01

    Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators. PMID:26137467

  11. Engineering seismology

    USGS Publications Warehouse

    N.N, Ambraseys

    1991-01-01

    Twenty years have elasped since the first issue of Earthquakes & Volcanoes. Apart from the remarkable increases in the number of scientists actively enagaged in earth sciences, what are the outstanding achievements during the past 20 years in the field of engineering seismology, which is my own speciality?

  12. Harmonic engine

    SciTech Connect

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  13. Concurrent engineering

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Leger, L.; Hunter, D.; Jones, C.; Sprague, R.; Berke, L.; Newell, J.; Singhal, S.

    1991-01-01

    The following subject areas are covered: issues (liquid rocket propulsion - current development approach, current certification process, and costs of engineering changes); state of the art (DICE information management system, key government participants, project development strategy, quality management, and numerical propulsion system simulation); needs identified; and proposed program.

  14. Biocommodity Engineering.

    PubMed

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  15. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  16. Enhancing Engineering Education through Engineering Management

    ERIC Educational Resources Information Center

    Pence, Kenneth R.; Rowe, Christopher J.

    2012-01-01

    Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…

  17. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Berard, Edward V.

    1988-01-01

    The following topics are discussed in the context of software engineering: early use of the term; the 1968 NATO conference; Barry Boehm's definition; four requirements fo software engineering; and additional criteria for software engineering. Additionally, the four major requirements for software engineering--computer science, mathematics, engineering disciplines, and excellent communication skills--are discussed. The presentation is given in vugraph form.

  18. Engineering Review Information System

    NASA Technical Reports Server (NTRS)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  19. Re-engineering Engineering Education

    ERIC Educational Resources Information Center

    Gordon, Bernard M.; Silevitch, Michael B.

    2009-01-01

    In 2005, leaders gathered by the National Association of Manufacturers declared yet another "STEM" emergency. In the face of global competition, they argued, the number of bachelor's degrees awarded annually to U.S. students in science, math and engineering must double by 2015. In fact, the need for STEM talent is even more critical today as the…

  20. Exoskeletal Engine

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C. (Inventor); Blankson, Isaiah M. (Inventor); Richter, William A. (Inventor)

    2002-01-01

    A turbojet engine is made from a drum-like portion having a circular blade section extending inwardly therefrom, a support member, and a bearing arranged around a circle having a diameter substantially equal to or greater than the diameter of the blade section. The drum-like portion is rotatably mounted within the support member on the bearing. Instead of a turbine spinning on a shaft, a turbine spinning within a drum is employed.

  1. Engineering Tribology

    NASA Astrophysics Data System (ADS)

    Williams, John

    An ideal textbook for a first tribology course, this book provides an interdisciplinary understanding of the field. It includes materials constraints, real design problems and solutions (such as those for journal and rolling element bearing), cams and followers and heavily loaded gear teeth. Including physics, materials science, and surface and lubricant chemistry, the volume integrates quantitative material from a wide variety of disciplines with traditional engineering approaches.

  2. Planetary engineering

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  3. Planetary engineering

    NASA Astrophysics Data System (ADS)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  4. Biocommodity Engineering.

    PubMed

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  5. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  6. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar

  7. Engineering rheology

    SciTech Connect

    Tanner, R.I.

    1985-01-01

    This book is a guide, with some illustrations, to the behavior or non-Newtonian fluids in engineering. The book is centered around kinematics: that there is a great interplay of the microscopic variables relevant to a non-Newtonian fluid and the stresses developed in a given large-scale kinematic field. The text starts with surveys of some typical non-Newtonian behavior and of classical continuum mechanics and this is followed by a description of the two main kinematic fields - shearing and extensional flows. Recommendations are made for the choice of constitutive relation for various problems - kinematics is the main factor in the choice of equation.

  8. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  9. Turbine engine

    SciTech Connect

    Greer, D.

    1988-02-16

    In a turbine propulsion engine, an elongated motor is described including a power means and having a drive shaft projecting therefrom. A first compressor includes an elongated rotatable first casing coaxially mounted upon the motor having a fuel inlet for pressure feeding of fuel lengthwise of the first compressor. A second compressor includes a casing coaxially mounted upon and along the first compressor casing secured to the motor having an air inlet at its forward end for feeding high velocity compressed air lengthwise of the second compressor casing. An intermediate diverging casing at one end is peripherally connected to the second compressor casing having inner and outer diffusor chambers communicating respectively with the compressor for receiving high velocity vaporized fuel and compressed air. A turbine casing at one end is peripherally connected to the intermediate casing and at its other end having a converging exhaust outlet. An elongated combustion chamber of circular cross-section rotatably mounted and spaced within and journaled upon the turbine casing; an engine shaft extending axially through the combustion chamber, journaled upon the turbine casing and axially connected to the drive shaft.

  10. Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design

    SciTech Connect

    Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H.; Heuze, F.E.; Butler, M.W.

    1996-09-01

    While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

  11. Radial engine

    SciTech Connect

    Kmicikiewicz, M.A.

    1988-03-01

    A radial engine is described comprising: a housing; equally spaced openings disposed in ring-like arrangement on the periphery of the housing; a piston and cylinder arrangement in each of the opening, a piston rod for each arrangement fixed to and extending radially inwardly from its respective piston and through its respective opening; shoe means pivotally attached at the other end of each of the piston rod; radial guide means extending in the housing in line with each of the piston rods, and the shoe means provided with guide means followers to ensure radial reciprocal movement of the piston rods and shoe means; and a connecting ring journaled on a crankshaft for circular translation motion in the housing, the ring including a circular rim. Each shoe means includes an arcuate follower member being slidably connected to the rim of the connecting ring.

  12. How Engineers Engineer: Lessons from My First Big Engineering Project

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2008-01-01

    Little did the author realize how much his first engineering project would change his career path, but when it came, he was hooked forever on doing R&D-type engineering. In this article, the author takes the reader back to his first really important electrical engineering project. While the technology he worked on back then is antiquated by…

  13. The responsibilities of engineers.

    PubMed

    Smith, Justin; Gardoni, Paolo; Murphy, Colleen

    2014-06-01

    Knowledge of the responsibilities of engineers is the foundation for answering ethical questions about the work of engineers. This paper defines the responsibilities of engineers by considering what constitutes the nature of engineering as a particular form of activity. Specifically, this paper focuses on the ethical responsibilities of engineers qua engineers. Such responsibilities refer to the duties acquired in virtue of being a member of a group. We examine the practice of engineering, drawing on the idea of practices developed by philosopher Alasdair MacIntyre, and show how the idea of a practice is important for identifying and justifying the responsibilities of engineers. To demonstrate the contribution that knowledge of the responsibilities of engineers makes to engineering ethics, a case study from structural engineering is discussed. The discussion of the failure of the Sleipner A Platform off the coast of Norway in 1991 demonstrates how the responsibilities of engineers can be derived from knowledge of the nature of engineering and its context.

  14. Metabolic Engineering X Conference

    SciTech Connect

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  15. Industrial Education. "Small Engines".

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  16. Engineering Allostery

    PubMed Central

    Raman, Srivatsan; Taylor, Noah; Genuth, Naomi; Fields, Stanley; Church, George M.

    2014-01-01

    Allosteric proteins have great potential in synthetic biology, but our limited understanding of the molecular underpinnings of allostery has hindered the development of designer molecules, including transcription factors with new DNA-binding or ligand-binding specificities that respond appropriately to inducers. Such allosteric proteins could function as novel switches in complex circuits, metabolite sensors, or orthogonal regulators for independent, inducible control of multiple genes. Advances in DNA synthesis and next-generation sequencing technologies have enabled the assessment of millions of mutants in a single experiment, providing new opportunities to study allostery. Using the classic LacI protein as an example, we describe a genetic selection system using a bidirectional reporter to capture mutants in both allosteric states, allowing the positions most critical for allostery to be identified. This approach is not limited to bacterial transcription factors, and could reveal new mechanistic insights and facilitate engineering of other major classes of allosteric proteins such as nuclear receptors, two-component systems, G-protein coupled receptors and protein kinases. PMID:25306102

  17. Rotary engine

    SciTech Connect

    Wilson, Z.

    1990-08-28

    This paper discusses an engine. It comprises a cylinder block; cylinders contained in the cylinder block; matching pistons, each piston reciprocatingly received in one of the cylinders; matching piston rods, each rod connected to one of the pistons and extending outwardly from the block; sheave gears, each sheave gear having a sheave gear axis and a circumference disposed about the sheave gear axis bearing a set of gear teeth thereon; means connecting a respective one of the sheave gears to a respective one of the pistons rods such that reciprocation of the pistons in the cylinders causes rotation of the sheave gears about the sheave gears axes; a combination flywheel/ring gear having a ring gear axis and an outer circumference disposed about the axis bearing a set of ring gear teeth thereon; and means positioning the flywheel/ring gear such that the gear teeth on the flywheel/ring gear engaged the gear teeth on the sheave gears. The flywheel/ring gear is rotated about by its axis by rotation of the sheave gears upon reciprocation of the pistons in the cylinders.

  18. Ingenieur Better than Engineer.

    ERIC Educational Resources Information Center

    Aracil, Jose-L. Juan

    1988-01-01

    Describes reforms of university engineering education in Spain and suggests these reforms as guidelines for the training of European Engineers. Discusses the cyclic approach whereby an engineer acquires generalized "formation" via specialization. States that cultural differences should be respected. (CW)

  19. Engineering Encounters: Blasting off with Engineering

    ERIC Educational Resources Information Center

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  20. Re-Engineering the Engineering Degree Course.

    ERIC Educational Resources Information Center

    Marsh, Rodney

    Students enrolled to degree programs in 1997 will become the first graduates of the 21st century. Engineering courses in the School of Engineering at Leeds Metropolitan University have changed immensely in the last two years, so as to support new markets. Disciplines such as industrial engineering, electronics and computing have enjoyed their…

  1. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  2. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  3. Using Collaborative Engineering to Inform Collaboration Engineering

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.

    2012-01-01

    Collaboration is a critical competency for modern organizations as they struggle to compete in an increasingly complex, global environment. A large body of research on collaboration in the workplace focuses both on teams, investigating how groups use teamwork to perform their task work, and on the use of information systems to support team processes ("collaboration engineering"). This research essay presents collaboration from an engineering perspective ("collaborative engineering"). It uses examples from professional and student engineering teams to illustrate key differences in collaborative versus collaboration engineering and investigates how challenges in the former can inform opportunities for the latter.

  4. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications.

  5. Ontology Languages and Engineering

    NASA Astrophysics Data System (ADS)

    Horrocks, Ian

    Ontologies and ontology based systems are rapidly becoming mainstream technologies, with RDF and OWL now being deployed in diverse application domains, and with major technology vendors starting to augment their existing systems with ontological reasoning. For example, Oracle Inc. recently enhanced its well-known database management system with modules that use RDF/OWL ontologies to support "semantic data management", and their product brochure lists numerous application areas that can benefit from this technology, including Enterprise Information Integration, KnowledgeMining, Finance, Compliance Management and Life Science Research. The design of the high quality ontologies needed to support such applications is, however, still extremely challenging. In this talk I will describe the design of OWL, show how it facilitates the development of ontology engineering tools, describe the increasingly wide range of available tools, and explain how such tools can be used to support the entire design, deployment and maintenance ontology life-cycle.

  6. Software engineering methodologies and tools

    NASA Technical Reports Server (NTRS)

    Wilcox, Lawrence M.

    1993-01-01

    Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.

  7. Alternative Automobile Engines

    ERIC Educational Resources Information Center

    Wilson, David Gordon

    1978-01-01

    Requirements for cleaner and more efficient engines have stimulated a search for alternatives to the conventional spark-ignition engine. So far, the defects of the alternative engines are clearer than the virtues. The following engines are compared: spark ignition, diesel, vapor-cycle, Stirling, and gas turbine. (Author/MA)

  8. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  9. Exo-Skeletal Engine: Novel Engine Concept

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Blankson, Isaiah M.

    2004-01-01

    The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.

  10. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  11. Software Engineering Guidebook

    NASA Technical Reports Server (NTRS)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  12. Biomedical engineering education through global engineering teams.

    PubMed

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  13. Site systems engineering: Systems engineering management plan

    SciTech Connect

    Grygiel, M.L.

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  14. Teaching Engineering Practices

    NASA Astrophysics Data System (ADS)

    Cunningham, Christine M.; Carlsen, William S.

    2014-03-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be disregarded safely if the practices of engineering are better articulated and modeled through student engagement in engineering projects. A clearer distinction between science and engineering practices is outlined, and prior research is described that suggests that precollege engineering design can strengthen children's understandings about scientific concepts. However, a piecemeal approach to teaching engineering practices is unlikely to result in students understanding engineering as a discipline. The implications for science teacher education are supplemented with lessons learned from a number of engineering education professional development projects.

  15. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    NASA Astrophysics Data System (ADS)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  16. Humanitarian engineering in the engineering curriculum

    NASA Astrophysics Data System (ADS)

    Vandersteen, Jonathan Daniel James

    There are many opportunities to use engineering skills to improve the conditions for marginalized communities, but our current engineering education praxis does not instruct on how engineering can be a force for human development. In a time of great inequality and exploitation, the desire to work with the impoverished is prevalent, and it has been proposed to adjust the engineering curriculum to include a larger focus on human needs. This proposed curriculum philosophy is called humanitarian engineering. Professional engineers have played an important role in the modern history of power, wealth, economic development, war, and industrialization; they have also contributed to infrastructure, sanitation, and energy sources necessary to meet human need. Engineers are currently at an important point in time when they must look back on their history in order to be more clear about how to move forward. The changing role of the engineer in history puts into context the call for a more balanced, community-centred engineering curriculum. Qualitative, phenomenographic research was conducted in order to understand the need, opportunity, benefits, and limitations of a proposed humanitarian engineering curriculum. The potential role of the engineer in marginalized communities and details regarding what a humanitarian engineering program could look like were also investigated. Thirty-two semi-structured research interviews were conducted in Canada and Ghana in order to collect a pool of understanding before a phenomenographic analysis resulted in five distinct outcome spaces. The data suggests that an effective curriculum design will include teaching technical skills in conjunction with instructing about issues of social justice, social location, cultural awareness, root causes of marginalization, a broader understanding of technology, and unlearning many elements about the role of the engineer and the dominant economic/political ideology. Cross-cultural engineering development

  17. The Phillips Stirling engine

    SciTech Connect

    Hargreaves, C.M.

    1991-01-01

    This book is about the Stirling engine and its development from the heavy cast-iron machine of the 19th century to that of today. It is a history of a research effort spanning nearly 50 years, together with an outline of principles, and some technical details and descriptions of the more important engines. Contents include: the hot-air engine; the 20th-century revival; the Stirling cycle; rhombic-drive engines; heating and cooling; pistons and seals; electric generators and heat pumps; exotic heat sources; the engine and the environment; swashplate engines; and the past and the future.

  18. Service Cart For Engines

    NASA Technical Reports Server (NTRS)

    Ng, Gim Shek

    1995-01-01

    Cart supports rear-mounted air-cooled engine from Volkswagen or Porsche automobile. One person removes, repairs, tests, and reinstalls engine of car, van, or home-built airplane. Consists of framework of wood, steel, and aluminum components supported by four wheels. Engine lifted from vehicle by hydraulic jack and gently lowered onto waiting cart. Jack removed from under engine. Rear of vehicle raised just enough that engine can be rolled out from under it. Cart easily supports 200-lb engine. Also used to hold transmission. With removable sheet-metal top, cart used as portable seat.

  19. Engineering and Engineering Technology Degrees, 1990.

    ERIC Educational Resources Information Center

    Ellis, R. A.

    1991-01-01

    The number of B.S., M.S./P.E., and Ph.D. degrees in engineering and engineering technology awarded by U.S. colleges and universities is tabulated according to the following criteria: by state, by school, curriculum, type of recipient, and by school and degree level. (KR)

  20. Engineering Ethics in the Subject of Engineering History

    NASA Astrophysics Data System (ADS)

    Isohata, Hiroshi

    Engineering ethics has been focused in the field of engineering education since the introduction of accreditation system of engineering education. In this paper, contents of the subject of engineering history are examined and discussed from the viewpoints of education of engineering ethics through a practical case of civil engineering history in a college. For the first step, codes of engineering ethics regulated in various engineering organizations are analyzed and the common contents are extracted to set the requirements for the education of engineering ethics. Then contents of the subject of engineering history are examined according to the requirements. Finally, conditions of engineering history for engineering ethics are discussed.

  1. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  2. Carburetion in aviation engines

    NASA Technical Reports Server (NTRS)

    POINCARE

    1923-01-01

    This report tries to solve the problem of supplying the engine cylinders with a mixture of fuel and air in the right ratio to obtain the greatest power from the engine with the least consumption of fuel.

  3. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  4. Twin engine synchronizer

    SciTech Connect

    Kobus, J.R.

    1988-05-03

    This patent describes an apparatus for synchronizing the speeds of two engines, each having its own throttle level connected by an associated cable to a respective hand throttle lever, comprising moving means carried by the throttle lever of one of the engines for moving the throttle lever of the one engine independently of its associated cable and its respective hand throttle lever to increase or decrease the speed of the one engine until the speed of the one engine matches the speed of the other engine. The moving means moves the throttle lever of the one engine without moving its associated cable or its respective hand throttle lever, and actuating means mounted remote from the throttle lever of the one engine for actuating the moving means.

  5. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  6. Biochemical Engineering Fundamentals

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1976-01-01

    Discusses a biochemical engineering course that is offered as part of a chemical engineering curriculum and includes topics that influence the behavior of man-made or natural microbial or enzyme reactors. (MLH)

  7. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  8. Structural Engineering: Overview

    NASA Technical Reports Server (NTRS)

    Castro, Edgar

    2011-01-01

    This slide presentation presents the work of the Structural Engineering Division of the Engineering Directorate. The work includes: providing technical expertise and leadership for the development, evaluation, and operation of structural, mechanical, and thermal spaceflight systems.

  9. Siege engine dynamics

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2005-07-01

    The medieval siege engine is a historically important machine that has latterly been adopted for the purpose of physics instruction. Here we analyse the historical developments and show why these engines ultimately evolved into the highly efficient trebuchet.

  10. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  11. COBRA Main Engine Project

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim; Sides, Steve; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    The COBRA (CO-Optimized Booster for Reusable Applications) project include the following: 1. COBRA main engine project team. 2. COBRA and RLX cycles selected. 3. COBRA proto-type engine approach enables mission success. 4. COBRA provides quick, low cost demo of cycle and technologies. 5. COBRA cycle I risk reduction supports. 6. Achieving engine safety. 6. RLX cycle I risk reduction supports. 7. Flight qualification. 9. Life extension engine testing.

  12. Data management in engineering

    NASA Technical Reports Server (NTRS)

    Browne, J. C.

    1976-01-01

    An introduction to computer based data management is presented with an orientation toward the needs of engineering application. The characteristics and structure of data management systems are discussed. A link to familiar engineering applications of computing is established through a discussion of data structure and data access procedures. An example data management system for a hypothetical engineering application is presented.

  13. Engineering for All

    ERIC Educational Resources Information Center

    Lottero-Perdue, Pamela S.; Lovelidge, Sarah; Bowling, Erin

    2010-01-01

    As calls for science, technology, engineering, and mathematics (STEM) education at the elementary level become more vociferous, elementary teachers may be wondering whether engineering is meant for "all" students. However, the authors assert that engineering can be taught in inclusive environments. It may be especially empowering for those who…

  14. Personality Characteristics of Engineers

    ERIC Educational Resources Information Center

    van der Molen, Henk T.; Schmidt, Henk G.; Kruisman, Gerard

    2007-01-01

    The objective of the current study was to investigate the personality characteristics of a group of engineers with a variety of years of experience. It was executed to remedy shortcomings of the literature concerning this issue and to produce suggestions for a postgraduate training programme for engineers. A total of 103 engineers were tested with…

  15. Graduate Engineering Education Today

    ERIC Educational Resources Information Center

    Pettit, Joseph M.; Gere, James M.

