Sample records for engineering design courses

  1. Sustainability by Design: A Reflection on the Suitability of Pedagogic Practice in Design and Engineering Courses in the Teaching of Sustainable Design

    ERIC Educational Resources Information Center

    Morris, Richard; Childs, Peter; Hamilton, Tom

    2007-01-01

    Courses in product design are offered within the United Kingdom at the University of Brighton and the University of Sussex and in both cases are run within engineering departments alongside traditional engineering courses. This paper outlines some of the intrinsic pedagogic practices that are employed by these, and other, design courses. It…

  2. Design and Implementation of a Project-Based Active/Cooperative Engineering Design Course for Freshmen

    ERIC Educational Resources Information Center

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-01-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long…

  3. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    ERIC Educational Resources Information Center

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  4. Development and Application of a Systems Engineering Framework to Support Online Course Design and Delivery

    ERIC Educational Resources Information Center

    Bozkurt, Ipek; Helm, James

    2013-01-01

    This paper develops a systems engineering-based framework to assist in the design of an online engineering course. Specifically, the purpose of the framework is to provide a structured methodology for the design, development and delivery of a fully online course, either brand new or modified from an existing face-to-face course. The main strength…

  5. Table-Top Robotics for Engineering Design

    ERIC Educational Resources Information Center

    Wilczynski, Vincent; Dixon, Gregg; Ford, Eric

    2005-01-01

    The Mechanical Engineering Section at the U.S. Coast Guard Academy has developed a comprehensive activity based course to introduce second year students to mechanical engineering design. The culminating design activity for the course requires students to design, construct and test robotic devices that complete engineering challenges. Teams of…

  6. Incorporating Engineering Design Challenges into STEM Courses

    ERIC Educational Resources Information Center

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  7. Development and Testing of Assessment Instruments for Multidisciplinary Engineering Capstone Design Courses

    ERIC Educational Resources Information Center

    Gerlick, Robert Edward

    2010-01-01

    The research presented in this manuscript was focused on the development of assessments for engineering design outcomes. The primary goal was to support efforts by the Transferrable Integrated Design Engineering Education (TIDEE) consortium in developing assessment instruments for multidisciplinary engineering capstone courses. Research conducted…

  8. High School Engineering and Technology Education Integration through Design Challenges

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  9. Engineering Design EDUCATION: When, What, and HOW

    ERIC Educational Resources Information Center

    Khalaf, Kinda; Balawi, Shadi; Hitt, George Wesley; Radaideh, Ahmad

    2013-01-01

    This paper presents an innovative, interdisciplinary, design-and-build course created to improve placement, content, and pedagogy for introductory engineering design education. Infused at the freshman level, the course aims to promote expert design thinking by using problem-based learning (PBL) as the mode of delivery. The course is structured to…

  10. Theo Jansen Project in Engineering Design Course and a Design Example

    ERIC Educational Resources Information Center

    Liu, Yucheng; Artigue, Aaron; Sommers, Jeremy; Chambers, Terence

    2011-01-01

    Objectives of a project-oriented mechanical engineering course, Engineering Design, were achieved through a design project, where students designed, built and demonstrated an extreme version of a basic Theo Jansen device. Through this project, junior students in the University of Louisiana fully developed the capability of applying mathematic and…

  11. An Undergraduate Electrical Engineering Course on Computer Organization.

    ERIC Educational Resources Information Center

    Commission on Engineering Education, Washington, DC.

    Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…

  12. Structure and Management of an Engineering Senior Design Course.

    PubMed

    Tanaka, Martin L; Fischer, Kenneth J

    2016-07-01

    The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.

  13. Linking First-Year and Senior Engineering Design Teams: Engaging Early Academic Career Students in Engineering Design

    ERIC Educational Resources Information Center

    Fox, Garey A.; Weckler, Paul; Thomas, Dan

    2015-01-01

    In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and trans­fer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…

  14. Engineers: Designers--No Alibis.

    ERIC Educational Resources Information Center

    Stevens, Susan A. R.; Wilkins, Linda C.

    Engineering is the science, art, and business of designing and getting things done; engineers are required to make things happen through interpersonal relationships. At Monash University (Australia), a new course, Management for Engineers, was set up in 1990 to encourage a more holistic approach to the process of engineering. The course included…

  15. The effects of computer-aided design software on engineering students' spatial visualisation skills

    NASA Astrophysics Data System (ADS)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  16. Student Self-Efficacy in Introductory Project-Based Learning Courses

    NASA Astrophysics Data System (ADS)

    Pleiss, Geoffrey; Zastavker, Yevgeniya V.

    2012-02-01

    This study investigates first-year engineering students' self-efficacy in two introductory Project-Based Learning (PjBL) courses -- Physics (Mechanics) Laboratory and Engineering Design -- taught at a small technical institution. Twelve students participated in semi-structured open-ended interviews about their experiences in both courses. Analysis was performed using grounded theory. Results indicate that students had lower self-efficacy in Physics Lab than in Engineering Design. In Physics Lab, students reported high levels of faculty-supported scaffolding related to final project deliverables, which in turn established perceptions of an outcome-based course emphasis. Conversely, in Engineering Design, students observed high levels of scaffolding related to the intermediate project deliverables, highlighting process-centered aspects of the course. Our analyses indicate that this difference in student perceptions of course emphases -- resulting from the differences in scaffolding -- is a primary factor for the discrepancy in self-efficacy between Physics Lab and Engineering Design. Future work will examine how other variables (e.g., academic background, perception of community, gender) affect students' self-efficacy and perception of scaffolding in these PjBL courses.

  17. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  18. High School Student Modeling in the Engineering Design Process

    ERIC Educational Resources Information Center

    Mentzer, Nathan; Huffman, Tanner; Thayer, Hilde

    2014-01-01

    A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts…

  19. Engineering for Liberal Arts and Engineering Students.

    ERIC Educational Resources Information Center

    The Weaver, 1986

    1986-01-01

    Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…

  20. A Course in Electrochemical and Corrosion Engineering.

    ERIC Educational Resources Information Center

    Van Zee, John

    1985-01-01

    Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)

  1. Enhancing Engineering Computer-Aided Design Education Using Lectures Recorded on the PC

    ERIC Educational Resources Information Center

    McGrann, Roy T. R.

    2006-01-01

    Computer-Aided Engineering (CAE) is a course that is required during the third year in the mechanical engineering curriculum at Binghamton University. The primary objective of the course is to educate students in the procedures of computer-aided engineering design. The solid modeling and analysis program Pro/Engineer[TM] (PTC[R]) is used as the…

  2. Senior Design in Agricultural Engineering--Progress and Pitfalls.

    ERIC Educational Resources Information Center

    Holmes, R. G.; Rohrbach, R. P.

    1979-01-01

    Describes a specific senior design course and its objectives. Explains the basic deficiencies and problems for design education in agricultural engineering. Also stresses the effect the project advisor has on students' attitudes toward design and the applications of the course. (SMB)

  3. Creating a Strong Foundation with Engineering Design Graphics.

    ERIC Educational Resources Information Center

    Newcomer, Jeffrey L.; McKell, Eric K.; Raudebaugh, Robert A.; Kelley, David S.

    2001-01-01

    Describes the two-course engineering design graphics sequence on introductory design and graphics topics. The first course focuses on conceptual design and the development of visualization and sketching skills while the second one concentrates on detail design and parametric modeling. (Contains 28 references.) (Author/ASK)

  4. Optical engineering capstone design projects with industry sponsors

    NASA Astrophysics Data System (ADS)

    Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.

    2014-09-01

    Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.

  5. A Course in Medicine and Clinical Engineering for Engineers.

    ERIC Educational Resources Information Center

    Webster, John G.

    A biomedical engineering course at the University of Wisconsin is described. The course is a comprehensive survey designed to develop the student's ability to participate in the solution of medical problems, particularly in areas involving technology. Course objectives and lecture outlines are provided. (MLH)

  6. Capstone Engineering Design Projects for Community Colleges

    ERIC Educational Resources Information Center

    Walz, Kenneth A.; Christian, Jon R.

    2017-01-01

    Capstone engineering design courses have been a feature at research universities and four-year schools for many years. Although such classes are less common at two-year colleges, the experience is equally beneficial for this population of students. With this in mind, Madison College introduced a project-based Engineering Design course in 2007.…

  7. Introduction to Engineering. Course I: Challenges of Engineering. Course II: Engineering Projects.

    ERIC Educational Resources Information Center

    Barrier, Lynn P.

    This guide, which is designed to be used in a two-course sequence, is intended to prepare college-bound high school juniors and seniors for engineering and related courses at the college level. The guide was developed as part of an experimental competency-based curriculum that integrates the high-tech applications of mathematics and science…

  8. Mechatronic system design course for undergraduate programmes

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-08-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.

  9. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    ERIC Educational Resources Information Center

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  10. How Student Written Communication Skills Benefit during Participation in an Industry-Sponsored Civil Engineering Capstone Course

    ERIC Educational Resources Information Center

    Fries, Ryan; Cross, Brad; Zhou, Jianpeng; Verbais, Chad

    2017-01-01

    Because many engineering programs use capstone design courses and value strong communication abilities, authors sought to identify how student written communication skills changed because of industry-sponsored capstone design projects. A student exit survey was collected at the end of the capstone design course during faculty-led projects and…

  11. Planetary materials and resource utilization: An interdisciplinary engineering design course at Michigan Technological University

    NASA Technical Reports Server (NTRS)

    Rose, W. I.; Paces, J. B.; Chesner, C. A.; Pletka, B. J.; Hellawell, A.; Kawatra, S. K.; Pilling, J. E.

    1990-01-01

    A new course was developed and instituted in the spring quarter of 1989 dealing with topics related to space resource utilization and related engineering. The course development required a concerted, coordinated effort, because a similar course which might be used as a guide could not be identified anywhere and the interdisciplinary perspective that was required was not identified anywhere on the university campus. Students in the class worked on interdisciplinary design projects which culminated in papers and oral presentations. Each of the six design groups consisted of several engineers with different disciplinary roots. The entire course lecture sequence, about 50 hours in all, was videotaped. Discussed here are the authors' experiences in developing the course, including the course syllabus and speaker list.

  12. Teaching Teachers to Teach Green Engineering

    ERIC Educational Resources Information Center

    Flynn, Ann Marie; Naraghi, Mohammad H.; Austin, Nicole; Helak, Sean; Manzer, Jarrod

    2006-01-01

    The work provides guidelines for instructors who wish to incorporate green engineering concepts into a typical non-green engineering course without diluting course content or modifying the course syllabus by identifying 5 critical elements necessary to the successful integration of green engineering concepts into any traditional, design-oriented,…

  13. Space Engineering Projects in Design Methodology

    NASA Technical Reports Server (NTRS)

    Crawford, R.; Wood, K.; Nichols, S.; Hearn, C.; Corrier, S.; DeKunder, G.; George, S.; Hysinger, C.; Johnson, C.; Kubasta, K.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design courses of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, focusing on the first-semester design methodology course. The philosophical basis and pedagogical structure of this course is summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper includes a summary of the projects completed during the 1992-93 Academic Year in the methodology course, and concludes with an example of two projects completed by student design teams.

  14. Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course

    DTIC Science & Technology

    2016-01-01

    American Institute of Aeronautics and Astronautics 1 Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course...development costs, engine production costs, and scheduling (Byerley A. R., 2013) as well as the linkage between turbine inlet temperature, blade cooling...analysis SE majors have studied and how this is linked to the specific issues they must face in aircraft gas turbine engine design. Aeronautical and

  15. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    ERIC Educational Resources Information Center

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  16. Easy method of matching fighter engine to airframe for use in aircraft engine design courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattingly, J.D.

    1989-01-01

    The proper match of the engine(s) to the airframe affects both aircraft size and life cycle cost. A fast and straightforward method is developed and used for the matching of fighter engine(s) to airframes during conceptual design. A thrust-lapse equation is developed for the dual-spool, mixed-flow, afterburning turbofan type of engine based on the installation losses of 'Aircraft Engine Design' and the performance predictions of the cycle analysis programs ONX and OFFX. Using system performance requirements, the effects of aircraft thrust-to-weight, wing loading, and engine cycle on takeoff weight are analyzed and example design course results presented. 5 refs.

  17. Course Design and Student Responses to an Online PBL Course in 3D Modelling for Mining Engineers

    ERIC Educational Resources Information Center

    McAlpine, Iain; Stothard, Phillip

    2005-01-01

    To enhance a course in 3D Virtual Reality (3D VR) modelling for mining engineers, and to create the potential for off campus students to fully engage with the course, a problem based learning (PBL) approach was applied to the course design and all materials and learning activities were provided online. This paper outlines some of the theoretical…

  18. Implementation of a Project-Based Telecommunications Engineering Design Course

    ERIC Educational Resources Information Center

    Aliakbarian, Hadi; Soh, Ping Jack; Farsi, Saeed; Xu, Hantao; Van Lil, Emmanuel H. E. M. J. C.; Nauwelaers, Bart K. J. C.; Vandenbosch, Guy A. E.; Schreurs, Dominique M. M.-P.

    2014-01-01

    This paper describes and discusses the implementation of a project-based graduate design course in telecommunications engineering. This course, which requires a combination of technical and soft skills for its completion, enables guided independent learning (GIL) and application of technical knowledge acquired from classroom learning. Its main…

  19. Renovation of a mechanical engineering senior design class to an industry-tied and team-oriented course

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng

    2017-11-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.

  20. Culturally responsive engineering education: A case study of a pre-college introductory engineering course at Tibetan Children's Village School of Selakui

    NASA Astrophysics Data System (ADS)

    Santiago, Marisol Mercado

    Culturally responsive teaching has been argued to be effective in the education of Indigenous youth. This approach emphasizes the legitimacy of a group's cultural heritage, helps to associate abstract academic knowledge with the group's sociocultural context, seeks to incorporate a variety of strategies to engage students who have different learning styles, and strives to integrate multicultural information in the educational contents, among other considerations. In this work, I explore the outcomes of a culturally responsive introductory engineering short course that I developed and taught to Tibetan students at Tibetan Children's Village of Selakui (in Uttarakhand, India). Based on my ethnographic research in Tibetan communities in northern India, I examine two research questions: (a) What are the processes to develop and implement a pre-college culturally responsive introductory engineering course? and (b) How do Tibetan culture and Buddhism influence the engineering design and teamwork of the pre-college Tibetan students who took the course? I designed then taught the course that featured elementary lectures on sustainability, introductory engineering design, energy alternatives, and manufacturing engineering. The course also included a pre-college engineering design project through which Tibetan high school students investigated a problem at the school and designed a possible solution to it. Drawing from postcolonial studies, engineering studies, engineering and social justice, Buddhist studies, and Tibetan studies, I provide an analysis of my findings. Based on my findings, I conclude that my culturally responsive approach of teaching was an effective method to help students feel that their cultural background was respected and included in a pre-college engineering course; however, some students felt resistance toward the teaching approach. In addition, the culturally relevant content that connected with their ways of living in their school, Tibetan communities, and surroundings helped the students to relate to abstract concepts in familiar settings. Lastly, they appreciated that I brought to the course relevant information about technology and society in India (their host country), engineers' work in industry, technologies used in other contexts as well, and projects that show how engineers can help to alleviate poverty. The findings of my research can inform (a) educators who are interested in integrating culturally responsive activities in their teaching methods, (b) researchers or teachers in ethnic minority schools abroad, (c) educators interested in developing engineering activities or courses for underrepresented ethnic minorities, ethnic diasporas or refugee youth in the United States, and (d) facilitators at multicultural engineering summer camps in the United States.

  1. Kuwaiti engineers' perspectives of the engineering senior design (Capstone) course as related to their professional experiences

    NASA Astrophysics Data System (ADS)

    Alsagheer, Abdullah

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design methodology, I interviewed 12 engineers who have recently experienced the senior design course at Kuwait University and are presently working in industry. From the analysis, four basic themes emerged that further delineate the focus of the entire study. The themes are 1) need for the capstone course, 2) applicability of and problems with the capstone course, 3) industry problems with training, and 4) students' attitudes toward the capstone course. The study concludes that participants are not transferring engineering skills; rather, they are transferring all types of instructions they have been given during their course of study at the university. A frequent statement is that the capstone course should be improved and specifically that it is necessary to improve upon the timing, schedule, teachers' behavior, contents, and format. The study concludes that Kuwaiti engineers on the whole face problems with time management and management support. The study includes some implications for Kuwait University and recommendations that can provide significant support for the development of the Senior Design (Capstone) Course. For examples: the project must be divided into phases to ensure timely completion of deliverables. In order to motivate students for hard work and to achieve true transfer of learning, Kuwait University is required to communicate with certain organizations to place its students at their research centers for capstone projects. All universities, including Kuwait University, should hire faculty specifically to run the capstone course. In conclusion, the study includes some suggestions for further research studies focused on issues related to the Senior Design (Capstone) Course. Future researchers should focus on developing the project-based course in earlier stages of students' educational program by investigating more about the relationship between student achievement and the market demand.

  2. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  3. A Multidimensional Software Engineering Course

    ERIC Educational Resources Information Center

    Barzilay, O.; Hazzan, O.; Yehudai, A.

    2009-01-01

    Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…

  4. Design methodology and projects for space engineering

    NASA Technical Reports Server (NTRS)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  5. Railway project design and construction (CEE 411) course updates.

    DOT National Transportation Integrated Search

    2017-01-20

    Course CEE 411 "Railway Project Design and Construction" is a cornerstone of the railway : engineering education program developed by the Rail Transportation and Engineering Center : (RailTEC) at the University of Illinois at Urbana-Champaign (UIUC)....

  6. A Curriculum Model: Engineering Design Graphics Course Updates Based on Industrial and Academic Institution Requirements

    ERIC Educational Resources Information Center

    Meznarich, R. A.; Shava, R. C.; Lightner, S. L.

    2009-01-01

    Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…

  7. A Design-Based Engineering Graphics Course for First-Year Students.

    ERIC Educational Resources Information Center

    Smith, Shana Shiang-Fong

    2003-01-01

    Describes the first-year Introduction to Design course at Iowa State University which incorporates design for manufacturing and concurrent engineering principles into the curriculum. Autodesk Inventor was used as the primary CAD tool for parametric solid modeling. Test results show that student spatial visualization skills were dramatically…

  8. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  9. The Impact of New Learning Environments in an Engineering Design Course

    ERIC Educational Resources Information Center

    Dinsmore, Daniel L.; Alexander, Patricia A.; Loughlin, Sandra M.

    2008-01-01

    In this study, we investigated the effects of students' participation in a collaborative, project-based engineering design course on their domain knowledge, interests, and strategic processing. Participants were 70 college seniors working in teams on a design project of their choosing. Their declarative, procedural, and principled knowledge, along…

  10. Project-Based Curriculum for Teaching Analytical Design to Freshman Engineering Students via Reconfigurable Trebuchets

    ERIC Educational Resources Information Center

    Herber, Daniel R.; Deshmukh, Anand P.; Mitchell, Marlon E.; Allison, James T.

    2016-01-01

    This paper presents an effort to revitalize a large introductory engineering course for incoming freshman students that teaches them analytical design through a project-based curriculum. This course was completely transformed from a seminar-based to a project-based course that integrates hands-on experimentation with analytical work. The project…

  11. The MUSES Satellite Team and Multidisciplinary System Engineering

    NASA Technical Reports Server (NTRS)

    Chen, John C.; Paiz, Alfred R.; Young, Donald L.

    1997-01-01

    In a unique partnership between three minority-serving institutions and NASA's Jet Propulsion Laboratory, a new course sequence, including a multidisciplinary capstone design experience, is to be developed and implemented at each of the schools with the ambitious goal of designing, constructing and launching a low-orbit Earth-resources satellite. The three universities involved are North Carolina A&T State University (NCA&T), University of Texas, El Paso (UTEP), and California State University, Los Angeles (CSULA). The schools form a consortium collectively known as MUSES - Minority Universities System Engineering and Satellite. Four aspects of this project make it unique: (1) Including all engineering disciplines in the capstone design course, (2) designing, building and launching an Earth-resources satellite, (3) sustaining the partnership between the three schools to achieve this goal, and (4) implementing systems engineering pedagogy at each of the three schools. This paper will describe the partnership and its goals, the first design of the satellite, the courses developed at NCA&T, and the implementation plan for the course sequence.

  12. Design and integration of a problem-based biofabrication course into an undergraduate biomedical engineering curriculum.

    PubMed

    Raman, Ritu; Mitchell, Marlon; Perez-Pinera, Pablo; Bashir, Rashid; DeStefano, Lizanne

    2016-01-01

    The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method. Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication. We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.

  13. Teaching Continuum Mechanics in a Mechanical Engineering Program

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  14. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    NASA Astrophysics Data System (ADS)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  15. Interactive Web-Based and Hands-On Engineering Education: A Freshman Aerospace Design Course at MIT.

    ERIC Educational Resources Information Center

    Newman, Dava J.

    "Introduction to Aerospace and Design" is a 3-hour per week freshman elective course at Massachusetts Institute of Technology (MIT) that culminates in a Lighter-Than-Air (LTA) vehicle design competition, exposing freshmen to the excitement of aerospace engineering design typically taught in the junior or senior years. In addition to the…

  16. Project-Based Learning Courses: The Relationship Between Faculty-Intended Course Implementation and Students' Perceptions

    NASA Astrophysics Data System (ADS)

    Simonovich, Jennifer A.; Towers, Emily; Zastavker, Yevgeniya V.

    2012-02-01

    Project-based learning (PjBL) has been shown to improve students' performance and satisfaction with their coursework, particularly in science and engineering courses. Specific aspects of PjBL that contribute to this improvement are student autonomy, course scaffolding, and instructor support. This study investigates two PjBL courses required for engineering majors at a small technical school, Introductory Mechanics Laboratory and Introductory Engineering Design. The three data sources used in this work are classroom observations (one laboratory and four design sessions) and semi-structured in-depth interviews with twelve students and six faculty. Grounded theory approach is used in a two-step fashion by (1) analyzing each data set individually and (2) performing full triangulation of all three data sets. In this talk, we demonstrate the relationship between faculty intentions and student perceptions regarding the three PjBL aspects -- student autonomy, course scaffolding, and instructor support -- within the context of these two courses. We further discuss implications for the course design and professional development of faculty.

  17. Student-driven courses on the social and ecological responsibilities of engineers : commentary on "student-inspired activities for the teaching and learning of engineering ethics".

    PubMed

    Baier, André

    2013-12-01

    A group of engineering students at the Technical University of Berlin, Germany, designed a course on engineering ethics. The core element of the developed Blue Engineering course are self-contained teaching-units, "building blocks". These building blocks typically cover one complex topic and make use of various teaching methods using moderators who lead discussions, rather than experts who lecture. Consequently, the students themselves started to offer the credited course to their fellow students who take an active role in further developing the course themselves.

  18. Designing Online Courses To Discourage Dishonesty.

    ERIC Educational Resources Information Center

    Christe, Barbara

    2003-01-01

    Presents techniques used within one university's Electrical and Computer Engineering Technology department to develop online courses that discourage student dishonesty, focusing on: academic dishonesty; course design focus area (syllabus design, content presentation, student-teacher relationship, assessment design, and monitoring tools); and…

  19. Incorporating a Product Archaeology Paradigm across the Mechanical Engineering Curriculum

    ERIC Educational Resources Information Center

    Moore-Russo, Deborah; Cormier, Phillip; Lewis, Kemper; Devendorf, Erich

    2013-01-01

    Historically, the teaching of design theory in an engineering curriculum has been relegated to a senior capstone design experience. Presently, however, engineering design concepts and courses can be found through the entirety of most engineering programs. Educators have recognized that engineering design provides a foundational platform that can…

  20. Implementing and Assessing a Flipped Classroom Model for First-Year Engineering Design

    ERIC Educational Resources Information Center

    Saterbak, Ann; Volz, Tracy; Wettergreen, Matthew

    2016-01-01

    Faculty at Rice University are creating instructional resources to support teaching first-year engineering design using a flipped classroom model. This implementation of flipped pedagogy is unusual because content-driven, lecture courses are usually targeted for flipping, not project-based design courses that already incorporate an abundance of…

  1. Using experimental design modules for process characterization in manufacturing/materials processes laboratories

    NASA Technical Reports Server (NTRS)

    Ankenman, Bruce; Ermer, Donald; Clum, James A.

    1994-01-01

    Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.

  2. Design and Development of a Course in Professionalism and Ethics for CDIO Curriculum in China.

    PubMed

    Fan, Yinghui; Zhang, Xingwei; Xie, Xinlu

    2015-10-01

    At Shantou University (STU) in 2008, a stand-alone engineering ethics course was first included within a Conceive-Design-Implement-Operate (CDIO) curriculum to address the scarcity of engineering ethics education in China. The philosophy of the course design is to help students to develop an in-depth understanding of social sustainability and to fulfill the obligations of engineers in the twenty-first century within the context of CDIO engineering practices. To guarantee the necessary cooperation of the relevant parties, we have taken advantage of the top-down support from the STU administration. Three themes corresponding to contemporary issues in China were chosen as the course content: engineers' social obligations, intellectual property and engineering safety criteria. Some popular pedagogies are used for ethics instruction such as case studies and group discussions through role-playing. To impart the diverse expertise of the practical professional practice, team teaching is adopted by interdisciplinary instructors with strong qualifications and industrial backgrounds. Although the assessment of the effectiveness of the course in enhancing students' sense of ethics is limited to assignment reports and class discussions, our endeavor is seen as positive and will continue to sustain the CDIO reform initiatives of STU.

  3. Enhanced Learning from an Industry-University Partnership. Aluminum Engineering Course Design and Development.

    ERIC Educational Resources Information Center

    Pai, Devdas M.; DeBlasio, Richard A.

    1997-01-01

    The example of Alcoa and North Carolina State University shows that partnerships in course design, development, and delivery can result in an engineering curriculum that bridges theory and practice and makes students aware of industry expectations. (SK)

  4. Implementing Entrepreneurial Assignments in a Multidisciplinary, Sophomore-Level Design Course

    ERIC Educational Resources Information Center

    Dahm, Kevin; Riddell, William; Merrill, Thomas; Harvey, Roberta; Weiss, Leigh

    2013-01-01

    Many engineering programs stress the importance of technological innovation by offering entrepreneurship electives and programs. Integration of entrepreneurship into the required engineering curriculum has predominantly focused on senior capstone design courses. This paper describes a strategy for integrating entrepreneurship into a…

  5. An Evaluation of HigherEd 2.0 Technologies in Undergraduate Mechanical Engineering Courses

    ERIC Educational Resources Information Center

    Orange, Amy; Heinecke, Walter; Berger, Edward; Krousgrill, Charles; Mikic, Borjana; Quinn, Dane

    2012-01-01

    Between 2006 and 2010, sophomore engineering students at four universities were exposed to technologies designed to increase their learning in undergraduate engineering courses. Our findings suggest that students at all sites found the technologies integrated into their courses useful to their learning. Video solutions received the most positive…

  6. Problem-Based Learning in Engineering Ethics Courses

    ERIC Educational Resources Information Center

    Kirkman, Robert

    2016-01-01

    I describe the first stages of a process of design research in which I employ problem-based learning in a course in engineering ethics, which fulfills a requirement for students in engineering degree programs. The aim of the course is to foster development of particular cognitive skills contributing to moral imagination, a capacity to notice,…

  7. Evidence-Based Conclusions Concerning Practice, Curriculum Design and Curriculum Reform in a Civil Engineering Capstone Design Course in Hong Kong

    ERIC Educational Resources Information Center

    Chan, Cecilia K. Y.; Wong, George C. K.; Law, Ada K. H.; Zhang, T.; Au, Francis T. K.

    2017-01-01

    This study aimed to provide evidence-based conclusions from students concerning a capstone-design course in a civil engineering programme in Hong Kong. The evidence was generated by designing a student-experience questionnaire. The questionnaire instrument was assessed for internal consistency in four scales (curriculum and structure changes;…

  8. [Research-oriented experimental course of plant cell and gene engineering for undergraduates].

    PubMed

    Xiaofei, Lin; Rong, Zheng; Morigen, Morigen

    2015-04-01

    Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.

  9. Designing a hands-on brain computer interface laboratory course.

    PubMed

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  10. Designing computer learning environments for engineering and computer science: The scaffolded knowledge integration framework

    NASA Astrophysics Data System (ADS)

    Linn, Marcia C.

    1995-06-01

    Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.

  11. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    NASA Astrophysics Data System (ADS)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  12. Designing for Success: Developing Engineers Who Consider Universal Design Principles

    ERIC Educational Resources Information Center

    Bigelow, Kimberly Edginton

    2012-01-01

    Engineers must design for a diverse group of potential users of their products; however, engineering curricula rarely include an emphasis on universal design principles. This research article details the effectiveness of a design project implemented in a first-year engineering course in an effort to raise awareness of the need for engineers to be…

  13. Difficulties of Student Teachers in the Engineering Graphics and Design Course at a South African University: Snapshot on Sectional Drawing

    ERIC Educational Resources Information Center

    Makgato, Moses; Khoza, Samuel D.

