Sample records for engineering design assessment

  1. Development and Testing of Assessment Instruments for Multidisciplinary Engineering Capstone Design Courses

    ERIC Educational Resources Information Center

    Gerlick, Robert Edward

    2010-01-01

    The research presented in this manuscript was focused on the development of assessments for engineering design outcomes. The primary goal was to support efforts by the Transferrable Integrated Design Engineering Education (TIDEE) consortium in developing assessment instruments for multidisciplinary engineering capstone courses. Research conducted…

  2. Construction of an Engineer's Notebook Rubric

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2014-01-01

    It is evident that there is a need for assessment instruments that measure design and engineering design skills, knowledge, and ways of design thinking. These student assessments must be authentic to engineering design practices and measure key elements of the engineering design process. Kelley (2011) presented a rationale to include…

  3. Potential of Spark Ignition Engine : Engine Design Concepts

    DOT National Transportation Integrated Search

    1980-03-01

    This report provides a review and assessment of potential improvements in fuel economy for a selected number of spark ignition engine design technologies for passenger cars and light trucks. The engine design technologies examined include: : a) optim...

  4. Developing an Engineering Design Process Assessment using Mixed Methods.

    PubMed

    Wind, Stefanie A; Alemdar, Meltem; Lingle, Jeremy A; Gale, Jessica D; Moore, Roxanne A

    Recent reforms in science education worldwide include an emphasis on engineering design as a key component of student proficiency in the Science, Technology, Engineering, and Mathematics disciplines. However, relatively little attention has been directed to the development of psychometrically sound assessments for engineering. This study demonstrates the use of mixed methods to guide the development and revision of K-12 Engineering Design Process (EDP) assessment items. Using results from a middle-school EDP assessment, this study illustrates the combination of quantitative and qualitative techniques to inform item development and revisions. Overall conclusions suggest that the combination of quantitative and qualitative evidence provides an in-depth picture of item quality that can be used to inform the revision and development of EDP assessment items. Researchers and practitioners can use the methods illustrated here to gather validity evidence to support the interpretation and use of new and existing assessments.

  5. 76 FR 44891 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Determination of Nonregulated Status for Corn Genetically Engineered for Drought Tolerance AGENCY: Animal and... nonregulated status for corn designated as MON 87460, which has been genetically engineered for drought... nonregulated status for corn designated as MON 87460, which has been genetically engineered for drought...

  6. Assessment Engineering Task Model Maps, Task Models and Templates as a New Way to Develop and Implement Test Specifications

    ERIC Educational Resources Information Center

    Luecht, Richard M.

    2013-01-01

    Assessment engineering is a new way to design and implement scalable, sustainable and ideally lower-cost solutions to the complexities of designing and developing tests. It represents a merger of sorts between cognitive task modeling and engineering design principles--a merger that requires some new thinking about the nature of score scales, item…

  7. Engineering Encounters: Minding Design Missteps

    ERIC Educational Resources Information Center

    Crismond, David; Gellert, Laura; Cain, Ryan; Wright, Shequana

    2013-01-01

    The "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013) asks teachers to give engineering design equal standing with scientific inquiry in their science lessons. This article asks the following questions: What do engineering design practices look like, and how do you assess them? How similar and different is engineering design…

  8. Using Learning Analytics to Characterize Student Experimentation Strategies in Engineering Design

    ERIC Educational Resources Information Center

    Vieira, Camilo; Goldstein, Molly Hathaway; Purzer, Senay; Magana, Alejandra J.

    2016-01-01

    Engineering design is a complex process both for students to participate in and for instructors to assess. Informed designers use the key strategy of conducting experiments as they test ideas to inform next steps. Conversely, beginning designers experiment less, often with confounding variables. These behaviours are not easy to assess in…

  9. Enhancing Critical Thinking across the Undergraduate Experience: An Exemplar from Engineering

    ERIC Educational Resources Information Center

    Ralston, Patricia A.; Bays, Cathy L.

    2013-01-01

    Faculty in a large, urban school of engineering designed a longitudinal study to assess the critical thinking skills of undergraduate students as they progressed through the engineering program. The Paul-Elder critical thinking framework was used to design course assignments and develop a holistic assessment rubric. The curriculum was re-designed…

  10. Automotive Stirling Engine Mod 1 Design Review, Volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Risk assessment, safety analysis of the automotive stirling engine (ASE) mod I, design criteria and materials properties for the ASE mod I and reference engines, combustion are flower development, and the mod I engine starter motor are discussed. The stirling engine system, external heat system, hot engine system, cold engine system, and engine drive system are also discussed.

  11. Curriculum Assessment as a Direct Tool in ABET Outcomes Assessment in a Chemical Engineering Programme

    ERIC Educational Resources Information Center

    Abu-Jdayil, Basim; Al-Attar, Hazim

    2010-01-01

    The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…

  12. Examination of Assessment Practices for Engineering Design Projects in Secondary Technology Education (Second Article in 3-Part Series)

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    Based on the efforts to infuse engineering practices within the technology education curriculum it is appropriate to now investigate how technology education teachers are assessing engineering design activities within their classrooms. This descriptive study drew a full sample of high school technology teachers from the current International…

  13. Design and Implementation of a Project-Based Active/Cooperative Engineering Design Course for Freshmen

    ERIC Educational Resources Information Center

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-01-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long…

  14. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.

  15. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  16. Developing Engineering and Science Process Skills Using Design Software in an Elementary Education

    NASA Astrophysics Data System (ADS)

    Fusco, Christopher

    This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.

  17. Engine system assessment study using Martian propellants

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis; Jacobs, Mark; Scheil, Christine; Collins, John

    1992-01-01

    A top-level feasibility study was conducted that identified and characterized promising chemical propulsion system designs which use two or more of the following propellant combinations: LOX/H2, LOX/CH4, and LOX/CO. The engine systems examined emphasized the usage of common subsystem/component hardware where possible. In support of this study, numerous mission scenarios were characterized that used various combinations of Earth, lunar, and Mars propellants to establish engine system requirements to assess the promising engine system design concept examined, and to determine overall exploration leverage of such systems compared to state-of-the-art cryogenic (LOX/H2) propulsion systems. Initially in the study, critical propulsion system technologies were assessed. Candidate expander and gas generator cycle LOX/H2/CO, LOX/H2/CH4, and LOX/CO/CH4 engine system designs were parametrically evaluated. From this evaluation baseline, tripropellant Mars Transfer Vehicle (MTV) LOX cooled and bipropellant Lunar Excursion Vehicle (LEV) and Mars Excursion Vehicle (MEV) engine systems were identified. Representative tankage designs for a MTV were also investigated. Re-evaluation of the missions using the baseline engine design showed that in general the slightly lower performance, smaller, lower weight gas generator cycle-based engines required less overall mission Mars and in situ propellant production (ISPP) infrastructure support compared to the larger, heavier, higher performing expander cycle engine systems.

  18. Enhancing Decision Topology Assessment in Engineering Design

    DTIC Science & Technology

    2014-04-10

    in engineering design decision making. References 1. Clemen , R. T., 1997, Making Hard Decisions, Second Edition, Duxbury Press. 2. Hazelrigg, G. A...United Kingdom. 6. Lewis, K., Chen, W. and L. C. Schmidt , Editors, 2006, Decision Making in Engineering Design, ASME Press, New York. 7. Myers

  19. Students' responses to authentic assessment designed to develop commitment to performing at their best

    NASA Astrophysics Data System (ADS)

    Guzzomi, Andrew L.; Male, Sally A.; Miller, Karol

    2017-05-01

    Engineering educators should motivate and support students in developing not only technical competence but also professional competence including commitment to excellence. We developed an authentic assessment to improve students' understanding of the importance of 'perfection' in engineering - whereby 50% good enough will not be acceptable in industry. Subsequently we aimed to motivate them to practise performing at their best when they practice engineering. Students in a third-year mechanical and mechatronic engineering unit completed a team design project designed with authentic assessment features to replicate industry expectations and a novel marking scheme to encourage the pursuit of excellence. We report mixed responses from students. Students' ratings of their levels of effort on this assessment indicate that many perceived a positive influence on their effort. However, students' comments included several that were consistent with students experiencing the assessment as alienating.

  20. E-Laboratory Design and Implementation for Enhanced Science, Technology and Engineering Education

    ERIC Educational Resources Information Center

    Morton, William; Uhomoibhi, James

    2011-01-01

    Purpose: This paper aims to report on the design and implementation of an e-laboratory for enhanced science, technology and engineering education studies. Design/methodology/approach: The paper assesses a computer-based e-laboratory, designed for new entrants to science, technology and engineering programmes of study in further and higher…

  1. Geotechnical Engineering Circular No. 3. Design Guidance: Geotechnical Earthquake Engineering for Highways. Volume II - Design Examples

    DOT National Transportation Integrated Search

    1994-02-01

    The report contains an assessment of existing port infrastructure related to United States-Mexico trade, planned infrastructure improvements, an identification of current trade and transportation flows, and an assessment of emerging trade corridors. ...

  2. Engineer's Notebook--A Design Assessment Tool

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  3. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  4. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  5. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  6. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  7. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  8. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  9. Developing a new industrial engineering curriculum using a systems engineering approach

    NASA Astrophysics Data System (ADS)

    Buyurgan, Nebil; Kiassat, Corey

    2017-11-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.

  10. Reasoning Strategies in the Context of Engineering Design with Everyday Materials

    ERIC Educational Resources Information Center

    Worsley, Marcelo; Blikstein, Paulo

    2016-01-01

    "Making" represents an increasingly popular label for describing a form of engineering design. While making is growing in popularity, there are still open questions about the strategies that students are using in these activities. Assessing and improving learning in making/ engineering design contexts require that we have a better…

  11. Flight test results for several light, canard-configured airplanes

    NASA Technical Reports Server (NTRS)

    Brown, Philip W.

    1987-01-01

    Brief flight evaluations of two different, light, composite constructed, canard and winglet configured airplanes were performed to assess their handling qualities; one airplane was a single engine, pusher design and the other a twin engine, push-pull configuration. An emphasis was placed on the slow speed/high angle of attack region for both airplanes and on the engine-out regime for the twin. Mission suitability assessment included cockpit and control layout, ground and airborne handling qualities, and turbulence response. Very limited performance data was taken. Stall/spin tests and the effects of laminar flow loss on performance and handling qualities were assessed on an extended range, single engine pusher design.

  12. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  13. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  14. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  15. Using an Evidential Reasoning Approach for Portfolio Assessments in a Project-Based Learning Engineering Design Course

    ERIC Educational Resources Information Center

    Jaeger, Martin; Adair, Desmond

    2015-01-01

    The purpose of this study is to analyse the feasibility of an evidential reasoning (ER) method for portfolio assessments and comparison of the results found with those based on a traditional holistic judgement. An ER approach has been incorporated into portfolio assessment of an undergraduate engineering design course delivered as a project-based…

  16. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping constraints. Positive and negative aspects of wave engine topping in gas turbine engines are identified.

  17. Assessing Students' Motivation to Engage in Sustainable Engineering

    ERIC Educational Resources Information Center

    McCormick, Mary; Bielefeldt, Angela R.; Swan, Christopher W.; Paterson, Kurtis G.

    2015-01-01

    Purpose: The purpose of this study was to design an assessment instrument to evaluate students' attitudes toward sustainable engineering (SE). Factors that impact SE beliefs could then be explored. Design/methodology/approach: Using the definition of sustainability from the Brundtland report and expectancy value theory, students' sentiment toward…

  18. Enabling performance skills: Assessment in engineering education

    NASA Astrophysics Data System (ADS)

    Ferrone, Jenny Kristina

    Current reform in engineering education is part of a national trend emphasizing student learning as well as accountability in instruction. Assessing student performance to demonstrate accountability has become a necessity in academia. In newly adopted criterion proposed by the Accreditation Board for Engineering and Technology (ABET), undergraduates are expected to demonstrate proficiency in outcomes considered essential for graduating engineers. The case study was designed as a formative evaluation of freshman engineering students to assess the perceived effectiveness of performance skills in a design laboratory environment. The mixed methodology used both quantitative and qualitative approaches to assess students' performance skills and congruency among the respondents, based on individual, team, and faculty perceptions of team effectiveness in three ABET areas: Communications Skills. Design Skills, and Teamwork. The findings of the research were used to address future use of the assessment tool and process. The results of the study found statistically significant differences in perceptions of Teamwork Skills (p < .05). When groups composed of students and professors were compared, professors were less likely to perceive student's teaming skills as effective. The study indicated the need to: (1) improve non-technical performance skills, such as teamwork, among freshman engineering students; (2) incorporate feedback into the learning process; (3) strengthen the assessment process with a follow-up plan that specifically targets performance skill deficiencies, and (4) integrate the assessment instrument and practice with ongoing curriculum development. The findings generated by this study provides engineering departments engaged in assessment activity, opportunity to reflect, refine, and develop their programs as it continues. It also extends research on ABET competencies of engineering students in an under-investigated topic of factors correlated with team processes, behavior, and student learning.

  19. Perspectives and Plans for Graduate Studies. 11. Engineering 1974. E. Industrial Engineering and Systems Design. Report No. 74-22.

    ERIC Educational Resources Information Center

    Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.

    On the instruction of the Council of Ontario Universities, the Advisory Committee on Academic Planning in cooperation with the Committee of Ontario Deans of Engineering has conducted a planning assessment for doctoral work in industrial engineering and systems design. Recommendations for doctoral work in engineering studies are presented.…

  20. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  1. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  2. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  3. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  4. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  5. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  6. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  7. Evaluation of FCS self and peer-assessment approach based on Cooperative and Engineering Design learning.

    PubMed

    Cvetkovic, Dean

    2013-01-01

    The Cooperative Learning in Engineering Design curriculum can be enhanced with structured and timely self and peer assessment teaching methodologies which can easily be applied to any Biomedical Engineering curriculum. A study was designed and implemented to evaluate the effectiveness of this structured and timely self and peer assessment on student team-based projects. In comparing the 'peer-blind' and 'face-to-face' Fair Contribution Scoring (FCS) methods, both had advantages and disadvantages. The 'peer-blind' self and peer assessment method would cause high discrepancy between self and team ratings. But the 'face-to-face' method on the other hand did not have the discrepancy issue and had actually proved to be a more accurate and effective, indicating team cohesiveness and good cooperative learning.

  8. Assessing students' performance in software requirements engineering education using scoring rubrics

    NASA Astrophysics Data System (ADS)

    Mkpojiogu, Emmanuel O. C.; Hussain, Azham

    2017-10-01

    The study investigates how helpful the use of scoring rubrics is, in the performance assessment of software requirements engineering students and whether its use can lead to students' performance improvement in the development of software requirements artifacts and models. Scoring rubrics were used by two instructors to assess the cognitive performance of a student in the design and development of software requirements artifacts. The study results indicate that the use of scoring rubrics is very helpful in objectively assessing the performance of software requirements or software engineering students. Furthermore, the results revealed that the use of scoring rubrics can also produce a good achievement assessments direction showing whether a student is either improving or not in a repeated or iterative assessment. In a nutshell, its use leads to the performance improvement of students. The results provided some insights for further investigation and will be beneficial to researchers, requirements engineers, system designers, developers and project managers.

  9. Supersonic through-flow fan assessment

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1988-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan engine for supersonic cruise aircraft. It included a mean-line analysis of fans designed to operate with in-flow velocities ranging from subsonic to high supersonic speeds. The fan performance generated was used to estimate the performance of supersonic fan engines designed for four applications: a Mach 2.3 supersonic transport, a Mach 2.5 fighter, a Mach 3.5 cruise missile, and a Mach 5.0 cruise vehicle. For each application an engine was conceptualized, fan performance and engine performance calculated, weight estimates made, engine installed in a hypothetical vehicle, and mission analysis was conducted.

  10. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  11. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    NASA Astrophysics Data System (ADS)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  12. The use of engineering design scenarios to assess student knowledge of global, societal, economic, and environmental contexts

    NASA Astrophysics Data System (ADS)

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-07-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on student attitudes and perceptions about engineering and abilities to extend and refine knowledge about broader contexts. Two design scenarios were created: one related to dental hygiene and one related to vaccination delivery. Design scenarios were used to (1) assess knowledge of broader contexts, and (2) test variability of student responses across different contextual situations. Results from pre- to post-surveying revealed improved student perceptions of knowledge of broader contexts. Significant differences were observed between the two design scenarios. The findings support the assumption that different design scenarios elicit consideration of different contexts and design scenarios can be constructed to target specific contextual considerations.

  13. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.

  14. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    NASA Astrophysics Data System (ADS)

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-04-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.

  15. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  16. 40 CFR 63.645 - Test methods and procedures for miscellaneous process vents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable to the process vent. (iv) Design analysis based on accepted chemical engineering principles..., dry standard cubic meters per minute, at a temperature of 20 °C. (g) Engineering assessment may be... the highest daily emission rate. (1) Engineering assessment includes, but is not limited to, the...

  17. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  18. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  19. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...

  20. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... paragraph (d)(5) of this section. Engineering assessment may be used to estimate organic HAP emissions from... defined in paragraph (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6...

  1. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...

  2. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...

  3. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... paragraph (d)(5) of this section. Engineering assessment may be used to estimate organic HAP emissions from... defined in paragraph (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6...

  4. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...

  5. 76 FR 37771 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified Fatty Acid Profile... soybean designated as MON 87705, which has been genetically engineered to have a modified fatty acid... our regulations concerning the introduction of certain genetically engineered organisms and products...

  6. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    ERIC Educational Resources Information Center

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  7. Design concepts for low-cost composite engine frames

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Design concepts for low-cost, lightweight composite engine frames were applied to the design requirements for the frame of commercial, high-bypass turbine engines. The concepts consist of generic-type components and subcomponents that could be adapted for use in different locations in the engine and to different engine sizes. A variety of materials and manufacturing methods were assessed with a goal of having the lowest number of parts possible at the lowest possible cost. The evaluation of the design concepts resulted in the identification of a hybrid composite frame which would weigh about 70 percent of the state-of-the-art metal frame and cost would be about 60 percent.

  8. Potential of Diesel Engine, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    This document assesses the fuel economy potential of diesel engines in future passenger cars and light trucks. The primary technologies evaluated include: (1) engine control strategy and implementation, (2) the engine design variables, (3) emissions ...

  9. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  10. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  11. Communication Needs Assessment for Distributed Turbine Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Behbahani, Alireza R.

    2008-01-01

    Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.

  12. Assessment of Knowledge and Competences in Agricultural Engineering Acquired by the Senior Secondary School Students for Farm Mechanisation

    ERIC Educational Resources Information Center

    Ndem, Joseph; Ogba, Ernest; Egbe, Benjamin

    2015-01-01

    This study was designed to assess the agricultural engineering knowledge and competencies acquired by the senior secondary students for farm mechanization in technical colleges in Ebonyi state of Nigeria. A survey research design was adopted for the study. Three research questions and two null hypotheses guided the study. The population of the…

  13. Building Safer Systems With SpecTRM

    NASA Technical Reports Server (NTRS)

    2003-01-01

    System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.

  14. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Hibner, David; Rosado, Lewis

    1992-01-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  15. How Engineers Really Think About Risk: A Study of JPL Engineers

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Deb; Valerdi, Ricardo

    2011-01-01

    The objectives of this work are: To improve risk assessment practices as used during the mission design process by JPL's concurrent engineering teams. (1) Developing effective ways to identify and assess mission risks (2) Providing a process for more effective dialog between stakeholders about the existence and severity of mission risks (3) Enabling the analysis of interactions of risks across concurrent engineering roles.

  16. Turbine Engine Testing.

    DTIC Science & Technology

    1981-01-01

    per-rev, ring weighting factor, etc.) and with compression system design . A detailed description of the SAE methodology is provided in Ref. 1...offers insights into the practical application of experimental aeromechanical procedures and establishes the process of valid design assessment, avoiding...considerations given to the total engine system. Design Verification in the Experimental Laboratory Certain key parameters are influencing the design of modern

  17. Materials technology assessment for a 1050 K Stirling space engine design

    NASA Technical Reports Server (NTRS)

    Scheuermann, Coulson M.; Dreshfield, Robert L.; Gaydosh, Darrell J.; Kiser, James D.; Mackay, Rebecca A.; Mcdaniels, David L.; Petrasek, Donald W.; Vannucci, Raymond D.; Bowles, Kenneth J.; Watson, Gordon K.

    1988-01-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor. However, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  18. The Use of Engineering Design Scenarios to Assess Student Knowledge of Global, Societal, Economic, and Environmental Contexts

    ERIC Educational Resources Information Center

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-01-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on…

  19. ONR K-16 Engineering Pipeline: Engineering Success in STEM Project

    DTIC Science & Technology

    2016-10-19

    contributed to fewer items being rated as significantly higher on the post - test . Most of these items were designed to assess confidence with specific...the second group talked about the application of the EDP in many different content areas. One stated , "What I like about the engineering design ... designating a point person at each school and providing some direction for unit development to get groups started. One example was the suggestion to

  20. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  1. Risk-Based Probabilistic Approach to Aeropropulsion System Assessment

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.

    2002-01-01

    In an era of shrinking development budgets and resources, where there is also an emphasis on reducing the product development cycle, the role of system assessment, performed in the early stages of an engine development program, becomes very critical to the successful development of new aeropropulsion systems. A reliable system assessment not only helps to identify the best propulsion system concept among several candidates, it can also identify which technologies are worth pursuing. This is particularly important for advanced aeropropulsion technology development programs, which require an enormous amount of resources. In the current practice of deterministic, or point-design, approaches, the uncertainties of design variables are either unaccounted for or accounted for by safety factors. This could often result in an assessment with unknown and unquantifiable reliability. Consequently, it would fail to provide additional insight into the risks associated with the new technologies, which are often needed by decision makers to determine the feasibility and return-on-investment of a new aircraft engine. In this work, an alternative approach based on the probabilistic method was described for a comprehensive assessment of an aeropropulsion system. The statistical approach quantifies the design uncertainties inherent in a new aeropropulsion system and their influences on engine performance. Because of this, it enhances the reliability of a system assessment. A technical assessment of a wave-rotor-enhanced gas turbine engine was performed to demonstrate the methodology. The assessment used probability distributions to account for the uncertainties that occur in component efficiencies and flows and in mechanical design variables. The approach taken in this effort was to integrate the thermodynamic cycle analysis embedded in the computer code NEPP (NASA Engine Performance Program) and the engine weight analysis embedded in the computer code WATE (Weight Analysis of Turbine Engines) with the fast probability integration technique (FPI). FPI was developed by Southwest Research Institute under contract with the NASA Glenn Research Center. The results were plotted in the form of cumulative distribution functions and sensitivity analyses and were compared with results from the traditional deterministic approach. The comparison showed that the probabilistic approach provides a more realistic and systematic way to assess an aeropropulsion system. The current work addressed the application of the probabilistic approach to assess specific fuel consumption, engine thrust, and weight. Similarly, the approach can be used to assess other aspects of aeropropulsion system performance, such as cost, acoustic noise, and emissions. Additional information is included in the original extended abstract.

  2. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    NASA Astrophysics Data System (ADS)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  3. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  4. Developing Elementary Math and Science Process Skills Through Engineering Design Instruction

    NASA Astrophysics Data System (ADS)

    Strong, Matthew G.

    This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.

  5. Implementing and Assessing a Flipped Classroom Model for First-Year Engineering Design

    ERIC Educational Resources Information Center

    Saterbak, Ann; Volz, Tracy; Wettergreen, Matthew

    2016-01-01

    Faculty at Rice University are creating instructional resources to support teaching first-year engineering design using a flipped classroom model. This implementation of flipped pedagogy is unusual because content-driven, lecture courses are usually targeted for flipping, not project-based design courses that already incorporate an abundance of…

  6. Utilizing Civil Engineering Senior Design Capstone Projects to Evaluate Students' Sustainability Education across Engineering Curriculum

    ERIC Educational Resources Information Center

    Dancz, Claire L. A.; Ketchman, Kevin J.; Burke, Rebekah D.; Hottle, Troy A.; Parrish, Kristen; Bilec, Melissa M.; Landis, Amy E.

    2017-01-01

    While many institutions express interest in integrating sustainability into their civil engineering curriculum, the engineering community lacks consensus on established methods for infusing sustainability into curriculum and verified approaches to assess engineers' sustainability knowledge. This paper presents the development of a sustainability…

  7. Evidence-Based Conclusions Concerning Practice, Curriculum Design and Curriculum Reform in a Civil Engineering Capstone Design Course in Hong Kong

    ERIC Educational Resources Information Center

    Chan, Cecilia K. Y.; Wong, George C. K.; Law, Ada K. H.; Zhang, T.; Au, Francis T. K.

    2017-01-01

    This study aimed to provide evidence-based conclusions from students concerning a capstone-design course in a civil engineering programme in Hong Kong. The evidence was generated by designing a student-experience questionnaire. The questionnaire instrument was assessed for internal consistency in four scales (curriculum and structure changes;…

  8. Space Shuttle Main Engine - The Relentless Pursuit of Improvement

    NASA Technical Reports Server (NTRS)

    VanHooser, Katherine P.; Bradley, Douglas P.

    2011-01-01

    The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper.

  9. Defense Acquisitions Acronyms and Terms

    DTIC Science & Technology

    2012-12-01

    Computer-Aided Design CADD Computer-Aided Design and Drafting CAE Component Acquisition Executive; Computer-Aided Engineering CAIV Cost As an...Radiation to Ordnance HFE Human Factors Engineering HHA Health Hazard Assessment HNA Host-Nation Approval HNS Host-Nation Support HOL High -Order...Engineering Change Proposal VHSIC Very High Speed Integrated Circuit VLSI Very Large Scale Integration VOC Volatile Organic Compound W WAN Wide

  10. NTRE extended life feasibility assessment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Results of a feasibility analysis of a long life, reusable nuclear thermal rocket engine are presented in text and graph form. Two engine/reactor concepts are addressed: the Particle Bed Reactor (PBR) design and the Commonwealth of Independent States (CIS) concept. Engine design, integration, reliability, and safety are addressed by various members of the NTRE team from Aerojet Propulsion Division, Energopool (Russia), and Babcock & Wilcox.

  11. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 2: Engine preliminary design assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.

  12. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    NASA Astrophysics Data System (ADS)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  13. Assessing Graduate Engineering Programs with ePortfolios: A Comprehensive Design Process

    ERIC Educational Resources Information Center

    Kajfez, Rachael L.; Mohammadi-Aragh, Mahnas J.; Brown, Philip R.; Mann, Katharine A.; Carrico, Cheryl A.; Cross, Kelly J.; Janeski, John A.; McNair, Lisa D.

    2013-01-01

    ePortfolios (ePs) have been used in a variety of applications ranging from undergraduate assessment to graduate student work showcases. We hypothesize that the flexible, individualized nature of ePs makes them suitable assessment tools for graduate engineering programs, which are likewise flexible and individualized. Our investigation resulted in…

  14. Implementing Assessment Engineering in the Uniform Certified Public Accountant (CPA) Examination

    ERIC Educational Resources Information Center

    Burke, Matthew; Devore, Richard; Stopek, Josh

    2013-01-01

    This paper describes efforts to bring principled assessment design to a large-scale, high-stakes licensure examination by employing the frameworks of Assessment Engineering (AE), the Revised Bloom's Taxonomy (RBT), and Cognitive Task Analysis (CTA). The Uniform CPA Examination is practice-oriented and focuses on the skills of accounting. In…

  15. Outcomes-Based Assessment and Learning: Trialling Change in a Postgraduate Civil Engineering Course

    ERIC Educational Resources Information Center

    El-Maaddawy, Tamer; Deneen, Christopher

    2017-01-01

    This paper aims to demonstrate how assessment tasks can function within an outcomes-based learning framework to evaluate student attainment of learning outcomes. An outcomes-based learning framework designed to integrate teaching, learning, and assessment activities was developed and implemented in a civil engineering master-level course. The…

  16. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  17. Social norms of "good" design: Interdisciplinary perspectives from a survey of engineers and clinicians in bioengineering.

    PubMed

    Johnson, Angela N

    2016-08-01

    In bioengineering training for new researchers and engineers, a great deal of time is spent discussing what constitutes "good" design. Conceptualization of good design, however, varies widely across interdisciplinary team members, with potential to both foster innovation or lead to unproductive conflict. To explore how groups central to bioengineering teams (physicians/clinicians and engineers/physicists) conceptualize good design, we asked 176 professionals in bioengineering to complete a comprehensive online survey including items designed to assess cognitive and moral foundations (validated MFQ30 tool) and custom items assessing perceptions on good design in three areas (good design characteristics, reputation of design approvers, and perceived design patient/consumer suitability). Of those that responded, 82 completed all quantitative survey sections and were included in this preliminary analysis. Correlations between response areas were examined to explore the possible links between cognitive and moral biases and perspectives on good design. The survey results indicated that both groups were more conservative than average Americans based on previous reports, and clinicians scored higher on average for all MFQ30 domains. Numerous significant correlations with good design were observed among clinicians, while engineers/physicists most closely correlated good design with prescriber approval and scientific/technical literature. The exploratory analysis demonstrated the potential utility of sociological frameworks to explore relationships in design thinking with potential utility to stimulate thriving conversation on team-based design thinking in bioengineering education and practice.

  18. The two-stroke poppet valve engine. Part 1: Intake and exhaust ports flow experimental assessments

    NASA Astrophysics Data System (ADS)

    Kamili Zahidi, M.; Razali Hanipah, M.; Ramasamy, D.; Noor, M. M.; Kadirgama, K.; Rahman, M. M.

    2017-10-01

    A two-stroke poppet valve engine is developed to overcome the common problems in conventional two-stroke engine designs. However, replacing piston control port with poppet valve will resulted different flow behaviour. This paper is looking at experimental assessment on a two-stroke poppet valve engine configuration to investigate the port flow performance. The aims are to evaluate the intake and exhaust coefficient of discharge and assess the twostroke capability of the cylinder head. The results has shown comparable coefficient of discharge values as production engine for the intake while the exhaust has higher values which is favourable for the two-stroke cycle operation.