    1969-01-01

    Describes rapid growth of graduate education in engineering between 1900 and 1969. Points out need for graduate curricula in engineering that are both practical and research-oriented. Adapted from paper presented at International Conference on the Trends in the Teaching and Training of Engineers, Paris, France, December 9-13, 1968, and at Second…

  16. Principles of Naval Engineering.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of shipboard machinery, equipment, and engineering plants are presented in this text prepared for engineering officers. A general description is included of the development of naval ships, ship design and construction, stability and buoyancy, and damage and casualty control. Engineering theories are explained on the background of ship…

  17. Humanities in Engineering Education.

    ERIC Educational Resources Information Center

    Ruprecht, Robert

    1997-01-01

    States that engineers contribute tremendously to the changing face of the earth, and the ever more urgent call for languages, management, and law competencies for engineers is an expression of the need for a grounding in humanities. Discusses the role of humanities in engineering education in the context of world economics and the role of…

  18. Program (systems) engineering

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.

    2004-01-01

    Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.

  19. Advanced engineering environment pilot project.

    SciTech Connect

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  20. 21. Engine identified as a 'single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Engine identified as a 'single cylinder vacuum assist engine for Tod tandem compound engine' showing compressor. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  1. 20. Engine identified as a 'single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Engine identified as a 'single cylinder vacuum assist engine for the Tod tandem compound engine' showing crank end. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  2. Solar powered Stirling engine

    SciTech Connect

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  3. CF 6 engine diagnostics

    NASA Technical Reports Server (NTRS)

    Stricklin, R.

    1981-01-01

    A summary of the activities which led to defining deterioration rates of the CF6 family of engines, a description of what was learned, and an identification of means of conserving fuel based upon the program findings are presented. The program to define the deterioration levels and modes for the CF6 family of engines involved four distinct phases: analysis of inbound engine test results, analysis of airline cruise data, analysis of airline test cell data resulting from testing of refurbished engines, and inspection of engine hardware.

  4. Diesel engine combustion processes

    SciTech Connect

    1995-12-31

    Diesel Engine Combustion Processes guides the engineer and research technician toward engine designs which will give the ``best payoff`` in terms of emissions and fuel economy. Contents include: Three-dimensional modeling of soot and NO in a direct-injection diesel engine; Prechamber for lean burn for low NOx; Modeling and identification of a diesel combustion process with the downhill gradient search method; The droplet group micro-explosions in W/O diesel fuel emulsion sprays; Combustion process of diesel spray in high temperature air; Combustion process of diesel engines at regions with different altitude; and more.

  5. Diagnosing diesel engines

    SciTech Connect

    O'Connor, L.

    1992-03-01

    This paper reports that problems with diesel engines that have reciprocating parts have long defied a systematic approach to analysis. Engine phenomena such as combustion pressures, valve seating impacts, and piston vibrations reflect directly on how an engine is performing and would be useful to measure. However, these occur inside an engine block and for the most part are not possible to measure directly with sensors. Diesel engine manufacturers are finding new ways to troubleshoot machinery by using sophisticated signal-processing techniques that detect combustion anomalies and high-speed data-acquisition units that sample multiple measurement parameters.

  6. Armored Geomembrane Cover Engineering

    PubMed Central

    Foye, Kevin

    2011-01-01

    Geomembranes are an important component of modern engineered barriers to prevent the infiltration of stormwater and runoff into contaminated soil and rock as well as waste containment facilities—a function generally described as a geomembrane cover. This paper presents a case history involving a novel implementation of a geomembrane cover system. Due to this novelty, the design engineers needed to assemble from disparate sources the design criteria for the engineering of the cover. This paper discusses the design methodologies assembled by the engineering team. This information will aid engineers designing similar cover systems as well as environmental and public health professionals selecting site improvements that involve infiltration barriers. PMID:21776229

  7. Engineering salaries up

    NASA Astrophysics Data System (ADS)

    Earnings of engineers in the United States kept pace with inflation, according to a recent salary survey by the Engineering Manpower Commission of the American Association of Engineering Societies (AAES). Salaries and the consumer price index each rose 7.7% for the 12-month period ending February 1 of this year. The national average salary for engineers is now $34,400, the survey results show. The highest percentage increases in salaries were in the mechanical and chemical engineering industries, with jumps of 10.0 and 9.5%, respectively.

  8. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  9. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications.

  10. Stirling engine application study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  11. Perceptions regarding biomedical engineering

    NASA Astrophysics Data System (ADS)

    Pearson, James E.

    1995-10-01

    Perceptions of biomedical engineering are important because they can influence private and public decisions on R&D funding and public policy. A survey was conducted of a group of persons active in biomedical engineering research in an attempt to determine the perceptions of the general public and of the biomedical community regarding biomedical engineering. The public is believed to have 'a little' knowledge of biomedical engineering, and to have a wide range of opinions on what biomedical engineers do. The survey respondents believe they are in general agreement with the public on several questions regarding biomedical engineering. However, the public is believed to be more inclined than workers in the field to think that biomedical engineering increases the cost of health care, and to be less supportive of increased R&D funding for health care technology.

  12. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  13. Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering has the objectives of supporting in Canada the following activities: improvement of vehicles, propulsion systems, and transportation-related facilities and services; improvements in the design and operation of maritime engineering works; protection of the environment; enhancement of energy flexibility; advancement of firms engaged in manufacturing and resource extraction; and related programs of other government departments and agencies. In 1990-91 the Institute, which had changed its name that year from the Division of Mechanical Engineering, consolidated its research activities from nine laboratories to six programs. Activities in these six programs are described: Advanced Manufacturing Technology, Coastal Zone Engineering, Cold Regions Engineering, Combustion and Fluids Engineering, Ground Transportation Technology, and Machinery and Engine Technology.

  14. Senior Engineer - Head of Paranal Engineering Department

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Purpose and scope of the position: The role of the Paranal Engineering Department is to carry out the assembly, integration and troubleshooting of the VLT (Very Large Telescope), the instrumentation of the VLT and of the VLTI (VLT Interferometry), of the VST (VLT Survey Telescope), VISTA (Visible and Infrared Survey Telescope), of all the facilities required on the Observatory (Power Station, Air Compressors, Chillers, etc), and to provide general engineering support of maintenance, troubleshooting and fault repair to nightly operations.

  15. Mechanical Engineering Department technical review

    SciTech Connect

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  16. A Powerful New Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through Small Business Innovation Research (SBIR) funding from NASA's Glenn Research Center, Moller International created a new coating for rotary engines, which significantly improves the fuel consumption of a vehicle while reducing emissions. The new coatings are offered in the new Rotapower(R) engine, which is produced and distributed by Moller subsidiary, Freedom Motors, Inc. The coating allows the Rotapower engine to function smoother than other models, reducing wear and protecting the engine. The Rotapower engine has the ability to operate on a variety of fuels, including gasoline, natural gas, diesel, alcohol, and kerosene. A small and lightweight engine, it is projected to replace many of today's bulkier versions. The 10 horsepower model fits in the palm of one's hand, while the 160 horsepower model fits into a 5-gallon bucket. The clean running Rotapower engine is environmentally appealing, because it eliminates over 98 percent of the total emissions given off by traditional piston engines. Fewer pollutants are spewed into the air, making it especially attractive in areas where air pollution is a major problem. Due to the clean-burning nature of the engine, it meets the stringent standards set by the California Air Resources Board. The engine also has numerous commercial benefits in several types of recreational, industrial, and transportation applications, including personal watercraft, snowmobiles, portable generators. and pumps.

  17. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-01

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  18. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  19. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  20. Advanced rotary engine studies

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  1. Piston engine configuration alternatives

    SciTech Connect

    Wyczalek, F.A.

    1989-01-01

    This paper provides a technological assessment of alternate engine component configuration and material alternatives. It includes a comparative analysis of key characteristics of Gasoline, Diesel and Gas Turbine engines built by Daihatsu, Honda, Isuzu, Mazda, Mitsubishi, Nissan, Suburu, Suzuki and Toyota. The piston engines range from two to ten cylinders with inline, vee and opposed configurations. Furthermore, additional special features and alternative choices include variable compression ratio, ceramic structural components, supercharger, turbocharger, twin turbocharger, supercharger-turbocharger combined and the regenerative gas turbine.

  2. Engineered human vaccines

    SciTech Connect

    Sandhu, J.S. . Div. of Immunology and Neurobiology)

    1994-01-01

    The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.

  3. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  4. Rotary engine cooling system

    NASA Technical Reports Server (NTRS)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  5. Diesel Engine Alternatives

    SciTech Connect

    Ryan, T

    2003-08-24

    There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

  6. SOFIA Engineer Thomas Keilig

    NASA Video Gallery

    Thomas Keilig, the German Aerospace Agency's (DLR) chief telescope engineer for the Stratospheric Observatory for Infrared Astronomy (SOFIA), comments on technical details of the high-tech primary ...

  7. Stirling Engine Heat Pump

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  8. Engineering of Secondary Metabolism.

    PubMed

    O'Connor, Sarah E

    2015-01-01

    Secondary (specialized) metabolites, produced by bacteria, fungi, plants, and other organisms, exhibit enormous structural variation, and consequently display a wide range of biological activities. Secondary metabolism improves and modulates the phenotype of the host producer. Furthermore, these biological activities have resulted in the use of secondary metabolites in a variety of industrial and pharmaceutical applications. Metabolic engineering presents a powerful strategy to improve access to these valuable molecules. A critical overview of engineering approaches in secondary metabolism is presented, both in heterologous and native hosts. The recognition of the increasing role of compartmentalization in metabolic engineering is highlighted. Engineering approaches to modify the structure of key secondary metabolite classes are also critically evaluated.

  9. Product engineering guide

    SciTech Connect

    McCarty, C.E.

    1989-12-01

    The semiconductor product engineers job requires knowledge and expertise related to many different subjects. This report provides guidance for newcomers to product engineering and is a consise reference for all others involved in product engineering. Subjects addressed are Customer/Supplier interactions, component development sequence, production schedule support, component characterization, product specifications, test equipment requirements, product qualification, characterization and development reports, preferred parts list, standard packaging, and finally, classification and security considerations. This guide is intended to help standardize and simplify the component development sequence presently used in the semiconductor product engineering department. 3 figs., 2 tabs.

  10. Engine and method for operating an engine

    DOEpatents

    Lauper, Jr., John Christian; Willi, Martin Leo; Thirunavukarasu, Balamurugesh; Gong, Weidong

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  11. Perturbing engine performance measurements to determine optimal engine control settings

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  12. Students' Changing Images of Engineering and Engineers. Research Brief

    ERIC Educational Resources Information Center

    Jocuns, Andrew; Stevens, Reed; Garrison, Lari; Amos, Daniel

    2008-01-01

    This study analyzes the images of engineers and engineering that students construct over the course of their undergraduate engineering educations. Students in their first year of study to become engineers knew very little about the work they would be doing as an engineer and their expectations were more specific, hopeful, and high status than…

  13. NASA Engineering Network (NEN)

    NASA Technical Reports Server (NTRS)

    Topousis, Daria; Trevarthen, Ellie; Yew, Manson

    2008-01-01

    This slide presentation reviews the NASA Engineering Network (NEN). NEN is designed to search documents over multiple repositories, submit and browse NASA Lessons Learned, collaborate and share ideas with other engineers via communities of practice, access resources from one portal, and find subject matter experts via the People, Organizations, Projects, Skills (POPS) locator.

  14. The Engineering Technician.

    ERIC Educational Resources Information Center

    American Society for Engineering Education, Washington, DC.

    Occupational and educational information concerning 12 categories of engineering technicians and engineering technology is presented. This information covers the role of the technicians, student qualifications, typical job titles, and typical educational programs. The categories presented are (1) air conditioning, heating, and refrigeration, (2)…

  15. Science & Engineering Indicators--1987.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    This volume was written to reflect an increased awareness of the complementary roles played by science and engineering research and engineering in creating both new knowledge and new technological products and processes. It was designed to provide a broad base of quantitative information about the structure and function of science and technology…

  16. Engineering Design Concepts

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2004-01-01

    In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…

  17. Make Room for Engineering

    ERIC Educational Resources Information Center

    Boesdorfer, Sarah; Greenhalgh, Scott

    2014-01-01

    The "Next Generation Science Standards" (NGSS Lead States 2013) urge science teachers to include engineering practices and ideas in their already full science curriculum, but many teachers do not know where to start. Only 7% of high school science teachers report feeling "very well prepared" to teach engineering. The…

  18. Knowledge Engineering and Education.

    ERIC Educational Resources Information Center

    Lopez, Antonio M., Jr.; Donlon, James

    2001-01-01

    Discusses knowledge engineering, computer software, and possible applications in the field of education. Highlights include the distinctions between data, information, and knowledge; knowledge engineering as a subfield of artificial intelligence; knowledge acquisition; data mining; ontology development for subject terms; cognitive apprentices; and…

  19. Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  20. Thermoacoustic engines and refrigerators

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.

    2012-06-01

    Thermoacoustic engines and refrigerators use gas inertia and compressibility to eliminate many of the mechanical contrivances required by traditional engines and refrigerators while providing potentially attractive options that might reduce environmental impacts. The operation of both standing-wave and traveling-wave devices will be described and illustrated with thermoacoustic devices that have been used outside the laboratory.

  1. Concurrent Software Engineering Project

    ERIC Educational Resources Information Center

    Stankovic, Nenad; Tillo, Tammam

    2009-01-01

    Concurrent engineering or overlapping activities is a business strategy for schedule compression on large development projects. Design parameters and tasks from every aspect of a product's development process and their interdependencies are overlapped and worked on in parallel. Concurrent engineering suffers from negative effects such as excessive…

  2. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  3. Think Engineer, Think Male?

    ERIC Educational Resources Information Center

    Male, Sally A.; Bush, Mark B.; Murray, Kevin

    2009-01-01

    Engineering education needs to develop the competencies required for engineering work, and attract and retain students from diverse backgrounds. This study investigated the possibility that the perceived importance of competencies is subconsciously influenced by gendered assumptions, and as a consequence, this lowers the status given to…

  4. Free piston stirling engines

    SciTech Connect

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  5. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  6. First-Grade Engineers

    ERIC Educational Resources Information Center

    Bautista, Nazan Uludag; Peters, Kari Nichole

    2010-01-01

    Can students build a house that is cost effective and strong enough to survive strong winds, heavy rains, and earthquakes? First graders in Ms. Peter's classroom worked like engineers to answer this question. They participated in a design challenge that required them to plan like engineers and build strong and cost-effective houses that would fit…

  7. Family Style Engineering

    ERIC Educational Resources Information Center

    Smetana, Lara K.; Schumaker, Joan Chadde; Goldfien, Wendy Severin; Nelson, Cheryl

    2012-01-01

    Cunningham and Lachapelle (2011) found that most students have a naive understanding of the field of engineering, mistaking it for the work of technicians or artisans and neglecting to see the contributions engineers make to people's daily lives. In general, public (and teacher) understanding is not much more refined. These misconceptions about…

  8. Diesel Engine Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  9. Stirling engine design manual

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  10. Engineering Technology Curriculum Guidelines

    ERIC Educational Resources Information Center

    Gershon, J. J.

    1977-01-01

    Summarizes curriculum guidelines for the following engineering technologies: chemical, industrial, mining, petroleum, nuclear, civil, mechanical, electrical, automotive, and manufacturing. In a few years, these Engineering Council for Professional Development committee guidelines are intended to become the criteria by which programs will be judged…

  11. Teaching Engineering Practices

    ERIC Educational Resources Information Center

    Cunningham, Christine M.; Carlsen, William S.

    2014-01-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be…

  12. Courseware Engineering Methodology.

    ERIC Educational Resources Information Center

    Uden, Lorna

    2002-01-01

    Describes development of the Courseware Engineering Methodology (CEM), created to guide novices in designing effective courseware. Discusses CEM's four models: pedagogical (concerned with the courseware's pedagogical aspects), conceptual (dealing with software engineering), interface (relating to human-computer interaction), and hypermedia…

  13. SCSE organic Rankine engine

    SciTech Connect

    Boda, F.P.

    1981-01-01

    The Organic Rankine Cycle (ORC) engine is described which has been developed by FACC for the Small Community Solar Thermal Power Experiment (SCSE). This engine is part of a Power Conversion Subsystem (PCS) located at the focal plant of a sun-tracking parabolic dish concentrator.

  14. Ann Wagner, Mechanical Engineer.

    ERIC Educational Resources Information Center

    Bennett, Betsy K.

    1996-01-01

    Presents a profile of Ann Wagner, a mechanical engineer at the Goddard Space Flight Center in Maryland, and her job responsibilities there. Also includes a brief history of mechanical engineering as well as a sample graph and data activity sheet with answers. (AIM)

  15. Biological handbook for engineers

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Microbiological background information is compiled in handbook for engineers and scientists working on bio-related projects. It is intended as aid in - /1/ evaluating effects of engineering procedures on microbial life, /2/ determining effects of decontamination and sterilization on performance of overall systems, and /3/ understanding language of microbiologists.

  16. Mechanical Engineering Technology Curriculum.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.

    This guide offers information and procedures necessary to train mechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of mechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard mechanical engineering…

  17. Development of bioreaction engineering.

    PubMed

    Schügerl, K

    2000-01-01

    In addition to summarizing the early investigations in bioreaction engineering, the present short review covers the development of the field in the last 50 years. A brief overview of the progress of the fundamentals is presented in the first part of this article and the key issues of bioreaction engineering are advanced in its second part.

  18. Searches Conducted for Engineers.

    ERIC Educational Resources Information Center

    Lorenz, Patricia

    This paper reports an industrial information specialist's experience in performing online searches for engineers and surveys the databases used. Engineers seeking assistance fall into three categories: (1) those who recognize the value of online retrieval; (2) referrals by colleagues; and (3) those who do not seek help. As more successful searches…

  19. Small Gas Engine Repair.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    Instructional materials are provided for a small gas engine course. A list of objectives appears first, followed by a list of internal parts and skills/competencies related to those parts for engine work, ignition and electrical systems, fuel system, crankcase lubrication system, arc welding skills, and gas welding skills. Outlines are provided…

  20. International Cooperation in Engineering.

    ERIC Educational Resources Information Center

    Willenbrock, F. Karl

    1987-01-01

    Reports on a study by the National Academy of Engineering (NAE) into various relationships in engineering that the United States has with countries that have comparable or superior levels of technology. Discusses competition, cooperation, information flow, symmetry, language and cultural barriers, research opportunities, and professional…

  1. Computers in Engineering Teaching.

    ERIC Educational Resources Information Center

    Rushby, N. J.

    This bibliography cites 26 books, papers, and reports dealing with various uses of computers in engineering education; and describes several computer programs available for use in teaching aeronautical, chemical, civil, electrical and electronic, mechanical, and nuclear engineering. Each computer program entry is presented by name, author,…

  2. Engineering for Everyone

    ERIC Educational Resources Information Center

    Cunningham, Christine M.; Higgins, Melissa

    2015-01-01

    The new Next Generation Science Standards make it a priority for schools to focus more on the E in STEM, to help students learn the skills and practices of engineering. Schools that are doing so face a challenge, however: How to design educational experiences in engineering that engage all students--including girls and minorities, who are…

  3. Engineering Sustainable Engineers through the Undergraduate Experience

    ERIC Educational Resources Information Center

    Weatherton, Yvette Pearson; Sattler, Melanie; Mattingly, Stephen; Chen, Victoria; Rogers, Jamie; Dennis, Brian

    2012-01-01

    In order to meet the challenges of sustainable development, our approach to education must be modified to equip students to evaluate alternatives and devise solutions that meet multi-faceted requirements. In 2009, faculty in the Departments of Civil, Industrial and Mechanical Engineering at the University of Texas at Arlington began implementation…

  4. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  5. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  6. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  7. Adaptive Heat Engine.

    PubMed

    Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V

    2016-07-15

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.