    2016-01-01

    Engineering Graphics and Design (EGD) is a university course that teaches a medium of communication in the form of drawings. This study was undertaken to investigate factors associated with the difficulties experienced by student teachers in the sectional drawing component of the EGD course. Purposive sampling was used to select 40 students…

  14. Design and Assessment of an "Engineering" Course for Non-Majors

    ERIC Educational Resources Information Center

    Sorby, Sheryl A.; Oppliger, Douglas E.; Boersma, Norma

    2006-01-01

    As a profession, engineering is not well understood by the general public. Engineers are perceived as "geeks" who love math and who have few interests outside of technical work. In short, the engineering profession has an image problem. In order to counteract this negative stereotyping, an engineering course for non-majors was developed…

  15. Classroom Experiences in an Engineering Design Graphics Course with a CAD/CAM Extension.

    ERIC Educational Resources Information Center

    Barr, Ronald E.; Juricic, Davor

    1997-01-01

    Reports on the development of a new CAD/CAM laboratory experience for an Engineering Design Graphics (EDG) course. The EDG curriculum included freehand sketching, introduction to Computer-Aided Design and Drafting (CADD), and emphasized 3-D solid modeling. Reviews the project and reports on the testing of the new laboratory components which were…

  16. Engineering Technology Programs Courses Guide for Computer Aided Design and Computer Aided Manufacturing.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Div. of Vocational Education.

    This guide describes the requirements for courses in computer-aided design and computer-aided manufacturing (CAD/CAM) that are part of engineering technology programs conducted in vocational-technical schools in Georgia. The guide is organized in five sections. The first section provides a rationale for occupations in design and in production,…

  17. Development of a Self-Instructional Course in Engineering Statics. Final Report.

    ERIC Educational Resources Information Center

    Alexander, Daniel E.

    Reported is the development of a self-instructional course in engineering statics designed for engineering students that has been implemented in several institutions. There are 15 unit modules in the course divided into three different levels. Each unit begins with a description of general objectives. The unit is then divided into several subunits…

  18. The Evolution of Inquiry Activities in the Akamai Observatory Short Course, 2004-2009

    NASA Astrophysics Data System (ADS)

    Rice, E. L.; McElwain, M.; Sonnett, S.; Rafelski, M.

    2010-12-01

    The Akamai Observatory Short Course (AOSC) is a five-day course of activities designed to prepare college students majoring in science, technology, engineering, and mathematics (STEM) fields for internships at observatories on the Big Island of Hawai'i. The design and implementation of inquiry-based activities in the AOSC have evolved considerably over the six years of the course. The content goals have always focused on the basic understanding of light and optics necessary to understand telescopes, but the scientific process goals gradually evolved to reflect the increasingly recognized importance of engineering design skills for successful observatory internships. In 2004 the inquiry-based activities were limited to one well-established Color, Light, and Spectra activity. In subsequent years more activities were customized and expanded upon to reflect the learners' diverse academic backgrounds, the developing goals of the short course, and feedback from internship hosts. The most recent inquiry, the Design and Build a Telescope activity, engaged students in designing and building a simple telescope, emphasizing science and engineering process skills in addition to science content. This activity was influenced by the Mission Design activity, added in 2006, that incorporated the application of inquiry-based learning to the engineering design process and allowed students to draw upon their diverse prior knowledge and experience. In this paper we describe the inquiry-based activities in the AOSC in the context of its year-to-year evolution, including the conceptual and pragmatic changes to the short course that influenced the evolution.

  19. Computer Aided Design in FE. Some Suggestions on the Inclusion of CAD Topics in Mechanical Engineering Courses. An Occasional Paper.

    ERIC Educational Resources Information Center

    Ingham, P. C.

    This report investigates the feasibility of including computer aided design (CAD) materials in engineering courses. Section 1 briefly discusses the inevitability of CAD being adopted widely by British industry and the consequent need for its inclusion in engineering syllabi at all levels. A short description of what is meant by CAD follows in…

  20. Teaching Agile Software Engineering Using Problem-Based Learning

    ERIC Educational Resources Information Center

    El-Khalili, Nuha H.

    2013-01-01

    Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…

  1. Where Are We Now? Statistics on Capstone Courses Nationwide

    ERIC Educational Resources Information Center

    Howe, Susannah

    2010-01-01

    Capstone design courses are an increasingly common component of engineering curricula nationwide, but how much do we really know about the current practices? How do capstone courses differ across departments and institutions? How have capstone courses changed in the past 10 years? This paper highlights data from a survey of engineering capstone…

  2. A community-based, interdisciplinary rehabilitation engineering course.

    PubMed

    Lundy, Mary; Aceros, Juan

    2016-08-01

    A novel, community-based course was created through collaboration between the School of Engineering and the Physical Therapy program at the University of North Florida. This course offers a hands-on, interdisciplinary training experience for undergraduate engineering students through team-based design projects where engineering students are partnered with physical therapy students. Students learn the process of design, fabrication and testing of low-tech and high-tech rehabilitation technology for children with disabilities, and are exposed to a clinical experience under the guidance of licensed therapists. This course was taught in two consecutive years and pre-test/post-test data evaluating the impact of this interprofessional education experience on the students is presented using the Public Service Motivation Scale, Civic Actions Scale, Civic Attitudes Scale, and the Interprofessional Socialization and Valuing Scale.

  3. Designing a Hands-On Brain Computer Interface Laboratory Course

    PubMed Central

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2017-01-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946

  4. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    ERIC Educational Resources Information Center

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  5. Results of Using Multimedia Case Studies and Open-Ended Hands-On Design Projects in an "Introduction to Engineering" Course at Hampton University

    ERIC Educational Resources Information Center

    Halyo, Nesim; Le, Qiang

    2011-01-01

    This paper describes the implementation of a revised freshman engineering course, "Introduction to Engineering," at Hampton University and the observations of the instructors during its implementation. The authors collaborated with Auburn University faculty in jointly implementing the same course material at both universities. The revised course…

  6. Electric Utility Transmission and Distribution Line Engineering Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter McKenny

    2010-08-31

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science hasmore » established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experience in running a power system simulator and an exposure to various utility-related professions and craft trades.« less

  7. Student Opinions and Perceptions of Undergraduate Thermodynamics Courses in Engineering

    ERIC Educational Resources Information Center

    Ugursal, V. Ismet; Cruickshank, Cynthia A.

    2015-01-01

    Thermodynamics is a fundamental foundation of all engineering disciplines. A vast majority of engineering undergraduate programmes contain one or more courses on thermodynamics, and many engineers use thermodynamics every day to analyse or design energy systems. However, there is extensive anecdotal evidence as well as a wide range of published…

  8. Automotive Engines; Automotive Mechanics I: 9043.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  9. A Project-Based Cornerstone Course in Civil Engineering: Student Perceptions and Identity Development

    ERIC Educational Resources Information Center

    Marshall, Jill; Bhasin, Amit; Boyles, Stephen; David, Bernard; James, Rachel; Patrick, Anita

    2018-01-01

    Our study used a natural experiment to compare a project-based cornerstone course with the traditionally-taught introductory course in civil engineering. During the study, two sections of the course were organized around an overarching project, the design of an event center, and the remaining sections used guest lectures, a textbook, and…

  10. The Company Approach to Software Engineering Project Courses

    ERIC Educational Resources Information Center

    Broman, D.; Sandahl, K.; Abu Baker, M.

    2012-01-01

    Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…

  11. Introducing Creativity in a Design Laboratory for a Freshman Level Electrical and Computer Engineering Course

    ERIC Educational Resources Information Center

    Burkett, Susan L.; Kotru, Sushma; Lusth, John C.; McCallum, Debra; Dunlap, Sarah

    2014-01-01

    Dunlap, The University of Alabama, USA ABSTRACT In the electrical and computer engineering (ECE) curriculum at The University of Alabama, freshmen are introduced to fundamental electrical concepts and units, DC circuit analysis techniques, operational amplifiers, circuit simulation, design, and professional ethics. The two credit course has both…

  12. A Service Learning Structural Engineering Capstone Course and the Assessment of Technical and Non-Technical Objectives

    ERIC Educational Resources Information Center

    Dinehart, David W.; Gross, Shawn P.

    2010-01-01

    The primary role of a civil engineer is to serve the community; thus, it is essential that students understand the impact of engineering projects on, and the context of engineering projects within, society. One goal of an engineering capstone design course should be to mesh the technical knowledge of the discipline with an encompassing engineering…

  13. A systematic approach for introducing innovative product design in courses with engineering and nonengineering students.

    PubMed

    Patterson, P E

    2007-01-01

    In our new global economy, biomedical product development teams need to be even more innovative in an environment constrained by fewer resources with less time from concept to market. Teams are often comprised of individuals spread around the world. To simulate this setting, we revised an existing course to incorporate teams of on-campus and distance students, with each team including both engineers and other specialties. Through interactive lectures and projects, we presented a systematic approach to innovation that should be useful to engineers and non-engineers alike. Students found the course challenging and exciting, displaying an improved ability to work in distributed teams and in developing innovative design solutions.

  14. The Teaching of Mechanical Engineering Design at UCD, Dublin.

    ERIC Educational Resources Information Center

    Timoney, Seamus

    1988-01-01

    Describes a design course which stresses the identification of talented students and gives them techniques for synthesis. Explains the course requirements, design and manufacturing functions, and product concept. (YP)

  15. Thinking Design and Pedagogy: An Examination of Five Canadian Post-Secondary Courses in Design Thinking

    ERIC Educational Resources Information Center

    Donar, Ann

    2011-01-01

    At the tertiary level today, courses on design thinking can be found in diverse programs in and beyond the realm of traditional design disciplines. Across Canada, design thinking courses feature in communication, culture and information technology, and business and engineering. This paper reports findings from a study that investigated the…

  16. Improving motivation and engagement in core engineering courses with student teams

    NASA Astrophysics Data System (ADS)

    Trenshaw, Kathryn Faye

    Team-based projects are common in capstone engineering design courses and increasingly common in first-year engineering programs. Despite high enrollments and budget cutbacks affecting many programs, second- and third-year students can also benefit from team-based project experiences, which motivate them to succeed in engineering and prepare them for a globally competitive workforce. My dissertation research demonstrates that team design projects can be incorporated into the curricula of engineering departments, and these projects result in positive affective outcomes for students. Using ABET outcomes and Self Determination Theory (SDT) as the background for my studies, I investigated students' confidence, motivation, and sense of community after experiencing team design projects in two different engineering departments at a large public institution. In the first study, I used a sequential mixed methods approach with a primary quantitative phase followed by an explanatory qualitative phase to evaluate a chemical engineering program that integrated team design projects throughout the curriculum. The evaluation methods included a survey based on desired ABET outcomes for students and focus groups to expand on the quantitative results. Students reported increased confidence in their design, teamwork, and communication skills after completing the projects. In my second and third studies, I used qualitative interviews based on SDT to explore student motivation in an electrical and computer engineering course redesigned to support students' intrinsic motivation to learn. SDT states that intrinsic motivation to learn is supported by increasing students' sense of autonomy, competence, and relatedness in regard to their learning. Using both narrative inquiry and phenomenological methodologies, I analyzed data from interviews of students for mentions of autonomy, competence, and relatedness as well as course events that were critical in changing students' motivation. Analysis revealed that individual choice, constructive failures, and a strong sense of community in the classroom were critical to moving students toward intrinsic motivation. Further, community building through team experiences characterized the essence of the student experience in the course. My research highlights a need for better quantitative measures of students' affective outcomes, specifically motivation, in the context of a single course. Based on the results of my studies, SDT should be reevaluated in terms of possible interdependencies between autonomy, competence, and relatedness, and how the social context of large engineering courses may create a deeper need for supporting relatedness.

  17. Small Engine Maintenance and Repair, Course Description.

    ERIC Educational Resources Information Center

    Hunt, Edward B.; Anderson, Floyd L.

    Prepared by an instructor and curriculum specialists, this course of study was designed to meet individual needs of the dropout and/or hard-core unemployed youth by providing skill training, related information, and supportive services knowledge in small engine maintenance and repair. Students enrolled in this course work independently on a…

  18. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  19. The Effects of Spatial Visualization Skill Training on Gender and Retention in Engineering.

    ERIC Educational Resources Information Center

    Devon, Richard; Engel, Renata; Turner, Geoffrey

    1998-01-01

    Engineering students were given a mental rotation test at the beginning and end of their first-year engineering course and again several years later to assess the relationship between spatial visualization skill and retention in engineering. No relationship was found between task scores and retention; however, a course in design and graphics…

  20. Power Product Equipment Technician: Outboard-Engine Systems and Service. Teacher Edition [and] Student Edition.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This curriculum guide contains teacher and student materials for a course on outboard-engine boat systems and service for power product equipment technician occupations. The course contains the following four units of instruction: (1) Outboard-Engine Design and Identification; (2) Operation and Service of Engine-Support Systems; (3) Operation and…

  1. Students' attitudes towards interdisciplinary education: a course on interdisciplinary aspects of science and engineering education

    NASA Astrophysics Data System (ADS)

    Gero, Aharon

    2017-05-01

    A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.

  2. Development of a Graduate Course in Computer-Aided Geometric Design.

    ERIC Educational Resources Information Center

    Ault, Holly K.

    1991-01-01

    Described is a course that focuses on theory and techniques for ideation and refinement of geometric models used in mechanical engineering design applications. The course objectives, course outline, a description of the facilities, sample exercises, and a discussion of final projects are included. (KR)

  3. Characterizing Design Learning through the Use of Language: A Mixed-Methods Study of Engineering Designers. Research Brief

    ERIC Educational Resources Information Center

    Atman, Cindy; Kilgore, Deborah; McKenna, Ann

    2009-01-01

    This analysis, that utilizes data from part of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE), found that as a result of taking a course in engineering design and/or studying engineering for four years, students acquire engineering design language that is common to a larger community of practice…

  4. Implementation of Effective Capstone Projects in Undergraduate Manufacturing Design Engineering Program

    ERIC Educational Resources Information Center

    Viswanathan, Shekar

    2017-01-01

    Final program projects (capstone course) in manufacturing design engineering technology at National University are intensive experiences in critical thinking and analysis, designed to broaden students' perspectives and provide an opportunity for integration of coursework in the area of manufacturing design engineering. This paper focuses on three…

  5. Evaluations of Introducing Project-Based Design Activities in the First and Second Years of Engineering Courses

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    2004-01-01

    This paper presents three evaluated case studies of the use of design activities in the early years of undergraduate engineering courses. Analyses of academic performance in these activities and in a separate test of understanding were correlated with student perceptions of the activities and with measures of learning style. General student…

  6. An Undergraduate Two-Course Sequence in Biomedical Engineering Design: A Simulation of an Industrial Environment with Group and Individual Project Participation.

    ERIC Educational Resources Information Center

    Jendrucko, Richard J.

    The first half of a Biomedical Engineering course at Texas A&M University is devoted to group projects that require design planning and a search of the literature. The second half requires each student to individually prepare a research proposal and conduct a research project. (MLH)

  7. Strengthening Environmental Engineering Education in Afghanistan through Cooperating Military Academies

    NASA Astrophysics Data System (ADS)

    Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.

    2007-12-01

    Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this existing course provided the necessary framework for the Afghan course, there were a number of challenges with tailoring the course material to the education level, experience, and needs of the Afghan students and faculty. These challenges were overcome, in part, during the imbedding process of US instructors within the NMAA faculty. On-site transfer of course material and knowledge proved a necessary step in the implementation of the course. The imbedding process enabled US instructors to discuss the course with current NMAA faculty and identify an implementation path that met the needs of the program while appreciating the uniqueness of the Afghan experience. Implementation of the course is on-going with reach-back capability for Afghan faculty to continue the mentoring relationship with their US colleagues. Challenges that arise during course implementation (e.g., wet lab deployments, field trip relevance) will be overcome and used as learning tools for future course offerings. Ultimately, this course will provide future leaders of Afghanistan with the educational tools to make informed environmental management decisions and will serve as a model for similar courses implemented throughout Afghanistan.

  8. Teaching Process Design through Integrated Process Synthesis

    ERIC Educational Resources Information Center

    Metzger, Matthew J.; Glasser, Benjamin J.; Patel, Bilal; Hildebrandt, Diane; Glasser, David

    2012-01-01

    The design course is an integral part of chemical engineering education. A novel approach to the design course was recently introduced at the University of the Witwatersrand, Johannesburg, South Africa. The course aimed to introduce students to systematic tools and techniques for setting and evaluating performance targets for processes, as well as…

  9. Contextual Shaping of Student Design Practices: The Role of Constraint in First-Year Engineering Design

    NASA Astrophysics Data System (ADS)

    Goncher, Andrea M.

    thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found that when appropriated in the context of higher education, multiple sublevels existed within nested structuration's organizational context and included course-level and project-level factors. The implications of this research can be used to improve the design of engineering course projects as well as the design of research efforts related to design in engineering education.

  10. Patent Information Use in Engineering Technology Design: An Analysis of Student Work

    ERIC Educational Resources Information Center

    Phillips, Margaret; Zwicky, Dave

    2017-01-01

    How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…

  11. A Project-Based Learning Approach to Programmable Logic Design and Computer Architecture

    ERIC Educational Resources Information Center

    Kellett, C. M.

    2012-01-01

    This paper describes a course in programmable logic design and computer architecture as it is taught at the University of Newcastle, Australia. The course is designed around a major design project and has two supplemental assessment tasks that are also described. The context of the Computer Engineering degree program within which the course is…

  12. A Course for All Students: Foundations of Modern Engineering

    ERIC Educational Resources Information Center

    Best, Charles L.

    1971-01-01

    Describes a course for non-engineering students at Lafayette College which includes the design process in a project. Also included are the study of modeling, optimization, simulation, computer application, and simple feedback controls. (Author/TS)

  13. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    ERIC Educational Resources Information Center

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  14. Kuwaiti Engineers' Perspectives of the Engineering Senior Design (Capstone) Course as Related to Their Professional Experiences

    ERIC Educational Resources Information Center

    AlSagheer, Abdullah

    2010-01-01

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design…

  15. Cultivation of students' engineering designing ability based on optoelectronic system course project

    NASA Astrophysics Data System (ADS)

    Cao, Danhua; Wu, Yubin; Li, Jingping

    2017-08-01

    We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.

  16. Heat Exchanger Lab for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  17. Studies on the Use of Extramural Videopublished Materials in Continuing Education. Final Report.

    ERIC Educational Resources Information Center

    Sjogren, Douglas; And Others

    The Engineering Renewal and Growth (ERG) program at Colorado State University (CSU) was designed for continuing education of engineers. The program used videotapes and coordinated written materials to deliver instruction to the practicing engineer. Courses were leased to individual students or industries in which students worked. The courses were…

  18. Using an Evidential Reasoning Approach for Portfolio Assessments in a Project-Based Learning Engineering Design Course

    ERIC Educational Resources Information Center

    Jaeger, Martin; Adair, Desmond

    2015-01-01

    The purpose of this study is to analyse the feasibility of an evidential reasoning (ER) method for portfolio assessments and comparison of the results found with those based on a traditional holistic judgement. An ER approach has been incorporated into portfolio assessment of an undergraduate engineering design course delivered as a project-based…

  19. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  20. Problem Solving and Engineering Design, Introducing Bachelor Students to Engineering Practice at K. U. Leuven

    ERIC Educational Resources Information Center

    Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander

    2007-01-01

    A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…

  1. Designing and Evaluating a Climate Change Course for Upper-Division Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Samson, P. J.

    2002-12-01

    AOSS 300, GLOBAL ENVIRONMENTAL IMPACT OF TECHNOLOGICAL CHANGE, was created to provide a mechanism for scientific exploration of the unexpected global environmental side effects of technological innovation with emphasis on issues of the atmosphere and oceans. The course is specifically designed to contribute to the desired Accreditation Board for Engineering and Technology (ABET) outcomes that engineering and science graduates possess "the broad education necessary to understand the impact of solutions in a global and societal context." To facilitate this new course a new suite of coupled Flash/PHP/MySQL tools have been created that allow personalization of the students' learning space and interaction with faculty. Using these tools students are challenged to actively participate in the construction of knowledge through development of on-line portfolios that influence course content. This paper reports on lessons learned in the first semester that will guide further course development.

  2. National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum

    ERIC Educational Resources Information Center

    Azizur, Rahman M. M.

    2011-01-01

    In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…

  3. Integrating Innovation Skills in an Introductory Engineering Design-Build Course

    ERIC Educational Resources Information Center

    Liebenberg, Leon; Mathews, Edward Henry

    2012-01-01

    Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…

  4. Project-Based Teaching-Learning Computer-Aided Engineering Tools

    ERIC Educational Resources Information Center

    Simoes, J. A.; Relvas, C.; Moreira, R.

    2004-01-01

    Computer-aided design, computer-aided manufacturing, computer-aided analysis, reverse engineering and rapid prototyping are tools that play an important key role within product design. These are areas of technical knowledge that must be part of engineering and industrial design courses' curricula. This paper describes our teaching experience of…

  5. An Intensive Presentations Course in English for Aeronautical Engineering Students Using Cyclic Video Recordings

    ERIC Educational Resources Information Center

    Tatzl, Dietmar

    2017-01-01

    This article presents the design and evaluation of an intensive presentations course for aeronautical engineering students based on cyclic video recordings. The target group of this course in English for specific purposes (ESP) were undergraduate final-year students who needed to improve their presentation and foreign language skills to prepare…

  6. The Effects of a Collaborative Problem-Based Learning Experience on Students' Motivation in Engineering Capstone Courses

    ERIC Educational Resources Information Center

    Jones, Brett D.; Epler, Cory M.; Mokri, Parastou; Bryant, Lauren H.; Paretti, Marie C.

    2013-01-01

    We identified and examined how the instructional elements of problem-based learning capstone engineering courses affected students' motivation to engage in the courses. We employed a two-phase, sequential, explanatory, mixed methods research design. For the quantitative phase, 47 undergraduate students at a large public university completed a…

  7. A Hands-On Freshman Survey Course to Steer Undergraduates into Microsystems Coursework and Research

    ERIC Educational Resources Information Center

    Eddings, M. A.; Stephenson, J. C.; Harvey, I. R.

    2009-01-01

    Full class loads and inflexible schedules can be a significant obstacle in the implementation of freshman survey courses designed to guide engineering students into emerging research areas such as micro- and nanosystems. A hands-on, interactive course was developed to excite freshmen early in their engineering program to pursue research and…

  8. ZAP! Adapted: Incorporating design in the introductory electromagnetism lab

    NASA Astrophysics Data System (ADS)

    McNeil, J. A.

    2002-04-01

    In the last decade the Accreditation Board of Engineering and Technology(ABET) significantly reformed the criteria by which engineering programs are accredited. The new criteria are called Engineering Criteria 2000 (EC2000). Not surprisingly, engineering design constitutes an essential component of these criteria. The Engineering Physics program at the Colorado School of Mines (CSM) underwent an ABET general review and site visit in the fall of 2000. In preparation for this review and as part of a campus-wide curriculum reform the Physics Department was challenged to include elements of design in its introductory laboratories. As part of the background research for this reform, several laboratory programs were reviewed including traditional and studio modes as well as a course used by Cal Tech and MIT called "ZAP!" which incorporates design activities well-aligned with the EC2000 criteria but in a nontraditional delivery mode. CSM has adapted several ZAP! experiments to a traditional laboratory format while attempting to preserve significant design experiences. The new laboratory forms an important component of the reformed course which attempts to respect the psychological principles of learner-based education. This talk reviews the reformed introductory electromagnetism course and how the laboratories are integrated into the pedagogy along with design activities. In their new form the laboratories can be readily adopted by physics departments using traditional delivery formats.

  9. Joint electrical engineering/physics course sequence for optics fundamentals and design

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Maldonado, Theresa A.; Black, Truman D.

    2000-06-01

    Optics is a key technology in a broad range of engineering and science applications of high national priority. Engineers and scientists with a sound background in this field are needed to preserve technical leadership and to establish new directions of research and development. To meet this educational need, a joint Electrical Engineering/Physics optics course sequence was created as PHYS 3445 Fundamentals of Optics and EE 4444 Optical Systems Design, both with a laboratory component. The objectives are to educate EE and Physics undergraduate students in the fundamentals of optics; in interdisciplinary problem solving; in design and analysis; in handling optical components; and in skills such as communications and team cooperation. Written technical reports in professional format are required, formal presentations are given, and participation in paper design contests is encouraged.

  10. The Application of an Engineering Design and Information Systems Case Study in a Senior Level Product Data Management Course

    ERIC Educational Resources Information Center

    Connolly, Patrick

    2011-01-01

    This study examines the use of an engineering design and information systems case study over a three week period in a senior level class covering the topics of product data management (PDM) and product lifecycle management (PLM). Students that have taken the course in the past have struggled with the sometimes nebulous and difficult to…

  11. A Project to Design, Develop, Implement, Test, Evaluate and Disseminate an Associate Degree Curriculum to Train Solar Engineering Technicians.

    ERIC Educational Resources Information Center

    Lowenstein, Michael Z.; Orsak, Charles

    Phase 1 of a project in curriculum design and course development identified and is now developing a two-year solar engineering curriculum in response to the immediate need for trained solar manpower as indicated by research. The student-centered curriculum involves courses flowing from device to theory, intermixing of support and technical courses…

  12. A Reactive Blended Learning Proposal for an Introductory Control Engineering Course

    ERIC Educational Resources Information Center

    Mendez, Juan A.; Gonzalez, Evelio J.

    2010-01-01

    As it happens in other fields of engineering, blended learning is widely used to teach process control topics. In this paper, the inclusion of a reactive element--a Fuzzy Logic based controller--is proposed for a blended learning approach in an introductory control engineering course. This controller has been designed in order to regulate the…

  13. Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…

  14. Promoting Collaborative Problem-Solving Skills in a Course on Engineering Grand Challenges

    ERIC Educational Resources Information Center

    Zou, Tracy X. P.; Mickleborough, Neil C.

    2015-01-01

    The ability to solve problems with people of diverse backgrounds is essential for engineering graduates. A course on engineering grand challenges was designed to promote collaborative problem-solving (CPS) skills. One unique component is that students need to work both within their own team and collaborate with the other team to tackle engineering…

  15. Introducing Engineering Design to a Science Teaching Methods Course through Educational Robotics and Exploring Changes in Views of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Kaya, Erdogan; Newley, Anna; Deniz, Hasan; Yesilyurt, Ezgi; Newley, Patrick

    2017-01-01

    Engineering has become an important subject in the Next Generation Science Standards (NGSS), which have raised engineering design to the same level as scientific inquiry when teaching science disciplines at all levels. Therefore, preservice elementary teachers (PSTs) need to know how to integrate the engineering design process (EDP) into their…

  16. Teaching Ethics as Design

    ERIC Educational Resources Information Center

    Kirkman, Robert; Fu, Katherine; Lee, Bumsoo

    2017-01-01

    This paper introduces an approach to teaching ethics as design in a new course entitled Design Ethics, team-taught by a philosopher and an engineer/designer. The course follows a problem-based learning model in which groups of students work through the phases of the design process on a project for a local client, considering the design values and…

  17. Framework for Implementing Engineering Senior Design Capstone Courses and Design Clinics

    ERIC Educational Resources Information Center

    Franchetti, Matthew; Hefzy, Mohamed Samir; Pourazady, Mehdi; Smallman, Christine

    2012-01-01

    Senior design capstone projects for engineering students are essential components of an undergraduate program that enhances communication, teamwork, and problem solving skills. Capstone projects with industry are well established in management, but not as heavily utilized in engineering. This paper outlines a general framework that can be used by…

  18. The Effects of Computer-Aided Design Software on Engineering Students' Spatial Visualisation Skills

    ERIC Educational Resources Information Center

    Kösa, Temel; Karakus, Fatih

    2018-01-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations…

  19. Academic Preparedness as a Predictor of Achievement in an Engineering Design Challenge

    ERIC Educational Resources Information Center

    Mentzer, Nathan; Becker, Kurt

    2010-01-01

    The purpose of this study was to determine if a student's academic success, measured by grade point average (GPA) in mathematics, science, and communication courses, is correlated with student change in achievement during an engineering design challenge. Engineering design challenges have been implemented and researched in K-16 environments where…

  20. Modeling as an Engineering Habit of Mind and Practice

    ERIC Educational Resources Information Center

    Lammi, Matthew D.; Denson, Cameron D.

    2017-01-01

    In this paper we examine a case study of a pedagogical strategy that focuses on the teaching of modeling as a habit of mind and practice for novice designers engaged in engineering design challenges. In an engineering design course, pre-service teachers created modeling artifacts in the form of conceptual models, graphical models, mathematical…

  1. System design from mission definition to flight validation

    NASA Technical Reports Server (NTRS)

    Batill, S. M.

    1992-01-01

    Considerations related to the engineering systems design process and an approach taken to introduce undergraduate students to that process are presented. The paper includes details on a particular capstone design course. This course is a team oriented aircraft design project which requires the students to participate in many phases of the system design process, from mission definition to validation of their design through flight testing. To accomplish this in a single course requires special types of flight vehicles. Relatively small-scale, remotely piloted vehicles have provided the class of aircraft considered in this course.

  2. Constructing engineers through practice: Gendered features of learning and identity development

    NASA Astrophysics Data System (ADS)

    Tonso, Karen L.

    How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of women's belonging. (3) Despite all of the pressures to do otherwise, (some) teams of students (at all levels) carved out small oases where "actual" engineering prevailed and women's participation was robust. Students--not faculty, not progressive pedagogy, not "reformed" courses--disrupted prevailing norms. However, two women engineering students, one on each senior team, performed fabulous "actual" engineering, yet neither of them had a job when they graduated--the only two senior students on my teams without jobs.