  19. Designing "Design Squad": Developing and Assessing a Children's Television Program about Engineering

    ERIC Educational Resources Information Center

    Frey, Daniel David; Powers, Benjamin

    2012-01-01

    This paper describes a multi-media outreach campaign intended to increase children's knowledge of engineering and to improve the public image of the profession. The central element is a reality-based show entitled "Design Squad," whose first season was broadcast on public television stations beginning in the spring of 2007. The show was…

  20. Assessment of SEPS solar array technology for orbital service module application

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Work performed in the following assessment areas on the SEPS solar array is reported: (1) requirements definition, (2) electrical design evaluation, (3) mechanical design evaluation, and (4) design modification analysis. General overall assessment conclusions are summarized. There are no known serious design limitations involved in the implementation of the recommended design modifications. A section of orbiter and array engineering drawings is included.

  1. Design and Assessment of an "Engineering" Course for Non-Majors

    ERIC Educational Resources Information Center

    Sorby, Sheryl A.; Oppliger, Douglas E.; Boersma, Norma

    2006-01-01

    As a profession, engineering is not well understood by the general public. Engineers are perceived as "geeks" who love math and who have few interests outside of technical work. In short, the engineering profession has an image problem. In order to counteract this negative stereotyping, an engineering course for non-majors was developed…

  2. High-speed engine/component performance assessment using exergy and thrust-based methods

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.

    1996-01-01

    This investigation summarizes a comparative study of two high-speed engine performance assessment techniques based on energy (available work) and thrust-potential (thrust availability). Simple flow-fields utilizing Rayleigh heat addition and one-dimensional flow with friction are used to demonstrate the fundamental inability of conventional energy techniques to predict engine component performance, aid in component design, or accurately assess flow losses. The use of the thrust-based method on these same examples demonstrates its ability to yield useful information in all these categories. Energy and thrust are related and discussed from the stand-point of their fundamental thermodynamic and fluid dynamic definitions in order to explain the differences in information obtained using the two methods. The conventional definition of energy is shown to include work which is inherently unavailable to an aerospace Brayton engine. An engine-based energy is then developed which accurately accounts for this inherently unavailable work; performance parameters based on this quantity are then shown to yield design and loss information equivalent to the thrust-based method.

  3. Students' Guide to Engineering Schools.

    ERIC Educational Resources Information Center

    National Action Council for Minorities in Engineering, Inc., New York, NY.

    Designed for minority students considering careers in engineering, this guide provides descriptions of every undergraduate engineering college in the United States with at least one curriculum approved by the Accreditation Board for Engineering and Technology, and guidelines for assessing educational wants and needs. Entries for each of the 261…

  4. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  5. 40 CFR 63.1260 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Data and rationale used to support an engineering assessment to calculate uncontrolled emissions from... profiles, performance tests, engineering analyses, design evaluations, or calculations used to demonstrate... required calculations and engineering analyses have been performed. For the initial Periodic report, each...

  6. 14 CFR 33.75 - Safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a) (1) The applicant must analyze the engine, including the control system, to assess the likely...

  7. Innovative assessment paradigm to enhance student learning in engineering education

    NASA Astrophysics Data System (ADS)

    El-Maaddawy, Tamer

    2017-11-01

    Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering design course. Direct evidence of the impact of employing this innovation on student learning and achievement was derived by monitoring student academic performance in direct assessment tasks throughout the semester. Students' feedback demonstrated the effectiveness of this innovation to improve their understanding of course topics build their autonomy, independent judgement, and self-regulated learning skills.

  8. System Level Uncertainty Assessment for Collaborative RLV Design

    NASA Technical Reports Server (NTRS)

    Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew

    2002-01-01

    A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.

  9. The Design and Evaluation of a Cryptography Teaching Strategy for Software Engineering Students

    ERIC Educational Resources Information Center

    Dowling, T.

    2006-01-01

    The present paper describes the design, implementation and evaluation of a cryptography module for final-year software engineering students. The emphasis is on implementation architectures and practical cryptanalysis rather than a standard mathematical approach. The competitive continuous assessment process reflects this approach and rewards…

  10. Industrial Sponsor Perspective on Leveraging Capstone Design Projects to Enhance Their Business

    ERIC Educational Resources Information Center

    Weissbach, Robert S.; Snyder, Joseph W.; Evans, Edward R., Jr.; Carucci, James R., Jr.

    2017-01-01

    Capstone design projects have become commonplace among engineering and engineering technology programs. These projects are valuable tools when assessing students, as they require students to work in teams, communicate effectively, and demonstrate technical competency. The use of industrial sponsors enhances these projects by giving these projects…

  11. TEACHING ENGINEERING DESIGN, A STUDY OF JOBSHOP.

    ERIC Educational Resources Information Center

    ENTWISLE, DORIS R.; HUGGINS, W.H.

    THE USE OF A COMPUTER PROGRAM BY ENGINEERING STUDENTS TO SIMULATE A JOB SHOP THAT MANUFACTURES ELECTRONIC DEVICES HAS INDICATED THAT SIMULATION METHODS OFFER REALISTIC ASSISTANCE IN TEACHING. EACH STUDENT IN THE STUDY SUBMITTED SPECIFICATIONS FOR A CIRCUIT DESIGN AND, FROM THE COMPUTER, RECEIVED PERFORMANCE ASSESSMENTS OF THE CIRCUIT WHICH…

  12. DOT/NASA comparative assessment of Brayton engines for guideway vehicles and busses. Volume 2: Analysis and results

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Gas turbine engines were assessed for application to hear duty transportation. A summary of the assumptions, applications, and methods of analysis is included along with a discussion of the approach taken, the technical program flow chart, and weighting criteria used for performance evaluation. The various engines are compared on the bases of weight, performance, emissions and noise, technology status, and growth potential. The results of the engine screening phase and the conceptual design phase are presented.

  13. Renovation of a mechanical engineering senior design class to an industry-tied and team-oriented course

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng

    2017-11-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.

  14. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    NASA Technical Reports Server (NTRS)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  15. Data Validation in the AEDC Engine Test Facility

    DTIC Science & Technology

    2010-02-01

    25 3.4.1 Pretest ...25 3.4.2 Test Period .............................................................................................. 26 3.4.3 Posttest ...use of the data is to assess the degree to which the engine meets its design intent or its specification requirements. When engine development or

  16. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    NASA Technical Reports Server (NTRS)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  17. A Performance Assessment of Eight Low-Boom High-Speed Civil Transport Concepts

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G.; McElroy, Marcus O.; Fenbert, James A.; Coen, Peter G.; Ozoroski, Lori P.; Domack, Chris S.; Needleman, Kathy E.; Geiselhart, Karl A.

    1999-01-01

    A performance assessment of eight low-boom high speed civil transport (HSCT) configurations and a reference HSCT configuration has been performed. Although each of the configurations was designed with different engine concepts, for consistency, a year 2005 technology, 0.4 bypass ratio mixed-flow turbofan (MFTF) engine was used for all of the performance assessments. Therefore, all original configuration nacelles were replaced by a year 2005 MFRF nacelle design which corresponds to the engine deck utilized. The engine thrust level was optimized to minimize vehicle takeoff gross weight. To preserve the configuration's sonic-boom shaping, wing area was not optimized or altered from its original design value. Performance sizings were completed when possible for takeoff balanced field lengths of 11,000 ft and 12,000 ft, not considering FAR Part 36 Stage III noise compliance. Additionally, an arbitrary sizing with thrust-to-weight ratio equal to 0.25 was performed, enabling performance levels to be compared independent of takeoff characteristics. The low-boom configurations analyzed included designs from the Boeing Commercial Airplane Group, Douglas Aircraft Company, Ames Research Center, and Langley Research Center. This paper discusses the technology level assumptions, mission profile, analysis methodologies, and the results of the assessment. The results include maximum lift-to-drag ratios, total fuel consumption, number of passengers, optimum engine sizing plots, takeoff performance, mission block time, and takeoff gross weight for all configurations. Results from the low-boom configurations are also compared with a non-low-boom reference configuration. Configuration dependent advantages or deficiencies are discussed as warranted.

  18. Assessing Open-Ended Design Problems

    ERIC Educational Resources Information Center

    Bartholomew, Scott R.

    2017-01-01

    Interest in Technology and Engineering Education (TEE) has recently revolved around working to define/redefine who we are, and who we are not; while others in TEE are not interested in a change of identity. An emphasis on design, design education, and design assessment may help clarify the discussion surrounding the future direction of TEE.…

  19. Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course

    ERIC Educational Resources Information Center

    Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff

    2010-01-01

    Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…

  20. Students' Responses to Authentic Assessment Designed to Develop Commitment to Performing at Their Best

    ERIC Educational Resources Information Center

    Guzzomi, Andrew L.; Male, Sally A.; Miller, Karol

    2017-01-01

    Engineering educators should motivate and support students in developing not only technical competence but also professional competence including commitment to excellence. We developed an authentic assessment to improve students' understanding of the importance of "perfection" in engineering--whereby 50% good enough will not be…

  1. Engine non-containment: UK risk assessment methods

    NASA Technical Reports Server (NTRS)

    Wallin, J. C.

    1977-01-01

    More realistic guideline data must be developed for use in aircraft design in order to comply with recent changes in British civil airworthiness requirements. Unrealistically pessimistic results were obtained when the methodology developed during the Concorde SST certification program was extended to assess catastrophic risks resulting from uncontained engine rotors.

  2. Satellite-instrument system engineering best practices and lessons

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  3. Intertwining Risk Insights and Design Decisions

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Jenkins, J. Steven

    2006-01-01

    The state of systems engineering is such that a form of early and continued use of risk assessments is conducted (as evidenced by NASA's adoption and use of the 'Continuous Risk Management' paradigm developed by SEI). ... However, these practices fall short of theideal: (1) Integration between risk assessment techniques and other systems engineering tools is weak. (2) Risk assessment techniques and the insights they yield are only informally coupled to design decisions. (3) Individual riskassessment techniques lack the mix of breadth, fidelity and agility required to span the gamut of the design space. In this paper we present an approach that addresses these shortcomings. The hallmark of our approach is a simple representation comprising objectives (what the system is to do), risks (whose occurrence would detract from attainment of objectives) and activities (a.k.a. 'mitigations') that, if performed, will decrease those risks. These are linked to indicate by how much a risk would detract from attainment of an objective, and by how much an activity would reduce a risk. The simplicity of our representational framework gives it the breadth to encompass the gamut of the design space concerns, the agility to be utilized in even the earliest phases of designs, and the capability to connect to system engineering models and higher-fidelity risk tools. It is through this integration that we address the shortcomings listed above, and so achieve the intertwining between risk insights and design decisions needed to guide systems engineering towards superior final designs while avoiding costly rework to achieve them. The paper will use an example, constructed to be representative of space mission design, to illustrate our approach.

  4. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  5. Assessment of Knowledge and Skills Needed in Selected Engineering Technician Fields: Mechanical/Manufacturing/Industrial.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    A study identified the essential educational topics and the level of proficiency perceived to be required in these topics for selected two-year engineering technology programs in North Carolina. The four curricula studied were mechanical engineering technology, mechanical drafting and design technology, manufacturing engineering technology, and…

  6. The Use of Mini-projects in the Teaching of Geotechnics to Civil Engineering Undergraduates.

    ERIC Educational Resources Information Center

    Anderson, W. F.; And Others

    1985-01-01

    Geotechnics (which encompasses soil and rock mechanics, engineering geology, foundation design, and ground engineering methods) is a major component of virtually all civil engineering courses. Show how mini-projects are used to teach this subject. Format of projects, development of presentation skills, and assessment considerations are discussed.…

  7. Lean, Premixed-Prevaporized (LPP) combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.

    1979-01-01

    Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.

  8. A Service Learning Structural Engineering Capstone Course and the Assessment of Technical and Non-Technical Objectives

    ERIC Educational Resources Information Center

    Dinehart, David W.; Gross, Shawn P.

    2010-01-01

    The primary role of a civil engineer is to serve the community; thus, it is essential that students understand the impact of engineering projects on, and the context of engineering projects within, society. One goal of an engineering capstone design course should be to mesh the technical knowledge of the discipline with an encompassing engineering…

  9. Risk Informed Design as Part of the Systems Engineering Process

    NASA Technical Reports Server (NTRS)

    Deckert, George

    2010-01-01

    This slide presentation reviews the importance of Risk Informed Design (RID) as an important feature of the systems engineering process. RID is based on the principle that risk is a design commodity such as mass, volume, cost or power. It also reviews Probabilistic Risk Assessment (PRA) as it is used in the product life cycle in the development of NASA's Constellation Program.

  10. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  11. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  12. GN&C Engineering Best Practices for Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2007-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  13. GN&C Engineering Best Practices for Human-Rated Spacecraft System

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2008-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  14. GN&C Engineering Best Practices For Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2007-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  15. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    PubMed

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  16. Reliability and Probabilistic Risk Assessment - How They Play Together

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal; Stutts, Richard; Huang, Zhaofeng

    2015-01-01

    Since the Space Shuttle Challenger accident in 1986, NASA has extensively used probabilistic analysis methods to assess, understand, and communicate the risk of space launch vehicles. Probabilistic Risk Assessment (PRA), used in the nuclear industry, is one of the probabilistic analysis methods NASA utilizes to assess Loss of Mission (LOM) and Loss of Crew (LOC) risk for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability distributions to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: 1) what can go wrong that would lead to loss or degraded performance (i.e., scenarios involving undesired consequences of interest), 2) how likely is it (probabilities), and 3) what is the severity of the degradation (consequences). Since the Challenger accident, PRA has been used in supporting decisions regarding safety upgrades for launch vehicles. Another area that was given a lot of emphasis at NASA after the Challenger accident is reliability engineering. Reliability engineering has been a critical design function at NASA since the early Apollo days. However, after the Challenger accident, quantitative reliability analysis and reliability predictions were given more scrutiny because of their importance in understanding failure mechanism and quantifying the probability of failure, which are key elements in resolving technical issues, performing design trades, and implementing design improvements. Although PRA and reliability are both probabilistic in nature and, in some cases, use the same tools, they are two different activities. Specifically, reliability engineering is a broad design discipline that deals with loss of function and helps understand failure mechanism and improve component and system design. PRA is a system scenario based risk assessment process intended to assess the risk scenarios that could lead to a major/top undesirable system event, and to identify those scenarios that are high-risk drivers. PRA output is critical to support risk informed decisions concerning system design. This paper describes the PRA process and the reliability engineering discipline in detail. It discusses their differences and similarities and how they work together as complementary analyses to support the design and risk assessment processes. Lessons learned, applications, and case studies in both areas are also discussed in the paper to demonstrate and explain these differences and similarities.

  17. Engine Development Design Margins Briefing Charts

    NASA Technical Reports Server (NTRS)

    Bentz, Chuck

    2006-01-01

    New engines experience durability problems after entering service. The most prevalent and costly is the hot section, particularly the high-pressure turbine. The origin of durability problems can be traced back to: 1) the basic aero-mechanical design systems, assumptions, and design margins used by the engine designers, 2) the available materials systems, and 3) to a large extent, aggressive marketing in a highly competitive environment that pushes engine components beyond the demonstrated capability of the basic technology available for the hardware designs. Unfortunately the user must operate the engine in the service environment in order to learn the actual thrust loading and the time at max effort take-off conditions used in service are needed to determine the hot section life. Several hundred thousand hours of operational service will be required before the demonstrated reliability of a fleet of engines or the design deficiencies of the engine hot section parts can be determined. Also, it may take three to four engine shop visits for heavy maintenance on the gas path hardware to establish cost effective build standards. Spare parts drive the oerator's engine maintenance costs but spare parts also makes lots of money for the engine manufacturer during the service life of an engine. Unless competition prevails for follow-on engine buys, there is really no motivation for an OEM to spend internal money to improve parts durability and reduce earnings derived from a lucrative spare parts business. If the hot section life is below design goals or promised values, the OEM migh argue that the engine is being operated beyond its basic design intent. On the other hand, the airframer and the operator will continue to remind the OEM that his engine was selected based on a lot of promises to deliver spec thrust with little impact on engine service life if higher thrust is used intermittently. In the end, a standoff prevails and nothing gets fixed. This briefing will propose ways to hold competing engine manufacturers more accountable for engine hot section design margins during the entire Engine Development process as well as provide tools to assess the design temperature margins in the hot section parts of Service Engines.

  18. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    NASA Astrophysics Data System (ADS)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  19. Engineering a Healthier Watershed: Middle School Students Use Engineering Design to Lessen the Impact of Their Campus' Impervious Surfaces on Their Local Watershed

    NASA Astrophysics Data System (ADS)

    Gardner, Elizabeth Claire

    It is important that students understand not only how their local watershed functions, but also how it is being impacted by impervious surfaces. Additionally, students need experience exploring the scientific and engineering practices that are necessary for a strong STEM background. With this knowledge students can be empowered to tackle this real and local problem using engineering design, a powerful practice gaining momentum and clarity through its prominence in the recent Framework for K-12 Science Education. Twenty classes of suburban sixth-graders participated in a new five-week Watershed Engineering Design Unit taught by their regular science teachers. Students engaged in scientific inquiry to learn about the structure, function, and health of their local watersheds, focusing on the effects of impervious surfaces. In small groups, students used the engineering design process to propose solutions to lessen the impact of runoff from their school campuses. The goal of this evaluation was to determine the effectiveness of the curriculum in terms of student gains in understanding of (1) watershed function, (2) the impact of impervious surfaces, and (3) the engineering design process. To determine the impact of this curriculum on their learning, students took multiple-choice pre- and post-assessments made up of items covering the three categories above. This data was analyzed for statistical significance using a lower-tailed paired sample t-test. All three objectives showed statistically significant learning gains and the results were used to recommend improvements to the curriculum and the assessment instrument for future iterations.

  20. Improving Electrical Engineering Education at the American University of Sharjah through Continuous Assessment

    ERIC Educational Resources Information Center

    Al-Nashash, Hasan; Khaliq, Abdul; Qaddoumi, Nasser; Al-Assaf, Yousef; Assaleh, Khaled; Dhaouadi, Rached; El-Tarhuni, Mohamed

    2009-01-01

    The electrical engineering (ELE) program at the American University of Sharjah (AUS) is designed to fulfill the ABET criteria. Several assessment tools are used to qualitatively and quantitatively measure the level of achievement of the program's educational objectives and outcomes. These tools include alumni, employer, and graduate advisor…

  1. Experimental uncertainty survey and assessment. [Space Shuttle Main Engine testing

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.

    1992-01-01

    An uncertainty analysis and assessment of the specific impulse determination during Space Shuttle Main Engine testing is reported. It is concluded that in planning and designing tests and in interpreting the results of tests, the bias and precision components of experimental uncertainty should be considered separately. Recommendations for future research efforts are presented.

  2. Analysis of Student Service-Learning Reflections for the Assessment of Transferable-Skills Development

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Dewoolkar, M.; Hayden, N.; Oka, L.; Pearce, A. R.

    2010-12-01

    The civil and environmental engineering (CEE) programs at the University of Vermont (UVM) incorporate systems thinking and a systems approach to sustainable engineering problem solving. A systems approach considers long-term social, environmental and economic factors within the context of the engineering problem solution and encompasses sustainable engineering solutions. Our goal is to prepare students to become leaders in their chosen field who can anticipate co-products associated with forecasted solutions. As a way of practicing the systems approach, we include service-learning projects in many of our undergraduate engineering courses, culminating with the senior capstone design course. We use a variety of formative and summative assessment methods to gage student understanding and attitudes including student surveys, focus groups, assessment of student projects, and student reflections. Student reflections from two courses -Modeling Environmental and Transportation Systems (31 juniors) and Senior Design Project (30 seniors) are compared. Of these, 25 students were common to both courses. The focus of the systems modeling service-learning project involved mentoring home-schooled children (11-14 yrs old) to solve problems of mobility, using the fun and inspiration of biomimicry. Students were required to invent innovative methods to move people or goods that improve associated constraints (i.e., minimize congestion, reduce pollution, increase safety), or reduce the need for transportation altogether. The capstone design project required a comprehensive engineering design involving two or more CEE sub-disciplines. Both service-learning projects were intended to enhance students’ academic learning experience, attain civic engagement and reinforce transferable skills (written and oral communication, teamwork, leadership and mentoring skills). The student course reflections were not guided; yet they provided valuable data to assess commonalities and differences in student attitudes toward their service-learning projects, specifically, the development of transferable skills. In the spirit of service-learning pedagogy, we divide the contents of students’ written reflections into three categories - academic enhancement, civic engagement and personal growth skills. The commonalities focused mostly on civic engagement. Differences are observed primarily in academic enhancement and personal growth categories. Students working on the biomimicry design project reflected on personal growth (e.g. leadership skills, mentoring, creativity, organizational skills, communication to nontechnical audience), but did not credit it with academic enhancement. In contrast, the senior design reflections concentrated on academics, specifically, students appreciated the enhancement of technical skills as a part of their engineering experience.

  3. Comparative Flow Path Analysis and Design Assessment of an Axisymmetric Hydrogen Fueled Scramjet Flight Test Engine at a Mach Number of 6.5

    NASA Technical Reports Server (NTRS)

    McClinton, C.; Rondakov, A.; Semenov, V.; Kopehenov, V.

    1991-01-01

    NASA has contracted with the Central Institute of Aviation Motors CIAM to perform a flight test and ground test and provide a scramjet engine for ground test in the United States. The objective of this contract is to obtain ground to flight correlation for a supersonic combustion ramjet (scramjet) engine operating point at a Mach number of 6.5. This paper presents results from a flow path performance and thermal evaluation performed on the design proposed by the CIAM. This study shows that the engine will perform in the scramjet mode for stoichiometric operation at a flight Mach number of 6.5. Thermal assessment of the structure indicates that the combustor cooling liner will provide adequate cooling for a Mach number of 6.5 test condition and that optional material proposed by CIAM for the cowl leading-edge design are required to allow operation with or without a type IV shock-shock interaction.

  4. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  5. Probabilistic/Fracture-Mechanics Model For Service Life

    NASA Technical Reports Server (NTRS)

    Watkins, T., Jr.; Annis, C. G., Jr.

    1991-01-01

    Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.

  6. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1994-01-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  7. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Steinetz, Bruce M.

    1994-07-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  8. The Effects of Spatial Visualization Skill Training on Gender and Retention in Engineering.

    ERIC Educational Resources Information Center

    Devon, Richard; Engel, Renata; Turner, Geoffrey

    1998-01-01

    Engineering students were given a mental rotation test at the beginning and end of their first-year engineering course and again several years later to assess the relationship between spatial visualization skill and retention in engineering. No relationship was found between task scores and retention; however, a course in design and graphics…

  9. Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching

    ERIC Educational Resources Information Center

    Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.

    2017-01-01

    Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…

  10. An overview of reliability assessment and control for design of civil engineering structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, R.V. Jr.; Grigoriadis, K.M.; Bergman, L.A.

    1998-06-01

    Random variations, whether they occur in the input signal or the system parameters, are phenomena that occur in nearly all engineering systems of interest. As a result, nondeterministic modeling techniques must somehow account for these variations to ensure validity of the solution. As might be expected, this is a difficult proposition and the focus of many current research efforts. Controlling seismically excited structures is one pertinent application of nondeterministic analysis and is the subject of the work presented herein. This overview paper is organized into two sections. First, techniques to assess system reliability, in a context familiar to civil engineers,more » are discussed. Second, and as a consequence of the first, active control methods that ensure good performance in this random environment are presented. It is the hope of the authors that these discussions will ignite further interest in the area of reliability assessment and design of controlled civil engineering structures.« less

  11. An Assessment Methodology to Evaluate In-Flight Engine Health Management Effectiveness

    NASA Astrophysics Data System (ADS)

    Maggio, Gaspare; Belyeu, Rebecca; Pelaccio, Dennis G.

    2002-01-01

    flight effectiveness of candidate engine health management system concepts. A next generation engine health management system will be required to be both reliable and robust in terms of anomaly detection capability. The system must be able to operate successfully in the hostile, high-stress engine system environment. This implies that its system components, such as the instrumentation, process and control, and vehicle interface and support subsystems, must be highly reliable. Additionally, the system must be able to address a vast range of possible engine operation anomalies through a host of different types of measurements supported by a fast algorithm/architecture processing capability that can identify "true" (real) engine operation anomalies. False anomaly condition reports for such a system must be essentially eliminated. The accuracy of identifying only real anomaly conditions has been an issue with the Space Shuttle Main Engine (SSME) in the past. Much improvement in many of the technologies to address these areas is required. The objectives of this study were to identify and demonstrate a consistent assessment methodology that can evaluate the capability of next generation engine health management system concepts to respond in a correct, timely manner to alleviate an operational engine anomaly condition during flight. Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, identified a probabilistic modeling approach to assess engine health management system concept effectiveness using a deterministic anomaly-time event assessment modeling approach that can be applied in the engine preliminary design stage of development to assess engine health management system concept effectiveness. Much discussion in this paper focuses on the formulation and application approach in performing this assessment. This includes detailed discussion of key modeling assumptions, the overall assessment methodology approach identified, and the identification of key supporting engine health management system concept design/operation and fault mode information required to utilize this methodology. At the paper's conclusion, discussion focuses on a demonstration benchmark study that applied this methodology to the current SSME health management system. A summary of study results and lessons learned are provided. Recommendations for future work in this area are also identified at the conclusion of the paper. * Please direct all correspondence/communication pertaining to this paper to Dennis G. Pelaccio, Science

  12. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  13. Low Thrust, Deep Throttling, US/CIS Integrated NTRE

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.

    1994-07-01

    In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.

  14. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    NASA Technical Reports Server (NTRS)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  15. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  16. Development and Validation of Mechanical Engineering Trade Skills Assessment Instrument for Sustainable Job Security in Yobe State

    ERIC Educational Resources Information Center

    Adamu, Gishua Garba; Dawha, Josphine Musa; Kamar, Tiamiyu Salihu

    2015-01-01

    Mechanical Engineering Trade Skills Assessment Instrument (METSAI) is aimed at determining the extent to which students have acquired practical skills before graduation that will enable them get employment for sustainable job security in Yobe state. The study employed instrumentation research design. The populations of the study were 23 mechanical…

  17. Computer-Aided Assessment Questions in Engineering Mathematics Using "MapleTA"[R

    ERIC Educational Resources Information Center

    Jones, I. S.

    2008-01-01

    The use of "MapleTA"[R] in the assessment of engineering mathematics at Liverpool John Moores University (JMU) is discussed with particular reference to the design of questions. Key aspects in the formulation and coding of questions are considered. Problems associated with the submission of symbolic answers, the use of randomly generated numbers…

  18. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  19. An exploration of students' perceptions and attitudes towards creativity in engineering education

    NASA Astrophysics Data System (ADS)

    Waller, David R.

    This study used a mixed methods approach to develop a broad and deep understanding of students’ perceptions towards creativity in engineering education. Studies have shown that students’ attitudes can have an impact on their motivation to engage in creative behavior. Using an ex-post facto independent factorial design, attitudes of value towards creativity, time for creativity, and creativity stereotypes were measured and compared across gender, year of study, engineering discipline, preference for open-ended problem solving, and confidence in creative abilities. Participants were undergraduate engineering students at Queen’s University from all years of study. A qualitative phenomenological methodology was adopted to study students’ understandings and experiences with engineering creativity. Eleven students participated in oneon- one interviews that provided depth and insight into how students experience and define engineering creativity, and the survey included open-ended items developed using the 10 Maxims of Creativity in Education as a guiding framework. The findings from the survey suggested that students had high value for creativity, however students in fourth year or higher had less value than those in other years. Those with preference for open-ended problem solving and high confidence valued creative more than their counterparts. Students who preferred open-ended problem solving and students with high confidence reported that time was less of a hindrance to their creativity. Males identified more with creativity stereotypes than females, however overall they were both low. Open-ended survey and interview results indicated that students felt they experienced creativity in engineering design activities. Engineering creativity definitions had two elements: creative action and creative characteristic. Creative actions were associated with designing, and creative characteristics were predominantly associated with novelty. Other barriers that emerged from the qualitative analysis were lack of opportunity, lack of assessment, and discomfort with creativity. It was concluded that a universal definition is required to establish clear and aligned understandings of engineering creativity. Instructors may want to consider demonstrating value by assessing creativity and establishing clear criteria in design projects. It is recommended that students be given more opportunities for practice through design activities and that they be introduced to design and creative thinking concepts early in their engineering education.

  20. Current Launch Vehicle Practice and Data Base Assessment. Volume 1. Executive Summary and Report Body

    DTIC Science & Technology

    1989-06-01

    resulted in an increase of the intermediate seal purge pressure, revised redlines, and a design change from a lift-off seal to a labyrinth seal design. This...engine 0003 caused fa&i!ure of the primary lox seal and an uncontained engine fire. The redline cut was set by a HPOTP overspeed. This failure...occurred as a result of undetected internal HEX damage caused during arc welding which resulted in an engine fire. HEX coil leakage resulted in an

  1. Preliminary Assessment of Variable Speed Power Turbine Technology on Civil Tiltrotor Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Acree, Cecil W., Jr.

    2012-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nm at 300 knots, with vertical takeoff and landing capability. This paper performs a preliminary assessment of variable-speed power turbine technology on LCTR2 sizing, while maintaining the same, advanced technology engine core. Six concepts were studied; an advanced, single-speed engine with a conventional power turbine layout (Advanced Conventional Engine, or ACE) using a multi-speed (shifting) gearbox. There were five variable-speed power turbine (VSPT) engine concepts, comprising a matrix of either three or four turbine stages, and fixed or variable guide vanes; plus a minimum weight, twostage, fixed-geometry VSPT. The ACE is the lightest engine, but requires a multi-speed (shifting) gearbox to maximize its fuel efficiency, whereas the VSPT concepts use a lighter, fixed-ratio gearbox. The NASA Design and Analysis of Rotorcraft (NDARC) design code was used to study the trades between rotor and engine efficiency and weight. Rotor performance was determined by Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II), and engine performance was estimated with the Numerical Propulsion System Simulation (NPSS). Design trades for the ACE vs. VSPT are presented in terms of vehicle gross and empty weight, propulsion system weight and mission fuel burn for the civil mission. Because of its strong effect on gearbox weight and on both rotor and engine efficiency, rotor speed was chosen as the reference design variable for comparing design trades. Major study assumptions are presented and discussed. Impressive engine power-to-weight and fuel efficiency reduced vehicle sensitivity to propulsion system choice. The 10% weight penalty for multi-speed gearbox was more significant than most engine technology weight penalties to the vehicle design because drive system weight is more than two times engine weight. Based on study assumptions, fixed-geometry VSPT concept options performed better than their variable-geometry counterparts. Optimum design gross weights varied 1% or less and empty weights less than 2% among the concepts studied, while optimum fuel burns varied up to 5%. The outcome for some optimum configurations was so unexpected as to recommend a deeper look at the underlying technology assumptions.