  8. Adaptive Heat Engine.

    PubMed

    Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V

    2016-07-15

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment. PMID:27472104

  9. Holographic heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2014-10-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  10. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  11. Adaptive Heat Engine

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Babajanyan, S. G.; Martirosyan, N. H.; Melkikh, A. V.

    2016-07-01

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where—due to feedback from the functional part—the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.

  12. Engineering hydro's future

    SciTech Connect

    Anderson, J.L.

    1992-04-01

    In this challenging hydropower market, hydropower engineering services are in high demand. The number of new hydropower projects entering the pipeline may have slowed in recent years but that does not mean work is not being done. Independent developers, utilities and municipalities are carrying out a considerable amount of hydropower activity. Whatever the work involves - preliminary planning, licensing and relicensing, environmental mitigation, plant rehabilitation or new-plant startup - engineering firms are finding a brisk market for their services. The complexity of the regulatory framework makes hydropower facility and other water resource work more important then ever. Executives of three engineering firms - Acres International, Harza Engineering and Black and Veatch - active in these areas discuss their views on the future of the hydropower engineering market.

  13. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  14. Elements of Engineering Excellence

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer

    2012-01-01

    The inspiration for this Contract Report (CR) originated in discussions with the director of Marshall Space Flight Center (MSFC) Engineering who asked that we investigate the question: "How do you achieve excellence in aerospace engineering?" Engineering a space system is a complex activity. Avoiding its inherent potential pitfalls and achieving a successful product is a challenge. This CR presents one approach to answering the question of how to achieve Engineering Excellence. We first investigated the root causes of NASA major failures as a basis for developing a proposed answer to the question of Excellence. The following discussions integrate a triad of Technical Understanding and Execution, Partnership with the Project, and Individual and Organizational Culture. The thesis is that you must focus on the whole process and its underlying culture, not just on the technical aspects. In addition to the engineering process, emphasis is given to the need and characteristics of a Learning Organization as a mechanism for changing the culture.

  15. Metabolic Engineering VII Conference

    SciTech Connect

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  16. Systems engineering management plans.

    SciTech Connect

    Rodriguez, Tamara S.

    2009-10-01

    The Systems Engineering Management Plan (SEMP) is a comprehensive and effective tool used to assist in the management of systems engineering efforts. It is intended to guide the work of all those involved in the project. The SEMP is comprised of three main sections: technical project planning and control, systems engineering process, and engineering specialty integration. The contents of each section must be tailored to the specific effort. A model outline and example SEMP are provided. The target audience is those who are familiar with the systems engineering approach and who have an interest in employing the SEMP as a tool for systems management. The goal of this document is to provide the reader with an appreciation for the use and importance of the SEMP, as well as provide a framework that can be used to create the management plan.

  17. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  18. 19. Engine identified as a single cylinder vacuum assist engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Engine identified as a single cylinder vacuum assist engine for the Filer and Stowell 15-inch continuous mill. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  19. 5. Engine room, general view looking east, engine #2 in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Engine room, general view looking east, engine #2 in foreground (1895, now cannibalized for parts), engine #3 is in the background - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA

  20. 1. EXTERIOR OF ENGINE ROOM, CONTAINING UNITEDTOD TWINTANDEM ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OF ENGINE ROOM, CONTAINING UNITED-TOD TWIN-TANDEM ENGINE, FOR 40" BLOOMING MILL - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  1. 2. EXTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  2. Technician Career Opportunities in Engineering Technology.

    ERIC Educational Resources Information Center

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  3. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    SciTech Connect

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  4. E85 Optimized Engine

    SciTech Connect

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  5. New Directions for Biomedical Engineering

    ERIC Educational Resources Information Center

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  6. Heavy Truck Engine Program

    SciTech Connect

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  7. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  8. Dictionary of lighting engineering

    SciTech Connect

    Zimmermann, R.

    1989-01-01

    Distributors in the socialist countries, FRG, Switzerland and Austria: VEB Verlag Technik, Berlin, FRG Lighting engineering has developed progressively in all industrialized countries during the past few years. This development has been accompanied by a growing number of publications offering a flood of information and documentation in various languages, mainly in English, German, Russian, French and Japanese, and involving a more and more extensive and specific vocabulary. In this book, following fields are covered: fundamentals of lighting engineering; generation of light; measurement of light, radiation and color; lighting engineering and radiation detectors.

  9. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  10. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  11. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-12-31

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  12. Advanced engine study program

    NASA Astrophysics Data System (ADS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-06-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  13. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  14. Turbo compound engine

    SciTech Connect

    Okada, M.; Sekiyama, S.

    1988-06-07

    A turbo compound engine is described comprising: an engine having an exhaust gas passage and a crankshaft; a power turbine disposed in the exhaust gas passage so as to recover the exhaust gas energy; driving power transmission means for drivingly connecting the power turbine and the crankshaft so as to transmit the driving power; a fluid passage connected to a portion of the exhaust passage which lies between the power turbine and the engine; and fluid passage switching means for closing the exhaust passage upstream of the fluid passage while opening the fluid passage during exhaust braking.

  15. Test pilot and engineer

    NASA Technical Reports Server (NTRS)

    1922-01-01

    Goggles at the ready, this Langley test pilot and engineer conducted research business high above the ground. Photograph published in Winds of Change, 75th Anniversary NASA publication, by James Schultz (page 24). This photograph is also published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen (page 163). In the early years the flight research team was usually made up of a test pilot (Thomas Carroll, front cockpit) and an engineer (John W. Gus Crowley,Jr.).

  16. Improving Search Engine Reliability

    NASA Astrophysics Data System (ADS)

    Pruthi, Jyoti; Kumar, Ela

    2010-11-01

    Search engines on the Internet are used daily to access and find information. While these services are providing an easy way to find information globally, they are also suffering from artificially created false results. This paper describes two techniques that are being used to manipulate the search engines: spam pages (used to achieve higher rankings on the result page) and cloaking (used to feed falsified data into search engines). This paper also describes two proposed methods to fight this kind of misuse, algorithms for both of the formerly mentioned cases of spamdexing.

  17. Tomorrow's engines and fuels

    SciTech Connect

    Douaud, A. )

    1995-02-01

    The paper discusses global views and trends in vehicles and fuels. This includes important progress in Europe in vehicle fuel consumption; lower consumption being stimulated by CO[sub 2] emission limits; reduced vehicle emission; and new air quality strategy on ozone and toxic gas controls. The paper then discusses new engine and fuel technologies for low consumption and emissions. These include three-way catalyst engines; advanced after-treatments; clean and efficient fuels; reformulated gasoline in the US and Europe; diesel fuel reformulation; new fuels and dedicated engines for specialized markets; and gaseous fuels (LPG, CNG, biofuels, and hydrogen).

  18. Principles of models based engineering

    SciTech Connect

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  19. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  20. Ethyl alcohol use in engines

    SciTech Connect

    Hofman, V.; Hauck, D.

    1980-11-01

    This article evaluates the use of ethanol as a fuel for internal combustion engines. The basic properties of ethanol are examined together with how it performs in an engine. Both spark ignition engines and diesel engines were tested with ethanol. The physical and chemical characteristics of ethanol provided a better match with the gasoline engines, although ethanol could be used to supplement diesel fuel in diesel engines.

  1. Efficiency analysis of diesel engines

    SciTech Connect

    de Souza, E.G. ); Milanez, L.F. )

    1990-01-01

    Internal combustion engines are equipment that play an important role in the world's energy consumption. The choice of an appropriate engine for a given application depends on the adequate identification of the working conditions and the characteristics of the engines available. In this work correlation for the efficiency of an internal combustion engine as a function of the engine speed and torque is proposed. The correlation is used for comparing engine performance results obtained in dynamometer tests.

  2. Stennis certifies final shuttle engine

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Steam blasts out of the A-2 Test Stand at Stennis Space Center on Oct. 22 as engineers begin a certification test on engine 2061, the last space shuttle main flight engine scheduled to be built. Since 1975, Stennis has tested every space shuttle main engine used in the program - about 50 engines in all. Those engines have powered more than 120 shuttle missions - and no mission has failed as a result of engine malfunction. For the remainder of 2008 and throughout 2009, Stennis will continue testing of various space shuttle main engine components.

  3. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  4. PROFESSIONAL REGISTRATION OF GOVERNMENT ENGINEERS.

    USGS Publications Warehouse

    Buchanan, Thomas J.

    1985-01-01

    The American Society of Civil Engineers views professional registration as an appropriate requirement for engineers, including those in government. The National Society of Professional Engineers makes registration a requirement for the grade of member and full privileges in the society. Some Federal agencies require engineering registration for certain positions in their agencies. Engineers in government service should consider the value of engineering registration to themselves and to their agencies and take pride in their professions and in their own capabilities by becoming registered engineers. They should also take steps to encourage their agencies to give more attention to engineering registration.

  5. Combustion engine system

    NASA Technical Reports Server (NTRS)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  6. J-2 Engine Test

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Smokeless flame juts from the diffuser of a unique vacuum chamber in which the upper stage rocket engine, the hydrogen fueled J-2, was tested at a simulated space altitude in excess of 60,000 feet. The smoke you see is actually steam. In operation, vacuum is established by injecting steam into the chamber and is maintained by the thrust of the engine firing through the diffuser. The engine was tested in this environment for start, stop, coast, restart, and full-duration operations. The chamber was located at Rocketdyne's Propulsion Field Laboratory, in the Santa Susana Mountains, near Canoga Park, California. The J-2 engine was developed by Rocketdyne for the Marshall Space Flight Center.

  7. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  8. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-03

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  9. A sublimation heat engine

    NASA Astrophysics Data System (ADS)

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  10. To Teach Chemists Engineering.

    ERIC Educational Resources Information Center

    Grinbaum, Baruch; Semiat, Raphael

    1998-01-01

    Cites the shortcomings of the traditional educational experiences of chemists. Focuses on their training in engineering and concludes that training is lacking in the areas of mass balances in flow processes, heat balances, reactors, separation processes, and scaleup. (DDR)

  11. Functional cardiac tissue engineering

    PubMed Central

    Liau, Brian; Zhang, Donghui; Bursac, Nenad

    2013-01-01

    Heart attack remains the leading cause of death in both men and women worldwide. Stem cell-based therapies, including the use of engineered cardiac tissues, have the potential to treat the massive cell loss and pathological remodeling resulting from heart attack. Specifically, embryonic and induced pluripotent stem cells are a promising source for generation of therapeutically relevant numbers of functional cardiomyocytes and engineering of cardiac tissues in vitro. This review will describe methodologies for successful differentiation of pluripotent stem cells towards the cardiovascular cell lineages as they pertain to the field of cardiac tissue engineering. The emphasis will be placed on comparing the functional maturation in engineered cardiac tissues and developing heart and on methods to quantify cardiac electrical and mechanical function at different spatial scales. PMID:22397609

  12. Engineering Education on Trial

    NASA Astrophysics Data System (ADS)

    Tomiura, Azusa

    The number of universities in Japan has increased to 709 schools by 2004, and it is expected that whoever wants to enter a university will be able to do so more easily from the 2007 academic year. A drawback of this situation, however, is the deterioration of the overall quality of incoming students. This development has been observed in engineering schools as well, unfortunately. In the 2004 academic year, undergraduate student enrollment surpassed 110,000. Meanwhile, Japanese corporations continue with their in-house career development training for new and current employees in order to strengthen corporate competitiveness and as a buffer or counter to the degradation of the quality of graduates. A notable feature of engineering schools is the diversification of departments. As almost half of graduate school courses were newly established, traditional engineering disciplines are in danger of collapsing. How engineering education should be revamped to meet with this crisis will be discussed in this paper.

  13. Tissue engineering: orthopedic applications.

    PubMed

    Laurencin, C T; Ambrosio, A M; Borden, M D; Cooper, J A

    1999-01-01

    Because of an aging population and increased occurrence of sports-related injuries, musculoskeletal disorders have become one of the major health concerns in the United States. Current treatments, although fairly successful, do not provide the optimum therapy. These treatments typically rely on donor tissues obtained either from the patient or from another source. The former raises the issue of supply, whereas the latter poses the risk of rejection and disease transfer. This has prompted orthopedic surgeons and scientists to look for viable alternatives. In recent years, tissue engineering has gained increasing support as a method to treat orthopedic disorders. Because it uses principles of engineering, biology, and chemistry, tissue engineering may provide a more effective approach to the treatment of musculoskeletal disorders than traditional methods. This chapter presents a review of current methods and new tissue-engineering techniques for the treatment of disorders affecting bone, ligament, and cartilage.

  14. Protein disulfide engineering.

    PubMed

    Dombkowski, Alan A; Sultana, Kazi Zakia; Craig, Douglas B

    2014-01-21

    Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts.

  15. Analytics for Metabolic Engineering.

    PubMed

    Petzold, Christopher J; Chan, Leanne Jade G; Nhan, Melissa; Adams, Paul D

    2015-01-01

    Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants, while deep omics analysis provides a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research.

  16. NASA Now: Engineering Spacesuits

    NASA Video Gallery

    Mallory Jennings, a Technology Development Engineer who develops components for the next-generation spacesuit, explains how the design for the spacesuit is dependent upon the mission that the astro...

  17. Hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K. (Inventor)

    1978-01-01

    A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.

  18. Engineering Capabilities and Partnerships

    NASA Technical Reports Server (NTRS)

    Poulos, Steve

    2010-01-01

    This slide presentation reviews the engineering capabilities at Johnson Space Center, The presentation also reviews the partnerships that have resulted in successfully designed and developed projects that involved commercial and educational institutions.

  19. LIFE CYCLE ENGINEERING GUIDELINES

    EPA Science Inventory

    This document provides guidelines for the implementation of LCE concepts, information, and techniques in engineering products, systems, processes, and facilities. To make this document as practical and useable as possible, a unifying LCE framework is presented. Subsequent topics ...

  20. Rocket engine numerical simulator

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in viewgraph form and include the following: a rocket engine numerical simulator (RENS) definition; objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusion.

  1. Rocket engine numerical simulation

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

  2. Web document engineering

    SciTech Connect

    White, B.

    1996-05-01

    This tutorial provides an overview of several document engineering techniques which are applicable to the authoring of World Wide Web documents. It illustrates how pre-WWW hypertext research is applicable to the development of WWW information resources.

  3. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  4. Tissue engineering in urology.

    PubMed

    Gustafson, C J; Kratz, G

    2001-05-01

    Techniques that are aimed at regeneration of human tissues and organs (tissue engineering) have recently entered into clinical practice. Tissue engineering is currently among the fastest growing areas in medicine, and involves the application of the principles of biology and engineering to the development of functional substitutes for damaged tissues. One of the main limitations of reconstructive surgery in the genitourinary tract is the lack of autologous tissue. This could be changed by the ability to cultivate the patient's own tissues in vitro, or by stimulating the cells in vivo into regeneration of new tissues. The present review discusses how tissue engineering can be used to regenerate some of the tissues of the genitourinary tract. Even though these methods have only recently been introduced clinically into genitourinary medicine, numerous scientific studies have been reported that indicate that these techniques may be of great importance in the near future.

  5. Environmental and Engineering Geophysics

    NASA Astrophysics Data System (ADS)

    Sharma, Prem V.

    1997-12-01

    Geophysical imaging methods provide solutions to a wide variety of environmental and engineering problems: protection of soil and groundwater from contamination; disposal of chemical and nuclear waste; geotechnical site testing; landslide and ground subsidence hazard detection; location of archaeological artifacts. This book comprehensively describes the theory, data acquisition and interpretation of all of the principal techniques of geophysical surveying: gravity, magnetic, seismic, self-potential, resistivity, induced polarization, electromagnetic, ground-probing radar, radioactivity, geothermal, and geophysical borehole logging. Each chapter is supported by a large number of richly illustrated case histories. This book will prove to be a valuable textbook for senior undergraduates and postgraduates in environmental and applied geophysics, a supplementary course book for students of geology, engineering geophysics, civil and mining engineering, and a reference work for professional earth scientists, engineers and town planners.

  6. Windmills for ramjet engine

    SciTech Connect

    Giles, H.L.

    1983-01-18

    A solid fueled ramjet engine comprising solid fuel within a combustion chamber in the form of a hollow cylinder, and a windmill at the entrance to the hollow cylinder for promoting better distribution of the air, better mixing of the air and combustion gases, and more complete combustion of the solid fuel. The windmill is turned by the incoming airflow and can rotate a generator to provide a source of electrical power for the aircraft on which the engine is used.

  7. Stirling engine power control

    DOEpatents

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  8. Computer aided photographic engineering

    NASA Technical Reports Server (NTRS)

    Hixson, Jeffrey A.; Rieckhoff, Tom

    1988-01-01

    High speed photography is an excellent source of engineering data but only provides a two-dimensional representation of a three-dimensional event. Multiple cameras can be used to provide data for the third dimension but camera locations are not always available. A solution to this problem is to overlay three-dimensional CAD/CAM models of the hardware being tested onto a film or photographic image, allowing the engineer to measure surface distances, relative motions between components, and surface variations.

  9. Liquid metal thermoacoustic engine

    SciTech Connect

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  10. Gasoline engine choking arrangement

    SciTech Connect

    Armes, P.W.

    1987-10-13

    In combination with a gasoline engine including a fuel tank having a fuel inlet and outlet, an automatic choke is described having a pivotal choke butterfly plate, an air filter, and a rod mounting the air filter. A choking arrangement comprises means immobilizing the pivotal choke butterfly plate at an open position and means communicating with the fuel inlet selectively urging fuel passage from the fuel tank outlet during gasoline engine starting.

  11. NGNP Engineering Status

    SciTech Connect

    John Collins

    2010-08-01

    The objectives of Phase 1 Engineering and Design scope are to: 1) complete the initial design activities for a prototype nuclear reactor and plant that is capable of co-generating electricity, hydrogen, and process heat; 2) identify technological aspects of the NGNP that need further advancement by research and development activities; and 3) provide engineering support to the early licensing process, including technical input to white papers and developing the basis for future safety analyses.

  12. Lifing of Engine Components

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.

  13. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  14. Engine Removal Projection Tool

    SciTech Connect

    Ferryman, Thomas A.; Matzke, Brett D.; Wilson, John E.; Sharp, Julia L.; Greitzer, Frank L.

    2005-06-02

    The US Navy has over 3500 gas turbine engines used throughout the surface fleet for propulsion and the generation of electrical power. Past data is used to forecast the number of engine removals for the next ten years and determine engine down times between removals. Currently this is done via a FORTRAN program created in the early 1970s. This paper presents results of R&D associated with creating a new algorithm and software program. We tested over 60 techniques on data spanning 20 years from over 3100 engines and 120 ships. Investigated techniques for the forecast basis including moving averages, empirical negative binomial, generalized linear models, Cox regression, and Kaplan Meier survival curves, most of which are documented in engineering, medical and scientific research literature. We applied those techniques to the data, and chose the best algorithm based on its performance on real-world data. The software uses the best algorithm in combination with user-friendly interfaces and intuitively understandable displays. The user can select a specific engine type, forecast time period, and op-tempo. Graphical displays and numerical tables present forecasts and uncertainty intervals. The technology developed for the project is applicable to other logistic forecasting challenges.

  15. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  16. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  17. Engineers and Active Responsibility.

    PubMed

    Pesch, Udo

    2015-08-01

    Knowing that technologies are inherently value-laden and systemically interwoven with society, the question is how individual engineers can take up the challenge of accepting the responsibility for their work? This paper will argue that engineers have no institutional structure at the level of society that allows them to recognize, reflect upon, and actively integrate the value-laden character of their designs. Instead, engineers have to tap on the different institutional realms of market, science, and state, making their work a 'hybrid' activity combining elements from the different institutional realms. To deal with this institutional hybridity, engineers develop routines and heuristics in their professional network, which do not allow societal values to be expressed in a satisfactory manner. To allow forms of 'active' responsibility, there have to be so-called 'accountability forums' that guide moral reflections of individual actors. The paper will subsequently look at the methodologies of value-sensitive design (VSD) and constructive technology assessment (CTA) and explore whether and how these methodologies allow engineers to integrate societal values into the design technological artifacts and systems. As VSD and CTA are methodologies that look at the process of technological design, whereas the focus of this paper is on the designer, they can only be used indirectly, namely as frameworks which help to identify the contours of a framework for active responsibility of engineers.