  3. Design Course for Micropower Generation Devices

    ERIC Educational Resources Information Center

    Mitsos, Alexander

    2009-01-01

    A project-based design course is developed for man-portable power generation via microfabricated fuel cell systems. Targeted audience are undergraduate chemical/process engineering students in their final year. The course covers 6 weeks, with three hours of lectures per week. Two alternative projects are developed, one focusing on selection of…

  4. Drug Design, Development, and Delivery: An Interdisciplinary Course on Pharmaceuticals

    ERIC Educational Resources Information Center

    Prausnitz, Mark R.; Bommarius, Andreas S.

    2011-01-01

    We developed a new interdisciplinary course on pharmaceuticals to address needs of undergraduate and graduate students in chemical engineering and other departments. This course introduces drug design, development, and delivery in an integrated fashion that provides scientific depth in context with broader impacts in business, policy, and ethics.…

  5. Integrating Technical Communication in the Mechanical Engineering Curriculum

    NASA Astrophysics Data System (ADS)

    Norberg, Seth; Ashcraft, Timothy; van Poppel, Bret

    2017-11-01

    Technical communication is essential to engineering practice, but these skills can be challenging to teach and assess in the classroom. Instructors in the Mechanical Engineering (ME) program at the United States Military Academy are developing new learning exercises to prepare students for success in their capstone design course and beyond. In this paper we highlight the recent successes and lessons learned from two courses: junior-level Thermal-Fluid Systems and the senior-level ME Seminar. Both courses support the newly implemented West Point Writing Program (WPWP), an institutional, writing-across-the-curriculum program. The junior course incorporates four hands-on experiments, which provide an abundance of data for students to analyze, assess, and present. In the senior course the majority of the content that students present is from their ongoing capstone design projects. Between the two courses, students craft essays, lab reports, short summaries, posters, quad charts, and technical presentations. Both courses include peer evaluation, revision exercises, and timed (on demand) writing assignments. The junior course includes assignments co-authored by a group as well as an individual report. An overview of both courses' assignments with course-end feedback from the students and the faculty is provided. Strengths and weaknesses are identified and recommendations for instructors seeking to implement similar technical communications assignments in their own courses are presented.

  6. Mechatronic System Design Course for Undergraduate Programmes

    ERIC Educational Resources Information Center

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-01-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching…

  7. The Association between Tolerance for Ambiguity and Fear of Negative Evaluation: A Study of Engineering Technology Capstone Courses

    ERIC Educational Resources Information Center

    Dubikovsky, Sergey I.

    2016-01-01

    For many students in engineering and engineering technology programs in the US, senior capstone design courses require students to form a team, define a problem, and find a feasible technical solution to address this problem. Students must integrate the knowledge and skills acquired during their studies at the college or university level. These…

  8. Enhancing Student International Awareness and Global Competency through Compact International Experience Courses

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Schubert, Thomas

    2013-11-01

    Short-term, study-abroad, elective engineering courses were developed in order to raise the international awareness and global competency of engineering students. These Compact International Experience (CIE) courses were taught in response to a strong student desire for engineering study abroad courses and an effort by the home institution to internationalize its curriculum. An assessment of repeat offerings of two three-semester-unit courses on Topics in Fluid Mechanics and Advanced Electronic Circuit Design in a three-week time frame in France and Australia was performed. The goals of the two CIE courses are an effective teaching of their respective technical content as well as a student understanding of the cultural environment and the impact of engineering solutions from a global and societal viewpoint. In the repeat offerings, increased interaction with local industry was an additional goal. The CIE courses were assessed through surveys completed at the beginning and end of the courses, weekly student reflection papers, course evaluations, and formalized instructor observations. Based on the assessment performed, the two CIE courses have been found to be a valuable approach in the delivery of engineering technical electives combined with an international experience.

  9. Teaching biomedical design through a university-industry partnership.

    PubMed

    Khuon, Lunal; Zum, Karl R; Zurn, Jane B; Herrera, Gerald M

    2016-08-01

    This paper describes a course that, as a result of a university-industry partnership, emphasizes bringing industry experts into the classroom to teach biomedical design. Full-time faculty and industry engineers and entrepreneurs teach the senior technical elective course, Biomedical System Design. This hands-on senior course in biomedical system design places varied but connected emphasis on understanding the biological signal source, electronics design, safety, patient use, medical device qualifications, and good manufacturing practices.

  10. Implementing and Assessing the Converging-Diverging Model of Design in a Sequence of Sophomore Projects

    ERIC Educational Resources Information Center

    Dahm, Kevin; Riddell, William; Constans, Eric; Courtney, Jennifer; Harvey, Roberta; Von Lockette, Paris

    2009-01-01

    This paper discusses a sophomore-level course that teaches engineering design and technical writing. Historically, the course was taught using semester-long design projects. Most students' overall approach to design problems left considerable room for improvement. Many teams chose a design without investigating alternatives, and important…

  11. Design and Configuration of a Medical Imaging Systems Computer Laboratory Syllabus

    ERIC Educational Resources Information Center

    Selver, M. Alper

    2016-01-01

    Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…

  12. Engineer Equipment Chief.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by engineer equipment chiefs. Addressed in the five individual units of the course are the following topics: construction management (planning, scheduling, and supervision);…

  13. Promoting Interdisciplinarity in Engineering Teaching

    ERIC Educational Resources Information Center

    Harrison, Gareth P.; Macpherson, D. Ewen; Williams, David A.

    2007-01-01

    With funding from the UK's Royal Academy of Engineering, the University of Edinburgh has developed a series of truly interdisciplinary design courses aimed at improving penultimate-year students' ability to operate across disciplines and improve their preparation for industry. Led by a Visiting Industrial Professor, the course on hydropower design…

  14. Flipping Engineering Courses: A School Wide Initiative

    ERIC Educational Resources Information Center

    Clark, Renee M.; Besterfield-Sacre, Mary; Budny, Daniel; Bursic, Karen M.; Clark, William W.; Norman, Bryan A.; Parker, Robert S.; Patzer, John F., II; Slaughter, William S.

    2016-01-01

    In the 2013-2014 school year, we implemented the "flipped classroom" as part of an initiative to drive active learning, student engagement and enhanced learning in our school. The flipped courses consisted of freshman through senior engineering classes in introductory programming, statics/mechanics, mechanical design, bio-thermodynamics,…

  15. Curriculum optimization of College of Optical Science and Engineering

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  16. Teaching bioprocess engineering to undergraduates: Multidisciplinary hands-on training in a one-week practical course.

    PubMed

    Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related disciplines, where students are challenged with a real-life bioprocess-engineering application, the production of recombinant protein in a fed-batch process. The lab course was designed to introduce students to the subject of operating and supervising an experiment in a bioreactor, along with the analysis of collected data and a final critical evaluation of the experiment. To provide visual feedback of the experimental outcome, the organism used during class was Escherichia coli which carried a plasmid to recombinantly produce enhanced green fluorescent protein (eGFP) upon induction. This can easily be visualized in both the bioreactor and samples by using ultraviolet light. The lab course is performed with bioreactors of the simplest design, and is therefore highly flexible, robust and easy to reproduce. As part of this work the implementation and framework, the results, the evaluation and assessment of student learning combined with opinion surveys are presented, which provides a basis for instructors intending to implement a similar lab course at their respective institution. © 2015 by the International Union of Biochemistry and Molecular Biology.

  17. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    PubMed

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  18. Strengthening the Link between Theory and Practice in Teaching Design Engineering: An Empirical Study on a New Approach

    ERIC Educational Resources Information Center

    Tempelman, E.; Pilot, A.

    2011-01-01

    In 2007, the Faculty of Industrial Design Engineering of the Delft University of Technology introduced a new bachelor program. Based on theories of learning and instruction three design principles were used to develop an approach that aims to make it easier for students to bridge the gap between theoretical design engineering courses and practical…

  19. A Course in... Multivariable Control Methods.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.

    1988-01-01

    Describes an engineering course for graduate study in process control. Lists four major topics: interaction analysis, multiloop controller design, decoupling, and multivariable control strategies. Suggests a course outline and gives information about each topic. (MVL)

  20. Distance technology transfer course content development.

    DOT National Transportation Integrated Search

    2013-06-01

    The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...

  1. COED Transactions, Vol. X, No. 4, April 1978. An Experience in Teaching "COBOL?" to Graduate Engineers.

    ERIC Educational Resources Information Center

    Bremmer, Dale; Childs, Bart

    This document discusses the importance of computing knowledge and experience in the techniques of fast data retrieval for today's engineer. It describes a course designed to teach the engineer the COBOL Language structure. One of the projects of the course, a report generator (REGE) written in COBOL which is used to alter, sort and print selected…

  2. Computational and Genomic Analysis of Mycobacteriophage: A Longitudinal Study of Technology Engineered Biology Courses That Implemented an Inquiry Based Laboratory Practice Designed to Enhance, Encourage, and Empower Student Learning

    ERIC Educational Resources Information Center

    Hollowell, Gail P.; Osler, James E.; Hester, April L.

    2015-01-01

    This paper provides an applied research rational for a longitudinal investigation that involved teaching a "Technology Engineered Science Education Course" via an Interactive Laboratory Based Genomics Curriculum. The Technology st Engineering [TE] methodology was first introduced at the SAPES: South Atlantic Philosophy of Education…

  3. Projects That Matter: Concepts and Models for Service-Learning in Engineering. AAHE's Series on Service-Learning in the Disciplines.

    ERIC Educational Resources Information Center

    Tsang, Edmund, Ed.

    This volume, the 14th in a series of monographs on service learning and academic disciplinary areas, is designed as a practical guide for faculty seeking to integrate service learning into an engineering course. The volume also deals with larger issues in engineering education and provides case studies of service-learning courses. The articles…

  4. A High School Level Course On Robot Design And Construction

    NASA Astrophysics Data System (ADS)

    Sadler, Paul M.; Crandall, Jack L.

    1984-02-01

    The Robotics Design and Construction Class at Sehome High School was developed to offer gifted and/or highly motivated students an in-depth introduction to a modern engineering topic. The course includes instruction in basic electronics, digital and radio electronics, construction skills, robotics literacy, construction of the HERO 1 Heathkit Robot, computer/ robot programming, and voice synthesis. A key element which leads to the success of the course is the involvement of various community assets including manpower and financial assistance. The instructors included a physics/electronics teacher, a computer science teacher, two retired engineers, and an electronics technician.

  5. Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course

    ERIC Educational Resources Information Center

    Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff

    2010-01-01

    Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…

  6. Operation, analysis, and design of signalized intersections : a module for the introductory course in transportation engineering.

    DOT National Transportation Integrated Search

    2014-02-01

    This report presents materials that can be used as the basis for a module on signalized intersections in the introductory : course in transportation engineering. The materials were developed based on studies of the work of students who took : this in...

  7. Slope Stability. CEGS Programs Publication Number 15.

    ERIC Educational Resources Information Center

    Pestrong, Raymond

    Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…

  8. A Flipped First-Year Digital Circuits Course for Engineering and Technology Students

    ERIC Educational Resources Information Center

    Yelamarthi, Kumar; Drake, Eron

    2015-01-01

    This paper describes a flipped and improved first-year digital circuits (DC) course that incorporates several active learning strategies. With the primary objective of increasing student interest and learning, an integrated instructional design framework is proposed to provide first-year engineering and technology students with practical knowledge…

  9. Fundamentals of Diesel Engines.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  10. Distributed Collaborative Homework Activities in a Problem-Based Usability Engineering Course

    ERIC Educational Resources Information Center

    Carroll, John M.; Jiang, Hao; Borge, Marcela

    2015-01-01

    Teams of students in an upper-division undergraduate Usability Engineering course used a collaborative environment to carry out a series of three distributed collaborative homework assignments. Assignments were case-based analyses structured using a jigsaw design; students were provided a collaborative software environment and introduced to a…

  11. Engineer Equipment Operator.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by engineer equipment operators. Addressed in the seven individual units of the course are the following topics: introduction to Military Occupation Specialty (MOS) 1345…

  12. Soils and Foundations: A Syllabus.

    ERIC Educational Resources Information Center

    Long, Melvin J.

    The teaching guide and course outline for a 12-week course in soils and foundations is designed to help student technicians in a two-year associate degree civil engineering technology program to obtain entry level employment as highway engineering aides, soil testing technicians, soil mappers, or construction inspectors. The seven teaching units…

  13. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  14. Fuel Cell Car Design Project for Freshman Engineering Courses

    ERIC Educational Resources Information Center

    Duke, Steve R.; Davis, Virginia A.

    2014-01-01

    In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…

  15. The Playful and Reflective Game Designer

    ERIC Educational Resources Information Center

    Majgaard, Gunver

    2014-01-01

    A group of first-semester engineering students participated in a game design course. The aim of the course was to learn how to design computer games and programming skills by creating their own games, thereby applying their game-playing experiences to gain knowledge about game design. The aim was for students to develop a more critically…

  16. Exploring Design Elements for Online STEM Courses: Active Learning, Engagement & Assessment Design

    ERIC Educational Resources Information Center

    Chen, Baiyun; Bastedo, Kathleen; Howard, Wendy

    2018-01-01

    The purpose of this study was to examine effective design elements for online courses in the science, technology, engineering, and mathematics (STEM) fields at a large four-year public university in southeastern United States. Our research questions addressed the influence of online design elements on students' perception of learning and learning…

  17. Empowering biomedical engineering undergraduates to help teach design.

    PubMed

    Allen, Robert H; Tam, William; Shoukas, Artin A

    2004-01-01

    We report on our experience empowering upperclassmen and seniors to help teach design courses in biomedical engineering. Initiated in the fall of 1998, these courses are a projects-based set, where teams of students from freshmen level to senior level converge to solve practical problems in biomedical engineering. One goal in these courses is to teach the design process by providing experiences that mimic it. Student teams solve practical projects solicited from faculty, industry and the local community. To hone skills and have a metric for grading, written documentation, posters and oral presentations are required over the two-semester sequence. By requiring a mock design and build exercise in the fall, students appreciate the manufacturing process, the difficulties unforeseen in the design stage and the importance of testing. A Web-based, searchable design repository captures reporting information from each project since its inception. This serves as a resource for future projects, in addition to traditional ones such as library, outside experts and lab facilities. Based on results to date, we conclude that characteristics about our design program help students experience design and learn aspects about teamwork and mentoring useful in their profession or graduate education.

  18. Characterizing Design Cognition of High School Students: Initial Analyses Comparing Those with and without Pre-Engineering Experiences

    ERIC Educational Resources Information Center

    Wells, John; Lammi, Matthew; Gero, John; Grubbs, Michael E.; Paretti, Marie; Williams, Christopher

    2016-01-01

    Reported in this article are initial results from of a longitudinal study to characterize the design cognition and cognitive design styles of high school students with and without pre-engineering course experience over a 2-year period, and to compare them with undergraduate engineering students. The research followed a verbal protocol analysis…

  19. On the design of learning outcomes for the undergraduate engineer's final year project

    NASA Astrophysics Data System (ADS)

    Thambyah, Ashvin

    2011-03-01

    The course for the final year project for engineering students, because of its strongly research-based, open-ended format, tends to not have well defined learning outcomes, which are also not aligned with any accepted pedagogical philosophy or learning technology. To address this problem, the revised Bloom's taxonomy table of Anderson and Krathwohl (2001) is utilised, as suggested previously by Lee and Lai (2007), to design new learning outcomes for the final year project course in engineering education. Based on the expectations of the engineering graduate, and integrating these graduate expectations into the six cognitive processes and four knowledge dimensions of the taxonomy table, 24 learning outcomes have been designed. It is proposed that these 24 learning outcomes be utilised as a suitable working template to inspire more critical evaluation of what is expected to be learnt by engineering students undertaking final year research or capstone projects.

  20. Robotics Focused Capstone Senior Design Course

    ERIC Educational Resources Information Center

    Rios-Gutierrez, Fernando; Alba-Flores, Rocio

    2017-01-01

    This work describes the educational experiences gained teaching the Senior Design I & II courses, a senior level, two-semester sequence in the Electrical Engineering (EE) program at Georgia Southern University (GSU). In particular, the authors present their experiences in using robotics as the main area to develop the capstone senior design,…

  1. A Course in... Technical Communications for Graduate Students.

    ERIC Educational Resources Information Center

    Briedis, Daina M.

    1988-01-01

    Describes a course which has been designed to develop oral and written communication skills appropriate for engineering graduate students and for the demands of their post-graduate careers. Provides course strategy and content. (MVL)

  2. Using CASE Software to Teach Undergraduates Systems Analysis and Design.

    ERIC Educational Resources Information Center

    Wilcox, Russell E.

    1988-01-01

    Describes the design and delivery of a college course for information system students utilizing a Computer-Aided Software Engineering program. Discusses class assignments, cooperative learning, student attitudes, and the advantages of using this software in the course. (CW)

  3. The shuttle main engine: A first look

    NASA Technical Reports Server (NTRS)

    Schreur, Barbara

    1996-01-01

    Anyone entering the Space Shuttle Main Engine (SSME) team attends a two week course to become familiar with the design and workings of the engine. This course provides intensive coverage of the individual hardware items and their functions. Some individuals, particularly those involved with software maintenance and development, have felt overwhelmed by this volume of material and their lack of a logical framework in which to place it. To provide this logical framework, it was decided that a brief self-taught introduction to the overall operation of the SSME should be designed. To aid the people or new team members with an interest in the software, this new course should also explain the structure and functioning of the controller and its software. This paper presents a description of this presentation.

  4. Renovation of a Mechanical Engineering Senior Design Class to an Industry-Tied and Team-Oriented Course

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2017-01-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIX, I--ENGINE TUNE-UP--CUMMINS DIESEL ENGINE, II--FRONT END SUSPENSION AND AXLES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…

  6. An Undergraduate Design Experience in Digital Logic Design Course of Special Purpose Arithmetic Logic Unit Using Multisim, Ultiboard and Print Circuit Board

    ERIC Educational Resources Information Center

    Al-Haija, Qasem Abu; Al-Amri, Hasan; Al-Nashri, Mohamed; Al-Muhaisen, Sultan

    2013-01-01

    Project-Based Curriculum (PBC) is considered one of the most powerful methods in the engineering education where each course or courses-cluster is assigned a design project which considers a series of inter-related concepts that have been shown theoretically for the students. Using this approach, the student will gain the required knowledge in an…

  7. Setting Engineering Students up for Success in the 21st Century: Integrating Gamification and Crowdsourcing into a CDIO-Based Web Design Course

    ERIC Educational Resources Information Center

    Song, Donglei; Tavares, Adriano; Pinto, Sandro; Xu, Hao

    2017-01-01

    Over the past few decades, many researchers have tested course designs that may better engage students in developing countries, accommodate for Millennials' desires to learn and teach at will, and teach students the skills they need for their first jobs. The vision of this paper for a web design course seeks to address these issues for engineering…

  8. An integrated approach to engineering curricula improvement with multi-objective decision modeling and linear programming

    NASA Astrophysics Data System (ADS)

    Shea, John E.

    The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum from a catalog of courses is difficult because of the many factors being considered. To assist this process, the multi-objective model and the curriculum requirements were incorporated in a linear program to select the "optimum" curriculum. The application of this tool was also beneficial in identifying the active constraints that limit curriculum development and content.

  9. Investigating the Impacts of Design Heuristics on Idea Initiation and Development

    ERIC Educational Resources Information Center

    Kramer, Julia; Daly, Shanna R.; Yilmaz, Seda; Seifert, Colleen M.; Gonzalez, Richard

    2015-01-01

    This paper presents an analysis of engineering students' use of Design Heuristics as part of a team project in an undergraduate engineering design course. Design Heuristics are an empirically derived set of cognitive "rules of thumb" for use in concept generation. We investigated heuristic use in the initial concept generation phase,…

  10. Investigating the Use of Design Methods by Capstone Design Students at Clemson University

    ERIC Educational Resources Information Center

    Miller, W. Stuart; Summers, Joshua D.

    2013-01-01

    The authors describe a preliminary study to understand the attitude of engineering students regarding the use of design methods in projects to identify the factors either affecting or influencing the use of these methods by novice engineers. A senior undergraduate capstone design course at Clemson University, consisting of approximately fifty…

  11. A Biotic Game Design Project for Integrated Life Science and Engineering Education

    PubMed Central

    Denisin, Aleksandra K.; Rensi, Stefano; Sanchez, Gabriel N.; Quake, Stephen R.; Riedel-Kruse, Ingmar H.

    2015-01-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games. PMID:25807212

  12. A biotic game design project for integrated life science and engineering education.

    PubMed

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  13. Incorporating Computational Chemistry into the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Wilcox, Jennifer

    2006-01-01

    A graduate-level computational chemistry course was designed and developed and carried out in the Department of Chemical Engineering at Worcester Polytechnic Institute in the Fall of 2005. The thrust of the course was a reaction assignment that led students through a series of steps, beginning with energetic predictions based upon fundamental…

  14. Principles of Water Quality Control.

    ERIC Educational Resources Information Center

    Tebbutt, T. H. Y.

    This book is designed as a text for undergraduate civil engineering courses and as preliminary reading for postgraduate courses in public health engineering and water resources technology. It is also intended to be of value to workers already in the field and to students preparing for the examinations of the Institute of Water Pollution Control…

  15. Military Curriculum Materials for Vocational and Technical Education. Soils Engineering 3-1. Edition 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in soils engineering was adapted from military curriculum materials for use in vocational education. The course is designed to acquaint students with various soil types and their characteristics using various procedures, tests, and recording forms. Some of these duties are determining…

  16. Outcomes-Based Assessment and Learning: Trialling Change in a Postgraduate Civil Engineering Course

    ERIC Educational Resources Information Center

    El-Maaddawy, Tamer; Deneen, Christopher

    2017-01-01

    This paper aims to demonstrate how assessment tasks can function within an outcomes-based learning framework to evaluate student attainment of learning outcomes. An outcomes-based learning framework designed to integrate teaching, learning, and assessment activities was developed and implemented in a civil engineering master-level course. The…

  17. Changes in Teachers' Adaptive Expertise in an Engineering Professional Development Course

    ERIC Educational Resources Information Center

    Martin, Taylor; Peacock, Stephanie Baker; Ko, Pat; Rudolph, Jennifer J.

    2015-01-01

    Although the consensus seems to be that high-school-level introductory engineering courses should focus on design, this creates a problem for teacher training. Traditionally, math and science teachers are trained to teach and assess factual knowledge and closed-ended problem-solving techniques specific to a particular discipline, which is unsuited…

  18. Webcasts Promote In-Class Active Participation and Learning in an Engineering Elective Course

    ERIC Educational Resources Information Center

    Freguia, Stefano

    2017-01-01

    This paper describes the design and outcomes of an educational intervention undertaken to improve the quality of delivery of a fourth-year engineering elective course--Industrial Wastewater and Solid Waste Management at the University of Queensland. The objective was to increase the level of active participation of students in planned…

  19. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    ERIC Educational Resources Information Center

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  20. Enhancing Critical Thinking across the Undergraduate Experience: An Exemplar from Engineering

    ERIC Educational Resources Information Center

    Ralston, Patricia A.; Bays, Cathy L.

    2013-01-01

    Faculty in a large, urban school of engineering designed a longitudinal study to assess the critical thinking skills of undergraduate students as they progressed through the engineering program. The Paul-Elder critical thinking framework was used to design course assignments and develop a holistic assessment rubric. The curriculum was re-designed…

  1. Analysis of Student Service-Learning Reflections for the Assessment of Transferable-Skills Development

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Dewoolkar, M.; Hayden, N.; Oka, L.; Pearce, A. R.

    2010-12-01

    The civil and environmental engineering (CEE) programs at the University of Vermont (UVM) incorporate systems thinking and a systems approach to sustainable engineering problem solving. A systems approach considers long-term social, environmental and economic factors within the context of the engineering problem solution and encompasses sustainable engineering solutions. Our goal is to prepare students to become leaders in their chosen field who can anticipate co-products associated with forecasted solutions. As a way of practicing the systems approach, we include service-learning projects in many of our undergraduate engineering courses, culminating with the senior capstone design course. We use a variety of formative and summative assessment methods to gage student understanding and attitudes including student surveys, focus groups, assessment of student projects, and student reflections. Student reflections from two courses -Modeling Environmental and Transportation Systems (31 juniors) and Senior Design Project (30 seniors) are compared. Of these, 25 students were common to both courses. The focus of the systems modeling service-learning project involved mentoring home-schooled children (11-14 yrs old) to solve problems of mobility, using the fun and inspiration of biomimicry. Students were required to invent innovative methods to move people or goods that improve associated constraints (i.e., minimize congestion, reduce pollution, increase safety), or reduce the need for transportation altogether. The capstone design project required a comprehensive engineering design involving two or more CEE sub-disciplines. Both service-learning projects were intended to enhance students’ academic learning experience, attain civic engagement and reinforce transferable skills (written and oral communication, teamwork, leadership and mentoring skills). The student course reflections were not guided; yet they provided valuable data to assess commonalities and differences in student attitudes toward their service-learning projects, specifically, the development of transferable skills. In the spirit of service-learning pedagogy, we divide the contents of students’ written reflections into three categories - academic enhancement, civic engagement and personal growth skills. The commonalities focused mostly on civic engagement. Differences are observed primarily in academic enhancement and personal growth categories. Students working on the biomimicry design project reflected on personal growth (e.g. leadership skills, mentoring, creativity, organizational skills, communication to nontechnical audience), but did not credit it with academic enhancement. In contrast, the senior design reflections concentrated on academics, specifically, students appreciated the enhancement of technical skills as a part of their engineering experience.

  2. New course in bioengineering and bioinspired design.

    PubMed

    Erickson, Jonathan C

    2012-01-01

    The past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs. Two (among many) examples are how the adhesion of the gecko foot inspired a new class of adhesives based on Van der Waals forces; and how the iridophore protein plates found in mimic octopus and squid act as tunable ¼ wave stacks, thus inspiring the engineering of optically tunable block copolymer gels for sensing temperature, pressure, or chemical gradients. A major component of this course is the integration of a 6-8 week long research project. To date, projects have included engineering: a soft-body robot whose motion mimics the inchworm; an electrical circuit to sense minute electric fields in aqueous environments based on the shark electrosensory system; and cyborg grasshoppers whose jump motion is controlled via an electronic-neural interface. Initial feedback has indicated that this course has served to increase student interaction and “cross-pollination” of ideas between the physical and life sciences. Student feedback also indicated a marked increase in desire and confidence to continue to pursue problems at the boundary of biology and engineering—bioengineering.

  3. Design of the Curriculum for a Second-Cycle Course in Civil Engineering in the Context of the Bologna Framework

    ERIC Educational Resources Information Center

    Gavin, K. G.

    2010-01-01

    This paper describes the design of the curriculum for a Master of Engineering programme in civil engineering at University College Dublin. The revised programme was established to meet the requirements of the Bologna process and this paper specifically considers the design of a new, second-cycle master's component of the programme. In addition to…

  4. An Empirical Study on Students' Ability to Comprehend Design Patterns

    ERIC Educational Resources Information Center

    Chatzigeorgiou, Alexander; Tsantalis, Nikolaos; Deligiannis, Ignatios

    2008-01-01

    Design patterns have become a widely acknowledged software engineering practice and therefore have been incorporated in the curricula of most computer science departments. This paper presents an observational study on students' ability to understand and apply design patterns. Within the context of a postgraduate software engineering course,…

  5. Effects of Interdisciplinary Education on Technology-Driven Application Design

    ERIC Educational Resources Information Center

    Tafa, Z.; Rakocevic, G.; Mihailovic, D.; Milutinovic, V.

    2011-01-01

    This paper describes the structure and the underlying rationale of a new course dedicated to capability maturity model integration (CMMI)-directed design of wireless sensor networks (WSNs)-based biomedical applications that stresses: 1) engineering-, medico-engineering-, and informatics-related issues; 2) design for general- and special-purpose…

  6. Revising a Design Course from a Lecture Approach to a Project-Based Learning Approach

    ERIC Educational Resources Information Center

    Kunberger, Tanya

    2013-01-01

    In order to develop the evaluative skills necessary for successful performance of design, a senior, Geotechnical Engineering course was revised to immerse students in the complexity of the design process utilising a project-based learning (PBL) approach to instruction. The student-centred approach stresses self-directed group learning, which…

  7. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  8. Automobile Course. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in automobile repair. Included among the topics addressed in the course are the following: shop safety, engines, fuel and exhaust systems, electrical systems, crankcase lubrication systems, cooling systems, power transmission systems, steering…

  9. Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria A.