  2. Investigation of Exoskeletal Engine Propulsion System Concept

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Palac, Donald T.; Hunter, James E.; Myers, David E.; Snyder, Christopher A.; Kosareo, Daniel N.; McCurdy, David R.; Dougherty, Kevin T.

    2005-01-01

    An innovative approach to gas turbine design involves mounting compressor and turbine blades to an outer rotating shell. Designated the exoskeletal engine, compression (preferable to tension for high-temperature ceramic materials, generally) becomes the dominant blade force. Exoskeletal engine feasibility lies in the structural and mechanical design (as opposed to cycle or aerothermodynamic design), so this study focused on the development and assessment of a structural-mechanical exoskeletal concept using the Rolls-Royce AE3007 regional airliner all-axial turbofan as a baseline. The effort was further limited to the definition of an exoskeletal high-pressure spool concept, where the major structural and thermal challenges are represented. The mass of the high-pressure spool was calculated and compared with the mass of AE3007 engine components. It was found that the exoskeletal engine rotating components can be significantly lighter than the rotating components of a conventional engine. However, bearing technology development is required, since the mass of existing bearing systems would exceed rotating machinery mass savings. It is recommended that once bearing technology is sufficiently advanced, a "clean sheet" preliminary design of an exoskeletal system be accomplished to better quantify the potential for the exoskeletal concept to deliver benefits in mass, structural efficiency, and cycle design flexibility.

  3. Designing Online Courses To Discourage Dishonesty.

    ERIC Educational Resources Information Center

    Christe, Barbara

    2003-01-01

    Presents techniques used within one university's Electrical and Computer Engineering Technology department to develop online courses that discourage student dishonesty, focusing on: academic dishonesty; course design focus area (syllabus design, content presentation, student-teacher relationship, assessment design, and monitoring tools); and…

  4. Research and application of borehole structure optimization based on pre-drill risk assessment

    NASA Astrophysics Data System (ADS)

    Zhang, Guohui; Liu, Xinyun; Chenrong; Hugui; Yu, Wenhua; Sheng, Yanan; Guan, Zhichuan

    2017-11-01

    Borehole structure design based on pre-drill risk assessment and considering risks related to drilling operation is the pre-condition for safe and smooth drilling operation. Major risks of drilling operation include lost circulation, blowout, sidewall collapsing, sticking and failure of drilling tools etc. In the study, studying data from neighboring wells was used to calculate the profile of formation pressure with credibility in the target well, then the borehole structure design for the target well assessment by using the drilling risk assessment to predict engineering risks before drilling. Finally, the prediction results were used to optimize borehole structure design to prevent such drilling risks. The newly-developed technique provides a scientific basis for lowering probability and frequency of drilling engineering risks, and shortening time required to drill a well, which is of great significance for safe and high-efficient drilling.

  5. Use of human engineering standards in design

    NASA Technical Reports Server (NTRS)

    Rogers, J. G.; Armstrong, R.

    1977-01-01

    Results are presented for a research study intended to assess the impact of present human engineering standards on product design. The approach consisted of three basic steps: a comparison of two display panels to determine if, in fact, products designed to the same standards are truly standardized; a review of two existing standards to determine how well their information can be used to solve design problems; and a survey of human factors specialists to assess their opinions about standards. It is shown that standards have less than the desired influence on product design. This is evidenced by a lack of standardization between hardware designed under common standards, by deficiencies within the standards that detract from their usefulness and encourage users to ignore them, and by the respondents of the survey who consider standards less valuable than other reference sources for design implementation. Recommendations aimed at enhancing the use of standards are set forth.

  6. Technology readiness assessment of advanced space engine integrated controls and health monitoring

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1991-01-01

    An evaluation is given for an integrated control and health monitoring system (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent throttleable. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30 to 45 million dollars over six years.

  7. The applicability of chemical alternatives assessment for engineered nanomaterials.

    PubMed

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly; Tickner, Joel; Ellenbecker, Michael; Baun, Anders

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternatives assessment approaches, because they can be considered both emerging "chemicals" of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging, and critical elements in chemical hazard and exposure assessment may have to be fundamentally altered to sufficiently address nanomaterials. The aim of this paper is to assess the overall applicability of alternatives assessment methods for nanomaterials and to outline recommendations to enhance their use in this context. The present paper focuses on the adaptability of existing hazard and exposure assessment approaches to engineered nanomaterials as well as strategies to design inherently safer nanomaterials. We argue that alternatives assessment for nanomaterials is complicated by the sheer number of nanomaterials possible. As a result, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes is needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. Integr Environ Assess Manag 2017;13:177-187. © 2016 SETAC. © 2016 SETAC.

  8. Ultra Efficient Engine Technology Systems Integration and Environmental Assessment

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Geiselhart, Karl A. (Technical Monitor)

    2002-01-01

    This study documents the design and analysis of four types of advanced technology commercial transport airplane configurations (small, medium large and very large) with an assumed technology readiness date of 2010. These airplane configurations were used as a platform to evaluate the design concept and installed performance of advanced technology engines being developed under the NASA Ultra Efficient Engine Technology (UEET) program. Upon installation of the UEET engines onto the UEET advanced technology airframes, the small and medium airplanes both achieved an additional 16% increase in fuel efficiency when using GE advanced turbofan engines. The large airplane achieved an 18% increase in fuel efficiency when using the P&W geared fan engine. The very large airplane (i.e. BWB), also using P&W geared fan engines, only achieved an additional 16% that was attributed to a non-optimized airplane/engine combination.

  9. Characterizing Distributed Concurrent Engineering Teams: A Descriptive Framework for Aerospace Concurrent Engineering Design Teams

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Debarati; Hihn, Jairus; Warfield, Keith

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades in a cost-efficient manner. To successfully accomplish these complex missions with limited funding, it is also essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. This paper is an extension of a recent white paper written by the Concurrent Engineering Working Group, which details the unique challenges of distributed collaborative concurrent engineering. This paper includes a short history of aerospace concurrent engineering, and defines the terms 'concurrent', 'collaborative' and 'distributed' in the context of aerospace concurrent engineering. In addition, a model for the levels of complexity of concurrent engineering teams is presented to provide a way to conceptualize information and data flow within these types of teams.

  10. Aeropropulsion 1979. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    State of the art technology in aeronautical propulsion is assessed. Noise and air pollution control techniques, advances in supersonic propulsion for transport aircraft, and composite materials and structures for reliable engine components are covered along with engine design for improved fuel consumption.

  11. Engineering in Elementary STEM Education: Curriculum Design, Instruction, Learning, and Assessment

    ERIC Educational Resources Information Center

    Cunningham, Christine M.

    2018-01-01

    Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of…

  12. Assessing an Entrepreneurship Education Project in Engineering Studies by Means of Participatory Techniques

    ERIC Educational Resources Information Center

    Ortiz-Medina, Leovigilda; Fernández-Ahumada, Elvira; Lara-Vélez, Pablo; Garrido-Varo, Ana; Pérez-Marin, Dolores; Guerrero-Ginel, José Emilio

    2014-01-01

    The new imperatives of the knowledge-based society require engineering students to equip themselves with a broad range of skills, among which entrepreneurship plays a critical role. An academic itinerary was designed with the explicit aim of improving the entrepreneurial attitudes of agricultural engineering students in a state university in…

  13. Analysis of high load dampers

    NASA Technical Reports Server (NTRS)

    Bhat, S. T.; Buono, D. F.; Hibner, D. H.

    1981-01-01

    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines.

  14. Design of Training Systems. Computerization of the Educational Technology Assessment Model (ETAM). Volume 2

    DTIC Science & Technology

    1977-05-01

    444 EN 2 31043 TEST UNIT INJECTORS AND/OR FUEL INJECTION NOZZLES 445 EN 2 31044 MAINTENANCE OF FUEL OIL INJECTORS 446 EN 2 31049 PREVENTION OF...OPERATIONAL MAINTENANCE OF DIESEL ENGINES OPERATE INTERNAL COMBUSTION ENGINES JACKING GEAR ON INTERNAL COMBUSTION ENGINES CARRYOUT TURNING OVER OF MAIN...ENGINES ALIGN LUBRICATING OIL SYSTEM USE OF STANDBY LUBRICATING OIL PUMPS PURGE DIESEL ENGINE FUEL INJECTION SYSTEM ENTRIES TO MAIN PROPULSION

  15. An Analysis of Computer Aided Design (CAD) Packages Used at MSFC for the Recent Initiative to Integrate Engineering Activities

    NASA Technical Reports Server (NTRS)

    Smith, Leigh M.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    This paper analyzes the use of Computer Aided Design (CAD) packages at NASA's Marshall Space Flight Center (MSFC). It examines the effectiveness of recent efforts to standardize CAD practices across MSFC engineering activities. An assessment of the roles played by management, designers, analysts, and manufacturers in this initiative will be explored. Finally, solutions are presented for better integration of CAD across MSFC in the future.

  16. Structure and Management of an Engineering Senior Design Course.

    PubMed

    Tanaka, Martin L; Fischer, Kenneth J

    2016-07-01

    The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.

  17. Analyzing system safety in lithium-ion grid energy storage

    NASA Astrophysics Data System (ADS)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  18. Design for Safety - The Ares Launch Vehicles Paradigm Change

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  19. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  20. Fracture mechanics /Dryden Lecture/. [aerospace structural design applications

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1974-01-01

    A historical outline of the engineering discipline of fracture mechanics is presented, and current analytical procedures are summarized. The current status of the discipline is assessed, and engineering applications are discussed, along with recommended directions for future study.

  1. Multiple case studies of STEM teachers' orientations to science teaching through engineering design

    NASA Astrophysics Data System (ADS)

    Rupp, Madeline

    The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.

  2. Deimos Methane-Oxygen Rocket Engine Test Results

    NASA Astrophysics Data System (ADS)

    Engelen, S.; Souverein, L. J.; Twigt, D. J.

    This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.

  3. Seismic hazard assessment: Issues and alternatives

    USGS Publications Warehouse

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  4. Downsizing assessment of automotive Stirling engines

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  5. Preliminary Assessment of a Rotary Detonation Engine Concept.

    DTIC Science & Technology

    1983-09-01

    As advances were made in compressors (both axial and centrifugal), it was possible to develop gas turbine engines based on the Brayton cycle rather...induced cycle pressure ratio. In the case of the axial flow compressor, as stages are added to increase the pressure, the blades become progressively...DESIGN OF THE TORQUE TUBE --------- 96 APPENDIX E. EQUIPMENT LISTING- - --------- -- 104 APPENDIX F. DESIGN DRAWINGS FOR ROTARY DETONATION TURBINE

  6. Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Cikanek, H. A., III

    1986-01-01

    Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.

  7. Materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramley, A.N.

    1985-01-01

    This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less

  8. Preparing engineers for the challenges of community engagement

    NASA Astrophysics Data System (ADS)

    Harsh, Matthew; Bernstein, Michael J.; Wetmore, Jameson; Cozzens, Susan; Woodson, Thomas; Castillo, Rafael

    2017-11-01

    Despite calls to address global challenges through community engagement, engineers are not formally prepared to engage with communities. Little research has been done on means to address this 'engagement gap' in engineering education. We examine the efficacy of an intensive, two-day Community Engagement Workshop for engineers, designed to help engineers better look beyond technology, listen to and learn from people, and empower communities. We assessed the efficacy of the workshop in a non-experimental pre-post design using a questionnaire and a concept map. Questionnaire results indicate participants came away better able to ask questions more broadly inclusive of non-technological dimensions of engineering projects. Concept map results indicate participants have a greater understanding of ways social factors shape complex material systems after completing the programme. Based on the workshop's strengths and weaknesses, we discuss the potential of expanding and supplementing the programme to help engineers account for social aspects central to engineered systems.

  9. Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.

  10. Concurrent Engineering Working Group White Paper Distributed Collaborative Design: The Next Step in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Panek, John; Warfield, Keith; Borden, Chester

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades of performance, cost and schedule. To successfully accomplish these complex missions with limited funding, it is essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. The purpose of this white paper is to identify a near-term vision for the future of distributed collaborative concurrent engineering design for aerospace missions as well as discuss the challenges to achieving that vision. The white paper also documents the advantages of creating a working group to investigate how to engage the expertise of different teams in joint design sessions while enabling organizations to maintain their organizations competitive advantage.

  11. Nozzle Numerical Analysis Of The Scimitar Engine

    NASA Astrophysics Data System (ADS)

    Battista, F.; Marini, M.; Cutrone, L.

    2011-05-01

    This work describes part of the activities on the LAPCAT-II A2 vehicle, in which starting from the available conceptual vehicle design and the related pre- cooled turbo-ramjet engine called SCIMITAR, well- thought assumptions made for performance figures of different components during the iteration process within LAPCAT-I will be assessed in more detail. In this paper it is presented a numerical analysis aimed at the design optimization of the nozzle contour of the LAPCAT A2 SCIMITAR engine designed by Reaction Engines Ltd. (REL) (see Figure 1). In particular, nozzle shape optimization process is presented for cruise conditions. All the computations have been carried out by using the CIRA C3NS code in non equilibrium conditions. The effect of considering detailed or reduced chemical kinetic schemes has been analyzed with a particular focus on the production of pollutants. An analysis of engine performance parameters, such as thrust and combustion efficiency has been carried out.

  12. Engineers and Active Responsibility.

    PubMed

    Pesch, Udo

    2015-08-01

    Knowing that technologies are inherently value-laden and systemically interwoven with society, the question is how individual engineers can take up the challenge of accepting the responsibility for their work? This paper will argue that engineers have no institutional structure at the level of society that allows them to recognize, reflect upon, and actively integrate the value-laden character of their designs. Instead, engineers have to tap on the different institutional realms of market, science, and state, making their work a 'hybrid' activity combining elements from the different institutional realms. To deal with this institutional hybridity, engineers develop routines and heuristics in their professional network, which do not allow societal values to be expressed in a satisfactory manner. To allow forms of 'active' responsibility, there have to be so-called 'accountability forums' that guide moral reflections of individual actors. The paper will subsequently look at the methodologies of value-sensitive design (VSD) and constructive technology assessment (CTA) and explore whether and how these methodologies allow engineers to integrate societal values into the design technological artifacts and systems. As VSD and CTA are methodologies that look at the process of technological design, whereas the focus of this paper is on the designer, they can only be used indirectly, namely as frameworks which help to identify the contours of a framework for active responsibility of engineers.

  13. Rebecca Hanes | NREL

    Science.gov Websites

    cycle inventories Economic and environmentally extended input-output analysis Sustainable design and models for sustainable design and optimization of processes, supply chains and life cycles Interactions engineering design and assessment." Doctoral dissertation, The Ohio State University, 2015. Hanes

  14. The 7.5K lbf thrust engine preliminary design for Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.; Sabiers, Ralph; Schneider, Judy

    1994-01-01

    This document summarizes the preliminary design of the Aerojet version of the Orbit Transfer Vehicle main engine. The concept of a 7500 lbf thrust LO2/GH2 engine using the dual expander cycle for optimum efficiency is validated through power balance and thermal calculations. The engine is capable of 10:1 throttling from a nominal 2000 psia to a 200 psia chamber pressure. Reservations are detailed on the feasibility of a tank head start, but the design incorporates low speed turbopumps to mitigate the problem. The mechanically separate high speed turbopumps use hydrostatic bearings to meet engine life requirements, and operate at sub-critical speed for better throttling ability. All components were successfully packaged in the restricted envelope set by the clearances for the extendible/retractable nozzle. Gimbal design uses an innovative primary and engine out gimbal system to meet the +/- 20 deg gimbal requirement. The hydrogen regenerator and LOX/GH2 heat exchanger uses the Aerojet platelet structures approach for a highly compact component design. The extendible/retractable nozzle assembly uses an electric motor driven jack-screw design and a one segment carbon-carbon or silicide coated columbium nozzle with an area ratio, when extended, of 1430:1. A reliability analysis and risk assessment concludes the report.

  15. Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.

    2005-01-01

    High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.

  16. Formative assessment to develop oral communication competency using YouTube: self- and peer assessment in engineering

    NASA Astrophysics Data System (ADS)

    Nikolic, Sasha; Stirling, David; Ros, Montserrat

    2018-07-01

    Obtaining oral communication competency is an important skill for engineering students to prepare them for interacting and working in any professional setting. For engineers, it is also important to be able to present technical information to non-technical audiences. To ensure oral competency, a non-graded formative assessment approach using video with self- and peer assessment was introduced into a final-year engineering thesis course. A low workload approach was used due to growing student numbers and higher pressures on academic staff. A quasi-experimental design was used to investigate the differences between traditional delivery, self-assessment and combined self-assessment with peer feedback. The study found that the formative models were seen by students to help develop their presentation skills. However, the results showed no significant improvement compared to the traditional method. This could be due to previous presentation practice within the degree or more probable, the lack of incentive for weaker students to engage and improve due to the ungraded nature of the activity.

  17. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    NASA Technical Reports Server (NTRS)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  18. A Computer Code for Gas Turbine Engine Weight And Disk Life Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Ghosn, Louis J.; Halliwell, Ian; Wickenheiser, Tim (Technical Monitor)

    2002-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. In this paper, the major enhancements to NASA's engine-weight estimate computer code (WATE) are described. These enhancements include the incorporation of improved weight-calculation routines for the compressor and turbine disks using the finite-difference technique. Furthermore, the stress distribution for various disk geometries was also incorporated, for a life-prediction module to calculate disk life. A material database, consisting of the material data of most of the commonly-used aerospace materials, has also been incorporated into WATE. Collectively, these enhancements provide a more realistic and systematic way to calculate the engine weight. They also provide additional insight into the design trade-off between engine life and engine weight. To demonstrate the new capabilities, the enhanced WATE code is used to perform an engine weight/life trade-off assessment on a production aircraft engine.

  19. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

  20. Students' perceptions of the relevance of mathematics in engineering

    NASA Astrophysics Data System (ADS)

    Flegg, Jennifer; Mallet, Dann; Lupton, Mandy

    2012-09-01

    In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.

  1. Stratified charge rotary engine for general aviation

    NASA Technical Reports Server (NTRS)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  2. The use of subjective expert opinions in cost optimum design of aerospace structures. [probabilistic failure models

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hanagud, S.

    1975-01-01

    The results of two questionnaires sent to engineering experts are statistically analyzed and compared with objective data from Saturn V design and testing. Engineers were asked how likely it was for structural failure to occur at load increments above and below analysts' stress limit predictions. They were requested to estimate the relative probabilities of different failure causes, and of failure at each load increment given a specific cause. Three mathematical models are constructed based on the experts' assessment of causes. The experts' overall assessment of prediction strength fits the Saturn V data better than the models do, but a model test option (T-3) based on the overall assessment gives more design change likelihood to overstrength structures than does an older standard test option. T-3 compares unfavorably with the standard option in a cost optimum structural design problem. The report reflects a need for subjective data when objective data are unavailable.

  3. Propulsion Study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  4. Model Wind Turbine Design in a Project-Based Middle School Engineering Curriculum Built on State Frameworks

    ERIC Educational Resources Information Center

    Cogger, Steven D.; Miley, Daniel H.

    2012-01-01

    This paper proposes that project-based active learning is a key part of engineering education at the middle school level. One project from a comprehensive middle school engineering curriculum developed by the authors is described to show how active learning and state frameworks can coexist. The theoretical basis for learning and assessment in a…

  5. System Engineering Issues for Avionics Survival in the Space Environment

    NASA Technical Reports Server (NTRS)

    Pavelitz, Steven

    1999-01-01

    This paper examines how the system engineering process influences the design of a spacecraft's avionics by considering the space environment. Avionics are susceptible to the thermal, radiation, plasma, and meteoroids/orbital debris environments. The environment definitions for various spacecraft mission orbits (LEO/low inclination, LEO/Polar, MEO, HEO, GTO, GEO and High ApogeeElliptical) are discussed. NASA models and commercial software used for environment analysis are reviewed. Applicability of technical references, such as NASA TM-4527 "Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development" is discussed. System engineering references, such as the MSFC System Engineering Handbook, are reviewed to determine how the environments are accounted for in the system engineering process. Tools and databases to assist the system engineer and avionics designer in addressing space environment effects on avionics are described and usefulness assessed.

  6. Engineered Barrier System performance requirements systems study report. Revision 02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balady, M.A.

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS includemore » the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.« less

  7. Enhancing learning in geosciences and water engineering via lab activities

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  8. Professional development for design-based learning in engineering education: a case study

    NASA Astrophysics Data System (ADS)

    Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim

    2015-01-01

    Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects. We conducted an intervention for the professional development of the DBL teachers in the Mechanical Engineering and the Electrical Engineering departments. We used the Experiential Learning Cycle as an educational model for the professionalisation programme. The findings show that the programme encouraged teachers to apply the DBL theoretical framework. However, there are some limitations with regard to specific project characteristics. Further research into supporting teachers to develop open-ended and multidisciplinary activities in the projects that support learning is recommended.

  9. Stirling engines for low-temperature solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves their self-starting potential. The start-up temperature, i.e., the heater temperature at which the system starts its operation, is derived based on the same modal analysis. Following the mathematical modeling, the design, fabrication, and test of a symmetric three-phase free-piston Stirling engine system are discussed. The system is designed to operate with moderate-temperature heat input that is consistent with solar-thermal collectors. Diaphragm pistons and nylon flexures are considered for this prototype to eliminate surface friction and provide appropriate seals. The experimental results are presented and compared with design calculations. Experimental assessments confirm the models for flow friction and gas spring hysteresis dissipation. It is revealed that gas spring hysteresis loss is an important dissipation phenomenon in low-power low-pressure Stirling engines, and should be carefully addressed during the design as it may hinder the engine operation. Further analysis shows that the gas hysteresis dissipation can be reduced drastically by increasing the number of phases in a system with a little compromise on the operating frequency and, hence, the output power. It is further shown that for an even number of phases, half of the pistons could be eliminated by utilizing a reverser. By introducing a reverser to the fabricated system, the system proves its self-starting capability in engine mode and validates the derived expressions for computing the start-up temperature.

  10. 40 CFR 63.11502 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: process knowledge, an engineering assessment, or test data. Byproduct means a chemical (liquid, gas, or... limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources...

  11. 40 CFR 63.11502 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: process knowledge, an engineering assessment, or test data. Byproduct means a chemical (liquid, gas, or... limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources...

  12. Structural Test Laboratory | Water Power | NREL

    Science.gov Websites

    Structural Test Laboratory Structural Test Laboratory NREL engineers design and configure structural components can validate models, demonstrate system reliability, inform design margins, and assess , including mass and center of gravity, to ensure compliance with design goals Dynamic Characterization Use

  13. Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing.

    PubMed

    Li, Bin; Zeng, Chunxi; Dong, Yizhou

    2018-05-01

    Cpf1, a CRISPR endonuclease discovered in Prevotella and Francisella 1 bacteria, offers an alternative platform for CRISPR-based genome editing beyond the commonly used CRISPR-Cas9 system originally discovered in Streptococcus pyogenes. This protocol enables the design of engineered CRISPR-Cpf1 components, both CRISPR RNAs (crRNAs) to guide the endonuclease and Cpf1 mRNAs to express the endonuclease protein, and provides experimental procedures for effective genome editing using this system. We also describe quantification of genome-editing activity and off-target effects of the engineered CRISPR-Cpf1 in human cell lines using both T7 endonuclease I (T7E1) assay and targeted deep sequencing. This protocol enables rapid construction and identification of engineered crRNAs and Cpf1 mRNAs to enhance genome-editing efficiency using the CRISPR-Cpf1 system, as well as assessment of target specificity within 2 months. This protocol may also be appropriate for fine-tuning other types of CRISPR systems.

  14. Analysis, design, fabrication and testing of an optical tip clearance sensor. [turbocompressor blade tips

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Marple, D. T. F.; Kingsley, J. D.

    1981-01-01

    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed.

  15. Multi-Disciplinary Design Optimization Using WAVE

    NASA Technical Reports Server (NTRS)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.

  16. Implementing and Assessing the Converging-Diverging Model of Design in a Sequence of Sophomore Projects

    ERIC Educational Resources Information Center

    Dahm, Kevin; Riddell, William; Constans, Eric; Courtney, Jennifer; Harvey, Roberta; Von Lockette, Paris

    2009-01-01

    This paper discusses a sophomore-level course that teaches engineering design and technical writing. Historically, the course was taught using semester-long design projects. Most students' overall approach to design problems left considerable room for improvement. Many teams chose a design without investigating alternatives, and important…

  17. Software support environment design knowledge capture

    NASA Technical Reports Server (NTRS)

    Dollman, Tom

    1990-01-01

    The objective of this task is to assess the potential for using the software support environment (SSE) workstations and associated software for design knowledge capture (DKC) tasks. This assessment will include the identification of required capabilities for DKC and hardware/software modifications needed to support DKC. Several approaches to achieving this objective are discussed and interim results are provided: (1) research into the problem of knowledge engineering in a traditional computer-aided software engineering (CASE) environment, like the SSE; (2) research into the problem of applying SSE CASE tools to develop knowledge based systems; and (3) direct utilization of SSE workstations to support a DKC activity.

  18. Analyzing system safety in lithium-ion grid energy storage

    DOE PAGES

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less

  19. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  20. Computational Assessment of the Benefits of Boundary Layer Ingestion for the D8 Aircraft

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir A.; Uranga, Alejandra

    2013-01-01

    To substantially reduce the fuel burn of future commercial transportation aircraft, the boundary layer ingestion idea is investigated. The idea is that an engine placed in the wake of the aircraft it is propelling is more efficient than a conventional engine placement under the wing or on pods mounted to the rear of the fuselage. The top, rear of the fuselage is thus designed to act as a diffuser such that the engines can be placed there with a minimal nacelle. The boundary layer thickens over the rear of the fuselage such that a large portion of it is ingested by the fan. To assess whether the boundary layer ingesting (BLI) engine placement is indeed advantageous, a study of the nacelle aerodynamics is carried out using Overflow, a viscous CFD flow solver that uses overset meshes. The computed forces and moments are compared to a wind tunnel experiment for validation. Some aspects of the design are verified using the simulation results. Finally, the effect of the nacelle placement is assessed by comparing the BLI nacelle configuration to a podded nacelle configuration and to the unpowered (without nacelles) aircraft.

  1. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  2. Bearings working group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The service life of the Space Shuttle Main Engine (SSME) turbomachinery bearings was a predominant factor in engine durability and maintenance problems. Recent data has indicated that bearing life is about one order of magnitude lower than the goal of seven and one-half hours particularly those in the High Pressure Oxidizer Turbopump (HPOTP). Bearing technology, primarily cryogenic turbomachinery bearing technology, is expanded by exploring the life and performance effects of design changes; design concept changes; materials changes; manufacturing technique changes; and lubrication system changes. Each variation is assessed against the current bearing design in full scale cryogenic tests.

  3. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    PubMed

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Application of the Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.

  5. PRODUCTION AND MANAGEMENT OF LEACHATE FROM MUNICIPAL LANDFILLS: SUMMARY AND ASSESSMENT

    EPA Science Inventory

    An assessment was made to evaluate production and management of leachate from municipal landfills for purposes of identifying practical information and techniques which may be useful to design engineers and site operators. Also assessed were: advantages, limitations, and comparat...

  6. Design and Configuration of a Medical Imaging Systems Computer Laboratory Syllabus

    ERIC Educational Resources Information Center

    Selver, M. Alper

    2016-01-01

    Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…

  7. Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

    EPA Science Inventory

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...

  8. INTEGRATION OF SYSTEMS ENGINEERING AND PROCESS INTENSIFICATION IN THE DESIGN OF PROCESSES FOR UTILIZING BIOBASED GLYCEROL

    EPA Science Inventory

    The expected results include an integrated process and mechanical design including a fabrication plan for the glycerol dehydration reactor, comprehensive heat and material balance, environmental impact assessment and comprehensive safety review. The resulting process design w...

  9. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    NASA Astrophysics Data System (ADS)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  10. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  11. Advanced Engineering Environment FY09/10 pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporatemore » product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.« less

  12. Analytical evaluation of the impact of broad specification fuels on high bypass turbofan engine combustors

    NASA Technical Reports Server (NTRS)

    Taylor, J. R.

    1979-01-01

    Six conceptual combustor designs for the CF6-50 high bypass turbofan engine and six conceptual combustor designs for the NASA/GE E3 high bypass turbofan engine were analyzed to provide an assessment of the major problems anticipated in using broad specification fuels in these aircraft engine combustion systems. Each of the conceptual combustor designs, which are representative of both state-of-the-art and advanced state-of-the-art combustion systems, was analyzed to estimate combustor performance, durability, and pollutant emissions when using commercial Jet A aviation fuel and when using experimental referee board specification fuel. Results indicate that lean burning, low emissions double annular combustor concepts can accommodate a wide range of fuel properties without a serious deterioration of performance or durability. However, rich burning, single annular concepts would be less tolerant to a relaxation of fuel properties. As the fuel specifications are relaxed, autoignition delay time becomes much smaller which presents a serious design and development problem for premixing-prevaporizing combustion system concepts.

  13. Interchange Safety Analysis Tool (ISAT) : user manual

    DOT National Transportation Integrated Search

    2007-06-01

    This User Manual describes the usage and operation of the spreadsheet-based Interchange Safety Analysis Tool (ISAT). ISAT provides design and safety engineers with an automated tool for assessing the safety effects of geometric design and traffic con...

  14. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    NASA Technical Reports Server (NTRS)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  15. Adiabatic diesel engine component development: Reference engine for on-highway applications

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  16. Assessing Students' Structured Programming Skills with Java: The "Blue, Berry, and Blueberry" Assignment

    ERIC Educational Resources Information Center

    Zhang, Xihui

    2010-01-01

    Java is an object-oriented programming language. From a software engineering perspective, object-oriented design and programming is used at the architectural design, and structured design and programming is used at the detailed design within methods. As such, structured programming skills are fundamental to more advanced object-oriented…

  17. Exploring Design Elements for Online STEM Courses: Active Learning, Engagement & Assessment Design

    ERIC Educational Resources Information Center

    Chen, Baiyun; Bastedo, Kathleen; Howard, Wendy

    2018-01-01

    The purpose of this study was to examine effective design elements for online courses in the science, technology, engineering, and mathematics (STEM) fields at a large four-year public university in southeastern United States. Our research questions addressed the influence of online design elements on students' perception of learning and learning…

  18. 76 FR 50275 - Guidance for the Assessment of Beyond-Design-Basis Aircraft Impacts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...: Mekonen M. Bayssie, Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear... e-mail to [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The Nuclear..., Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2011-20513 Filed 8-11-11; 8:45 am...