  18. Compression relief engine brake

    SciTech Connect

    Meneely, V.A.

    1987-10-06

    A compression relief brake is described for four cycle internal-combustion engines, comprising: a pressurized oil supply; means for selectively pressurizing a hydraulic circuit with oil from the oil supply; a master piston and cylinder communicating with a slave piston and cylinder via the hydraulic circuit; an engine exhaust valve mechanically coupled to the engine and timed to open during the exhaust cycle of the engine the exhaust valve coupled to the slave piston. The exhaust valve is spring-based in a closed state to contact a valve seat; a sleeve frictionally and slidably disposed within a cavity defined by the slave piston which cavity communicates with the hydraulic circuit. When the hydraulic circuit is selectively pressurized and the engine is operating the sleeve entraps an incompressible volume of oil within the cavity to generate a displacement of the slave piston within the slave cylinder, whereby a first gap is maintained between the exhaust valve and its associated seat; and means for reciprocally activating the master piston for increasing the pressure within the previously pressurized hydraulic circuit during at least a portion of the expansion cycle of the engine whereby a second gap is reciprocally maintained between the exhaust valve and its associated seat.

  19. Environmental education for all engineers.

    PubMed

    Jahan, K; Everett, J W; Hesketh, R P; Jansson, P M; Hollar, K

    2004-01-01

    Environmental engineering education at universities is a rapidly changing field globally. Traditionally it has resided in the civil engineering program addressing water and wastewater quality, treatment, design and regulatory issues. In recent years environmental engineering has become a much broader field encompassing water, wastewater, soil pollution, air pollution, risk assessment, ecosystems, human health, toxicology, sustainable development, regulatory aspects and much more. The need to introduce environmental engineering/green engineering/pollution prevention/design for the environment concepts to undergraduate engineering students has become recognized to be increasingly important. This need is being driven in part through the US Engineering Accreditation Commission Accreditation Board for Engineering and Technology criteria 2000. Thus there has been a major shift in environmental engineering education and it no longer resides only within the civil engineering discipline. This paper focuses on the development of innovative curricula for a brand new engineering program at Rowan University that integrates environmental education for all engineers. A common course known as "engineering clinic" was developed for all engineering students throughout their eight semesters of engineering education. One of the clinic goals is to integrate engineering design and the environment. The program, in its seventh year, indicates successful implementation of environmental education in all four engineering disciplines in their course work and clinics.

  20. A Study of Engineering and Engineering Technology Education in Florida.

    ERIC Educational Resources Information Center

    Terman, F. E.; Higdon, Archie

    This study reviews engineering education in Florida and investigates programs and plans for engineering technology. A questionnaire was prepared to obtain statistical data on the engineering activities at individual institutions. Deans of engineering schools responded to the questionnaires and site visits were made by consultants to each school.…

  1. 4. Engine room, east end looking east toward engine #4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Engine room, east end looking east toward engine #4 (Enterprise Diesel; reduction gear in foreground; in left rear, two D.C. generators with Ames Ironworks horizontal engine and sturtevant vertical engine - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA

  2. High School Teachers' Conceptions of Engineers and Engineering

    ERIC Educational Resources Information Center

    Hoh, Yin Kiong

    2012-01-01

    This paper describes a workshop activity the author has carried out with 80 high school science teachers to enable them to overcome their stereotypical perceptions of engineers and engineering. The activity introduced them to the biographies of prominent women in engineering, and raised their awareness of these female engineers' contributions to…

  3. 16. INTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL. THIS VIEW IS TAKEN FROM THE HIGH-PRESSURE SIDE OF THE ENGINE SHOWING THE SERVICE PLATFORM - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  4. Engineering the Way to Becoming a Federal Engineer.

    ERIC Educational Resources Information Center

    Morgans, Carl J.

    1991-01-01

    Federal engineer tells engineering students how to become federal engineers and discusses the potential rewards and disadvantages of a civil service career. Notes that federal jobs are available for engineering graduates who are knowledgeable in the search process and who are persistent in seeking out such jobs. (NB)

  5. Chemical Engineering Students: A Distinct Group among Engineers

    ERIC Educational Resources Information Center

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  6. Engine systems and methods of operating an engine

    DOEpatents

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  7. Engineering Employment and Unemployment, 1971. Engineering Manpower Bulletin Number 19.

    ERIC Educational Resources Information Center

    Alden, John D.

    Statistics concerning employment of scientists were obtained from 59,300 scientists responding to an Engineers Joint Council questionnaire. Findings reported are: (1) the overall unemployment rate was 3 percent for engineers compared to a rate of 5.8 percent for all other workers; (2) considering engineers not having engineering jobs, the…

  8. NESTA: NASA Engineering Shuttle Telemetry Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Smith, Kevin E.; Boloni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed an agent based tool to monitor the Space Shuttle's ground processing telemetry stream. The application, the NASA Engineering Shuttle Telemetry Agent, increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when predefined criteria have been met. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules of this spaceport domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This paper discusses the rule-based telemetry agent used for Space Shuttle ground processing and explains the problem domain, development of the agent software, benefits of AT technology, and deployment and sustaining engineering of the product.

  9. Electronic engine controls

    SciTech Connect

    Hodges, S.

    1991-07-01

    This paper reports that pioneered in the mid-80s to manage and optimize engine performance under continually changing conditions, electronic controls have made a significant impact on truck maintenance. But they also served another important purpose: they curbed emissions enough to meet EPA's new heavy-truck standards set in 1985 (see sidebar). In that same year, Detroit Diesel introduced its Detroit Diesel Electronic Controls (DDEC) system, and a trend was born. Suddenly horsepower rating, torque curve, and maximum engine and road speed could be governed by electronics. Engine-mounted sensors could provide drivers with precise information about fluid and pressure levels, inside and outside temperatures, and a host of other information. The advent of electronic engine controls signaled the dawn of a revolution in trucking. For company owners who wanted greater control of their operations, electronics were wonderful news. But new controls meant new engine designs and radical changes in engine maintenance and repair. So for many members of the waste-hauling industry, electronics were far from wonderful. It's not that haulers didn't want cleaner air or trucks that were increasingly fuel efficient. It's more that they winced at the thought of retraining their mechanics - already hard to find and retain - to work on a new breed of engine. Then there were other considerations. drivers, for example, might not cotton to the fancy electronic dashboard displays. They might also rebel at having their maximum road speed present at a rate they couldn't change. Then there was the cost factor: Electronics and other provisions used to meet Clean Air Act reductions of oxides of nitrogen between 1991, 94 and 98 model years could add as much as $10,000 to $15,000 to the cost of each truck.

  10. Knowledge Integration and Wise Engineering

    ERIC Educational Resources Information Center

    Chiu, Jennifer L.; Linn, M. C.

    2011-01-01

    Recent efforts in engineering education focus on introducing engineering into secondary math and science courses to improve science, technology, engineering, and math (STEM) education (NAS, 2010). Infusing engineering into secondary classrooms can increase awareness of and interest in STEM careers, help students see the relevance of science and…

  11. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Ernst, W.; Piller, S.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)

    1982-01-01

    Activities performed on Mod I engine testing and test results, progress in manufacturing, assembling and testing of a Mod I engine in the United States, P40 Stirling engine dynamometer and multifuels testing, analog/digital controls system testing, Stirling reference engine manufacturing and reduced size studies, components and subsystems, and computer code development are summarized.

  12. Civil Engineering in Primary Schools

    ERIC Educational Resources Information Center

    Brown, Martin; Strong, Alan

    2010-01-01

    For many children of primary school age, an engineer is the man who comes to service the central heating system or who fixes the family car when it breaks down. Most have never met a "real" professional engineer, and have no idea of what is involved in the exciting world of engineering. Most assume that engineers are men. To try to remove these…

  13. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)

    1982-01-01

    Activities performed on Mod I engine testing and test results; the manufacture, assembly, and test of a Mod I engine in the United States; design initiation of the Mod I-A engine system; transient performance testing; Stirling reference engine manufacturing and reduced size studies; components and subsystems; and the study and test of low cost alloys are summarized.

  14. Custom Search Engines: Tools & Tips

    ERIC Educational Resources Information Center

    Notess, Greg R.

    2008-01-01

    Few have the resources to build a Google or Yahoo! from scratch. Yet anyone can build a search engine based on a subset of the large search engines' databases. Use Google Custom Search Engine or Yahoo! Search Builder or any of the other similar programs to create a vertical search engine targeting sites of interest to users. The basic steps to…

  15. Automotive Engine Maintenance and Repair.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide students with an understanding of automotive engine maintenance and repair. The course contains six study units covering automotive engine maintenance and repair; design classification; engine malfunction, diagnosis, and repair; engine disassembly; engine…

  16. Magnetic Lens For Plasma Engine

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.

    1992-01-01

    Low-field electromagnet coils placed downstream of plasma engine, polarized oppositely to higher-field but smaller radius coil in nozzle of engine, reduces divergence of plasma jet, thereby increasing efficiency of engine. Concept tested by computer simulation based on simplified mathematical model of plasma, engine, and coils.

  17. Overview of rocket engine control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Musgrave, Jeffrey L.

    1991-01-01

    The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.

  18. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  19. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    ERIC Educational Resources Information Center

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  20. Engineering and Technology Degrees, 1974.

    ERIC Educational Resources Information Center

    Engineers Joint Council, New York, NY. Engineering Manpower Commission.

    This report gives the number of engineering and technology degrees for the school year ending in June 1974. Tables appear in the following order: engineering degrees (bachelor's, master's, engineer's, doctor's) and technology degrees (associate, bachelor's, certificate, master's). The engineering tables include all 284 schools known to offer…

  1. Development of detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principle of a controlled condensed detonation. In this engine the gas products that are expelled from the engine to produce thrust are generated by the condensed detonation reaction. The engine is constructed of two basic sections consisting of a detonation wave generator section and a condensed detonation reaction section.

  2. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  3. Fermilab's Satellite Refrigerator Expansion Engines

    SciTech Connect

    Peterson, Thomas J.

    1983-01-01

    Each of Fermilab's 24 satellite refrigerators includes two reciprocating expanders, a "wet" engine and a "dry" engine. The wet engines and all but eleven of the dry engines were manufactured by Koch Process Systems (Westboro, Massachusetts). These are basically Koch Model 1400 expaaders installed in cryostats designed by Fermilab. The other eleven dry engines are an in-hou~e design referred to as "Gardner-Fermi" engines since they evolved from the GX3-2500 engines purchas~d from Gardner Cryogenics. Table I surmnarizes the features of our three types of expanders....

  4. Engineering Orthopedic Tissue Interfaces

    PubMed Central

    Yang, Peter J.

    2009-01-01

    While a wide variety of approaches to engineering orthopedic tissues have been proposed, less attention has been paid to the interfaces, the specialized areas that connect two tissues of different biochemical and mechanical properties. The interface tissue plays an important role in transitioning mechanical load between disparate tissues. Thus, the relatively new field of interfacial tissue engineering presents new challenges—to not only consider the regeneration of individual orthopedic tissues, but also to design the biochemical and cellular composition of the linking tissue. Approaches to interfacial tissue engineering may be distinguished based on if the goal is to recreate the interface itself, or generate an entire integrated tissue unit (such as an osteochondral plug). As background for future efforts in engineering orthopedic interfaces, a brief review of the biology and mechanics of each interface (cartilage–bone, ligament–bone, meniscus–bone, and muscle–tendon) is presented, followed by an overview of the state-of-the-art in engineering each tissue, including advances and challenges specific to regenerating the interfaces. PMID:19231983

  5. Genetically Engineering Entomopathogenic Fungi.

    PubMed

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. PMID:27131325

  6. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  7. Internal combustion engine

    SciTech Connect

    Breckenfeld, P.W.; Broughton, G.L.; Forquer, D.W.

    1990-02-19

    This patent describes a two-stroke internal combustion engine. It comprises: an engine block including an exterior planar surface portion having therein a pair of spaced bearing surfaces and a crankcase-defining cavity which includes a pair of spaced semi-cylindrical surfaces, a crankshaft including a pair of spaced bearing portions and a central part which is located between the bearing portions and which includes a pair of spaced and enlarged cylindrical surfaces, a pair of bearing blocks respectively including bearing surfaces, means fixing the bearing blocks to the exterior planar surface portion with each of the crankshaft bearing portions retained between a respective one of the bearing surfaces of the engine block and a respective one of the bearing surfaces of the bearing blocks and with each of the crankshaft cylindrical surfaces in coplanar relation to a respective one of the semi-cylindrical surfaces of the engine block, a crankcase cover including a mounting surface having therein a crankcase-defining cavity including a pair of spaced semi-cylindrical surfaces, and means fixedly connecting the mounting surface of the crankcase cover to the exterior planar surface portion of block with each of the semi-cylindrical surfaces of the crankcase cover in generally coplanar relation to a respective one of the semi-cylindrical surfaces of the engine block.

  8. Genetically Engineering Entomopathogenic Fungi.

    PubMed

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests.

  9. Engineering the earth system

    NASA Astrophysics Data System (ADS)

    Keith, D. W.

    2005-12-01

    The post-war growth of the earth sciences has been fueled, in part, by a drive to quantify environmental insults in order to support arguments for their reduction, yet paradoxically the knowledge gained is grants us ever greater capability to deliberately engineer environmental processes on a planetary scale. Increased capability can arises though seemingly unconnected scientific advances. Improvements in numerical weather prediction such as the use of adjoint models in analysis/forecast systems, for example, means that weather modification can be accomplished with smaller control inputs. Purely technological constraints on our ability to engineer earth systems arise from our limited ability to measure and predict system responses and from limits on our ability to manage large engineering projects. Trends in all three constraints suggest a rapid growth in our ability to engineer the planet. What are the implications of our growing ability to geoengineer? Will we see a reemergence of proposals to engineer our way out of the climate problem? How can we avoid the moral hazard posed by the knowledge that geoengineering might provide a backstop to climate damages? I will speculate about these issues, and suggest some institutional factors that may provide a stronger constraint on the use of geoengineering than is provided by any purely technological limit.

  10. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  11. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  12. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Vatsky, A.; Antonelli, M. (Editor)

    1983-01-01

    Activities performed on Mod I engine testing and test results, testing of the Mod I engine in the United States, Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, upgraded Mod I performance and testing, Stirling engine reference engine manufacturing and reduced size studied, components and subsystems, and the study and test of low cost casting alloys are summarized. The overall program philosophy is outlined, and data and results are presented.

  13. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.

    1988-01-01

    The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.

  14. SNF Project Engineering Process Improvement Plan

    SciTech Connect

    DESAI, S.P.

    2000-02-09

    This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities.

  15. Externally heated valve engine -- An alternative to the Stirling engine

    SciTech Connect

    Kazimierski, Z.; Brzeski, L.

    1996-12-31

    A new concept of the Externally Heated Valve (EHV) engine is presented. The principle of the engine operation is described in the introduction to the paper. Heat delivered to the working medium (air) in the heater, or several heaters working commutatively, can come from a combustion chamber or other heat generator such as nuclear reactors or solar collectors. The engine construction is original entirely different from the well-known Stirling engine. New results of the EHV engine computer modeling are presented. This is connected with a new kind of the annular heater applied to the EHV engine. A whirl motion inside the heater is caused to ensure the proper condition of the heat exchanger during the whole engine cycle. Three heaters working commutatively have been considered in this model. Comparisons between the power and efficiency of the Stirling engine and EHV engine have been performed for the same engine capacity, rotational frequency, maximum and minimum temperatures of the working gas and for the same mean pressures of both the engine cycles. The power of the EHV engine is in this case over three times higher than the Stirling engine power, while the efficiency of both the engines is almost the same.

  16. Liquid rocket engine injectors

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Nurick, W. H.

    1976-01-01

    The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

  17. Software Engineering Improvement Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  18. ENGINEERING CONTROL INTO MEDICINE

    PubMed Central

    Stone, David J.; Celi, Leo Anthony; Csete, Marie

    2015-01-01

    The human body is a tightly controlled engineering miracle. However, medical training generally does not cover ‘control’ (in the engineering sense) in physiology, pathophysiology and therapeutics. A better understanding of how evolved controls maintain normal homeostasis is critical for understanding the failure mode of controlled systems, i.e., disease. We believe that teaching and research must incorporate an understanding of the control systems in physiology, and take advantage of the quantitative tools used by engineering to understand complex systems. Control systems are ubiquitous in physiology, though often unrecognized. Here we provide selected examples of the role of control in physiology (heart rate variability, immunity), pathophysiology (inflammation in sepsis), and therapeutic devices (diabetes and the artificial pancreas). We also present a high level background to the concept of robustly controlled systems and examples of clinical insights using the controls framework. PMID:25680579

  19. Multiplexed Engineering in Biology.

    PubMed

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  20. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Goldstein, D. N.; Hirschkron, R.; Smith, C. E.

    1983-01-01

    Convertible propulsion systems for advanced rotorcraft are evaluated in terms of their impact on aircraft operating economics and fuel consumption. A variety of propulsion system concepts, including separate thrust and power producing engines, convertible fan/shaft engines, and auxiliary propeller configurations are presented. The merits of each are evaluated in two different rotorcraft missions: an intercity, commercial transport of the ABC(TM) type, and an offshore oil ring supply ship of the X-wing type. The variable inlet guide vane fan/shaft converting engine and auxiliary propeller configurations are shown to offer significant advantages over all the other systems evaluated, in terms of both direct operating cost and fuel consumption.

  1. The Synergistic Engineering Environment

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan

    2006-01-01

    The Synergistic Engineering Environment (SEE) is a system of software dedicated to aiding the understanding of space mission operations. The SEE can integrate disparate sets of data with analytical capabilities, geometric models of spacecraft, and a visualization environment, all contributing to the creation of an interactive simulation of spacecraft. Initially designed to satisfy needs pertaining to the International Space Station, the SEE has been broadened in scope to include spacecraft ranging from those in low orbit around the Earth to those on deep-space missions. The SEE includes analytical capabilities in rigid-body dynamics, kinematics, orbital mechanics, and payload operations. These capabilities enable a user to perform real-time interactive engineering analyses focusing on diverse aspects of operations, including flight attitudes and maneuvers, docking of visiting spacecraft, robotic operations, impingement of spacecraft-engine exhaust plumes, obscuration of instrumentation fields of view, communications, and alternative assembly configurations. .

  2. Free-piston engine

    SciTech Connect

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  3. Harmonic uniflow engine

    DOEpatents

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  4. Needle Federated Search Engine

    SciTech Connect

    2009-12-01

    The Idaho National Laboratory (INL) has combined a number of technologies, tools, and resources to accomplish a new means of federating search results. The resulting product is a search engine called Needle, an open-source-based tool that the INL uses internally for researching across a wide variety of information repositories. Needle has a flexible search interface that allows end users to point at any available data source. A user can select multiple sources such as commercial databases (Web of Science, Engineering Index), external resources (WorldCat, Google Scholar), and internal corporate resources (email, document management system, library collections) in a single interface with one search query. In the future, INL hopes to offer this open-source engine to the public. This session will outline the development processes for making Needle™s search interface and simplifying the federation of internal and external data sources.

  5. Silence Amenity Engineering

    NASA Astrophysics Data System (ADS)

    Fujita, Hajime

    Engineering civilization brought convenient and comfortable life to us. However, some environmental problems such as various pollutions have also been developed with it. Acoustical noise is one of the major problems in modern life. Noise is generated from a noise source and propagates through transmitting medium such as the air and eventually reaches a receiver, usually a human being. The noise problem can be avoided, therefore, if one of those three elements in the noise problem is removed completely. In actual case, engineers are looking for most efficient way combining the controls for these three elements. In this article, basic characteristics of noise is reviewed briefly at first, then sound field analysis to predict sound transmission is discussed Aerodynamic noise is one of the major problems in silence amenity engineering today. Basic concept of the aerodynamic noise generation mechanism is discussed in detail with applications to turbo-machinery and high speed train noise control technology.