    2010-01-01

    This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test report. This flight test report serves as a complement to the course handbook presented here. This project was extremely ambitious, and achieving all of the design and test objectives was a daunting task. The schedule ran slightly longer than a single academic year with the complete design closure not occurring until early April. Integration and verification testing spilled over into late May and the first flight did not occur until mid to late June. The academic year at Utah State University ended on May 8, 2010. Following the end of the academic year, testing and integration was performed by the faculty advisor, paid research assistants, and volunteer student help

  10. Teaching an Aerospace Engineering Design Course via Virtual Worlds: A Comparative Assessment of Learning Outcomes

    ERIC Educational Resources Information Center

    Okutsu, Masataka; DeLaurentis, Daniel; Brophy, Sean; Lambert, Jason

    2013-01-01

    To test the concept of multiuser 3D virtual environments as media to teach semester-long courses, we developed a software prototype called Aeroquest. An aerospace design course--offered to 135 second-year students for university credits in Fall 2009--was divided into two groups: the real-world group attending lectures, physically, in a campus hall…

  11. Undergraduate courses for enhancing design ability in naval architecture

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Yeul; Ku, Namkug; Cha, Ju-Hwan

    2013-09-01

    Contemporary lectures in undergraduate engineering courses typically focus on teaching major technical knowledge-based theories in a limited time. Therefore, most lectures do not allow the students to gain understanding of how the theories are applied, especially in Naval Architecture and Ocean Engineering departments. Shipyards require students to acquire practical ship design skills in undergraduate courses. To meet this requirement, two lectures are organized by the authors; namely, "Planning Procedure of Naval Architecture & Ocean Engineering" (PNAOE) and "Innovative Ship Design" (ISD). The concept of project-based and collaborative learning is applied in these two lectures. In the PNAOE lecture, sophomores receive instruction in the designing and building of model ships, and the students' work is evaluated in a model ship contest. This curriculum enables students to understand the concepts of ship design and production. In the ISD lecture, seniors learn how to develop their creative ideas about ship design and communicate with members of group. They are encouraged to cooperate with others and understand the ship design process. In the capstone design course, students receive guidance to facilitate understanding of how the knowledge from their sophomore or junior classes, such as fluid mechanics, statics, and dynamics, can be applied to practical ship design. Students are also encouraged to compete in the ship design contest organized by the Society of Naval Architects of Korea. Moreover, the effectiveness of project-based and collaborative learning for enhancing interest in the shipbuilding Industry and understanding the ship design process is demonstrated by citing the PNAOE and ISD lectures as examples.

  12. Tradeoffs in Capstone Design Courses Involving More Than One Discipline [Senior Design].

    PubMed

    Goldberg, Jay

    2017-01-01

    According to a 2015 survey, 5% of capstone design course instructors indicated that their courses involve students from more than one engineering discipline [1]. Students in these courses may hear presentations on topics of common interest and work together on project teams that require knowledge and skills from more than one discipline. Some courses make use of occasional breakout sessions in which discipline-specific topics (such as U.S. Food and Drug Administration regulations) of greater value to students in a particular discipline are presented during class sessions where only students of that discipline meet [2].

  13. Survey: Computer Usage in Design Courses.

    ERIC Educational Resources Information Center

    Henley, Ernest J.

    1983-01-01

    Presents results of a survey of chemical engineering departments regarding computer usage in senior design courses. Results are categorized according to: computer usage (use of process simulators, student-written programs, faculty-written or "canned" programs; costs (hard and soft money); and available software. Programs offered are…

  14. Enhanced Teaching and Student Learning through a Simulator-Based Course in Chemical Unit Operations Design

    ERIC Educational Resources Information Center

    Ghasem, Nayef

    2016-01-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes…

  15. Are We Educating Engineers for Sustainability?: Comparison between Obtained Competences and Swedish Industry's Needs

    ERIC Educational Resources Information Center

    Hanning, Andreas; Abelsson, Anna Priem; Lundqvist, Ulrika; Svanstrom, Magdalena

    2012-01-01

    Purpose: The aim of this study is to contribute to the quality improvement and long-term strategic development of education for sustainable development (ESD) in engineering education curricula. Design/methodology/approach: The content in 70 courses in environment and SD were characterized and quantified using course document text analysis.…

  16. Harnessing the Environmental Professional Expertise of Engineering Students--The Course: "Environmental Management Systems in the Industry"

    ERIC Educational Resources Information Center

    Ben-Zvi-Assaraf, Orit; Ayal, Nitzan

    2010-01-01

    More and more technical universities now advocate integrating sustainability in higher education and including it as a strategic goal for improving education's quality and relevance to society. This study examines 30 fourth-year chemical engineering students, graduates of a university course designed to combine their terminological domain with…

  17. Implementing Motivational Features in Reactive Blended Learning: Application to an Introductory Control Engineering Course

    ERIC Educational Resources Information Center

    Mendez, J. A.; Gonzalez, E. J.

    2011-01-01

    This paper presents a significant advance in a reactive blended learning methodology applied to an introductory control engineering course. This proposal was based on the inclusion of a reactive element (a fuzzy-logic-based controller) designed to regulate the workload for each student according to his/her activity and performance. The…

  18. A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering

    ERIC Educational Resources Information Center

    Calvo, Isidro; Cabanes, Itziar; Quesada, Jeronimo; Barambones, Oscar

    2018-01-01

    This paper describes the design of an industrial informatics course, following the project-based learning methodology, and reports the experience of four academic years (from 2012-13 to 2015-16). Industrial Informatics is a compulsory course taught in the third year of the B.Sc. degree in industrial electronics and automation engineering at the…

  19. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  20. Research-oriented teaching in optical design course and its function in education

    NASA Astrophysics Data System (ADS)

    Cen, Zhaofeng; Li, Xiaotong; Liu, Xiangdong; Deng, Shitao

    2008-03-01

    The principles and operation plans of research-oriented teaching in the course of computer aided optical design are presented, especially the mode of research in practice course. This program includes contract definition phase, project organization and execution, post project evaluation and discussion. Modes of academic organization are used in the practice course of computer aided optical design. In this course the students complete their design projects in research teams by autonomous group approach and cooperative exploration. In this research process they experience the interpersonal relationship in modern society, the importance of cooperation in team, the functions of each individual, the relationships between team members, the competition and cooperation in one academic group and with other groups, and know themselves objectively. In the design practice the knowledge of many academic fields is applied including applied optics, computer programming, engineering software and etc. The characteristic of interdisciplinary is very useful for academic research and makes the students be ready for innovation by integrating the knowledge of interdisciplinary field. As shown by the practice that this teaching mode has taken very important part in bringing up the abilities of engineering, cooperation, digesting the knowledge at a high level and problem analyzing and solving.

  1. Heat Transfer Principles in Thermal Calculation of Structures in Fire

    PubMed Central

    Zhang, Chao; Usmani, Asif

    2016-01-01

    Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379

  2. Engineering Design Challenges in High School STEM Courses: A Compilation of Invited Position Papers

    ERIC Educational Resources Information Center

    Householder, Daniel L., Ed.

    2011-01-01

    Since its initial funding by the National Science Foundation in 2004, the National Center for Engineering and Technology Education (NCETE) has worked to understand the infusion of engineering design experiences into the high school setting. Over the years, an increasing number of educators and professional groups have participated in the expanding…

  3. The Use of Engineering Design Scenarios to Assess Student Knowledge of Global, Societal, Economic, and Environmental Contexts

    ERIC Educational Resources Information Center

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-01-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on…

  4. Improving Consistency in Large Laboratory Courses: A Design for a Standardized Practical Exam

    ERIC Educational Resources Information Center

    Chen, Xinnian; Graesser, Donnasue; Sah, Megha

    2015-01-01

    Laboratory courses serve as important gateways to science, technology, engineering, and mathematics education. One of the challenges in assessing laboratory learning is to conduct meaningful and standardized practical exams, especially for large multisection laboratory courses. Laboratory practical exams in life sciences courses are frequently…

  5. Math 3310--Technical Mathematics I. Course Outline.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    This document contains the course syllabus and 12 independent practice modules for a college pre-calculus designed as the first course in a two-semester sequence for students in a Bachelor of Technology program. The course emphasizes engineering technology applications and verbal problems. Topics include a review of elementary algebra; factoring…

  6. Chemical Engineering and Instructional Computing: Are They in Step? (Part 2).

    ERIC Educational Resources Information Center

    Seider, Warren D.

    1988-01-01

    Describes the use of "CACHE IBM PC Lessons for Courses Other than Design and Control" as open-ended design oriented problems. Presents graphics from some of the software and discusses high-resolution graphics workstations. Concludes that computing tools are in line with design and control practice in chemical engineering. (MVL)

  7. Baseball Stadium Design: Teaching Engineering Economics and Technical Communication in a Multi-Disciplinary Setting.

    ERIC Educational Resources Information Center

    Dahm, Kevin; Newell, James

    2001-01-01

    Reports on a course at Rowan University, based on the economic design of a baseball stadium, that offers an introduction to multidisciplinary engineering design linked with formal training in technical communication. Addresses four pedagogical goals: (1) developing public speaking skills in a realistic, business setting; (2) giving students…

  8. Integrating the Engineering Curriculum through the Synthesis and Design Studio

    ERIC Educational Resources Information Center

    Kellam, Nadia; Walther, Joachim; Costantino, Tracie; Cramond, Bonnie

    2013-01-01

    Traditional curricular approaches within engineering education tend to be fragmented, with opportunities for content- and meta-level synthesis being mostly limited to freshman and senior year design courses. In this paper, we are proposing a curricular model, the Synthesis and Design Studio, to combat the tendency towards fragmented curricula. The…

  9. Assessing International Product Design and Development Graduate Courses: The MIT-Portugal Program

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Silva, Arlindo

    2010-01-01

    The Product Design and Development (PDD) course is part of the graduate curriculum in the Engineering Design and Advanced Manufacturing (EDAM) study in the MIT-Portugal Program. The research participants included about 110 students from MIT, EDAM, and two universities in Portugal, Instituto Superior Técnico-Universidade Técnica de Lisboa (IST) and…

  10. Teaching Reform of Course Group Regarding Theory and Design of Mechanisms Based on MATLAB Technology

    ERIC Educational Resources Information Center

    Shen, Yi; Yuan, Mingxin; Wang, Mingqiang

    2013-01-01

    Considering that the course group regarding theory and design of mechanisms is characterized by strong engineering application background and the students generally feel very boring and tedious during the learning process, some teaching reforms for the theory and design of mechanisms are carried out to improve the teaching effectiveness in this…

  11. Web-Based Interactive Steel Sculpture for the Google Generation

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed

    2009-01-01

    In almost all the civil engineering programs in the United States, a student is required to take at least one design course in either steel or reinforced concrete. One of the topics covered in an introductory steel design course is the design of connections. Steel connections play important roles in the integrity of a structure, and many…

  12. Information Literacy Courses in Engineering and Science--The Design and Implementation of the DEDICATE Courses.

    ERIC Educational Resources Information Center

    Fjallbrant, Nancy; Levy, Philippa

    The aim of the DEDICATE (Distance Education Information Courses with Access through Networks) project, funded through the European Union, is to develop distance education courses in training for information literacy. The DEDICATE courses are based on the use of the Internet and World Wide Web; communication between participants and tutors and…

  13. Proceedings of the Annual Ada Software Engineering Education and Training Symposium (3rd) Held in Denver, Colorado on June 14-16, 1988

    DTIC Science & Technology

    1988-06-01

    Based Software Engineering Project Course .............. 83 SSoftware Engineering, Software Engineering Concepts: The Importance of Object-Based...quality assurance, and independent system testing . The Chief Programmer is responsible for all software development activities, including prototyping...during the Requirements Analysis phase, the Preliminary Design, the Detailed Design, Coding and Unit Testing , CSC Integration and Testing , and informal

  14. Teaching practice and effect of the curriculum design and simulation courses under the support of professional optical software

    NASA Astrophysics Data System (ADS)

    Lin, YuanFang; Zheng, XiaoDong; Huang, YuJia

    2017-08-01

    Curriculum design and simulation courses are bridges to connect specialty theories, engineering practice and experimental skills. In order to help students to have the computer aided optical system design ability adapting to developments of the times, a professional optical software-Advanced System of Analysis Program (ASAP) was used in the research teaching of curriculum design and simulation courses. The ASAP tutorials conducting, exercises both complementing and supplementing the lectures, hands-on practice in class, autonomous learning and independent design after class were bridged organically, to guide students "learning while doing, learning by doing", paying more attention to the process instead of the results. Several years of teaching practice of curriculum design and simulation courses shows that, project-based learning meets society needs of training personnel with knowledge, ability and quality. Students have obtained not only skills of using professional software, but also skills of finding and proposing questions in engineering practice, the scientific method of analyzing and solving questions with specialty knowledge, in addition, autonomous learning ability, teamwork spirit and innovation consciousness, still scientific attitude of facing failure and scientific spirit of admitting deficiency in the process of independent design and exploration.

  15. A WEB based approach in biomedical engineering design education.

    PubMed

    Enderle, J D; Browne, A F; Hallowell, M B

    1997-01-01

    As part of the accreditation process for university engineering programs, students are required to complete a minimum number of design credits in their course of study, typically at the senior level. Many call this the capstone course. Engineering design is a course or series of courses that bring together concepts and principles that students learn in their field of study--it involves the integration and extension of material learned in their major toward a specific project. Most often, the student is exposed to system-wide analysis, critique and evaluation for the first time. Design is an iterative, decision making process in which the student optimally applies previously learned material to meet a stated objective. At the University of Connecticut, students work in teams of 3-4 members and work on externally sponsored projects. To facilitate working with sponsors, a WEB based approach is used for reporting the progress on projects. Students are responsible for creating their own WEB sites that support both html and pdf formats. Students provide the following deliverables: weekly progress reports, project statement, specifications, project proposal, interim report, and final report. A senior design homepage also provides links to data books and other resources for use by students. We are also planning distance learning experiences between two campuses so students can work on projects that involve the use of video conferencing.

  16. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  17. Wind Energy Workforce Development: Engineering, Science, & Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Mastersmore » degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.« less

  18. Bioregenerative system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design course is an eight semester credit multi-disciplinary engineering design course taught primarily to Engineering Science, Aerospace, Electrical and Mechanical Engineering seniors. This year the course project involved the design of the three interrelated loops: atmospheric, liquid nutrient and solid waste management, associated with growing higher plants to support man during long-term space missions. The project is complementary to the NASA Kennedy Space Center Controlled Environmental Life Support System (CELSS) project. The first semester the class worked on a preliminary design for a complete system. This effort included means for monitoring and control of composition, temperature, flow rate, etc., for the atmosphere and liquid nutrient solution; disease and contaminant monitoring and control; plant mechanical support, propagation and harvesting; solid and liquid waste recycling; and system maintenance and refurbishing. The project has significant biological, mechanical, electrical and Al/Robotics aspects. The second semester a small number of subsystems or components, identified as important and interesting during the first semester, were selected for detail design, fabrication, and testing. The class was supported by close cooperation with The Kennedy Space Center and by two teaching assistants. The availability of a dedicated, well equipped project room greatly enhanced the communication and team spirit of the class.

  19. Robotic Design Studio: Exploring the Big Ideas of Engineering in a Liberal Arts Environment.

    ERIC Educational Resources Information Center

    Turbak, Franklyn; Berg, Robbie

    2002-01-01

    Suggests that it is important to introduce liberal arts students to the essence of engineering. Describes Robotic Design Studio, a course in which students learn how to design, assemble, and program robots made out of LEGO parts, sensors, motors, and small embedded computers. Represents an alternative vision of how robot design can be used to…

  20. Thoughts on Designing Things To NOT Break.

    ERIC Educational Resources Information Center

    Klajnscek, Rich

    1998-01-01

    Explains aspects of the design and loading of high-ropes courses and other challenge-course equipment. Discusses the engineer's factor of safety, determined by industry standards or the level of risk considered acceptable; definitions of terms for material strength; and the forces involved in loads sustained by belay ropes and cables. (SV)

  1. Overhaul, Inspection and Repair of Reciprocating Engines 2 (Course Outline), Aviation Mechanics (Power Plant): 9055.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outlined is the second of two designed to help a trainee acquire the knowledge and become proficient in the skills associated with the overhaul, inspection, and repair of reciprocating engines. The knowledge and skills are necessary to pass the Powerplant Theory and Maintenence section of the Federal Aviation Administration examination…

  2. Pressure for Fun: A Course Module for Increasing Chemical Engineering Students' Excitement and Interest in Mechanical Parts

    ERIC Educational Resources Information Center

    Scarbrough, Will J.; Case, Jennifer M.

    2006-01-01

    A new module in a first year mechanical drawing course was designed with the primary goal of exciting chemical engineering students about mechanical things. Other goals included increasing student ability and confidence to explain how things work. A variety of high intensity, hands-on, facilitated group activities using pumps and valves were…

  3. Practical Example of Introductory Engineering Education Based on the Design Process and Teaching Methodology Using a Gyro Bicycle

    ERIC Educational Resources Information Center

    Higa, Yoshikazu; Shimojima, Ken

    2018-01-01

    This report describes a workshop on the Dynamics of Machinery based on the fabrication of a gyro- bicycle in a summer school program for junior high school students. The workshop was conducted by engineering students who had completed "Creative Research", an engineering design course at the National Institute of Technology, Okinawa…

  4. High Pressure Reverse Flow APS Engine

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1972-01-01

    A design and test demonstration effort was undertaken to evaluate the concept of the reverse flow engine for the APS engine application. The 1500 lb (6672 N) thrust engine was designed to operate on gaseous hydrogen and gaseous oxygen propellants at a mixture ratio of 4 and to achieve the objective performance of 435 sec (4266 Nsec/kg) specific impulse. Superimposed durability requirements called for a million-cycle capability with 50 hours duration. The program was undertaken as a series of tasks including the initial preliminary design, design of critical test components and finally, the design and demonstration of an altitude engine which could be used interchangeably to examine operating parameters as well as to demonstrate the capability of the concept. The program results are reported with data to indicate that all of the program objectives were met or exceeded within the course of testing on the program. The analysis effort undertaken is also reported in detail and supplemented with test data in some cases where prior definitions could not be made. The results are contained of these analyses as well as the test results conducted throughout the course of the program. Finally, the test data and analytical results were combined to allow recommendations for a flight weight design. This preliminary design effort is also detailed.

  5. A paperless course on structural engineering programming: investing in educational technology in the times of the Greek financial recession

    NASA Astrophysics Data System (ADS)

    Sextos, Anastasios G.

    2014-01-01

    This paper presents the structure of an undergraduate course entitled 'programming techniques and the use of specialised software in structural engineering' which is offered to the fifth (final) year students of the Civil Engineering Department of Aristotle University Thessaloniki in Greece. The aim of this course is to demonstrate the use of new information technologies in the field of structural engineering and to teach modern programming and finite element simulation techniques that the students can in turn apply in both research and everyday design of structures. The course also focuses on the physical interpretation of structural engineering problems, in a way that the students become familiar with the concept of computational tools without losing perspective from the engineering problem studied. For this purpose, a wide variety of structural engineering problems are studied in class, involving structural statics, dynamics, earthquake engineering, design of reinforced concrete and steel structures as well as data and information management. The main novelty of the course is that it is taught and examined solely in the computer laboratory ensuring that each student can accomplish the prescribed 'hands-on' training on a dedicated computer, strictly on a 1:1 student over hardware ratio. Significant effort has also been put so that modern educational techniques and tools are utilised to offer the course in an essentially paperless mode. This involves electronic educational material, video tutorials, student information in real time and exams given and assessed electronically through an ad hoc developed, personalised, electronic system. The positive feedback received from the students reveals that the concept of a paperless course is not only applicable in real academic conditions but is also a promising approach that significantly increases student productivity and engagement. The question, however, is whether such an investment in educational technology is indeed timely during economic recession, where the academic priorities are rapidly changing. In the light of this unfavourable and unstable financial environment, a critical overview of the strengths, the weaknesses, the opportunities and the threats of this effort is presented herein, hopefully contributing to the discussion on the future of higher education in the time of crisis.

  6. Designing, Implementing and Maintaining a First Year Project Course in Electrical Engineering

    ERIC Educational Resources Information Center

    Lillieskold, J.; Ostlund, S.

    2008-01-01

    Being a modern electrical engineer does not only require state of the art skills in areas such as transfer and processing of information, electronics, systems engineering, and biomedical electrical engineering; it also requires generic engineering skills such as oral and written communication, team building, interpersonal skills, and the ability…

  7. Engineering the Future.

    ERIC Educational Resources Information Center

    Finniston, Monty

    1985-01-01

    Describes several key characteristics of professionalism and an engineering education curriculum which focuses on developing professionalism. The entrance course, teaching design, structured training, and continuing development are among the curricular areas addressed. (JN)

  8. Designing Computer Learning Environments for Engineering and Computer Science: The Scaffolded Knowledge Integration Framework.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    1995-01-01

    Describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering: the LISP Knowledge Integration Environment and the spatial reasoning environment. (101 references) (Author/MKR)

  9. Picasso, Car Classics, and the Engineers.

    ERIC Educational Resources Information Center

    Wosk, Julie H.

    1982-01-01

    Describes a college course which introduces engineering and business students to abstract art. Students study the relationships between abstract styles in painting and abstract styles in twentieth-century architecture and industrial design. The relevance of abstract design principles is shown by referring students to "Car and Driver"…

  10. An approach to developing independent learning and non-technical skills amongst final year mining engineering students

    NASA Astrophysics Data System (ADS)

    Knobbs, C. G.; Grayson, D. J.

    2012-06-01

    There is mounting evidence to show that engineers need more than technical skills to succeed in industry. This paper describes a curriculum innovation in which so-called 'soft' skills, specifically inter-personal and intra-personal skills, were integrated into a final year mining engineering course. The instructional approach was designed to promote independent learning and to develop non-technical skills, essential for students on the threshold of becoming practising engineers. Three psychometric tests were administered at the beginning of the course to make students aware of their own and their classmates' characteristics. Substantial prescribed reading assignments preceded weekly group discussions. Several projects during the course required team work skills and application of content knowledge to real-world contexts. Results obtained from students' reflection papers, assignments related to 'soft' skills and end of course evaluations suggest that students' appreciation of the need for these skills, as well as their own perceived competence, increased during the course. Their ability to function as independent learners also increased.

  11. A practice course to cultivate students' comprehensive ability of photoelectricity

    NASA Astrophysics Data System (ADS)

    Lv, Yong; Liu, Yang; Niu, Chunhui; Liu, Lishuang

    2017-08-01

    After the studying of many theoretical courses, it's important and urgent for the students from specialty of optoelectronic information science and engineering to cultivate their comprehensive ability of photoelectricity. We set up a comprehensive practice course named "Integrated Design of Optoelectronic Information System" (IDOIS) for the purpose that students can integrate their knowledge of optics, electronics and computer programming to design, install and debug an optoelectronic system with independent functions. Eight years of practice shows that this practice course can train students' ability of analysis, design/development and debugging of photoelectric system, improve their ability in document retrieval, design proposal and summary report writing, teamwork, innovation consciousness and skill.

  12. A pilot biomedical engineering course in rapid prototyping for mobile health.

    PubMed

    Stokes, Todd H; Venugopalan, Janani; Hubbard, Elena N; Wang, May D

    2013-01-01

    Rapid prototyping of medically assistive mobile devices promises to fuel innovation and provides opportunity for hands-on engineering training in biomedical engineering curricula. This paper presents the design and outcomes of a course offered during a 16-week semester in Fall 2011 with 11 students enrolled. The syllabus covered a mobile health design process from end-to-end, including storyboarding, non-functional prototypes, integrated circuit programming, 3D modeling, 3D printing, cloud computing database programming, and developing patient engagement through animated videos describing the benefits of a new device. Most technologies presented in this class are open source and thus provide unlimited "hackability". They are also cost-effective and easily transferrable to other departments.

  13. Quantifying the Information Habits of High School Students Engaged in Engineering Design

    ERIC Educational Resources Information Center

    Mentzer, Nathan; Fosmire, Michael J.

    2015-01-01

    This study measured the information gathering behaviors of high school students who had taken engineering design courses as they solved a design problem. The authors investigated what types of information students accessed, its quality, when it was accessed during the students' process, and if it impacted their thinking during the activity.…

  14. Development of concept-based physiology lessons for biomedical engineering undergraduate students.

    PubMed

    Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T

    2013-06-01

    Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.

  15. Mixture design procedure for flexible base.

    DOT National Transportation Integrated Search

    2013-04-01

    This document provides information on mixture design requirements for a flexible base course. Sections : design requirements, job mix formula, contractor's responsibility, and engineer's responsibility. Tables : material requirements; requirements fo...

  16. Fastener Design Course [Workbook

    NASA Technical Reports Server (NTRS)

    Barrett, Richart T.

    1997-01-01

    Richard T. Barrett, Senior Aerospace Engineer of NASA Lewis Research Center presents a comprehensive course on fastener design. A recognized expert in the field of fastener technology Mr. Barrett combines lecture, charts, illustrations with real-world experiences. Topics covered include: materials, plantings and coatings, locking methods threads, joint stiffness, rivets, inserts, nut plates, thread lubricants, design criteria, etc. These presentation slides accompany the DVD.

  17. Greening the curriculum: augmenting engineering and technology courses with sustainability topics

    USDA-ARS?s Scientific Manuscript database

    Duties of engineers and technologists often entail designing and implementing solutions to problems. It is their responsibility to be cognizant of the impacts of their designs on, and thus their accountability to society in general. They must also be aware of subsequent effects upon the environment....

  18. Integrated Curriculum Design Reform of Civil Engineering Management Discipline Based on Inter-disciplinary Professional Training

    NASA Astrophysics Data System (ADS)

    Yidong, Xu; Ping, Wu; Jian, Chen; Jiansheng, Shen

    2018-05-01

    In view of the shortcomings of the current civil engineering management discipline, this paper investigates the necessity of the course design reform. Based on the analysis of basic occupation requirements of civil engineering management discipline, the basic ideas and implementation strategies of the integrated reform of curriculum design system are proposed, which can not only improve the students’ overall understanding of knowledge and skills, but also enhance the system of student learning.

  19. On-line Naval Engineering Skills Supplemental Training Program

    DTIC Science & Technology

    2010-01-01

    Defense Technical University ( DTU ), the technical content for courses would have to be provided by the Naval technical authorities...of technological knowledge related to design engineering such as the DTU , or expanded within the mission scope of an existing organization such as...management program as a training tool for naval design engineers such as the DTU or a technical extension of the DAU program for acquisition training

  20. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  1. Competency Analytics Tool: Analyzing Curriculum Using Course Competencies

    ERIC Educational Resources Information Center

    Gottipati, Swapna; Shankararaman, Venky

    2018-01-01

    The applications of learning outcomes and competency frameworks have brought better clarity to engineering programs in many universities. Several frameworks have been proposed to integrate outcomes and competencies into course design, delivery and assessment. However, in many cases, competencies are course-specific and their overall impact on the…

  2. APTI Course 427, Combustion Evaluation. Student Manual.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    This student manual supplements a course designed to present fundamental and applied aspects of combustion technology which influence air pollutant emissions. Emphasis is placed on process control of combustion rather than on gas cleaning. The course is intended to provide engineers, regulatory and technical personnel, and others with familiarity…

  3. A Course on Plasma Processing in Integrated Circuit Fabrication.

    ERIC Educational Resources Information Center

    Sawin, Herbert H.; Reif, Rafael

    1983-01-01

    Describes a course, taught jointly by electrical/chemical engineering departments at the Massachusetts Institute of Technology, designed to teach the fundamental science of plasma processing as well as to give an overview of the present state of industrial processes. Provides rationale for course development, texts used, class composition, and…

  4. Teaching a Course about the Space Telescope.

    ERIC Educational Resources Information Center

    Page, Thornton

    1983-01-01

    "Astronomy with the Space Telescope" is a course designed to show scientists/engineers how this instrument can make important advances in astrophysics, planetology, and geophysics. A description of the course (taught to 11 students working for the National Aeronautics and Space Administration) and sample student paper on black holes are…

  5. Intriguing Freshmen with Materials Science.

    ERIC Educational Resources Information Center

    Pond, Robert B., Sr.

    Described is a course designed for engineering science and natural science freshmen and open to upperclass nonscience majors entitled "Science of Modern Materials" and which has been successfully presented for several years. This paper presents the philosophy behind the course, the teaching methods employed, and the content of the course. The…

  6. Case Study of a Project-Based Learning Course in Civil Engineering Design

    ERIC Educational Resources Information Center

    Gavin, K.

    2011-01-01

    This paper describes the use of project-based learning to teach design skills to civil engineering students at University College Dublin (UCD). The paper first considers the development of problem-based leaning (PBL) as a tool in higher education. The general issues to be considered in the design of the curriculum for a PBL module are reviewed.…

  7. A Survey of Former Drafting & Engineering Design Technology Students. Summary Findings of Respondents District-Wide.

    ERIC Educational Resources Information Center

    Glyer-Culver, Betty

    In fall 2001 staff of the Los Rios Community College District Office of Institutional Research collaborated with occupational deans, academic deans, and faculty to develop and administer a survey of former Drafting and Engineering Design Technology students. The survey was designed to determine how well courses had met the needs of former drafting…

  8. Development of technical skills in Electrical Power Engineering students: A case study of Power Electronics as a Key Course

    NASA Astrophysics Data System (ADS)

    Hussain, I. S.; Azlee Hamid, Fazrena

    2017-08-01

    Technical skills are one of the attributes, an engineering student must attain by the time of graduation, as per recommended by Engineering Accreditation Council (EAC). This paper describes the development of technical skills, Programme Outcome (PO) number 5, in students taking the Bachelor of Electrical Power Engineering (BEPE) programme in Universiti Tenaga Nasional (UNITEN). Seven courses are identified to address the technical skills development. The course outcomes (CO) of the courses are designed to instill the relevant technical skills with suitable laboratory activities. Formative and summative assessments are carried out to gauge students’ acquisition of the skills. Finally, to measure the attainment of the technical skills, key course concept is used. The concept has been implemented since 2013, focusing on improvement of the programme instead of the cohort. From the PO attainment analysis method, three different levels of PO attainment can be calculated: from the programme level, down to the course and student levels. In this paper, the attainment of the courses mapped to PO5 is measured. It is shown that Power Electronics course, which is the key course for PO5, has a strong attainment at above 90%. PO5 of other six courses are also achieved. As a conclusion, by embracing outcome-based education (OBE), the BEPE programme has a sound method to develop technical psychomotor skills in the degree students.