  19. Creating a Classroom Kaleidoscope with the World Wide Web.

    ERIC Educational Resources Information Center

    Quinlan, Laurie A.

    1997-01-01

    Discusses the elements of classroom Web presentations: planning; construction, including design tips; classroom use; and assessment. Lists 14 World Wide Web resources for K-12 teachers; Internet search tools (directories, search engines and meta-search engines); a Web glossary; and an example of HTML for a simple Web page. (PEN)

  20. Potential of spark ignition engine for increased fuel efficiency. Final report, January-October 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T. Jr.; Cole, D.; Bolt, J.A.

    The objective of this study was to assess the potential of the spark ignition engine to deliver maximum fuel efficiency at 1981 Statutory Emission Standards in the 1983-1984 timeframe and beyond that to 1990. Based on the results of an extensive literature search, manufacturer's known product plans, and fuel economies of 1978 engines as a baseline, proposed methods of attaining fuel economy while complying with the future standards were ascertained. Methods of engine control optimization, engine design optimization as well as methods of varying engine parameters were considered. The potential improvements in fuel economy associated with these methods, singly andmore » in combination, were determined and are expressed as percentage changes of the fuel economy of the baseline engines. A summary of the principal conclusions are presented, followed by a description of the engine baseline reference, analysis and projection of fuel economy improvements, and a preliminary assessment of the impact of fuel economy benefits on manufacturing cost.« less

  1. A Summary of Crew Workload and Situational Awareness Ratings for U.S. Army Aviation Aircraft

    DTIC Science & Technology

    2014-06-01

    Engineering Directorate (ARL/HRED) assesses crewstation design for new and upgraded U.S. Army Aviation aircraft during simulations and operational...crewstation design for new and upgraded Army Aviation aircraft during simulations and operational testing. The assessments are conducted to identify...crewstation design . To date, more than 12,000 pilot workload ratings and 3000 pilot SA ratings have been collected by ARL/HRED for Army aircraft . This report

  2. A design procedure for fan inflow control structures

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1980-01-01

    Significant differences exist in the noise generated by engine in flight and engines operating on the test stand. It was observed that these differences can be reduced by use of an inflow control structure (ICS) in the static test configuration. The results of the second phase of a three phase program are described and the results of a test program conducted to assess and modify various theoretical models, leading to the development of an ICS design system is summarized.

  3. Building a computer-aided design capability using a standard time share operating system

    NASA Technical Reports Server (NTRS)

    Sobieszczanski, J.

    1975-01-01

    The paper describes how an integrated system of engineering computer programs can be built using a standard commercially available operating system. The discussion opens with an outline of the auxiliary functions that an operating system can perform for a team of engineers involved in a large and complex task. An example of a specific integrated system is provided to explain how the standard operating system features can be used to organize the programs into a simple and inexpensive but effective system. Applications to an aircraft structural design study are discussed to illustrate the use of an integrated system as a flexible and efficient engineering tool. The discussion concludes with an engineer's assessment of an operating system's capabilities and desirable improvements.

  4. Applying Best Practices to Military Commercial-Derivative Aircraft Engine Sustainment: Assessment of Using Parts Manufacturer Approval (PMA) Parts and Designated Engineering Representative (DER) Repairs

    DTIC Science & Technology

    2016-01-01

    Company HPT high-pressure turbine LPT low-pressure turbine MARPA Modification and Replacement Parts Association MRO maintenance , repair, and overhaul...Corporation R® is a registered trademark. Cover image: A KC-10 F103 (CF6-50) engine at the MTU Vancouver facility (courtesy of MTU Maintenance Canada Ltd...representative (DER) repairs to decrease the cost of their aircraft engine maintenance . These parts and repairs are provided by third-party companies and

  5. Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering

    NASA Astrophysics Data System (ADS)

    Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García

    The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.

  6. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  7. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) Independent Design Reliability Assessment. Volume 1

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2010-01-01

    This report documents the activities, findings, and NASA Engineering and Safety Center (NESC) recommendations of a multidiscipline team to independently assess the Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS). This assessment occurred during a period of 15 noncontiguous months between December 2008 and April 2010, prior to the CPAS Project's Preliminary Design Review (PDR) in August 2010.

  8. Cost-engineering modeling to support rapid concept development of an advanced infrared satellite system

    NASA Astrophysics Data System (ADS)

    Bell, Kevin D.; Dafesh, Philip A.; Hsu, L. A.; Tsuda, A. S.

    1995-12-01

    Current architectural and design trade techniques often carry unaffordable alternatives late into the decision process. Early decisions made during the concept exploration and development (CE&D) phase will drive the cost of a program more than any other phase of development; thus, designers must be able to assess both the performance and cost impacts of their early choices. The Space Based Infrared System (SBIRS) cost engineering model (CEM) described in this paper is an end-to-end process integrating engineering and cost expertise through commonly available spreadsheet software, allowing for concurrent design engineering and cost estimation to identify and balance system drives to reduce acquisition costs. The automated interconnectivity between subsystem models using spreadsheet software allows for the quick and consistent assessment of the system design impacts and relative cost impacts due to requirement changes. It is different from most CEM efforts attempted in the past as it incorporates more detailed spacecraft and sensor payload models, and has been applied to determine the cost drivers for an advanced infrared satellite system acquisition. The CEM is comprised of integrated detailed engineering and cost estimating relationships describing performance, design, and cost parameters. Detailed models have been developed to evaluate design parameters for the spacecraft bus and sensor; both step-starer and scanner sensor types incorporate models of focal plane array, optics, processing, thermal, communications, and mission performance. The current CEM effort has provided visibility to requirements, design, and cost drivers for system architects and decision makers to determine the configuration of an infrared satellite architecture that meets essential requirements cost effectively. In general, the methodology described in this paper consists of process building blocks that can be tailored to the needs of many applications. Descriptions of the spacecraft and payload subsystem models provide insight into The Aerospace Corporation expertise and scope of the SBIRS concept development effort.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, D.A.; McKenzie, D.H.

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact andmore » review biological information needed for intake design.« less

  10. The gate studies: Assessing the potential of future small general aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    Four studies were completed that explore the opportunities for future General Aviation turbine engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class were predicted.

  11. 75 FR 61197 - Notice of Entering Into a Compact With the Republic of the Philippines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... Project ($214.4 million) The Secondary National Roads Development Project is designed to reduce.... This project will incorporate enhanced safety measures in the final road designs, including: (i) Paved... assess and classify every proposed sub-project, and provide the engineering design and oversight support...

  12. Developing Instrumentation for Assessing Creativity in Engineering Design

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Buelin, Jennifer K.; Lammi, Matthew D.; D'Amico, Susan

    2015-01-01

    A perceived inability to assess creative attributes of students' work has often precluded creativity instruction in the classroom. The Consensual Assessment Technique (CAT) has shown promise in a variety of domains for its potential as a valid and reliable means of creativity assessment. Relying upon an operational definition of creativity and a…

  13. Assessing Engineering Competencies: The Conditions for Educational Improvement

    ERIC Educational Resources Information Center

    Musekamp, Frank; Pearce, Jacob

    2015-01-01

    Low-stakes assessment is supposed to improve educational practice by providing feedback to different actors in educational systems. However, the process of assessment from design to the point of a final impact on student learning outcomes is complex and diverse. It is hard to identify reasons for substandard achievement on assessments, let alone…

  14. Failure is an option: Reactions to failure in elementary engineering design projects

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew M.

    Recent reform documents in science education have called for teachers to use epistemic practices of science and engineering researchers to teach disciplinary content (NRC, 2007; NRC, 2012; NGSS Lead States, 2013). Although this creates challenges for classroom teachers unfamiliar with engineering, it has created a need for high quality research about how students and teachers engage in engineering activities to improve curriculum development and teaching pedagogy. While framers of the Next Generation Science Standards (NRC, 2012; NGSS Lead States 2013) focused on the similarities of the practices of science researchers and engineering designers, some have proposed that engineering has a unique set of epistemic practices, including improving from failure (Cunningham & Carlsen, 2014; Cunningham & Kelly, in review). While no one will deny failures occur in science, failure in engineering is thought of in fundamentally different ways. In the study presented here, video data from eight classes of elementary students engaged in one of two civil engineering units were analyzed using methods borrowed from psychology, anthropology, and sociolinguistics to investigate: 1) the nature of failure in elementary engineering design; 2) the ways in which teachers react to failure; and 3) how the collective actions of students and teachers support or constrain improvement in engineering design. I propose new ways of considering the types and causes of failure, and note three teacher reactions to failure: the manager, the cheerleader, and the strategic partner. Because the goal of iteration in engineering is improvement, I also studied improvement. Students only systematically improve when they have the opportunity, productive strategies, and fair comparisons between prototypes. I then investigate the use of student engineering journals to assess learning from the process of improvement after failure. After discussion, I consider implications from this work as well as future research to advance our understanding in this area.

  15. Understanding safety and production risks in rail engineering planning and protection.

    PubMed

    Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia

    2009-07-01

    Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.

  16. The 1989 high-speed civil transport studies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The results of the Douglas Aircraft Company system studies related to high speed civil transports (HSCT) are discussed. The studies were conducted to assess the environmental compatibility of a high speed civil transport at a design Mach number of 3.2. Sonic boom minimization, external noise, and engine emissions were assessed together with the effect of the laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that a sonic boom loudness level of 90-PLdB at Mach 3.2 may not be achievable for a practical design; the high flow engine cycle concept shows promise of achieving the sideline FAR Part 36 noise limit, but may not achieve the aircraft range design goal of 6,500 nautical miles; the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO sub x levels when combined with a premixed pilot stage/advanced technology, high power stage duct burner in the Pratt and Whitney variable steam control engine (VSCE); and full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.

  17. Automotive Manufacturing Assessment System : Volume 4. Engine Manufacturing Analysis.

    DOT National Transportation Integrated Search

    1979-11-01

    Volume IV represents the results of one of four major study areas under the Automotive Manufacturing Assessment System (AMAS) sponsored by the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability t...

  18. Design and integration of a problem-based biofabrication course into an undergraduate biomedical engineering curriculum.

    PubMed

    Raman, Ritu; Mitchell, Marlon; Perez-Pinera, Pablo; Bashir, Rashid; DeStefano, Lizanne

    2016-01-01

    The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method. Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication. We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.

  19. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  20. Current and future technology in radial and axial gas turbines

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.

    1983-01-01

    Design approaches and flow analysis techniques currently employed by aircraft engine manufacturers are assessed. Studies were performed to define the characteristics of aircraft and engines for civil missions of the 1990's and beyond. These studies, coupled with experience in recent years, identified the critical technologies needed to meet long range goals in fuel economy and other operating costs. Study results, recent and current research and development programs, and an estimate of future design and analytic capabilities are discussed.

  1. Professional Development for Design-Based Learning in Engineering Education: A Case Study

    ERIC Educational Resources Information Center

    Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim

    2015-01-01

    Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects.…

  2. A Project-Based Learning Approach to Programmable Logic Design and Computer Architecture

    ERIC Educational Resources Information Center

    Kellett, C. M.

    2012-01-01

    This paper describes a course in programmable logic design and computer architecture as it is taught at the University of Newcastle, Australia. The course is designed around a major design project and has two supplemental assessment tasks that are also described. The context of the Computer Engineering degree program within which the course is…

  3. Rocketdyne PSAM: In-house enhancement/application

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Rajagopal, K. R.; Ohara, K.

    1991-01-01

    The development was initiated of the Probabilistic Design Analysis (PDA) Process for rocket engines. This will enable engineers a quantitative assessment of calculated reliability during the design process. The PDA will help choose better designs, make them more robust, and help decide on critical tests to help demonstrate key reliability issues to aid in improving the confidence of the engine capabilities. Rockedyne's involvement with the Composite Loads Spectra (CLS) and Probabilistic Structural Analysis Methodology (PSAM) contracts started this effort and are key elements in the on-going developments. Internal development efforts and hardware applications complement and extend the CLS and PSAM efforts. The completion of the CLS option work and the follow-on PSAM developments will also be integral parts of this methodology. A brief summary of these efforts is presented.

  4. How to Introduce Historically the Normal Distribution in Engineering Education: A Classroom Experiment

    ERIC Educational Resources Information Center

    Blanco, Monica; Ginovart, Marta

    2010-01-01

    Little has been explored with regard to introducing historical aspects in the undergraduate statistics classroom in engineering studies. This article focuses on the design, implementation and assessment of a specific activity concerning the introduction of the normal probability curve and related aspects from a historical dimension. Following a…

  5. Changes in Teachers' Adaptive Expertise in an Engineering Professional Development Course

    ERIC Educational Resources Information Center

    Martin, Taylor; Peacock, Stephanie Baker; Ko, Pat; Rudolph, Jennifer J.

    2015-01-01

    Although the consensus seems to be that high-school-level introductory engineering courses should focus on design, this creates a problem for teacher training. Traditionally, math and science teachers are trained to teach and assess factual knowledge and closed-ended problem-solving techniques specific to a particular discipline, which is unsuited…

  6. Elements of Design-Based Science Activities That Affect Students' Motivation

    ERIC Educational Resources Information Center

    Jones, Brett D.; Chittum, Jessica R.; Akalin, Sehmuz; Schram, Asta B.; Fink, Jonathan; Schnittka, Christine; Evans, Michael A.; Brandt, Carol

    2015-01-01

    The primary purpose of this study was to examine the ways in which a 12-week after-school science and engineering program affected middle school students' motivation to engage in science and engineering activities. We used current motivation research and theory as a conceptual framework to assess 14 students' motivation through questionnaires,…

  7. The Importance of Industrial Ecology in Engineering Education for Sustainable Development

    ERIC Educational Resources Information Center

    Biswas, Wahidul K.

    2012-01-01

    Purpose: The purpose of this paper is to show how industrial ecology can facilitate the achievement of sustainable development through its incorporation into an engineering curriculum. Design/methodology/approach: A model has been developed for assessing sustainability learning outcomes due to the incorporation of the concept of industrial ecology…

  8. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  9. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) Independent Design Reliability Assessment. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2010-01-01

    This document contains the Appendices to the report documenting the activities, findings, and NASA Engineering and Safety Center (NESC) recommendations of a multidiscipline team to independently assess the Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS). The assessment occurred during a period of 15 noncontiguous months between December 2008 and April 2010, prior to the CPAS Project's Preliminary Design Review (PDR) in August 2010.

  10. Oxygen Compatibility Assessment of Components and Systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel; Sparks, Kyle

    2010-01-01

    Fire hazards are inherent in oxygen systems and a storied history of fires in rocket engine propulsion components exists. To detect and mitigate these fire hazards requires careful, detailed, and thorough analyses applied during the design process. The oxygen compatibility assessment (OCA) process designed by NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) can be used to determine the presence of fire hazards in oxygen systems and the likelihood of a fire. This process may be used as both a design guide and during the approval process to ensure proper design features and material selection. The procedure for performing an OCA is a structured step-by-step process to determine the most severe operating conditions; assess the flammability of the system materials at the use conditions; evaluate the presence and efficacy of ignition mechanisms; assess the potential for a fire to breach the system; and determine the reaction effect (the potential loss of life, mission, and system functionality as the result of a fire). This process should be performed for each component in a system. The results of each component assessment, and the overall system assessment, should be recorded in a report that can be used in the short term to communicate hazards and their mitigation and to aid in system/component development and, in the long term, to solve anomalies that occur during engine testing and operation.

  11. A method for the design and development of medical or health care information websites to optimize search engine results page rankings on Google.

    PubMed

    Dunne, Suzanne; Cummins, Niamh Maria; Hannigan, Ailish; Shannon, Bill; Dunne, Colum; Cullen, Walter

    2013-08-27

    The Internet is a widely used source of information for patients searching for medical/health care information. While many studies have assessed existing medical/health care information on the Internet, relatively few have examined methods for design and delivery of such websites, particularly those aimed at the general public. This study describes a method of evaluating material for new medical/health care websites, or for assessing those already in existence, which is correlated with higher rankings on Google's Search Engine Results Pages (SERPs). A website quality assessment (WQA) tool was developed using criteria related to the quality of the information to be contained in the website in addition to an assessment of the readability of the text. This was retrospectively applied to assess existing websites that provide information about generic medicines. The reproducibility of the WQA tool and its predictive validity were assessed in this study. The WQA tool demonstrated very high reproducibility (intraclass correlation coefficient=0.95) between 2 independent users. A moderate to strong correlation was found between WQA scores and rankings on Google SERPs. Analogous correlations were seen between rankings and readability of websites as determined by Flesch Reading Ease and Flesch-Kincaid Grade Level scores. The use of the WQA tool developed in this study is recommended as part of the design phase of a medical or health care information provision website, along with assessment of readability of the material to be used. This may ensure that the website performs better on Google searches. The tool can also be used retrospectively to make improvements to existing websites, thus, potentially enabling better Google search result positions without incurring the costs associated with Search Engine Optimization (SEO) professionals or paid promotion.

  12. The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

    NASA Technical Reports Server (NTRS)

    Castro, Victoria A.; Bruce, Rebekah J.; Ott, C. Mark; Pierson, D. L.

    2006-01-01

    For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.

  13. Comparative Performance Assessment of 5kW-Class Solid Oxide Fuel Cell Engines Integrated With Single/Dual-Spool Turbochargers

    DTIC Science & Technology

    2011-01-01

    Comparative Performance Assessment of 5kW-Class Solid Oxide Fuel Cell Engines Integrated with Single/Dual-Spool Turbochargers So-Ryeok Oh, Jing Sun... Turbochargers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT... fundamental operating regime to the part load performance. Two different mechanical designs are assumed: dual shaft and single shaft as the compressor

  14. Global engineering teams - a programme promoting teamwork in engineering design and manufacturing

    NASA Astrophysics Data System (ADS)

    Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.

    2011-05-01

    Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration with industry partners. Teamwork is a major success factor for GET as students always work in groups of varying sizes. A questionnaire-based survey of the 2008 cohort of GET students was conducted to assess teamwork, communication and conflict resolution among group members. The results confirmed that deliverables are readily achieved in teams and communication was open. A challenge of using virtual teams is the availability of high-speed Internet access. The GET programme shows that it is possible to deliver engineering design and manufacturing via industry/university collaboration. The programme also facilitates multidisciplinary teamwork at an international level.

  15. A Rubric to Analyze Student Abilities to Engage in Sustainable Design

    ERIC Educational Resources Information Center

    Watson, Mary Katherine; Barrella, Elise; Wall, Thomas A.; Noyes, Caroline; Rodgers, Michael

    2017-01-01

    As engineering programs have begun to infuse sustainability into their undergraduate curricula, assessment tools are needed to further inform these reform efforts. The goal of this project was to demonstrate the use of a new rubric to examine students' abilities to engage in sustainable design. The rubric includes 16 sustainable design criteria…

  16. Challenges Facing Design and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)

    2001-01-01

    The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools will be described.

  17. Application of Probabilistic Methods to Assess Risk Due to Resonance in the Design of J-2X Rocket Engine Turbine Blades

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; DeHaye, Michael; DeLessio, Steven

    2011-01-01

    The LOX-Hydrogen J-2X Rocket Engine, which is proposed for use as an upper-stage engine for numerous earth-to-orbit and heavy lift launch vehicle architectures, is presently in the design phase and will move shortly to the initial development test phase. Analysis of the design has revealed numerous potential resonance issues with hardware in the turbomachinery turbine-side flow-path. The analysis of the fuel pump turbine blades requires particular care because resonant failure of the blades, which are rotating in excess of 30,000 revolutions/minutes (RPM), could be catastrophic for the engine and the entire launch vehicle. This paper describes a series of probabilistic analyses performed to assess the risk of failure of the turbine blades due to resonant vibration during past and present test series. Some significant results are that the probability of failure during a single complete engine hot-fire test is low (1%) because of the small likelihood of resonance, but that the probability increases to around 30% for a more focused turbomachinery-only test because all speeds will be ramped through and there is a greater likelihood of dwelling at more speeds. These risk calculations have been invaluable for use by program management in deciding if risk-reduction methods such as dampers are necessary immediately or if the test can be performed before the risk-reduction hardware is ready.

  18. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Richey, A.; Farrell, R.; Riecke, G.; Ernst, W.; Howarth, R.; Cronin, M.; Simetkosky, M.; Smith, G.; Meacher, J.

    1985-01-01

    Development test activities on Mod I engines directed toward evaluating technologies for potential inclusion in the Mod II engine are summarized. Activities covered include: test of a 12-tube combustion gas recirculation combustor; manufacture and flow-distribution test of a two-manifold annular heater head; piston rod/piston base joint; single-solid piston rings; and a digital air/fuel concept. Also summarized are results of a formal assessment of candidate technologies for the Mod II engine, and preliminary design work for the Mod II. The overall program philosophy weight is outlined, and data and test results are presented.

  19. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  20. Progress of Stirling cycle analysis and loss mechanism characterization

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1986-01-01

    An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.

  1. Modeling and HIL Simulation of Flight Conditions Simulating Control System for the Altitude Test Facility

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Shen, Li; Zhang, Tianhong

    2016-12-01

    Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.

  2. Design and Development of a Course in Professionalism and Ethics for CDIO Curriculum in China.

    PubMed

    Fan, Yinghui; Zhang, Xingwei; Xie, Xinlu

    2015-10-01

    At Shantou University (STU) in 2008, a stand-alone engineering ethics course was first included within a Conceive-Design-Implement-Operate (CDIO) curriculum to address the scarcity of engineering ethics education in China. The philosophy of the course design is to help students to develop an in-depth understanding of social sustainability and to fulfill the obligations of engineers in the twenty-first century within the context of CDIO engineering practices. To guarantee the necessary cooperation of the relevant parties, we have taken advantage of the top-down support from the STU administration. Three themes corresponding to contemporary issues in China were chosen as the course content: engineers' social obligations, intellectual property and engineering safety criteria. Some popular pedagogies are used for ethics instruction such as case studies and group discussions through role-playing. To impart the diverse expertise of the practical professional practice, team teaching is adopted by interdisciplinary instructors with strong qualifications and industrial backgrounds. Although the assessment of the effectiveness of the course in enhancing students' sense of ethics is limited to assignment reports and class discussions, our endeavor is seen as positive and will continue to sustain the CDIO reform initiatives of STU.

  3. Liquid Rocket Lines, Bellows, Flexible Hoses, and Filters

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Fluid-flow components in a liquid propellant rocket engine and the rocket vehicle which it propels are interconnected by lines, bellows, and flexible hoses. Elements involved in the successful design of these components are identified and current technologies pertaining to these elements are reviewed, assessed, and summarized to provide a technology base for a checklist of rules to be followed by project managers in guiding a design or assessing its adequacy. Recommended procedures for satisfying each of the design criteria are included.

  4. Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka

    1990-01-01

    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.

  5. Reestablishing Public Health and Land Use Planning to Protect Public Water Supplies

    PubMed Central

    Greenberg, Michael; Mayer, Henry; Miller, K. Tyler; Hordon, Robert; Knee, Daniel

    2003-01-01

    Objectives. This study measured the extent to which land use, design, and engineering practices could reduce contamination of major public water supplies. Methods. Key parcels of land were identified in New Jersey, and the potential uncontrolled loading of contaminants was estimated with the US Environmental Protection Agency’s Long-Term Hydrologic Impact Assessment model for a variety of land use, design, and engineering scenarios. Results. High-density per-acre development and engineering controls, along with housing and light commercial activity near main railroads, would substantially reduce runoff. Conclusions. In New Jersey, government and purveyor action is being taken as a result of, and in support of, these findings. PMID:12948974

  6. Retaining minorities in engineering: Assessment of a program prototype

    NASA Astrophysics Data System (ADS)

    Good, Jennifer Marie (Phillips)

    Program assessment is an essential part of healthy program development. Assessment should include multiple considerations, dimensions, and outcomes that match the program's objectives. As a newly formed retention program, the Auburn University Minority Engineering Program, designed to help pre-engineering minority students make the transition into their freshman year of university studies, incorporated evaluation and assessment into all three components of the program (the interactive learning laboratory, critical-thinking workshops, and Sunday-evening tutorials) from the program's inception. If students successfully adapted to the university environment and the demands of the pre-engineering course of study, then retention of minority students in the College of Engineering should improve. Data were gathered on the students involved in the various program components. Students who entered the Minority Engineering Program were pre- and posttested on three standardized subtests (critical thinking, mathematics, and science reasoning) of the Collegiate Assessment of Academic Proficiency. The first-quarter grade-point averages of the students were also gathered to compare their grades to freshman students in previous quarters within the College of Engineering. Qualitative data were also gathered on this same group of students. An analysis of the data revealed that student achievement is affected by involvement in the Minority Engineering Program. Specifically, the first quarter grade point averages of students involved in the program exceeded those of their peers in earlier years of study prior to the program's existence. In addition, mathematics and science reasoning scores on standardized tests increased pre- to postintervention. Comments collected in journals and files also demonstrated use of critical-thinking and problem-solving skills employed by the students. Recommendations for alterations of the program were made based on the outcome of the program evaluation. Further suggestions for research in minority engineering program development and evaluation were also discussed.

  7. Assessing Freshman Engineering Students' Understanding of Ethical Behavior.

    PubMed

    Henslee, Amber M; Murray, Susan L; Olbricht, Gayla R; Ludlow, Douglas K; Hays, Malcolm E; Nelson, Hannah M

    2017-02-01

    Academic dishonesty, including cheating and plagiarism, is on the rise in colleges, particularly among engineering students. While students decide to engage in these behaviors for many different reasons, academic integrity training can help improve their understanding of ethical decision making. The two studies outlined in this paper assess the effectiveness of an online module in increasing academic integrity among first semester engineering students. Study 1 tested the effectiveness of an academic honesty tutorial by using a between groups design with a Time 1- and Time 2-test. An academic honesty quiz assessed participants' knowledge at both time points. Study 2, which incorporated an improved version of the module and quiz, utilized a between groups design with three assessment time points. The additional Time 3-test allowed researchers to test for retention of information. Results were analyzed using ANCOVA and t tests. In Study 1, the experimental group exhibited significant improvement on the plagiarism items, but not the total score. However, at Time 2 there was no significant difference between groups after controlling for Time 1 scores. In Study 2, between- and within-group analyses suggest there was a significant improvement in total scores, but not plagiarism scores, after exposure to the tutorial. Overall, the academic integrity module impacted participants as evidenced by changes in total score and on specific plagiarism items. Although future implementation of the tutorial and quiz would benefit from modifications to reduce ceiling effects and improve assessment of knowledge, the results suggest such tutorial may be one valuable element in a systems approach to improving the academic integrity of engineering students.

  8. Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education

    ERIC Educational Resources Information Center

    Chien, Yu-Hung

    2017-01-01

    This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…

  9. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  10. Hydrocarbon Rocket Technology Impact Forecasting

    NASA Technical Reports Server (NTRS)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  11. Implementation of Performance Assessment in STEM (Science, Technology, Engineering, Mathematics) Education to Detect Science Process Skill

    NASA Astrophysics Data System (ADS)

    Septiani, A.; Rustaman, N. Y.

    2017-02-01

    A descriptive study about the implementation of performance assessment in STEM based instruction was carried out to investigate the tenth grade of Vocational school students’ science process skills during the teaching learning processes. A number of tenth grade agriculture students was involved as research subjects selected through cluster random sampling technique (n=35). Performance assessment was planned on skills during the teaching learning process through observation and on product resulted from their engineering practice design. The procedure conducted in this study included thinking phase (identifying problem and sharing idea), designing phase, construction phase, and evaluation phase. Data was collected through the use of science process skills (SPS) test, observation sheet on student activity, as well as tasks and rubrics for performance assessment during the instruction. Research findings show that the implementation of performance assessment in STEM education in planting media could detect students science process skills better from the observation individually compared through SPS test. It was also found that the result of performance assessment was diverse when it was correlated to each indicator of SPS (strong and positive; weak and positive).

  12. Knowledge, attitude and practices for design for safety: A study on civil & structural engineers.

    PubMed

    Goh, Yang Miang; Chua, Sijie

    2016-08-01

    Design for safety (DfS) (also known as prevention through design, safe design and Construction (Design and Management)) promotes early consideration of safety and health hazards during the design phase of a construction project. With early intervention, hazards can be more effectively eliminated or controlled leading to safer worksites and construction processes. DfS is practiced in many countries, including Australia, the UK, and Singapore. In Singapore, the Manpower Ministry enacted the DfS Regulations in July 2015, which will be enforced from August 2016 onwards. Due to the critical role of civil and structural (C&S) engineers during design and construction, the DfS knowledge, attitude and practices (KAP) of C&S engineers have significant impact on the successful implementation of DfS. Thus, this study aims to explore the DfS KAP of C&S engineers so as to guide further research in measuring and improving DfS KAP of designers. During the study, it was found that there is a lack of KAP studies in construction management. Therefore, this study also aims to provide useful lessons for future applications of the KAP framework in construction management research. A questionnaire was developed to assess the DfS KAP of C&S engineers. The responses provided by 43 C&S engineers were analyzed. In addition, interviews with experienced construction professionals were carried out to further understand perceptions of DfS and related issues. The results suggest that C&S engineers are supportive of DfS, but the level of DfS knowledge and practices need to be improved. More DfS guidelines and training should be made available to the engineers. To ensure that DfS can be implemented successfully, there is a need to study the contractual arrangements between clients and designers and the effectiveness of different implementation approaches for the DfS process. The questionnaire and findings in this study provided the foundation for a baseline survey with larger sample size, which is currently being planned. In contrast to earlier studies, the study showed that the responding C&S engineers were supportive of the DfS. The study showed that the key to improving the DfS KAP of C&S engineers is by improving clients' motivation for DfS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Geoscience techniques for engineering assessment of Oman to India pipeline route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baerenwald, P.D.; Mullee, J.E.; Campbell, K.J.