  6. General Education for Engineers

    NASA Astrophysics Data System (ADS)

    Takeda, Kunihiko

    The basic program of general education of engineers is based on European culture from the times of ancient Greece to the 20th century. However, when considering its results, such as colonialism and the World Wars, this system can be said to lack the most important goal of “culture,” which is “to accept the existence of others.” In particular, the cooperation of European culture and engineering has ravaged the weaker cultures and is currently causing severe environmental problems in nature. Therefore, when considering the general education of engineers, it is indispensable to doubt European scholarship and to analyze what is lacking in current Japanese educational programs. Then, it is desirable that the relationship between the mind and the body, the characteristics of the Japanese climate, and the essence of Japanese artisanship be taken into consideration. It may also be beneficial to study the Ainu culture for its qualities as a peaceful culture.

  7. Strutjet RBCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Bulman, Mel; Neill, Todd; Yam, Clement

    1999-01-01

    In the past two years Strutjet Rocket Based Combined Cycle (RBCC) engine has been tested extensively under the Advanced Reusable Technology (ART) contract from NASA MSFC. RBCC Engines combine the high thrust to weight of the rocket with the high efficiency of the ramjet engine. This propulsion system has the potential to reduce the cost of launching payloads to orbit by up to a factor of 100. In the ART program we have conducted over 100 hot fire tests. The propellants have been hydrogen and oxygen. The Modes tested have included the Air Augmented Rocket (AAR) from M = 0 to 2.4, the Ramjet at M = 2.4 & 6, Scramjet at M = 6 & 8, Scram/Rocket at Mach 8 and Ascent Rocket in Vacuum. This invited paper will present an overview of these test results and plans for future development of this propulsion cycle.

  8. Superradiant Quantum Heat Engine.

    PubMed

    Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E

    2015-01-01

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797

  9. Mars methane engine

    NASA Technical Reports Server (NTRS)

    Bui, Hung; Coletta, Chris; Debois, Alain

    1994-01-01

    The feasibility of an internal combustion engine operating on a mixture of methane, carbon dioxide, and oxygen has been verified by previous design groups for the Mars Methane Engine Project. Preliminary stoichiometric calculations examined the theoretical fuel-air ratios needed for the combustion of methane. Installation of a computer data acquisition system along with various ancillary components will enable the performance of the engine, running on the described methane mixture, to be optimized with respect to minimizing excess fuel. Theoretical calculations for stoichiometric combustion of methane-oxygen-carbon dioxide mixtures yielded a ratio of 1:2:4.79 for a methane-oxygen-carbon dioxide mixture. Empirical data shows the values to be closer to 1:2.33:3.69 for optimum operation.

  10. Superradiant Quantum Heat Engine.

    PubMed

    Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E

    2015-08-11

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  11. Superradiant Quantum Heat Engine

    PubMed Central

    Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.

    2015-01-01

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797

  12. Stationary engineering handbook

    SciTech Connect

    Petrocelly, K.L.

    1989-01-01

    Years ago, the only qualifications you needed to become to become an operating engineer were the ability to shovel large chunks of coal through small furnace doors and the fortitude to sweat profusely for hours without fainting. As a consequence of technological evolution, the engineer's coal shovels have been replaced with computers and now perspiration is more the result of job stress than exposure to high temperatures. The domain of the operator has been extended far beyond the smoke-filled caverns that once encased him, out into the physical plant, and his responsibilities have been expanded accordingly. Unlike his less sophisticated predecessor, today's technician must be well versed in all aspects of the operation. The field of power plant operations has become a full-fledged profession and its principals are called Stationary Engineers. This book addresses the areas of responsibility and the education and skills needed for successful operation of building services equipment.

  13. Engineering antibody therapeutics.

    PubMed

    Chiu, Mark L; Gilliland, Gary L

    2016-06-01

    The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment. PMID:27525816

  14. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

  15. Needle Federated Search Engine

    2009-12-01

    The Idaho National Laboratory (INL) has combined a number of technologies, tools, and resources to accomplish a new means of federating search results. The resulting product is a search engine called Needle, an open-source-based tool that the INL uses internally for researching across a wide variety of information repositories. Needle has a flexible search interface that allows end users to point at any available data source. A user can select multiple sources such as commercialmore » databases (Web of Science, Engineering Index), external resources (WorldCat, Google Scholar), and internal corporate resources (email, document management system, library collections) in a single interface with one search query. In the future, INL hopes to offer this open-source engine to the public. This session will outline the development processes for making Needle™s search interface and simplifying the federation of internal and external data sources.« less

  16. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  17. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  18. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  19. Engine Test and Measurements

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou

    1999-01-01

    Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.

  20. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    NASA Technical Reports Server (NTRS)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-01-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  1. Ethics in biomedical engineering.

    PubMed

    Morsy, Ahmed; Flexman, Jennifer

    2008-01-01

    This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.

  2. Readings in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor); Lawbaugh, William M. (Editor)

    1993-01-01

    This present collection was inspired by seven papers prepared by the NASA Alumni League, illustrating the members' systems engineering experience. These papers make up the heart of this collection. We have supplemented them with papers describing industry processes and other governmental practices to illustrate the diversity of systems engineering as it is formulated and practiced. This is one discipline that clearly benefits from cross-fertilization and infusion of new ideas. There is also a wide variety of tools and techniques described herein, some standard and some unique.

  3. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  4. Engineering within ecological constraints

    SciTech Connect

    Shulze, P.C.

    1996-08-01

    The volume looks at the concepts of scale, resilience, and chaos as they apply to the points where the ecological life support system of nature interacts with the technological life support system created by humankind. Among the questions addressed are: What are the implications of differences between ecological and engineering concepts of efficiency and stability; how can engineering solutions to immediate problems be made compatible with long-term ecological concerns; and how can we transfer ecological principles to economic systems. The book also includes important case studies on such topics as water management in southern Florida and California and oil exploration in rain forests.

  5. Intelligent Engine Systems

    NASA Technical Reports Server (NTRS)

    Xie, Ming

    2008-01-01

    A high bypass jet engine fan case represents one of the largest, heaviest single components in an engine. In addition to supporting the inlet and providing the fan flowpath, the most critical function is the containment of a failed fan blade. In this development program, a lightweight, low-cost composite containment case with diagnostic capabilities was developed, fabricated, and tested. The fan case design, containment methods, and diagnostic concepts evaluated in the initial Propulsion 21 program were improved and scaled up to a full case design.

  6. Earthquake engineering in Peru

    USGS Publications Warehouse

    Vargas, N.J

    1983-01-01

    During the last decade, earthquake engineering research in Peru has been carried out at the Catholic University of Peru and at the Universidad Nacional de Ingeniera (UNI). The Geophysical Institute (IGP) under the auspices of the Organization of American States (OAS) has initiated in Peru other efforts in regional seismic hazard assessment programs with direct impact to the earthquake engineering program. Further details on these programs have been reported by L. Ocola in the Earthquake Information Bulletin, January-February 1982, vol. 14, no. 1, pp. 33-38. 

  7. What is systems engineering?

    SciTech Connect

    Bahill, A.T.

    1995-08-01

    Systems Engineering is an interdisciplinary process that ensures that the customers` needs are satisfied throughout a system`s entire life cycle. This process includes: understanding customer needs; stating the problem; specifying requirements; defining performance and cost measures, prescribing tests, validating requirements, conducting design reviews, exploring alternative concepts, sensitivity analyses, functional decomposition, system design, designing and managing interfaces, system integration, total system test, configuration management, risk management, reliability analysis; total quality management; project management; and documentation. Material for this paper was gathered from senior Systems Engineers at Sandia National Laboratories.

  8. Why ceramic engines?

    NASA Technical Reports Server (NTRS)

    Stadler, H. L.

    1984-01-01

    Oil is still a problem for the U.S. and its allies. Transportation uses 61 percent of U.S. oil and its share is increasing, so more efficient technology should be concentrated there. Trucks' share of oil use is increasing because they are already much more efficient than autos. The primary truck opportunities are streamlining, more efficient engines, and shifting freight to railroads. More efficient engines are possible using ceramics to allow elimination of cooling systems and better use of waste exhaust heat. A 60 percent improvement seems possible if ceramics can be made tough enough and durable enough.

  9. Reciprocating piston engine

    SciTech Connect

    Eickmann, K.

    1986-01-07

    This patent describes a reciprocating combustion engine consisting of a cylinder, a piston reciprocating in the cylinder, a top for closing one end of the cylinder, inlets and outlets extending to and from the cylinder for the intake of combustible gas and the expelling of burned exhaust gases. The engine also consists of a device for ignition of the combustible gas, a means of cooling the cylinder and top, a turbine of a turbocharger connected to the outlet, and a compressor of the turbocharger connected to the inlet.

  10. Bioreactors for tissue engineering.

    PubMed

    Chen, Huang-Chi; Hu, Yu-Chen

    2006-09-01

    Bioreactors are essential in tissue engineering, not only because they provide an in vitro environment mimicking in vivo conditions for the growth of tissue substitutes, but also because they enable systematic studies of the responses of living tissues to various mechanical and biochemical cues. The basic principles of bioreactor design are reviewed, the bioreactors commonly used for the tissue engineering of cartilage, bone and cardiovascular systems are assessed in terms of their performance and usefulness. Several novel bioreactor types are also reviewed. PMID:16955350

  11. Genetically Engineered Cyanobacteria

    NASA Technical Reports Server (NTRS)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  12. 14. INTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL. THIS VIEW HIGHLIGHTS THE CRANK AND 24' DIAMETER FLYWHEEL. THE ENGINE IS A 7,940 HP MESTA-CORLISS CROSS-COMPOUND STEAM ENGINE ITS BORE AND STROKE ARE 32"X84"X60". NOTE FLY BALL GOVERNOR ON ENGINE. MILL DRIVE SHAFT ATTACHED TO PULLEY ON LOCATED ON CRANK. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  13. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  14. Paper Genetic Engineering.

    ERIC Educational Resources Information Center

    MacClintic, Scott D.; Nelson, Genevieve M.

    Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…

  15. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  16. Following Engineering Graduates

    ERIC Educational Resources Information Center

    Feutz, Michael; Zinser, Richard

    2012-01-01

    This study provides an in-depth analysis of recent graduates' experience with completing an engineering technology program and entering the profession. It is unique because the study was conducted on a baccalaureate-level program and because it helps fill a gap in the literature. The phenomenological method was used to obtain qualitative data to…

  17. Careers in biomedical engineering.

    PubMed

    Madrid, R E; Rotger, V I; Herrera, M C

    2010-01-01

    Although biomedical engineering was started in Argentina about 35 years ago, it has had a sustained growth for the last 25 years in human resources, with the emergence of new undergraduate and postgraduate careers, as well as in research, knowledge, technological development, and health care.

  18. Biomedical applications engineering tasks

    NASA Technical Reports Server (NTRS)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  19. Boussard Interstellar Ramjet Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Boussard Interstellar Ramjet engine concept uses interstellar hydrogen scooped up from its environment as the spacecraft passes by to provide propellant mass. The hydrogen is then ionized and then collected by an electromagentic field. In this image, an onboard laser is uded to heat the plasma, and the laser or electron beam is used to trigger fusion pulses thereby creating propulsion.

  20. Engineering Design Thinking

    ERIC Educational Resources Information Center

    Lammi, Matthew; Becker, Kurt

    2013-01-01

    Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…

  1. Engineering Technician Standards.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    The booklet describes the program offerings, requirements, training, and pay schedules of the Langley Research Center Technician Training Program. Training schedules and the duties expected upon completion of each of the training areas are specified, along with on-the-job and academic requirements. The areas of training are: engineering draftsman,…

  2. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  3. Careers in Engineering.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This booklet briefly describes occupational opportunities in engineering in the Environmental Protection Agency (EPA). Section headings are: "Preserving Our Future Today"; "Introduction to EPA..."; "Setting Standards"; "Enforcement and Monitoring"; "Trends for the Future"; "Job Requirements"; "A Day in the Life of..."; "Geographic Locations";…

  4. A sublimation heat engine

    PubMed Central

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  5. Advanced Combustion Engineering.

    ERIC Educational Resources Information Center

    Bartholomew, Calvin H.

    1987-01-01

    Describes the development of the Advanced Combustion Engineering Research Center (ACERC), which is a cooperative project of Brigham Young University, the University of Utah, and 25 governmental and industrial research laboratories. Discusses the research objectives, the academic program, the industrial relations and technology transfer program,…

  6. Engineering Better Graduates.

    ERIC Educational Resources Information Center

    Barnett, Peter N.; Petersen, Gary S.

    1993-01-01

    Describes the Multiple Engineering Cooperative Program (MECOP) at Oregon State University and how it demonstrates the power of an effective business/education partnership. Examines the history of the program since its inception in 1978 and reviews its current status in 1993, when the program supports 81 students interning among 31 companies…

  7. Ceramics for engines

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Levine, Stanley R.; Dicarlo, James A.

    1987-01-01

    Structural ceramics were under nearly continuous development for various heat engine applications since the early 1970s. These efforts were sustained by the properties that ceramics offer in the areas of high-temperature strength, environmental resistance, and low density and the large benefits in system efficiency and performance that can result. The promise of ceramics was not realized because their brittle nature results in high sensitivity to microscopic flaws and catastrophic fracture behavior. This translated into low reliability for ceramic components and thus limited their application in engines. For structural ceramics to successfully make inroads into the terrestrial heat engine market requires further advances in low cost, net shape fabrication of high reliability components, and improvements in properties such as toughness, and strength. These advances will lead to very limited use of ceramics in noncritical applications in aerospace engines. For critical aerospace applications, an additional requirement is that the components display markedly improved toughness and noncatastrophic or graceful fracture. Thus the major emphasis is on fiber-reinforced ceramics.

  8. Engineering Design Challenge

    ERIC Educational Resources Information Center

    Wheeler, Lindsay B.; Whitworth, Brooke A.; Gonczi, Amanda L.

    2014-01-01

    The number of students majoring in science, technology, engineering, and math (STEM) is declining due in part to a lack of student interest (Fairweather 2008; NRC 2012; PCAST 2010). One reason may be the difference between how science is done in school and how it is done in the field (Osborne, Simon, and Collins 2003). An interdisciplinary…

  9. Anatomy for Biomedical Engineers

    ERIC Educational Resources Information Center

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  10. Ethics of Reproductive Engineering

    ERIC Educational Resources Information Center

    Buuck, R. John

    1977-01-01

    Artificial insemination, in vitro fertilization, artificial placentas, and cloning are examined from a ethical viewpoint. The moral, social, and legal implications of reproductive engineering are considered important to biology as well as medicine. The author suggests that these ethical issues should be included in the biology curriculum and lists…

  11. With News Search Engines

    ERIC Educational Resources Information Center

    Gunn, Holly

    2005-01-01

    Although there are many news search engines on the Web, finding the news items one wants can be challenging. Choosing appropriate search terms is one of the biggest challenges. Unless one has seen the article that one is seeking, it is often difficult to select words that were used in the headline or text of the article. The limited archives of…

  12. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  13. Engine & Vehicle Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum includes all competencies a student will acquire in an engine and vehicle mechanics educational program. It follows guidelines established for automobile technician training programs leading toward certification and addresses requirements of the National Institute for Automotive Service Excellence (ASE). The…

  14. Engineer Equipment Chief.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by engineer equipment chiefs. Addressed in the five individual units of the course are the following topics: construction management (planning, scheduling, and supervision);…

  15. The Engineering of Sand.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.

    1989-01-01

    Discussed are beach replenishment, and hard structures in relation to the sand transportation system. Failures of current engineering practices and the resulting costs to the taxpayer are stressed. Equations and parameters used to make predictions of beach durability are criticized. (CW)

  16. Plasma engineering for MARS

    SciTech Connect

    Carlson, G.A.; Baldwin, D.E.; Barr, W.L.

    1983-03-24

    The two-year Mirror Advanced Reactor Study (MARS) has resulted in the conceptual design of a commercial, electricity-producing fusion reactor based on tandem mirror confinement. The physics basis for the MARS reactor was developed through work in two highly coupled areas of plasma engineering: magnetics and plasma performance.

  17. Liquid rocket engine turbines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

  18. Metabolic engineering of bacteria.

    PubMed

    Kumar, Ravi R; Prasad, Satish

    2011-07-01

    Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathway. Industrial microorganisms like Escherichia coli, Actinomycetes, etc. have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. The factors like oxygenation, temperature and pH have been traditionally controlled and optimized in industrial fermentation in order to enhance metabolite production. Metabolic engineering of bacteria shows a great scope in industrial application as well as such technique may also have good potential to solve certain metabolic disease and environmental problems in near future. PMID:22754024

  19. Space chemical engines technology

    NASA Technical Reports Server (NTRS)

    Berkopec, Frank D.

    1991-01-01

    The topics presented are covered in viewgraph form. The programmatic objective is to provide the technology necessary to proceed in the late 1990's with development of moderate-thrust LOX/LH2 expander cycle engines for various space transportation applications.

  20. Brownian Carnot engine

    PubMed Central

    Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A.

    2016-01-01

    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths1. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors2 and some artificial micro-engines3–5 operate. As described by stochastic thermodynamics6,7, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit8. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures9–11. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency—an insight that could inspire new strategies in the design of efficient nano-motors. PMID:27330541

  1. Photographic series: 1921 Engineers

    NASA Technical Reports Server (NTRS)

    1921-01-01

    Two mechanics measure and record wing ordinates on a Curtiss Jenny airplane. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 29), by James Schultz. Also published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 (page 45), by James R. Hansen.

  2. Software engineering ethics

    NASA Technical Reports Server (NTRS)

    Bown, Rodney L.

    1991-01-01

    Software engineering ethics is reviewed. The following subject areas are covered: lack of a system viewpoint; arrogance of PC DOS software vendors; violation od upward compatibility; internet worm; internet worm revisited; student cheating and company hiring interviews; computing practitioners and the commodity market; new projects and old programming languages; schedule and budget; and recent public domain comments.

  3. Community-Based Engineering

    ERIC Educational Resources Information Center

    Dalvi, Tejaswini; Wendell, Kristen

    2015-01-01

    A team of science teacher educators working in collaboration with local elementary schools explored opportunities for science and engineering "learning by doing" in the particular context of urban elementary school communities. In this article, the authors present design task that helps students identify and find solutions to a…

  4. An Automatic Engine Analyzer.

    ERIC Educational Resources Information Center

    Tian-Fu, Li; And Others

    1984-01-01

    Describes an inexpensive, simple, microprocessor-based instrument which quickly and accurately measures and displays the indicated power and the pressure-volume indicator diagram of a reciprocating compressor or internal combustion engine. Hardware requirements, software considerations, and the instrument's educational value are discussed. (JN)

  5. Brownian Carnot engine

    NASA Astrophysics Data System (ADS)

    Martínez, I. A.; Roldán, É.; Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A.

    2016-01-01

    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency--an insight that could inspire new strategies in the design of efficient nano-motors.

  6. Fundamentals of Diesel Engines.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  7. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1990-01-01

    Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  8. SMS engineering design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The engineering design for the Shuttle Missions Simulator is presented in sections, with each section representing a subsystem development activity. Subsystems covered include: electrical power system; mechanical power system; main propellant and external tank; solid rocket booster; reaction control system; orbital maneuvering system; guidance, navigation, and control; data processing system; mission control center interface; and image display system.

  9. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  10. Engineers and Ivory Towers.

    ERIC Educational Resources Information Center

    Heterick, Robert C., Jr.

    1995-01-01

    The winner of the 1994 CAUSE Award for Exemplary Leadership and Information Technology Excellence offers his view of information technology, resources, and management. Engineering principles are applied to information technology issues, such as access versus security and client/server versus mainframe systems. College/university information…

  11. Authority in Engineering Education

    ERIC Educational Resources Information Center

    Stephan, Karl D.