  9. Engineering Students for the 21st Century: Student Development through the Curriculum

    ERIC Educational Resources Information Center

    Cheville, Alan; Bunting, Chuck

    2011-01-01

    Through support of the National Science Foundation's Department Level Reform program, "Engineering Students for the 21st Century" (ES21C) has implemented a ten-course sequence designed to help students develop into engineers. Spread across the Electrical and Computer Engineering (ECE) curriculum at Oklahoma State University, these…

  10. The Use of Mini-projects in the Teaching of Geotechnics to Civil Engineering Undergraduates.

    ERIC Educational Resources Information Center

    Anderson, W. F.; And Others

    1985-01-01

    Geotechnics (which encompasses soil and rock mechanics, engineering geology, foundation design, and ground engineering methods) is a major component of virtually all civil engineering courses. Show how mini-projects are used to teach this subject. Format of projects, development of presentation skills, and assessment considerations are discussed.…

  11. Building inclusive engineering identities: implications for changing engineering culture

    NASA Astrophysics Data System (ADS)

    Atadero, Rebecca A.; Paguyo, Christina H.; Rambo-Hernandez, Karen E.; Henderson, Heather L.

    2018-05-01

    Ongoing efforts to broaden the participation of women and people of colour in engineering degree programmes and careers have had limited success. This paper describes a different approach to broadening participation that seeks to work with all students and develop inclusive engineering identities. Researchers worked with the instructors of two first-year engineering courses to integrate curriculum activities designed to promote the formation of engineering identities and build an appreciation for how diversity and inclusion strengthen engineering practice. Multilevel modelling results indicated positive effects of the intervention on appreciation for diversity but no effects on engineering identity, and qualitative results indicated students learned the most about diversity not through one of the intervention activities, but through team projects in the courses. We also describe lessons learned in how to teach engineering students about diversity in ways that are relevant to engineering.

  12. The acquisition and transfer of knowledge of electrokinetic-hydrodynamics (EKHD) fundamentals: an introductory graduate-level course

    NASA Astrophysics Data System (ADS)

    Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.

    2017-09-01

    Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of 'Applied Field Sensitive Process Technologies' requiring an external field to move solutes in a fluid within a fibrous (or porous) domain. This field incorporates an additional variable that makes the analysis very challenging and can create for the student a number of new problems to solve. A graduate-level course, based on active-learning approaches and High Performance Learning Environments, where transfer of knowledge plays a key role, was designed by the Chemical Engineering Department at Tennessee Technological University. This course, where the fundamentals principles of EKHD were taught to science, engineering and technology students was designed by the Chemical Engineering Department at the Tennessee Technological University, Cookeville, TN. An important number of these students were able to grasp the tools required to advance their research projects that led to numerous technical presentations in professional society meetings and publications in peered-reviewed journals.

  13. The Role of Re-Appropriation in Open Design: A Case Study on How Openness in Higher Education for Industrial Design Engineering Can Trigger Global Discussions on the Theme of Urban Gardening

    ERIC Educational Resources Information Center

    Ostuzzi, Francesca; Conradie, Peter; De Couvreur, Lieven; Detand, Jan; Saldien, Jelle

    2016-01-01

    This case study explores the opportunities for students of Industrial Design Engineering to engage with direct and indirect stakeholders by making their design process and results into open-ended designed solutions. The reported case study involved 47 students during a two-weeks intensive course on the topic of urban gardening. Observations were…

  14. Investigating the Language of Engineering Education

    NASA Astrophysics Data System (ADS)

    Variawa, Chirag

    A significant part of professional communication development in engineering is the ability to learn and understand technical vocabulary. Mastering such vocabulary is often a desired learning outcome of engineering education. In promoting this goal, this research investigates the development of a tool that creates wordlists of characteristic discipline-specific vocabulary for a given course. These wordlists explicitly highlight requisite vocabulary learning and, when used as a teaching aid, can promote greater accessibility in the learning environment. Literature, including work in higher education, diversity and language learning, suggest that designing accessible learning environments can increase the quality of instruction and learning for all students. Studying the student/instructor interface using the framework of Universal Instructional Design identified vocabulary learning as an invisible barrier in engineering education. A preliminary investigation of this barrier suggested that students have difficulty assessing their understanding of technical vocabulary. Subsequently, computing word frequency on engineering course material was investigated as an approach for characterizing this barrier. However, it was concluded that a more nuanced method was necessary. This research program was built on previous work in the fields of linguistics and computer science, and lead to the design of an algorithm. The developed algorithm is based on a statistical technique called, Term Frequency-Inverse Document Frequency. Comparator sets of documents are used to hierarchically identify characteristic terms on a target document, such as course materials from a previous term of study. The approach draws on a standardized artifact of the engineering learning environment as its dataset; a repository of 2254 engineering final exams from the University of Toronto, to process the target material. After producing wordlists for ten courses, with the goal of highlighting characteristic discipline-specific terms, the effectiveness of the approach was evaluated by comparing the computed results to the judgment of subject-matter experts. The overall data show a good correlation between the program and the subject-matter experts. The results indicated a balance between accuracy and feasibility, and suggested that this approach could mimic subject-matter expertise to create a list discipline-specific vocabulary from course materials.

  15. Offshore Wind Energy Systems Engineering Curriculum Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This coursemore » was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.« less

  16. Proceedings of the Annual Ada Software Engineering Education and Training Symposium (6th), Held in Alexandria, Virginia on September 11-13, 1991

    DTIC Science & Technology

    1991-09-01

    level are, by necessity, designed to be accomplished by one or a few students in the course of a single academic term. Moreover, the software is seldom...that are covered in Computer Science curricula today, but with more of an engineering structure added. A stronger engineering design component is...ing, and sound software design principles found throughout Ada, and they are unambiguously specified. These are not features which were grafted onto a

  17. The Design and Development of a Computerized Tool Support for Conducting Senior Projects in Software Engineering Education

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Teng, Kao-Chiuan

    2011-01-01

    This paper presents a computerized tool support, the Meetings-Flow Project Collaboration System (MFS), for designing, directing and sustaining the collaborative teamwork required in senior projects in software engineering (SE) education. Among many schools' SE curricula, senior projects serve as a capstone course that provides comprehensive…

  18. Innovative and Creative K-12 Engineering Strategies: Implications of Pre-Service Teacher Survey

    ERIC Educational Resources Information Center

    Mativo, John M.; Park, Jae H.

    2012-01-01

    This study sought to find student perceptions of how the engineering design process is learned and applied by pre-service teachers at the University of Georgia. The course description read "demonstration and hands-on learning, including problem solving, designing, construction and testing of prototypes, and activities that increase aesthetic,…

  19. Adapting Wood Technology to Teach Design and Engineering

    ERIC Educational Resources Information Center

    Rummel, Robert A.

    2012-01-01

    Technology education has changed dramatically over the last few years. The transition of industrial arts to technology education and more recently the pursuit of design and engineering has resulted in technology education teachers often needing to change their curriculum and course activities to meet the demands of a rapidly changing profession.…

  20. Shedding light on the subject: introduction to illumination engineering and design for multidiscipline engineering students

    NASA Astrophysics Data System (ADS)

    Ronen, Ram S.; Smith, R. Frank

    1995-10-01

    Educating engineers and architects in Illumination Engineering and related subjects has become a very important field and a very satisfying and rewarding one. Main reasons include the need to significantly conserve lighting energy and meet government regulations while supplying appropriate light levels and achieving aesthetical requirements. The proliferation of new lamps, luminaries and lighting controllers many of which are 'energy savers' also helps a trend to seek help from lighting engineers when designing new commercial and residential buildings. That trend is believed to continue and grow as benefits become attractive and new government conservation regulations take affect. To make things even better one notices that Engineering and Science students in most disciplines make excellent candidates for Illumination Engineers because of their background and teaching them can move ahead at a brisk pace and be a rewarding experience nevertheless. In the past two years, Cal Poly Pomona College of Engineering has been the beneficiary of a DOE/California grant. Its purpose was to precipitate and oversee light curricula in various California community colleges and also develop and launch an Illumination Engineering minor at Cal Poly University. Both objectives have successfully been met. Numerous community colleges throughout California developed and are offering a sequence of six lighting courses leading to a certificate; the first graduating class is now coming out of both Cypress and Consumnes Community Colleges. At Cal Poly University a four course/laboratory sequence leading to a minor in Illumination Engineering (ILE) is now offered to upper division students in the College of Engineering, College of Science and College of Architecture and Design. The ILE sequence will briefly be described. The first course, Introduction to Illumination Engineering and its laboratory are described in more detail alter. Various methods of instruction including lectures, self work, industrial visits and guest lectures, as well as the accompanying laboratory work are discussed. Feedback from the students was very positive.

  1. Structures and Systems. Grade 11-12. Course #8155 (Semester). Technology Education Course Guide. Industrial Arts/Technology Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    This guide is intended for use in teaching a course to broaden students' appreciation and understanding of constructed items and the construction process. The course focuses on the steps that are taken after the design and engineering phase has been completed. Laboratory assignments allow students to explore the technical processes involved in the…

  2. Interactive Computing and Graphics in Undergraduate Digital Signal Processing. Microcomputing Working Paper Series F 84-9.

    ERIC Educational Resources Information Center

    Onaral, Banu; And Others

    This report describes the development of a Drexel University electrical and computer engineering course on digital filter design that used interactive computing and graphics, and was one of three courses in a senior-level sequence on digital signal processing (DSP). Interactive and digital analysis/design routines and the interconnection of these…

  3. Introduction of a Population Balance Based Design Problem in a Particle Science and Technology Course for Chemical Engineers

    ERIC Educational Resources Information Center

    Ehrman, Sheryl H.; Castellanos, Patricia; Dwivedi, Vivek; Diemer, R. Bertrum

    2007-01-01

    A particle technology design problem incorporating population balance modeling was developed and assigned to senior and first-year graduate students in a Particle Science and Technology course. The problem focused on particle collection, with a pipeline agglomerator, Cyclone, and baghouse comprising the collection system. The problem was developed…

  4. The Impact of a Simulation and Problem-Based Learning Design Project on Student Learning and Teamwork Skills. CSE Technical Report.

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.

    This study examined a civil engineering capstone course that embedded a sophisticated simulation-based task within instruction. Students (n=28) were required to conduct a hazardous waste site investigation using simulation software designed specifically for the course (Interactive Site Investigation Software) (ISIS). The software simulated…

  5. A Design Quality Learning Unit in OO Modeling Bridging the Engineer and the Artist

    ERIC Educational Resources Information Center

    Waguespack, Leslie J.

    2015-01-01

    Recent IS curriculum guidelines compress software development pedagogy into smaller and smaller pockets of course syllabi. Where undergraduate IS students once may have practiced modeling in analysis, design, and implementation across six or more courses in a curriculum using a variety of languages and tools they commonly now experience modeling…

  6. Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University

    NASA Astrophysics Data System (ADS)

    Perry, Jonathan; Bassichis, William

    Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.

  7. Software Engineering Education: Some Important Dimensions

    ERIC Educational Resources Information Center

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  9. System Engineering Paper

    NASA Technical Reports Server (NTRS)

    Heise, James; Hull, Bethanne J.; Bauer, Jonathan; Beougher, Nathan G.; Boe, Caleb; Canahui, Ricardo; Charles, John P.; Cooper, Zachary Davis Job; DeShaw, Mark A.; Fontanella, Luan Gasparetto; hide

    2012-01-01

    The Iowa State University team, Team LunaCY, is composed of the following sub-teams: the main student organization, the Lunabotics Club; a senior mechanical engineering design course, ME 415; a senior multidisciplinary design course, ENGR 466; and a senior design course from Wartburg College in Waverly, Iowa. Team LunaCY designed and fabricated ART-E III, Astra Robotic Tractor- Excavator the Third, for the team's third appearance in the NASA Lunabotic Mining competition. While designing ART-E III, the team had four main goals for this year's competition:to reduce the total weight of the robot, to increase the amount of regolith simulant mined, to reduce dust, and to make ART-E III autonomous. After many designs and research, a final robot design was chosen that obtained all four goals of Team LunaCY. A few changes Team LunaCY made this year was to go to the electrical, computer, and software engineering club fest at Iowa State University to recruit engineering students to accomplish the task of making ART-E III autonomous. Team LunaCY chose to use LabView to program the robot and various sensors were installed to measure the distance between the robot and the surroundings to allow ART-E III to maneuver autonomously. Team LunaCY also built a testing arena to test prototypes and ART-E III in. To best replicate the competition arena at the Kennedy Space Center, a regolith simulant was made from sand, QuickCrete, and fly ash to cover the floor of the arena. Team LunaCY also installed fans to allow ventilation in the arena and used proper safety attire when working in the arena . With the additional practice in the testing arena and innovative robot design, Team LunaCY expects to make a strong appearance at the 2012 NASA Lunabotic Mining Competition. .

  10. Refactoring a CS0 Course for Engineering Students to Use Active Learning

    ERIC Educational Resources Information Center

    Lokkila, Erno; Kaila, Erkki; Lindén, Rolf; Laakso, Mikko-Jussi; Sutinen, Erkki

    2017-01-01

    Purpose: The purpose of this paper was to determine whether applying e-learning material to a course leads to consistently improved student performance. Design/methodology/approach: This paper analyzes grade data from seven instances of the course. The first three instances were performed traditionally. After an intervention, in the form of…

  11. An Undergraduate Survey Course on Asynchronous Sequential Logic, Ladder Logic, and Fuzzy Logic

    ERIC Educational Resources Information Center

    Foster, D. L.

    2012-01-01

    For a basic foundation in computer engineering, universities traditionally teach synchronous sequential circuit design, using discrete gates or field programmable gate arrays, and a microcomputers course that includes basic I/O processing. These courses, though critical, expose students to only a small subset of tools. At co-op schools like…

  12. Educational Impact of Digital Visualization Tools on Digital Character Production Computer Science Courses

    ERIC Educational Resources Information Center

    van Langeveld, Mark Christensen

    2009-01-01

    Digital character production courses have traditionally been taught in art departments. The digital character production course at the University of Utah is centered, drawing uniformly from art and engineering disciplines. Its design has evolved to include a synergy of computer science, functional art and human anatomy. It gives students an…

  13. Designing for Enhanced Conceptual Understanding in an Online Physics Course

    ERIC Educational Resources Information Center

    Dunlap, Joanna C.; Furtak, Thomas E.; Tucker, Susan A.

    2009-01-01

    The calculus-based, introductory physics course is the port of entry for any student interested in pursuing a college degree in the sciences, mathematics, or engineering. There is increasing demand for online delivery options that make the course more widely available, especially those that use best practices in student engagement. However,…

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  15. Same Courses, Different Outcomes? Variations in Confidence, Experience, and Preparation in Engineering Design. Research Brief

    ERIC Educational Resources Information Center

    Morozov, Andrew; Kilgore, Deborah; Yasuhara, Ken; Atman, Cindy

    2008-01-01

    There is evidence in the literature that women have lower confidence in their skills and knowledge than men, particularly in areas considered crucial for engineering, like math and science. This difference has been linked to gender gaps in engineering enrollment and persistence. This study of engineering students extends research on gender…

  16. Educational Innovation in the Design of an Online Nuclear Engineering Curriculum

    ERIC Educational Resources Information Center

    Hall, Simin; Jones, Brett D.; Amelink, Catherine; Hu, Deyu

    2013-01-01

    The purpose of this paper is to describe the development and implementation phases of online graduate nuclear engineering courses that are part of the Graduate Nuclear Engineering Certificate program at Virginia Tech. Virginia Tech restarted its nuclear engineering program in the Fall of 2007 with 60 students, and by 2009, the enrollment had grown…

  17. Graduate level design - Courses and projects: An untapped resource

    NASA Technical Reports Server (NTRS)

    Dubrawsky, Ido; Neff, Jon M.; Pinon, Elfego, III; Fowler, Wallace T.

    1993-01-01

    The authors describe their experiences at a major space engineering university (the University of Texas at Austin) in the use of graduate level design courses and projects to produce information and tools that are of use to undergraduate design classes, graduate students, and industry. The information produced to date includes a spacecraft subsystems information document, a mission design tool (a FORTRAN subroutine library), a series of space mission characterizations, and a set of spacecraft characterizations.

  18. Learning by Brewing: Beer Production Experiments in the Chemical Engineering Laboratory

    ERIC Educational Resources Information Center

    Cerretani, Colin; Kelkile, Esayas; Landry, Alexandra

    2017-01-01

    We discuss the successful creation and implementation of a biotechnology track within the chemical engineering unit operations course. The track focuses on engineering principles relevant to brewing. Following laboratory modules investigating heat transfer processes and yeast fermentation kinetics, student groups design and implement a project to…

  19. 3D Image Display Courses for Information Media Students.

    PubMed

    Yanaka, Kazuhisa; Yamanouchi, Toshiaki

    2016-01-01

    Three-dimensional displays are used extensively in movies and games. These displays are also essential in mixed reality, where virtual and real spaces overlap. Therefore, engineers and creators should be trained to master 3D display technologies. For this reason, the Department of Information Media at the Kanagawa Institute of Technology has launched two 3D image display courses specifically designed for students who aim to become information media engineers and creators.

  20. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    ERIC Educational Resources Information Center

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  1. Experiences in Digital Circuit Design Courses: A Self-Study Platform for Learning Support

    ERIC Educational Resources Information Center

    Bañeres, David; Clarisó, Robert; Jorba, Josep; Serra, Montse

    2014-01-01

    The synthesis of digital circuits is a basic skill in all the bachelor programmes around the ICT area of knowledge, such as Computer Science, Telecommunication Engineering or Electrical Engineering. An important hindrance in the learning process of this skill is that the existing educational tools for the design of circuits do not allow the…

  2. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  3. Incorporating Total Quality Management in an Engineering Design Course. Report 5-1993.

    ERIC Educational Resources Information Center

    Wilczynski, V.; And Others

    One definition of creativity is the conviction that each and every existing idea can be improved. It is proposed that creativity in an engineering design process can be encouraged by the adoption of Total Quality Management (TQM) methods based on a commitment to continuous improvement. This paper addresses the introduction and application of TQM…

  4. Comparative analysis of student self-reflections on course projects

    NASA Astrophysics Data System (ADS)

    Pomales-García, Cristina; Cortés Barreto, Kenneth

    2014-11-01

    This study presents the skills, experiences, and values identified in project self-reflections of 161 undergraduate engineering students. Self-reflections from two different engineering design courses, which provide experiences in project-based learning (PBL), are analysed through the content analysis methodology. Results show that 'application', 'true life', 'satisfaction', and 'communication' are the common keywords shared in the reflections. Multiple hypothesis tests to identify differences between courses, project types, years, and gender suggest that there are no significant differences between experiences, skills, and values self-reported by students who completed either a case study or an industry project. Based on research findings, recommendations will be provided to enhance the engineering curriculum based on PBL experiences to support the development of relevant professional skills and experiences.

  5. A Comparison of Lecture-Based and Challenge-Based Learning in a Workplace Setting: Course Designs, Patterns of Interactivity, and Learning Outcomes

    ERIC Educational Resources Information Center

    O'Mahony, Timothy K.; Vye, Nancy J.; Bransford, John D.; Sanders, Elizabeth A.; Stevens, Reed; Stephens, Richard D.; Richey, Michael C.; Lin, Kuen Y.; Soleiman, Moe K.

    2012-01-01

    We describe findings from a research partnership involving a global airline manufacturing company (The Boeing Company), and learning scientists and aeronautical engineers from the University of Washington. Our starting point for the partnership focused on an 8-hour introductory composites course that was designed for company employees. In phase…

  6. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  7. Ideas in Practice: Studies in Atmospheric Pollution For Science Teachers

    ERIC Educational Resources Information Center

    Rowe, Donald R.

    1974-01-01

    Describes the content and structure of an enviromental course offered by the Department of Engineering Technology at Western Kentucky University. The course focuses on atmospheric pollution and is designed for science teachers currently teaching in the school system. (JR)

  8. Teaching Effective Oral Presentations as Part of the Senior Design Course.

    ERIC Educational Resources Information Center

    Hanzevack, E. L.; McKean, R. A.

    1991-01-01

    Discussed is the importance of engineering students having effective communication skills so they will be able to discuss their work, present their findings, and propose a course of action. Suggestions for organizing and delivering presentations are included. (KR)

  9. Hypergol Systems: Design, Buildup, and Operation

    NASA Technical Reports Server (NTRS)

    Baker, David; Rathgeber, Kurt

    2006-01-01

    This course was developed by personnel at the NASA JSC White Sands Test Facility in conjunction with the NASA Safety Training Center (NSTC). The NSTC was established in May 1991 by the NASA Headquarters Safety Directorate to provide up-to-date, high-quality, NASA specific safety training on location at NASA centers, or simultaneously to multiple centers over the Video Teleconferencing System (ViTS). Our desire is to establish and maintain a strong, long-lasting relationship with all NASA centers in order to fulfill your safety training needs on a cost-effective basis. Our ultimate goal is to provide a positive contribution to safe operations at NASA. NSTC Course 055 is a 2-day course discussing the safe usage of hypergols (hydrazine fuels and nitrogen tetroxide). During the course we will identify the hazards associated with hypergols including toxicity, reactivity, fire, and explosion. Management of risk is discussed in terms of the primary engineering controls design, buildup, and operation; and secondary controls personal protective equipment and detectors/monitors. The emphasis is on the design and buildup of compatible systems and the safe operation of these systems by technicians and engineers.

  10. The Transformative Experience in Engineering Education

    NASA Astrophysics Data System (ADS)

    Goodman, Katherine Ann

    This research evaluates the usefulness of transformative experience (TE) in engineering education. With TE, students 1) apply ideas from coursework to everyday experiences without prompting (motivated use); 2) see everyday situations through the lens of course content (expanded perception); and 3) value course content in new ways because it enriches everyday affective experience (affective value). In a three-part study, we examine how engineering educators can promote student progress toward TE and reliably measure that progress. For the first study, we select a mechanical engineering technical elective, Flow Visualization, that had evidence of promoting expanded perception of fluid physics. Through student surveys and interviews, we compare this elective to the required Fluid Mechanics course. We found student interest in fluids fell into four categories: complexity, application, ubiquity, and aesthetics. Fluid Mechanics promotes interest from application, while Flow Visualization promotes interest based in ubiquity and aesthetics. Coding for expanded perception, we found it associated with students' engineering identity, rather than a specific course. In our second study, we replicate atypical teaching methods from Flow Visualization in a new design course: Aesthetics of Design. Coding of surveys and interviews reveals that open-ended assignments and supportive teams lead to increased ownership of projects, which fuels risk-taking, and produces increased confidence as an engineer. The third study seeks to establish parallels between expanded perception and measurable perceptual expertise. Our visual expertise experiment uses fluid flow images with both novices and experts (students who had passed fluid mechanics). After training, subjects sort images into laminar and turbulent categories. The results demonstrate that novices learned to sort the flow stimuli in ways similar to subjects in prior perceptual expertise studies. In contrast, the experts' significantly better results suggest they are accessing conceptual fluids knowledge to perform this new, visual task. The ability to map concepts onto visual information is likely a necessary step toward expanded perception. Our findings suggest that open-ended aesthetic experiences with engineering content unexpectedly support engineering identity development, and that visual tasks could be developed to measure conceptual understanding, promoting expanded perception. Overall, we find TE a productive theoretical framework for engineering education research.

  11. Multiple Approaches to Design Education

    ERIC Educational Resources Information Center

    Fox, Richard L.; And Others

    1974-01-01

    Discusses implementation of Sloan Foundation projects at the Case Western School of Engineering, including the development of a computer assisted mechanical structural design course, the establishment of a complex systems laboratory, and personnel views of industry-university design projects. (CC)

  12. The Participation to The All Japan College of Technology Design Competition and The Trial of Art and Design Education

    NASA Astrophysics Data System (ADS)

    Takeshita, Junji; Kato, Kenji

    In the 2nd All Japan College of Technology Design Competition, the students majoring department of architecture (included architecture course in advanced course of Architecture and Civil Engineering) of Toyota National College of Technology won the highest award in all 3 sections of the held competition. In this paper, 2 sections of design course in awarded 3 sections was taken up. In addition, while reporting the circumstances and measure to the competition participation, the revision of a molding subject performed in recent years and the relation of this winning-a-prize result were considered.

  13. The Teach for America RockCorps, Year 1: Turning Authentic Research Experiences in Geophysics for STEM Teachers into Modeling Instruction™ in High School Classrooms

    NASA Astrophysics Data System (ADS)

    Garrison, D. R., Jr.; Neubauer, H.; Barber, T. J.; Griffith, W. A.

    2015-12-01

    National reform efforts such as the Next Generation Science Standards, Modeling Instruction™, and Project Lead the Way (PLTW) seek to more closely align K-12 students' STEM learning experiences with the practices of scientific and engineering inquiry. These reform efforts aim to lead students toward deeper understandings constructed through authentic scientific and engineering inquiry in classrooms, particularly via model building and testing, more closely mirroring the professional practice of scientists and engineers, whereas traditional instructional approaches have typically been lecture-driven. In this vein, we describe the approach taken in the first year of the Teach for America (TFA) RockCorps, a five-year, NSF-sponsored project designed to provide authentic research experiences for secondary teachers and foster the development of Geophysics-themed teaching materials through cooperative lesson plan development and purchase of scientific equipment. Initially, two teachers were selected from the local Dallas-Fort Worth Region of TFA to participate in original research studying the failure of rocks under impulsive loads using a Split-Hopkinson-Pressure Bar (SHPB). For the teachers, this work provides a context from which to derive Geophysics-themed lesson plans for their courses, Physics/Pre-AP and Principles of Engineering (POE), offered at two large public high schools in Dallas ISD. The Physics course will incorporate principles of seismic wave propagation to allow students to develop a model of wave behavior, including velocity, refraction, and resonance, and apply the model to predict propagation properties of a variety of waves through multiple media. For the PLTW POE course, tension and compression testing of a variety of rock samples will be incorporated into materials properties and testing units. Also, a project will give a group of seniors in the PLTW Engineering Design and Development course at this certified NAF Academy of Engineering the opportunity to collaborate with UT Arlington scientists to design and prototype a fixturing solution for material testing. These course adaptations address learning objectives specified by the Texas Essential Knowledge and Skills, using geoscience examples to make abstract concepts more concrete.

  14. Pre-Service Teachers' Mind Maps and Opinions on STEM Education Implemented in an Environmental Literacy Course

    ERIC Educational Resources Information Center

    Sümen, Özlem Özçakir; Çalisici, Hamza

    2016-01-01

    This study aims to implement a science, technology, engineering, and mathematics (STEM) education approach in an environmental education course. The research involved the design and implementation of STEM activities by researchers, as part of the environmental education course taught in the second year of a Primary School Teaching undergraduate…

  15. Creative inventive design and research

    NASA Astrophysics Data System (ADS)

    Kerley, James J.

    1994-06-01

    This paper is a summary of a course given at the Goddard Space Flight Center for graduate engineers entitled 'Creative Inventive Design and Research.' This course strikes at the heart of the problem as it describes the thinking process itself before it goes deeper into the design process as a structured method for performing creative design. Many problem examples and figures are presented in a form that should make clear to all students what this process is and how it can be used.

  16. Creative inventive design and research

    NASA Technical Reports Server (NTRS)

    Kerley, James J.

    1994-01-01

    This paper is a summary of a course given at the Goddard Space Flight Center for graduate engineers entitled 'Creative Inventive Design and Research.' This course strikes at the heart of the problem as it describes the thinking process itself before it goes deeper into the design process as a structured method for performing creative design. Many problem examples and figures are presented in a form that should make clear to all students what this process is and how it can be used.

  17. Teaching Sustainable Energy and Power Electronics to Engineering Students in a Laboratory Environment Using Industry-Standard Tools

    ERIC Educational Resources Information Center

    Ochs, David S.; Miller, Ruth Douglas

    2015-01-01

    Power electronics and renewable energy are two important topics for today's power engineering students. In many cases, the two topics are inextricably intertwined. As the renewable energy sector grows, the need for engineers qualified to design such systems grows as well. In order to train such engineers, new courses are needed that highlight the…

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVIII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART II), II--UNDERSTANDING MORE ABOUT STARTING DEVICES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF DIESEL ENGINE STARTING ENGINES. TOPICS ARE (1) STARTING ENGINE MAGNETO (WICO), (2) MAGNETO MAINTENANCE, (3) SPARK PLUGS, (4) GENERAL DESCRIPTION (STARTING DEVICES), (5) OPERATING (STARTING DEVICES), (6) LUBRICATION (STARTING DEVICES), (7)…

  20. Interactive simulations as teaching tools for engineering mechanics courses

    NASA Astrophysics Data System (ADS)

    Carbonell, Victoria; Romero, Carlos; Martínez, Elvira; Flórez, Mercedes

    2013-07-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills.

  1. Innovative assessment paradigm to enhance student learning in engineering education

    NASA Astrophysics Data System (ADS)

    El-Maaddawy, Tamer

    2017-11-01

    Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering design course. Direct evidence of the impact of employing this innovation on student learning and achievement was derived by monitoring student academic performance in direct assessment tasks throughout the semester. Students' feedback demonstrated the effectiveness of this innovation to improve their understanding of course topics build their autonomy, independent judgement, and self-regulated learning skills.

  2. Training Course in Geotechnical and Foundation Engineering. Geotechnical Earthquake Engineering: Reference Manual. Chapters 4, Ground Motion Characterization, and 8, Liquefaction and Seismic Settlement.

    DOT National Transportation Integrated Search

    1998-12-01

    This manual was written to provide training on how to apply principles of geotechnical earthquake engineering to planning, design, and retrofit of highway facilities. Reproduced here are two chapters 4 and 8 in the settlement, respectively. These cha...

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…

  4. The Role of Entrepreneurship Program Models and Experiential Activities on Engineering Student Outcomes

    ERIC Educational Resources Information Center

    Duval-Couetil, Nathalie; Shartrand, Angela; Reed, Teri

    2016-01-01

    Entrepreneurship education is being delivered to greater numbers of engineering students through a variety of courses, programs, and experiential learning activities. Some of these opportunities are designed primarily to serve engineering students in their departments and colleges, while others are cross-campus, university-wide efforts to serve…

  5. Stationary Engineering Laboratory--2. Teacher's Guide.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; Frost, Harold J.

    The Stationary Engineering Laboratory Manual 2 Teacher's Guide was designed as an aid to the instructors of vocational-technical high school students who have received instruction in the basics of stationary engineering. The course of study was developed for students who will be operating a live plant and who will be responsible for supplying…

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  7. Development of engineering drawing ability for emerging engineering education

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Wen; Cao, Xiao-Chang; Xie, Li; Jin, Jian-Jun; Wang, Chu-Diao

    2017-09-01

    Students majoring in engineering is required by the emerging engineering education (3E) in the aspect of their ability of engineering drawing. This paper puts forward training mode of engineering drawing ability for 3E. This mode consists of three kinds of training including training in courses, training in competitions and training in actual demand. We also design the feasible implementation plan and supplies viable references to carry out the mode.

  8. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  9. Advanced engineering design program at the University of Illinois for the 1987-1988 academic year

    NASA Technical Reports Server (NTRS)

    Sivier, Kenneth R.; Lembeck, Michael F.

    1988-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA Universities Advanced Engineering Design Program (Space) is reviewed for the 1987 to 88 academic year. The University's design project was the Manned Marsplane and Delivery System. In the spring of 1988 semester, 107 students were enrolled in the Aeronautical and Astronautical Engineering Departments' undergraduate Aerospace Vehicle Design course. These students were divided into an aircraft section (responsible for the Marsplane design), and a spacecraft section (responsible for the Delivery System Design). The design results are presented in Final Design Reports, copies of which are attached. In addition, five students presented a summary of the design results at the Program's Summer Conference.

  10. Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on engineer equipment mechanics is designed to advance the professional competence of privates through sergeants as equipment mechanics, Military Occupation Specialty 1341, and is adaptable for nonmilitary instruction. Introductory materials include…

  11. Hydrogen Fuel Cell Engines and Related Technologies

    NASA Astrophysics Data System (ADS)

    2001-12-01

    The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.

  12. Addressing the United States Navy Need for Software Engineering Education

    DTIC Science & Technology

    1999-09-01

    taught in MA 1996 (5 - 0). Precalculus review, complex numbers and algebra, complex plane, DeMovire’s Theorem, matrix algebra, LU decomposition...This course was designed for the METOC and Combat Systems curricula. PREREQUISITE: Precalculus mathematics. MA1996 MATHEMATICS FOR SCIENTISTS AND...description for MAI995 (5 - 0). This course was designed for the METOC and Combat Systems curricula. PREREQUISITE: Precalculus mathematics. PHYSICS/SYSTEMS

  13. Implementation of an innovative teaching project in a Chemical Process Design course at the University of Cantabria, Spain

    NASA Astrophysics Data System (ADS)

    Galan, Berta; Muñoz, Iciar; Viguri, Javier R.

    2016-09-01

    This paper shows the planning, the teaching activities and the evaluation of the learning and teaching process implemented in the Chemical Process Design course at the University of Cantabria, Spain. Educational methods to address the knowledge, skills and attitudes that students who complete the course are expected to acquire are proposed and discussed. Undergraduate and graduate engineers' perceptions of the methodology used are evaluated by means of a questionnaire. Results of the teaching activities and the strengths and weaknesses of the proposed case study are discussed in relation to the course characteristics. The findings of the empirical evaluation shows that the excessive time students had to dedicate to the case study project and dealing with limited information are the most negative aspects obtained, whereas an increase in the students' self-confidence and the practical application of the methodology are the most positive aspects. Finally, improvements are discussed in order to extend the application of the methodology to other courses offered as part of the chemical engineering degree.

  14. Virtual parameter-estimation experiments in Bioprocess-Engineering education.

    PubMed

    Sessink, Olivier D T; Beeftink, Hendrik H; Hartog, Rob J M; Tramper, Johannes

    2006-05-01

    Cell growth kinetics and reactor concepts constitute essential knowledge for Bioprocess-Engineering students. Traditional learning of these concepts is supported by lectures, tutorials, and practicals: ICT offers opportunities for improvement. A virtual-experiment environment was developed that supports both model-related and experimenting-related learning objectives. Students have to design experiments to estimate model parameters: they choose initial conditions and 'measure' output variables. The results contain experimental error, which is an important constraint for experimental design. Students learn from these results and use the new knowledge to re-design their experiment. Within a couple of hours, students design and run many experiments that would take weeks in reality. Usage was evaluated in two courses with questionnaires and in the final exam. The faculties involved in the two courses are convinced that the experiment environment supports essential learning objectives well.

  15. Assessing Learning in Small Sized Physics Courses

    ERIC Educational Resources Information Center

    Ene, Emanuela; Ackerson, Bruce J.

    2018-01-01

    We describe the construction, validation, and testing of a concept inventory for an "Introduction to Physics of Semiconductors" course offered by the department of physics to undergraduate engineering students. By design, this inventory addresses both content knowledge and the ability to interpret content via different cognitive…

  16. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the construction, operation, malfunction, diagnosis, maintenance, and repair of the fuel and exhaust systems used in automobiles. The course contains five study units covering fundamentals of gasoline engine fuel…

  17. Teaching CAD on the Apple Computer.

    ERIC Educational Resources Information Center

    Norton, Robert L.

    1984-01-01

    Describes a course designed to teach engineers how to accomplish computer graphics techniques on a limited scale with the Apple computer. The same mathematics and program code will also function for larger and more complex computers. Course content, instructional strategies, student evaluation, and recommendations are considered. (JN)

  18. English and Work Experience for Professionals.

    ERIC Educational Resources Information Center

    Rubrecht, Penthes; Gillies, Ellen

    1993-01-01

    Discusses a course designed for professionals in engineering, architecture, and business administration who were displaced, unemployed, or underemployed. The course contained 3 components: 12 weeks of intensive language training geared to the profession and workplace, individualized counseling and career path development, and a 4-week work…

  19. A detailed research study of learning and teaching core chemical engineering to a high standard in a mixed-ability small class in industry

    NASA Astrophysics Data System (ADS)

    Davey, Kenneth

    2017-11-01

    A detailed study of learning and teaching (L&T) of chemical engineering distillation to a mixed-ability small class of 13 students who are ordinarily full-time in-house employees in industry is reported. The course consisted of 9 × 2-h lectures (18 hours) and 9 × 2-h tutorials (18 hours). It was delivered over nine business days in situ in an established distillery. The purpose was to (re)learn core distillation of ethanol-water mixes at the level of higher education of a bachelor programme. There was 90% broad agreement that the course encouraged more learning. Students (40%) felt the course was too mathematical, however. Pointedly, there was good agreement (63%) that the course stimulated communication with each other professionally, and customers of the distillery. Results overall provide good evidence that students valued their L&T. The experimental design(s) could be readily applied to a range of fields of knowledge.

  20. Integrating Emerging Topics through Online Team Design in a Hybrid Communication Networks Course: Interaction Patterns and Impact of Prior Knowledge

    ERIC Educational Resources Information Center

    Reisslein, Jana; Seeling, Patrick; Reisslein, Martin

    2005-01-01

    An important challenge in the introductory communication networks course in electrical and computer engineering curricula is to integrate emerging topics, such as wireless Internet access and network security, into the already content-intensive course. At the same time it is essential to provide students with experiences in online collaboration,…

  1. Understanding Engineers' Responsibilities: A Prerequisite to Designing Engineering Education : Commentary on "Educating Engineers for the Public Good Through International Internships: Evidence from a Case Study at Universitat Politècnica de València".

    PubMed

    Murphy, Colleen; Gardoni, Paolo

    2017-07-18

    The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.

  2. A development optical course based on optical fiber white light interference

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART I), II--LEARNING ABOUT BRAKES (PART II).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE STARTING ENGINES AND BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL DESCRIPTION, (2) OPERATION, (3) COMBUSTION SPACE AND VALVE ARRANGEMENT (STARTING ENGINES), (4) TYPES OF BRAKES, AND (5) DOUBLE…

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVIII, I--UNDERSTAND ENGINE GEARS AND GEARING PRINCIPLES, II--MACK INTER-AXLE POWER DIVIDER.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE GEARS AND GEARING PRINCIPLES AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER TRANSMISSION. TOPICS ARE (1) THE PURPOSE OF THE ENGINE GEARS, (2) INSPECTING FOR GEAR FAILURES, (3) INSPECTING FOR SHAFT…

  5. A Structured Approach to Honours Undergraduate Research Course, Evaluation Rubrics and Assessment

    NASA Astrophysics Data System (ADS)

    Khoukhi, Amar

    2013-10-01

    This paper presents a new approach to the Honours Undergraduate Research Course design and implementation. The course design process, assessment and evaluation rubrics are provided. Lessons learned and the experience of the faced challenges and opportunities for two cohort offerings of the course during the winter terms of 2011 and 2012 are highlighted. Assessments show that major benefits include increasing interaction with the faculty and increasing intellectual maturity, skills, knowledge and confidence for the students and for the faculty, the furthering of research projects by the participation of undergraduate students. The course can serve as a model that can be easily adapted for use across the disciplines of science, technology, engineering and mathematics.

  6. Integrated design and manufacturing for the high speed civil transport

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT configuration. AE6352: Aerospace Systems Design Two was a continuation of Aerospace Systems Design One in which wing concepts were researched and analyzed in more detail. FLOPS and ACSYNT were again used at the system level while other off-the-shelf computer codes were used for more detailed wing disciplinary analysis and optimization. The culmination of all efforts and submission of this report conclude the first year's efforts of Georgia Tech's NASA USRA ADP. It will hopefully provide the foundation for next year's efforts concerning continuous improvement of integrated design and manufacturing for the HSCT.

  7. Engaging undergradate students in interdisciplinary courses in nanotechnology

    NASA Astrophysics Data System (ADS)

    Goodchild, Fiona

    2008-03-01

    Two new courses at UCSB engage both undergraduate and graduate students in situated learning so that they can acquire the knowledge and skills they will need for future academic courses and career development. These courses are designed and taught by research faculty and education staff at the California Nanosystems Institute (CNSI) at UC Santa Barbara. The speaker, Dr. Goodchild, Education Director at CNSI, collaborated in the course design and is advisor on assessment and pedagogy for both courses. The first course, entitled INSCITES, is aimed at first and second year students who are interested in the impacts of science and technology in society. This general education course is team taught by three Graduate Teaching Scholars from across engineering, science and social sciences. They collaborate with lead faculty from Materials Science and History to design both the curriculum and instructional format for the 10 week course that is supported by the National Science Foundation. INSCITES was taught for the first time in Spring 2007 and feedback indicated that the course had convinced the undergraduate students that they would like to take further courses outside their majors. The second course, entitled the Practice of Science is open to all majors in science and engineering, especially those in second and third year who are interested in scientific research and related career opportunities. The course has been taught for the past 4 years as a two quarter course by two research faculty who focus on the nature of scientific discovery, the role of graduate researchers and faculty, the challenges of collaboration across disciplines and the mechanisms for funding research in academia and industry. In the first quarter each students is expected to identify a mentor and a research group in which they can pursue an individual research project, to be completed during the second quarter when the classes are designed to operate like research group meetings. Evaluation indicates that both courses attract students from underrepresented groups in science who value gaining a broader perspective about nanotechnology and the career opportunities that it offers to undergraduate students.

  8. Learning to design rehabilitation devices through the H-CARD course: project-based learning of rehabilitation technology design.

    PubMed

    Roach, Nick; Hussain, Asif; Burdet, Etienne

    2012-01-01

    The aging population and the wish to improve quality of life, as well as the economic pressure to work longer, call for intuitive and efficient assistive and rehabilitation technologies. Therefore, we have developed a project based education paradigm in the design of assistive and rehabilitation devices. Using a miniature wireless sensing and feedback platform, the multimodal interactive motor assessment and training environment (MIMATE), students from different engineering backgrounds were able to develop innovative devices implementing rehabilitative games in the short span of a one-term course. We describe here this novel H-CARD course on the human-centered design of assistive and rehabilitative devices.

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…

  10. Launch Vehicle Design Process Description and Training Formulation

    NASA Technical Reports Server (NTRS)

    Atherton, James; Morris, Charles; Settle, Gray; Teal, Marion; Schuerer, Paul; Blair, James; Ryan, Robert; Schutzenhofer, Luke

    1999-01-01

    A primary NASA priority is to reduce the cost and improve the effectiveness of launching payloads into space. As a consequence, significant improvements are being sought in the effectiveness, cost, and schedule of the launch vehicle design process. In order to provide a basis for understanding and improving the current design process, a model has been developed for this complex, interactive process, as reported in the references. This model requires further expansion in some specific design functions. Also, a training course for less-experienced engineers is needed to provide understanding of the process, to provide guidance for its effective implementation, and to provide a basis for major improvements in launch vehicle design process technology. The objective of this activity is to expand the description of the design process to include all pertinent design functions, and to develop a detailed outline of a training course on the design process for launch vehicles for use in educating engineers whose experience with the process has been minimal. Building on a previously-developed partial design process description, parallel sections have been written for the Avionics Design Function, the Materials Design Function, and the Manufacturing Design Function. Upon inclusion of these results, the total process description will be released as a NASA TP. The design function sections herein include descriptions of the design function responsibilities, interfaces, interactive processes, decisions (gates), and tasks. Associated figures include design function planes, gates, and tasks, along with other pertinent graphics. Also included is an expanded discussion of how the design process is divided, or compartmentalized, into manageable parts to achieve efficient and effective design. A detailed outline for an intensive two-day course on the launch vehicle design process has been developed herein, and is available for further expansion. The course is in an interactive lecture/workshop format to engage the participants in active learning. The course addresses the breadth and depth of the process, requirements, phases, participants, multidisciplinary aspects, tasks, critical elements,as well as providing guidance from previous lessons learned. The participants are led to develop their own understanding of the current process and how it can be improved. Included are course objectives and a session-by-session outline of course content. Also included is an initial identification of visual aid requirements.

  11. Characterizing learning-through-service students in engineering by gender and academic year

    NASA Astrophysics Data System (ADS)

    Carberry, Adam Robert

    Service is increasingly being viewed as an integral part of education nationwide. Service-based courses and programs are growing in popularity as opportunities for students to learn and experience their discipline. Widespread adoption of learning-through-service (LTS) in engineering is stymied by a lack of a body of rigorous research supporting the effectiveness of these experiences. In this study, I examine learning-through-service through a nationwide survey of engineering undergraduate and graduate students participating in a variety of LTS experiences. Students (N = 322) participating in some form of service -- service-learning courses or extra-curricular service programs -- from eighty-seven different institutions across the United States completed a survey measuring demographic information (institution, gender, academic year, age, major, and grade point average), self-perceived sources of learning (service and traditional coursework), engineering epistemological beliefs, personality traits, and self-concepts (self-efficacy, motivation, expectancy, and anxiety) toward engineering design. Responses to the survey were used to characterize engineering LTS students and identify differences in these variables in terms of gender and academic year. The overall findings were that LTS students perceived their service experience to be a beneficial source for learning professional skills and, to a lesser degree, technical skills, held moderately sophisticated engineering epistemological beliefs, and were generally outgoing, compassionate, and adventurous. Self-perceived sources of learning, epistemological beliefs, and personality traits were shown to be poor predictors of student engineering achievement. Self-efficacy, motivation, and outcome expectancy toward engineering design were generally high for all LTS students; most possessed rather low anxiety levels toward engineering design. These trends were generally consistent between genders and across the five academic years (first-year, sophomores, juniors, seniors, and graduate students) surveyed. Females had significantly more sophisticated epistemological beliefs, greater perceptions of service as a source of learning professional and technical skills, and higher anxiety toward engineering design. They also were significantly more extroverted and agreeable. Males had higher confidence, motivation, and expectancy for success toward engineering design. Across academic year it was seen that students varied in their engineering design self-concepts, except for motivation.

  12. Integrating design and communication in engineering education: a collaboration between Northwestern University and the Rehabilitation Institute of Chicago.

    PubMed

    Hirsch, Penny L; Yarnoff, Charles

    2011-01-01

    The required course for freshmen in Northwestern University's engineering school - a 2-quarter sequence called Engineering Design and Communication (EDC) - is noteworthy not only for its project-based focus on user-centered design, but also for its innovative integrated approach to teaching communication, teamwork, and ethics. Thanks to the collaboration between EDC faculty and staff at the Rehabilitation Institute of Chicago, EDC students, at the beginning of their education, experience the excitement of solving problems for real clients and users. At the same time, these authentic design projects offer an ideal setting for teaching students how to communicate effectively to different audiences and perform productively as team members and future leaders in engineering.

  13. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.

  14. "Design for All in the Context of the Information Society": Integration of a Specialist Course in a Generalist M.Sc. Program in Electrical and Electronics Engineering

    ERIC Educational Resources Information Center

    Godino-Llorente, J. I.; Fraile, R.; Gonzalez de Sande, J. C.; Osma-Ruiz, V.; Saenz-Lechon, N.

    2012-01-01

    This paper describes an educational research experience that took place in the Electrical & Electronics Engineering Master's program offered at the Escuela Universitaria de Ingenieria Tecnica de Telecomunicacion, Universidad Politecnica de Madrid, Madrid, Spain. The focus is to provide details of the motivation behind and the design and…

  15. Effects of Human Factors in Engineering and Design for Teaching Mathematics: A Comparison Study of Online and Face-to-Face at a Technical College

    ERIC Educational Resources Information Center

    Mativo, John M.; Hill, Roger B.; Godfrey, Paul W.

    2013-01-01

    The focus of this study was to examine four characteristics for successful and unsuccessful students enrolled in basic mathematics courses at a technical college. The characteristics, considered to be in part effects of human factors in engineering and design, examined the preferred learning styles, computer information systems competency,…

  16. Identifying the Gaps of Fourth Year Degree Pre-Service Teachers' Pedagogical Content Knowledge in Teaching Engineering Graphics and Design

    ERIC Educational Resources Information Center

    Khoza, Samuel Dumazi

    2017-01-01

    Engineering Graphics and Design is a technological subject which is offered in the Bachelor of Education degree from third to fourth year of the degree course. Fourth year pre-service teachers find EGD difficult to teach because of various reasons. Therefore the aim of the paper was to investigate fourth year pre-service teachers' pedagogical…

  17. RFID Student Educational Experiences at the UNT College of Engineering: A Sequential Approach to Creating a Project-Based RFID Course

    ERIC Educational Resources Information Center

    Vaidyanathan, V. V.; Varanasi, M. R.; Kougianos, E.; Wang, Shuping; Raman, H.

    2009-01-01

    This paper describes radio frequency identification (RFID) projects, designed and implemented by students in the College of Engineering at the University of North Texas, as part of their senior-design project requirement. The paper also describes an RFID-based project implemented at Rice Middle School in Plano, TX, which went on to win multiple…

  18. Insights on Supporting Learning during Computing Science and Engineering Students' Transition to University: A Design-Oriented, Mixed Methods Exploration of Instructor and Student Perspectives

    ERIC Educational Resources Information Center

    Guloy, Sheryl; Salimi, Farimah; Cukierman, Diana; McGee Thompson, Donna

    2017-01-01

    Using a design-based orientation, this mixed-method study explored ways to support computing science and engineering students whose study strategies may be inadequate to meet coursework expectations. Learning support workshops, paired with university courses, have been found to assist students as they transition to university learning, thereby…

  19. DESIGN AND PROTOTYPE OF A SUSTAINABLE EGG-WASHER

    EPA Science Inventory

    This project is part of the senior design course for Engineering Science and Mechanics at Virginia Tech. Anticipated results will be a working prototype chosen from multiple designs. We will include test results supporting our selection. We will characterize the stresses ex...

  20. The Role of Flow Field Computation in Improving Turbomachinery.

    DTIC Science & Technology

    1986-06-01

    sad total pressure within Solls-Royce t9 design turbine blade %hopes. loan. The comressors need in engines designed in Moruigesn and ReJily. 7 0 ) wrote... engine improve efficiency. In one case, blading designed specific fuel conaumption improved by some I Z. by NOTS for a mall Industrial turbine anufact...the corners Nost small aeronautical gas turbines have there- between wall and blade , and in due course also for fore chosen to use several axial stages

  1. Environmental Engineering Unit Operations and Unit Processes Laboratory Manual.

    ERIC Educational Resources Information Center

    O'Connor, John T., Ed.

    This manual was prepared for the purpose of stimulating the development of effective unit operations and unit processes laboratory courses in environmental engineering. Laboratory activities emphasizing physical operations, biological, and chemical processes are designed for various educational and equipment levels. An introductory section reviews…

  2. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jaime

    2012-12-14

    To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.

  3. Teaching Heliophysics Science to Undergraduates in an Engineering Context

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.

    2013-12-01

    In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.

  4. Mechatronics education at Virginia Tech

    NASA Astrophysics Data System (ADS)

    Bay, John S.; Saunders, William R.; Reinholtz, Charles F.; Pickett, Peter; Johnston, Lee

    1998-12-01

    The advent of more complex mechatronic systems in industry has introduced new opportunities for entry-level and practicing engineers. Today, a select group of engineers are reaching out to be more knowledgeable in a wide variety of technical areas, both mechanical and electrical. A new curriculum in mechatronics developed at Virginia Tech is starting to bring students from both the mechanical and electrical engineering departments together, providing them wit an integrated perspective on electromechanical technologies and design. The course is cross-listed and team-taught by faculty from both departments. Students from different majors are grouped together throughout the course, each group containing at least one mechanical and one electrical engineering student. This gives group members the ability to learn from one another while working on labs and projects.

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  6. Making Chemistry Relevant to the Engineering Major

    ERIC Educational Resources Information Center

    Basu-Dutt, Sharmistha; Slappey, Charles; Bartley, Julie K.

    2010-01-01

    As part of a campus-wide, externally funded project to increase performance in, enthusiasm for, and retention within STEM disciplines, we developed an interdisciplinary, team-taught first-year seminar course. The construction and delivery of this course was designed to show the relevance of selected general chemistry topics such as matter and…

  7. Earth Control and Investigations, Training Course 1972.

    ERIC Educational Resources Information Center

    Department of the Interior, Denver, CO. Engineering and Research Center.

    Compiled in this notebook is material from an Earth Control and Investigations Course offered by the Earth Science Branch of the Division of General Research, Engineering and Research Center, Denver, Colorado. The training is designed to promote consistency and uniformity in control and investigation procedures throughout the Bureau of…

  8. Insights into STEM Education Praxis: An Assessment Scheme for Course Syllabi

    ERIC Educational Resources Information Center

    Corlu, M. Sencer

    2013-01-01

    Post-secondary institutions within the European Higher Education Area have been adapting quality assurance mechanisms for course design, delivery, and evaluation following a learner-centered approach. The purpose of this exploratory study was to delineate the teaching practices in science, technology, engineering, and mathematics at the…

  9. Biomedical engineering education through global engineering teams.

    PubMed

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  10. A flipped mode teaching approach for large and advanced electrical engineering courses

    NASA Astrophysics Data System (ADS)

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-05-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper presents a novel selective flipped mode teaching approach designed for large and advanced courses that has two aspects: (i) it provides selective flipping of a few topics, while delivering others in traditional face-to-face teaching, to provide an effective trade-off between the two approaches according to the demands of individual topics and (ii) it introduces technology-enabled live in-class quizzes to obtain instant feedback and facilitate collaborative problem-solving exercises. The proposed approach was implemented for a large fourth year course in electrical power engineering over three successive years and the criteria for selecting between the flipped mode teaching and traditional teaching modes are outlined. Results confirmed that the proposed approach improved both students' academic achievements and their engagement in the course, without overloading them during the teaching period.

  11. Exploration and practice in-class practice teaching mode

    NASA Astrophysics Data System (ADS)

    Zang, Xue-Ping; Wu, Wei-Feng

    2017-08-01

    According to the opto-electronic information science and engineering professional course characteristics and cultivate students' learning initiative, raised the teaching of photoelectric professional course introduce In-class practice teaching mode. By designing different In-class practice teaching content, the students' learning interest and learning initiative are improved, deepen students' understanding of course content and enhanced students' team cooperation ability. In-class practice teaching mode in the course of the opto-electronic professional teaching practice, the teaching effect is remarkable.

  12. A BSc level option in biomedical electronics.

    PubMed

    Gergely, S

    1979-01-01

    1. The application of electronic instruments in medical diagnosis and therapy is well established. 2. There is a demand for electronic engineers both in industry and in the Health Service at all ranges of educational attainment. 3. It is possible to identify a set of objectives for a first degree course in Biomedical Electronics. An important element of this course should be the provision of practical experience in industry and in hospitals. 4. Such courses are available both in Europe and in the United States. Although the postgraduate course provision was satisfactory in the UK in the early seventies, only one full time undergraduate course was in operation. 5. A sandwich course can be designed in Biomedical Electronics as a major option of an existing BSc course in Electrical and Electronic Engineering. Provision can be made for entering and leaving the option. The option can be arranged to follow the guidelines laid down by the IEE for exemption from its educational requirements. 6. The option described started at the Lanchester Polytechnic in Coventry in September 1977.

  13. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    ERIC Educational Resources Information Center

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  14. IEEE Validation of the Continuing Education Achievement of Engineers Registry System. Procedures for Use with a CPT 8000 Word Processor and Communications Package.

    ERIC Educational Resources Information Center

    Institute of Electrical and Electronics Engineers, Inc., New York, NY.

    The Institute of Electrical and Electronics Engineers (IEEE) validation program is designed to motivate persons practicing in electrical and electronics engineering to pursue quality technical continuing education courses offered by any responsible sponsor. The rapid acceptance of the validation program necessitated the additional development of a…

  15. Development of a Virtual Tool for Learning Basic Organisation and Planning in Rural Engineering Projects

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.

    2014-01-01

    This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets),…

  16. Communicating Microbiology Concepts from Multiple Contexts through Poster Presentations.

    PubMed

    Gruss, Amy Borello

    2018-01-01

    Accredited environmental engineering degrees require graduates to be able to apply their scholarship to concepts of professional practice and design. This transferable skill of relating what you learn in one setting to another situation is vital for all professions, not just engineering. A course project involving designing and presenting a professional poster was implemented to enhance student mastery in Environmental Engineering Microbiology while also developing communication and transferable skills vital for all majors. Students were asked to read a contemporary non-fiction book relating to microbiology and expand upon the book's thesis by integrating course content, news articles, and peer-reviewed journal articles. They then were required to present this information in class using a professional poster. Students felt the project allowed them to synthesize and organize information, analyze ideas, and integrate ideas from various sources. These transferable skills are vital for students and professionals alike to be able to communicate advanced information and master a topic.

  17. Multi-Disciplinary Type Creativity Education for Students from 15 years old to Bachelor Level in College of Technology

    NASA Astrophysics Data System (ADS)

    Yotsuyanagi, Takao; Ikeda, Senri; Suzuki, Katsuhiko; Kobayashi, Hiroshi; Sakuraba, Hiroshi; Shoji, Akira; Itoh, Masahiko

    Creativity is the most fundamental keyword for engineers to solve the various problems in manufacturing products. This engineering “learning” cannot be achieved without the real experiences, especially by the teens who have the curiosity to know everything. New educational program has been innovated in Miyagi National College of Technology. This new curriculum started as “03C” in 2003. It involves two laboratories for mixed-departments type grouping, which intend to cultivate the creative ability for the 2nd year students in College Course and the 1st year students in Advanced Course as Engineering Design. This paper presents the trial of the new educational program on the cultivating creative ability designed for teen-agers, and discusses the processes in detail, results and further problems. This program will progress still more with continuous improvement of manufacturing subjects in cooperative with educational-industrial complex.

  18. Space Shuttle Five-Segment Booster (Short Course)

    NASA Technical Reports Server (NTRS)

    Graves, Stanley R.; Rudolphi, Michael (Technical Monitor)

    2002-01-01

    NASA is considering upgrading the Space Shuttle by adding a fifth segment (FSB) to the current four-segment solid rocket booster. Course materials cover design and engineering issues related to the Reusable Solid Rocket Motor (RSRM) raised by the addition of a fifth segment to the rocket booster. Topics cover include: four segment vs. five segment booster, abort modes, FSB grain design, erosive burning, enhanced propellant burn rate, FSB erosive burning model development and hardware configuration.