    1996-12-31

    A variety of geoscience techniques were used to define soil conditions and evaluate geologic processes in order to develop design criteria for complex segments of the proposed Oman to Indian pipeline route. Geophysical survey data, seafloor cores, ROV observation of the seafloor, and oceanographic measurements were the principal field data collected. Geotechnical soil testing, and X-ray radiography, detailed geologic logging, and C-14 age dating of cores were carried out. The diverse sets of field data and lab test results were integrated by a multi-disciplined team of geoscientists and engineers to develop geologic and soil models, soil design criteria, a turbidmore » flow model, and seafloor stability models. The integrated approach used here is applicable to other complex areas where seafloor stability needs to be assessed or design criteria need to be developed for active geologic processes.« less

  14. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  15. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  16. Design of a Computer-Adaptive Test to Measure English Literacy and Numeracy in the Singapore Workforce: Considerations, Benefits, and Implications

    ERIC Educational Resources Information Center

    Jacobsen, Jared; Ackermann, Richard; Eguez, Jane; Ganguli, Debalina; Rickard, Patricia; Taylor, Linda

    2011-01-01

    A computer adaptive test (CAT) is a delivery methodology that serves the larger goals of the assessment system in which it is embedded. A thorough analysis of the assessment system for which a CAT is being designed is critical to ensure that the delivery platform is appropriate and addresses all relevant complexities. As such, a CAT engine must be…

  17. Automatic Differentiation as a tool in engineering design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Hall, Laura E.

    1992-01-01

    Automatic Differentiation (AD) is a tool that systematically implements the chain rule of differentiation to obtain the derivatives of functions calculated by computer programs. In this paper, it is assessed as a tool for engineering design. The paper discusses the forward and reverse modes of AD, their computing requirements, and approaches to implementing AD. It continues with application to two different tools to two medium-size structural analysis problems to generate sensitivity information typically necessary in an optimization or design situation. The paper concludes with the observation that AD is to be preferred to finite differencing in most cases, as long as sufficient computer storage is available.

  18. Automotive manufacturing assessment system. Volume II: product schedules of engine/drivetrain combinations. Final report Jun 77-Aug 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T. Jr; Cunningham, A.R.; Iannelli, D.A.

    Volume II is part of a four volume set documenting areas of research resulting from the development of the Automotive Manufacturing Assessment System (AMAS) for the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. Engine/driveline changes are the second most important contribution to fuel economy (weight reduction being the first) and are of major importance towards meeting emission standards. Through extensive synthesis of vehicle specifications and other data, chronological presentations were developed to illustrate engines and transmissions in production, engine/transmission and model/engine combinations, and automatic vs. manual transmission availability.more » Also shown are the progression of engine/driveline changes from 1975 through 1978; the correlation of these changes with new vehicle introductions; the restrictions on available drive-train options due to emission requirements; and technological improvements including dieselization, fuel metering, lock-up torque converters, and front-wheel-drive.« less

  19. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.

  20. Entry Atmospheric Flight Control Authority Impacts on GN and C and Trajectory Performance for Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McNamara, Luke W.

    2012-01-01

    One of the key design objectives of NASA's Orion Exploration Flight Test 1 (EFT-1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is the ight control authority of the vehicle throughout the atmospheric entry ight to the target landing site and its impacts on GN&C, parachute deployment, and integrated performance. The vehicle's attitude control authority is obtained from thrusting 12 Re- action Control System (RCS) engines, with four engines to control yaw, four engines to control pitch, and four engines to control roll. The static and dynamic stability derivatives of the vehicle are determined to assess the inherent aerodynamic stability. The aerodynamic moments at various locations in the entry trajectory are calculated and compared to the available torque provided by the RCS system. Interaction between the vehicle's RCS engine plumes and the aerodynamic conditions are considered to assess thruster effectiveness. This document presents an assessment of Orion's ight control authority and its effectiveness in controlling the vehicle during critical events in the atmospheric entry trajectory.

  1. Team-Based Development of Medical Devices: An Engineering-Business Collaborative.

    PubMed

    Eberhardt, Alan W; Johnson, Ophelia L; Kirkland, William B; Dobbs, Joel H; Moradi, Lee G

    2016-07-01

    There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a "virtual company," with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement.

  2. Design the Cost Approach in Trade-Off's for Structural Components, Illustrated on the Baseline Selection of the Engine Thrust Frame of Ariane 5 ESC-B

    NASA Astrophysics Data System (ADS)

    Appolloni, L.; Juhls, A.; Rieck, U.

    2002-01-01

    Designing for value is one of the very actual upcoming methods for design optimization, which broke into the domain of aerospace engineering in the late 90's. In the frame of designing for value two main design philosophies exist: Design For Cost and Design To Cost. Design To Cost is the iterative redesign of a project until the content of the project meets a given budget. Designing For Cost is the conscious use of engineering process technology to reduce life cycle cost while satisfying, and hopefully exceeding, customer demands. The key to understanding cost, and hence to reducing cost, is the ability to measure cost accurately and to allocate it appropriately to products. Only then can intelligent decisions be made. Therefore the necessity of new methods as "Design For Value" or "Design For Competitiveness", set up with a generally multidisciplinary approach to find an optimized technical solution driven by many parameters, depending on the mission scenario and the customer/market needs. Very often three, but not more than five parametric drivers are sufficient. The more variable exist, the higher is in fact the risk to find just a sub-optimized local and not the global optimum, and the less robust is the found solution against change of input parameters. When the main parameters for optimization have been identified, the system engineer has to communicate them to all design engineers, who shall take care of these assessment variables during the entire design and decision process. The design process which has taken to the definition of the feasible structural concepts for the Engine Thrust Frame of the Ariane 5 Upper Cryogenic Stage ESC-B follows these most actual design philosophy methodologies, and combines a design for cost approach, to a design to cost optimization loop. Ariane 5 is the first member of a family of heavy-lift launchers. It aims to evolve into a family of launchers that responds to the space transportation challenges of the 21st century. New upper stages, along with modifications to the main cryogenic stage and solid boosters, will increase performance and meet demands of a changing market. A two-steps approach was decided for future developments of the launcher upper stage, in order to increase the payload lift capability of Ariane 5. The first step ESC-A is scheduled for first launch in 2002. As later step ESC-B shall grow up to 12 tons in GTO orbit, with multiple restart capability, i.e. re-ignitable engine. Ariane 5 ESC-B first flight is targeted for 2006. It will be loaded with 28 metric tons of liquid oxygen and liquid hydrogen and powered by a new expander cycle engine "Vinci". The Vinci engine will be connected to the tanks of the ESC-B stage via the structure named from the designers ETF, or Engine Thrust Frame. In order to develop a design concept for the ETF component a trade off was performed, based on the most modern system engineering methodologies. This paper will describe the basis of the system engineering approach in the design to cost process, and illustrate such approach as it has been applied during the trade off for the baseline selection of the Engine Thrust Frame of Ariane 5 ESC-B.

  3. Automotive Manufacturing Assessment System : Volume 2. Product Schedules of Engine/Drivetrain Combinations.

    DOT National Transportation Integrated Search

    1979-11-01

    Volume II is part of a four volume set documenting areas of research resulting from the development of the Automotive Manufacturing Assessment System (AMAS) for the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of i...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Su, Jiann-Cherng; Peretz, Fred

    The primary purpose of the preclosure radiological safety assessment (that this document supports) is to identify risk factors for disposal operations, to aid in design for the deep borehole field test (DBFT) engineering demonstration.

  5. Stochastic stability assessment of a semi-free piston engine generator concept

    NASA Astrophysics Data System (ADS)

    Kigezi, T. N.; Gonzalez Anaya, J. A.; Dunne, J. F.

    2016-09-01

    Small engines, as power generators with low-noise and vibration characteristics, are needed in two niche application areas: as electric vehicle range extenders and as domestic micro Combined Heat and Power systems. A recent semi-free piston design known as the AMOCATIC generator fully meets this requirement. The engine potentially allows for high energy conversion efficiencies at resonance derived from having a mass and spring assembly. As with free-piston engines in general, stability and control of piston motion has been cited as the prime challenge limiting the technology's widespread application. Using physical principles, we derive in this paper two important results: an energy balance criterion and a related general stability criterion for a semi-free piston engine. Control is achieved by systematically designing a Proportional Integral (PI) controller using a control-oriented engine model for which a specific stability condition is stated. All results are presented in closed form throughout the paper. Simulation results under stochastic pressure conditions show that the proposed energy balance, stability criterion, and PI controller, operate as predicted to yield stable engine operation at fixed compression ratio.

  6. Plug cluster engine concept for in-space missions

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Aukerman, C. A.

    1979-01-01

    The development of a suitable orbital transfer vehicle (OTV) engine is discussed. The OTV's dimensions are limited by those of the Space Shuttle payload bay on which it will be carried. An approach to utilize the available diameter to achieve high area ratio and thus high engine performance, is presented. Unconventional nozzles, such as clusters of small thrusters around a large diameter contoured plug, are investigated to arrive at engine designs which feature lower chamber pressures, with attendant lower heat flux, lower wall temperature, longer fatigue life, and less critical turbomachinery. Attention is also given to plug nozzle technology, high area ratio module- and scarfed bell- Plug Cluster Engine (PCE) concepts, as well as PCE performance, weight, and assessment. A conceptual design of a PCE formed from a cluster of high area ratio, scarfed, bell nozzles proved to be competitive with bell and spike nozzle engines. PCE advantages cited include increased payload length due to shorter engine length, ability to increase or decrease the number of modules and thereby the thrust, and low cost due to utilization of off-the-shelf technology.

  7. Assessing International Product Design and Development Graduate Courses: The MIT-Portugal Program

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Silva, Arlindo

    2010-01-01

    The Product Design and Development (PDD) course is part of the graduate curriculum in the Engineering Design and Advanced Manufacturing (EDAM) study in the MIT-Portugal Program. The research participants included about 110 students from MIT, EDAM, and two universities in Portugal, Instituto Superior Técnico-Universidade Técnica de Lisboa (IST) and…

  8. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2015-03-01

    offices on technology, design , and manufacturing knowledge; the use of knowledge- based acquisition practices; and the implementation of acquisition...and production maturity using two data-collection instruments, including a questionnaire on issues such as systems engineering reviews, design ...Demonstrating technology maturity is a prerequisite for moving forward into system development, during which the focus should be on design and

  9. Engineering properties of resin modified pavement (RMP) for mechanistic design

    NASA Astrophysics Data System (ADS)

    Anderton, Gary Lee

    1997-11-01

    The research study described in this report focuses on determining the engineering properties of the resin modified pavement (RMP) material relating to pavement performance, and then developing a rational mechanistic design procedure to replace the current empirical design procedure. A detailed description of RMP is provided, including a review of the available literature on this relatively new pavement technology. Field evaluations of four existing and two new RMP project sites were made to assess critical failure modes and to obtain pavement samples for subsequent laboratory testing. Various engineering properties of laboratory-produced and field-recovered samples of RMP were measured and analyzed. The engineering properties evaluated included those relating to the material's stiffness, strength, thermal properties, and traffic-related properties. Comparisons of these data to typical values for asphalt concrete and portland cement concrete were made to relate the physical nature of RMP to more common pavement surfacing materials. A mechanistic design procedure was developed to determine appropriate thickness profiles of RMP, using stiffness and fatigue properties determined by this study. The design procedure is based on the U.S. Army Corps of Engineers layered elastic method for airfield flexible pavements. The WESPAVE computer program was used to demonstrate the new design procedure for a hypothetical airfield apron design. The results of the study indicated that RMP is a relatively stiff, viscoelastic pavement surfacing material with many of its strength and stiffness properties falling between those of typical asphalt concrete and portland cement concrete. The RMP's thermal and traffic-related properties indicated favorable field performance. The layered elastic design approach appeared to be a reasonable and practical method for RMP mechanistic pavement design, and this design procedure was recommended for future use and development.

  10. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  11. Maglev guideway design issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, D.; Kim, S.

    1997-05-01

    This paper reports results from guideway analyses conducted as part of the National Maglev Initiative (NMI), a government-industry effort from 1989 to 1994, formed to encourage the development of US maglev technology and to assess its potential application within the US transportation system. Covered here are some key guideway design issues that were common to the designs assessed for the NMI, and to maglev guideways in general. They represent aspects that will need additional attention in future efforts to produce structurally sound and economical maglev guideways. These recommendations come from the analyses conducted by a team from the US Armymore » Construction Engineering Research Laboratories, the Civil Engineering Department of the University of Illinois, and Alfred Benesch and Company. The recommendations focus on design philosophy and the development of general design criteria, guideway maintenance and the provision for future alignment adjustment in both the guideway and the magnets, foundation design, and the long-term performance of guideway materials and reinforcement. Generally, one of the main challenges to guideway designers is to produce a structure that will be easily maintainable to the narrow tolerances and precise alignment required for practical high-speed maglev operation.« less

  12. Composite material application for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Heubner, S. W.

    1982-01-01

    With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.

  13. Updated Assessment of an Open Rotor Airplane Using an Advanced Blade Design

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Berton, Jeffrey J.; Haller, William J.; Tong, Michael T.; Guynn, Mark D.

    2013-01-01

    Application of open rotor propulsion systems (historically referred to as "advanced turboprops" or "propfans") to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation's environmental impact have renewed interest in open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Over the last few years, NASA has revived and developed analysis capabilities to assess aircraft designs with open rotor propulsion systems. These efforts have been described in several previous papers along with initial results from applying these capabilities. The initial results indicated that open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicated that current noise regulations can be met with modern baseline blade designs. Improved blades incorporating low-noise features are expected to result in even lower noise levels. This paper describes improvements to the initial assessment, plus a follow-on study using a more advanced open rotor blade design to power the advanced singleaisle transport. The predicted performance and environmental results of these two advanced open rotor concepts are presented and compared.

  14. Internet-based distributed collaborative environment for engineering education and design

    NASA Astrophysics Data System (ADS)

    Sun, Qiuli

    2001-07-01

    This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the same geometric model simultaneously over the Internet and communicate with each other through a chat room. They can also conduct finite element analysis collaboratively on the same object over the Internet. They can mesh the same object, apply and edit the same boundary conditions and forces, obtain the same analysis results, and then discuss the results through the Internet.

  15. Aerodynamic Design of a Dual-Flow Mach 7 Hypersonic Inlet System for a Turbine-Based Combined-Cycle Hypersonic Propulsion System

    NASA Technical Reports Server (NTRS)

    Sanders, Bobby W.; Weir, Lois J.

    2008-01-01

    A new hypersonic inlet for a turbine-based combined-cycle (TBCC) engine has been designed. This split-flow inlet is designed to provide flow to an over-under propulsion system with turbofan and dual-mode scramjet engines for flight from takeoff to Mach 7. It utilizes a variable-geometry ramp, high-speed cowl lip rotation, and a rotating low-speed cowl that serves as a splitter to divide the flow between the low-speed turbofan and the high-speed scramjet and to isolate the turbofan at high Mach numbers. The low-speed inlet was designed for Mach 4, the maximum mode transition Mach number. Integration of the Mach 4 inlet into the Mach 7 inlet imposed significant constraints on the low-speed inlet design, including a large amount of internal compression. The inlet design was used to develop mechanical designs for two inlet mode transition test models: small-scale (IMX) and large-scale (LIMX) research models. The large-scale model is designed to facilitate multi-phase testing including inlet mode transition and inlet performance assessment, controls development, and integrated systems testing with turbofan and scramjet engines.

  16. System Noise Assessment of Blended-Wing-Body Aircraft With Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Thomas, Russell H.

    2015-01-01

    An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations of a possible Stage 5 in the next decade or so, the design will likely meet stiff competitions from aircraft with turbofan engines. It is shown that the noise levels of the BWB design are held up by the inherently high noise levels of the open rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the BWB design has high levels of noise from the main landing gear, due to their exposure to high speed flow at the junction between the center body and outer wing. These are also the reasons why this baseline BWB design does not meet the NASA N+2 noise goal of 42 dB below Stage 4. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise but they are only at the conceptual stage.

  17. Air Vehicle Integrated and Technology Research (AVIATR). Task Order 0027: Lighter Than Air (LTA) and Hybrid Aircraft Concept Assessment Tool Development

    DTIC Science & Technology

    2014-01-01

    airships , was taken into consideration when checking cross section dimensions. The top speed chosen to size the engines was 84 knots. The maximum...paramount to understanding the structural design. Engine choice is also critical since long duration missions, typical for airships , heavily...geometry input pages. This may serve as a starting point for a new airship . • Layout is used to define engine , fin and gondola geometry. • Geometry 1

  18. A reusable rocket engine intelligen control

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Lorenzo, Carl F.

    1988-01-01

    An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts to future reusable rocket engine systems.

  19. A reusable rocket engine intelligent control

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Lorenzo, Carl F.

    1988-01-01

    An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts ot future reusable rocket engine systems.

  20. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  1. Modified Thermoresponsive Hyperbranched Polymers for Improved Viscosity and Enhanced Lubricity of Engine Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosimbescu, Lelia; Robinson, Joshua W.; Bays, John Timothy

    The manuscript captures the chronological succession of the molecular design progression through multiple architectures and topologies of the polymeric viscosity index improvers and their rheology bench test performance. Tribology testing was also performed on selected analogs and their friction and wear was evaluated. Finally, a top performing polymer was selected for engine testing, scaled-up, and its rheological performance in a complete formulation was assessed. The engine performance of the viscosity index improver was examined against an industry-established baseline.

  2. Non-invasive monitoring of vascularization of grafted engineered human oral mucosa

    NASA Astrophysics Data System (ADS)

    Wolf, D. E.; Seetamraju, M.; Gurjar, R. S.; Kuo, R. S.; Fasi, A.; Feinberg, S. E.

    2012-03-01

    Accident victims and victims of explosive devices often suffer from complex maxillofacial injuries. The lips are one of the most difficult areas of the face to reconstruct after an avulsion. Lip avulsion results in compromised facial esthetics and functions of speech and mastication. The process of reconstruction requires assessment of the vascularization of grafted ex vivo engineered tissue while it is buried underneath the skin. We describe the design and animal testing of a hand-held surgical probe based upon diffuse correlation spectroscopy to assess vascularization.

  3. Alternative Assessment in Engineering Language Education: The Case of the Technical University of Madrid

    ERIC Educational Resources Information Center

    Pierce, Joana; Duran, Pilar; Ubeda, Paloma

    2011-01-01

    Engineering institutions across Europe are currently involved in a major process of reform and restructuring as a part of the Bologna Process, which stresses the role of competencies and outcomes in curriculum design. In the field of languages, the Council of Europe has developed the CEFR (Common European Framework of References) for languages,…

  4. Introducing a Transdisciplinary Approach in Studies regarding Risk Assessment and Management in Educational Programs for Environmental Engineers and Planners

    ERIC Educational Resources Information Center

    Menoni, Scira

    2006-01-01

    Purpose: The purpose of this paper is to discuss how long term risk prevention and civil protection may enter in university programs for environmental engineers and urban and regional planners. Design/methodology/approach: First the distinction between long term risk prevention and emergency preparedness is made, showing that while the first has…

  5. Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain

    NASA Astrophysics Data System (ADS)

    Oriekov, K. M.; Ushkin, M. P.

    2015-09-01

    This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.

  6. SAFETY ON UNTRUSTED NETWORK DEVICES (SOUND)

    DTIC Science & Technology

    2017-10-10

    in the Cyber & Communication Technologies Group , but not on the SOUND project, would review the code, design and perform attacks against a live...3.5 Red Team As part of our testing , we planned to conduct Red Team assessments. In these assessments, a group of engineers from BAE who worked...developed under the DARPA CRASH program and SOUND were designed to be companion projects. SAFE focused on the processor and the host, SOUND focused on

  7. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  8. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  9. Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines

    NASA Technical Reports Server (NTRS)

    Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.

    2014-01-01

    Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.

  10. A Review of Evidence-Based Traffic Engineering Measures Designed to Reduce Pedestrian–Motor Vehicle Crashes

    PubMed Central

    Retting, Richard A.; Ferguson, Susan A.; McCartt, Anne T.

    2003-01-01

    We provide a brief critical review and assessment of engineering modifications to the built environment that can reduce the risk of pedestrian injuries. In our review, we used the Transportation Research Information Services database to conduct a search for studies on engineering countermeasures documented in the scientific literature. We classified countermeasures into 3 categories—speed control, separation of pedestrians from vehicles, and measures that increase the visibility and conspicuity of pedestrians. We determined the measures and settings with the greatest potential for crash prevention. Our review, which emphasized inclusion of studies with adequate methodological designs, showed that modification of the built environment can substantially reduce the risk of pedestrian–vehicle crashes. PMID:12948963

  11. Assessment of Vulnerability to Climate Change Effects on Urban Stormwater Infrastructure in City of Las Vegas, NV

    NASA Astrophysics Data System (ADS)

    Thakali, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2016-12-01

    In the spring of 2016 the City of Las Vegas and the Southern Illinois University began collaborating on a project that seeks to assess the city's current vulnerability to drought, extreme heat, and extreme precipitation patterns, as well as the response mechanisms that are already in place within its jurisdiction. The document analyzes a series of scenarios to assess to what extent the vulnerability of four Key Planning Areas will change in the long term (30-50 years), what will be the most affected city operations, and what mechanisms the City will need to put into place to adapt to such changes. As part of the vulnerability report, this study assessed the impacts of climate change in the existing stormwater system of the Gowan watershed within City of Las Vegas, NV, by assessing projected design storms. The climate change projection for the region was evaluated using the high-resolution North American Regional Climate Change Assessment Program (NARCCAP) climate model data. The design storms (6h 100y) were calculated using the best fitted probability distribution among twenty-seven distributions for the historic and future NARCCAP climate model projection. North American Regional Reanalysis (NARR) data were used to assess the performance of NARCCAP data. The projected design storms were implemented in an existing U.S. Army Corps of Engineers' Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) model developed by Clark County Regional Flood Control District (CCRFCD), Las Vegas. The simulation results showed an increase in the design storms which exceeded the capacity of existing stormwater infrastructure.

  12. Cyber Threat Assessment of Uplink and Commanding System for Mission Operation

    NASA Technical Reports Server (NTRS)

    Ko, Adans Y.; Tan, Kymie M. C.; Cilloniz-Bicchi, Ferner; Faris, Grant

    2014-01-01

    Most of today's Mission Operations Systems (MOS) rely on Ground Data System (GDS) segment to mitigate cyber security risks. Unfortunately, IT security design is done separately from the design of GDS' mission operational capabilities. This incoherent practice leaves many security vulnerabilities in the system without any notice. This paper describes a new way to system engineering MOS, to include cyber threat risk assessments throughout the MOS development cycle, without this, it is impossible to design a dependable and reliable MOS to meet today's rapid changing cyber threat environment.

  13. QFD emphasis of IME design

    NASA Astrophysics Data System (ADS)

    Erickson, C. M.; Martinez, A.

    1993-06-01

    The 1992 Integrated Modular Engine (IME) design concept, proposed to the Air Force Space Systems Division as a candidate for a National Launch System (NLS) upper stage, emphasized a detailed Quality Functional Deployment (QFD) procedure which set the basis for its final selection. With a list of engine requirements defined and prioritized by the customer, a QFD procedure was implemented where the characteristics of a number of engine and component configurations were assessed for degree of requirement satisfaction. The QFD process emphasized operability, cost, reliability and performance, with relative importance specified by the customer. Existing technology and near-term advanced technology were surveyed to achieve the required design strategies. In the process, advanced nozzles, advanced turbomachinery, valves, controls, and operational procedures were evaluated. The integrated arrangement of three conventional bell nozzle thrust chambers with two advanced turbopump sets selected as the configuration meeting all requirements was rated significantly ahead of the other candidates, including the Aerospike and horizontal flow nozzle configurations.

  14. Engineering risk reduction in satellite programs

    NASA Technical Reports Server (NTRS)

    Dean, E. S., Jr.

    1979-01-01

    Methods developed in planning and executing system safety engineering programs for Lockheed satellite integration contracts are presented. These procedures establish the applicable safety design criteria, document design compliance and assess the residual risks where non-compliant design is proposed, and provide for hazard analysis of system level test, handling and launch preparations. Operations hazard analysis identifies product protection and product liability hazards prior to the preparation of operational procedures and provides safety requirements for inclusion in them. The method developed for documenting all residual hazards for the attention of program management assures an acceptable minimum level of risk prior to program deployment. The results are significant for persons responsible for managing or engineering the deployment and production of complex high cost equipment under current product liability law and cost/time constraints, have a responsibility to minimize the possibility of an accident, and should have documentation to provide a defense in a product liability suit.

  15. The impact of distributed computing on education

    NASA Technical Reports Server (NTRS)

    Utku, S.; Lestingi, J.; Salama, M.

    1982-01-01

    In this paper, developments in digital computer technology since the early Fifties are reviewed briefly, and the parallelism which exists between these developments and developments in analysis and design procedures of structural engineering is identified. The recent trends in digital computer technology are examined in order to establish the fact that distributed processing is now an accepted philosophy for further developments. The impact of this on the analysis and design practices of structural engineering is assessed by first examining these practices from a data processing standpoint to identify the key operations and data bases, and then fitting them to the characteristics of distributed processing. The merits and drawbacks of the present philosophy in educating structural engineers are discussed and projections are made for the industry-academia relations in the distributed processing environment of structural analysis and design. An ongoing experiment of distributed computing in a university environment is described.

  16. TBCC Fan Stage Operability and Performance

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    2007-01-01

    NASA s Fundamental Aeronautics Program is investigating turbine-based propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. Studies performed under NASA s NGLT and the NASP High Speed Propulsion Assessment (HiSPA) program indicated a variable cycle turbofan/ramjet was the best configuration to satisfy access-to-space mission requirements because this configuration maximizes the engine thrust-to-weight ratio while minimizing frontal area. To this end, NASA and GE teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10X), fan speed (7X), inlet mass flow (3.5X), inlet pressure (8X), and inlet temperature (3X). The primary goal of the fan stage was to provide a high pressure ratio level with good efficiency at takeoff through the mid range of engine operation, while avoiding stall and losses at the higher flight Mach numbers, without the use of variable inlet guide vanes. Overall fan performance and operability therefore requires major consideration, as competing goals at different operating points and aeromechanical issues become major drivers in the design. To mitigate risk of meeting the unique design requirements for the fan stage, NASA and GE teamed to design and build a 57% engine scaled fan stage to be tested in NASA s transonic compressor facility. The objectives of this test are to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off, 2) transition over large swings in fan bypass ratio, 3) transition from turbofan to ramjet, and 4) fan windmilling operation at high Mach flight conditions. In addition, the fan stage design was validated by performing pre-test CFD analysis using both GE proprietary and NASA s APNASA codes. Herein we will discuss 1) the fan stage design, 2) the experiment including the unique facility and instrumentation, and 3) the comparison of pre-test CFD analysis to initial aerodynamic test results for the baseline fan stage configuration. Measurements and pre-test analysis will be compared at 37%, 50%, 80%, 90%, and 100% of design speed to assess the ability of state-of-the-art design and analysis tools to meet the fan stage performance and operability requirements for turbine based propulsion for access to space.

  17. Engine-Out Capabilities Assessment of Heavy Lift Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Baggett, Keithe; Thrasher, Chad; Bellamy, K. Scott; Feldman, Stuart

    2012-01-01

    Engine-out (EO) is a condition that might occur during flight due to the failure of one or more engines. Protection against this occurrence can be called engine-out capability (EOC) whereupon significantly improved loss of mission may occur, in addition to reduction in performance and increased cost. A standardized engine-out capability has not been studied exhaustively as it pertains to space launch systems. This work presents results for a specific vehicle design with specific engines, but also uniquely provides an approach to realizing the necessity of EOC for any launch vehicle system design. A derived top-level approach to engine-out philosophy for a heavy lift launch vehicle is given herein, based on an historical assessment of launch vehicle capabilities. The methodology itself is not intended to present a best path forward, but instead provides three parameters for assessment of a particular vehicle. Of the several parameters affected by this EOC, the three parameters of interest in this research are reliability (Loss of Mission (LOM) and Loss of Crew (LOC)), vehicle performance, and cost. The intent of this effort is to provide insight into the impacts of EO capability on these parameters. The effects of EOC on reliability, performance and cost are detailed, including how these important launch vehicle metrics can be combined to assess what could be considered overall launch vehicle affordability. In support of achieving the first critical milestone (Mission Concept Review) in the development of the Space Launch System (SLS), a team assessed two-stage, large-diameter vehicles that utilized liquid oxygen (LOX)-RP propellants in the First Stage and LOX/LH2 propellant in the Upper Stage. With multiple large thrust-class engines employed on the stages, engine-out capability could be a significant driver to mission success. It was determined that LOM results improve by a factor of five when assuming EOC for both Core Stage (CS) (first stage) and Upper Stage (US) EO, assuming a reference launch vehicle with 5 RP engines on the CS and 3 LOX/LH2 engines on the US. The benefit of adding both CS and US engine-out capability is significant. When adding EOC for either first or second stages, there is less than a 20% benefit. Performance analysis has shown that if the vehicle is not protected for EO during the first part of the flight and only protected in the later part of the flight, there is a diminishing performance penalty, as indicated by failures occurring in the first stage at different times. This work did not consider any options to abort. While adding an engine for EOC drives cost upward, the impact depends on the number of needed engines manufactured per year and the launch manifest. There is a significant cost savings if multiple flights occur within one year. Flying two flights per year would cost approximately $4,000 per pound less than the same configuration with one flight per year, assuming both CS and US EOC. The cost is within 15% of the cost of one flight per year with no engine-out capability for the same vehicle. This study can be extended to other launch vehicles. While the numbers given in this paper are specific to a certain vehicle configuration, the process requires only a high level of data to allow an analyst to draw conclusions. The weighting of each of the identified parameters will determine the optimization of each launch vehicle. The results of this engine-out assessment provide a means to understand this optimization while maintaining an unbiased perspective.

  18. Multifaceted Learning Objective Assessment in a Mechanical Engineering Capstone Design Course

    NASA Astrophysics Data System (ADS)

    Baker, Nicholas S.