    2012-01-01

    Authority as a philosophical concept is defined both in general and as it applies to engineering education. Authority is shown to be a good and necessary part of social structures, in contrast to some cultural trends that regard it as an unnecessary and outmoded evil. Technical, educational, and organizational authority in their normal functions…

  12. Engineer Equipment Operator.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by engineer equipment operators. Addressed in the seven individual units of the course are the following topics: introduction to Military Occupation Specialty (MOS) 1345…

  13. Engine lubricating system

    SciTech Connect

    Kurio, N.; Yoshimi, H.; Shigemura, T.; Shono, Y.

    1988-10-04

    This patent describes engine lubricating system comprising a lubricating oil supply means having a plunger member adapted to be reciprocated in the axial direction in response to an engine output shaft to discharge lubricating oil, a control pin which is adapted to abut against the plunger member and is movable to change the stroke of the plunger member, thereby changing the amount of the lubricating oil to be discharged in each stroke of the plunger member, and an electric actuator which moves the control pin to change the stroke of the plunger member; a control means which receives the electric signal from the operating condition detecting means and outputs an electric control signal for controlling the electric actuator; the actuator comprising a stepping motor and the control means outputting an electric control signal representing the number of steps by which the stepping motor is to be operated; the operating condition detecting means comprising an intake volume detecting means which detects the amount of intake air introduced into the cylinder of the engine per one engine revolution, and the control means outputs and electric signal to the stepping motor which controls the stepping motor to drive the control pin to increase the amount of the lubricating oil to be discharged in each stroke of the plunger member as the amount of intake air increases.

  14. Stirling cycle piston engine

    SciTech Connect

    Morgan, G. R.

    1985-02-12

    This device is an improvement over the conventional type of Stirling cycle engine where the expander piston is connected to a crankshaft and the displacer piston is connected to the same or another crankshaft for operation. The improvement is based on both the expansion and displacer pistons being an integral unit having regenerating means which eliminate the mechanisms that synchronize the regeneration mode.

  15. Internal combustion engine

    SciTech Connect

    Beaudsin, N.

    1984-05-22

    An internal combustion engine wherein the rod connecting the piston to the crankshaft has an enlarged portion defining a track which a crankshaft element cooperatingly engages; the track is topologically shaped so that the effect exerted by the crankshaft element on the connecting rod is reduced and/or cancelled for a given travel distance of the crankshaft element in the track.

  16. Vehicle with magnetic engine

    SciTech Connect

    Wortham, C.

    1993-06-15

    A vehicle is described comprising a vehicle frame fitted with axles and wheels rotatably carried by the axles; an engine block mounted on the frame; a plurality of magnetic cylinders provided in the engine block and a plurality of magnetic pistons disposed in the magnetic cylinders, respectively, in reciprocating relationship, the magnetic cylinders having a first magnetic polarity in one end and a second magnetic polarity in the opposite end for alternately attracting and repelling the magnetic pistons, respectively; a crankshaft journalled for rotation in the engine block; power transmission means connecting the crankshaft to at least one of the axles in driving relationship; and connecting rods connecting the crankshaft to the magnetic pistons, respectively, whereby reciprocation of the magnetic pistons in the magnetic cylinders effects rotation of the crankshaft; a cylinder head provided on the engine block and piston electromagnetic means provided in the cylinder head above the magnetic cylinders and the magnetic pistons, respectively for alternately attracting and repelling the magnetic pistons; at least one battery carried by the frame; and polarity timing means electrically connected to the battery and the piston electromagnetic means, for alternating the polarity of the piston electromagnet means, whereby electric current is supplied to the piston electromagnetic means in current-reversing relationship to alternately attract and repel the magnetic pistons in reciprocating relationship responsive to operation of the polarity timing means.

  17. Nurturing Creative, Thinking Engineers

    ERIC Educational Resources Information Center

    Goel, Sanjay

    2011-01-01

    This paper describes some ideas and experiences with training student engineers in creativity and critical thinking. In our survey, a large majority (82%) of respondents felt that as compared to all other kind of academic engagements, their projects had contributed most to develop their creativity. About 50% had also felt that their projects were…

  18. Stirling engines for automobiles

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.

    1979-01-01

    The results of recent and ongoing automobile Stirling engine development efforts are reviewed and technology status and requirements are identified. Key technology needs include those for low cost, high temperature (1300 - 1500 F) metal alloys for heater heads, and reliable long-life, low-leakage shaft seals. Various fuel economy projections for Stirling powered automobiles are reviewed and assessed.

  19. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  20. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  1. Educating todays engineering manager

    SciTech Connect

    Hurt, N.H. Jr.

    1986-04-01

    The issues addressed in this paper are: needed management skills/knowledge in concert with the definitions of management and leadership; suggested timing for behavioral management training, that is, undergraduate, graduate, or continuing education programs; and adequacy of management courses typically offered in traditional undergraduate/graduate engineering curricula.

  2. Analytics for Metabolic Engineering

    PubMed Central

    Petzold, Christopher J.; Chan, Leanne Jade G.; Nhan, Melissa; Adams, Paul D.

    2015-01-01

    Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants, while deep omics analysis provides a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research. PMID:26442249

  3. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  4. Careers in Engineering.

    ERIC Educational Resources Information Center

    Reyes-Guerra, David R.

    This publication, a pamphlet included in the B'nai B'rith Occupational Brief Series, directs its attention to the profession of engineering. It is described as that profession in which knowledge of the mathematical and natural sciences, gained by study, experience, and practice, is applied with judgment to develop ways to utilize economically the…

  5. Education as Engineering

    ERIC Educational Resources Information Center

    Dewey, John

    2009-01-01

    John Dewey's short essay, "Education as engineering" was first published in 1922. It is followed here by four commentaries discussing the contemporary relevance of its argument that a science of education cannot advance education in the absence of pioneering developments on the ground of the schools.

  6. Diesel Engine Idling Test

    SciTech Connect

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  7. Engineering a Classroom Discussion.

    ERIC Educational Resources Information Center

    Smith, Walter E.

    1983-01-01

    Describes physical science activities that civil/mechanical engineers (serving as resource persons) can use with students during units on force, work, center of gravity, simple machines, and other basic mechanics concepts. Activities are adapted from Career Oriented Modules to Explore Topics in Science for grades 5-9 (COMETS). (Author/JN)

  8. Comprehensive Small Engine Repair.

    ERIC Educational Resources Information Center

    Hires, Bill; And Others

    This curriculum guide contains the basic information needed to repair all two- and four-stroke cycle engines. The curriculum covers four areas, each consisting of one or more units of instruction that include performance objectives, suggested activities for teacher and students, information sheets, assignment sheets, job sheets, visual aids,…

  9. SSC Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Junell, Justin; Albasini, Colby; O'Rourke, William; Le, Thang; Strain, Ted; Stiglets, Tim

    2011-01-01

    A package for the automation of the Engineering Analysis (EA) process at the Stennis Space Center has been customized. It provides the ability to assign and track analysis tasks electronically, and electronically route a task for approval. It now provides a mechanism to keep these analyses under configuration management. It also allows the analysis to be stored and linked to the engineering data that is needed to perform the analysis (drawings, etc.). PTC s (Parametric Technology Corp o ration) Windchill product was customized to allow the EA to be created, routed, and maintained under configuration management. Using Infoengine Tasks, JSP (JavaServer Pages), Javascript, a user interface was created within the Windchill product that allows users to create EAs. Not only does this interface allow users to create and track EAs, but it plugs directly into the out-ofthe- box ability to associate these analyses with other relevant engineering data such as drawings. Also, using the Windchill workflow tool, the Design and Data Management System (DDMS) team created an electronic routing process based on the manual/informal approval process. The team also added the ability for users to notify and track notifications to individuals about the EA. Prior to the Engineering Analysis creation, there was no electronic way of creating and tracking these analyses. There was also a feature that was added that would allow users to track/log e-mail notifications of the EA.

  10. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  11. Engineering Industry Training Board

    ERIC Educational Resources Information Center

    Industrial Training International, 1974

    1974-01-01

    The Engineering Industry Training Board has produced a method enabling the office supervisor or departmental manager to control the critical parts of his systems--the Commercial Systems Practice (CSP). The systems plot, the staff/task matrix, performance indicators, and benefits of the CSP technique are discussed. (Author/MW)

  12. Blade for turbine engine

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Babu, Michael (Inventor); Murdock, James R. (Inventor)

    2004-01-01

    A blade for a turbine engine having a centerline. The blade comprises: a root section extending at an angle relative to the centerline; and an airfoil section extending from the root section. The root section is directly adjacent said airfoil section. In other words, the blade is neckless. The blade is part of a rotor assembly, and is preferably a fan blade.

  13. Engineering performance metrics

    NASA Astrophysics Data System (ADS)

    Delozier, R.; Snyder, N.

    1993-03-01

    Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.

  14. Space Electronic Test Engineering

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  15. Value engineering: A new focus for women in engineering

    SciTech Connect

    Anderson, L.C.

    1990-04-20

    Value Engineering is an organized problem solving technique that utilizes communication and teamwork skills -- skills heralded as strengths for women. Value Engineering offers an excellent career opportunity for women in the engineering profession. It is an expanded career path that is currently being overlooked by women. Value Engineering is supported by SAVE (Society of American Value Engineers) and certification in the process can be achieved in two years. For women in the engineering profession, VE is an ideal place to redirect their existing skills and training. The number of certified women is a minority, creating a wide-open field of opportunity in federal and state agencies as well as private industry. Value Engineering can provide that new avenue for engineering careers -- a new direction where current skills can be applied to a diverse and exciting profession. 1 fig.

  16. Scaling up: Taking the Academic Pathways of People Learning Engineering Survey (APPLES) National. Research Brief

    ERIC Educational Resources Information Center

    Donaldson, Krista M.; Chen, Helen L.; Toye, George; Clark, Mia; Sheppard, Sheri D.

    2008-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES) was deployed for a second time in spring 2008 to undergraduate engineering students at 21 US universities. The goal of the second deployment of APPLES was to corroborate and extend findings from the Academic Pathways Study (APS; 2003-2007) and the first deployment of APPLES…

  17. Ion Engine Test Firing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image of a xenon ion engine, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Ion propulsion was first proposed in the 1950s and NASA performed experiments on this highly efficient propulsion system in the 1960s, but it was not used aboard an American spacecraft until the 1990s. Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, DC. The California Institute of Technology in Pasadena manages JPL for NASA. The almost imperceptible thrust from the ion propulsion system is equivalent to the pressure exerted by a sheet of paper held in the palm of your hand. The ion engine is very slow to pick up speed, but over the long haul it can deliver 10 times as much thrust per pound of fuel as more traditional rockets. Unlike the fireworks of most chemical rockets using solid or liquid fuels, the ion drive emits only an eerie blue glow as ionized (electrically charged) atoms of xenon are pushed out of the engine. Xenon is the same gas found in photo flash tubes and many lighthouse bulbs.

  18. Composite coatings improve engines

    SciTech Connect

    Funatani, K.; Kurosawa, K. )

    1994-12-01

    About 40% of the power loss in engine systems is attributed to the adverse effects of friction in reciprocating engine components. Over half of this power loss is caused by friction between pistons, piston rings, and cylinder bores. In addition, engine parts may be attacked by corrosive gasoline substitutes such as liquid propane gas and alcohol/gasoline mixtures. To solve both friction and corrosion problems, Nihon Parkerizing Co. has improved the nickel-phosphorus based ceramic composite (NCC) plating technology that was developed for cylinder bores and pistons by Suzuki Motor Co. in the mid 1970s. Iron and nickel-based composite plating technologies have been investigated since the early 1970s, and a few have been used on small two-stroke motorcycle, outboard marine, snowmobile, and some luxury passenger car engine components. Both nickel- and iron-base plating processes are used on cylinders and pistons because they offer excellent wear and corrosion resistance. Nickel-base films have higher corrosion resistance than those based on iron, and are capable of withstanding the corrosive conditions characteristic of high methanol fuels. Unfortunately, they experience a decrease in hardness as operating temperatures increase. However, NCC coatings with phosphorus additions have high hardness even under severe operating conditions, and hardness increases upon exposure to elevated temperatures. In addition to high hardness and corrosion resistance, NCC coatings provide a low friction coefficient, which contributes to the reduction of friction losses between sliding components. When used in low-quality or alcohol fuels, the corrosion resistance of NCC coatings is far higher than that of Fe-P plating. Additionally, the coatings reduce wall and piston temperature, wear of ring groove and skirt, and carbon deposit formation, and they improve output power and torque. These advantages all contribute to the development of light and efficient engines with better fuel mileage.

  19. Engineering Living Functional Materials

    PubMed Central

    2016-01-01

    Natural materials, such as bone, integrate living cells composed of organic molecules together with inorganic components. This enables combinations of functionalities, such as mechanical strength and the ability to regenerate and remodel, which are not present in existing synthetic materials. Taking a cue from nature, we propose that engineered ‘living functional materials’ and ‘living materials synthesis platforms’ that incorporate both living systems and inorganic components could transform the performance and the manufacturing of materials. As a proof-of-concept, we recently demonstrated that synthetic gene circuits in Escherichia coli enabled biofilms to be both a functional material in its own right and a materials-synthesis platform. To demonstrate the former, we engineered E. coli biofilms into a chemical-inducer-responsive electrical switch. To demonstrate the latter, we engineered E. coli biofilms to dynamically organize biotic-abiotic materials across multiple length scales, template gold nanorods, gold nanowires, and metal/semiconductor heterostructures, and synthesize semiconductor nanoparticles (Chen, A. Y. et al. (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater.13, 515–523.). Thus, tools from synthetic biology, such as those for artificial gene regulation, can be used to engineer the spatiotemporal characteristics of living systems and to interface living systems with inorganic materials. Such hybrids can possess novel properties enabled by living cells while retaining desirable functionalities of inorganic systems. These systems, as living functional materials and as living materials foundries, would provide a radically different paradigm of materials performance and synthesis–materials possessing multifunctional, self-healing, adaptable, and evolvable properties that are created and organized in a distributed, bottom-up, autonomously assembled, and environmentally sustainable manner. PMID

  20. 15. INTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL. THIS VIEW IS TAKEN FROM THE HIGH-PRESSURE SIDE OF THE ENGINE SHOWING THE HOUSING EXTENSION; TO THE RIGHT, IN THE BACKGROUND, IS THE 24' CAST-IRON FLYWHEEL. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  1. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  2. 13. INTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL. THIS VIEW HIGHLIGHTS THE CRANK AND 24' DIAMETER FLYWHEEL. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  3. 10. Interior detail, original Boiler and Engine Room, Engine Stores ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior detail, original Boiler and Engine Room, Engine Stores Building, Southern Pacific Railroad Carlin Shops, view to east (90mm lens). Note the pin-connected roof truss system and built-up iron longitudinal roof girders. - Southern Pacific Railroad, Carlin Shops, Engine Stores Building, Foot of Sixth Street, Carlin, Elko County, NV

  4. 9. Interior, original Boiler and Engine Room, Engine Stores Building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior, original Boiler and Engine Room, Engine Stores Building, Southern Pacific Railroad Carlin Shops, view to south (90mm lens). Note the roof truss system and built-up iron longitudinal roof girders. - Southern Pacific Railroad, Carlin Shops, Engine Stores Building, Foot of Sixth Street, Carlin, Elko County, NV

  5. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 14

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  6. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 15

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  7. Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula

    ERIC Educational Resources Information Center

    Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan

    2006-01-01

    A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…

  8. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 13

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  9. Engineering Programs of Tomorrow: The Role of Agricultural Engineering.

    ERIC Educational Resources Information Center

    Edwards, Donald M.

    Due to rapid growth of societal and technological endeavors, engineers of the future will require greater technical competence. At the same time, engineering will become more people oriented with greater emphasis placed on people input into decision making. As a result, engineering education must not only provide improved technical education but…

  10. Condorcet Query Engine: A Query Engine for Coordinated Index Terms.

    ERIC Educational Resources Information Center

    Van der Vet, Paul E.; Mars, Nicolaas J. I.

    1999-01-01

    Coordinated index concepts are compound-index concepts that express a relationship between concepts that function as simple subject descriptors. The Condorcet Query Engine, a prototype query engine that can be run over the World Wide Web, demonstrates the feasibility of a query engine that can handle both simple and coordinated index concepts,…

  11. Stirling Engine Controller

    NASA Technical Reports Server (NTRS)

    Blaze, Gina M.

    2004-01-01

    Stirling technology is being developed to replace RTG s (Radioisotope Thermoelectric Generators), more specifically a stirling convertor, which is a stirling engine coupled to a linear alternator. Over the past three decades, the stirling engine has been designed to perform different functions. Stirling convertors have been designed to decrease fuel consumption in automobiles. They have also been designed for terrestrial and space applications. Currently NASA Glenn is using the convertor for space based applications. A stiring converter is a better means of power for deep space mission and "dusty" mission, like the Mars Rovers, than solar panels because it is not affected by dust. Spirit and Opportunity, two Mars rovers currently navigating the planet, are losing their ability to generate electricity because dust is collecting on their solar panels. Opportunity is losing more energy because its robotic arm has a heater with a switch that can not be turned off. The heater is not needed at night, but yet still runs. This generates a greater loss of electricity and in turn diminishes the performance of the rover. The stirling cycle has the potential to provide very efficient conversion of heat energy to electric a1 energy, more so than RTG's. The stirling engine converts the thermal energy produced by the decaying radioisotope to mechanical energy; the linear alternator converts this into electricity. convertor. Since the early 1990's tests have been performed to maximize the efficiency of the stirling converter. Many months, even years, are dedicated to preparing and performing tests. Currently, two stirling convertors #'s 13 and 14, which were developed by Stirling Technology Company, are on an extended operation test. As of June 7th, the two convertors reached 7,500 hours each of operation. Before the convertors could run unattended, many safety precautions had to be examined. So, special instrumentation and circuits were developed to detect off nominal conditions

  12. Biomedical Engineering in Modern Society

    ERIC Educational Resources Information Center

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  13. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  14. Selected Readings in Genetic Engineering

    ERIC Educational Resources Information Center

    Mertens, Thomas R.; Robinson, Sandra K.

    1973-01-01

    Describes different sources of readings for understanding issues and concepts of genetic engineering. Broad categories of reading materials are: concerns about genetic engineering; its background; procedures; and social, ethical and legal issues. References are listed. (PS)

  15. Fatigue of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Dumanois, P

    1924-01-01

    The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.

  16. AJ26 Rocket Engine Test

    NASA Video Gallery

    Engineers at NASA’s John C. Stennis Space Center conducts the second in a series of verification tests on an Aerojet AJ26 engine that will power the first stage of the Orbital Sciences Corporatio...

  17. Supercharging system for automotive engines

    SciTech Connect

    Yamada, T.; Yabuhara, H.; Takimoto, F.

    1988-03-15

    A supercharging system for an automotive engine is described comprising: a turbocharger driven by exhaust-gas of the engine; a supercharger; an intake passage connecting the turbocharger and the supercharger in series, for supplying air to the engine; driving means for driving the supercharger by the engine; clutch means provided in the driving means; a first bypass provided around the supercharger; a control valve provided in the first bypass; a second bypass provided around the turbine of the turbocharger; a waste gate valve provided in the second bypass; a first actuator for operating the control valve; a second actuator for operating the waste gate valve; first means for operating the second actuator to open the waste gate valve when supercharging pressure exceeds a predetermined value; an engine speed sensor for detecting speed of the engine; an engine load sensor for detecting load on the engine; and a control unit.

  18. ThermoData Engine Database

    National Institute of Standards and Technology Data Gateway

    SRD 103 NIST ThermoData Engine Database (PC database for purchase)   ThermoData Engine is the first product fully implementing all major principles of the concept of dynamic data evaluation formulated at NIST/TRC.