  19. Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2007-01-01

    This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

  20. Best practices for team-based assistive technology design courses.

    PubMed

    Goldberg, Mary R; Pearlman, Jonathan L

    2013-09-01

    Team-based design courses focused on products for people with disabilities have become relatively common, in part because of training grants such as the NSF Research to Aid Persons with Disabilities course grants. An output from these courses is an annual description of courses and projects but has yet to be complied into a "best practices guide," though it could be helpful for instructors. To meet this need, we conducted a study to generate best practices for assistive technology product development courses and how to use these courses to teach students the fundamentals of innovation. A full list of recommendations is comprised in the manuscript and include identifying a client through a reliable clinical partner; allowing for transparency between the instructors, the client, and the team(s); establishing multi-disciplinary teams; using a process-oriented vs. solution-oriented product development model; using a project management software to facilitate and archive communication and outputs; facilitating client interaction through frequent communication; seeking to develop professional role confidence to inspire students' commitment to engineering and (where applicable) rehabilitation field; publishing student designs on repositories; incorporating both formal and informal education opportunities related to design; and encouraging students to submit their designs to local or national entrepreneurship competitions.

  1. Development of multimedia resource and short courses for LRFD design.

    DOT National Transportation Integrated Search

    2011-03-01

    Multimedia technology is an essential instrument in the development of graduate engineers. This : multimedia package provides an exclusive background and an in-depth understanding of the new : technological advances in the design of concrete, steel a...

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IX, ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, FUNCTION, AND MAINTENANCE OF DIESEL ENGINE CRANKSHAFTS, CAMSHAFTS, AND ASSOCIATED BEARINGS. TOPICS ARE SHAFTS AND BEARINGS, CAMSHAFTS, BEARINGS AND THEIR MAINTENANCE, AND DETECTING FAILURE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED…

  3. Active Learning and Reflection in Product Development Engineering Education

    ERIC Educational Resources Information Center

    Shekar, Aruna

    2007-01-01

    Traditional engineering courses at tertiary level have been traditionally theory-based, supported by laboratory work, but there is now a world-wide trend towards project-based learning. In product development education, project-based learning is essential in order to integrate the disciplines of design, marketing and manufacturing towards the…

  4. Student Plagiarism and Faculty Responsibility in Undergraduate Engineering Labs

    ERIC Educational Resources Information Center

    Parameswaran, Ashvin; Devi, Poornima

    2006-01-01

    In undergraduate engineering labs, lab reports are routinely copied. By ignoring this form of plagiarism, teaching assistants and lab technicians neglect their role responsibility. By designing courses that facilitate it, however inadvertently, professors neglect their causal responsibility. Using the case of one university, we show via interviews…

  5. Imprinting Community College Computer Science Education with Software Engineering Principles

    ERIC Educational Resources Information Center

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  6. Integrated STEM: A New Primer for Teaching Technology Education

    ERIC Educational Resources Information Center

    Asunda, Paul A.; Mativo, John

    2017-01-01

    Part One of this article ("Technology and Engineering Teacher," 75(4), December/January, 2016) presented a process that science, math, engineering, and technology teachers could use to collaborate and design integrated STEM courses. A conceptual framework was discussed that could provide a premise that educators interested in delivery of…

  7. Developing Energy Technology Course for Undergraduate Engineering Management Study Program in Lake Toba Area with Particular Focus to Sustainable Energy Systems in Development Context

    NASA Astrophysics Data System (ADS)

    Manik, Yosef; Sinaga, Rizal; Saragi, Hadi

    2018-02-01

    Undergraduate Engineering Management Study Program of Institut Teknologi Del is one of the pioneers for its field in Indonesia. Located in Lake Toba Area, this study program has a mission to provide high quality Engineering Management education that produces globally competitive graduates who in turn will contribute to local development. Framing the Energy Technology course—one of the core subjects in Engineering Management Body of Knowledge—in the context of sustainable development of Lake Toba Area is very essential. Thus, one particular focus in this course is sustainable energy systems in local development context that incorporates identification and analysis of locally available energy resources. In this paper we present our experience in designing such course. In this work, we introduce the domains that shape the Engineering Management Body of Knowledge. Then, we explain the results of our evaluation on the key considerations to meet the rapidly changing needs of society in local context. Later, we present the framework of the learning outcomes and the syllabus as a result of mapping the road map with the requirement. At the end, the summary from the first two semesters of delivering this course in academic year 2015/2016 and 2016/2017 are reported.

  8. The Study of the Relationship between Probabilistic Design and Axiomatic Design Methodology. Volume 1

    NASA Technical Reports Server (NTRS)

    Onwubiko, Chinyere; Onyebueke, Landon

    1996-01-01

    This program report is the final report covering all the work done on this project. The goal of this project is technology transfer of methodologies to improve design process. The specific objectives are: 1. To learn and understand the Probabilistic design analysis using NESSUS. 2. To assign Design Projects to either undergraduate or graduate students on the application of NESSUS. 3. To integrate the application of NESSUS into some selected senior level courses in Civil and Mechanical Engineering curricula. 4. To develop courseware in Probabilistic Design methodology to be included in a graduate level Design Methodology course. 5. To study the relationship between the Probabilistic design methodology and Axiomatic design methodology.

  9. Turbine design and application volumes 1, 2, and 3

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J. (Editor)

    1994-01-01

    NASA has an interest in turbines related primarily to aeronautics and space applications. Airbreathing turbine engines provide jet and turboshaft propulsion, as well as auxiliary power for aircraft. Propellant-driven turbines provide rocket propulsion and auxiliary power for spacecraft. Closed-cycle turbine engines using inert gases, organic fluids, and metal fluids have been studied for providing long-duration electric power for spacecraft. Other applications of interest for turbine engines include land-vehicle (cars, trucks, buses, trains, etc.) propulsion power and ground-based electrical power. In view of the turbine-system interest and efforts at Lewis Research Center, a course entitled 'Turbine Design and Application' was presented during 1968-69 as part of the In-house Graduate Study Program. The course was somewhat revised and again presented in 1972-73. Various aspects of turbine technology were covered including thermodynamic and fluid-dynamic concepts, fundamental turbine concepts, velocity diagrams, losses, blade aerodynamic design, blade cooling, mechanical design, operation, and performance. The notes written and used for the course have been revised and edited for publication. Such a publication can serve as a foundation for an introductory turbine course, a means for self-study, or a reference for selected topics. Any consistent set of units will satisfy the equations presented. Two commonly used consistent sets of units and constant values are given after the symbol definitions. These are the SI units and the U.S. customary units. A single set of equations covers both sets of units by including all constants required for the U.S. customary units and defining as unity those not required for the SI units. Three volumes are compiled into one.

  10. Comparing Design Constraints to Support Learning in Technology-Guided Inquiry Projects

    ERIC Educational Resources Information Center

    Applebaum, Lauren R.; Vitale, Jonathan M.; Gerard, Elizabeth; Linn, Marcia C.

    2017-01-01

    Physical design projects are a way to motivate and engage students in authentic science and engineering practices. Web-based tools can support design projects to ensure that students address and reflect upon critical science concepts during the course of the project. In addition, by specifying challenging design goals that require students to…

  11. A Customizable Language Learning Support System Using Ontology-Driven Engine

    ERIC Educational Resources Information Center

    Wang, Jingyun; Mendori, Takahiko; Xiong, Juan

    2013-01-01

    This paper proposes a framework for web-based language learning support systems designed to provide customizable pedagogical procedures based on the analysis of characteristics of both learner and course. This framework employs a course-centered ontology and a teaching method ontology as the foundation for the student model, which includes learner…

  12. How Do Freshman Engineering Students Reflect an Online Calculus Course?

    ERIC Educational Resources Information Center

    Boz, Burcak; Adnan, Muge

    2017-01-01

    Improved access to technology has led to an increase in the number of online courses and degree programs in higher education. Despite continuous progress, little attention is paid to "understanding" students prior to implementation of learning and teaching processes. Being a valuable input for design of online learning environments and…

  13. Bringing Environmental Sustainability to Undergraduate Engineering Education: Experiences in an Inter-Disciplinary Course

    ERIC Educational Resources Information Center

    Aurandt, Jennifer; Borchers, Andrew Scott; Lynch-Caris, Terri; El-Sayed, Jacqueline; Hoff, Craig

    2012-01-01

    This paper chronicles the development of an interdisciplinary course in environmentally conscious design at Kettering University, a technologically focused Midwestern university. Funded by the National Science Foundation, a team of six faculty members at Kettering University adapted work done by Ford Motor Company to educate undergraduate STEM…

  14. An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control

    ERIC Educational Resources Information Center

    Rivera-Guillen, J. R.; de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R. A.; Guevara-Gonzalez, R. G.

    2012-01-01

    Servomotors are widely used in computerized numerically controlled (CNC) machines, hence motion control is a major topic covered in undergraduate/graduate engineering courses. Despite the fact that several syllabi include the motion dynamics topic in their courses, there are neither suitable tools available for designing and simulating multi-axis…

  15. Derivation of Performance Statements for the Automotive Mechanics Basic Trade Course: Research Documentation.

    ERIC Educational Resources Information Center

    Fox, A. P.; Kuhl, D. H.

    A project was conducted to derive a comprehensive list of the performances of a competence mechanic to satisfy the planning needs of automotive engineering lecturers, curriculum committees, researchers, course designers, and staff developers. A list of 127 tasks together with information about their relative importance and the frequency with which…

  16. Design of a Competitive and Collaborative Learning Strategy in a Communication Networks Course

    ERIC Educational Resources Information Center

    Regueras, L. M.; Verdu, E.; Verdu, M. J.; de Castro, J. P.

    2011-01-01

    In this paper, an educational methodology based on collaborative and competitive learning is proposed. The suggested approach has been successfully applied to an undergraduate communication networks course, which is part of the core curriculum of the three-year degree in telecommunications engineering at the University of Valladolid in Spain. This…

  17. Cooperative Learning and Soft Skills Training in an IT Course

    ERIC Educational Resources Information Center

    Zhang, Aimao

    2012-01-01

    Pedagogy of higher education is shifting from passive to active and deep learning. At the same time, the information technology (IT) industry and the Accreditation Board for Engineering and Technology (ABET) are demanding soft skills training. Thus, in designing an IT course, we devised group teaching projects where students learn to work with…

  18. Introducing future engineers to sustainable ecology problems: a case study

    NASA Astrophysics Data System (ADS)

    Filipkowski, A.

    2011-12-01

    The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and industrial design. The energy, which they consume, is increasing the greenhouse effect and the waste poisons the environment. So far, most courses on ecology are offered to specialists in environmental engineering. These courses are filled with many details. The Warsaw Academy of Computer Science, Management and Administration teaches students in the direction of management and production engineering. Upon completion, the students receive the degree of 'engineer'. Their future work will mainly concern management of different types of industrial enterprises and they will be responsible for organising it in such a way as to avoid a dangerous contribution to environmental pollution and climate change. This is why it was decided to introduce a new course entitled 'Principles of Ecology and Environmental Management'. This course is quite broad, concerning almost all technical, law and organisational aspects of the problem. The presentation is made in a spectacular way, aiming to convince students that their future activity must be environmentally friendly. It contains information about international activities in ecology, legal aspects concerning pollution, technical and information methods of monitoring and, finally, the description of 'green' solutions. Altogether, 27 hours of lectures and 15 hours of discussions and students' presentations complete the course. Details of this course are described in this paper.

  19. Three Conceptions of Thermodynamics: Technical Matrices in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Christiansen, Frederik V.; Rump, Camilla

    2008-11-01

    Introductory thermodynamics is a topic which is covered in a wide variety of science and engineering educations. However, very different teaching traditions have evolved within different scientific specialties. In this study we examine three courses in introductory thermodynamics within three different scientific specialties: physics, chemical engineering and mechanical engineering. Based on a generalization of Kuhn’s theory of disciplinary matrix, and the idea of boundary objects we analyse how basic thermodynamics theory is conceived in the different scientific specialties. The study is based on interviews with teachers and analysis of the different textbook traditions. It is concluded that teachers need to take into account how subject matter is conceived in other related scientific specialties when designing courses. Two examples demonstrating how this may be done are given.

  20. Special Course on Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications (Methodes Inverses pour la Conception des Profils Porteurs pour des Applications dans les Domaines de l’Aeronautique et des Turbomachines)

    DTIC Science & Technology

    1990-11-01

    engined jet aircraft wing MID PLA CROSS tCTO% taking into account the effects of the propulsive system. -DESIGN PAAMETERS DESTIGE PARAMETERS 5CT 0 (MC 0...AGARD Report No.780 Special Course on Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications (M6thodes Inverses pour la...manufacturing systems. Blade or airfoil designs are normally made in two steps, and the lectures are accordingly grouped into two parts. - - In the

  1. Designing Online Interaction to Address Disciplinary Competencies: A Cross-Country Comparison of Faculty Perspectives

    ERIC Educational Resources Information Center

    Barberà, Elena; Layne, Ludmila; Gunawardena, Charlotte N.

    2014-01-01

    This study was conducted at colleges in three countries (United States, Venezuela, and Spain) and across three academic disciplines (engineering, education, and business), to examine how experienced faculty define competencies for their discipline, and design instructional interaction for online courses. A qualitative research design employing…

  2. TRADE ALARA for design and operations engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    This product has been developed by the Training Resources and Data Exchange (TRADE) network for use at Department of Energy (DOE) and DOE contractor facilities. The TRADE network encourages and facilitates the exchange of ideas, techniques, and resources for improving training and development and serves as a forum for the discussion of issues of interest to the DOE community. This TRADE product has been developed for DOE contractor employees who are asked to deliver training to Design and Operations Engineers on the concept of As Low As Reasonably Achievable (ALARA). The ALARA concept is an approach to radiation protection tomore » control or manage exposures as low as social, technical, economic, practical, public policy, and other considerations permit. Worldwide panels of radiation experts have concluded that it is conservative to assume that a proportional relationship exists between radiation dose (exposure) and the biological effects resulting from it. This assumption implies that every dose received, no matter how small, carries some risk: the higher the dose, the higher the risk. The federal government, including agencies such as DOE, subscribes to the concept of ALARA and requires its facilities to subscribe to it as well. This course was developed to introduce engineers to the fundamentals of radiation and contamination reduction that they will use when designing or modifying plant facilities. The course was developed by the ALARA Program group and the Radiation Protection Monitoring/Training Group of Martin Marietta Energy Systems, Inc. at Oak Ridge National Laboratory. We wish to express our appreciation to Emily Copenhaver, Scott Taylor, and Janet Westbrook at Oak Ridge National Laboratory for their willingness to share their labors with the rest of the DOE community and for technical support during the development of the TRADE ALARA for Design and Operations Engineers Course Manual.« less

  3. How to get students to love (or not hate) MATLAB and programming

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon; Reckinger, Scott

    2014-11-01

    An effective programming course geared toward engineering students requires the utilization of modern teaching philosophies. A newly designed course that focuses on programming in MATLAB involves flipping the classroom and integrating various active teaching techniques. Vital aspects of the new course design include: lengthening in-class contact hours, Process-Oriented Guided Inquiry Learning (POGIL) method worksheets (self-guided instruction), student created video content posted on YouTube, clicker questions (used in class to practice reading and debugging code), programming exams that don't require computers, integrating oral exams into the classroom, fostering an environment for formal and informal peer learning, and designing in a broader theme to tie together assignments. However, possibly the most important piece to this programming course puzzle: the instructor needs to be able to find programming mistakes very fast and then lead individuals and groups through the steps to find their mistakes themselves. The effectiveness of the new course design is demonstrated through pre- and post- concept exam results and student evaluation feedback. Students reported that the course was challenging and required a lot of effort, but left largely positive feedback.

  4. Man-machine interface and control of the shuttle digital flight system

    NASA Technical Reports Server (NTRS)

    Burghduff, R. D.; Lewis, J. L., Jr.

    1985-01-01

    The space shuttle main engine (SSME) presented new requirements in the design of controls for large pump fed liquid rocket engine systems. These requirements were the need for built in full mission support capability, and complexity and flexibility of function not previously needed in this type of application. An engine mounted programmable digital control system was developed to meet these requirements. The engine system and controller and their function are described. Design challenges encountered during the course of development included accommodation for a very severe engine environment, the implementation of redundancy and redundancy management to provide fail operational/fail safe capability, removal of heat from the package, and significant constraints on computer memory size and processing time. The flexibility offered by programmable control reshaped the approach to engine design and development and set the pattern for future controls development in these types of applications.

  5. Project-based learning in a high school engineering program: A case study

    NASA Astrophysics Data System (ADS)

    France, Todd

    Generating greater student interest in science, technology, engineering, and mathematics (STEM) has been a major topic of discussion among educators, policymakers, and researchers in recent years, as increasing the number of graduates in these fields is widely considered a necessary step for sustaining the progress of today's society. Fostering this interest must occur before students reach college, and substantial efforts have been made to engage students at K-12 levels in STEM-focused learning. Attempts to involve students in engineering, a vital and growing profession, yet one in which students often have little experience, have frequently emphasized the design and construction of physical products, a practice supported by project-based learning. This thesis examines the environment of an engineering high school course that employed the project-based model. The course is part of a dedicated curricular program which aims to provide students with positive experiences in engineering-related activities while also preparing them for the rigors of college. A case study was conducted to provide insight into the benefits and drawbacks of the learning model. The study's outcomes are intended to provide guidance to educators participating in the design and/or facilitation of project-based activities, particularly those involved with engineering education. The research was performed using a qualitative approach. Long-term engagement with course participants was deemed critical to gaining a comprehensive understanding of the interactions and events that transpired on a daily basis. Nine educators involved with the program were interviewed, as were nineteen of the course's thirty-nine students. A wealth of other relevant data -- including surveys, field notes, and evaluations of student work -- was compiled for analysis as well. The study findings suggest that experiences in problem solving and teamwork were the central benefits of the course. Limitations existed due to a high focus on hands-on work, which infringed upon the significance of math and science content as well as the utilization of disciplined inquiry. In addition, group projects failed to hold individuals accountable, leading to assessment challenges. Program-wide, a number of issues hindered the teachers' abilities to institute changes, most notably a commitment to serve students of all abilities.

  6. University of Colorado CubeSat Student Projects as Successful Model for Teaching Students about Engineering Practices

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.

    2014-12-01

    There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent system engineer oversight for the multi-year CubeSat programs.

  7. SOLAR LIGHTING FOR REMOTE RURAL COMMUNITIES

    EPA Science Inventory

    The 132 students enrolled in the fall 2007 freshman course, “Engineering Design and Problem Solving”, were presented with a choice of five projects; one was a challenge to “Design, build and evaluate – a portable, rechargeable lantern that can be used &...

  8. Implementation of Systems Engineering Practices into a Capstone Course

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Schmidt, Peter

    2011-01-01

    Discusses the NASA Exploration Systems Mission Directorate senior design projects which are to provide students with senior design project ideas, with potential contribution to NASA ESMD objectives. and provides NASA technical representative to act as external customer / technology mentor / requirements source.

  9. Recent Development of the Two-Stroke Engine. II - Design Features. 2; Design Features

    NASA Technical Reports Server (NTRS)

    Zeman, J.

    1945-01-01

    Completing the first paper dealing with charging methods and arrangements, the present paper discusses the design forms of two-stroke engines. Features which largely influence piston running are: (a) The shape and surface condition of the sliding parts. (b) The cylinder and piston materials. (c) Heat conditions in the piston, and lubrication. There is little essential difference between four-stroke and two-stroke engines with ordinary pistons. In large engines, for example, are always found separately cast or welded frames in which the stresses are taken up by tie rods. Twin piston and timing piston engines often differ from this design. Examples can be found in many engines of German or foreign make. Their methods of operation will be dealt with in the third part of the present paper, which also includes the bibliography. The development of two-stroke engine design is, of course, mainly concerned with such features as are inherently difficult to master; that is, the piston barrel and the design of the gudgeon pin bearing. Designers of four-stroke engines now-a-days experience approximately the same difficulties, since heat stresses have increased to the point of influencing conditions in the piston barrel. Features which notably affect this are: (a) The material. (b) Prevailing heat conditions.

  10. Correlation between Sustainability Education and Engineering Students' Attitudes towards Sustainability

    ERIC Educational Resources Information Center

    Tang, Kuok Ho Daniel

    2018-01-01

    Purpose: The purpose of this study is to investigate the impacts of a sustainable development course on the beliefs, attitudes and intentions of a cohort of engineering students in a university in Miri, Malaysia, towards sustainability. Design/methodology/approach: Questionnaire survey was conducted among the cohort of students encompassing the…

  11. Engineering Aid 3 & 2, Vol. 1. Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Washington, DC.

    Designed for individual study and not formal classroom instruction, this rate training manual provides subject matter that relates directly to the occupational qualifications of the Engineering Aid (EA) rating. This eight-chapter volume focuses on administrative matters, mathematics, and basic drafting. Chapter 1 discusses the scope of the EA…

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VIII. ENGINE COMPONENTS--PART I.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF DIESEL ENGINE CYLINDER HEADS AND CYLINDER ASSEMBLIES. TOPICS ARE CYLINDER ASSEMBLY (LINERS), CYLINDER HEADS, VALVES AND VALVE MECHANISMS, AND PISTON AND PISTON RINGS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  13. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  14. The Problem Solving Studio: An Apprenticeship Environment for Aspiring Engineers

    ERIC Educational Resources Information Center

    Le Doux, Joseph M.; Waller, Alisha A.

    2016-01-01

    This paper describes the problem-solving studio (PSS) learning environment. PSS was designed to teach students how to solve difficult analytical engineering problems without resorting to rote memorization of algorithms, while at the same time developing their deep conceptual understanding of the course topics. There are several key features of…

  15. An Interdisciplinary Design Studio: How Can Art and Engineering Collaborate to Increase Students' Creativity?

    ERIC Educational Resources Information Center

    Costantino, Tracie; Kellam, Nadia; Cramond, Bonnie; Crowder, Isabelle

    2010-01-01

    Creativity often has been associated with the arts, although creativity also is essential for innovative discoveries and applications in science and engineering. In this article, a pilot study is presented about an investigation concerning how creativity is fostered in an art education course in conjunction with an undergraduate engineering…

  16. Improving Aerospace Engineering Students' Achievements by an Open Aero Control Experiment Apparatus

    ERIC Educational Resources Information Center

    Zeng, QingHua; Zhang, WeiHua; Huang, ZheZhi; Dong, RongHua

    2014-01-01

    This paper describes the development of an aero control experiment apparatus (ACEA) for use in aerospace control practical courses. The ACEA incorporates a systematic multihierarchy learning and teaching method, and was designed to improve aerospace engineering students' understanding of unmanned aerial vehicle (UAV) control systems. It offers a…

  17. Using Pair Programming to Teach CAD Based Engineering Graphics

    ERIC Educational Resources Information Center

    Leland, Robert P.

    2010-01-01

    Pair programming was introduced into a course in engineering graphics that emphasizes solid modeling using SolidWorks. In pair programming, two students work at a single computer, and periodically trade off roles as driver (hands on the keyboard and mouse) and navigator (discuss strategy and design issues). Pair programming was used in a design…

  18. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  19. Combustion and Energy Transfer Experiments: A Laboratory Model for Linking Core Concepts across the Science Curriculum

    ERIC Educational Resources Information Center

    Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.

    2007-01-01

    Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…

  20. [The application of genetic engineering to the petroleum biodesulfurization].

    PubMed

    Tong, M Y; Fang, X C; Ma, T; Zhang, Q

    2001-11-01

    The developed course and reaction mechanisms of petroleum biodesulfurization were introduced. The recent development of genetic engineering technology, which used in desulfuration strain's construction, reconstruction and other fields, was summarized emphatically. Its current research situation internal and overseas and the developing prospect were simply analyzed, and our research designs were submitted.

  1. Installation, Operation, and Operator's Maintenance of Diesel-Engine-Driven Generator Sets.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, contains three study units dealing with the skills needed by individuals responsible for the installation, operation, and maintenance of diesel engine-driven generator sets. The first two units cover…

  2. "MathePraxis"--Connecting First-Year Mathematics with Engineering Applications

    ERIC Educational Resources Information Center

    Harterich, Jorg; Kiss, Christine; Rooch, Aeneas; Monnigmann, Martin; Darup, Moritz Schulze; Span, Roland

    2012-01-01

    First-year engineering students often complain about their mathematics courses as the significance of the difficult and abstract calculus to their field of study remains unclear. We report on the project "MathePraxis", a feasibility study which was designed as a means to give first-year students some impression about the use of…

  3. The Design of Mechatronics Simulator for Improving the Quality of Student Learning Course in Mechatronics

    NASA Astrophysics Data System (ADS)

    Kustija, J.; Hasbullah; Somantri, Y.

    2018-02-01

    Learning course on mechatronics specifically the Department of Electrical Engineering Education FPTK UPI still using simulation-aided instructional materials and software. It is still not maximizing students’ competencies in mechatronics courses required to skilfully manipulate the real will are implemented both in industry and in educational institutions. The purpose of this study is to submit a design of mechatronic simulator to improve student learning outcomes at the course mechatronics viewed aspects of cognitive and psychomotor. Learning innovation products resulting from this study is expected to be a reference and a key pillar for all academic units at UPI in implementing the learning environment. The method used in this research is quantitative method with the approach of Research and Development (R and D). Steps being taken in this study includes a preliminary study, design and testing of the design of mechatronic simulator that will be used in the course of mechatronics in DPTE FPTK UPI. Results of mechatronic design simulator which has been in testing using simulation modules and is expected to motivate students to improve the quality of learning good study results in the course of mechatronic expected to be realized.

  4. The association between tolerance for ambiguity and fear of negative evaluation: A study of engineering technology capstone courses

    NASA Astrophysics Data System (ADS)

    Dubikovsky, Sergey I.

    For many students in engineering and engineering technology programs in the US, senior capstone design courses require students to form a team, define a problem, and find a feasible technical solution to address this problem. Students must integrate the knowledge and skills acquired during their studies at the college or university level. These truly integrative design activities do not have a single "correct" solution. Instead, there is an array of solutions, many of which could be used to achieve the final result. This ambiguity can cause students to experience anxiety during the projects. This study examined the main topics: • To what extent is a social anxiety (measured as fear of negative evaluation) related to tolerance for ambiguity in senior engineering capstone courses? • How does exposure to ambiguity prior to and during capstone courses affect tolerance for ambiguity? The study looked at the standard educational practices to see if they have unintended consequences, such a social anxiety in dealing with ambiguity. Those consequences are highly undesirable because they reduce students' learning. It was hypothesized that the lecture-based approaches that are more common in the first three years of study would not prepare students for self-directed capstone courses because the students would rarely have experienced problem-based learning before. The study used a quantitative approach and examined students' perceptions of their tolerance for ambiguity, and social anxiety before and after their senior capstone design experience. A survey instrument was adapted to measure exposure to ambiguity, which was studied as a potential moderator of the relationship between social anxiety and tolerance for ambiguity. The study indicated that social anxiety, as measured by fear of negative evaluation, does not play a major role in capstone courses. The second finding is that a single course, even if it was administered as a problem-based senior class, failed to increase students' tolerance for ambiguity. Students with low tolerance have more problems with ambiguity, whereas students with high tolerance can more easily endure changes and find it easier to act in the absence of complete information. The third important finding was that exposure to ambiguity prior to capstone courses does affect tolerance for ambiguity while controlling for instructor and if exposure to ambiguity is included as a moderator. It was not in the scope of this study to explore the effect of instructor more deeply, but this provides a direction for future research, especially in this time of expanding implementation of project- and problem-based learning methods in technical curricula.

  5. Enhanced teaching and student learning through a simulator-based course in chemical unit operations design

    NASA Astrophysics Data System (ADS)

    Ghasem, Nayef

    2016-07-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes through simulators. A case study presenting the teaching method was evaluated using student surveys and faculty assessments, which were designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively demonstrate that this method is an extremely efficient way of teaching a simulator-based course. In addition to that, this teaching method can easily be generalised and used in other courses. A student's final mark is determined by a combination of in-class assessments conducted based on cooperative and peer learning, progress tests and a final exam. Results revealed that peer learning can improve the overall quality of student learning and enhance student understanding.

  6. Use of a New "Moodle" Module for Improving the Teaching of a Basic Course on Computer Architecture

    ERIC Educational Resources Information Center

    Trenas, M. A.; Ramos, J.; Gutierrez, E. D.; Romero, S.; Corbera, F.

    2011-01-01

    This paper describes how a new "Moodle" module, called "CTPracticals", is applied to the teaching of the practical content of a basic computer organization course. In the core of the module, an automatic verification engine enables it to process the VHDL designs automatically as they are submitted. Moreover, a straightforward…

  7. The Virtual Steel Sculpture--Limit State Analyses and Applications of Steel Connections

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed; Sapp, James D.

    2017-01-01

    The integrity of a structural system depends on the strength of materials, shape of the individual member and the elements used to hold the members together. In most undergraduate civil engineering curricula, a structural steel and/or reinforced concrete design course is required. Usually, the main focus of these courses is on member selection…

  8. Improvement of Spatial Ability Using Innovative Tools: Alternative View Screen and Physical Model Rotator

    ERIC Educational Resources Information Center

    Kinsey, Brad L.; Towle, Erick; Onyancha, Richard M.

    2008-01-01

    Spatial ability, which is positively correlated with retention and achievement in engineering, mathematics, and science disciplines, has been shown to improve over the course of a Computer-Aided Design course or through targeted training. However, which type of training provides the most beneficial improvements to spatial ability and whether other…

  9. Course Manual for X-Ray Measurements.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This is the second of a series of three instructor manuals in x-ray science and engineering and is produced as part of a project of Oregon State University's Bureau of Radiological Health. This manual, and the two campanion manuals, have been tested in courses at Oregon State. These materials have been designed to serve as models for teaching and…

  10. Instructional Strategies and Course Design for Teaching Statistics Online: Perspectives from Online Students

    ERIC Educational Resources Information Center

    Yang, Dazhi

    2017-01-01

    Background: Teaching online is a different experience from that of teaching in a face-to-face setting. Knowledge and skills developed for teaching face-to-face classes are not adequate preparation for teaching online. It is even more challenging to teach science, technology, engineering and math (STEM) courses completely online because these…

  11. Conceptual design of a Mars transportation system

    NASA Astrophysics Data System (ADS)

    1992-08-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  12. Conceptual design of a Mars transportation system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  13. Review and evaluation of online tobacco dependence treatment training programs for health care practitioners.

    PubMed

    Selby, Peter; Goncharenko, Karina; Barker, Megan; Fahim, Myra; Timothy, Valerie; Dragonetti, Rosa; Kemper, Katherine; Herie, Marilyn; Hays, J Taylor

    2015-04-17

    Training health care professionals is associated with increased capacity to deliver evidence-based smoking cessation interventions and increased quit rates among their patients. Online training programs hold promise to provide training but questions remain regarding the quality and usability of available programs. The aim was to assess the quality of English-language online courses in tobacco dependence treatment using a validated instrument. An environmental scan was conducted using the Google search engine to identify available online tobacco dependence treatment courses. The identified courses were then evaluated using the Peer Review Rubric for Online Learning, which was selected based on its ability to evaluate instructional design. It also has clear and concise criteria descriptions to ensure uniformity of evaluations by trained experts. A total of 39 courses were identified, of which 24 unique courses were assessed based on their accessibility and functionality during the period of evaluation. Overall, the course ratings indicated that 17 of 24 courses evaluated failed to meet minimal quality standards and none of the courses evaluated could be ranked as superior. However, many excelled in providing effective navigation, course rationale, and content. Many were weak in the use of instructional design elements, such as teaching effectiveness, learning strategies, instructor's role, and assessment and evaluation. Evaluation results and suggestions for improvement were shared with course administrators. Based on the courses evaluated in this review, course developers are encouraged to employ best practices in instructional design, such as cohesiveness of material, linearity of design, practice exercises, problem solving, and ongoing evaluation to improve existing courses and in the design of new online learning opportunities.

  14. Supporting active learning in an undergraduate geotechnical engineering course using group-based audience response systems quizzes

    NASA Astrophysics Data System (ADS)

    Donohue, Shane

    2014-01-01

    The use of audience response systems (ARSs) or 'clickers' in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-based ARS quizzes have been integrated into an undergraduate civil engineering course on foundation design. Overall, the ARS summary quizzes were very well received by the students. Feedback obtained from the students indicates that the majority believed the group-based quizzes were useful activities, which helped to improve their understanding of course materials, encouraged self-assessment, and assisted preparation for their summative examination. Providing students with clickers does not, however, necessarily guarantee the class will be engaged with the activity. If an ARS activity is to be successful, careful planning and design must be carried out and modifications adopted where necessary, which should be informed by the literature and relevant student feedback.

  15. The use of engineering design scenarios to assess student knowledge of global, societal, economic, and environmental contexts

    NASA Astrophysics Data System (ADS)

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-07-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on student attitudes and perceptions about engineering and abilities to extend and refine knowledge about broader contexts. Two design scenarios were created: one related to dental hygiene and one related to vaccination delivery. Design scenarios were used to (1) assess knowledge of broader contexts, and (2) test variability of student responses across different contextual situations. Results from pre- to post-surveying revealed improved student perceptions of knowledge of broader contexts. Significant differences were observed between the two design scenarios. The findings support the assumption that different design scenarios elicit consideration of different contexts and design scenarios can be constructed to target specific contextual considerations.

  16. Multifaceted Learning Objective Assessment in a Mechanical Engineering Capstone Design Course

    NASA Astrophysics Data System (ADS)

    Baker, Nicholas S.

    This thesis details multi method research approaches that have been used to study student learning objective instruction and assessment in the mechanical engineering (ME) capstone course at the University of Nevada, Reno (UNR). A primary focus of the research is to evaluate the pilot implementation of a Writing Fellows (WF) program in the ME capstone course, which has been assessed using a variety of techniques. The assessment generally indicates positive results. In particular, students favor the continuation of the program and find it more helpful than group consultations within the University Writing Center (UWC) alone. Self-assessment by the students indicates higher confidence in their communication skills, while preliminary analysis suggests that the writing fellow improved the scores of graded assignments by approximately one-third of a letter grade overall. Assessment efforts also highlight the need for deeper interaction between the WF and engineering faculty. A secondary focus of this research presents a methodology that has been developed and used to analyze how the Accreditation Board for Engineering and Technology's (ABET's) current Criterion 3 Student Outcomes (SOs) have been assessed in UNR's ME capstone class over several academic years. The methodology generally finds levels of ABET SO assessment in agreement with departmental and industry-held expectations for capstone courses at large. Finally, an analysis of student grades in the capstone course finds significant differences across semesters and identifies several potential causes.

  17. Training Program for Practical Engineering Design through the Collaboration with Regional Companies

    NASA Astrophysics Data System (ADS)

    Gofuku, Akio; Tabata, Nobuhisa; Tomita, Eiji; Funabiki, Nobuo

    An education program to bring up engineering design capabilities through long-term internship by the collaboration with regional companies has been put in practice for five years. The program is composed of two types of long-term internships and several lectures for patent systems and engineering ethics. This paper describes the outline of the program, educational effects, and our experiences. The program was improved into two educational programs in 2011. The one is a special course to educate engineers and scientists who can lead the technologies of their domains. The other is a long-term internship program for master students in engineering divisions of graduate school. This paper also describes the current activities of the latter program.

  18. An intermediate-level course on Biological Physics

    NASA Astrophysics Data System (ADS)

    Nelson, Phil

    2004-03-01

    I describe both undergraduate and graduate 1-semester courses designed to give a survey of Biological Physics. The courses cover classical as well as recent topics. The undergraduate version requires calculus-based first-year physics as its prerequisite. With this level of assumed background, we can arrive at topics such as molecular motors, manipulation of single molecules, and the propagation of nerve impulses. Students majoring in physics, chemistry, biochemistry, and every engineering major (as well as a few in biology), end up taking this course. The graduate course covers the same material but includes exercises with symbolic mathematics packages and data modeling.

  19. Selection of software for mechanical engineering undergraduates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheah, C. T.; Yin, C. S.; Halim, T.

    A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.

  20. Preventing or Inventing? Understanding the Effects of Non-Prescriptive Design Briefs

    ERIC Educational Resources Information Center

    Oliveira, Sonja; Marco, Elena

    2017-01-01

    This paper discusses observations of an architecture and environmental engineering undergraduate design studio project assigned to 4th year students at a UK university. In the UK, most architecture courses are characterised by a high proportion of design studio teaching supported by varying amount of technical modules that include environmental…

  1. Enhancing non-technical skills by a multidisciplinary engineering summer school

    NASA Astrophysics Data System (ADS)

    Larsen, Peter Gorm; Kristiansen, Erik Lasse; Bennedsen, Jens; Bjerge, Kim

    2017-11-01

    In general engineering studies focus on the technical skills in their own discipline. However, in their subsequent industrial careers, a significant portion of their time needs to be devoted to non-technical skills. In addition, in an increasingly globalised world collaboration in teams across cultures and disciplines is paramount to the creation of new and innovative products. In order to enhance the non-technical skills for groups of engineering students a series of innovation courses has been arranged and delivered in close collaboration with an industrial company (Bang & Olufsen). These courses have been organised as summer schools called 'Conceptual Design and Development of Innovative Products' (CD-DIP) and delivered outside the usual educational environment. In order to explore the impact of this single course, we have conducted a study among the students participating from 2007 to 2013. This has been carried out both qualitatively using interviews with selected students as well as quantitatively using a survey. The results are outstanding in demonstrating that the non-technical skills obtained in this single course have been of high value for a large portion of the students' subsequent professional life.

  2. Teaching ethics to engineers - a research-based perspective

    NASA Astrophysics Data System (ADS)

    Bowden, Peter

    2010-10-01

    This paper describes research underpinning a course, developed in Australia, on ethics for engineers. The methodology used, that of identifying the principal ethical issues facing the discipline and designing the course around these issues, would be applicable to other disciplines and in other countries. The course was based on the assumption that identifying the major ethical issues in the discipline, and subsequently presenting and analysing them in the classroom, would provide the future professional with knowledge of the ethical problems that they were likely to face on graduation. The student has then to be given the skills and knowledge to combat these concerns, should he/she wish to. These findings feed into several components of the course, such as the development of a code of ethics, the role of a professional society or industry association and the role of ethical theory The sources employed to identify the issues were surveys of the literature and about 30 case studies, in Australia and overseas. The issues thus identified were then put before a sample of engineering managers to assess the relevance to the profession.

  3. Architectural Drafting. Curriculum Development. Bulletin 1779.

    ERIC Educational Resources Information Center

    Eppler, Thomas

    This teaching guide is designed to aid high school vocational education teachers in teaching a course in architectural drafting for students who plan to become architects, interior designers and decorators, architectural draftspersons, landscape engineers, building contractors, building estimators, real estate persons or appraisers, and others.…

  4. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    NASA Technical Reports Server (NTRS)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  5. Inference Engine in an Intelligent Ship Course-Keeping System

    PubMed Central

    2017-01-01

    The article presents an original design of an expert system, whose function is to automatically stabilize ship's course. The focus is put on the inference engine, a mechanism that consists of two functional components. One is responsible for the construction of state space regions, implemented on the basis of properly processed signals recorded by sensors from the input and output of an object. The other component is responsible for generating a control decision based on the knowledge obtained in the first module. The computing experiments described herein prove the effective and correct operation of the proposed system. PMID:29317859

  6. Mixed Methods: Incorporating multiple learning styles into a measurements course

    NASA Astrophysics Data System (ADS)

    Pallone, Arthur

    2010-03-01

    The best scientists and engineers regularly combine creative and critical skill sets. As faculty, we are responsible to provide future scientists and engineers with those skills sets. EGR 390: Engineering Measurements at Murray State University is structured to actively engage students in the processes that develop and enhance those skills. Students learn through a mix of traditional lecture and homework, active discussion of open-ended questions, small group activities, structured laboratory exercises, oral and written communications exercises, student chosen team projects, and peer evaluations. Examples of each of these activities, the skill set addressed by each activity, outcomes from and effectiveness of each activity and recommendations for future directions in the EGR 390 course as designed will be presented.

  7. Project-based introduction to aerospace engineering course: A model rocket

    NASA Astrophysics Data System (ADS)

    Jayaram, Sanjay; Boyer, Lawrence; George, John; Ravindra, K.; Mitchell, Kyle

    2010-05-01

    In this paper, a model rocket project suitable for sophomore aerospace engineering students is described. This project encompasses elements of drag estimation, thrust determination and analysis using digital data acquisition, statistical analysis of data, computer aided drafting, programming, team work and written communication skills. The student built rockets are launched in the university baseball field with the objective of carrying a specific amount of payload so that the rocket achieves a specific altitude before the parachute is deployed. During the course of the project, the students are introduced to real-world engineering practice through written report submission of their designs. Over the years, the project has proven to enhance the learning objectives, yet cost effective and has provided good outcome measures.

  8. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  9. Communicating Microbiology Concepts from Multiple Contexts through Poster Presentations †

    PubMed Central

    2018-01-01

    Accredited environmental engineering degrees require graduates to be able to apply their scholarship to concepts of professional practice and design. This transferable skill of relating what you learn in one setting to another situation is vital for all professions, not just engineering. A course project involving designing and presenting a professional poster was implemented to enhance student mastery in Environmental Engineering Microbiology while also developing communication and transferable skills vital for all majors. Students were asked to read a contemporary non-fiction book relating to microbiology and expand upon the book’s thesis by integrating course content, news articles, and peer-reviewed journal articles. They then were required to present this information in class using a professional poster. Students felt the project allowed them to synthesize and organize information, analyze ideas, and integrate ideas from various sources. These transferable skills are vital for students and professionals alike to be able to communicate advanced information and master a topic. PMID:29904521

  10. Design and Implementation of a Mechatronics Learning Module in a Large First-Semester Engineering Course

    ERIC Educational Resources Information Center

    Castles, R. T.; Zephirin, T.; Lohani, V. K.; Kachroo, P.

    2010-01-01

    Since 2005, the first-year engineering program at Virginia Tech, Blacksburg, has been significantly restructured to include more hands-on learning. A major grant (2004-2009) under the department level reform (DLR) program of the National Science Foundation (NSF) facilitated this restructuring. A number of hands-on learning modules were developed…

  11. Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education

    ERIC Educational Resources Information Center

    Chien, Yu-Hung

    2017-01-01

    This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  14. Vertical Stream Curricula Integration of Problem-Based Learning Using an Autonomous Vacuum Robot in a Mechatronics Course

    ERIC Educational Resources Information Center

    Chin, Cheng; Yue, Keng

    2011-01-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics…

  15. Mitigating the Mathematical Knowledge Gap between High School and First Year University Chemical Engineering Mathematics Course

    ERIC Educational Resources Information Center

    Basitere, Moses; Ivala, Eunice

    2015-01-01

    This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…

  16. From Archi Torture to Architecture: Undergraduate Students Design and Implement Computers Using the Multimedia Logic Emulator

    ERIC Educational Resources Information Center

    Stanley, Timothy D.; Wong, Lap Kei; Prigmore, Daniel; Benson, Justin; Fishler, Nathan; Fife, Leslie; Colton, Don

    2007-01-01

    Students learn better when they both hear and do. In computer architecture courses "doing" can be difficult in small schools without hardware laboratories hosted by computer engineering, electrical engineering, or similar departments. Software solutions exist. Our success with George Mills' Multimedia Logic (MML) is the focus of this paper. MML…

  17. User Participation and Participatory Design: Topics in Computing Education.

    ERIC Educational Resources Information Center

    Kautz, Karlheinz

    1996-01-01

    Discusses user participation and participatory design in the context of formal education for computing professionals. Topics include the current curriculum debate; mathematical- and engineering-based education; traditional system-development training; and an example of a course program that includes computers and society, and prototyping. (53…

  18. Teaching Classical Mechanics Concepts Using Visuo-Haptic Simulators

    ERIC Educational Resources Information Center

    Neri, Luis; Noguez, Julieta; Robledo-Rella, Victor; Escobar-Castillejos, David; Gonzalez-Nucamendi, Andres

    2018-01-01

    In this work, the design and implementation of several physics scenarios using haptic devices are presented and discussed. Four visuo-haptic applications were developed for an undergraduate engineering physics course. Experiments with experimental and control groups were designed and implemented. Activities and exercises related to classical…

  19. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  20. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  1. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  2. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  3. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  4. Report Writing for Technical Staff. P.R.I.D.E. People Retraining for Industry Excellence.

    ERIC Educational Resources Information Center

    Burt, Lorna

    This guide, part of a series of workplace-developed materials for retraining factory workers, provides teaching materials for a workplace course in report writing skills for technical staff. The course has been designed to help new engineers with all aspects of report writing. It covers the outline and structure of reports, brainstorming,…

  5. Adjustable Speed Drive Project for Teaching a Servo Systems Course Laboratory

    ERIC Educational Resources Information Center

    Rodriguez-Resendiz, J.; Herrera-Ruiz, G.; Rivas-Araiza, E. A.

    2011-01-01

    This paper describes an adjustable speed drive for a three-phase motor, which has been implemented as a design for a servo system laboratory course in an engineering curriculum. The platform is controlled and analyzed in a LabVIEW environment and run on a PC. Theory is introduced in order to show the sensorless algorithms. These are computed by…

  6. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  7. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    ERIC Educational Resources Information Center

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  8. Developing a new industrial engineering curriculum using a systems engineering approach

    NASA Astrophysics Data System (ADS)

    Buyurgan, Nebil; Kiassat, Corey

    2017-11-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.

  9. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  10. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...

  11. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...

  12. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...

  13. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...

  14. Student Autonomy and its Effects on Student Enjoyment in a Traditional Mechanics Course for First-Year Engineering Students

    NASA Astrophysics Data System (ADS)

    Perera, Janaki I.; Quinlivan, Brendan T.; Simonovich, Jennifer A.; Towers, Emily; Zadik, Oren H.; Zastavker, Yevgeniya V.

    2012-02-01

    In light of recent literature in educational psychology, this study investigates instructional support and students' autonomy at a small technical undergraduate school. Grounded theory is used to analyze twelve semi-structured open-ended interviews about engineering students' experiences in Introductory Mechanics that includes Lecture, Recitation, and Laboratory components. Using data triangulation with each course component as a unit of analysis, this study examines students' course enjoyment as a function of instructional support and autonomy. The Lecture utilizes traditional instructor-centered pedagogy with predominantly passive learning and no student autonomy. The Recitation creates an active learning environment through small group work with a moderate degree of autonomy. The Laboratory is designed around self-guided project-based activities with significant autonomy. Despite these differences, all three course components provide similar levels of instructional support. The data reveal that students enjoy the low autonomy provided by Lecture and Recitations while finding the Laboratory frustrating. Analyses indicate that the differences in autonomy contribute to students' misinterpretation of the three course components' value within the context of the entire course.

  15. Peer Learning in a MATLAB Programming Course

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon

    2016-11-01

    Three forms of research-based peer learning were implemented in the design of a MATLAB programming course for mechanical engineering undergraduate students. First, a peer learning program was initiated. These undergraduate peer learning leaders played two roles in the course, (I) they were in the classroom helping students' with their work, and, (II) they led optional two hour helps sessions outside of the class time. The second form of peer learning was implemented through the inclusion of a peer discussion period following in class clicker quizzes. The third form of peer learning had the students creating video project assignments and posting them on YouTube to explain course topics to their peers. Several other more informal techniques were used to encourage peer learning. Student feedback in the form of both instructor-designed survey responses and formal course evaluations (quantitative and narrative) will be presented. Finally, effectiveness will be measured by formal assessment, direct and indirect to these peer learning methods. This will include both academic data/grades and pre/post test scores. Overall, the course design and its inclusion of these peer learning techniques demonstrate effectiveness.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    Pressure Safety Orientation (course #769) introduces workers at Los Alamos National Laboratory (LANL) to the Laboratory Pressure Safety Program and to pressure-related hazards. This course also affords a hands-on exercise involving the assembly of a simple pressure system. This course is required for all LANL personnel who work on or near pressure systems and are exposed to pressure-related hazards. These personnel include pressure-system engineers, designers, fabricators, installers, operators, inspectors, maintainers, and others who work with pressurized fluids and may be exposed to pressure-related hazards.

  17. Web-Based Engine for Program Curriculum Designers

    ERIC Educational Resources Information Center

    Hamam, H.; Loucif, S.

    2009-01-01

    Educational institutions pay careful attention to the design of program curricula, which represent a framework to meet institutional goals and missions. Of course, the success of any institution depends highly on the quality of its program curriculum. The development of such a curriculum and, more importantly, the evaluation of its quality are…

  18. Applied Physics Modules Selected for Manufacturing and Metal Technologies.

    ERIC Educational Resources Information Center

    Waring, Gene

    Designed for individualized use in an applied physics course in postsecondary vocational-technical education, this series of eighteen learning modules is equivalent to the content of two quarters of a five-credit hour class in manufacturing engineering technology, machine tool and design technology, welding technology, and industrial plastics…

  19. Program Fighter: An Evaluation.

    ERIC Educational Resources Information Center

    Hull, David G.; Fowler, Wallace T.

    A computer program for the sizing of subsonic and supersonic fighter planes was adapted for use in an aerospace engineering course at the University of Texas at Austin. FIGHTER uses classroom notation and separate subroutines for different disciplines to implement the conceptual design process. Input consists of a set of design variables and a set…

  20. Design with brittle materials - An interdisciplinary educational program

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.; Bollard, R. J. H.; Hartz, B. J.; Kobayashi, A. S.; Love, W. J.; Scott, W. D.; Taggart, R.; Whittemore, O. J.

    1980-01-01

    A series of interdisciplinary design courses being offered to senior and graduate engineering students at the University of Washington is described. Attention is given to the concepts and some of the details on group design projects that have been undertaken during the past two years. It is noted that ceramic materials normally demonstrate a large scatter in strength properties. As a consequence, when designing with these materials, the conventional 'mil standards' design stresses with acceptable margins of safety cannot by employed and the designer is forced to accept a probable number of failures in structures of a given brittle material. It is this prediction of the probability of failure for structures of given, well-characterized materials that forms the basis for this series of courses.

  1. A technical writing programme implemented in a first-year engineering course at KU Leuven

    NASA Astrophysics Data System (ADS)

    Heylen, Christel; Vander Sloten, Jos

    2013-12-01

    Technical communication and technical writing are important skills for the daily work-life of every engineer. In the first-year engineering programme at KU Leuven, a technical writing programme is implemented within the project-based course 'Problem Solving and Engineering Design'. This paper describes a case study for implementing a writing programme based on active learning methods and situated learning in large classes. The programme consists of subsequent cycles of instructions, learning by doing and reflection on received feedback. In addition, a peer-review assignment, together with an interactive lecture using clicking devices, is incorporated within the assignments of the second semester. A checklist of desired writing abilities makes it easier to grade the large number of papers. Furthermore, this ensures that all staff involved in the evaluation process uses the same criteria to grade and for providing feedback.

  2. Vertical stream curricula integration of problem-based learning using an autonomous vacuum robot in a mechatronics course

    NASA Astrophysics Data System (ADS)

    Chin, Cheng; Yue, Keng

    2011-10-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics Department. The departments piloted a new vertical stream curricula model (VSCAM) to enhance student learning in mechatronics system design through integration of educational activities from the first to the second year of the course. In this case study, a problem-based learning (PBL) method on an autonomous vacuum robot in the mechatronics systems design module was proposed to allow the students to have hands-on experience in the mechatronics system design. The proposed works included in PBL consist of seminar sessions, weekly works and project presentation to provide holistic assessment on teamwork and individual contributions. At the end of VSCAM, an integrative evaluation was conducted using confidence logs, attitude surveys and questionnaires. It was found that the activities were quite appreciated by the participating staff and students. Hence, PBL has served as an effective pedagogical framework for teaching multidisciplinary subjects in mechatronics engineering education if adequate guidance and support are given to staff and students.

  3. Working towards a scalable model of problem-based learning instruction in undergraduate engineering education

    NASA Astrophysics Data System (ADS)

    Mantri, Archana

    2014-05-01

    The intent of the study presented in this paper is to show that the model of problem-based learning (PBL) can be made scalable by designing curriculum around a set of open-ended problems (OEPs). The detailed statistical analysis of the data collected to measure the effects of traditional and PBL instructions for three courses in Electronics and Communication Engineering, namely Analog Electronics, Digital Electronics and Pulse, Digital & Switching Circuits is presented here. It measures the effects of pedagogy, gender and cognitive styles on the knowledge, skill and attitude of the students. The study was conducted two times with content designed around same set of OEPs but with two different trained facilitators for all the three courses. The repeatability of results for effects of the independent parameters on dependent parameters is studied and inferences are drawn.

  4. Ninth Thermal and Fluids Analysis Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara (Compiler)

    1999-01-01

    The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.

  5. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L.; Sleiti, Ahmad

    2011-09-19

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has alsomore » established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.« less

  6. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study.

    PubMed

    Rulifson, Greg; Bielefeldt, Angela R

    2018-03-20

    Engineers should learn how to act on their responsibility to society during their education. At present, however, it is unknown what students think about the meaning of socially responsible engineering. This paper synthesizes 4 years of longitudinal interviews with engineering students as they progressed through college. The interviews revolved broadly around how students saw the connections between engineering and social responsibility, and what influenced these ideas. Using the Weidman Input-Environment-Output model as a framework, this research found that influences included required classes such as engineering ethics, capstone design, and some technical courses, pre-college volunteering and familial values, co-curricular groups such as Engineers Without Borders and the Society of Women Engineers, as well as professional experiences through internships. Further, some experiences such as technical courses and engineering internships contributed to confine students' understanding of an engineer's social responsibility. Overall, students who stayed in engineering tended to converge on basic responsibilities such as safety and bettering society as a whole, but tended to become less concerned with improving the lives of the marginalized and disadvantaged. Company loyalty also became important for some students. These results have valuable, transferable contributions, providing guidance to foster students' ideas on socially responsible engineering.

  7. Illustrating Thermodynamic Concepts Using a Hero's Engine

    NASA Astrophysics Data System (ADS)

    Muiño, Pedro L.; Hodgson, James R.

    2000-05-01

    A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. The engine is a boiler made of Pyrex with two off-center nozzles. Upon boiling, the vapor exits the nozzles, creating two opposite, off-center forces that result in a circular motion by the engine around the vertical axis. The engine is suspended from a horizontal bar by means of two parallel threads. The rotation of the engine results in the twisting of the threads, with two important effects: the engine is raised vertically, and potential energy is stored in the coiling of the threads. When the engine is raised, it is removed from the heating source. This stops the boiling. The stored potential energy is then released into kinetic energy; that is, the threads uncoil, and the engine rotates in the opposite direction. This lowers the engine into the flame, so the water resumes boiling and the engine can be raised again. This cycle continues until all the liquid water is vaporized. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion (Joule-Thompson experiment), conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.

  8. The Effectiveness of Concept Maps in Teaching Physics Concepts Applied to Engineering Education: Experimental Comparison of the Amount of Learning Achieved with and without Concept Maps

    ERIC Educational Resources Information Center

    Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.

    2013-01-01

    A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…

  9. [Master course in biomedical engineering].

    PubMed

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  11. Contamination Control for Thermal Engineers

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  12. Light Weight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    DTIC Science & Technology

    2011-10-01

    Millennial Student. 15. Thiyagarajan, M. (2011). Portable Plasma Biomedical Device for Cancer Treatment. Irvine, California: ASME Emerging...American Society of Mechanical Engineers Sigma Xi Toastmasters International Club MIT Entrepreneur Club Eta Kappa Nu Tau Beta Pi Institute of...Learning Environment. Corpus Christi, TX: TAMUCC 1st Faculty Symposium: Course Design for the Millennial Student. Thiyagarajan, M. (2011). Portable

  13. The Improvement of the Learning Process of Basic Disciplines at the Engineering Design.

    ERIC Educational Resources Information Center

    de Oliveira, Vanderli Fava; Borges, Marcos Martins; Naveiro, Ricardo Manfredi

    The goal of this paper is to reflect upon Engineering Education, starting from experiments that have been carried out at the Federal University of Juiz de Fora (UFJF), aiming to improve the learning process of the content of basic drawing disciplines concerned with graphic representation, which are subjects of the initial terms of the courses of…

  14. Chemical Engineers Go to the Movies (Stimulating Problems for the Contemporary Undergraduate Student)

    ERIC Educational Resources Information Center

    Smart, Jimmy L.

    2007-01-01

    In this article, the author presents five problems that are representative of some of the "movie problems" that he has used on tests in various courses, including reactor design, heat transfer, mass transfer, engineering economics, and fluid mechanics. These problems tend to be open-ended. They can be challenging and can often be worked a variety…

  15. The Role of Context Free Collaboration Design Patterns in Learning Design within LAMS: Lessons Learned from an Empirical Study

    ERIC Educational Resources Information Center

    Kordaki, Maria

    2011-01-01

    This study presents an experiment aimed at the design of short learning courses in the context of LAMS, using a number of specific context-free collaboration design patterns implemented within LAMS. In fact, 25 Prospective Computer Engineers (PCEs) participated in this experiment. The analysis of the data shows that PCEs fully used these context…

  16. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less

  17. Mechanical Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  18. Impact of senior design project for the development of leadership and management skills in construction management

    NASA Astrophysics Data System (ADS)

    Chowdhury, Tamara

    2013-08-01

    Senior design courses are a core part of curricula across engineering and technology disciplines. Such courses offer Construction Management (CMG) students the opportunity to bring together, assimilate and apply the knowledge they have acquired over their entire undergraduate academic programme to an applied technical project. Senior or Capstone design course engages students in a real-world project, enhance leadership development, and prepare to manage and lead project teams. The CMG programme's multidisciplinary approach at Alabama A&M University, combines essential components of construction techniques with concepts of business management to develop technically qualified individuals for responsible management roles in the design, construction and operation of major construction projects. This paper analyses the performance of the students and improvement due to the interaction with the faculty advisors and industrial panel during the two semester Capstone project. The results of this Capstone sequence have shown a continuous improvement of student performance.

  19. Predicting Performance in a First Engineering Calculus Course: Implications for Interventions

    ERIC Educational Resources Information Center

    Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia

    2015-01-01

    At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take "Engineering Analysis I," a calculus-based engineering analysis course. After the…

  20. A Case Study of a College-Wide First-Year Undergraduate Engineering Course

    ERIC Educational Resources Information Center

    Aloul, Fadi; Zualkernan, Imran; Husseini, Ghaleb; El-Hag, Ayman; Al-Assaf, Yousef

    2015-01-01

    Introductory engineering courses are either programme specific or expose students to engineering as a broad discipline by including materials from various engineering programmes. A common introductory engineering course that spans different engineering programmes raises challenges, including the high cost of resources as well as the lack of…

Top