    This thesis details multi method research approaches that have been used to study student learning objective instruction and assessment in the mechanical engineering (ME) capstone course at the University of Nevada, Reno (UNR). A primary focus of the research is to evaluate the pilot implementation of a Writing Fellows (WF) program in the ME capstone course, which has been assessed using a variety of techniques. The assessment generally indicates positive results. In particular, students favor the continuation of the program and find it more helpful than group consultations within the University Writing Center (UWC) alone. Self-assessment by the students indicates higher confidence in their communication skills, while preliminary analysis suggests that the writing fellow improved the scores of graded assignments by approximately one-third of a letter grade overall. Assessment efforts also highlight the need for deeper interaction between the WF and engineering faculty. A secondary focus of this research presents a methodology that has been developed and used to analyze how the Accreditation Board for Engineering and Technology's (ABET's) current Criterion 3 Student Outcomes (SOs) have been assessed in UNR's ME capstone class over several academic years. The methodology generally finds levels of ABET SO assessment in agreement with departmental and industry-held expectations for capstone courses at large. Finally, an analysis of student grades in the capstone course finds significant differences across semesters and identifies several potential causes.

  19. The use of optical pyrometers in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.

    1989-07-01

    An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.

  20. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  1. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  2. Using Minute Papers to Determine Student Cognitive Development Levels

    ERIC Educational Resources Information Center

    Vella, Lia

    2015-01-01

    Can anonymous written feedback collected during classroom assessment activities be used to assess students' cognitive development levels? After library instruction in a first-year engineering design class, students submitted minute papers that included answers to "what they are left wondering." Responses were coded into low, medium and…

  3. 30 CFR 47.84 - Non-emergency disclosure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator must disclose the identity of a trade secret chemical in a non-emergency situation to an exposed... reasonable detail an occupational health need for the information, as follows: (1) To assess the chemical... personal protective equipment for the exposed miner. (6) To design or assess engineering controls or other...

  4. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  5. Team-Based Development of Medical Devices: An Engineering–Business Collaborative

    PubMed Central

    Eberhardt, Alan W.; Johnson, Ophelia L.; Kirkland, William B.; Dobbs, Joel H.; Moradi, Lee G.

    2016-01-01

    There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a “virtual company,” with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement. PMID:26902869

  6. Human Factors in the Design of the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Byrne, Vicky; Holden, Kritina

    2007-01-01

    NASA s Space Exploration vision for humans to venture to the moon and beyond provides interesting human factors opportunities and challenges. The Human Engineering group at NASA has been involved in the initial phases of development of the Crew Exploration Vehicle (CEV), Orion. Getting involved at the ground level, Human Factors engineers are beginning to influence design; this involvement is expected to continue throughout the development lifecycle. The information presented here describes what has been done to date, what is currently going on, and what is expected in the future. During Phase 1, prior to the contract award to Lockheed Martin, the Human Engineering group was involved in generating requirements, conducting preliminary task analyses based on interviews with subject matter experts in all vehicle systems areas, and developing preliminary concepts of operations based on the task analysis results. In addition, some early evaluations to look at CEV net habitable volume were also conducted. The program is currently in Phase 2, which is broken down into design cycles, including System Readiness Review, Preliminary Design Review, and Critical Design Review. Currently, there are ongoing Human Engineering Technical Interchange Meetings being held with both NASA and Lockheed Martin in order to establish processes, desired products, and schedules. Multiple design trades and quick-look evaluations (e.g. display device layout and external window size) are also in progress. Future Human Engineering activities include requirement verification assessments and crew/stakeholder evaluations of increasing fidelity. During actual flights of the CEV, the Human Engineering group is expected to be involved in in-situ testing and lessons learned reporting, in order to benefit human space flight beyond the initial CEV program.

  7. Zonation and assessment of frozen-ground conditions along the China-Russia Crude Oil Pipeline route from Mo’he to Daqing, Northeastern China

    NASA Astrophysics Data System (ADS)

    Jin, H.; Hao, J.; Chang, X.

    2009-12-01

    The proposed China-Russia Crude Oil Pipeline (CRCOP), 813 mm in diameter, is designed to transport 603,000 barrels of Siberian crude oil per day using conventional burial across 1,030 km of frozen-ground. About 500 boreholes, with depths of 5 to 20 m, were drilled and cored for analyses, and the frozen-ground conditions were evaluated. After detailed surveys and analyses of the permafrost conditions along the pipeline route, a conventional burial construction mode at a nominal depth of 1.5 m was adopted. This paper discusses the principles and criteria for the zonation and assessment of the frozen-ground environments and conditions of engineering geology for the design, construction, operation of the pipeline system based on an extensive and in-depth summary and analysis of the survey and exploration data. Full consideration of the characteristics of pipelining crude oil at ambient temperatures in the permafrost regions and the interactive processes between the pipeline and foundation soils were taken into account. Two zones of frozen-ground environment and conditions of engineering geology, i. e. seasonally-frozen-ground and permafrost, were defined on the basis of the regional distribution and differentiations in frozen-ground environments and conditions. Then, four subzones of the permafrost zone were classified according to the areal extent, taking into consideration the temperatures and thicknesses of permafrost, as well as changes in vegetation coverage. In the four subzones, 151 sections of engineering geology were categorized according to the ice/moisture contents of the permafrost, as well as the classes of frost-heaving and thaw-settlement potentials. These 151 sections are comprehensively summarized into four types for engineering construction and operation: good, fair, poor, and very poor, for overall conditions of engineering geology. The zonation, assessment principles and criteria have been applied in the design of the pipeline. They have also been used as the scientific bases for the construction, environmental management, operation and maintenance/contingency plans

  8. The NASA Engineering and Safety Center (NESC) GN and C Technical Discipline Team (TDT): Its Purpose, Practices and Experiences

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2008-01-01

    This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe key issues and findings from several of the recent GN&C-related independent assessments and consultations performed and/or supported by the NESC GN&C TDT. Among the examples of the GN&C TDT s work that will be addressed in this paper are the following: the Space Shuttle Orbiter Repair Maneuver (ORM) assessment, the ISS CMG failure root cause assessment, the Demonstration of Autonomous Rendezvous Technologies (DART) spacecraft mishap consultation, the Phoenix Mars lander thruster-based controllability consultation, the NASA in-house Crew Exploration Vehicle (CEV) Smart Buyer assessment and the assessment of key engineering considerations for the Design, Development, Test & Evaluation (DDT&E) of robust and reliable GN&C systems for human-rated spacecraft.

  9. Apollo Lightcraft Project

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.; Atonison, Mark A. (Editor); Chen, Sammy G. (Editor); Decusatis, Casimer (Editor); Kusche, Karl P. (Editor); Minucci, Marco A. (Editor); Moder, Jeffrey P. (Editor); Morales, Ciro (Editor); Nelson, Caroline V. (Editor); Richard, Jacques C. (Editor)

    1989-01-01

    The ultimate goal for this NASA/USRA-sponsored Apollo Lightcraft Project is to develop a revolutionary manned launch vehicle technology which can potentially reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The Rensselaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. The research effort focuses on the concept of a 100 MW-class, laser-boosted Lightcraft Technology Demonstrator (LTD) drone. The preliminary conceptual design of this 1.4 meter diameter microspacecraft involved an analytical performance analysis of the transatmospheric engine in its two modes of operation (including an assessment of propellant and tankage requirements), and a detailed design of internal structure and external aeroshell configuration. The central theme of this advanced propulsion research was to pick a known excellent working fluid (i.e., air or LN sub 2), and then to design a combined-cycle engine concept around it. Also, a structural vibration analysis was performed on the annular shroud pulsejet engine. Finally, the sensor satellite mission was examined to identify the requisite subsystem hardware: e.g., electrical power supply, optics and sensors, communications and attitude control systems.

  10. Conceptual design study of an improved automotive gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    Wagner, C. E. (Editor); Pampreen, R. C. (Editor)

    1979-01-01

    Automotive gas turbine concepts with significant technological advantages over the spark ignition (SI) engine were assessed. Possible design concepts were rated with respect to fuel economy and near-term application. A program plan which outlines the development of the improved gas turbine (IGT) concept that best met the goals and objectives of the study identifies the research and development work needed to meet the goal of entering a production engineering phase by 1983. The fuel economy goal is to show at least a 20% improvement over a conventional 1976 SI engine/vehicle system. On the basis of achieving the fuel economy goal, of overall suitability to mechanical design, and of automotive mass production cost, the powertrain selected was a single-shaft engine with a radial turbine and a continuously variable transmission (CVT). Design turbine inlet temperature was 1150 C. Reflecting near-term technology, the turbine rotor would be made of an advanced superalloy, and the transmission would be a hydromechanical CVT. With successful progress in long-lead R&D in ceramic technology and the belt-drive CVT, the turbine inlet temperature would be 1350 C to achieve near-maximum fuel economy.

  11. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  12. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  13. The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training

    NASA Technical Reports Server (NTRS)

    Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.; hide

    2017-01-01

    The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.

  14. Clinical Immersion: An Approach for Fostering Cross-disciplinary Communication and Innovation in Nursing and Engineering Students.

    PubMed

    Geist, Melissa J; Sanders, Robby; Harris, Kevin; Arce-Trigatti, Andrea; Hitchcock-Cass, Cary

    2018-05-24

    A faculty team from nursing and chemical engineering developed a course that brought together students from each discipline for cross-disciplinary, team-based clinical immersion and collaboration. Health care processes and devices are rapidly changing, and nurses are uniquely positioned to be bedside innovators to improve patient care delivery. During each clinical immersion, the student teams rotated through various hospital units where they identified problems and worked together in the university's makerspace (iMaker Space) to design and build prototypes to improve health outcomes. Data from the Critical thinking Assessment Test provided evidence of gains in critical-thinking and problem-solving skills, while the problems identified in the clinical setting and prototypes developed demonstrated the impact of bringing nursing and engineering students together to design innovations. When challenged to identify authentic problems during their clinical immersion, the teams of nursing and engineering students proposed creative solutions and developed commercially viable prototypes.

  15. Clustered engine study

    NASA Technical Reports Server (NTRS)

    Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob

    1993-01-01

    Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.

  16. Liquid Rocket Engine Turbopump Rotating-shaft Seals

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.; Keller, R. B., Jr. (Editor)

    1978-01-01

    A monograph is organized and presents, for effective use in design, the significant experience and knowledge accumulated in development and operational programs to date. It reviews and assesses current practices, and from them establishes firm guidance for achieving greater consistency in design, increased reliability in the end product, and greater efficiency in the design effort. The monograph is divided into two major sections: state of the art and design criteria.

  17. A Comprehensive Solution of the Problems of Ensuring the Strength of Gas Turbine Engine Compressor at the Design Stage

    NASA Astrophysics Data System (ADS)

    Vedeneev, V. V.; Kolotnikov, M. E.; Mossakovskii, P. A.; Kostyreva, L. A.; Abdukhakimov, F. A.; Makarov, P. V.; Pyhalov, A. A.; Dudaev, M. A.

    2018-01-01

    In this paper we present a complex numerical workflow for analysis of blade flutter and high-amplitude resonant oscillations, impenetrability of casing if the blade is broken off, and the rotor reaction to the blade detachment and following misbalance, with the assessment of a safe flight possibility at the auto-rotation regime. All the methods used are carefully verified by numerical convergence study and correlations with experiments. The use of the workflow developed significantly improves the efficiency of the design process of modern jet engine compressors. It ensures a significant reduction of time and cost of the compressor design with the required level of strength and durability.

  18. [Veneer computer aided design based on reverse engineering technology].

    PubMed

    Liu, Ming-li; Chen, Xiao-dong; Wang, Yong

    2012-03-01

    To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.

  19. Facilitating the learning process in design-based learning practices: an investigation of teachers' actions in supervising students

    NASA Astrophysics Data System (ADS)

    Gómez Puente, S. M.; van Eijck, M.; Jochems, W.

    2013-11-01

    Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether teacher actions we previously identified in the DBL literature as important in facilitating learning processes and student supervision are present in current DBL engineering practices. Sample: The sample (N=16) consisted of teachers and supervisors in two engineering study programs at a university of technology: mechanical and electrical engineering. We selected randomly teachers from freshman and second-year bachelor DBL projects responsible for student supervision and assessment. Design and method: Interviews with teachers, and interviews and observations of supervisors were used to examine how supervision and facilitation actions are applied according to the DBL framework. Results: Major findings indicate that formulating questions is the most common practice seen in facilitating learning in open-ended engineering design environments. Furthermore, other DBL actions we expected to see based upon the literature were seldom observed in the coaching practices within these two programs. Conclusions: Professionalization of teachers in supervising students need to include methods to scaffold learning by supporting students in reflecting and in providing formative feedback.

  20. Assessment for Operator Confidence in Automated Space Situational Awareness and Satellite Control Systems

    NASA Astrophysics Data System (ADS)

    Gorman, J.; Voshell, M.; Sliva, A.

    2016-09-01

    The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and automated processes. Such operationally relevant and integrated testing provides a sound foundation for operator trust in system automation that is required to safely operate satellite systems.

  1. Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

    NASA Astrophysics Data System (ADS)

    Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.

    2017-03-01

    Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.

  2. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  3. Status of the NEXT Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Domonkos, Matthew T.; Kamhawi, Hani; Patterson, Michael J.; Gardner, Michael M.

    2003-01-01

    The status of the NEXT 2000 hour wear test is presented. This test is being conducted with a 40 cm engineering model ion engine, designated EM1, at a beam current higher than listed on the NEXT throttle table. Pretest performance assessments demonstrated that EM1 satisfies all thruster performance requirements. As of 7/3/03, the ion engine has accumulated 406 hours of operation at a thruster input power of 6.9 kW. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with no indications of performance degradation. Images of the downstream discharge cathode, neutralizer, and accelerator aperture surfaces have exhibited no significant erosion to date.

  4. A Method for the Design and Development of Medical or Health Care Information Websites to Optimize Search Engine Results Page Rankings on Google

    PubMed Central

    Cummins, Niamh Maria; Hannigan, Ailish; Shannon, Bill; Dunne, Colum; Cullen, Walter

    2013-01-01

    Background The Internet is a widely used source of information for patients searching for medical/health care information. While many studies have assessed existing medical/health care information on the Internet, relatively few have examined methods for design and delivery of such websites, particularly those aimed at the general public. Objective This study describes a method of evaluating material for new medical/health care websites, or for assessing those already in existence, which is correlated with higher rankings on Google's Search Engine Results Pages (SERPs). Methods A website quality assessment (WQA) tool was developed using criteria related to the quality of the information to be contained in the website in addition to an assessment of the readability of the text. This was retrospectively applied to assess existing websites that provide information about generic medicines. The reproducibility of the WQA tool and its predictive validity were assessed in this study. Results The WQA tool demonstrated very high reproducibility (intraclass correlation coefficient=0.95) between 2 independent users. A moderate to strong correlation was found between WQA scores and rankings on Google SERPs. Analogous correlations were seen between rankings and readability of websites as determined by Flesch Reading Ease and Flesch-Kincaid Grade Level scores. Conclusions The use of the WQA tool developed in this study is recommended as part of the design phase of a medical or health care information provision website, along with assessment of readability of the material to be used. This may ensure that the website performs better on Google searches. The tool can also be used retrospectively to make improvements to existing websites, thus, potentially enabling better Google search result positions without incurring the costs associated with Search Engine Optimization (SEO) professionals or paid promotion. PMID:23981848

  5. Designing Transferable Skills Inventory for Assessing Students Using Group Discussion: A Case Study of First Year Electrical and Electronics Engineering Students

    ERIC Educational Resources Information Center

    Tejaswani, K.; Madhuri, G. V.

    2015-01-01

    Employability skills among engineering graduates have been a concern due to their inability to perform on a professional platform to the employer's expected level. As they are higher cognitive skills, they are to be nurtured during the graduation period. Keeping this in view, group discussions are identified as one of the methods to elicit…

  6. Predictive validity of five cognitive skills tests among women receiving engineering training

    NASA Astrophysics Data System (ADS)

    Wittig, Michele Andrisin; Hennix Sasse, Sharon; Giacomi, Jean

    This article addresses two sets of theoretical and practical issues related to increasing the percentage of women engineers. First, the measurement of women's aptitude for and changes in skills during engineering training was assessed. Five cognitive skills tests were administered in a one-group pretest-posttest design to 24 baccalaureate women enrolled in an eleven-month engineering training course. Significant increases in skills were shown on three of the five assessments. Scores on a mathematics anxiety scale and a measure of conservation of horizontality are also reported. Second, the relationship of academic and demographic information and cognitive skills to degree of success in the program is reported. Pretraining spatial visualization scores predicted posttraining GPA group membership. The results are compared and contrasted with those of studies of male undergraduates. Implications are drawn concerning the ways in which evaluations of such programs can contribute to our understanding of the changes in skills that occur with training in engineering and of the factors that predict success in such programs.

  7. An Exploratory Study of Cost Engineering in Axiomatic Design: Creation of the Cost Model Based on an FR-DP Map

    NASA Technical Reports Server (NTRS)

    Lee, Taesik; Jeziorek, Peter

    2004-01-01

    Large complex projects cost large sums of money throughout their life cycle for a variety of reasons and causes. For such large programs, the credible estimation of the project cost, a quick assessment of the cost of making changes, and the management of the project budget with effective cost reduction determine the viability of the project. Cost engineering that deals with these issues requires a rigorous method and systematic processes. This paper introduces a logical framework to a&e effective cost engineering. The framework is built upon Axiomatic Design process. The structure in the Axiomatic Design process provides a good foundation to closely tie engineering design and cost information together. The cost framework presented in this paper is a systematic link between the functional domain (FRs), physical domain (DPs), cost domain (CUs), and a task/process-based model. The FR-DP map relates a system s functional requirements to design solutions across all levels and branches of the decomposition hierarchy. DPs are mapped into CUs, which provides a means to estimate the cost of design solutions - DPs - from the cost of the physical entities in the system - CUs. The task/process model describes the iterative process ot-developing each of the CUs, and is used to estimate the cost of CUs. By linking the four domains, this framework provides a superior traceability from requirements to cost information.

  8. A review on the mechanical design elements of ankle rehabilitation robot.

    PubMed

    Khalid, Yusuf M; Gouwanda, Darwin; Parasuraman, Subramanian

    2015-06-01

    Ankle rehabilitation robots are developed to enhance ankle strength, flexibility and proprioception after injury and to promote motor learning and ankle plasticity in patients with drop foot. This article reviews the design elements that have been incorporated into the existing robots, for example, backdrivability, safety measures and type of actuation. It also discusses numerous challenges faced by engineers in designing this robot, including robot stability and its dynamic characteristics, universal evaluation criteria to assess end-user comfort, safety and training performance and the scientific basis on the optimal rehabilitation strategies to improve ankle condition. This article can serve as a reference to design robot with better stability and dynamic characteristics and good safety measures against internal and external events. It can also serve as a guideline for the engineers to report their designs and findings. © IMechE 2015.

  9. Enhancing Student International Awareness and Global Competency through Compact International Experience Courses

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Schubert, Thomas

    2013-11-01

    Short-term, study-abroad, elective engineering courses were developed in order to raise the international awareness and global competency of engineering students. These Compact International Experience (CIE) courses were taught in response to a strong student desire for engineering study abroad courses and an effort by the home institution to internationalize its curriculum. An assessment of repeat offerings of two three-semester-unit courses on Topics in Fluid Mechanics and Advanced Electronic Circuit Design in a three-week time frame in France and Australia was performed. The goals of the two CIE courses are an effective teaching of their respective technical content as well as a student understanding of the cultural environment and the impact of engineering solutions from a global and societal viewpoint. In the repeat offerings, increased interaction with local industry was an additional goal. The CIE courses were assessed through surveys completed at the beginning and end of the courses, weekly student reflection papers, course evaluations, and formalized instructor observations. Based on the assessment performed, the two CIE courses have been found to be a valuable approach in the delivery of engineering technical electives combined with an international experience.

  10. On civil engineering disasters and their mitigation

    NASA Astrophysics Data System (ADS)

    Xie, Lili; Qu, Zhe

    2018-01-01

    Civil engineering works such as buildings and infrastructure are the carriers of human civilization. They are, however, also the origins of various types of disasters, which are referred to in this paper as civil engineering disasters. This paper presents the concept of civil engineering disasters, their characteristics, classification, causes, and mitigation technologies. Civil engineering disasters are caused primarily by civil engineering defects, which are usually attributed to improper selection of construction site, hazard assessment, design and construction, occupancy, and maintenance. From this viewpoint, many so-called natural disasters such as earthquakes, strong winds, floods, landslides, and debris flows are substantially due to civil engineering defects rather than the actual natural hazards. Civil engineering disasters occur frequently and globally and are the most closely related to human beings among all disasters. This paper emphasizes that such disasters can be mitigated mainly through civil engineering measures, and outlines the related objectives and scientific and technological challenges.

  11. An Assessmant of a Beofulf System for a Wide Class of Analysis and Design Software

    NASA Technical Reports Server (NTRS)

    Katz, D. S.; Cwik, T.; Kwan, B. H.; Lou, J. Z.; Springer, P. L.; Sterling, T. L.; Wang, P.

    1997-01-01

    This paper discusses Beowulf systems, focusing on Hyglac, the Beowulf system installed at the Jet Propulsion Laboratory. The purpose of the paper is to assess how a system of this type will perform while running a variety of scientific and engineering analysis and design software.

  12. The Five-Factor Model Personality Assessment for Improved Student Design Team Performance

    ERIC Educational Resources Information Center

    Ogot, Madara; Okudan, Gul E.

    2006-01-01

    Researchers have long noted the correlation of various personality traits and team performance. Studies relating aggregate team personality traits to team performance are scattered in the literature and may not always be relevant to engineering design teams. This paper synthesizes the results from applicable Five-Factor Model (FFM)-based…

  13. CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.

    2007-01-01

    As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.

  14. Eco-innovative design approach: Integrating quality and environmental aspects in prioritizing and solving engineering problems

    NASA Astrophysics Data System (ADS)

    Chakroun, Mahmoud; Gogu, Grigore; Pacaud, Thomas; Thirion, François

    2014-09-01

    This study proposes an eco-innovative design process taking into consideration quality and environmental aspects in prioritizing and solving technical engineering problems. This approach provides a synergy between the Life Cycle Assessment (LCA), the nonquality matrix, the Theory of Inventive Problem Solving (TRIZ), morphological analysis and the Analytical Hierarchy Process (AHP). In the sequence of these tools, LCA assesses the environmental impacts generated by the system. Then, for a better consideration of environmental aspects, a new tool is developed, the non-quality matrix, which defines the problem to be solved first from an environmental point of view. The TRIZ method allows the generation of new concepts and contradiction resolution. Then, the morphological analysis offers the possibility of extending the search space of solutions in a design problem in a systematic way. Finally, the AHP identifies the promising solution(s) by providing a clear logic for the choice made. Their usefulness has been demonstrated through their application to a case study involving a centrifugal spreader with spinning discs.

  15. NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF), carried on an F-15B's cen

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'

  16. NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF) flew mated to a specially-

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'

  17. Jack Human Modelling Tool: A Review

    DTIC Science & Technology

    2010-01-01

    live” test subjects. In the early 1960s computer aided design (CAD) software became available, and aerospace and automotive manufacturers saw the... design would be assessed using anthropometric mannequins (such as the Society of Automotive Engineers J826B H-Point mannequin) or “live” test subjects...TR-2364 ABSTRACT When evaluating the design of a workstation human factors practitioners have traditionally used a number of different

  18. 75 FR 42087 - Science Advisory Board Staff Office; Request for Nominations of Experts for the SAB Hydraulic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... regarding trace organics and environmental monitoring; statistics, particularly regarding experimental design of field studies; human health effects and risk assessment; civil and environmental engineering...

  19. 76 FR 34684 - Offshore Renewable Energy; Public Meeting on Information Needs for Resource Assessment and Design...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... accurate meteorological and oceanographic information for evaluating the energy potential, economic viability, and engineering requirements of offshore project sites. The meeting is an opportunity for...

  20. An Assessment of Technology for Turbojet Engine Rotor Failures

    NASA Technical Reports Server (NTRS)

    Witmer, E. A. (Editor)

    1977-01-01

    Design considerations, objectives, and approaches used in containing rotor burst debris are discussed. Methods are given for determining the fracture resistance of various materials used in providing lightweight shielding from fragment impact.

  1. Noise assessment of unsuppressed TF-34-GE-100A engine at Warfield ANG, Baltimore, Maryland

    NASA Astrophysics Data System (ADS)

    Shaffer, Winston J., II; Ellis, John C., II

    1987-12-01

    This report presents the results of noise data measurements of an unsuppressed TF34-GE-100A engine and a community noise survey of the local area around the engine. Three recommendations were made. A two barrier design should be installed as an interim noise control measure. Justification and installation of a noise suppressor, as a long term solution, should be pursued. Day-night sound levels should continue to be monitored until adequate characterization of the airport noise environment is obtained.

  2. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  3. Plant engineers solar energy handbook. [Includes glossaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-21

    This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less

  4. Methods for comparative evaluation of propulsion system designs for supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Tyson, R. M.; Mairs, R. Y.; Halferty, F. D., Jr.; Moore, B. E.; Chaloff, D.; Knudsen, A. W.

    1976-01-01

    The propulsion system comparative evaluation study was conducted to define a rapid, approximate method for evaluating the effects of propulsion system changes for an advanced supersonic cruise airplane, and to verify the approximate method by comparing its mission performance results with those from a more detailed analysis. A table look up computer program was developed to determine nacelle drag increments for a range of parametric nacelle shapes and sizes. Aircraft sensitivities to propulsion parameters were defined. Nacelle shapes, installed weights, and installed performance was determined for four study engines selected from the NASA supersonic cruise aircraft research (SCAR) engine studies program. Both rapid evaluation method (using sensitivities) and traditional preliminary design methods were then used to assess the four engines. The method was found to compare well with the more detailed analyses.

  5. Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2013-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.

  6. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  7. Development of a CFRP Engine Thrust Frame for the Next Generation Launchers

    NASA Astrophysics Data System (ADS)

    Fatemi, Javad; van der Bas, Finn; Cruijssen, Henk

    2012-07-01

    This paper addresses the activities related to the development of technologies for a composite Engine Thrust Frame (ETF) for the next generation launchers. In particular, the design and analyses of a full Carbon Fibre Reinforced Plastic (CFRP) engine thrust frame are presented in more detail. The ETF concept is composed of three main parts, i.e. an aluminium top-ring which connects the ETF to the upper-stage tank, a CFRP cone, and a CFRP cone-cap which connects the Vinci engine to the ETF. The main challenging requirements for development of a CFRP ETF are recalled. The ETF concept and its mechanical performances are assessed.

  8. Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.

  9. First-Year Engineering Students' Portrayal of Engineering in a Proposed Museum Exhibit for Middle School Students

    NASA Astrophysics Data System (ADS)

    Mena, Irene B.; Diefes-Dux, Heidi A.

    2012-04-01

    Students' perceptions of engineering have been documented through studies involving interviews, surveys, and word associations that take a direct approach to asking students about various aspects of their understanding of engineering. Research on perceptions of engineering rarely focuses on how students would portray engineering to others. First-year engineering student teams proposed a museum exhibit, targeted to middle school students, to explore the question "What is engineering?" The proposals took the form of a poster. The overarching research question focuses on how these students would portray engineering to middle school students as seen through their museum exhibit proposals. A preliminary analysis was done on 357 posters to determine the overall engineering themes for the proposed museum exhibits. Forty of these posters were selected and, using open coding, more thoroughly analyzed to learn what artifacts/objects, concepts, and skills student teams associate with engineering. These posters were also analyzed to determine if there were any differences by gender composition of the student teams. Building, designing, and teamwork are skills the first-year engineering students link to engineering. Regarding artifacts, students mentioned those related to transportation and structures most often. All-male teams were more likely to focus on the idea of space and to mention teamwork and designing as engineering skills; equal-gender teams were more likely to focus on the multidisciplinary aspect of engineering. This analysis of student teams' proposals provides baseline data, positioning instructors to develop and assess instructional interventions that stretch students' self-exploration of engineering.

  10. A Methodology to Assess the Capability of Engine Designs to Meet Closed-Loop Performance and Operability Requirements

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Csank, Jeffrey

    2015-01-01

    Designing a closed-loop controller for an engine requires balancing trade-offs between performance and operability of the system. One such trade-off is the relationship between the 95 percent response time and minimum high-pressure compressor (HPC) surge margin (SM) attained during acceleration from idle to takeoff power. Assuming a controller has been designed to meet some specification on response time and minimum HPC SM for a mid-life (nominal) engine, there is no guarantee that these limits will not be violated as the engine ages, particularly as it reaches the end of its life. A characterization for the uncertainty in this closed-loop system due to aging is proposed that defines elliptical boundaries to estimate worst-case performance levels for a given control design point. The results of this characterization can be used to identify limiting design points that bound the possible controller designs yielding transient results that do not exceed specified limits in response time or minimum HPC SM. This characterization involves performing Monte Carlo simulation of the closed-loop system with controller constructed for a set of trial design points and developing curve fits to describe the size and orientation of each ellipse; a binary search procedure is then employed that uses these fits to identify the limiting design point. The method is demonstrated through application to a generic turbofan engine model in closed-loop with a simplified controller; it is found that the limit for which each controller was designed was exceeded by less than 4.76 percent. Extension of the characterization to another trade-off, that between the maximum high-pressure turbine (HPT) entrance temperature and minimum HPC SM, showed even better results: the maximum HPT temperature was estimated within 0.76 percent. Because of the accuracy in this estimation, this suggests another limit that may be taken into consideration during design and analysis. It also demonstrates the extension of the characterization to other attributes that contribute to the performance or operability of the engine. Metrics are proposed that, together, provide information on the shape of the trade-off between response time and minimum HPC SM, and how much each varies throughout the life cycle, at the limiting design points. These metrics also facilitate comparison of the expected transient behavior for multiple engine models.

  11. A Methodology to Assess the Capability of Engine Designs to Meet Closed-loop Performance and Operability Requirements

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Csank, Jeffrey T.