  19. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and

  20. Solar-thermal engine testing

    NASA Astrophysics Data System (ADS)

    Tucker, Stephen; Salvail, Pat

    2002-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle, collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 °F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (Isp). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemically vapor deposited (CVD) rhenium. The engine ``module'' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine Isp. In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects

  1. Fusion engineering device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  2. Fusion Engineering Device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  3. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  4. Solar sail Engineering Development Mission

    NASA Technical Reports Server (NTRS)

    Price, H. W.

    1981-01-01

    Since photons have momentum, a useful force can be obtained by reflecting sunlight off of a large, low mass surface (most likely a very thin metal-coated plastic film) and robbing the light of some of its momentum. A solar sail Engineering Development Mission (EDM) is currently being planned by the World Space Foundation for the purpose of demonstrating and evaluating solar sailing technology and to gain experience in the design and operation of a spacecraft propelled by sunlight. The present plan is for the EDM spacecraft to be launched (sail stowed) in a spin-stabilized configuration into an initial elliptical orbit with an apogee of 36,000 km and a perigee of a few hundred kilometers. The spacecraft will then use its own chemical propulsion system to raise the perigee to at least 1,200 km. The deployed sail will have an area of 880 sq m and generate a solar force of about 0.007 N.

  5. Students' Guide to Engineering Schools.

    ERIC Educational Resources Information Center

    National Action Council for Minorities in Engineering, Inc., New York, NY.

    Designed for minority students considering careers in engineering, this guide provides descriptions of every undergraduate engineering college in the United States with at least one curriculum approved by the Accreditation Board for Engineering and Technology, and guidelines for assessing educational wants and needs. Entries for each of the 261…

  6. Accreditation of Industrial Engineering Programs.

    ERIC Educational Resources Information Center

    Brooks, George H.

    The guidelines used in the accreditation of industrial engineering programs are discussed. Changes that have taken place in engineering curriculum are described, along with the philosophy of educators in formulating industrial engineering program requirements in the areas of faculty, facilities, curriculum, administration, and scholastic work.…

  7. Cleaner, More Efficient Diesel Engines

    SciTech Connect

    Musculus, Mark

    2013-08-13

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  8. Professional Identification for Biomedical Engineers

    ERIC Educational Resources Information Center

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  9. Shedding Light on Engineering Design

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Nyquist, Chell; Tyrie, Nancy

    2013-01-01

    This article describes the steps incorporated to teach an engineering design process in a fifth-grade science classroom. The engineering design-based activity was an existing scientific inquiry activity using UV light--detecting beads and purposefully creating a series of engineering design-based challenges around the investigation. The…

  10. ENGINEERING MANPOWER BULLETIN NUMBER 9.

    ERIC Educational Resources Information Center

    ALDEN, JOHN D.

    DESIGNED TO INFORM LEADERS IN INDUSTRY, GOVERNMENT, AND EDUCATION, WHOSE RESPONSIBILITY INCLUDES AWARENESS OF ENGINEERING MANPOWER DEVELOPMENTS, THIS BULLETIN REPORTS A STUDY CONDUCTED BY THE ENGINEERING MANPOWER COMMISSION OF ENGINEERS IN THE ARMED SERVICES. THE WORK OF THE COMMISSION IS TO ASSURE THE MOST EFFECTIVE UTILIZATION OF ENGINEERING…

  11. Retraining the Modern Civil Engineer.

    ERIC Educational Resources Information Center

    Priscoli, Jerome Delli

    1983-01-01

    Discusses why modern engineering requires social science and the nature of planning. After these conceptional discussions, 12 practical tools which social science brings to engineering are reviewed. A tested approach to training engineers in these tools is then described. Tools include institutional analysis, policy profiling, and other impact…

  12. Environmental Ethics and Civil Engineering.

    ERIC Educational Resources Information Center

    Vesilind, P. Aarne

    1987-01-01

    Traces the development of the civil engineering code of ethics. Points out that the code does have an enforceable provision that addresses the engineer's responsibility toward the environment. Suggests revisions to the code to accommodate the environmental impacts of civil engineering. (TW)

  13. A Global Approach to Engineering

    ERIC Educational Resources Information Center

    Carlson, Scott

    2007-01-01

    As American manufacturing moves increasingly overseas and immense growth is forecast in modernizing countries like India and China, engineers need to understand those cultures before designing products for them, say supporters of international-engineering programs. The Accreditation Board for Engineering and Technology (ABET), which accredits…

  14. Cleaner, More Efficient Diesel Engines

    ScienceCinema

    Musculus, Mark

    2016-07-12

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  15. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Allen, M. (Editor)

    1980-01-01

    Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.

  16. 78 FR 53380 - Value Engineering

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... TRANSPORTATION Federal Highway Administration 23 CFR Part 627 RIN 2125-AF64 Value Engineering AGENCY: Federal... Making (NPRM); request for comments. SUMMARY: The FHWA proposes to update the existing value engineering... Leuderalbert, Value Engineering and Utilities Program Manager, FHWA Office of Program Administration,...

  17. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    As the debate over nuclear safety continues, the job market remains healthy for nuclear engineers. The average salary offered to new nuclear engineers with bachelor's degrees is $27,400. Salary averages and increases compare favorably with other engineering disciplines. Various job sources in the field are noted. (JN)

  18. The Education of an Engineer.

    ERIC Educational Resources Information Center

    Florman, Samuel C.

    1986-01-01

    Although pressures toward vocationalism are increasingly intense, engineers should be studying the liberal arts. Since communication is essential to successful engineering, it is clear that engineering students should study English; literature and history could also provide knowledge and understanding of people. (MLW)

  19. Engineering and Technology Graduates 1972.

    ERIC Educational Resources Information Center

    Iceland, Carol; And Others

    A report on the placement status of engineering and technology graduates in 1972 is presented on the basis of survey data obtained from registrars and placement directors of institutions in the U. S. The numbers of graduates were: (1) 44,190 bachelor's, 17,003 master's, 353 engineer, and 3,774 doctorate degrees in engineering, and (2) 22,578…

  20. An Engineer Does What Now?

    ERIC Educational Resources Information Center

    Gilbert, Amy; Wade, Katherine

    2014-01-01

    For an introductory engineering class at an all-girls urban high school in the Southeast, the authors planned an experience that would align with the engineering aspects of the "Next Generation Science Standards" (NGSS Lead States 2013). The goal was to better relate science, technology, engineering, and mathematics (STEM) to everyday…

  1. Stationary Engineering. Science Manual--2.

    ERIC Educational Resources Information Center

    Frost, Harold J.; Steingress, Frederick M.

    This second-year student manual contains 140 brief related science lessons applying science and math to trade activities in the field of stationary engineering. The lessons are organized into 16 units: (1) Introduction to Stationary Engineering, (2) Engineering Fundamentals, (3) Steam Boilers, (4) Boiler Fittings, (5) Boilerroom System, (6)…

  2. Engineering Technology Education: Bibliography 1989.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A., Comp.

    1990-01-01

    Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…

  3. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  4. Solar engineering 1994

    SciTech Connect

    Klett, D.E.; Hogan, R.E.; Tanaka, Tadayoshi

    1994-01-01

    This volume of 83 papers constitutes the Proceedings of the 1994 International Solar Energy Conference held March 27--30, 1994 in San Francisco, California. The Conference was jointly sponsored by the Solar Energy Division of the American Society of Mechanical Engineers, The Japan Society of Mechanical Engineers and the Japan Solar Energy Society. This is the fourth cooperation between ASME, JSME and JSES in cosponsoring the International Solar Energy Conference. The papers cover a wide range of solar technologies from low temperature solar ponds and desalinization to high temperature concentrators for space applications and central receivers for terrestrial power generation. Other topics covered include solar detoxification of hazardous waste, dish Stirling systems, solar cooling, photovoltaics, building energy analysis and conservation, simulation, and testing and measurement techniques. All papers were indexed separately for the data base.

  5. Engineering holographic phase diagrams

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-10-01

    By introducing interacting scalar fields, we tried to engineer physically motivated holographic phase diagrams which may be interesting in the context of various known condensed matter systems. We introduce an additional scalar field in the bulk which provides a tunable parameter in the boundary theory. By exploiting the way the tuning parameter changes the effective masses of the bulk interacting scalar fields, desired phase diagrams can be engineered for the boundary order parameters dual to those scalar fields. We give a few examples of generating phase diagrams with phase boundaries which are strikingly similar to the known quantum phases at low temperature such as the superconducting phases. However, the important difference is that all the phases we have discussed are characterized by neutral order parameters. At the end, we discuss if there exists any emerging scaling symmetry associated with a quantum critical point hidden under the dome in this phase diagram.

  6. Computational engine structural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Johns, R. H.

    1986-01-01

    A significant research activity at the NASA Lewis Research Center is the computational simulation of complex multidisciplinary engine structural problems. This simulation is performed using computational engine structural analysis (CESA) which consists of integrated multidisciplinary computer codes in conjunction with computer post-processing for problem-specific application. A variety of the computational simulations of specific cases are described in some detail in this paper. These case studies include: (1) aeroelastic behavior of bladed rotors, (2) high velocity impact of fan blades, (3) blade-loss transient response, (4) rotor/stator/squeeze-film/bearing interaction, (5) blade-fragment/rotor-burst containment, and (6) structural behavior of advanced swept turboprops. These representative case studies are selected to demonstrate the breath of the problems analyzed and the role of the computer including post-processing and graphical display of voluminous output data.

  7. Flight deck engine advisor

    NASA Technical Reports Server (NTRS)

    Shontz, W. D.; Records, R. M.; Antonelli, D. R.

    1992-01-01

    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.

  8. Electrochemical heat engine

    DOEpatents

    Elliott, Guy R. B.; Holley, Charles E.; Houseman, Barton L.; Sibbitt, Jr., Wilmer L.

    1978-01-01

    Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.

  9. Plant plastid engineering.

    PubMed

    Wani, Shabir H; Haider, Nadia; Kumar, Hitesh; Singh, N B

    2010-11-01

    Genetic material in plants is distributed into nucleus, plastids and mitochondria. Plastid has a central role of carrying out photosynthesis in plant cells. Plastid transformation is becoming more popular and an alternative to nuclear gene transformation because of various advantages like high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs, and gene containment through the lack of pollen transmission. Recently, much progress in plastid engineering has been made. In addition to model plant tobacco, many transplastomic crop plants have been generated which possess higher resistance to biotic and abiotic stresses and molecular pharming. In this mini review, we will discuss the features of the plastid DNA and advantages of plastid transformation. We will also present some examples of transplastomic plants developed so far through plastid engineering, and the various applications of plastid transformation.

  10. Engineered gene circuits

    NASA Astrophysics Data System (ADS)

    Hasty, Jeff; McMillen, David; Collins, J. J.

    2002-11-01

    A central focus of postgenomic research will be to understand how cellular phenomena arise from the connectivity of genes and proteins. This connectivity generates molecular network diagrams that resemble complex electrical circuits, and a systematic understanding will require the development of a mathematical framework for describing the circuitry. From an engineering perspective, the natural path towards such a framework is the construction and analysis of the underlying submodules that constitute the network. Recent experimental advances in both sequencing and genetic engineering have made this approach feasible through the design and implementation of synthetic gene networks amenable to mathematical modelling and quantitative analysis. These developments have signalled the emergence of a gene circuit discipline, which provides a framework for predicting and evaluating the dynamics of cellular processes. Synthetic gene networks will also lead to new logical forms of cellular control, which could have important applications in functional genomics, nanotechnology, and gene and cell therapy.

  11. JPL Contamination Control Engineering

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  12. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  13. Mass drivers. 3: Engineering

    NASA Technical Reports Server (NTRS)

    Arnold, W.; Bowen, S.; Cohen, S.; Fine, K.; Kaplan, D.; Kolm, M.; Kolm, H.; Newman, J.; Oneill, G. K.; Snow, W.

    1979-01-01

    The last of a series of three papers by the Mass-Driver Group of the 1977 Ames Summer Study is presented. It develops the engineering principles required to implement the basic mass-driver. Optimum component mass trade-offs are derived from a set of four input parameters, and the program used to design a lunar launcher. The mass optimization procedures is then incorporated into a more comprehensive mission optimization program called OPT-4, which evaluates an optimized mass-driver reaction engine and its performance in a range of specified missions. Finally, this paper discusses, to the extent that time permitted, certain peripheral problems: heating effects in buckets due to magnetic field ripple; an approximate derivation of guide force profiles; the mechanics of inserting and releasing payloads; the reaction mass orbits; and a proposed research and development plan for implementing mass drivers.

  14. Education of Sustainability Engineers

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Perrier, E.; Tarquis, A. M.

    2010-05-01

    It's not the same to educate the sustainable engineers as to prepare the engineers of Sustainability. In the latter case all existing methods of inventive creativity (Altshuller, 1988) should be introduced in the teaching and research processes in order to create a culture of innovation at a group. The Theory of Inventing Problem Solving (TRIZ) is based on the pioneer works of Genrich Altshuller (1988) and his associated. Altshuller reviewed over 2 million patents beginning in 1946 (Orlov, 2006) and developed the Laws of Evolution of Technological Systems; An Algorithm for Inventive Problem Solving (ARIZ); forty typical Techniques for Overcoming System Conflicts (TOSC); a system of 76 Standard Approaches to Inventive Problems (Standards) etc. (Fey and Rivin, 1997). Nowadays, "a theory and constructive instrument package for the controlled synthesis of ideas and the focused transformation of the object to be improved" (Orlov, 2006) are used with high efficacy as the teaching and thinking inventive problem-solving methods in some high schools (Barak and Mesika, 2006; Sokoi et al., 2008) as well as a framework for research (Moehrle, 2005) in construction industry (Zhang et al., 2009); chemical engineering (Cortes Robles et al., 2008) etc. In 2005 US Congress passed the innovation act with the intent of increasing research investment (Gupta, 2007), while China had included inventive principles of TRIZ in strategy and decision making structure design (Kai Yang, 2010). The integrating of TRIZ into eco-innovation diminishes the common conflicts between technology and environment (Chang and Chen, 2004). In our presentation we show discuss some examples of future patents elaborated by the master degree students of Queretaro University, Faculty of Engineering, Mexico using TRIZ methods. References 1. Altshuller, G., 1988. Creativity as an Exact Science. Gordon and Breach, New York. 2. Chang, Hsiang-Tang and Chen, Jahau Lewis, 2004. The conflict-problem-solving CAD software

  15. Constructive Engineering of Simulations

    NASA Technical Reports Server (NTRS)

    Snyder, Daniel R.; Barsness, Brendan

    2011-01-01

    Joint experimentation that investigates sensor optimization, re-tasking and management has far reaching implications for Department of Defense, Interagency and multinational partners. An adaption of traditional human in the loop (HITL) Modeling and Simulation (M&S) was one approach used to generate the findings necessary to derive and support these implications. Here an entity-based simulation was re-engineered to run on USJFCOM's High Performance Computer (HPC). The HPC was used to support the vast number of constructive runs necessary to produce statistically significant data in a timely manner. Then from the resulting sensitivity analysis, event designers blended the necessary visualization and decision making components into a synthetic environment for the HITL simulations trials. These trials focused on areas where human decision making had the greatest impact on the sensor investigations. Thus, this paper discusses how re-engineering existing M&S for constructive applications can positively influence the design of an associated HITL experiment.

  16. Engineering Airway Epithelium

    PubMed Central

    Soleas, John P.; Paz, Ana; Marcus, Paula; McGuigan, Alison; Waddell, Thomas K.

    2012-01-01

    Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium. PMID:22523471

  17. Electronic engine controls

    SciTech Connect

    Johanson, C.E.; Owens, T.

    1987-01-01

    This textbook provides competency-based instruction on modern automotive engine electronics. It emphasizes the practical ''need to know'' information on the major American and imported electronic engine controls. Basic theory necessary for a complete understanding of control systems (including background coverage of electricity and electronics) is explained. Designed for students, self-paced instruction, or as a reference for professional automotive technicians, the text utilizes a step-by-step approach that complements factory and shop services manuals. Hands-on applications cover system-specific and component descriptions, significant operational features, and system diagnosis and component replacement. Approximately 500 photographs and illustrations aid in student comprehension. The Instructor's Guide contains outlines, objectives, review questions and tests, discussion topics, solutions to text problems, and suggested instructional methods for competency-based classroom training.

  18. Plant plastid engineering.

    PubMed

    Wani, Shabir H; Haider, Nadia; Kumar, Hitesh; Singh, N B

    2010-11-01

    Genetic material in plants is distributed into nucleus, plastids and mitochondria. Plastid has a central role of carrying out photosynthesis in plant cells. Plastid transformation is becoming more popular and an alternative to nuclear gene transformation because of various advantages like high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs, and gene containment through the lack of pollen transmission. Recently, much progress in plastid engineering has been made. In addition to model plant tobacco, many transplastomic crop plants have been generated which possess higher resistance to biotic and abiotic stresses and molecular pharming. In this mini review, we will discuss the features of the plastid DNA and advantages of plastid transformation. We will also present some examples of transplastomic plants developed so far through plastid engineering, and the various applications of plastid transformation. PMID:21532834

  19. Engineering Annual Summary 1998

    SciTech Connect

    Dimolitsas, S

    1999-05-01

    Unlike most research and development laboratories, Lawrence Livermore National Laboratory (LLNL) is responsible for delivering production-ready designs. Unlike most industry, LLNL is responsible for R and D that must significantly increase the nation's security. This rare combination of production engineering expertise and national R and D agenda identifies LLNL as one of the few organizations today that conducts cutting-edge engineering on grand-scale problems, while facing enormous technical risk and undergoing diligent scrutiny of its budget, schedule, and performance. On the grand scale, cutting-edge technologies are emerging from our recent ventures into ''Xtreme Engineering{trademark}.'' Basically, we must integrate and extend technologies concurrently and then push them to their extreme, such as building very large structures but aligning them with extreme precision. As we extend these technologies, we push the boundaries of engineering capabilities at both poles: microscale and ultrascale. Today, in the ultrascale realm, we are building NIF, the world's largest laser, which demands one of the world's most complex operating systems with 9000 motors integrated through over 500 computers to control 60,000 points for every laser shot. On the other pole, we have fabricated the world's smallest surgical tools and the smallest instruments for detecting biological and chemical agents used by antiterrorists. Later in this Annual Summary, we highlight some of our recent innovations in the area of Xtreme Engineering, including large-scale computer simulations of massive structures such as major bridges to prepare retrofitting designs to withstand earthquakes. Another feature is our conceptual breakthrough in developing the world's fastest airplane, HyperSoar, which can reach anywhere in the planet in two hours at speeds of 6700 mph. In the last few years, Engineering has significantly pushed the technology in structural mechanics and micro-instrumentation. For example

  20. Clustered engine study

    NASA Technical Reports Server (NTRS)

    Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob

    1993-01-01

    Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.

  1. Reciprocating wind engine

    SciTech Connect

    Van Mechelen, B.

    1980-12-09

    A reciprocating wind engine is described which utilizes plural, movably mounted sets of panels to form pistons. Cooperating first and second pistons may be spaced from each other on either side of a central crankshaft. As the wind strikes the surface of a first set of panels, the first piston is moved toward the crankshaft and the second piston is pulled toward the crankshaft from the opposite side. When both pistons are adjacent the crankshaft, the panels on the first or windward piston open to allow the wind to pass therethrough into contact with the panels of the second piston which are closed to present a uniform surface to the wind. The pistons are forced away from the crankshaft to complete one cycle of operation. The output from the crankshaft may be utilized to generate electricity, or for any other suitable purpose. Plural engine segments may be cooperatively joined together to form a bank of such units.

  2. Internal combustion engine

    DOEpatents

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  3. Materials engineering for immunomodulation.