    2015-01-01

    Designing a closed-loop controller for an engine requires balancing trade-offs between performance and operability of the system. One such trade-off is the relationship between the 95% response time and minimum high-pressure compressor (HPC) surge margin (SM) attained during acceleration from idle to takeoff power. Assuming a controller has been designed to meet some specification on response time and minimum HPC SM for a mid-life (nominal) engine, there is no guarantee that these limits will not be violated as the engine ages, particularly as it reaches the end of its life. A characterization for the uncertainty in this closed-loop system due to aging is proposed that defines elliptical boundaries to estimate worst-case performance levels for a given control design point. The results of this characterization can be used to identify limiting design points that bound the possible con- troller designs yielding transient results that do not exceed specified limits in response time or minimum HPC SM. This characterization involves performing Monte Carlo simulation of the closed-loop system with controller constructed for a set of trial design points and developing curve fits to describe the size and orientation of each ellipse; a binary search procedure is then employed that uses these fits to identify the limiting design point. The method is demonstrated through application to a generic turbofan engine model in closed- loop with a simplified controller; it is found that the limit for which each controller was designed was exceeded by less than 4.76%. Extension of the characterization to another trade-off, that between the maximum high-pressure turbine (HPT) entrance temperature and minimum HPC SM, showed even better results: the maximum HPT temperature was estimated within 0.76%. Because of the accuracy in this estimation, this suggests another limit that may be taken into consideration during design and analysis. It also demonstrates the extension of the characterization to other attributes that contribute to the performance or operability of the engine. Metrics are proposed that, together, provide information on the shape of the trade-off between response time and minimum HPC SM, and how much each varies throughout the life cycle, at the limiting design points. These metrics also facilitate comparison of the expected transient behavior for multiple engine models.

  12. Advanced transportation system studies, technical area 3. Alternate propulsion subsystem concepts: J-2S restart study

    NASA Astrophysics Data System (ADS)

    Vilja, John; Levack, Daniel

    1993-04-01

    The objectives were to assess what design changes would be required to remit late production of the J-2S engine for use as a large high energy upper stage engine. The study assessed design changes required to perform per the J-2S model specification, manufacturing changes required due to obsolescence or improvements in state-of-the-practice, availability issues for supplier provided items, and provided cost and schedule estimates for this configuration. The confidence that J-2S production could be reinitiated within reasonable costs and schedules was provided. No significant technical issues were identified in either the producibility study or in the review of previous technical data. Areas of potential cost reduction were identified which could be quantified to a greater extent with further manufacturing planning. The proposed schedule can be met with no foreseeable impacts. The results of the study provided the necessary foundation for the detailed manufacturing and test plans and non-recurring and recurring cost estimates that are needed to complete the effort to reinitiate production of the J-2S engine system.

  13. The 1989 high-speed civil transport studies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The results are presented for the Douglas Aircraft Company system studies related to high speed civil transports (HSCTs). The system studies were conducted to assess the environmental compatibility of a HSCT at a design Mach number of 3.2. Sonic boom minimization, exterior noise, and engine emissions were assessed together with the effect of a laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that (1) achievement of a 90 PLdB sonic boom loudness level goal at Mach 3.2 may not be practical; (2) the high flow engine cycle concept shows promise of achieving the side line FAR Part 36 noise limit but may not achieve the aircraft range design goal of 6,500 nautical miles; (3) the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO(sub x) levels when combined with a premixed pilot stage/advanced technology high power stage duct burner in the P and W variable stream control engine (VSCE); and (4) full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.

  14. A Framework for Structuring Learning Assessment in a Online Educational Game: Experiment Centered Design

    ERIC Educational Resources Information Center

    Conrad, Shawn; Clarke-Midura, Jody; Klopfer, Eric

    2014-01-01

    Educational games offer an opportunity to engage and inspire students to take interest in science, technology, engineering, and mathematical (STEM) subjects. Unobtrusive learning assessment techniques coupled with machine learning algorithms can be utilized to record students' in-game actions and formulate a model of the students' knowledge…

  15. A Project-based Spiral Curriculum for Introductory Courses in ChE: Part 3. Evaluation.

    ERIC Educational Resources Information Center

    DiBiasio, David; Comparini, Lisa; Dixon, Anthony G.; Clark, William M.

    2001-01-01

    Presents the third part of a series on the development and implementation of project-based spiral curriculum in chemical engineering. Focuses on the details of the assessment design, describes the results of the assessment, and draws conclusions about the success of the program. (Contains 18 references.) (ASK)

  16. 76 FR 27301 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Assessment of Determination of Nonregulated Status for Lepidopteran-Resistant Cotton AGENCY: Animal and Plant... determination of nonregulated status for cotton designated as event COT67B, which has been genetically engineered to express a protein to protect cotton plants from lepidopteran insect damage. The petition has...

  17. Assessing Student Learning in the Major Field of Study

    ERIC Educational Resources Information Center

    Volkwein, J. Fredericks

    2010-01-01

    Assessing student attainment in the major field of study is increasingly important to employers and accrediting bodies alike. Construction and manufacturing firms do not like engineers who design faulty bridges and airplanes. Marketing firms want to hire students who understand the difference between a niche market and a global market. School…

  18. Environmental assessment for proposed energy conservation standards for three types of consumer products: dishwashers, clothes washers and clothes dryers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    This environmental assessment (EA) evaluates the environmental impacts resulting from new or amended energy-efficiency standards for dishwashers, clothes washers and clothes dryers as mandated by the National Appliance Energy Conservation Act of 1987. A complete description of the Engineering and Economic Analysis of the proposed standards may be found elsewhere in the Technical Support Document (TSD). All eleven of the scenarios for product design changes described in the Engineering Analysis of the TSD are analyzed in the environmental assessment in the form of levels of pollutant reduction. Level 1 represents the least amount of pollutant reduction, while higher numbered levelsmore » represent increasingly more stringent standards, with correspondingly greater reductions in pollutants. Values for energy savings that result from product design changes are taken from the TSD. These energy savings are based on recent data on actual usage rather than DOE test procedures. 12 refs., 1 fig., 12 tabs.« less

  19. Design for disassembly and sustainability assessment to support aircraft end-of-life treatment

    NASA Astrophysics Data System (ADS)

    Savaria, Christian

    Gas turbine engine design is a multidisciplinary and iterative process. Many design iterations are necessary to address the challenges among the disciplines. In the creation of a new engine architecture, the design time is crucial in capturing new business opportunities. At the detail design phase, it was proven very difficult to correct an unsatisfactory design. To overcome this difficulty, the concept of Multi-Disciplinary Optimization (MDO) at the preliminary design phase (Preliminary MDO or PMDO) is used allowing more freedom to perform changes in the design. PMDO also reduces the design time at the preliminary design phase. The concept of PMDO was used was used to create parametric models, and new correlations for high pressure gas turbine housing and shroud segments towards a new design process. First, dedicated parametric models were created because of their reusability and versatility. Their ease of use compared to non-parameterized models allows more design iterations thus reduces set up and design time. Second, geometry correlations were created to minimize the number of parameters used in turbine housing and shroud segment design. Since the turbine housing and the shroud segment geometries are required in tip clearance analyses, care was taken as to not oversimplify the parametric formulation. In addition, a user interface was developed to interact with the parametric models and improve the design time. Third, the cooling flow predictions require many engine parameters (i.e. geometric and performance parameters and air properties) and a reference shroud segments. A second correlation study was conducted to minimize the number of engine parameters required in the cooling flow predictions and to facilitate the selection of a reference shroud segment. Finally, the parametric models, the geometry correlations, and the user interface resulted in a time saving of 50% and an increase in accuracy of 56% in the new design system compared to the existing design system. Also, regarding the cooling flow correlations, the number of engine parameters was reduced by a factor of 6 to create a simplified prediction model and hence a faster shroud segment selection process. None

  20. Open Rotor Tone Shielding Methods for System Noise Assessments Using Multiple Databases

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Thomas, Russell H.; Lopes, Leonard V.; Burley, Casey L.; Van Zante, Dale E.

    2014-01-01

    Advanced aircraft designs such as the hybrid wing body, in conjunction with open rotor engines, may allow for significant improvements in the environmental impact of aviation. System noise assessments allow for the prediction of the aircraft noise of such designs while they are still in the conceptual phase. Due to significant requirements of computational methods, these predictions still rely on experimental data to account for the interaction of the open rotor tones with the hybrid wing body airframe. Recently, multiple aircraft system noise assessments have been conducted for hybrid wing body designs with open rotor engines. These assessments utilized measured benchmark data from a Propulsion Airframe Aeroacoustic interaction effects test. The measured data demonstrated airframe shielding of open rotor tonal and broadband noise with legacy F7/A7 open rotor blades. Two methods are proposed for improving the use of these data on general open rotor designs in a system noise assessment. The first, direct difference, is a simple octave band subtraction which does not account for tone distribution within the rotor acoustic signal. The second, tone matching, is a higher-fidelity process incorporating additional physical aspects of the problem, where isolated rotor tones are matched by their directivity to determine tone-by-tone shielding. A case study is conducted with the two methods to assess how well each reproduces the measured data and identify the merits of each. Both methods perform similarly for system level results and successfully approach the experimental data for the case study. The tone matching method provides additional tools for assessing the quality of the match to the data set. Additionally, a potential path to improve the tone matching method is provided.

  1. Follow-On Technology Requirement Study for Advanced Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Wendus, Bruce E.; Stark, Donald F.; Holler, Richard P.; Funkhouser, Merle E.

    2003-01-01

    A study was conducted to define and assess the critical or enabling technologies required for a year 2005 entry into service (EIS) engine for subsonic commercial aircraft, with NASA Advanced Subsonic Transport goals used as benchmarks. The year 2005 EIS advanced technology engine is an Advanced Ducted Propulsor (ADP) engine. Performance analysis showed that the ADP design offered many advantages compared to a baseline turbofan engine. An airplane/ engine simulation study using a long range quad aircraft quantified the effects of the ADP engine on the economics of typical airline operation. Results of the economic analysis show the ADP propulsion system provides a 6% reduction in direct operating cost plus interest, with half the reduction resulting from reduced fuel consumption. Critical and enabling technologies for the year 2005 EIS ADP were identified and prioritized.

  2. An approach to built-in test for shipboard machinery systems

    NASA Astrophysics Data System (ADS)

    Hegner, H. R.

    This paper presents an approach for incorporating built-in test (BIT) into shipboard machinery systems. BIT, as used herein, denotes both built-in test and on-line monitoring. Since sensors are a key element to a successful machinery monitoring system, an assessment of shipboard sensors is included in the paper. Specific design examples are also presented for a marine diesel engine, gas turbine engine, and air conditioning plant.

  3. An Analysis of U.S. Army Health Hazard Assessments During the Acquisition of Military Materiel

    DTIC Science & Technology

    2010-06-03

    protective equipment (PPE) (Milz, Conrad, & Soule , 2003). Engineering controls can eliminate hazards through system design, substitution of hazardous...Milz, Conrad, & Soule , 2003). Engineering control measures can serve to 7 minimize hazards where they cannot be eliminated, with preference for...during the materiel acquisitions process, and (c) will evaluate a sample of the database for accuracy by comparing the data entries to original reports

  4. Hydropower and Environmental Resource Assessment (HERA): a computational tool for the assessment of the hydropower potential of watersheds considering engineering and socio-environmental aspects.

    NASA Astrophysics Data System (ADS)

    Martins, T. M.; Kelman, R.; Metello, M.; Ciarlini, A.; Granville, A. C.; Hespanhol, P.; Castro, T. L.; Gottin, V. M.; Pereira, M. V. F.

    2015-12-01

    The hydroelectric potential of a river is proportional to its head and water flows. Selecting the best development alternative for Greenfield projects watersheds is a difficult task, since it must balance demands for infrastructure, especially in the developing world where a large potential remains unexplored, with environmental conservation. Discussions usually diverge into antagonistic views, as in recent projects in the Amazon forest, for example. This motivates the construction of a computational tool that will support a more qualified debate regarding development/conservation options. HERA provides the optimal head division partition of a river considering technical, economic and environmental aspects. HERA has three main components: (i) pre-processing GIS of topographic and hydrologic data; (ii) automatic engineering and equipment design and budget estimation for candidate projects; (iii) translation of division-partition problem into a mathematical programming model. By integrating an automatic calculation with geoprocessing tools, cloud computation and optimization techniques, HERA makes it possible countless head partition division alternatives to be intrinsically compared - a great advantage with respect to traditional field surveys followed by engineering design methods. Based on optimization techniques, HERA determines which hydro plants should be built, including location, design, technical data (e.g. water head, reservoir area and volume, engineering design (dam, spillways, etc.) and costs). The results can be visualized in the HERA interface, exported to GIS software, Google Earth or CAD systems. HERA has a global scope of application since the main input data area a Digital Terrain Model and water inflows at gauging stations. The objective is to contribute to an increased rationality of decisions by presenting to the stakeholders a clear and quantitative view of the alternatives, their opportunities and threats.

  5. Preliminary base heating environments for a generalized ALS LO2/LH2 launch vehicle, appendix 1 and 2

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Reardon, John E.

    1989-01-01

    A secondary objective of contract NAS8-39141 is to provide base heating assessments, as required, to support Advanced Launch System (ALS) preliminary launch vehicle and propulsion system design studies. The ALS propulsion systems integration working group meeting (No. 3) recently completed in San Diego, California, focused attention on the need for base heating environment determination to provide preliminary requirements for LO2/LH2 propulsion systems currently being considered for ALS. We were requested to provide these environments for a range of possible propellant mixture and nozzle area ratios. Base heating environments can only be determined as a function of altitude when the engine operating conditions and vehicle base region geometry (engine arrangement) are known. If time dependent environments are needed to assess thermal loads, a trajectory must also be provided. These parameters are not fixed at this time since the ALS configurations and propulsion operating conditions are varied and continue to be studied by Phase B contractors. Therefore, for this study, a generalized LO2/LH2 system was selected along with a vehicle configuration consisting of a seven-engine booster and a three-engine core. MSFC provided guidance for the selection. We also selected a limited number of body points on the booster and core vehicles and engines for the environment estimates. Environments at these locations are representative of maximum heating conditions in the base region and are provided as a function of altitude only. Guidelines and assumptions for this assessment, methodology for determining the environments, and preliminary results are provided in this technical note. Refinements in the environments will be provided as the ALS design matures.

  6. Assessment of transit supportive land use for new starts projects : FY 1999 new starts report. A supplement to the fiscal year 1999 report on funding levels and allocations of funds for transit major capital investments

    DOT National Transportation Integrated Search

    1998-11-01

    FTA assessed and rated the Transit Supportive Existing Land Use and Future Patterns of 30 candidate New Starts projects, in preliminary engineering and final design, documented in the FY 1999 New Starts Report. These land use assessments (30) examine...

  7. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, Carl Magnus Goran; Vuilleumier, David

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. Amore » fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.« less

  8. Analysis of the impact of the use of broad specification fuels on combustors for commercial aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Lehmann, R. P.; Smith, A. L.

    1979-01-01

    An analytical study was conducted to assess the impact of the use of broad specification fuels with reduced hydrogen content on the design, performance, durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines. The study was directed at defining necessary design revisions to combustors designed for use of Jet A when such are operated on ERBS (Experimental Referee Broad Specification Fuel) which has a nominal hydrogen content of 12.8 percent as opposed to 13.7 percent in current Jet A. The results indicate that improvements in combustor liner cooling, and/or materials, and methods of fuel atomization will be required if the hydrogen content of aircraft gas turbine fuel is decreased.

  9. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  10. Automatic differentiation as a tool in engineering design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois; Hall, Laura E.

    1992-01-01

    Automatic Differentiation (AD) is a tool that systematically implements the chain rule of differentiation to obtain the derivatives of functions calculated by computer programs. AD is assessed as a tool for engineering design. The forward and reverse modes of AD, their computing requirements, as well as approaches to implementing AD are discussed. The application of two different tools to two medium-size structural analysis problems to generate sensitivity information typically necessary in an optimization or design situation is also discussed. The observation is made that AD is to be preferred to finite differencing in most cases, as long as sufficient computer storage is available; in some instances, AD may be the alternative to consider in lieu of analytical sensitivity analysis.

  11. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 2: Supplement to design trade-off studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of studies leading to the preliminary design of a hybrid passenger vehicle which is projected to have the maximum potential for reducing petroleum consumption in the near term are presented. Heat engine/electric hybrid vehicle tradeoffs, assessment of battery power source, and weight and cost analysis of key components are among the topics covered. Performance of auxiliary equipment, such as power steering, power brakes, air conditioning, lighting and electrical accessories, heating and ventilation is discussed along with the selection of preferred passenger compartment heating procedure for the hybrid vehicle. Waste heat from the engine, thermal energy storage, and an auxiliary burner are among the approaches considered.

  12. Reliability and Probabilistic Risk Assessment - How They Play Together

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Stutts, Richard; Huang, Zhaofeng

    2015-01-01

    The objective of this presentation is to discuss the PRA process and the reliability engineering discipline, their differences and similarities, and how they are used as complimentary analyses to support design and flight decisions.

  13. Practical Application of PRA as an Integrated Design Tool for Space Systems

    NASA Technical Reports Server (NTRS)

    Kalia, Prince; Shi, Ying; Pair, Robin; Quaney, Virginia; Uhlenbrock, John

    2013-01-01

    This paper presents the application of the first comprehensive Probabilistic Risk Assessment (PRA) during the design phase of a joint NASA/NOAA weather satellite program, Geostationary Operational Environmental Satellite Series R (GOES-R). GOES-R is the next generation weather satellite primarily to help understand the weather and help save human lives. PRA has been used at NASA for Human Space Flight for many years. PRA was initially adopted and implemented in the operational phase of manned space flight programs and more recently for the next generation human space systems. Since its first use at NASA, PRA has become recognized throughout the Agency as a method of assessing complex mission risks as part of an overall approach to assuring safety and mission success throughout project lifecycles. PRA is now included as a requirement during the design phase of both NASA next generation manned space vehicles as well as for high priority robotic missions. The influence of PRA on GOES-R design and operation concepts are discussed in detail. The GOES-R PRA is unique at NASA for its early implementation. It also represents a pioneering effort to integrate risks from both Spacecraft (SC) and Ground Segment (GS) to fully assess the probability of achieving mission objectives. PRA analysts were actively involved in system engineering and design engineering to ensure that a comprehensive set of technical risks were correctly identified and properly understood from a design and operations perspective. The analysis included an assessment of SC hardware and software, SC fault management system, GS hardware and software, common cause failures, human error, natural hazards, solar weather and infrastructure (such as network and telecommunications failures, fire). PRA findings directly resulted in design changes to reduce SC risk from micro-meteoroids. PRA results also led to design changes in several SC subsystems, e.g. propulsion, guidance, navigation and control (GNC), communications, mechanisms, and command and data handling (C&DH). The fault tree approach assisted in the development of the fault management system design. Human error analysis, which examined human response to failure, indicated areas where automation could reduce the overall probability of gaps in operation by half. In addition, the PRA brought to light many potential root causes of system disruptions, including earthquakes, inclement weather, solar storms, blackouts and other extreme conditions not considered in the typical reliability and availability analyses. Ultimately the PRA served to identify potential failures that, when mitigated, resulted in a more robust design, as well as to influence the program's concept of operations. The early and active integration of PRA with system and design engineering provided a well-managed approach for risk assessment that increased reliability and availability, optimized lifecyc1e costs, and unified the SC and GS developments.

  14. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental enginemore » research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.« less

  15. Evaluation of students' perception of their learning environment and approaches to learning

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2015-04-01

    This work presents the results of two case studies designed to assess the various approaches undergraduate and postgraduate students undertake for their education. The first study describes the results and evaluation of an undergraduate course in Water Engineering which aims to develop the fundamental background knowledge of students on introductory practical applications relevant to the practice of water and hydraulic engineering. The study assesses the effectiveness of the course design and learning environment from the perception of students using a questionnaire addressing several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning, and methods of communication and assessment. The second study investigates the effectiveness of supervisory arrangements based on the perceptions of engineering undergraduate and postgraduate students. Effective supervision requires leadership skills that are not taught in the University, yet there is rarely a chance to get feedback, evaluate this process and reflect. Even though the results are very encouraging there are significant lessons to learn in improving ones practice and develop an effective learning environment to student support and guidance. The findings from these studies suggest that students with high level of intrinsic motivation are deep learners and are also top performers in a student-centered learning environment. A supportive teaching environment with a plethora of resources and feedback made available over different platforms that address students need for direct communication and feedback has the potential to improve student satisfaction and their learning experience. Finally, incorporating a multitude of assessment methods is also important in promoting deep learning. These results have deep implications about student learning and can be used to further improve course design and delivery in the future.

  16. Systems design analysis applied to launch vehicle configuration

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  17. Ultimate Limit State Assessment of Timber Bolt Connection Subjected to Double Unequal Shears

    NASA Astrophysics Data System (ADS)

    Musilek, Josef; Plachy, Jan

    2017-10-01

    Nowadays the problems occur when a structure engineer need to assess the ultimate limit state of timber bolt connection which is subjected to double unequal shears. This assessment of ultimate limit state shows the reliability of these connections. In assessing the reliability of this connection in ultimate limit state is a problem, because the formulas and equations that are currently available in design standards and available literature, describing only connections loaded symmetrically - this mean that they describe the timber bolt connection subjected to double equal shears. This fact causes problems because structural engineers have no available support, according to which they could assess reliability of the connection in terms of the ultimate limit state. They must therefore often report following an asymmetrically loaded connections carry about using formulas, which are primarily designed for checking connections loaded symmetrically. This leads logically to the fact that it is not respected by the actual behaviour of the connection in the ultimate limit state. Formulas derived in this paper provide the possibility to assess the ultimate limit state for such connection. The formulas derived in this article allow to carry out a reliability assessment of the ultimate limit state of timber bolt connection subjected to double shear. The using of the formulas derived in this paper leads to better description of the behaviour of this type of connection and also to the more economic design. An example of using these derived formulas is shown. There is shown in this example, how to assess the reliability of timber bolt connection subjected to double unequal shears in terms of ultimate limit states.

  18. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 3: Structure and listing of programs

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  19. Adaptive Comparative Judgment as a Tool for Assessing Open-Ended Design Problems and Model Eliciting Activities

    ERIC Educational Resources Information Center

    Bartholomew, Scott R.; Nadelson, Louis S.; Goodridge, Wade H.; Reeve, Edward M.

    2018-01-01

    We investigated the use of adaptive comparative judgment to evaluate the middle school student learning, engagement, and experience with the design process in an open-ended problem assigned in a technology and engineering education course. Our results indicate that the adaptive comparative judgment tool effectively facilitated the grading of the…

  20. Architectural and Functional Design and Evaluation of E-Learning VUIS Based on the Proposed IEEE LTSA Reference Model.

    ERIC Educational Resources Information Center

    O'Droma, Mairtin S.; Ganchev, Ivan; McDonnell, Fergal

    2003-01-01

    Presents a comparative analysis from the Institute of Electrical and Electronics Engineers (IEEE) Learning Technology Standards Committee's (LTSC) of the architectural and functional design of e-learning delivery platforms and applications, e-learning course authoring tools, and learning management systems (LMSs), with a view of assessing how…

  1. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  2. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  3. Design of Smart Educational Robot as a Tool For Teaching Media Based on Contextual Teaching and Learning to Improve the Skill of Electrical Engineering Student

    NASA Astrophysics Data System (ADS)

    Zuhrie, M. S.; Basuki, I.; Asto, B. I. G. P.; Anifah, L.

    2018-04-01

    The development of robotics in Indonesia has been very encouraging. The barometer is the success of the Indonesian Robot Contest. The focus of research is a teaching module manufacturing, planning mechanical design, control system through microprocessor technology and maneuverability of the robot. Contextual Teaching and Learning (CTL) strategy is the concept of learning where the teacher brings the real world into the classroom and encourage students to make connections between knowledge possessed by its application in everyday life. This research the development model used is the 4-D model. This Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with the aim to produce a tool of learning in the form of smart educational robot modules and kit based on Contextual Teaching and Learning at the Department of Electrical Engineering to improve the skills of the Electrical Engineering student. Socialization questionnaires showed that levels of the student majoring in electrical engineering competencies image currently only limited to conventional machines. The average assessment is 3.34 validator included in either category. Modules developed can give hope to the future are able to produce Intelligent Robot Tool for Teaching.

  4. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  5. Preliminary Performance Analyses of the Constellation Program ARES 1 Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Phillips, Mark; Hanson, John; Shmitt, Terri; Dukemand, Greg; Hays, Jim; Hill, Ashley; Garcia, Jessica

    2007-01-01

    By the time NASA's Exploration Systems Architecture Study (ESAS) report had been released to the public in December 2005, engineers at NASA's Marshall Space Flight Center had already initiated the first of a series of detailed design analysis cycles (DACs) for the Constellation Program Crew Launch Vehicle (CLV), which has been given the name Ares I. As a major component of the Constellation Architecture, the CLV's initial role will be to deliver crew and cargo aboard the newly conceived Crew Exploration Vehicle (CEV) to a staging orbit for eventual rendezvous with the International Space Station (ISS). However, the long-term goal and design focus of the CLV will be to provide launch services for a crewed CEV in support of lunar exploration missions. Key to the success of the CLV design effort and an integral part of each DAC is a detailed performance analysis tailored to assess nominal and dispersed performance of the vehicle, to determine performance sensitivities, and to generate design-driving dispersed trajectories. Results of these analyses provide valuable design information to the program for the current design as well as provide feedback to engineers on how to adjust the current design in order to maintain program goals. This paper presents a condensed subset of the CLV performance analyses performed during the CLV DAC-1 cycle. Deterministic studies include development of the CLV DAC-1 reference trajectories, identification of vehicle stage impact footprints, an assessment of launch window impacts to payload performance, and the computation of select CLV payload partials. Dispersion studies include definition of input uncertainties, Monte Carlo analysis of trajectory performance parameters based on input dispersions, assessment of CLV flight performance reserve (FPR), assessment of orbital insertion accuracy, and an assessment of bending load indicators due to dispersions in vehicle angle of attack and side slip angle. A short discussion of the various customers for the dispersion results, along with results and ramifications of each study, are also provided.

  6. The Development and Use of a Flight Optimization System Model of a C-130E Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Desch, Jeremy D.

    1995-01-01

    The Systems Analysis Branch at NASA Langley Research Center conducts a variety of aircraft design and analyses studies. These studies include the prediction of characteristics of a particular conceptual design, analyses of designs that already exist, and assessments of the impact of technology on current and future aircraft. The FLight OPtimization System (FLOPS) is a tool used for aircraft systems analysis and design. A baseline input model of a Lockheed C-130E was generated for the Flight Optimization System. This FLOPS model can be used to conduct design-trade studies and technology impact assessments. The input model was generated using standard input data such as basic geometries and mission specifications. All of the other data needed to determine the airplane performance is computed internally by FLOPS. The model was then calibrated to reproduce the actual airplane performance from flight test data. This allows a systems analyzer to change a specific item of geometry or mission definition in the FLOPS input file and evaluate the resulting change in performance from the output file. The baseline model of the C-130E was used to analyze the effects of implementing upper wing surface blowing on the airplane. This involved removing the turboprop engines that were on the C-130E and replacing them with turbofan engines. An investigation of the improvements in airplane performance with the new engines could be conducted within the Flight Optimization System. Although a thorough analysis was not completed, the impact of this change on basic mission performance was investigated.

  7. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE PAGES

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James; ...

    2017-03-28

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  8. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  9. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  10. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety, performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key Criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket-engines characteristics. This includes BME impacts on vehicle system weight, performance, design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  11. Graceful Failure, Engineering, and Planning for Extremes: The Engineering for Climate Extremes Partnership (ECEP)

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.

    2015-12-01

    Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.

  12. SLS Model Based Design: A Navigation Perspective

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  13. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  14. Systems Engineering Applied to the Development of a Wave Energy Farm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Bull, Diana L.; Costello, Ronan Patrick

    A motivation for undertaking this stakeholder requirements analysis and Systems Engineering exercise is to document the requirements for successful wave energy farms to facilitate better design and better design assessments. A difficulty in wave energy technology development is the absence to date of a verifiable minimum viable product against which the merits of new products might be measured. A consequence of this absence is that technology development progress, technology value, and technology funding have largely been measured, associated with, and driven by technology readiness, measured in technology readiness levels (TRLs). Originating primarily from the space and defense industries, TRLs focusmore » on procedural implementation of technology developments of large and complex engineering projects, where cost is neither mission critical nor a key design driver. The key deficiency with the TRL approach in the context of wave energy conversion is that WEC technology development has been too focused on commercial readiness and not enough on the stakeholder requirements and particularly economic viability required for market entry.« less

  15. A computer simulation of the turbocharged turbo compounded diesel engine system: A description of the thermodynamic and heat transfer models

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.

    1985-01-01

    A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.

  16. Perfusion properties of scaffolds: A new approach to tissue engineering designs for bone regeneration

    NASA Astrophysics Data System (ADS)

    Larionov, P. M.; Maslov, N. A.; Papaeva, E. O.; Yunoshev, A. S.; Filipenko, M. L.; Bogachev, S. S.; Proskurina, A. S.; Samokhin, A. G.; Kudrov, G. A.; Tereshchenko, V. P.; Pavlov, V. V.; Mihailovsky, M. V.; Prohorenko, V. M.; Titov, A. T.; Mamonova, E. V.; Sadovoy, M. A.

    2017-09-01

    The main approach to tissue engineering involves the use of scaffolds seeded with cells, followed by culturing in a bioreactor. However, the effective use of a bioreactor requires adaptation of the scaffold at the stage of its design. In our opinion, this means assessment of the perfusion properties of the scaffold. Transverse and longitudinal perfusion under hydrostatic pressure of 5, 10, and 15 mmHg, as well as the significance of electrospinning parameters for fabrication of a scaffold sheet and the composition of composite material—11% w/v polycaprolactone with gelatinization of 0.5%, 2%, and 4%, were demonstrated.

  17. Tissue Engineering of the Urethra: A Systematic Review and Meta-analysis of Preclinical and Clinical Studies.

    PubMed

    Versteegden, Luuk R M; de Jonge, Paul K J D; IntHout, Joanna; van Kuppevelt, Toin H; Oosterwijk, Egbert; Feitz, Wout F J; de Vries, Rob B M; Daamen, Willeke F

    2017-10-01

    Urethra repair by tissue engineering has been extensively studied in laboratory animals and patients, but is not routinely used in clinical practice. To systematically investigate preclinical and clinical evidence of the efficacy of tissue engineering for urethra repair in order to stimulate translation of preclinical studies to the clinic. A systematic search strategy was applied in PubMed and EMBASE. Studies were independently screened for relevance by two reviewers, resulting in 80 preclinical and 23 clinical studies of which 63 and 13 were selected for meta-analysis to assess side effects, functionality, and study completion. Analyses for preclinical and clinical studies were performed separately. Full circumferential and inlay procedures were assessed independently. Evaluated parameters included seeding of cells and type of biomaterial. Meta-analysis revealed that cell seeding significantly reduced the probability of encountering side effects in preclinical studies. Remarkably though, cells were only sparsely used in the clinic (4/23 studies) and showed no significant reduction of side effects. ln 21 out of 23 clinical studies, decellularized templates were used, while in preclinical studies other biomaterials showed promising outcomes as well. No direct comparison to current clinical practice could be made due to the limited number of randomized controlled studies. Due to a lack of controlled (pre)clinical studies, the efficacy of tissue engineering for urethra repair could not be determined. Meta-analysis outcome measures were similar to current treatment options described in literature. Surprisingly, it appeared that favorable preclinical results, that is inclusion of cells, were not translated to the clinic. Improved (pre)clinical study designs may enhance clinical translation. We reviewed all available literature on urethral tissue engineering to assess the efficacy in preclinical and clinical studies. We show that improvements to (pre)clinical study design is required to improve clinical translation of tissue engineering technologies. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  18. Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Cheng, Leo Y.

    2012-01-01

    One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation

  19. Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines

    NASA Technical Reports Server (NTRS)

    Brockmeyer, Jerry W.; Schnittgrund, Gary D.

    1990-01-01

    Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.

  20. Using Wikis and Blogs for Assessment in First-Year Engineering

    ERIC Educational Resources Information Center

    Smith, Elizabeth Joy; Mills, Julie Evelyn; Myers, Baden

    2009-01-01

    Purpose: This paper aims to examine some of the strengths and weaknesses of the use of online tools such as wikis and blogs for assessment purposes, with the aim of proposing future developments and improvements. Design/methodology/approach: The paper utilises a case study approach by examining the outcomes of a new first-year course for all…

  1. Service life assessment of timber highway bridges in USA climate zones

    Treesearch

    James P. Wacker; Brian K. Brashaw; Thomas G. Williamson; P. David Jones; Matthew S. Smith; Travis K. Hosteng; David L. Strahl; Lola E. Coombe; V.J. Gopu

    2014-01-01

    As engineers begin to estimate life-cycle costs and sustainable design approaches for timber bridges, there is a need for more reliable data about their durability and expected service life. This paper summarizes a comprehensive effort to assess the current condition of more than one hundred timber highway bridge superstructures throughout the United States. This...

  2. Study on the Application of the Kent Index Method on the Risk Assessment of Disastrous Accidents in Subway Engineering

    PubMed Central

    Lu, Hao; Wang, Mingyang; Yang, Baohuai; Rong, Xiaoli

    2013-01-01

    With the development of subway engineering, according to uncertain factors and serious accidents involved in the construction of subways, implementing risk assessment is necessary and may bring a number of benefits for construction safety. The Kent index method extensively used in pipeline construction is improved to make risk assessment much more practical for the risk assessment of disastrous accidents in subway engineering. In the improved method, the indexes are divided into four categories, namely, basic, design, construction, and consequence indexes. In this study, a risk assessment model containing four kinds of indexes is provided. Three kinds of risk occurrence modes are listed. The probability index model which considers the relativity of the indexes is established according to the risk occurrence modes. The model provides the risk assessment process through the fault tree method and has been applied in the risk assessment of Nanjing subway's river-crossing tunnel construction. Based on the assessment results, the builders were informed of what risks should be noticed and what they should do to avoid the risks. The need for further research is discussed. Overall, this method may provide a tool for the builders, and improve the safety of the construction. PMID:23710136

  3. 7 CFR 658.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... appropriate agency official; and (iii) The engineering or architectural design had begun or such services had... programs to protect farmland include: Zoning to protect farmland; agricultural land protection provisions... purchase or acquisition of conservation easements; prescribed procedures for assessing agricultural...

  4. 7 CFR 658.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... appropriate agency official; and (iii) The engineering or architectural design had begun or such services had... programs to protect farmland include: Zoning to protect farmland; agricultural land protection provisions... purchase or acquisition of conservation easements; prescribed procedures for assessing agricultural...

  5. 7 CFR 658.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... appropriate agency official; and (iii) The engineering or architectural design had begun or such services had... programs to protect farmland include: Zoning to protect farmland; agricultural land protection provisions... purchase or acquisition of conservation easements; prescribed procedures for assessing agricultural...

  6. 7 CFR 658.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... appropriate agency official; and (iii) The engineering or architectural design had begun or such services had... programs to protect farmland include: Zoning to protect farmland; agricultural land protection provisions... purchase or acquisition of conservation easements; prescribed procedures for assessing agricultural...

  7. PRACA Enhancement Pilot Study Report: Engineering for Complex Systems Program (formerly Design for Safety), DFS-IC-0006

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David; Schreiner, John

    2002-01-01

    This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.

  8. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Project Integrated Landing System

    NASA Technical Reports Server (NTRS)

    Baker, John D.; Yuchnovicz, Daniel E.; Eisenman, David J.; Peer, Scott G.; Fasanella, Edward L.; Lawrence, Charles

    2009-01-01

    Crew Exploration Vehicle (CEV) Chief Engineer requested a risk comparison of the Integrated Landing System design developed by NASA and the design developed by Contractor- referred to as the LM 604 baseline. Based on the results of this risk comparison, the CEV Chief engineer requested that the NESC evaluate identified risks and develop strategies for their reduction or mitigation. The assessment progressed in two phases. A brief Phase I analysis was performed by the Water versus Land-Landing Team to compare the CEV Integrated Landing System proposed by the Contractor against the NASA TS-LRS001 baseline with respect to risk. A phase II effort examined the areas of critical importance to the overall landing risk, evaluating risk to the crew and to the CEV Crew Module (CM) during a nominal land-landing. The findings of the assessment are contained in this report.

  9. A scalable architecture for incremental specification and maintenance of procedural and declarative clinical decision-support knowledge.

    PubMed

    Hatsek, Avner; Shahar, Yuval; Taieb-Maimon, Meirav; Shalom, Erez; Klimov, Denis; Lunenfeld, Eitan

    2010-01-01

    Clinical guidelines have been shown to improve the quality of medical care and to reduce its costs. However, most guidelines exist in a free-text representation and, without automation, are not sufficiently accessible to clinicians at the point of care. A prerequisite for automated guideline application is a machine-comprehensible representation of the guidelines. In this study, we designed and implemented a scalable architecture to support medical experts and knowledge engineers in specifying and maintaining the procedural and declarative aspects of clinical guideline knowledge, resulting in a machine comprehensible representation. The new framework significantly extends our previous work on the Digital electronic Guidelines Library (DeGeL) The current study designed and implemented a graphical framework for specification of declarative and procedural clinical knowledge, Gesher. We performed three different experiments to evaluate the functionality and usability of the major aspects of the new framework: Specification of procedural clinical knowledge, specification of declarative clinical knowledge, and exploration of a given clinical guideline. The subjects included clinicians and knowledge engineers (overall, 27 participants). The evaluations indicated high levels of completeness and correctness of the guideline specification process by both the clinicians and the knowledge engineers, although the best results, in the case of declarative-knowledge specification, were achieved by teams including a clinician and a knowledge engineer. The usability scores were high as well, although the clinicians' assessment was significantly lower than the assessment of the knowledge engineers.

  10. Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Hendricks, Eric S.; Tong, Michael T.; Haller, William J.; Thurman, Douglas R.

    2011-01-01

    Application of high speed, advanced turboprops, or propfans, to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation s environmental impact have renewed interest in unducted, open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Unfortunately, in the two decades that have passed since open rotor concepts were thoroughly investigated, NASA has lost experience and expertise in this technology area. This paper describes initial efforts to re-establish NASA s capability to assess aircraft designs with open rotor propulsion. Specifically, methodologies for aircraft-level sizing, performance analysis, and system-level noise analysis are described. Propulsion modeling techniques have been described in a previous paper. Initial results from application of these methods to an advanced single-aisle aircraft using open rotor engines based on historical blade designs are presented. These results indicate open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicates that current noise regulations can be met with old blade designs and modern, noiseoptimized blade designs are expected to result in even lower noise levels. Although an initial capability has been established and initial results obtained, additional development work is necessary to make NASA s open rotor system analysis capability on par with existing turbofan analysis capabilities.

  11. The Enzmann Starship: History and Engineering Appraisal

    NASA Astrophysics Data System (ADS)

    Crowl, A.; Long, K. F.; Obousy, R.

    During his student days Robert Duncan-Enzmann imagined a space vehicle design which he depicted in a watercolour painting and apparently dated 1949. In the 1960s he was heavily involved in space-mission design and introduced the concept of a fusion powered interstellar spacecraft design which utilised a 305 m diameter sphere of frozen Deuterium and a long cylindrical habitat/propulsion section joined onto it by a connecting structural column. The spacecraft was to be manned by a small community of people setting out to colonise nearby stars and the entire vessel would have a launch mass of between 3-12 million tons, most of which would be the propellant. Long time space advocate G. Harry Stine, presented the concept to a wider audience via ``Analog Science Fact & Science Fiction '' magazine in 1973. Stine envisioned the Starship to be part of a wider programme of interstellar exploration, beginning in the 1990s. Although the Enzmann Starship is relatively well known in science fiction circles, it is not well known within the interstellar research community and indeed just as little is known about its creator, Robert Enzmann. Very little has been written about the concept in the academic literature and no modern assessment of its engineering credibility exists. This paper sets out to reliably describe what is known about the Enzmann Starship design and also how the idea originated, based upon what is known to date. In this paper the engineering configuration is described, and a performance assessment is given in the context of modern scientific knowledge. Further information on the history and design of the Enzmann Starship is invited so that this concept can take its rightful place in the history of interstellar spacecraft design proposals.

  12. The assessment of engine losses due to friction and lubricant limitations. Final report May 80-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.F.; Taylor, T. Jr; Kallin, R.L.

    A major area for improving the efficiency of spark ignition and diesel engines is a reduction of frictional losses. Existing literature on engine friction was used as a basis for estimating possible gains in engine fuel economy which look promising within the constraints of modern practice. The means considered include reduction in oil viscosity, increase in bearing and piston clearances, possible changes in piston and valve gear design, and reduction of pumping losses. Estimates indicate potential fuel consumption improvements of 3 to 4% for Otto-Cycle at wide open throttle, 7 to 9% for Otto-Cycle at road load, 4 to 5%more » for diesel at wide open throttle, and 6% for diesel at road-load. Much larger gains at road load could be obtained by using a stratified charge system which requires no air throttling. A literature search on techniques for measuring engine friction under firing conditions was also performed and various concepts employing Pressure-Volume Indicator Diagrams were assessed. Balanced pressure and direct pressure measurement in concert with instantaneous measurement of piston position provide the most reliable and repeatable assessment of engine efficiency. Pressure measurements in the range of 1/2 to 1% are achievable with digital processing techniques reducing dramatically the time and effort to generate P-V Indicator Diagrams.« less

  13. Electrical stimulation systems for cardiac tissue engineering

    PubMed Central

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087

  14. Efficient Sensitivity Methods for Probabilistic Lifing and Engine Prognostics

    DTIC Science & Technology

    2010-09-01

    AFRL-RX-WP-TR-2010-4297 EFFICIENT SENSITIVITY METHODS FOR PROBABILISTIC LIFING AND ENGINE PROGNOSTICS Harry Millwater , Ronald Bagley, Jose...5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) Harry Millwater , Ronald Bagley, Jose Garza, D. Wagner, Andrew Bates, and Andy Voorhees 5d...Reliability Assessment, MIL-HDBK-1823, 30 April 1999. 9. Leverant GR, Millwater HR, McClung RC, Enright MP, A New Tool for Design and Certification of

  15. The smooth (tractor) operator: insights of knowledge engineering.

    PubMed

    Cullen, Ralph H; Smarr, Cory-Ann; Serrano-Baquero, Daniel; McBride, Sara E; Beer, Jenay M; Rogers, Wendy A

    2012-11-01

    The design of and training for complex systems requires in-depth understanding of task demands imposed on users. In this project, we used the knowledge engineering approach (Bowles et al., 2004) to assess the task of mowing in a citrus grove. Knowledge engineering is divided into four phases: (1) Establish goals. We defined specific goals based on the stakeholders involved. The main goal was to identify operator demands to support improvement of the system. (2) Create a working model of the system. We reviewed product literature, analyzed the system, and conducted expert interviews. (3) Extract knowledge. We interviewed tractor operators to understand their knowledge base. (4) Structure knowledge. We analyzed and organized operator knowledge to inform project goals. We categorized the information and developed diagrams to display the knowledge effectively. This project illustrates the benefits of knowledge engineering as a qualitative research method to inform technology design and training. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot; Thomas, George; Culley, Dennis; Kratz, Jonathan

    2017-01-01

    Distributed engine control (DEC) systems alter aircraft engine design constraints because of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.

  17. Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Thomas, George Lindsey; Culley, Dennis E.; Kratz, Jonathan L.

    2017-01-01

    Distributed engine control (DEC) systems alter aircraft engine design constraints be- cause of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.

  18. Army Corps of Engineers: Efforts to Assess the Impact of Extreme Weather Events

    DTIC Science & Technology

    2015-07-01

    evaluate the effects of projected future sea level change on its projects and what to consider when adapting projects to this projected change. In...vulnerability assessments for sea level rise on its coastal projects and has begun conducting such assessments at inland watersheds. U.S. Army Corps of...Army Corps of Engineers’ Hurricane Barrier Design Elevation Changes Due to Sea Level Rise 30 Contents

  19. An N+3 Technology Level Reference Propulsion System

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  20. Risk Identification and Visualization in a Concurrent Engineering Team Environment

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Shishko, Robert

    2010-01-01

    Incorporating risk assessment into the dynamic environment of a concurrent engineering team requires rapid response and adaptation. Generating consistent risk lists with inputs from all the relevant subsystems and presenting the results clearly to the stakeholders in a concurrent engineering environment is difficult because of the speed with which decisions are made. In this paper we describe the various approaches and techniques that have been explored for the point designs of JPL's Team X and the Trade Space Studies of the Rapid Mission Architecture Team. The paper will also focus on the issues of the misuse of categorical and ordinal data that keep arising within current engineering risk approaches and also in the applied risk literature.

  1. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    PubMed

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  2. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    NASA Astrophysics Data System (ADS)

    Spicer, C. W.; Holdren, M. W.; Riggin, R. M.; Lyon, T. F.

    1994-10-01

    Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi) on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  3. Engineering thinking in emergency situations: A new nuclear safety concept

    PubMed Central

    Guarnieri, Franck; Travadel, Sébastien

    2014-01-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for “engineering thinking in emergency situations.” This is a new concept that emphasizes adaptability and resilience within organizations—such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident. PMID:25419015

  4. Engineering thinking in emergency situations: A new nuclear safety concept.

    PubMed

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.

  5. Proteomics in the genome engineering era.

    PubMed

    Vandemoortele, Giel; Gevaert, Kris; Eyckerman, Sven

    2016-01-01

    Genome engineering experiments used to be lengthy, inefficient, and often expensive, preventing a widespread adoption of such experiments for the full assessment of endogenous protein functions. With the revolutionary clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 technology, genome engineering became accessible to the broad life sciences community and is now implemented in several research areas. One particular field that can benefit significantly from this evolution is proteomics where a substantial impact on experimental design and general proteome biology can be expected. In this review, we describe the main applications of genome engineering in proteomics, including the use of engineered disease models and endogenous epitope tagging. In addition, we provide an overview on current literature and highlight important considerations when launching genome engineering technologies in proteomics workflows. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Performance improvements of single-engine business airplanes by the integration of advanced technologies

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1982-01-01

    An assessment is presented of the performance gains and economic impact of the integration in general aviation aircraft of advanced technologies, relating to such aspects of design as propulsion, natural laminar flow, lift augmentation, unconventional configurations, and advanced aluminum and composite structures. All considerations are with reference to a baseline mission of 1300 nm range and 300-knot cruise speed with a 1300-lb payload, and a baseline aircraft with a 40 lb/sq ft wing loading and an aspect ratio of 8. Extensive analytical results are presented from the NASA-sponsored General Aviation Synthesis Program. Attention is given to the relative performance gains to be expected from the single-engined baseline aircraft's use of a low cost general aviation turbine engine, a spark-ignited reciprocating engine, a diesel engine, and a Wankel rotary engine.

  7. Turbofan forced mixer lobe flow modeling. Part 3: Application to augment engines

    NASA Technical Reports Server (NTRS)

    Barber, T.; Moore, G. C.; Blatt, J. R.

    1988-01-01

    Military engines frequently need large quantities of thrust for short periods of time. The addition of an augmentor can provide such thrust increases but with a penalty of increased duct length and engine weight. The addition of a forced mixer to the augmentor improves performance and reduces the penalty, as well as providing a method for siting the required flame holders. In this report two augmentor concepts are investigated: a swirl-mixer augmentor and a mixer-flameholder augmentor. Several designs for each concept are included and an experimental assessment of one of the swirl-mixer augmentors is presented.

  8. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  9. Professional development of Russian HEIs' management and faculty in CDIO standards application

    NASA Astrophysics Data System (ADS)

    Chuchalin, Alexander; Malmqvist, Johan; Tayurskaya, Marina

    2016-07-01

    The paper presents the approach to complex training of managers and faculty staff for system modernisation of Russian engineering education. As a methodological basis of design and implementation of the faculty development programme, the CDIO (Conceive-Design-Implement-Operate) Approach was chosen due to compliance of its concept to the purposes and tasks of engineering education development in Russia. The authors describe the structure, the content and implementation technology of the programme designed by Tomsk Polytechnic University and Skolkovo Institute of Science and Technology with the assistance of Chalmers University of Technology and KTH Royal Institute of Technology and other members of the CDIO Initiative. The programme evaluation based on the questionnaire results showed that the programme content is relevant, has high practical value and high level of novelty for all categories of participants. Therefore, the CDIO approach was recommended for implementation to improve various elements of the engineering programme such as learning outcomes, content and structure, teaching, learning and assessment methods. Besides, the feedback results obtained through programme participants' survey contribute to identification of problems preventing development of engineering education in Russia and thus serve as milestones for further development of the programme.

  10. Toward a Real-Time Measurement-Based System for Estimation of Helicopter Engine Degradation Due to Compressor Erosion

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Simo, Donald L.

    2007-01-01

    This paper presents a preliminary demonstration of an automated health assessment tool, capable of real-time on-board operation using existing engine control hardware. The tool allows operators to discern how rapidly individual turboshaft engines are degrading. As the compressor erodes, performance is lost, and with it the ability to generate power. Thus, such a tool would provide an instant assessment of the engine s fitness to perform a mission, and would help to pinpoint any abnormal wear or performance anomalies before they became serious, thereby decreasing uncertainty and enabling improved maintenance scheduling. The research described in the paper utilized test stand data from a T700-GE-401 turboshaft engine that underwent sand-ingestion testing to scale a model-based compressor efficiency degradation estimation algorithm. This algorithm was then applied to real-time Health Usage and Monitoring System (HUMS) data from a T700-GE-701C to track compressor efficiency on-line. The approach uses an optimal estimator called a Kalman filter. The filter is designed to estimate the compressor efficiency using only data from the engine s sensors as input.

  11. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  12. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger aircraft, not only in meeting the regulatory requirements, but also in competing with aircraft of different advanced designs within this N+2 timeframe and goal framework.

  13. An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials.

    PubMed

    Tolaymat, Thabet; El Badawy, Amro; Sequeira, Reynold; Genaidy, Ash

    2015-11-15

    There is an urgent need for broad and integrated studies that address the risks of engineered nanomaterials (ENMs) along the different endpoints of the society, environment, and economy (SEE) complex adaptive system. This article presents an integrated science-based methodology to assess the potential risks of engineered nanomaterials. To achieve the study objective, two major tasks are accomplished, knowledge synthesis and algorithmic computational methodology. The knowledge synthesis task is designed to capture "what is known" and to outline the gaps in knowledge from ENMs risk perspective. The algorithmic computational methodology is geared toward the provision of decisions and an understanding of the risks of ENMs along different endpoints for the constituents of the SEE complex adaptive system. The approach presented herein allows for addressing the formidable task of assessing the implications and risks of exposure to ENMs, with the long term goal to build a decision-support system to guide key stakeholders in the SEE system towards building sustainable ENMs and nano-enabled products. Published by Elsevier B.V.

  14. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    ERIC Educational Resources Information Center

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  15. Bayesian Inference of Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design

    DTIC Science & Technology

    2016-03-01

    design . ERDC/CHL CHETN-X-2. Vicksburg, MS: U.S. Army Engineer Research and Development Center. http://chl.erdc.usace.army. mil/chetn REFERENCES...Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon , D. Qin, M. Manning, Z. Chen, M...Duration- Frequency Curves for Infrastructure Design by Brian E. Skahill, Amir AghaKouchak, Linyin Cheng, Aaron Byrd, and Joseph Kanney

  16. Simulated Engineer Assessment of the Communications Zone Model (SEAC) (Documentation and Users Manual)

    DTIC Science & Technology

    1988-06-01

    became apparent. ESC originally planned to confect a dedicated model, i.e., one specifically designed to address Korea. However, it reconsidered the...s) and should not be construed as an official US Department of the Army position, policy, or decision unless so designated by other official...model based on object-oriented programming design techniques, and uses the process view of simulation to achieve its purpose. As a direct con

  17. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  18. Teaching an Aerospace Engineering Design Course via Virtual Worlds: A Comparative Assessment of Learning Outcomes

    ERIC Educational Resources Information Center

    Okutsu, Masataka; DeLaurentis, Daniel; Brophy, Sean; Lambert, Jason

    2013-01-01

    To test the concept of multiuser 3D virtual environments as media to teach semester-long courses, we developed a software prototype called Aeroquest. An aerospace design course--offered to 135 second-year students for university credits in Fall 2009--was divided into two groups: the real-world group attending lectures, physically, in a campus hall…

  19. Engineering Encounters: No, David! but Yes, Design! Kindergarten Students Are Introduced to a Design Way of Thinking

    ERIC Educational Resources Information Center

    Douglass, Helen

    2016-01-01

    This column presents ideas and techniques to enhance science teaching. In today's classrooms, teachers face numerous challenges. They are preparing students for jobs and careers that are not even conceived of yet. Assessments are being used to address students' college and career readiness and to promote critical thinking and problem solving.…

  20. Instrumental Analysis Chemistry Laboratory

    ERIC Educational Resources Information Center

    Munoz de la Pena, Arsenio; Gonzalez-Gomez, David; Munoz de la Pena, David; Gomez-Estern, Fabio; Sequedo, Manuel Sanchez

    2013-01-01

    designed for automating the collection and assessment of laboratory exercises is presented. This Web-based system has been extensively used in engineering courses such as control systems, mechanics, and computer programming. Goodle GMS allows the students to submit their results to a…

  1. 25 CFR 900.120 - How does an Indian tribe or tribal organization find out about a construction project?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Construction § 900.120 How does an Indian tribe or..., engineering reports, design reports, plans of requirements, cost estimates, environmental assessments, or...

  2. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    NASA Astrophysics Data System (ADS)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  3. A knowledge-based approach to configuration layout, justification, and documentation

    NASA Technical Reports Server (NTRS)

    Craig, F. G.; Cutts, D. E.; Fennel, T. R.; Case, C.; Palmer, J. R.

    1990-01-01

    The design, development, and implementation is described of a prototype expert system which could aid designers and system engineers in the placement of racks aboard modules on Space Station Freedom. This type of problem is relevant to any program with multiple constraints and requirements demanding solutions which minimize usage of limited resources. This process is generally performed by a single, highly experienced engineer who integrates all the diverse mission requirements and limitations, and develops an overall technical solution which meets program and system requirements with minimal cost, weight, volume, power, etc. This system architect performs an intellectual integration process in which the underlying design rationale is often not fully documented. This is a situation which lends itself to an expert system solution for enhanced consistency, thoroughness, documentation, and change assessment capabilities.

  4. A Knowledge-Based Approach to Configuration Layout, Justification, and Documentation

    NASA Technical Reports Server (NTRS)

    Craig, F. G.; Cutts, D. E.; Fennel, T. R.; Case, C. M.; Palmer, J. R.

    1991-01-01

    The design, development, and implementation of a prototype expert system which could aid designers and system engineers in the placement of racks aboard modules on the Space Station Freedom are described. This type of problem is relevant to any program with multiple constraints and requirements demanding solutions which minimize usage of limited resources. This process is generally performed by a single, highly experienced engineer who integrates all the diverse mission requirements and limitations, and develops an overall technical solution which meets program and system requirements with minimal cost, weight, volume, power, etc. This system architect performs an intellectual integration process in which the underlying design rationale is often not fully documented. This is a situation which lends itself to an expert system solution for enhanced consistency, thoroughness, documentation, and change assessment capabilities.

  5. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.

  6. The Effect of Rotor Cruise Tip Speed, Engine Technology and Engine/Drive System RPM on the NASA Large Civil Tiltrotor (LCTR2) Size and Performance

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan

    2012-01-01

    A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.

  7. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Kontos, K. B.; Janardan, B. A.; Gliebe, P. R.

    1996-01-01

    Recent experience using ANOPP to predict turbofan engine flyover noise suggests that it over-predicts overall EPNL by a significant amount. An improvement in this prediction method is desired for system optimization and assessment studies of advanced UHB engines. An assessment of the ANOPP fan inlet, fan exhaust, jet, combustor, and turbine noise prediction methods is made using static engine component noise data from the CF6-8OC2, E(3), and QCSEE turbofan engines. It is shown that the ANOPP prediction results are generally higher than the measured GE data, and that the inlet noise prediction method (Heidmann method) is the most significant source of this overprediction. Fan noise spectral comparisons show that improvements to the fan tone, broadband, and combination tone noise models are required to yield results that more closely simulate the GE data. Suggested changes that yield improved fan noise predictions but preserve the Heidmann model structure are identified and described. These changes are based on the sets of engine data mentioned, as well as some CFM56 engine data that was used to expand the combination tone noise database. It should be noted that the recommended changes are based on an analysis of engines that are limited to single stage fans with design tip relative Mach numbers greater than one.

  8. Civil engineering reference guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, F.S.

    1986-01-01

    The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.

  9. Entropy-Based Performance Analysis of Jet Engines; Methodology and Application to a Generic Single-Spool Turbojet

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammad

    Recently developed methodology that provides the direct assessment of traditional thrust-based performance of aerospace vehicles in terms of entropy generation (i.e., exergy destruction) is modified for stand-alone jet engines. This methodology is applied to a specific single-spool turbojet engine configuration. A generic compressor performance map along with modeled engine component performance characterizations are utilized in order to provide comprehensive traditional engine performance results (engine thrust, mass capture, and RPM), for on and off-design engine operation. Details of exergy losses in engine components, across the entire engine, and in the engine wake are provided and the engine performance losses associated with their losses are discussed. Results are provided across the engine operating envelope as defined by operational ranges of flight Mach number, altitude, and fuel throttle setting. The exergy destruction that occurs in the engine wake is shown to be dominant with respect to other losses, including all exergy losses that occur inside the engine. Specifically, the ratio of the exergy destruction rate in the wake to the exergy destruction rate inside the engine itself ranges from 1 to 2.5 across the operational envelope of the modeled engine.

  10. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  11. Enhancing the Design Process for Complex Space Systems through Early Integration of Risk and Variable-Fidelity Modeling

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri; Osburg, Jan

    2005-01-01

    An important enabler of the new national Vision for Space Exploration is the ability to rapidly and efficiently develop optimized concepts for the manifold future space missions that this effort calls for. The design of such complex systems requires a tight integration of all the engineering disciplines involved, in an environment that fosters interaction and collaboration. The research performed under this grant explored areas where the space systems design process can be enhanced: by integrating risk models into the early stages of the design process, and by including rapid-turnaround variable-fidelity tools for key disciplines. Enabling early assessment of mission risk will allow designers to perform trades between risk and design performance during the initial design space exploration. Entry into planetary atmospheres will require an increased emphasis of the critical disciplines of aero- and thermodynamics. This necessitates the pulling forward of EDL disciplinary expertise into the early stage of the design process. Radiation can have a large potential impact on overall mission designs, in particular for the planned nuclear-powered robotic missions under Project Prometheus and for long-duration manned missions to the Moon, Mars and beyond under Project Constellation. This requires that radiation and associated risk and hazards be assessed and mitigated at the earliest stages of the design process. Hence, RPS is another discipline needed to enhance the engineering competencies of conceptual design teams. Researchers collaborated closely with NASA experts in those disciplines, and in overall space systems design, at Langley Research Center and at the Jet Propulsion Laboratory. This report documents the results of this initial effort.

  12. Developing a framework for qualitative engineering: Research in design and analysis of complex structural systems

    NASA Technical Reports Server (NTRS)

    Franck, Bruno M.

    1990-01-01

    The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.

  13. Design Patterns for Learning and Assessment: Facilitating the Introduction of a Complex Simulation-Based Learning Environment into a Community of Instructors

    ERIC Educational Resources Information Center

    Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.

    2010-01-01

    Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are…

  14. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  15. An Analysis of U.S. Army Health Hazard Assessments During the Acquisition of Military Materiel

    DTIC Science & Technology

    2010-06-03

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...administrative controls and the use of personal protective equipment (PPE) (Milz, Conrad, & Soule , 2003). Engineering controls can eliminate hazards through...facilitate hazard free designs or conditions (Milz, Conrad, & Soule , 2003). Engineering control measures can serve to 7 minimize hazards where they

  16. Software engineering project management - A state-of-the-art report

    NASA Technical Reports Server (NTRS)

    Thayer, R. H.; Lehman, J. H.

    1977-01-01

    The management of software engineering projects in the aerospace industry was investigated. The survey assessed such features as contract type, specification preparation techniques, software documentation required by customers, planning and cost-estimating, quality control, the use of advanced program practices, software tools and test procedures, the education levels of project managers, programmers and analysts, work assignment, automatic software monitoring capabilities, design and coding reviews, production times, success rates, and organizational structure of the projects.

  17. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed 2-D (Simulink) model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the 2-D model vs. a full 3-D (ADAMS) model are discussed as well.

  18. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  19. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst-case scenario occurs just before Upper Stage Main Engine Cut-Off when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  20. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and it's engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

Top