    PubMed

    Hubbell, Jeffrey A; Thomas, Susan N; Swartz, Melody A

    2009-11-26

    The engineering of materials that can modulate the immune system is an emerging field that is developing alongside immunology. For therapeutic ends such as vaccine development, materials are now being engineered to deliver antigens through specific intracellular pathways, allowing better control of the way in which antigens are presented to one of the key types of immune cell, T cells. Materials are also being designed as adjuvants, to mimic specific 'danger' signals in order to manipulate the resultant cytokine environment, which influences how antigens are interpreted by T cells. In addition to offering the potential for medical advances, immunomodulatory materials can form well-defined model systems, helping to provide new insight into basic immunobiology.

  4. Engineered T cell therapies.

    PubMed

    Field, Anne-Christine; Qasim, Waseem

    2015-11-04

    Alongside advancements in gene therapy for inherited immune disorders, the need for effective alternative therapeutic options for other conditions has resulted in an expansion in the field of research for T cell gene therapy. T cells are easily obtained and can be induced to divide robustly ex vivo, a characteristic that allows them to be highly permissible to viral vector-mediated introduction of transgenes. Pioneering clinical trials targeting cancers and infectious diseases have provided safety and feasibility data and important information about persistence of engineered cells in vivo. Here, we review clinical experiences with γ-retroviral and lentiviral vectors and consider the potential of integrating transposon-based vectors as well as specific genome editing with designer nucleases in engineered T cell therapies.

  5. Engineering antibodies for therapy.

    PubMed

    Adair, J R

    1992-12-01

    Success in the generation of an antibody-based therapeutic requires careful consideration of the binding site, to achieve specificity and high affinity; of the effector, to produce the desired therapeutic effect; of the means of attachment of the effector to the binding site; production of the end product; and the response made by the patient to the administered compound. Each of these areas is receiving attention by antibody-engineering techniques. The number of potentially useful monoclonal antibodies developed over the last 10 years, and currently in clinical trials or preregistration, is now being increased by these engineered newcomers. It will be interesting to see over the next few years how many of these antibodies, and of which kind, emerge as products.

  6. MARS Flight Engineering Status

    SciTech Connect

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  7. Ram jet engine

    SciTech Connect

    Crispin, B.; Pohl, W.D.; Thomaier, D.; Voss, N.

    1983-11-29

    In a ram jet engine, a tubular combustion chamber is divided into a flame chamber followed by a mixing chamber. The ram air is supplied through intake diffusers located on the exterior of the combustion chamber. The intake diffusers supply combustion air directly into the flame chamber and secondary air is conveyed along the exterior of the combustion chambers and then supplied directly into the mixing chamber.

  8. Modular Aneutronic Fusion Engine

    SciTech Connect

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  9. Dictionary of nuclear engineering

    SciTech Connect

    Sube, R.

    1985-01-01

    Ralf Sube, an experienced compiler of three wellknown four-language reference works has now prepared this glossary of nuclear engineering terms in English, German, French and Russian. Based on the proven lexicography of the Technik-Worterbuch series, it comprises about 30,000 terms in each language covering the following: Nuclear and Atomic Physics; Nuclear Radiation and Isotopes; Nuclear Materials; Nuclear Facilties; Nuclear Power Industry; Nuclear Weapons.

  10. Theseus Engine Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crew members are seen here unloading an engine of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change

  11. Stirling cycle engine

    DOEpatents

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  12. Computer aided production engineering

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the following contents: CIM in avionics; computer analysis of product designs for robot assembly; a simulation decision mould for manpower forecast and its application; development of flexible manufacturing system; advances in microcomputer applications in CAD/CAM; an automated interface between CAD and process planning; CAM and computer vision; low friction pneumatic actuators for accurate robot control; robot assembly of printed circuit boards; information systems design for computer integrated manufacture; and a CAD engineering language to aid manufacture.

  13. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  14. Progress in biochemical engineering.

    PubMed

    Böing, J T

    1976-07-01

    Biochemical engineering is one of the answers to some of the challenges of the present age: hunger, shortage in raw material and energy supply and contamination of environment. Its contribution to the solution of these problems is the industrial production of protein, the use of raw materials (incl. waste products) not used up to now, the accomplishment of chemical reactions at ambient temperatures as well as the degradation or utilization of widely different waste materials.

  15. Internal combustion engine

    SciTech Connect

    Evans, H.G.; Speer, S.

    1991-12-31

    This patent describes improvement in a 2-cycle, diesel cycle internal combustion engine comprising a single in-line engine block, internal wall surfaces defining at least one cylinder within the engine block, the central longitudinal axis of each cylinder being within a common plane extending longitudinally of the engine block, the axially extending internal wall surface of each cylinder being closed at one end and having at least one air intake port therethrough, a piston axially and reciprocally movable within each cylinder over a permitted stroke distance, so as to alternately cover and expose each air intake port for a finite time period; an exhaust port at the closed end of the cylinder above the piston, and a mechanically operated valve for opening and closing such exhaust port located immediately adjacent such port, a substantially rigid connecting rod pivotably connected at one end of each piston, and a crankshaft, rotatably connected to the second end of each connecting rod, such that the crankshaft is caused to rotate connecting means between the piston and the connecting rod. The improvement comprises the diameter of the cylinder is greater than the permitted stroke distance of the piston within the cylinder, and the axis of the crankshaft is parallel to and laterally offset from the common plane by a distance sufficient to form an angle alpha between the connecting rod and the axis of the cylinder, when the piston is at top-dead center, of at least about 12 degrees, such that the time during which each air intake port is exposed is increased when the direction of crankshaft rotation is opposite to the direction of the crankshaft offset from the common plane.

  16. Petroleum engineering manpower supply

    SciTech Connect

    Dorfman, M.

    1982-09-01

    The supply of Petroleum Engineers within the U.S. has shown an exponential growth during the last decade due to increases in the price of petroleum and concommitant demand for engineers in the petroleum industry at all levels of activity. Schools currently have very large enrollments; many lack sufficient faculty and facilities to adequately handle the large loads. Recent uncertainty in long range forecasting of petroleum demand, coupled with uncertainty in the price of oil due to turmoil in the Middle East and the discovery of additional large reserves of petroleum as a result of increased drilling, has led to a decline of approximately 25% in the price of crude oil on the spot market and subsequent reductions in drilling in 1982 from a high of 4,500 rigs in the U.S. to 2528 rigs by August 31, 1982; a reduction of 44% this year. This reduction in activity will be reflected in reduced job opportunities for many new graduates in December 1982 and in 1983, and the ''pipelines'' within the schools are filled with students in expectation of good jobs in the private sector of the economy. Since Petroleum Engineering departments maintain a close tie with industry, it is essential that some balance be maintained between supply and demand, so as to try to prevent a glut of engineers descending upon the market. Steps are underway at many schools. to reduce enrollments by a variety of methods at the present time. An upturn in demand in petroleum prices may serve to mitigate the problem within the next two years, but a long-range interchange between industrial hiring forecasts and universities is essential in planning for the future.

  17. Scientists vs. Engineers

    SciTech Connect

    Wiley, H. S.

    2010-07-01

    In the past, I have heard there was conflict between the “two cultures” of science and the humanities. I don’t see a lot of evidence for that type of conflict today, mostly because my scientific friends all are big fans of the arts and literature. However, the two cultures that I do see a great deal of conflict between are those of science and engineering.

  18. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  19. 4. INTERIOR OF ENGINE ROOM, CONTAINING UNITEDTOD TWINTANDEM ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF ENGINE ROOM, CONTAINING UNITED-TOD TWIN-TANDEM ENGINE, FOR 40" BLOOMING MILL; AS SEEN FROM THE UPPER LEVEL BRIDGE CRANE, THIS ENGINE WAS THE DIRECT DRIVE TO THE 40" BLOOMING MILL LOCATED IN THE ADJACENT ROOM TO THE LEFT. THE UNITED-TOD ENGINE, A TWIN TANDEM COMPOUND STEAM ENGINE, WAS RATED AT 20,000 MP. IN 1946 NEW HIGH PRESSURE CYLINDERS WERE INSTALLED AND THE ENGINE RAN ON 200 PSI STEAM, WITH A 44"X76"X60" STROKE, TO A BUILT-UP COUNTER-BALANCED CENTER CRANK. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  20. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1987-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burn for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  1. Engineering graded tissue interfaces.

    PubMed

    Phillips, Jennifer E; Burns, Kellie L; Le Doux, Joseph M; Guldberg, Robert E; García, Andrés J

    2008-08-26

    Interfacial zones between tissues provide specialized, transitional junctions central to normal tissue function. Regenerative medicine strategies focused on multiple cell types and/or bi/tri-layered scaffolds do not provide continuously graded interfaces, severely limiting the integration and biological performance of engineered tissue substitutes. Inspired by the bone-soft tissue interface, we describe a biomaterial-mediated gene transfer strategy for spatially regulated genetic modification and differentiation of primary dermal fibroblasts within tissue-engineered constructs. We demonstrate that zonal organization of osteoblastic and fibroblastic cellular phenotypes can be engineered by a simple, one-step seeding of fibroblasts onto scaffolds containing a spatial distribution of retrovirus encoding the osteogenic transcription factor Runx2/Cbfa1. Gradients of immobilized retrovirus, achieved via deposition of controlled poly(L-lysine) densities, resulted in spatial patterns of transcription factor expression, osteoblastic differentiation, and mineralized matrix deposition. Notably, this graded distribution of mineral deposition and mechanical properties was maintained when implanted in vivo in an ectopic site. Development of this facile and robust strategy is significant toward the regeneration of continuous interfacial zones that mimic the cellular and microstructural characteristics of native tissue.

  2. Stereolithography in tissue engineering.

    PubMed

    Skoog, Shelby A; Goering, Peter L; Narayan, Roger J

    2014-03-01

    Several recent research efforts have focused on use of computer-aided additive fabrication technologies, commonly referred to as additive manufacturing, rapid prototyping, solid freeform fabrication, or three-dimensional printing technologies, to create structures for tissue engineering. For example, scaffolds for tissue engineering may be processed using rapid prototyping technologies, which serve as matrices for cell ingrowth, vascularization, as well as transport of nutrients and waste. Stereolithography is a photopolymerization-based rapid prototyping technology that involves computer-driven and spatially controlled irradiation of liquid resin. This technology enables structures with precise microscale features to be prepared directly from a computer model. In this review, use of stereolithography for processing trimethylene carbonate, polycaprolactone, and poly(D,L-lactide) poly(propylene fumarate)-based materials is considered. In addition, incorporation of bioceramic fillers for fabrication of bioceramic scaffolds is reviewed. Use of stereolithography for processing of patient-specific implantable scaffolds is also discussed. In addition, use of photopolymerization-based rapid prototyping technology, known as two-photon polymerization, for production of tissue engineering scaffolds with smaller features than conventional stereolithography technology is considered.

  3. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1977-01-01

    Work conducted was devoted to three main tasks. Thermochemical equilibrium performance data were assembled to establish the expected performance calculations of the mode 1 engine propellant combinations and thermodynamic and transport data for the products of combustion. Turbine drive gas characteristics were also established. Thrust chamber and nozzle cooling studies were devoted to the evaluation of H2, C3H8, CH4, and RP-1 as coolants in the existing SSME cooling circuit geometry. It was found that all these candidate coolants are feasible without limiting the desired operating conditions with the exception of RP-1, which would limit the maximum P(c) to 2000 psia. RP-1 could be used, however, to cool the nozzle only without imposing the chamber pressure limit. A total of 15 candidate engine system cycles were selected and a preliminary engine system balance was conducted for 12 of these systems to establish component operating flowrates, pressures and temperatures. It was found that the staged combustion cycles employing fuel rich LOX/hydrocarbon turbine drive gases are power limited.

  4. Lessons Learned in Engineering

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.

  5. Safe genetically engineered plants

    NASA Astrophysics Data System (ADS)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  6. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  7. DSN Scheduling Engine

    NASA Technical Reports Server (NTRS)

    Clement, Bradley; Johnston, Mark; Wax, Allan; Chouinard, Caroline

    2008-01-01

    The DSN (Deep Space Network) Scheduling Engine targets all space missions that use DSN services. It allows clients to issue scheduling, conflict identification, conflict resolution, and status requests in XML over a Java Message Service interface. The scheduling requests may include new requirements that represent a set of tracks to be scheduled under some constraints. This program uses a heuristic local search to schedule a variety of schedule requirements, and is being infused into the Service Scheduling Assembly, a mixed-initiative scheduling application. The engine resolves conflicting schedules of resource allocation according to a range of existing and possible requirement specifications, including optional antennas; start of track and track duration ranges; periodic tracks; locks on track start, duration, and allocated antenna; MSPA (multiple spacecraft per aperture); arraying/VLBI (very long baseline interferometry)/delta DOR (differential one-way ranging); continuous tracks; segmented tracks; gap-to-track ratio; and override or block-out of requirements. The scheduling models now include conflict identification for SOA(start of activity), BOT (beginning of track), RFI (radio frequency interference), and equipment constraints. This software will search through all possible allocations while providing a best-effort solution at any time. The engine reschedules to accommodate individual emergency tracks in 0.2 second, and emergency antenna downtime in 0.2 second. The software handles doubling of one mission's track requests over one week (to 42 total) in 2.7 seconds. Further tests will be performed in the context of actual schedules.

  8. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1987-01-01

    Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  9. Photonic Band Engineering

    NASA Astrophysics Data System (ADS)

    Yabonovitch, Eli

    2001-09-01

    Scientists at UCLA, Caltech, and Polytechnic University have developed a new concept in Electromagnetics called "Photonic Bandgaps' that permits unprecedented control of Electromagnetic Waves, at both radio frequencies, and optical frequencies. This new paradigm of Electromagnetics is based on Nature's design for semiconductor crystals, but it is a crystal structure that is artificially engineered for electromagnetic waves rather than for electron waves. Beginning in 1996, new frontiers in the engineered control of electromagnetic waves have emerged from this design paradigm. For example, the very tiniest, most miniaturized electromagnetic cavity ever created was engineered, and demonstrated, under this MURI; trapping optical energy in the smallest volume ever achieved. This world's most tiny light trap was also made into the most miniaturized laser ever made, occupying a volume smaller than a cubic wavelength. At the same time this MURI advanced the electromagnetic bandgap concept into microwaves and radio waves that are so important for military systems. This required new concepts that permitted the bandgap structure to be much smaller than the electromagnetic wavelength. As in the optical version of photonic crystals, these electromagnetic bandgaps permit unprecedented control over radio frequency electromagnetic waves. For example new antenna structures have been invented that permit near field control over radio emissions from antennas, so that the hand-held radio transmitters can be more efficient.

  10. Molecular engineering of myosin.

    PubMed Central

    Manstein, Dietmar J

    2004-01-01

    Protein engineering and design provide excellent tools to investigate the principles by which particular structural features relate to the mechanisms that underlie the biological function of a protein. In addition to studies aimed at dissecting the communication pathways within enzymes, recent advances in protein engineering approaches make it possible to generate enzymes with increased catalytic efficiency and specifically altered or newly introduced functions. Here, two approaches using state-of-the-art protein design and engineering are described in detail to demonstrate how key features of the myosin motor can be changed in a specific and predictable manner. First, it is shown how replacement of an actin-binding surface loop with synthetic sequences, whose flexibility and charge density is varied, can be employed to manipulate the actin affinity, the catalytic activity and the efficiency of coupling between actin- and nucleotide-binding sites of myosin motor constructs. Then the use of pre-existing molecular building blocks, which are derived from unrelated proteins, is described for manipulating the velocity and even the direction of movement of recombinant myosins. PMID:15647166

  11. Fuzzy Logic Engine

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  12. Liquid rocket engine nozzles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The nozzle is a major component of a rocket engine, having a significant influence on the overall engine performance and representing a large fraction of the engine structure. The design of the nozzle consists of solving simultaneously two different problems: the definition of the shape of the wall that forms the expansion surface, and the delineation of the nozzle structure and hydraulic system. This monography addresses both of these problems. The shape of the wall is considered from immediately upstream of the throat to the nozzle exit for both bell and annular (or plug) nozzles. Important aspects of the methods used to generate nozzle wall shapes are covered for maximum-performance shapes and for nozzle contours based on criteria other than performance. The discussion of structure and hydraulics covers problem areas of regeneratively cooled tube-wall nozzles and extensions; it treats also nozzle extensions cooled by turbine exhaust gas, ablation-cooled extensions, and radiation-cooled extensions. The techniques that best enable the designer to develop the nozzle structure with as little difficulty as possible and at the lowest cost consistent with minimum weight and specified performance are described.

  13. The Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Fuchs, Benjamin

    2012-11-01

    High and ultra-high energy cosmic rays hitting the Earth's atmosphere cause extensive air showers (EAS). In recent years, these cosmic rays have been extensively studied at the Pierre Auger Observatory in Argentina. The EAS mainly consist of charged particles, especially electrons and positrons, which cause electro-magnetic emission in the MHz range by interaction with the Earth's magnetic field. To measure this radio emission, AERA, the Auger Engineering Radio Array, was deployed in October 2010 and commenced regular data acquisition in April 2011. AERA was designed as an engineering array for technology and methodology development towards future large-scale radio arrays. It will allow studies on the radio emission mechanism and the physics capabilities of the detection technique. AERA's unique site within the surface detector array (SD) of the Pierre Auger Observatory provides the possibility of coincident hybrid and super-hybrid EAS detection especially in overlap with the fluorescence telescopes Coihueco and HEAT. Besides a description of the setup, we present an overview of analyses of commissioning data taken between November 2010 and April 2011. Also, we show the first hybrid and self-triggered events detected with AERA in April 2011.

  14. Engineering functionally graded tissue engineering scaffolds.

    PubMed

    Leong, K F; Chua, C K; Sudarmadji, N; Yeong, W Y

    2008-04-01

    Tissue Engineering (TE) aims to create biological substitutes to repair or replace failing organs or tissues due to trauma or ageing. One of the more promising approaches in TE is to grow cells on biodegradable scaffolds, which act as temporary supports for the cells to attach, proliferate and differentiate; after which the scaffold will degrade, leaving behind a healthy regenerated tissue. Tissues in nature, including human tissues, exhibit gradients across a spatial volume, in which each identifiable layer has specific functions to perform so that the whole tissue/organ can behave normally. Such a gradient is termed a functional gradient. A good TE scaffold should mimic such a gradient, which fulfils the biological and mechanical requirements of the target tissue. Thus, the design and fabrication process of such scaffolds become more complex and the introduction of computer-aided tools will lend themselves well to ease these challenges. This paper reviews the needs and characterization of these functional gradients and the computer-aided systems used to ease the complexity of the scaffold design stage. These include the fabrication techniques capable of building functionally graded scaffolds (FGS) using both conventional and rapid prototyping (RP) techniques. They are able to fabricate both continuous and discrete types of FGS. The challenge in fabricating continuous FGS using RP techniques lies in the development of suitable computer aided systems to facilitate continuous FGS design. What have been missing are the appropriate models that relate the scaffold gradient, e.g. pore size, porosity or material gradient, to the biological and mechanical requirements for the regeneration of the target tissue. The establishment of these relationships will provide the foundation to develop better computer-aided systems to help design a suitable customized FGS.

  15. Gaseous-fuel engine technology

    SciTech Connect

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  16. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  17. Empirically Driven Software Engineering Research

    NASA Astrophysics Data System (ADS)

    Rombach, Dieter

    Software engineering is a design discipline. As such, its engineering methods are based on cognitive instead of physical laws, and their effectiveness depends highly on context. Empirical methods can be used to observe the effects of software engineering methods in vivo and in vitro, to identify improvement potentials, and to validate new research results. This paper summarizes both the current body of knowledge and further challenges wrt. empirical methods in software engineering as well as empirically derived evidence regarding software typical engineering methods. Finally, future challenges wrt. education, research, and technology transfer will be outlined.

  18. 40 CFR 90.116 - Certification procedure-determining engine displacement, engine class, and engine families.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Class I-A—nonhandheld equipment engines less than 66 cc in displacement; (2) Class I-B—nonhandheld equipment engines greater than or equal to 66 cc but less than 100 cc in displacement; (3) Class I—nonhandheld equipment engines greater than or equal to 100 cc but less than 225 cc in displacement; (4)...

  19. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  20. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity.