Factors Related to Successful Engineering Team Design
NASA Technical Reports Server (NTRS)
Nowaczyk, Ronald H.; Zang, Thomas A.
1998-01-01
The perceptions of a sample of 49 engineers and scientists from NASA Langley Research Center toward engineering design teams were evaluated. The respondents rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. Successful engineering teams may find their greatest challenges occurring during the early stages of their existence. In contrast to the prototypical business team, members on an engineering design share expertise and knowledge which allows them to deal with task issues sooner. However, discipline differences among team members can lead to conflicts regarding the best method or approach to solving the engineering problem.
Perceptions of Engineers Regarding Successful Engineering Team Design
NASA Technical Reports Server (NTRS)
Nowaczyk, Ronald H.
1998-01-01
The perceptions of engineers and scientists at NASA Langley Research Center toward engineering design teams were evaluated. A sample of 49 engineers and scientists rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors focused on team issues occurring during the early stages of a team's existence. They included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. The discussion includes a comparison of engineering teams with the prototypical business team portrayed in the literature.
Training to Enhance Design Team Performance: A Cure for Tunnel Vision
NASA Technical Reports Server (NTRS)
Parker, James W.; Parker, Nelson C. (Technical Monitor)
2001-01-01
Design Team performance is a function of the quality and degree of academic training and the cumulative, learned experience of the individual members of the team. Teamwork, leadership, and communications certainly are factors that affect the measure of the performance of the team, but they are not addressed here. This paper focuses on accelerating the learned experience of team members and describes an organizational approach that can significantly increase the effective experience level for any engineering design team. The performance measure of the whole team can be increased by increasing the engineering disciplines' cross awareness of each other and by familiarizing them with their affect at the system level. Discipline engineers know their own discipline well, but typically are not intimately familiar with their technical interaction with and dependencies on all the other disciplines of engineering. These dependencies are design integration functions and are worked out well by the discipline engineers as long as they are involved in the design of types of systems that they have experience with.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Debarati; Hihn, Jairus; Warfield, Keith
2011-01-01
As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades in a cost-efficient manner. To successfully accomplish these complex missions with limited funding, it is also essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. This paper is an extension of a recent white paper written by the Concurrent Engineering Working Group, which details the unique challenges of distributed collaborative concurrent engineering. This paper includes a short history of aerospace concurrent engineering, and defines the terms 'concurrent', 'collaborative' and 'distributed' in the context of aerospace concurrent engineering. In addition, a model for the levels of complexity of concurrent engineering teams is presented to provide a way to conceptualize information and data flow within these types of teams.
ERIC Educational Resources Information Center
Ibrahim, Badaruddin
2012-01-01
In the 21st century, engineers are expected to be creative and work collaboratively in teams to solve or design new products. Research in the past has shown how creativity and good team communication, together with knowledge, can impact the outcomes in the organization. The purpose of this study was to explore the relationships among creativity,…
ERIC Educational Resources Information Center
Conway Hughston, Veronica
2014-01-01
Since 1996 ABET has mandated that undergraduate engineering degree granting institutions focus on learning outcomes such as professional skills (i.e. solving unstructured problems and working in teams). As a result, engineering curricula were restructured to include team based learning--including team charters. Team charters were diffused into…
Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.
ERIC Educational Resources Information Center
Buchal, Ralph O.
2001-01-01
Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)
The structural approach to shared knowledge: an application to engineering design teams.
Avnet, Mark S; Weigel, Annalisa L
2013-06-01
We propose a methodology for analyzing shared knowledge in engineering design teams. Whereas prior work has focused on shared knowledge in small teams at a specific point in time, the model presented here is both scalable and dynamic. By quantifying team members' common views of design drivers, we build a network of shared mental models to reveal the structure of shared knowledge at a snapshot in time. Based on a structural comparison of networks at different points in time, a metric of change in shared knowledge is computed. Analysis of survey data from 12 conceptual space mission design sessions reveals a correlation between change in shared knowledge and each of several system attributes, including system development time, system mass, and technological maturity. From these results, we conclude that an early period of learning and consensus building could be beneficial to the design of engineered systems. Although we do not examine team performance directly, we demonstrate that shared knowledge is related to the technical design and thus provide a foundation for improving design products by incorporating the knowledge and thoughts of the engineering design team into the process.
Teaching Engineering Students Team Work
NASA Technical Reports Server (NTRS)
Levi, Daniel
1998-01-01
The purpose of this manual is to provide professor's in engineering classes which the background necessary to use student team projects effectively. This manual describes some of the characteristics of student teams and how to use them in class. It provides a set of class activities and films which can be used to introduce and support student teams. Finally, a set of teaching modules used in freshmen, sophomore, and senior aeronautical engineering classes are presented. This manual was developed as part of a NASA sponsored project to improve the undergraduate education of aeronautical engineers. The project has helped to purchase a set of team work films which can be checked out from Cal Poly's Learning Resources Center in the Kennedy Library. Research for this project has included literature reviews on team work and cooperative learning; interviews, observations, and surveys of Cal Poly students from Industrial and Manufacturing Engineering, Aeronautical Engineering and Psychology; participation in the Aeronautical Engineering senior design lab; and interviews with engineering faculty. In addition to this faculty manual, there is a student team work manual which has been designed to help engineering students work better in teams.
ERIC Educational Resources Information Center
Fox, Garey A.; Weckler, Paul; Thomas, Dan
2015-01-01
In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and transfer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…
Team Expo: A State-of-the-Art JSC Advanced Design Team
NASA Technical Reports Server (NTRS)
Tripathi, Abhishek
2001-01-01
In concert with the NASA-wide Intelligent Synthesis Environment Program, the Exploration Office at the Johnson Space Center has assembled an Advanced Design Team. The purpose of this team is two-fold. The first is to identify, use, and develop software applications, tools, and design processes that streamline and enhance a collaborative engineering environment. The second is to use this collaborative engineering environment to produce conceptual, system-level-of-detail designs in a relatively short turnaround time, using a standing team of systems and integration experts. This includes running rapid trade studies on varying mission architectures, as well as producing vehicle and/or subsystem designs. The standing core team is made up of experts from all of the relevant engineering divisions (e.g. Power, Thermal, Structures, etc.) as well as representatives from Risk and Safety, Mission Operations, and Crew Life Sciences among others. The Team works together during 2- hour sessions in the same specially enhanced room to ensure real-time integration/identification of cross-disciplinary issues and solutions. All subsystem designs are collectively reviewed and approved during these same sessions. In addition there is an Information sub-team that captures and formats all data and makes it accessible for use by the following day. The result is Team Expo: an Advanced Design Team that is leading the change from a philosophy of "over the fence" design to one of collaborative engineering that pushes the envelope to achieve the next-generation analysis and design environment.
NASA Astrophysics Data System (ADS)
Erlick, Katherine
"The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the team members. The self-directed team was more motivated to learn their topic than was the manager-directed team, but they struggled with their path in following their vision whereas the manager-directed team kept their focus under the guidance of their manager. Finally, both teams are in fact effective; however specific circumstances may be an important objective when deciding to utilize either a self-directed or manager-directed team.
Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future
NASA Technical Reports Server (NTRS)
Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith
2011-01-01
Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.
NASA Technical Reports Server (NTRS)
Heise, James; Hull, Bethanne J.; Bauer, Jonathan; Beougher, Nathan G.; Boe, Caleb; Canahui, Ricardo; Charles, John P.; Cooper, Zachary Davis Job; DeShaw, Mark A.; Fontanella, Luan Gasparetto;
2012-01-01
The Iowa State University team, Team LunaCY, is composed of the following sub-teams: the main student organization, the Lunabotics Club; a senior mechanical engineering design course, ME 415; a senior multidisciplinary design course, ENGR 466; and a senior design course from Wartburg College in Waverly, Iowa. Team LunaCY designed and fabricated ART-E III, Astra Robotic Tractor- Excavator the Third, for the team's third appearance in the NASA Lunabotic Mining competition. While designing ART-E III, the team had four main goals for this year's competition:to reduce the total weight of the robot, to increase the amount of regolith simulant mined, to reduce dust, and to make ART-E III autonomous. After many designs and research, a final robot design was chosen that obtained all four goals of Team LunaCY. A few changes Team LunaCY made this year was to go to the electrical, computer, and software engineering club fest at Iowa State University to recruit engineering students to accomplish the task of making ART-E III autonomous. Team LunaCY chose to use LabView to program the robot and various sensors were installed to measure the distance between the robot and the surroundings to allow ART-E III to maneuver autonomously. Team LunaCY also built a testing arena to test prototypes and ART-E III in. To best replicate the competition arena at the Kennedy Space Center, a regolith simulant was made from sand, QuickCrete, and fly ash to cover the floor of the arena. Team LunaCY also installed fans to allow ventilation in the arena and used proper safety attire when working in the arena . With the additional practice in the testing arena and innovative robot design, Team LunaCY expects to make a strong appearance at the 2012 NASA Lunabotic Mining Competition. .
Excite Kids about Engineering: Design Squad[TM] and Engineer Your Life[TM] Resources Make It Easy
ERIC Educational Resources Information Center
Cheng, Jack
2008-01-01
The author discusses "Design Squad", a television program designed to introduce students to the engineering process. Each episode tells the story of how two teams tackled a particular challenge. A graphic announces each stage (e.g., brainstorm, design, build, test, and redesign) as the teams construct their solutions. These graphics make visual…
Patterson, P E
2007-01-01
In our new global economy, biomedical product development teams need to be even more innovative in an environment constrained by fewer resources with less time from concept to market. Teams are often comprised of individuals spread around the world. To simulate this setting, we revised an existing course to incorporate teams of on-campus and distance students, with each team including both engineers and other specialties. Through interactive lectures and projects, we presented a systematic approach to innovation that should be useful to engineers and non-engineers alike. Students found the course challenging and exciting, displaying an improved ability to work in distributed teams and in developing innovative design solutions.
Tinkering self-efficacy and team interaction on freshman engineering design teams
NASA Astrophysics Data System (ADS)
Richardson, Arlisa Labrie
This study utilizes Bandura's theory of self-efficacy as a framework to examine the development of tinkering skills white working on a freshman engineering design team. The four sources of self-efficacy were analyzed in the context of tinkering within the design team. The research question, 'Does tinkering self-efficacy change for female students during the Freshman Engineering Design class while working on mixed sex teams?', was addressed using quantitative data collection and field observations. Approximately 41 students enrolled in a freshman engineering design class at a public university in the southwest participated by providing self-reports about their tinkering involvement during each design project. In addition, three mixed-sex student teams were observed while working to complete the course design projects. An observation protocol based on Bandura's sources of self efficacy, was used to document tinkering interactions within the three observed teams. The results revealed that Bandura's sources of self-efficacy influenced tinkering involvement. The self-efficacy source, performance accomplishment measured through prior tinkering experience, was the most influential on tinkering involvement. Unlike Bandura's ranking of influence, verbal persuasion was shown to correlate with more tinkering behaviors than the observation of others. The number of females on a team had no impact on tinkering involvement. Tinkering involvement did not change as students progressed from one project to another. However, the competitive nature of the design project appeared to have a negative impact on tinkering involvement and the division of tasks within the team. In addition, a difference was found in the female students' perception of their tinkering involvement and observation of their tinkering involvement. The findings suggest that effective implementation of teamwork including teamwork preparation, more emphasis on the design process and the elimination of competition between teams are necessary to create a more equitable learning environment.
Biomedical engineering education through global engineering teams.
Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M
2012-01-01
Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.
Global Engineering Teams--A Programme Promoting Teamwork in Engineering Design and Manufacturing
ERIC Educational Resources Information Center
Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.
2011-01-01
Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration…
ERIC Educational Resources Information Center
Liu, Yucheng
2017-01-01
In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…
Next-generation concurrent engineering: developing models to complement point designs
NASA Technical Reports Server (NTRS)
Morse, Elizabeth; Leavens, Tracy; Cohanim, Barbak; Harmon, Corey; Mahr, Eric; Lewis, Brian
2006-01-01
Concurrent Engineering Design teams have made routine the rapid development of point designs for space missions. The Jet Propulsion Laboratory's Team X is now evolving into a next generation CED; nin addition to a point design, the team develops a model of the local trade space. The process is a balance between the power of model-developing tools and the creativity of human experts, enabling the development of a variety of trade models for any space mission.
Team-Based Development of Medical Devices: An Engineering-Business Collaborative.
Eberhardt, Alan W; Johnson, Ophelia L; Kirkland, William B; Dobbs, Joel H; Moradi, Lee G
2016-07-01
There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a "virtual company," with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement.
Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade
NASA Astrophysics Data System (ADS)
Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.
2010-07-01
The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.
Constructing engineers through practice: Gendered features of learning and identity development
NASA Astrophysics Data System (ADS)
Tonso, Karen L.
How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of women's belonging. (3) Despite all of the pressures to do otherwise, (some) teams of students (at all levels) carved out small oases where "actual" engineering prevailed and women's participation was robust. Students--not faculty, not progressive pedagogy, not "reformed" courses--disrupted prevailing norms. However, two women engineering students, one on each senior team, performed fabulous "actual" engineering, yet neither of them had a job when they graduated--the only two senior students on my teams without jobs.
Team Based Engineering Design Thinking
ERIC Educational Resources Information Center
Mentzer, Nathan
2012-01-01
The objective of this research was to explore design thinking among teams of high school students. This objective is encompassed in the research question driving this inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…
Team Based Engineering Design Thinking
ERIC Educational Resources Information Center
Mentzer, Nathan
2014-01-01
The objective of this research was to explore design thinking among teams of high school students. This objective was encompassed in the research question driving the inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, J.W.
1983-03-10
A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.
Global engineering teams - a programme promoting teamwork in engineering design and manufacturing
NASA Astrophysics Data System (ADS)
Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.
2011-05-01
Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration with industry partners. Teamwork is a major success factor for GET as students always work in groups of varying sizes. A questionnaire-based survey of the 2008 cohort of GET students was conducted to assess teamwork, communication and conflict resolution among group members. The results confirmed that deliverables are readily achieved in teams and communication was open. A challenge of using virtual teams is the availability of high-speed Internet access. The GET programme shows that it is possible to deliver engineering design and manufacturing via industry/university collaboration. The programme also facilitates multidisciplinary teamwork at an international level.
Sharing best practices in teaching biomedical engineering design.
Allen, R H; Acharya, S; Jancuk, C; Shoukas, A A
2013-09-01
In an effort to share best practices in undergraduate engineering design education, we describe the origin, evolution and the current status of the undergraduate biomedical engineering design team program at Johns Hopkins University. Specifically, we describe the program and judge the quality of the pedagogy by relating it to sponsor feedback, project outcomes, external recognition and student satisfaction. The general pedagogic practices, some of which are unique to Hopkins, that have worked best include: (1) having a hierarchical team structure, selecting team leaders the Spring semester prior to the academic year, and empowering them to develop and manage their teams, (2) incorporating a longitudinal component that incudes freshmen as part of the team, (3) having each team choose from among pre-screened clinical problems, (4) developing relationships and fostering medical faculty, industry and government to allow students access to engineers, clinicians and clinical environments as needed, (5) providing didactic sessions on topics related to requirements for the next presentation, (6) employing judges from engineering, medicine, industry and government to evaluate designs and provide constructive criticisms approximately once every 3-4 weeks and (7) requiring students to test the efficacy of their designs. Institutional support and resources are crucial for the design program to flourish. Most importantly, our willingness and flexibility to change the program each year based on feedback from students, sponsors, outcomes and judges provides a mechanism for us to test new approaches and continue or modify those that work well, and eliminate those that did not.
Team-Based Development of Medical Devices: An Engineering–Business Collaborative
Eberhardt, Alan W.; Johnson, Ophelia L.; Kirkland, William B.; Dobbs, Joel H.; Moradi, Lee G.
2016-01-01
There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a “virtual company,” with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement. PMID:26902869
NASA Astrophysics Data System (ADS)
Mena, Irene B.; Diefes-Dux, Heidi A.
2012-04-01
Students' perceptions of engineering have been documented through studies involving interviews, surveys, and word associations that take a direct approach to asking students about various aspects of their understanding of engineering. Research on perceptions of engineering rarely focuses on how students would portray engineering to others. First-year engineering student teams proposed a museum exhibit, targeted to middle school students, to explore the question "What is engineering?" The proposals took the form of a poster. The overarching research question focuses on how these students would portray engineering to middle school students as seen through their museum exhibit proposals. A preliminary analysis was done on 357 posters to determine the overall engineering themes for the proposed museum exhibits. Forty of these posters were selected and, using open coding, more thoroughly analyzed to learn what artifacts/objects, concepts, and skills student teams associate with engineering. These posters were also analyzed to determine if there were any differences by gender composition of the student teams. Building, designing, and teamwork are skills the first-year engineering students link to engineering. Regarding artifacts, students mentioned those related to transportation and structures most often. All-male teams were more likely to focus on the idea of space and to mention teamwork and designing as engineering skills; equal-gender teams were more likely to focus on the multidisciplinary aspect of engineering. This analysis of student teams' proposals provides baseline data, positioning instructors to develop and assess instructional interventions that stretch students' self-exploration of engineering.
Optical engineering capstone design projects with industry sponsors
NASA Astrophysics Data System (ADS)
Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.
2014-09-01
Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.
NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders
NASA Astrophysics Data System (ADS)
Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.
2010-12-01
Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
2000-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.
Teaching the Next Generation of Scientists and Engineers the NASA Design Process
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.
2011-01-01
The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.
The Five-Factor Model Personality Assessment for Improved Student Design Team Performance
ERIC Educational Resources Information Center
Ogot, Madara; Okudan, Gul E.
2006-01-01
Researchers have long noted the correlation of various personality traits and team performance. Studies relating aggregate team personality traits to team performance are scattered in the literature and may not always be relevant to engineering design teams. This paper synthesizes the results from applicable Five-Factor Model (FFM)-based…
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
1999-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Astrophysics Data System (ADS)
Monell, Donald W.; Piland, William M.
2000-07-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
Table-Top Robotics for Engineering Design
ERIC Educational Resources Information Center
Wilczynski, Vincent; Dixon, Gregg; Ford, Eric
2005-01-01
The Mechanical Engineering Section at the U.S. Coast Guard Academy has developed a comprehensive activity based course to introduce second year students to mechanical engineering design. The culminating design activity for the course requires students to design, construct and test robotic devices that complete engineering challenges. Teams of…
NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders
NASA Astrophysics Data System (ADS)
Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team
2011-12-01
Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.
Next-generation concurrent engineering: developing models to complement point designs
NASA Technical Reports Server (NTRS)
Morse, Elizabeth; Leavens, Tracy; Cohanim, Babak; Harmon, Corey; Mahr, Eric; Lewis, Brian
2006-01-01
Concurrent Engineering Design (CED) teams have made routine the rapid development of point designs for space missions. The Jet Propulsion Laboratory's Team X is now evolving into a 'next-generation CED; in addition to a point design, the Team develops a model of the local trade space. The process is a balance between the power of a model developing tools and the creativity of humal experts, enabling the development of a variety of trade models for any space mission. This paper reviews the modeling method and its practical implementation in the ED environment. Example results illustrate the benefit of this approach.
Engineering performance metrics
NASA Astrophysics Data System (ADS)
Delozier, R.; Snyder, N.
1993-03-01
Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.
ERIC Educational Resources Information Center
Berthoud, L.; Gliddon, J.
2018-01-01
In today's global Aerospace industry, virtual workspaces are commonly used for collaboration between geographically distributed multidisciplinary teams. This study investigated the use of wikis to look at communication, collaboration and engagement in 'Capstone' team design projects at the end of an engineering degree. Wikis were set up for teams…
NASA Astrophysics Data System (ADS)
Conway Hughston, Veronica
Since 1996 ABET has mandated that undergraduate engineering degree granting institutions focus on learning outcomes such as professional skills (i.e. solving unstructured problems and working in teams). As a result, engineering curricula were restructured to include team based learning---including team charters. Team charters were diffused into engineering education as one of many instructional activities to meet the ABET accreditation mandates. However, the implementation and execution of team charters into engineering team based classes has been inconsistent and accepted without empirical evidence of the consequences. The purpose of the current study was to investigate team effectiveness, operationalized as team viability, as an outcome of team charter implementation in an undergraduate engineering team based design course. Two research questions were the focus of the study: a) What is the relationship between team charter quality and viability in engineering student teams, and b) What is the relationship among team charter quality, teamwork mental model similarity, and viability in engineering student teams? Thirty-eight intact teams, 23 treatment and 15 comparison, participated in the investigation. Treatment teams attended a team charter lecture, and completed a team charter homework assignment. Each team charter was assessed and assigned a quality score. Comparison teams did not join the lecture, and were not asked to create a team charter. All teams completed each data collection phase: a) similarity rating pretest; b) similarity posttest; and c) team viability survey. Findings indicate that team viability was higher in teams that attended the lecture and completed the charter assignment. Teams with higher quality team charter scores reported higher levels of team viability than teams with lower quality charter scores. Lastly, no evidence was found to support teamwork mental model similarity as a partial mediator of the team charter quality on team viability relationship. Foci for future research opportunities include using: a) online data collection methods to improve participant adherence to similarity rating instructions; b) story or narratives during pre- and posttest similarity rating data collection to create common levels of contextual perception; and c) support to ensure charters are integrated into the full project life cycle, not just a pre-project one time isolated activity. Twenty five sections, on average, of EDSGN 100 are taught each spring and fall semester. Consistent instructor expectations are set for the technical aspects of the course. However, ideas to foster team effectiveness are often left to the discretion of the individual instructor. Implementing empirically tested team effectiveness instructional activities would bring consistency to EDGSN 100 curriculum. Other instructional activities that would be of benefit to engineering educators include qualitative inquiry---asking intrateam process questions (at the mid-point of the project) and in-class reflection---dedicated time, post project, to discuss what went well/not well within the team.
NASA Technical Reports Server (NTRS)
Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Panek, John; Warfield, Keith; Borden, Chester
2011-01-01
As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades of performance, cost and schedule. To successfully accomplish these complex missions with limited funding, it is essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. The purpose of this white paper is to identify a near-term vision for the future of distributed collaborative concurrent engineering design for aerospace missions as well as discuss the challenges to achieving that vision. The white paper also documents the advantages of creating a working group to investigate how to engage the expertise of different teams in joint design sessions while enabling organizations to maintain their organizations competitive advantage.
Improving motivation and engagement in core engineering courses with student teams
NASA Astrophysics Data System (ADS)
Trenshaw, Kathryn Faye
Team-based projects are common in capstone engineering design courses and increasingly common in first-year engineering programs. Despite high enrollments and budget cutbacks affecting many programs, second- and third-year students can also benefit from team-based project experiences, which motivate them to succeed in engineering and prepare them for a globally competitive workforce. My dissertation research demonstrates that team design projects can be incorporated into the curricula of engineering departments, and these projects result in positive affective outcomes for students. Using ABET outcomes and Self Determination Theory (SDT) as the background for my studies, I investigated students' confidence, motivation, and sense of community after experiencing team design projects in two different engineering departments at a large public institution. In the first study, I used a sequential mixed methods approach with a primary quantitative phase followed by an explanatory qualitative phase to evaluate a chemical engineering program that integrated team design projects throughout the curriculum. The evaluation methods included a survey based on desired ABET outcomes for students and focus groups to expand on the quantitative results. Students reported increased confidence in their design, teamwork, and communication skills after completing the projects. In my second and third studies, I used qualitative interviews based on SDT to explore student motivation in an electrical and computer engineering course redesigned to support students' intrinsic motivation to learn. SDT states that intrinsic motivation to learn is supported by increasing students' sense of autonomy, competence, and relatedness in regard to their learning. Using both narrative inquiry and phenomenological methodologies, I analyzed data from interviews of students for mentions of autonomy, competence, and relatedness as well as course events that were critical in changing students' motivation. Analysis revealed that individual choice, constructive failures, and a strong sense of community in the classroom were critical to moving students toward intrinsic motivation. Further, community building through team experiences characterized the essence of the student experience in the course. My research highlights a need for better quantitative measures of students' affective outcomes, specifically motivation, in the context of a single course. Based on the results of my studies, SDT should be reevaluated in terms of possible interdependencies between autonomy, competence, and relatedness, and how the social context of large engineering courses may create a deeper need for supporting relatedness.
Structure and Management of an Engineering Senior Design Course.
Tanaka, Martin L; Fischer, Kenneth J
2016-07-01
The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.
Developing teamwork skills in capstone design courses.
Goldberg, Jay
2010-01-01
The majority of our biomedical engineering graduates will eventually work in an industry where they will be part of multidisciplinary teams that use the collective skills, expertise, experience, and training of each team member. Diversity within these teams provides different perspectives, opinions, and ways of viewing problems, leading to a larger set of potential solutions. Successful careers require engineers to be able to function on multidisciplinary teams.
Model building techniques for analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald
2009-09-01
The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the productmore » definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.« less
ERIC Educational Resources Information Center
Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan
2011-01-01
We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…
Air Force Civil Engineer, Volume 16, Number 2, 2008
2008-01-01
HORSE and Prime BEEF work together to put up a legal complex for JTF Guantanamo 11 Building Information Modeling in the Air Force Going beyond CADD 14...construction team. Engineers from the 823rd RED HORSE Squadron, Hurlburt Field, Fla., were responsible for most of the design work. The 474th...BEEF construction team and a RED HORSE design team, we quickly became known as the “Red Bulls.” The advance party — consisting of the first sergeant
Geist, Melissa J; Sanders, Robby; Harris, Kevin; Arce-Trigatti, Andrea; Hitchcock-Cass, Cary
2018-05-24
A faculty team from nursing and chemical engineering developed a course that brought together students from each discipline for cross-disciplinary, team-based clinical immersion and collaboration. Health care processes and devices are rapidly changing, and nurses are uniquely positioned to be bedside innovators to improve patient care delivery. During each clinical immersion, the student teams rotated through various hospital units where they identified problems and worked together in the university's makerspace (iMaker Space) to design and build prototypes to improve health outcomes. Data from the Critical thinking Assessment Test provided evidence of gains in critical-thinking and problem-solving skills, while the problems identified in the clinical setting and prototypes developed demonstrated the impact of bringing nursing and engineering students together to design innovations. When challenged to identify authentic problems during their clinical immersion, the teams of nursing and engineering students proposed creative solutions and developed commercially viable prototypes.
Teaching engineering ethics using BLOCKS game.
Lau, Shiew Wei; Tan, Terence Peng Lian; Goh, Suk Meng
2013-09-01
The aim of this study was to investigate the use of a newly developed design game called BLOCKS to stimulate awareness of ethical responsibilities amongst engineering students. The design game was played by seventeen teams of chemical engineering students, with each team having to arrange pieces of colored paper to produce two letters each. Before the end of the game, additional constraints were introduced to the teams such that they faced similar ambiguity in the technical facts that the engineers involved in the Challenger disaster had faced prior to the space shuttle launch. At this stage, the teams had to decide whether to continue with their original design or to develop alternative solutions. After the teams had made their decisions, a video of the Challenger explosion was shown followed by a post-game discussion. The students' opinion on five Statements on ethics was tracked via a Five-Item Likert survey which was administered three times, before and after the ethical scenario was introduced, and after the video and post-game discussion. The results from this study indicated that the combination of the game and the real-life incident from the video had generally strengthened the students' opinions of the Statements.
Documenting the Engineering Design Process
ERIC Educational Resources Information Center
Hollers, Brent
2017-01-01
Documentation of ideas and the engineering design process is a critical, daily component of a professional engineer's job. While patent protection is often cited as the primary rationale for documentation, it can also benefit the engineer, the team, company, and stakeholders through creating a more rigorously designed and purposeful solution.…
NASA Astrophysics Data System (ADS)
Masetti, Margaret; Bowers, S.
2011-01-01
Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.
NASA Astrophysics Data System (ADS)
Berthoud, L.; Gliddon, J.
2018-03-01
In today's global Aerospace industry, virtual workspaces are commonly used for collaboration between geographically distributed multidisciplinary teams. This study investigated the use of wikis to look at communication, collaboration and engagement in 'Capstone' team design projects at the end of an engineering degree. Wikis were set up for teams of engineering students from different disciplinary backgrounds and years. The students' perception of the usefulness of the tool were surveyed and the user contribution statistics and content categorisation were analysed for a case study wiki. Recommendations and lessons learned for the deployment of wikis are provided for interested academic staff from other institutions. Wikis were found to be of limited use to investigate levels of communication and collaboration in this study, but may be of interest in other contexts. Wikis were considered a potentially useful tool to track engagement for Capstone design projects in engineering subjects.
An Example of Concurrent Engineering
NASA Technical Reports Server (NTRS)
Rowe, Sidney; Whitten, David; Cloyd, Richard; Coppens, Chris; Rodriguez, Pedro
1998-01-01
The Collaborative Engineering Design and Analysis Room (CEDAR) facility allows on-the- spot design review capability for any project during all phases of development. The required disciplines assemble in this facility to work on any problems (analysis, manufacturing, inspection, etc.) associated with a particular design. A small highly focused team of specialists can meet in this room to better expedite the process of developing a solution to an engineering task within the framework of the constraints that are unique to each discipline. This facility provides the engineering tools and translators to develop a concept within the confines of the room or with remote team members that could access the team's data from other locations. The CEDAR area is envisioned as excellent for failure investigation meetings to be conducted where the computer capabilities can be utilized in conjunction with the Smart Board display to develop failure trees, brainstorm failure modes, and evaluate possible solutions.
Cvetkovic, Dean
2013-01-01
The Cooperative Learning in Engineering Design curriculum can be enhanced with structured and timely self and peer assessment teaching methodologies which can easily be applied to any Biomedical Engineering curriculum. A study was designed and implemented to evaluate the effectiveness of this structured and timely self and peer assessment on student team-based projects. In comparing the 'peer-blind' and 'face-to-face' Fair Contribution Scoring (FCS) methods, both had advantages and disadvantages. The 'peer-blind' self and peer assessment method would cause high discrepancy between self and team ratings. But the 'face-to-face' method on the other hand did not have the discrepancy issue and had actually proved to be a more accurate and effective, indicating team cohesiveness and good cooperative learning.
Multi-Organization Multi-Discipline Effort Developing a Mitigation Concept for Planetary Defense
NASA Technical Reports Server (NTRS)
Leung, Ronald Y.; Barbee, Brent W.; Seery, Bernard D.; Bambacus, Myra; Finewood, Lee; Greenaugh, Kevin C.; Lewis, Anthony; Dearborn, David; Miller, Paul L.; Weaver, Robert P.;
2017-01-01
There have been significant recent efforts in addressing mitigation approaches to neutralize Potentially Hazardous Asteroids (PHA). One such research effort was performed in 2015 by an integrated, inter-disciplinary team of asteroid scientists, energy deposition modeling scientists, payload engineers, orbital dynamist engineers, spacecraft discipline engineers, and systems architecture engineer from NASAs Goddard Space Flight Center (GSFC) and the Department of Energy (DoE) National Nuclear Security Administration (NNSA) laboratories (Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratories (LLNL) and Sandia National Laboratories). The study team collaborated with GSFCs Integrated Design Centers Mission Design Lab (MDL) which engaged a team of GSFC flight hardware discipline engineers to work with GSFC, LANL, and LLNL NEA-related subject matter experts during a one-week intensive concept formulation study in an integrated concurrent engineering environment. This team has analyzed the first of several distinct study cases for a multi-year NASA research grant. This Case 1 study references the Near-Earth Asteroid (NEA) named Bennu as the notional target due to the availability of a very detailed Design Reference Asteroid (DRA) model for its orbit and physical characteristics (courtesy of the Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission team). The research involved the formulation and optimization of spacecraft trajectories to intercept Bennu, overall mission and architecture concepts, and high-fidelity modeling of both kinetic impact (spacecraft collision to change a NEAs momentum and orbit) and nuclear detonation effects on Bennu, for purposes of deflecting Bennu.
Patent Information Use in Engineering Technology Design: An Analysis of Student Work
ERIC Educational Resources Information Center
Phillips, Margaret; Zwicky, Dave
2017-01-01
How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…
Human Systems Integration Competency Development for Navy Systems Commands
2012-09-01
cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences. KSA...cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences...requirements (as required). Fundamental cognizance of Applied Engineering / Psychology relative to knowledge engineering, training, team work, user
How to renovate a 50-year-old wastewater treating plant: Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, M.L.
1996-01-01
How does an existing refinery cost-effectively renovate wastewater/stormwater treating systems to meet today`s environmental regulations and standards? Faced with solving this problem, Amoco`s Whiting Refinery developed a project team consisting of plant and operations engineers, corporate project and design engineers, contractors and vendors to map out a strategy to re-engineer the existing wastewater treating plant (WWTP) and auxiliary functions. This case history shows how an old refinery limited by existing equipment, building space, operation`s availability requirements and costs divided the project into several design phases. The design team used a proactive approach with empowerment responsibilities to solve construction, equipment usagemore » and regulatory problems throughout the project`s lifetime. Focusing on front-end planning and customer service (the refinery), team members applied value-based engineering designs to keep costs down, implemented safe work practices during construction, used HAZOP reviews to scrutinize proposed designs for operating and maintenance procedures, etc. The result has been the renovation of a 50-year-old WWTP completed under budget, ontime and in compliance with federal mandates.« less
A Curriculum to Enhance Decision-Making Skills of Technical Personnel Working in Teams
ERIC Educational Resources Information Center
Raju, P. K.; Sankar, Chetan S.; Xue, Yajiong
2004-01-01
Rapidly changing engineering designs and business scenarios make it essential for engineers and technical personnel to be trained to be effective team players and project managers. This paper reports the experiences gained in developing and implementing a workshop to train engineers at a steel manufacturing plant. The objective of the workshop was…
Promoting Collaborative Problem-Solving Skills in a Course on Engineering Grand Challenges
ERIC Educational Resources Information Center
Zou, Tracy X. P.; Mickleborough, Neil C.
2015-01-01
The ability to solve problems with people of diverse backgrounds is essential for engineering graduates. A course on engineering grand challenges was designed to promote collaborative problem-solving (CPS) skills. One unique component is that students need to work both within their own team and collaborate with the other team to tackle engineering…
Risk Identification and Visualization in a Concurrent Engineering Team Environment
NASA Technical Reports Server (NTRS)
Hihn, Jairus; Chattopadhyay, Debarati; Shishko, Robert
2010-01-01
Incorporating risk assessment into the dynamic environment of a concurrent engineering team requires rapid response and adaptation. Generating consistent risk lists with inputs from all the relevant subsystems and presenting the results clearly to the stakeholders in a concurrent engineering environment is difficult because of the speed with which decisions are made. In this paper we describe the various approaches and techniques that have been explored for the point designs of JPL's Team X and the Trade Space Studies of the Rapid Mission Architecture Team. The paper will also focus on the issues of the misuse of categorical and ordinal data that keep arising within current engineering risk approaches and also in the applied risk literature.
NASA Astrophysics Data System (ADS)
Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.
2014-12-01
NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni administered in 2013 provides information on the program's impact on trainees' career choices and leadership roles as they pursue their employment in planetary science and related fields. Results will be presented during the session, along with highlights of topics and missions covered since the program's inception.
Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning
ERIC Educational Resources Information Center
Lee, Dong-Kuk; Lee, Eun-Sang
2016-01-01
The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…
Domain-specific languages and diagram customization for a concurrent engineering environment
NASA Astrophysics Data System (ADS)
Cole, B.; Dubos, G.; Banazadeh, P.; Reh, J.; Case, K.; Wang, Y.; Jones, S.; Picha, F.
A major open question for advocates of Model-Based Systems Engineering (MBSE) is the question of how system and subsystem engineers will work together. The Systems Modeling Language (SysML), like any language intended for a large audience, is in tension between the desires for simplicity and for expressiveness. In order to be more expressive, many specialized language elements may be introduced, which will unfortunately make a complete understanding of the language a more daunting task. While this may be acceptable for systems modelers, it will increase the challenge of including subsystem engineers in the modeling effort. One possible answer to this situation is the use of Domain-Specific Languages (DSL), which are fully supported by the Unified Modeling Language (UML). SysML is in fact a DSL for systems engineering. The expressive power of a DSL can be enhanced through the use of diagram customization. Various domains have already developed their own schematic vocabularies. Within the space engineering community, two excellent examples are the propulsion and telecommunication subsystems. A return to simple box-and-line diagrams (e.g., the SysML Internal Block Diagram) are in many ways a step backward. In order allow subsystem engineers to contribute directly to the model, it is necessary to make a system modeling tool at least approximate in accessibility to drawing tools like Microsoft PowerPoint and Visio. The challenge is made more extreme in a concurrent engineering environment, where designs must often be drafted in an hour or two. In the case of the Jet Propulsion Laboratory's Team X concurrent design team, a subsystem is specified using a combination of PowerPoint for drawing and Excel for calculation. A pilot has been undertaken in order to meld the drawing portion and the production of master equipment lists (MELs) via a SysML authoring tool, MagicDraw. Team X currently interacts with its customers in a process of sharing presentations. There are severa- inefficiencies that arise from this situation. The first is that a customer team must wait two weeks to a month (which is 2-4 times the duration of most Team X studies themselves) for a finalized, detailed design description. Another is that this information must be re-entered by hand into the set of engineering artifacts and design tools that the mission concept team uses after a study is complete. Further, there is no persistent connection to Team X or institutionally shared formulation design tools and data after a given study, again reducing the direct reuse of designs created in a Team X study. This paper presents the underpinnings of subsystem DSLs as they were developed for this pilot. This includes specialized semantics for different domains as well as the process by which major categories of objects were derived in support of defining the DSLs. The feedback given to us by the domain experts on usability, along with a pilot study with the partial inclusion of these tools is also discussed.
Domain-Specific Languages and Diagram Customization for a Concurrent Engineering Environment
NASA Technical Reports Server (NTRS)
Cole, Bjorn; Dubos, Greg; Banazadeh, Payam; Reh, Jonathan; Case, Kelley; Wang, Yeou-Fang; Jones, Susan; Picha, Frank
2013-01-01
A major open question for advocates of Model-Based Systems Engineering (MBSE) is the question of how system and subsystem engineers will work together. The Systems Modeling Language (SysML), like any language intended for a large audience, is in tension between the desires for simplicity and for expressiveness. In order to be more expressive, many specialized language elements may be introduced, which will unfortunately make a complete understanding of the language a more daunting task. While this may be acceptable for systems modelers, it will increase the challenge of including subsystem engineers in the modeling effort. One possible answer to this situation is the use of Domain-Specific Languages (DSL), which are fully supported by the Unified Modeling Language (UML). SysML is in fact a DSL for systems engineering. The expressive power of a DSL can be enhanced through the use of diagram customization. Various domains have already developed their own schematic vocabularies. Within the space engineering community, two excellent examples are the propulsion and telecommunication subsystems. A return to simple box-and-line diagrams (e.g., the SysML Internal Block Diagram) are in many ways a step backward. In order allow subsystem engineers to contribute directly to the model, it is necessary to make a system modeling tool at least approximate in accessibility to drawing tools like Microsoft PowerPoint and Visio. The challenge is made more extreme in a concurrent engineering environment, where designs must often be drafted in an hour or two. In the case of the Jet Propulsion Laboratory's Team X concurrent design team, a subsystem is specified using a combination of PowerPoint for drawing and Excel for calculation. A pilot has been undertaken in order to meld the drawing portion and the production of master equipment lists (MELs) via a SysML authoring tool, MagicDraw. Team X currently interacts with its customers in a process of sharing presentations. There are several inefficiencies that arise from this situation. The first is that a customer team must wait two weeks to a month (which is 2-4 times the duration of most Team X studies themselves) for a finalized, detailed design description. Another is that this information must be re-entered by hand into the set of engineering artifacts and design tools that the mission concept team uses after a study is complete. Further, there is no persistent connection to Team X or institutionally shared formulation design tools and data after a given study, again reducing the direct reuse of designs created in a Team X study. This paper presents the underpinnings of subsystem DSLs as they were developed for this pilot. This includes specialized semantics for different domains as well as the process by which major categories of objects were derived in support of defining the DSLs. The feedback given to us by the domain experts on usability, along with a pilot study with the partial inclusion of these tools is also discussed.
Special Gender Studies for Engineering?
ERIC Educational Resources Information Center
Ihsen, Susanne
2005-01-01
Today we are confronted with a new challenge in product development: "Diversity" needs to be implemented in the engineering design and development teams. Such diversity means to "mirror" within the teams the characteristics of different customer groups: the two genders, the different age groups, and the different cultural…
Exploration Design Challenge 2014
2014-04-25
Team ARES poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team ARES was the winner of the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winning team was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)
ERIC Educational Resources Information Center
Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander
2007-01-01
A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…
Integrating Innovation Skills in an Introductory Engineering Design-Build Course
ERIC Educational Resources Information Center
Liebenberg, Leon; Mathews, Edward Henry
2012-01-01
Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…
Johnson, Angela N
2016-08-01
In bioengineering training for new researchers and engineers, a great deal of time is spent discussing what constitutes "good" design. Conceptualization of good design, however, varies widely across interdisciplinary team members, with potential to both foster innovation or lead to unproductive conflict. To explore how groups central to bioengineering teams (physicians/clinicians and engineers/physicists) conceptualize good design, we asked 176 professionals in bioengineering to complete a comprehensive online survey including items designed to assess cognitive and moral foundations (validated MFQ30 tool) and custom items assessing perceptions on good design in three areas (good design characteristics, reputation of design approvers, and perceived design patient/consumer suitability). Of those that responded, 82 completed all quantitative survey sections and were included in this preliminary analysis. Correlations between response areas were examined to explore the possible links between cognitive and moral biases and perspectives on good design. The survey results indicated that both groups were more conservative than average Americans based on previous reports, and clinicians scored higher on average for all MFQ30 domains. Numerous significant correlations with good design were observed among clinicians, while engineers/physicists most closely correlated good design with prescriber approval and scientific/technical literature. The exploratory analysis demonstrated the potential utility of sociological frameworks to explore relationships in design thinking with potential utility to stimulate thriving conversation on team-based design thinking in bioengineering education and practice.
Using A Model-Based Systems Engineering Approach For Exploration Medical System Development
NASA Technical Reports Server (NTRS)
Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.
2017-01-01
NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. Here, we describe the methods and approach to building this integrated model.
DESCRIPTION OF RISK REDUCTION ENGINEERING LABORATORY TEST AND EVALUATION FACILITIES
An onsite team of multidisciplined engineers and scientists conduct research and provide technical services in the areas of testing, design, and field implementation for both solid and hazardous waste management. Engineering services focus on the design and implementation of...
ERIC Educational Resources Information Center
Linnell, Charles C.
2007-01-01
This article describes the 2006 Technology Education Collegiate Association (TECA) Eastern Regional elementary competition, wherein teams of technology education students from nine different universities designed and built cardboard chairs. The competition required the teams (four or five to a team) from universities up and down the East Coast to…
Recipe for Success: Digital Viewables
NASA Technical Reports Server (NTRS)
LaPha, Steven; Gaydos, Frank
2014-01-01
The Engineering Services Contract (ESC) and Information Management Communication Support contract (IMCS) at Kennedy Space Center (KSC) provide services to NASA in respect to flight and ground systems design and development. These groups provides the necessary tools, aid, and best practice methodologies required for efficient, optimized design and process development. The team is responsible for configuring and implementing systems, software, along with training, documentation, and administering standards. The team supports over 200 engineers and design specialists with the use of Windchill, Creo Parametric, NX, AutoCAD, and a variety of other design and analysis tools.
Athena: Providing Insight into the History of the Universe
NASA Technical Reports Server (NTRS)
Murphy, Gloria A.
2010-01-01
The American Institute for Aeronautics and Astronautics has provided a Request for Proposal which calls for a manned mission to a Near-Earth Object. It is the goal of Team COLBERT to respond to their request by providing a reusable system that can be implemented as a solid stepping stone for future manned trips to Mars and beyond. Despite Team COLBERT consisting of only students in Aerospace Engineering, in order to achieve this feat, the team must employ the use of Systems Engineering. Tools and processes from Systems Engineering will provide quantitative and semi-quantitative tools for making design decisions and evaluating items such as budgets and schedules. This paper will provide an in-depth look at some of the Systems Engineering processes employed and will step through the design process of a Human Asteroid Exploration System.
NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Quealy, Angela
1999-01-01
A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.
The Montana ALE (Autonomous Lunar Excavator) Systems Engineering Report
NASA Technical Reports Server (NTRS)
Hull, Bethanne J.
2012-01-01
On May 2 1-26, 20 12, the third annual NASA Lunabotics Mining Competition will be held at the Kennedy Space Center in Florida. This event brings together student teams from universities around the world to compete in an engineering challenge. Each team must design, build and operate a robotic excavator that can collect artificial lunar soil and deposit it at a target location. Montana State University, Bozeman, is one of the institutions selected to field a team this year. This paper will summarize the goals of MSU's lunar excavator project, known as the Autonomous Lunar Explorer (ALE), along with the engineering process that the MSU team is using to fulfill these goals, according to NASA's systems engineering guidelines.
Exploration Design Challenge 2014
2014-04-25
Pictured are all Semi-finalist teams in the Exploration Design Challenge. NASA Administrator, Charles Bolden and Lockheed Martin CEO, Marillyn Hewson announced the winner of the Exploration Design Challenge at the USA Science and Engineering Festival on April 25, 2014. The goal of the challenge was for students to research and design ways to protect astronauts from space radiation. The winning team's design will be built and flown aboard the Orion/EFT-1. The USA Science and Engineering Festival is taking place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
From Paper to Production: An Update on NASA's Upper Stage Engine for Exploration
NASA Technical Reports Server (NTRS)
Kynard, Mike
2010-01-01
In 2006, NASA selected an evolved variant of the proven Saturn/Apollo J-2 upper stage engine to power the Ares I crew launch vehicle upper stage and the Ares V cargo launch vehicle Earth departure stage (EDS) for the Constellation Program. Any design changes needed by the new engine would be based where possible on proven hardware from the Space Shuttle, commercial launchers, and other programs. In addition to the thrust and efficiency requirements needed for the Constellation reference missions, it would be an order of magnitude safer than past engines. It required the J-2X government/industry team to develop the highest performance engine of its type in history and develop it for use in two vehicles for two different missions. In the attempt to achieve these goals in the past five years, the Upper Stage Engine team has made significant progress, successfully passing System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of spring 2010, more than 100,000 experimental and development engine parts have been completed or are in various stages of manufacture. Approximately 1,300 of more than 1,600 engine drawings have been released for manufacturing. This progress has been due to a combination of factors: the heritage hardware starting point, advanced computer analysis, and early heritage and development component testing to understand performance, validate computer modeling, and inform design trades. This work will increase the odds of success as engine team prepares for powerpack and development engine hot fire testing in calendar 2011. This paper will provide an overview of the engine development program and progress to date.
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Kennedy Space Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Marshall Space Flight Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Kennedy Space Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – An engineer from NASA's Marshall Space Flight Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – An engineer from NASA's Marshall Space Flight Center watches the landing of remote-controlled aircraft. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined a Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2014-05-23
CAPE CANAVERAL, Fla. -- Kennedy Space Center engineer Marc Seibert presents the Communication Award to the University of New Hampshire team members during NASA's 2014 Robotic Mining Competition award ceremony inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex in Florida. The team moved 10 kilograms of simulated Martian soil with its robot while using the least amount of communication power. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. The competition includes on-site mining, writing a systems engineering paper, performing outreach projects for K-12 students, slide presentation and demonstrations, and team spirit. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
Are your engineers talking to one another when they should?
Sosa, Manuel E; Eppinger, Steven D; Rowles, Craig M
2007-11-01
Communication may not be on managers' minds at companies that design complex, highly engineered products, but it should be. When mistakes take place, it's often because product-component teams fail to talk. The consequences can be huge: Ford and Bridgestone Firestone lost billions by not coordinating the design of the Explorer with the design of its tires. The major delays and cost overruns involved in the development of Airbus's A380 "superjumbo"--which most likely led to the CEO's exit--were a result of unforeseen design incompatibilities. To help managers mitigate such problems, the authors present a new application of the design structure matrix, a project management tool that maps the flow of information and its impact on product development. Drawing on research into how Pratt & Whitney handled the development of the PW4098 jet engine, they have developed an approach that uncovers (a) areas where communication should be occurring but is not (unattended interfaces, usually bad) and (b) areas where communication is occurring but has not been planned for (unidentified interfaces, usually good). After finding the unattended and unidentified interfaces, the next step is to figure out the causes of the critical ones. If a significant number of unattended interfaces cross organizational boundaries, executives may need to redraw organizational lines. Executives can then manage the remaining critical interfaces by extending the responsibilities of existing integration teams (those responsible for cross-system aspects, such as a jet engine's fuel economy) to include supervising the interaction, by dedicating teams to specific interfaces, or by formally charging teams already involved with the interfaces to oversee them. Finally, it's important to ensure that the teams are working with compatible design equipment; inconsistencies between CAD tools have cost Airbus dearly.
ERIC Educational Resources Information Center
McFadden, Justin R.; Roehrig, Gillian H.
2017-01-01
Background: This study presents two teacher design teams (TDTs) during a professional development experience centered on science, technology, engineering, and mathematics (STEM)-integrated curriculum development. The main activity of the study, curriculum design, was framed as a design problem in order to better understand how teachers engaged…
NASA Technical Reports Server (NTRS)
Stecklein, Jonette
2017-01-01
NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design to actual tele-operation of the robot in simulated Mars conditions mining and collecting simulated regolith. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team's score for the competition's grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.
The Roles of Implicit Understanding of Engineering Ethics in Student Teams' Discussion.
Lee, Eun Ah; Grohman, Magdalena; Gans, Nicholas R; Tacca, Marco; Brown, Matthew J
2017-12-01
Following previous work that shows engineering students possess different levels of understanding of ethics-implicit and explicit-this study focuses on how students' implicit understanding of engineering ethics influences their team discussion process, in cases where there is significant divergence between their explicit and implicit understanding. We observed student teams during group discussions of the ethical issues involved in their engineering design projects. Through the micro-scale discourse analysis based on cognitive ethnography, we found two possible ways in which implicit understanding influenced the discussion. In one case, implicit understanding played the role of intuitive ethics-an intuitive judgment followed by reasoning. In the other case, implicit understanding played the role of ethical insight, emotionally guiding the direction of the discussion. In either case, however, implicit understanding did not have a strong influence, and the conclusion of the discussion reflected students' explicit understanding. Because students' implicit understanding represented broader social implication of engineering design in both cases, we suggest to take account of students' relevant implicit understanding in engineering education, to help students become more socially responsible engineers.
Design study to simulate the development of a commercial transportation system
NASA Technical Reports Server (NTRS)
1991-01-01
Seven teams of senior-level Aerospace Engineering undergraduates were given a Request for Proposals (RFP) for a design concept of a remotely piloted vehicle (RPV). The RPV designs were intended to simulate commercial transport aircraft within the model of 'Aeroworld.' The Aeroworld model was developed so that the RPV designs would be subject to many of the engineering problems and tradeoffs that dominate real-world commercial air transport designs, such as profitability, fuel efficiency, range vs. payload capabilities, and ease of production and maintenance. As part of the proposal, each team was required to construct a prototype and validate its design with a flight demonstration.
Exploration Design Challenge 2014
2014-04-25
After announcing that Team ARES won the Exploration Design Challenge, NASA Administrator, Charles Bolden and CEO, Marillyn Hewson invite the team up to the stage to receive their award. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.Team ARES's design will be built and flown aboard the Orion/EFT-1. The USA Science and Engineering Festival is taking place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
VE at Scope Time (VEST): Three construction examples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, R.B.
1991-04-01
Value Engineering at Scope Time (VEST)'' was published in Value World, January-February-March 1991. That article describes VEST as a four-phase process utilizing the heart'' of VE methodology, which is designed to be used with members of construction design teams to help them focus on the scope of work by doing cost modeling, function analysis, brainstorming and evaluation of ideas. With minimal training designers, architects and engineers can become energized to find creative design solutions and learn an effective, synergistic team approach to facilities design projects using VEST. If time is available, the team can begin the development of some highermore » ranked ideas into preliminary proposals. This paper is an expansion of that article, adding a brief section on training and presenting three examples of VEST on construction projects at a federally-funded research Laboratory.« less
Use of Concurrent Engineering in Space Mission Design
NASA Technical Reports Server (NTRS)
Wall, S.
2000-01-01
In recent years, conceptual-phase (proposal level) design of space missions has been improved considerably. Team structures, tool linkage, specialized facilities known as design centers and scripted processes have been demonstrated to cut proposal-level engineering design time from a few months to a few weeks.
A Multi- and Cross-Disciplinary Capstone Experience in Engineering Art: Animatronic Polar Bear
ERIC Educational Resources Information Center
Sirinterlikci, Arif; Toukonen, Kayne; Mason, Steve; Madison, Russel
2005-01-01
An animatronic robot was designed and constructed for the 2003 Annual Student Robotic Technology and Engineering Challenge organized by the Robotics International (RI) association of the Society of Manufacturing Engineers (SME). It was also the senior capstone design project for two of the design team members. After a thorough study of body and…
NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft
NASA Technical Reports Server (NTRS)
1993-01-01
The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.
Model-Based Systems Engineering in Concurrent Engineering Centers
NASA Technical Reports Server (NTRS)
Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman
2015-01-01
Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a focused design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.
Model-Based Systems Engineering in Concurrent Engineering Centers
NASA Technical Reports Server (NTRS)
Iwata, Curtis; Infeld, Samatha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman
2015-01-01
Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.
Pediatric medical device development by surgeons via capstone engineering design programs.
Sack, Bryan S; Elizondo, Rodolfo A; Huang, Gene O; Janzen, Nicolette; Espinoza, Jimmy; Sanz-Cortes, Magdalena; Dietrich, Jennifer E; Hakim, Julie; Richardson, Eric S; Oden, Maria; Hanks, John; Haridas, Balakrishna; Hury, James F; Koh, Chester J
2018-03-01
There is a need for pediatric medical devices that accommodate the unique physiology and anatomy of pediatric patients that is increasingly receiving more attention. However, there is limited literature on the programs within children's hospitals and academia that can support pediatric device development. We describe our experience with pediatric device design utilizing collaborations between a children's hospital and two engineering schools. Utilizing the academic year as a timeline, unmet pediatric device needs were identified by surgical faculty and matched with an engineering mentor and a team of students within the Capstone Engineering Design programs at two universities. The final prototypes were showcased at the end of the academic year and if appropriate, provisional patent applications were filed. All twelve teams successfully developed device prototypes, and five teams obtained provisional patents. The prototypes that obtained provisional patents included a non-operative ureteral stent removal system, an evacuation device for small kidney stone fragments, a mechanical leech, an anchoring system of the chorio-amniotic membranes during fetal surgery, and a fetal oxygenation monitor during fetoscopic procedures. Capstone Engineering Design programs in partnership with surgical faculty at children's hospitals can play an effective role in the prototype development of novel pediatric medical devices. N/A - No clinical subjects or human testing was performed. Copyright © 2017 Elsevier Inc. All rights reserved.
Tsui, Jennifer; Meyer, Anne S
2016-07-01
In the yearly Internationally Genetically Engineered Machines (iGEM) competition, teams of Bachelor's and Master's students design and build an engineered biological system using DNA technologies. Advising an iGEM team poses unique challenges due to the inherent difficulties of mounting and completing a new biological project from scratch over the course of a single academic year; the challenges in obtaining financial and structural resources for a project that will likely not be fully realized; and conflicts between educational and competition-based goals. This article shares tips and best practices for iGEM team advisors, from two team advisors with very different experiences with the iGEM competition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Exploration Design Challenge 2014
2014-04-25
Sponsors of all of the semi-finalist teams in the Exploration Design Challenge pose for a group photo with the teams. Team ARES from the Governors School for Science and Technology in Hampton, Va. won the challenge with their radiation shield design, which will be built and flown aboard the Orion/EFT-1. The award was announced at the USA Science and Engineering Festival on April 25, 2014 at the Washington Convention Center. Photo Credit: (NASA/Aubrey Gemignani)
Exploration Design Challenge 2014
2014-04-25
Sponsors of Team ARES pose for a group photo with the winning high school team in the Exploration Design Challenge. Team ARES from the Governors School for Science and Technology in Hampton, Va. won the challenge with their radiation shield design, which will be built and flown aboard the Orion/EFT-1. The award was announced at the USA Science and Engineering Festival on April 25, 2014 at the Washington Convention Center. Photo Credit: (NASA/Aubrey Gemignani)
Testing for the J-2X Upper Stage Engine
NASA Technical Reports Server (NTRS)
Buzzell, James C.
2010-01-01
NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.
A status of the Turbine Technology Team activities
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.
1992-01-01
The recent activities of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology is presented. The team consists of members from the government, industry, and universities. The goal of this team is to demonstrate the benefits to the turbine design process attainable through the application of CFD. This goal is to be achieved by enhancing and validating turbine design tools for improved loading and flowfield definition and loss prediction, and transferring the advanced technology to the turbine design process. In order to demonstrate the advantages of using CFD early in the design phase, the Space Transportation Main Engine (STME) turbines for the National Launch System (NLS) were chosen on which to focus the team's efforts. The Turbine Team activities run parallel to the STME design work.
Wyatt, Gwen; Sikorskii, Alla; Bush, Tamara Reid; Mukherjee, Ranjan
2010-01-01
The purpose of this article is to share the lessons learned in forming an interdisciplinary team that implements a team science approach to integrative medicine (IM) research. The disciplines of nursing, statistics, and engineering, along with consultants and a reflexology practitioner, formed this university-based team to conceptualize and develop a prototype robotic device for reflexology for breast cancer patients. The nurse investigator contributed the intervention background and access to the population; the statistician guided the team thinking on factors that needed to be controlled for; the engineers provided the expertise in device design and development; consultants facilitated the team's thinking in new directions; and the reflexology practitioner prescribed the protocol. We discuss the contributions and achievements of each discipline, as well as the challenges, and share the team experiences with the intent to help guide the formation of new IM teams that promote a conducive atmosphere for carrying out cutting-edge IM research and advancing the science.
Enabling performance skills: Assessment in engineering education
NASA Astrophysics Data System (ADS)
Ferrone, Jenny Kristina
Current reform in engineering education is part of a national trend emphasizing student learning as well as accountability in instruction. Assessing student performance to demonstrate accountability has become a necessity in academia. In newly adopted criterion proposed by the Accreditation Board for Engineering and Technology (ABET), undergraduates are expected to demonstrate proficiency in outcomes considered essential for graduating engineers. The case study was designed as a formative evaluation of freshman engineering students to assess the perceived effectiveness of performance skills in a design laboratory environment. The mixed methodology used both quantitative and qualitative approaches to assess students' performance skills and congruency among the respondents, based on individual, team, and faculty perceptions of team effectiveness in three ABET areas: Communications Skills. Design Skills, and Teamwork. The findings of the research were used to address future use of the assessment tool and process. The results of the study found statistically significant differences in perceptions of Teamwork Skills (p < .05). When groups composed of students and professors were compared, professors were less likely to perceive student's teaming skills as effective. The study indicated the need to: (1) improve non-technical performance skills, such as teamwork, among freshman engineering students; (2) incorporate feedback into the learning process; (3) strengthen the assessment process with a follow-up plan that specifically targets performance skill deficiencies, and (4) integrate the assessment instrument and practice with ongoing curriculum development. The findings generated by this study provides engineering departments engaged in assessment activity, opportunity to reflect, refine, and develop their programs as it continues. It also extends research on ABET competencies of engineering students in an under-investigated topic of factors correlated with team processes, behavior, and student learning.
CASIS Fact Sheet: Hardware and Facilities
NASA Technical Reports Server (NTRS)
Solomon, Michael R.; Romero, Vergel
2016-01-01
Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS
Introduction to the Navigation Team: Johnson Space Center EG6 Internship
NASA Technical Reports Server (NTRS)
Gualdoni, Matthew
2017-01-01
The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.
ERIC Educational Resources Information Center
Kim, Charles; Jackson, Deborah; Keiller, Peter
2016-01-01
A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…
Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields
NASA Astrophysics Data System (ADS)
Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.
2015-12-01
STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.
Investigating the Impacts of Design Heuristics on Idea Initiation and Development
ERIC Educational Resources Information Center
Kramer, Julia; Daly, Shanna R.; Yilmaz, Seda; Seifert, Colleen M.; Gonzalez, Richard
2015-01-01
This paper presents an analysis of engineering students' use of Design Heuristics as part of a team project in an undergraduate engineering design course. Design Heuristics are an empirically derived set of cognitive "rules of thumb" for use in concept generation. We investigated heuristic use in the initial concept generation phase,…
Using Dedal to share and reuse distributed engineering design information
NASA Technical Reports Server (NTRS)
Baya, Vinod; Baudin, Catherine; Mabogunje, Ade; Das, Aseem; Cannon, David M.; Leifer, Larry J.
1994-01-01
The overall goal of the project is to facilitate the reuse of previous design experience for the maintenance, repair and redesign of artifacts in the electromechanical engineering domain. An engineering team creates information in the form of meeting summaries, project memos, progress reports, engineering notes, spreadsheet calculations and CAD drawings. Design information captured in these media is difficult to reuse because the way design concepts are referred to evolve over the life of a project and because decisions, requirements and structure are interrelated but rarely explicitly linked. Based on protocol analysis of the information seeking behavior of designer's, we defined a language to describe the content and the form of design records and implemented this language in Dedal, a tool for indexing, modeling and retrieving design information. We first describe the approach to indexing and retrieval in Dedal. Next we describe ongoing work in extending Dedal's capabilities to a distributed environment by integrating it with World Wide Web. This will enable members of a design team who are not co-located to share and reuse information.
Engineering Encounters: Sailing into the Digital Era
ERIC Educational Resources Information Center
Bellavance, Janet; Truchon, Amy
2015-01-01
This article describes how Janet Bellavance teamed with technology integration specialist, Amy Truchon to incorporate iPads into her Engineering is Elementary (EiE) unit--a curriculum that engages elementary students in engineering simple technologies. In an EiE unit, students design, test, and then, based on test results, improve their design,…
Concurrent Mission and Systems Design at NASA Glenn Research Center: The Origins of the COMPASS Team
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Oleson, Steven R.; Sarver-Verhey, Timothy R.
2012-01-01
Established at the NASA Glenn Research Center (GRC) in 2006 to meet the need for rapid mission analysis and multi-disciplinary systems design for in-space and human missions, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team is a multidisciplinary, concurrent engineering group whose primary purpose is to perform integrated systems analysis, but it is also capable of designing any system that involves one or more of the disciplines present in the team. The authors were involved in the development of the COMPASS team and its design process, and are continuously making refinements and enhancements. The team was unofficially started in the early 2000s as part of the distributed team known as Team JIMO (Jupiter Icy Moons Orbiter) in support of the multi-center collaborative JIMO spacecraft design during Project Prometheus. This paper documents the origins of a concurrent mission and systems design team at GRC and how it evolved into the COMPASS team, including defining the process, gathering the team and tools, building the facility, and performing studies.
Designing primary health care teams for developing countries.
Reisman, A; Duran, L
1983-01-01
A time-honored industrial engineering technique, job evaluation, which was developed to set rates for manual labor, was used in the design of new teams for delivering primary health care in Latin America. The technique was used both in writing job descriptions for new allied health personnel and in designing the curriculums needed to train the personnel. PMID:6856744
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C.
2012-07-01
The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, themore » organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)« less
The Impact of New Learning Environments in an Engineering Design Course
ERIC Educational Resources Information Center
Dinsmore, Daniel L.; Alexander, Patricia A.; Loughlin, Sandra M.
2008-01-01
In this study, we investigated the effects of students' participation in a collaborative, project-based engineering design course on their domain knowledge, interests, and strategic processing. Participants were 70 college seniors working in teams on a design project of their choosing. Their declarative, procedural, and principled knowledge, along…
A Student's Perspective: The Green Team's Project
ERIC Educational Resources Information Center
Pratt, Kyle
2011-01-01
In Mr. Wood's technology class, students learned about many aspects of engineering, including design of a product, teamwork, testing hypotheses, and testing the final product. In this article, the author describes how his class, particularly his team, applied everything they learned about the process to their kayak design challenge using the IDEAL…
NASA Technical Reports Server (NTRS)
Conroy, Michael; Mazzone, Rebecca; Little, William; Elfrey, Priscilla; Mann, David; Mabie, Kevin; Cuddy, Thomas; Loundermon, Mario; Spiker, Stephen; McArthur, Frank;
2010-01-01
The Distributed Observer network (DON) is a NASA-collaborative environment that leverages game technology to bring three-dimensional simulations to conventional desktop and laptop computers in order to allow teams of engineers working on design and operations, either individually or in groups, to view and collaborate on 3D representations of data generated by authoritative tools such as Delmia Envision, Pro/Engineer, or Maya. The DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3D visual environment. DON has been designed to enhance accessibility and user ability to observe and analyze visual simulations in real time. A variety of NASA mission segment simulations [Synergistic Engineering Environment (SEE) data, NASA Enterprise Visualization Analysis (NEVA) ground processing simulations, the DSS simulation for lunar operations, and the Johnson Space Center (JSC) TRICK tool for guidance, navigation, and control analysis] were experimented with. Desired functionalities, [i.e. Tivo-like functions, the capability to communicate textually or via Voice-over-Internet Protocol (VoIP) among team members, and the ability to write and save notes to be accessed later] were targeted. The resulting DON application was slated for early 2008 release to support simulation use for the Constellation Program and its teams. Those using the DON connect through a client that runs on their PC or Mac. This enables them to observe and analyze the simulation data as their schedule allows, and to review it as frequently as desired. DON team members can move freely within the virtual world. Preset camera points can be established, enabling team members to jump to specific views. This improves opportunities for shared analysis of options, design reviews, tests, operations, training, and evaluations, and improves prospects for verification of requirements, issues, and approaches among dispersed teams.
1988-12-01
engineering disciplines. (Here I refer to training in multifunction team mana ement dir’lplines, quality engineering methods, experimental design by such...4001 SSOME ISSUES S• View of strategic issues has been evolving - Speed of design and product deployment - to accelerate experimentation with new...manufacturingprocess design n New technologies (e.g., composites) which can revolutionize prod-uct technical design in some cases Issue still to be faced: " non
7 CFR Appendix C to Subpart B of... - Technical Report for Hydropower Projects
Code of Federal Regulations, 2013 CFR
2013-01-01
...,000 require the services of a licensed professional engineer (PE) or team of PEs. Depending on the... services of a licensed PE or a team of licensed PEs may be required for smaller projects. (a) Qualifications of project team. The hydropower project team should consist of a system designer, a project...
7 CFR Appendix C to Subpart B of... - Technical Report for Hydropower Projects
Code of Federal Regulations, 2014 CFR
2014-01-01
...,000 require the services of a licensed professional engineer (PE) or team of PEs. Depending on the... services of a licensed PE or a team of licensed PEs may be required for smaller projects. (a) Qualifications of project team. The hydropower project team should consist of a system designer, a project...
7 CFR Appendix C to Subpart B of... - Technical Report for Hydropower Projects
Code of Federal Regulations, 2012 CFR
2012-01-01
...,000 require the services of a licensed professional engineer (PE) or team of PEs. Depending on the... services of a licensed PE or a team of licensed PEs may be required for smaller projects. (a) Qualifications of project team. The hydropower project team should consist of a system designer, a project...
Marshall Team Recreates Goddard Rocket
NASA Technical Reports Server (NTRS)
2003-01-01
In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.
Towards a Methodology for Managing Competencies in Virtual Teams - A Systemic Approach
NASA Astrophysics Data System (ADS)
Schumacher, Marinita; Stal-Le Cardinal, Julie; Bocquet, Jean-Claude
Virtual instruments and tools are future trends in Engineering which are a response to the growing complexity of engineering tasks, the facility of communication and strong collaborations on the international market. Outsourcing, off-shoring, and the globalization of organisations’ activities have resulted in the formation of virtual product development teams. Individuals who are working in virtual teams must be equipped with diversified competencies that provide a basis for virtual team building. Thanks to the systemic approach of the functional analysis our paper responds to the need of a methodology of competence management to build virtual teams that are active in virtual design projects in the area of New Product Development (NPD).
1999-03-06
At the award ceremony for the 1999 FIRST Southeastern Regional robotic competition held at KSC, the Space Coast FIRST Team walks past the greeting line. In the middle, shaking hands with the team, are KSC's Director of Engineering Development Sterling Walker (left) and Center Director Roy Bridges (right). The Space Coast Team included Rockledge, Cocoa Beach and Merritt Island High Schools. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations. The regional event comprised 27 teams. Along with the championship award, which went to high school teams from Miami and San German, Puerto Rico, 15 other awards were presented
From Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge
NASA Technical Reports Server (NTRS)
Dubon, Lydia P.
2006-01-01
The Dawn GDS Team met the SC Sim integration challenge in eight months. The GDS System Engineering approach in response to the SC Simintegration challenge, focused on a set of key practices: decomposition of project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; risk management thru management of expectations; and aggregation of intermediate products into a final product. By maintaining a a system-level focus, the overall systems engineering process unified team GDS Team members with a common goal: the success of the ground system as a whole and not just the success of their individual expert contributions. Incorporation of Agile-type development efforts were aligned with a risk strategy based on team-oriented principles and expectations management, thus achieving a more stable baseline solution without compromising the integrity of the GDS design.
2000-03-10
The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusvill
2000-03-10
The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusvill
NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations
NASA Technical Reports Server (NTRS)
Letchworth, Gary; Schlierf, Roland
2011-01-01
The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning tools included Kaizen/Lean events, mockups and human factors analysis. The majority of products developed by this team are applicable as KSC prepares 21st Century Ground Systems for the Orion Multi-Purpose Crew Vehicle and Space Launch System.
2017-02-22
manages operations through guidance, policies, programs, and organizations. The NSG is designed to be a mutually supportive enterprise that...deliberate technical design and deliberate human actions. Geospatial engineer teams (GETs) within the geospatial intelligence cells are the day-to-day...standards working group and are designated by the AGC Geospatial Acquisition Support Directorate as required for interoperability. Applicable standards
2013-09-11
CAPE CANAVERAL, Fla. – Engineers fine-tune a remote-controlled helicopter before it takes off. The helicopter is equipped with a unique set of sensors and software and was assembled by a team of engineers from NASA's Johnson Space Center for a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.
2005-01-01
An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.
Extraterrestrial surface propulsion systems
NASA Astrophysics Data System (ADS)
Ash, Robert L.; Blackstock, Dexter L.; Barnhouse, K.; Charalambous, Z.; Coats, J.; Danagan, J.; Davis, T.; Dickens, J.; Harris, P.; Horner, G.
Lunar traction systems, Mars oxygen production, and Mars methane engine operation were the three topics studied during 1992. An elastic loop track system for lunar construction operations was redesigned and is being tested. A great deal of work on simulating the lunar environment to facilitate traction testing has been reported. Operation of an oxygen processor under vacuum conditions has been the focus of another design team. They have redesigned the processor facility. This included improved seals and heat shields. Assuming methane and oxygen can be produced from surface resources on Mars, a third design team has addressed the problem of using Mars atmospheric carbon dioxide to control combustion temperatures in an internal combustion engine. That team has identified appropriate tests and instrumentation. They have reported on the test rig that they designed and the computer-based system for acquiring data.
Extraterrestrial surface propulsion systems
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Blackstock, Dexter L.; Barnhouse, K.; Charalambous, Z.; Coats, J.; Danagan, J.; Davis, T.; Dickens, J.; Harris, P.; Horner, G.
1992-01-01
Lunar traction systems, Mars oxygen production, and Mars methane engine operation were the three topics studied during 1992. An elastic loop track system for lunar construction operations was redesigned and is being tested. A great deal of work on simulating the lunar environment to facilitate traction testing has been reported. Operation of an oxygen processor under vacuum conditions has been the focus of another design team. They have redesigned the processor facility. This included improved seals and heat shields. Assuming methane and oxygen can be produced from surface resources on Mars, a third design team has addressed the problem of using Mars atmospheric carbon dioxide to control combustion temperatures in an internal combustion engine. That team has identified appropriate tests and instrumentation. They have reported on the test rig that they designed and the computer-based system for acquiring data.
Cultivation of students' engineering designing ability based on optoelectronic system course project
NASA Astrophysics Data System (ADS)
Cao, Danhua; Wu, Yubin; Li, Jingping
2017-08-01
We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.
Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool
NASA Technical Reports Server (NTRS)
Maul, William A.; Fulton, Christopher E.
2011-01-01
This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual
NASA Technical Reports Server (NTRS)
Havens, Glen G.
2007-01-01
MRO project is a system of systems requiring system engineering team to architect, design, integrate, test, and operate these systems at each level of the project. The challenge of system engineering mission objectives into a single mission architecture that can be integrated tested, launched, and operated. Systems engineering must translate high-level requirements into integrated mission design. Systems engineering challenges were overcome utilizing a combination by creative designs built into MRO's flight and ground systems: a) Design of sophisticated spacecraft targeting and data management capabilities b) Establishment of a strong operations team organization; c) Implementation of robust operational processes; and d) Development of strategic ground tools. The MRO system has met the challenge of its driving requirements: a) MRO began its two-year primary science phase on November 7, 2006, and by July 2007, met it minimum requirement to collect 15 Tbits of data after only eight months of operations. Currently we have collected 22 Tbits. b) Based on current performance, mission data return could return 70 Tbits of data by the end of the primary science phase in 2008.
Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort
NASA Technical Reports Server (NTRS)
Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.
2017-01-01
The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.
Quigley, Dianne
2015-02-01
A collaborative team of environmental sociologists, community psychologists, religious studies scholars, environmental studies/science researchers and engineers has been working together to design and implement new training in research ethics, culture and community-based approaches for place-based communities and cultural groups. The training is designed for short and semester-long graduate courses at several universities in the northeastern US. The team received a 3 year grant from the US National Science Foundation's Ethics Education in Science and Engineering in 2010. This manuscript details the curriculum topics developed that incorporate ethical principles, particularly for group protections/benefits within the field practices of environmental/engineering researchers.
Team 282 prepares for the FIRST competition
NASA Technical Reports Server (NTRS)
2000-01-01
The Orange Crusher team (282) works on their robot, which is named Rust Bot, during the FIRST competition. The team of students from Lake Howell, Winter Springs and Orange Christian Private high schools was co-sponsored by NASA Kennedy Space Center, Matern Professional Engineering The Foundation, Control Technologies, Lucent Technologies and Sandy Engineering. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co- sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Career Profiles- Aero-Mechanical Design- Operations Engineering Branch
2015-10-26
NASA Armstrong’s Aeromechanical Design Group provides mechanical design solutions ranging from research and development to ground support equipment. With an aerospace or mechanical engineering background, team members use the latest computer-aided design software to create one-of-kind parts, assemblies, and drawings, and aid in the design’s fabrication and integration. Reverse engineering and inspection of Armstrong’s fleet of aircraft is made possible by using state-of-the-art coordinate measuring machines and laser scanning equipment.
NASA Astrophysics Data System (ADS)
Yasar, Senay
Collaborative teamwork is a common practice in both science and engineering schools and workplaces. This study, using a mixed-methods approach, was designed to identify which team discourse characteristics are correlated with changes in student self-efficacy and achievement. Bandura's self-efficacy theory constitutes the theoretical framework. Seven teams, consisting of first-year engineering students, took the pre- and post-surveys and were video- and audio-recorded during a semester-long Introduction to Engineering Design course. Three instruments were developed: a self-efficacy survey, a team interaction observation protocol, and a team interaction self-report survey. The reliability and validity of these instruments were established. An iterative process of code development and refinement led to the development of thirty-five discourse types, which were grouped under six discourse categories: task-oriented, response-oriented, learning-oriented, support-oriented, challenge-oriented, and disruptive. The results of the quantitative data analysis showed that achievement and gain in self-efficacy were significantly correlated ( r=.55, p<.01). There was also a positive correlation between support-orientated discourse and post self-efficacy scores ( r=.43, p<.05). Negative correlations were observed between disruptive discourse behaviors and post self-efficacy (r=-.48, p<.05). Neither being challenged by peers nor receiving negative feedback revealed significant correlations with student self-efficacy. In addition, no direct correlations between the team discourse characteristics and achievement were found. These findings suggest that collaborative teamwork can lead to achievement to the extent that it supports self-efficacy. They also suggest that interactions such as receiving positive or negative feedback have less impact on self-efficacy than does the overall constructive behavior of the group. The qualitative component of the study, which focused on three case studies, presents how supportive and disruptive interactions occurred during team discourse. Discussion includes recommendations for educators on how to help teams build supportive environments as well as what to look for when forming teams and evaluating student team interactions.
The design of a long range megatransport aircraft
NASA Technical Reports Server (NTRS)
Weisshaar, Terrence A.; Allen, Carl L.
1992-01-01
During the period from August 1991 - June 1992 two design classes at Purdue University participated in the design of a long range, high capacity transport aircraft, dubbed the megatransport. Thirteen Purdue design teams generated RFP's that defined passenger capability and range, based upon team perception of market needs and infrastructure constraints. Turbofan engines were designed by each group to power these aircraft. The design problem and the variety of solutions developed are described in an attached paper.
NTRE extended life feasibility assessment
NASA Technical Reports Server (NTRS)
1993-01-01
Results of a feasibility analysis of a long life, reusable nuclear thermal rocket engine are presented in text and graph form. Two engine/reactor concepts are addressed: the Particle Bed Reactor (PBR) design and the Commonwealth of Independent States (CIS) concept. Engine design, integration, reliability, and safety are addressed by various members of the NTRE team from Aerojet Propulsion Division, Energopool (Russia), and Babcock & Wilcox.
Designing, Implementing and Maintaining a First Year Project Course in Electrical Engineering
ERIC Educational Resources Information Center
Lillieskold, J.; Ostlund, S.
2008-01-01
Being a modern electrical engineer does not only require state of the art skills in areas such as transfer and processing of information, electronics, systems engineering, and biomedical electrical engineering; it also requires generic engineering skills such as oral and written communication, team building, interpersonal skills, and the ability…
Decisionmaking in Military Command Teams: An Experimental Study
1992-03-01
of the problems that remain to be solved by systems designers . The Fogarty report concluded that "The AEGIS combat system’s performance was excellent...1989). He maintains that the designers of the AEGIS system failed to incorporate enough human engineering in their design . Without addressing the fault...Naval Command Teams (RAINCOAT), Composite Warfare Commander - Destributed Dynamc Decisionmaking ICWC-[I)), resource coordination, resource effectiveness
Preliminary Design Phases, Part of Indoor Air Quality Design Tools for Schools
The typical design process for schools begins with programming and selection of the architectural-engineering team. It then proceeds through schematic design, design development, contract documents, construction, commissioning and occupancy.
2011-10-04
CAPE CANAVERAL, Fla. -- Members of the crawlerway system evaluation team pose for a group portrait in front of the Headquarters Building at NASA's Kennedy Space Center in Florida. The team received the Florida Project of the Year award from the American Society of Civil Engineers (ASCE). The Cape Canaveral branch of the ASCE nominated the team for its project, the Crawlerway Evaluation to Support a Heavy-Lift Program. The crawlerway is a 130-foot-wide, specialty-built roadway between Kennedy's Vehicle Assembly Building (VAB), where rockets and spacecraft are prepared for flight, and Launch Pad 39A and 39B. The team's more than two-year evaluation confirmed the crawlerway system would be able to support the weight of moving the agency's future heavy-lift rockets and potential commercial vehicles from the VAB to the launch pads. The award honors the team's outstanding engineering efforts in research, design, construction and management, recognizing the complexity of multi-agency coordination and cost-effective engineering advances. For more information on the American Society of Civil Engineers, visit: http://www.asce.org. Photo credit: NASA/Kim Shiflett
Exploration Design Challenge 2014
2014-04-25
Team Lore poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team Lore was one of the semi-finalists in the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)
Exploration Design Challenge 2014
2014-04-25
Team Aegis poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team Aegis was one of the semi-finalists in the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)
Industrial Sponsor Perspective on Leveraging Capstone Design Projects to Enhance Their Business
ERIC Educational Resources Information Center
Weissbach, Robert S.; Snyder, Joseph W.; Evans, Edward R., Jr.; Carucci, James R., Jr.
2017-01-01
Capstone design projects have become commonplace among engineering and engineering technology programs. These projects are valuable tools when assessing students, as they require students to work in teams, communicate effectively, and demonstrate technical competency. The use of industrial sponsors enhances these projects by giving these projects…
Digital Model-Based Engineering: Expectations, Prerequisites, and Challenges of Infusion
NASA Technical Reports Server (NTRS)
Hale, J. P.; Zimmerman, P.; Kukkala, G.; Guerrero, J.; Kobryn, P.; Puchek, B.; Bisconti, M.; Baldwin, C.; Mulpuri, M.
2017-01-01
Digital model-based engineering (DMbE) is the use of digital artifacts, digital environments, and digital tools in the performance of engineering functions. DMbE is intended to allow an organization to progress from documentation-based engineering methods to digital methods that may provide greater flexibility, agility, and efficiency. The term 'DMbE' was developed as part of an effort by the Model-Based Systems Engineering (MBSE) Infusion Task team to identify what government organizations might expect in the course of moving to or infusing MBSE into their organizations. The Task team was established by the Interagency Working Group on Engineering Complex Systems, an informal collaboration among government systems engineering organizations. This Technical Memorandum (TM) discusses the work of the MBSE Infusion Task team to date. The Task team identified prerequisites, expectations, initial challenges, and recommendations for areas of study to pursue, as well as examples of efforts already in progress. The team identified the following five expectations associated with DMbE infusion, discussed further in this TM: (1) Informed decision making through increased transparency, and greater insight. (2) Enhanced communication. (3) Increased understanding for greater flexibility/adaptability in design. (4) Increased confidence that the capability will perform as expected. (5) Increased efficiency. The team identified the following seven challenges an organization might encounter when looking to infuse DMbE: (1) Assessing value added to the organization. Not all DMbE practices will be applicable to every situation in every organization, and not all implementations will have positive results. (2) Overcoming organizational and cultural hurdles. (3) Adopting contractual practices and technical data management. (4) Redefining configuration management. The DMbE environment changes the range of configuration information to be managed to include performance and design models, database objects, as well as more traditional book-form objects and formats. (5) Developing information technology (IT) infrastructure. Approaches to implementing critical, enabling IT infrastructure capabilities must be flexible, reconfigurable, and updatable. (6) Ensuring security of the single source of truth (7) Potential overreliance on quantitative data over qualitative data. Executable/ computational models and simulations generally incorporate and generate quantitative vice qualitative data. The Task team also developed several recommendations for government, academia, and industry, as discussed in this TM. The Task team recommends continuing beyond this initial work to further develop the means of implementing DMbE and to look for opportunities to collaborate and share best practices.
A Status Report on the Parachute Development for NASA's Next Manned Spacecraft
NASA Technical Reports Server (NTRS)
Sinclair, Robert
2008-01-01
NASA has determined that the parachute portion of the Landing System for the Crew Exploration Vehicle (CEV) will be Government Furnished Equipment (GFE). The Earth Landing System has been designated CEV Parachute Assembly System (CPAS). Thus a program team was developed consisting of NASA Johnson Space Center (JSC) and Jacobs Engineering through their Engineering and Science Contract Group (ESCG). Following a rigorous competitive phase, Airborne Systems North America was selected to provide the parachute design, testing and manufacturing role to support this team. The development program has begun with some early flight testing of a Generation 1 parachute system. Future testing will continue to refine the design and complete a qualification phase prior to manned flight of the spacecraft. The program team will also support early spacecraft system testing, including a Pad Abort Flight Test in the Fall of 2008
NASA Technical Reports Server (NTRS)
Boyles, Charles; Eledui, Emory; Gasser, Ben; Johnson, Josh; Long, Jay " Ben"
2011-01-01
From 1969 to 1972, the National Aeronautics and Space Administration (NASA) sent Apollo missions to the moon to conduct various exploration experiment. A few of the missions were directed to the study and sampling of moon soil, otherwise known as lunar regolith. The extent of the sample acquisition was limited due to the astronauts' limited ability to penetrate the moon's surface to a depth greater than three meters. However. the samples obtained were sufficient enough to provide key information pertaining to lunar regolith material properties that would further assist in future exploration endeavors. Analysis of the collected samples showed that the properties of lunar regolith may lead to knowledge of processed materials that will be beneficial for future human exploration or colonization. However, almost 40 years after the last Apollo mission, limited infonnation is known about regions underneath the moon's surface. Future lunar missions will require hardware that possesses the ability to burrow to greater depths in order to collect samples for subsequent analysis. During the summer of 2010, a team (Dr. Jessica Gaskin, Michael Kuhlman. Blaze Sanders, and Lafe Zabowski) from the NASA Robotics Academy at Marshall Space Flight Center (MSFC) was given the task of designing a robot to function as a soil collection and analysis device. Working with the National Space Science and Technology Center (NSSTC), the team was able to propose an initial design, build a prototype, and test the various subsystems of the prototype to be known as the "Lunar Wormbot" (LW). The NASA/NSSTC team then transferred the project to a University of Alabama in Huntsville (UAH) Mechanical and Aerospace Engineering (MAE) senior design class for further development. The UAH team was to utilize the NASA Systems Engineering Engine Design Process in the continuance of the Lunar Wormbot project. This process was implemented in order to coordinate the efforts of the team and guide the design of the project to ensure a high quality product that met requirements within the academic year timeframe. When the transition from the NASA NSSTC team to the UAH team occurred in August 2010, the scope and requirements were provided to the UAH team. The main objective for the UAH team was to design and fabricate a robotic burrowing prototype using peristaltic or earthworm-like motion with the purpose of collecting soil samples. The team was tasked with the design of a sub-system of the LW called the locomotive, or active, segment. Through the design process, the team extensively reviewed the requirements and functions to be performed of the LW, which led to the proposal of a final design. The present paper provides the details of the development of the design up to and including the Critical Design Review (CDR) of the Lunar Wormbot. This document briefly describes thc overall system and its function but primarily focuses on the design and implementation of the locomotive segment. Content presented includes: general design and system functionality, technical drawings, system analysis, manufacturing methods, and general project costs.
2003-07-01
In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.
DRACO Flowpath Performance and Environments
NASA Technical Reports Server (NTRS)
Komar, D. R.; McDonald, Jon
1999-01-01
The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.
Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion
NASA Technical Reports Server (NTRS)
Garcia, R.; McConnaughey, P. K.; Eastland, A.
1993-01-01
The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.
NASA Astrophysics Data System (ADS)
Goncher, Andrea M.
thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found that when appropriated in the context of higher education, multiple sublevels existed within nested structuration's organizational context and included course-level and project-level factors. The implications of this research can be used to improve the design of engineering course projects as well as the design of research efforts related to design in engineering education.
Concurrent engineering: Spacecraft and mission operations system design
NASA Technical Reports Server (NTRS)
Landshof, J. A.; Harvey, R. J.; Marshall, M. H.
1994-01-01
Despite our awareness of the mission design process, spacecraft historically have been designed and developed by one team and then turned over as a system to the Mission Operations organization to operate on-orbit. By applying concurrent engineering techniques and envisioning operability as an essential characteristic of spacecraft design, tradeoffs can be made in the overall mission design to minimize mission lifetime cost. Lessons learned from previous spacecraft missions will be described, as well as the implementation of concurrent mission operations and spacecraft engineering for the Near Earth Asteroid Rendezvous (NEAR) program.
Manx: Close air support aircraft preliminary design
NASA Technical Reports Server (NTRS)
Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince
1991-01-01
The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).
Exploring Mission Concepts with the JPL Innovation Foundry A-Team
NASA Technical Reports Server (NTRS)
Ziemer, John K.; Ervin, Joan; Lang, Jared
2013-01-01
The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.
Exploration Design Challenge 2014
2014-04-25
Team Titan Shielding Systems poses with NASA Administrator Charles Bolden and Lockheed Martin CEO, Marillyn Hewson. Team Titan Shielding Systems was one of the semi-finalists in the Exploration Design Challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center flies in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center flies in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2014-05-23
CAPE CANAVERAL, Fla. -- Team members from the University of Alaska-Fairbanks received the Judges' Innovation Award during NASA's 2014 Robotic Mining Competition awards ceremony inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. The competition includes on-site mining, writing a systems engineering paper, performing outreach projects for K-12 students, slide presentation and demonstrations, and team spirit. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
2014-05-23
CAPE CANAVERAL, Fla. -- The University of Alabama team Astrobotics in collaboration with Shelton State Community College received the highest award, the Joe Kosmo Award for Excellence, during NASA's 2014 Robotic Mining Competition awards ceremony inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. The competition includes on-site mining, writing a systems engineering paper, performing outreach projects for K-12 students, slide presentation and demonstrations, and team spirit. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
Using SFOC to fly the Magellan Venus mapping mission
NASA Technical Reports Server (NTRS)
Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.
1993-01-01
Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.
Toward Epistemologically Authentic Engineering Design Activities in the Science Classroom
ERIC Educational Resources Information Center
Leonard, Mary J.
2004-01-01
In recent years educators and educational researchers in the U.S. have begun to introduce engineering design activities in secondary science classrooms for the purpose of scaffolding science learning as well as supporting such general problem-solving skills as decision making and working in teams. However, such curricula risk perpetuating a…
An Example-Centric Tool for Context-Driven Design of Biomedical Devices
ERIC Educational Resources Information Center
Dzombak, Rachel; Mehta, Khanjan; Butler, Peter
2015-01-01
Engineering is one of the most global professions, with design teams developing technologies for an increasingly interconnected and borderless world. In order for engineering students to be proficient in creating viable solutions to the challenges faced by diverse populations, they must receive an experiential education in rigorous engineering…
Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.
2015-01-01
The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS; and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. For NASA's SLS ABEDRR procurement, Dynetics and AR formed a team to offer a series of full-scale risk mitigation hardware demonstrations for an affordable booster approach that meets the evolved capabilities of the SLS. To establish a basis for the risk reduction activities, the Dynetics Team developed a booster design that takes advantage of the flight-proven Apollo-Saturn F-1. Using NASA's vehicle assumptions for the SLS Block 2, a two-engine, F-1-based booster design delivers 150 mT (331 klbm) payload to LEO, 20 mT (44 klbm) above NASA's requirements. This enables a low-cost, robust approach to structural design. During the ABEDRR effort, the Dynetics Team has modified proven Apollo-Saturn components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically produced Atlas V engine that could also potentially satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article. The test article is scheduled to complete critical design review this fall and begin testing in 2017. Dynetics has also designed, developed, and built innovative tank and structure assemblies using friction stir welding to leverage recent NASA investments in manufacturing tools, facilities, and processes, significantly reducing development and recurring costs. The full-scale cryotank assembly was used to verify the structural design and prove affordable processes. Dynetics performed hydrostatic and cryothermal proof tests on the assembly to verify the assembly meets performance requirements. This paper will discuss the ABEDRR engine task and structures task achievements to date and the remaining effort through the end of the contract.
Exploration Design Challenge 2014
2014-04-25
NASA’s Administrator, Charles Bolden speaks with the winning high school team in the Exploration Design Challenge prior to the award ceremony. Team ARES from the Governors School for Science and Technology in Hampton, Va. won the challenge with their radiation shield design, which will be built and flown aboard the Orion/EFT-1. The award was announced at the USA Science and Engineering Festival on April 25, 2014 at the Washington Convention Center. Photo Credit: (NASA/Aubrey Gemignani)
NASA Astrophysics Data System (ADS)
Liu, Yucheng
2017-11-01
In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.
International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned
NASA Technical Reports Server (NTRS)
Iovine, John
2011-01-01
The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.
2013-12-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, Gary Dahlke, high powered rocket subject matter expert, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann
2013-12-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann
CAD Services: an Industry Standard Interface for Mechanical CAD Interoperability
NASA Technical Reports Server (NTRS)
Claus, Russell; Weitzer, Ilan
2002-01-01
Most organizations seek to design and develop new products in increasingly shorter time periods. At the same time, increased performance demands require a team-based multidisciplinary design process that may span several organizations. One approach to meet these demands is to use 'Geometry Centric' design. In this approach, design engineers team their efforts through one united representation of the design that is usually captured in a CAD system. Standards-based interfaces are critical to provide uniform, simple, distributed services that enable the 'Geometry Centric' design approach. This paper describes an industry-wide effort, under the Object Management Group's (OMG) Manufacturing Domain Task Force, to define interfaces that enable the interoperability of CAD, Computer Aided Manufacturing (CAM), and Computer Aided Engineering (CAE) tools. This critical link to enable 'Geometry Centric' design is called: Cad Services V1.0. This paper discusses the features of this standard and proposed application.
Building international experiences into an engineering curriculum - a design project-based approach
NASA Astrophysics Data System (ADS)
Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat
2014-07-01
This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.
Exploration Design Challenge 2014
2014-04-25
Team Lore listens in the audience as NASA Administrator Charles Bolden speaks at the event to announce the winner of the Exploration Design Challenge. Team Lore was one of the semi-finalists in the challenge. The goal of the Exploration Design Challenge is for students to research and design ways to protect astronauts from space radiation. The winner of the challenge was announced on April 25, 2014 at the USA Science and Engineering Festival at the Washington Convention Center in Washington, DC. Photo Credit: (NASA/Aubrey Gemignani)
Design of a remotely piloted vehicle for a low Reynolds number station keeping mission
NASA Technical Reports Server (NTRS)
1990-01-01
Six teams of senior level Aerospace Engineering undergraduates were given a request for proposal, asking for a design concept for a remotely piloted vehicle (RPV). This RPV was to be designed to fly at a target Reynolds number of 1 times 10(exp 5). The craft was to maximize loiter time and perform an indoor, closed course flight. As part of the proposal, each team was required to construct a prototype and validate their design with a flight demonstration.
The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training
NASA Technical Reports Server (NTRS)
Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.;
2017-01-01
The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.
Combustion devices technology team - An overview and status of STME-related activities
NASA Technical Reports Server (NTRS)
Tucker, P. K.; Croteau-Gillespie, Margie
1992-01-01
The Consortium for CFD applications in propulsion technology has been formed at NASA/Marshall Space Flight Center. The combustion devices technology team is one of the three teams that constitute the Consortium. While generally aiming to advance combustion devices technology for rocket propulsion, the team's efforts for the last 1 and 1/2 years have been focused on issues relating to the Space Transportation Main Engine (STME) nozzle. The nozzle design uses hydrogen-rich turbine exhaust to cool the wall in a film/dump scheme. This method of cooling presents challenges and associated risks for the nozzle designers and the engine/vehicle integrators. Within the nozzle itself, a key concern is the ability to effectively and efficiently film cool the wall. From the National Launch System vehicle base standpoint, there are concerns with dumping combustible gases at the nozzle exit and their potential adverse effects on the base thermal environment. The Combustion Team has developed and is implementing plans to use validated CFD tools to aid in risk mitigation for both areas.
Alpbach Summer School - a unique learning experience
NASA Astrophysics Data System (ADS)
Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.
2011-12-01
The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to meet and learn from international experts. This presentation will provide an overview of the Alpbach Summer School program from a student's perspective. The different stages of this unique and enriching experience will be covered. Special attention will be paid to the workshops, which, as mentioned above, are the core of the Alpbach Summer School. During these intense workshops, participants work towards the proposed goals resulting in the design proposal of a space mission. The Alpbach Summer School is organised by FFG and co-sponsored by ESA, ISSI and the national space authorities of ESA member and cooperating states.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- A presentation by Franklin W. Olin College of Engineering is on display at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. Participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts
The shuttle main engine: A first look
NASA Technical Reports Server (NTRS)
Schreur, Barbara
1996-01-01
Anyone entering the Space Shuttle Main Engine (SSME) team attends a two week course to become familiar with the design and workings of the engine. This course provides intensive coverage of the individual hardware items and their functions. Some individuals, particularly those involved with software maintenance and development, have felt overwhelmed by this volume of material and their lack of a logical framework in which to place it. To provide this logical framework, it was decided that a brief self-taught introduction to the overall operation of the SSME should be designed. To aid the people or new team members with an interest in the software, this new course should also explain the structure and functioning of the controller and its software. This paper presents a description of this presentation.
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center prepares to fly in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
NASA team hosts STEM-Ulate actvities
2010-07-13
Young visitors to NASA's John C. Stennis Space Center prepare to launch 'stomp rockets' during STEM-Ulate to Innovate activities at the facility July 13. The NASA Foundations of Influence, Relationships, Success and Teamwork (FIRST) Team sponsored STEM-Ulate to Innovate for more than 100 children ages 9-11. Children from area Boys & Girls Clubs participated in hands-on activities, presentations and demonstrations by professional engineers, all designed to promote the relevance of science, technology, engineering and mathematics (STEM).
ERIC Educational Resources Information Center
Miranda Mendoza, Constanza Sofia
2013-01-01
Today, the boundaries of disciplines are in a state of flux. The borders are blurred and innovations occur due to the joining of different disciplinary tribes and interaction of teams with diverse epistemological backgrounds. It is not news that this increased diversity in using the design process can bring friction and clashes due to disparate…
Biomedical and Human Factors Requirements for a Manned Earth Orbiting Station
NASA Technical Reports Server (NTRS)
Benjamin, F.; Helvey, W. M.; Martell, C.; Peters, J.; Rosenthal, G.
1964-01-01
This report is the result of a study conducted by Republic Aviation Corporation in conjunction with Spacelabs, Inc.,in a team effort in which Republic Aviation Corporation was prime contractor. In order to determine the realistic engineering design requirements associated with the medical and human factors problems of a manned space station, an interdisciplinary team of personnel from the Research and Space Divisions was organized. This team included engineers, physicians, physiologists, psychologists, and physicists. Recognizing that the value of the study is dependent upon medical judgments as well as more quantifiable factors (such as design parameters) a group of highly qualified medical consultants participated in working sessions to determine which medical measurements are required to meet the objectives of the study. In addition, various Life Sciences personnel from NASA (Headquarters, Langley, MSC) participated in monthly review sessions. The organization, team members, consultants, and some of the part-time contributors are shown in Figure 1. This final report embodies contributions from all of these participants.
Marshall Team Fires Recreated Goddard Rocket
NASA Technical Reports Server (NTRS)
2003-01-01
In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.
Development of a Pedagogical Model to Help Engineering Faculty Design Interdisciplinary Curricula
ERIC Educational Resources Information Center
Navarro, Maria; Foutz, Timothy; Thompson, Sidney; Singer, Kerri Patrick
2016-01-01
The purpose of this study was to develop a model to help engineering faculty overcome the challenges they face when asked to design and implement interdisciplinary curricula. Researchers at a U.S. University worked with an Interdisciplinary Consultant Team and prepared a steering document with Guiding Principles and Essential Elements for the…
Developing Design and Management Skills for Senior Industrial Engineering Students
ERIC Educational Resources Information Center
Urbanic, R. J.
2011-01-01
In Canadian engineering institutions, a significant design experience must occur in the final year of study. In the Department of Industrial and Manufacturing Systems at the University of Windsor, unsolved, open ended projects sponsored by industrial partners from a variety of sectors are provided to the student teams in order for them to apply…
Toolsets Maintain Health of Complex Systems
NASA Technical Reports Server (NTRS)
2010-01-01
First featured in Spinoff 2001, Qualtech Systems Inc. (QSI), of Wethersfield, Connecticut, adapted its Testability, Engineering, and Maintenance System (TEAMS) toolset under Small Business Innovation Research (SBIR) contracts from Ames Research Center to strengthen NASA's systems health management approach for its large, complex, and interconnected systems. Today, six NASA field centers utilize the TEAMS toolset, including TEAMS-Designer, TEAMS-RT, TEAMATE, and TEAMS-RDS. TEAMS is also being used on industrial systems that generate power, carry data, refine chemicals, perform medical functions, and produce semiconductor wafers. QSI finds TEAMS can lower costs by decreasing problems requiring service by 30 to 50 percent.
NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design
2016-12-08
A series of test firings like this one in late August brought a group of engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, a big step closer to their goal of a 100-percent 3-D printed rocket engine, said Andrew Hanks, test lead for the additively manufactured demonstration engine project. The main combustion chamber, fuel turbopump, fuel injector, valves and other components used in the tests were of the team's new design, and all major engine components except the main combustion chamber were 3-D printed. (NASA/MSFC)
2011-10-04
CAPE CANAVERAL, Fla. -- NASA managers at NASA's Kennedy Space Center in Florida show off the Florida Project of the Year trophies that the crawlerway system evaluation team received from the American Society of Civil Engineers (ASCE). From left are Michael Benik, director of Center Operations; Pepper Phillips, manager of the 21st Century Ground Systems Program Office; and Russell Romanella, associate director for Engineering and Technical Operations. The Cape Canaveral branch of the ASCE nominated the team for its project, the Crawlerway Evaluation to Support a Heavy-Lift Program. The crawlerway is a 130-foot-wide, specialty-built roadway between Kennedy's Vehicle Assembly Building (VAB), where rockets and spacecraft are prepared for flight, and Launch Pad 39A and 39B. The team's more than two-year evaluation confirmed the crawlerway system would be able to support the weight of moving the agency's future heavy-lift rockets and potential commercial vehicles from the VAB to the launch pads. The award honors the team's outstanding engineering efforts in research, design, construction and management, recognizing the complexity of multi-agency coordination and cost-effective engineering advances. For more information on the American Society of Civil Engineers, visit: http://www.asce.org. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Stecklein, Jonette
2017-01-01
NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design, through tele-operation of the robot collecting regolith in simulated Mars conditions, to disposal of the robot systems after the competition. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team’s score for the competition’s grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.
ERIC Educational Resources Information Center
Davis, Martha E.; Cunningham, Christine M.; Lachapelle, Cathy P.
2017-01-01
Engineering is Elementary (EiE) is a curriculum project of the Museum of Science, Boston, that promotes and supports engineering literacy and educational equity for all children. Building on the success of its award-winning curriculum for grades 1-5, the team has recently turned its attention to Wee Engineer, a research-based engineering…
The design of two-stage-to-orbit vehicles
NASA Technical Reports Server (NTRS)
1991-01-01
Two separate student design groups developed conceptual designs for a two-stage-to-orbit vehicle, with each design group consisting of a carrier team and an orbiter team. A two-stage-to-orbit system is considered in the event that single-stage-to-orbit is deemed not feasible in the foreseeable future; the two-stage system would also be used as a complement to an already existing heavy lift vehicle. The design specifications given are to lift a 10,000-lb payload 27 ft long by 10 ft diameter, to low Earth orbit (300 n.m.) using an air breathing carrier configuration that will take off horizontally within 15,000 ft. The staging Mach number and altitude were to be determined by the design groups. One group designed a delta wing/body carrier with the orbiter nested within the fuselage of the carrier, and the other group produced a blended cranked-delta wing/body carrier with the orbiter in the more conventional piggyback configuration. Each carrier used liquid hydrogen-fueled turbofanramjet engines, with data provided by General Electric Aircraft Engine Group. While one orbiter used a full-scale Space Shuttle Main Engine (SSME), the other orbiter employed a half-scale SSME coupled with scramjet engines, with data again provided by General Electric. The two groups conceptual designs, along with the technical trade-offs, difficulties, and details that surfaced during the design process are presented.
Empowering biomedical engineering undergraduates to help teach design.
Allen, Robert H; Tam, William; Shoukas, Artin A
2004-01-01
We report on our experience empowering upperclassmen and seniors to help teach design courses in biomedical engineering. Initiated in the fall of 1998, these courses are a projects-based set, where teams of students from freshmen level to senior level converge to solve practical problems in biomedical engineering. One goal in these courses is to teach the design process by providing experiences that mimic it. Student teams solve practical projects solicited from faculty, industry and the local community. To hone skills and have a metric for grading, written documentation, posters and oral presentations are required over the two-semester sequence. By requiring a mock design and build exercise in the fall, students appreciate the manufacturing process, the difficulties unforeseen in the design stage and the importance of testing. A Web-based, searchable design repository captures reporting information from each project since its inception. This serves as a resource for future projects, in addition to traditional ones such as library, outside experts and lab facilities. Based on results to date, we conclude that characteristics about our design program help students experience design and learn aspects about teamwork and mentoring useful in their profession or graduate education.
2014-05-23
CAPE CANAVERAL, Fla. -- NASA's 2014 Robotic Mining Competition award ceremony was held inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition, held May 19-23 at the visitor complex. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. The competition includes on-site mining, writing a systems engineering paper, performing outreach projects for K-12 students, slide presentation and demonstrations, and team spirit. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
Project-based learning in engineering design in Bulgaria: expectations, experiments and results
NASA Astrophysics Data System (ADS)
Raycheva, Regina Pavlova; Angelova, Desislava Ivanova; Vodenova, Pavlina Minkova
2017-11-01
Using a students' workshop as a laboratory, this article summarises the observation of three years' implementation of a new study module for a Bachelor Program in Engineering Design (Interior and Furniture Design) at the University of Forestry, Sofia, Bulgaria. The article offers an analysis of group dynamics and the difficulties and issues observed during the process. Data from survey questionnaires are interpreted; proposals are made for future research. The conclusion of the authors includes the following points: positive response by students, important encounter with successful professionals and companies; creative fulfilment and experience of team work. On the weak side is the experienced discomfort in public presentation, lack of verbal and graphic skills, interpersonal issues and pressure of real requirements from teachers and company; lack of adequate attention by the tutors. The need of better understanding a team 'code' of behaviour and preparation for an active learning method was felt. A proposal leading to a mixed-team organisation for better support of first-time participants in the module is made.
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Bregman, Jesse; Dallara, Christopher D.; Ghassemieh, Shakib M.; Hanratty, James; Jackson, Evan; Kitts, Christopher; Klupar, Pete; Lindsay, Michael; Ignacio, Mas;
2009-01-01
The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained engineering team. The engineers on the team are capable of functioning in two to three engineering disciplines which allows highly efficient interdisciplinary engineering collaboration. NASA Ames is actively proposing mission concepts to use the COTSAT platform to accomplish science. If the COTSAT team validates this approach, it will allow the possibility for remote sensing missions to produce a high science yield for minimal cost and reduced schedule. Another aim of this approach is to yield an accelerated pathway from a Phase A study to mission launch. Leaders in the aerospace industry have shown interest in this methodology. Several visits and tours have been given in the lab. Although the concept of low-cost development is initially met with skepticism from some within the prohibitive aerospace industry, the project's efforts have been highly praised for the accomplishments met within a limited time and budget. Overall the development has progressed tremendously well and the team is answering critical questions for current and future low-cost small satellite developments. COTSAT subsystems are not limited to a specific weight class and could be adapted to produce smaller platforms and to fit various launch vehicles.
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Marshall Space Flight Center. Teams from Johnson Space Center, Kennedy Space Center and Marshall competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft takes off during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
Evaluation of Flowable Fill Surface Performance
2016-11-01
Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR...33 viii Preface This study was conducted for the U.S. Air Force’s (USAF) pavement evaluation teams, contingency readiness groups, base civil...engineers, major command pavement engineers, Rapid Engineer Deployable Heavy Operational Repair Squadron Engineer (RED HORSE) squadrons, and Prime Base
Engineering Students Designing a Statistical Procedure for Quantifying Variability
ERIC Educational Resources Information Center
Hjalmarson, Margret A.
2007-01-01
The study examined first-year engineering students' responses to a statistics task that asked them to generate a procedure for quantifying variability in a data set from an engineering context. Teams used technological tools to perform computations, and their final product was a ranking procedure. The students could use any statistical measures,…
NASA Technical Reports Server (NTRS)
2004-01-01
In early 1995, NASA s Glenn Research Center (then Lewis Research Center) formed an industry-government team with several jet engine companies to develop the National Combustion Code (NCC), which would help aerospace engineers solve complex aerodynamics and combustion problems in gas turbine, rocket, and hypersonic engines. The original development team consisted of Allison Engine Company (now Rolls-Royce Allison), CFD Research Corporation, GE Aircraft Engines, Pratt and Whitney, and NASA. After the baseline beta version was established in July 1998, the team focused its efforts on consolidation, streamlining, and integration, as well as enhancement, evaluation, validation, and application. These activities, mainly conducted at NASA Glenn, led to the completion of NCC version 1.0 in October 2000. NCC version 1.0 features high-fidelity representation of complex geometry, advanced models for two-phase turbulent combustion, and massively parallel computing. Researchers and engineers at Glenn have been using NCC to provide analysis and design support for various aerospace propulsion technology development projects. NASA transfers NCC technology to external customers using non- exclusive Space Act Agreements. Glenn researchers also communicate research and development results derived from NCC's further development through publications and special sessions at technical conferences.
Exploration Design Challenge 2014
2014-04-25
Astronaut Rex Walheim spoke at the USA Science and Engineering Festival on April 25, 2014. The event was held to announce the winner of the Exploration Design Challenge. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.The winning team's design will be built and flown aboard the Orion/EFT-1. The USA Science and Engineering Festival takes place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
A Software Tool for Integrated Optical Design Analysis
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)
2001-01-01
Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.
The positive effects of the FIRST high school robotics program
NASA Astrophysics Data System (ADS)
McIntyre, Nancy
The essence of the FIRST Robotics Program comes from the explanation of the acronym, which means For Inspiration and Recognition in Science and Technology. Their vision is to inspire young people, their schools, and communities, an appreciation of science and technology and an understanding that mastering these can enrich the lives of all. Last year I began our school's association with this program. I secured funding from NASA/JPL, attended a workshop and kickoff event, encouraged a team of students, parents, community members, and engineers to come together to design and construct a working, competitive robot in a six week time span. This year I expanded our participation to our 6th grade students. They competed in the FIRST Lego League. As part of my 9th grade science curriculum my students designed and built Panda II in class. The after-school team will submit a 30 second animation, an autocad design, and a team website for competition as well. Our AP art students have been charged with painting our travel crate. I couldn't have been successful without the help and support of a very dedicated JPL engineer who volunteers his time to come to our school to teach our team the technical components.
What is the Final Verification of Engineering Requirements?
NASA Technical Reports Server (NTRS)
Poole, Eric
2010-01-01
This slide presentation reviews the process of development through the final verification of engineering requirements. The definition of the requirements is driven by basic needs, and should be reviewed by both the supplier and the customer. All involved need to agree upon a formal requirements including changes to the original requirements document. After the requirements have ben developed, the engineering team begins to design the system. The final design is reviewed by other organizations. The final operational system must satisfy the original requirements, though many verifications should be performed during the process. The verification methods that are used are test, inspection, analysis and demonstration. The plan for verification should be created once the system requirements are documented. The plan should include assurances that every requirement is formally verified, that the methods and the responsible organizations are specified, and that the plan is reviewed by all parties. The options of having the engineering team involved in all phases of the development as opposed to having some other organization continue the process once the design has been complete is discussed.
Interdisciplinary Team Education Promotes Innovations in the Home Care of Older People
ERIC Educational Resources Information Center
Pitkälä, Kaisu H.; Finne-Soveri, Harriet; Immonen, Susanna; Lehti, Tuuli; Tiilikainen, Ida; Vesterinen, Teppo; Saarinen, Esa
2018-01-01
This article describes a new type of team training that involves undergraduate students of medicine, students from the Aalto University (industrial engineering and management, architecture, information networks, collaborative and industrial design and bioinformation technology) and specialized home care nurses. During the course, the students…
Turkey BILSAT-1: a Case Study for the Surrey Know-How Transfer and Training Program
NASA Astrophysics Data System (ADS)
Ghafoor, Nadeem; Murat Leloglu, Ugur; Sweeting, Martin, , Sir
2002-01-01
Surrey has established itself over the past 18 years as a world leader in providing hands-on spacecraft engineering training through its Small Satellite Engineering Know-How Transfer and Training (`KHTT') programme. This 18- month course runs alongside the construction of a microsatellite executed through SSTL, and strikes a balance between classroom-based teaching and total immersion within professional engineering teams. Hands-on training is provided covering the entire satellite engineering process, from mission and subsystem design, through module manufacture, assembly and integration, to qualification and flight model environmental tests, launch and commissioning. SSTL's experience in providing the KHTT programme has resulted in a well-defined course structure that yet retains the ability to accommodate individual customer requirements. The programme also takes full advantage of SSTL's intrinsic link with the Surrey Space Centre (`SSC') at the University of Surrey, offering a range of MSc and PhD research programmes pursuing common research interests of both SSTL and the customer, and in many cases complementing the development of either the customer's satellite or their future plans for an evolved space capability. Throughout 2002, three KHTT programmes have run in parallel at SSTL. A team of 11 engineers from the Centre Nationale des Techniques Spatiales in Algeria have now reached completion of their programme with Alsat-1, the first enhanced microsatellite of the Disaster Monitoring Constellation (`DMC'). In December 2001, 15 engineers from the Federal Ministry of Science and Technology in Nigeria arrived at SSTL and are now midway through their programme with Nigeriasat-1, the second enhanced microsatellite of the DMC. Thirdly, arriving slightly earlier in August 2001, a team from Tubitak-Bilten in Turkey commenced their KHTT programme with BILSAT-1, a high-capability enhanced microsatellite also contributing to the DMC, and are due to continue through February 2003. This paper explores the case of BILSAT-1 as a particular example of the SSTL KHTT approach. The BILSAT-1 KHTT team comprises a core group of 8 young engineers with strong backgrounds in mechanical, electrical and electronic engineering. Complementing the activities of this SSTL-based team are 4 MSc students conducting research at the Surrey Space Centre and a number of academic staff and technicians at Tubitak-Bilten in Ankara. The core team engineers, upon completing their academic lecture programme, immediately became involved in the development work on BILSAT-1. Hardware experience has been gained through the building, integrating and testing of an engineering model, before the team proceeds with testing of the assembled BILSAT-1 flight model. The team has also worked with their colleagues at Tubitak-Bilten in proposing and designing two of the BILSAT-1 payloads, the multispectral imager and the high-performance DSP card, both being manufactured in Turkey. In support of the new facility being built at Tubitak-Bilten several future cleanroom and ECAD staff visited SSTL earlier this year to attend soldering and PCB manufacturing courses. With training in project management forming the final component of the KHTT team's training a firm basis is established from which Tubitak-Bilten hopes to further develop its own satellite production capabilities.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- During this year's NASA MarsPort Engineering Design Student Competition 2002 conference, the University of Colorado at Boulder presents this display. Participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts.
Social Network Theory in Engineering Education
NASA Astrophysics Data System (ADS)
Simon, Peter A.
Collaborative groups are important both in the learning environment of engineering education and, in the real world, the business of engineering design. Selecting appropriate individuals to form an effective group and monitoring a group's progress are important aspects of successful task performance. This exploratory study looked at using the concepts of cognitive social structures, structural balance, and centrality from social network analysis as well as the measures of emotional intelligence. The concepts were used to analyze potential team members to examine if an individual's ability to perceive emotion in others and the self and to use, understand, and manage those emotions are a factor in a group's performance. The students from a capstone design course in computer engineering were used as volunteer subjects. They were formed into groups and assigned a design exercise to determine whether and which of the above-mentioned tools would be effective in both selecting teams and predicting the quality of the resultant design. The results were inconclusive with the exception of an individual's ability to accurately perceive emotions. The instruments that were successful were the Self-Monitoring scale and the accuracy scores derived from cognitive social structures and Level IV of network levels of analysis.
Engineering design knowledge recycling in near-real-time
NASA Technical Reports Server (NTRS)
Leifer, Larry; Baya, Vinod; Toye, George; Baudin, Catherine; Underwood, Jody Gevins
1994-01-01
It is hypothesized that the capture and reuse of machine readable design records is cost beneficial. This informal engineering notebook design knowledge can be used to model the artifact and the design process. Design rationale is, in part, preserved and available for examination. Redesign cycle time is significantly reduced (Baya et al, 1992). These factors contribute to making it less costly to capture and reuse knowledge than to recreate comparable knowledge (current practice). To test the hypothesis, we have focused on validation of the concept and tools in two 'real design' projects this past year: (1) a short (8 month) turnaround project for NASA life science bioreactor researchers was done by a team of three mechanical engineering graduate students at Stanford University (in a class, ME210abc 'Mechatronic Systems Design and Methodology' taught by one of the authors, Leifer); and (2) a long range (8 to 20 year) international consortium project for NASA's Space Science program (STEP: satellite test of the equivalence principle). Design knowledge capture was supported this year by assigning the use of a Team-Design PowerBook. Design records were cataloged in near-real time. These records were used to qualitatively model the artifact design as it evolved. Dedal, an 'intelligent librarian' developed at NASA-ARC, was used to navigate and retrieve captured knowledge for reuse.
Students Compete in NASA's Student Launch Competition
2018-03-30
NASA's Student Launch competition challenges middle school, high school and college teams to design, build, test and fly a high-powered, reusable rocket to an altitude of one mile above ground level while carrying a payload. During the eight-month process, the selected teams will go through a series of design, test and readiness reviews that resemble the real-world process of rocket development. In addition to building and preparing their rocket and payload, the teams must also create and execute an education and outreach program that will share their work with their communities and help inspire the next generation of scientists, engineers and explorers. Student Launch is hosted by NASA's Marshall Space Flight Center in Huntsville, Alabama, and is managed by Marshall's Academic Affairs Office to further NASA’s major education goal of attracting and encouraging students to pursue degrees and careers in the STEM fields of science, technology, engineering and mathematics.
2014-05-27
NASA Administrator Charles Bolden poses with an all-girl engineering team that participated in the White House Science Fair. "Team Rocket Power" was one of 100 teams that qualified for last year’s Team America Rocketry Challenge (TARC). Nia'mani Robinson, 15, Jasmyn Logan, 15, and Rebecca Chapin-Ridgely, 17, gave up their weekends and free time after school to build and test their bright purple rocket, which is designed to launch to an altitude of about 750 ft, and then return a “payload” (an egg) to the ground safely. The fourth White House Science Fair was held at the White House on May 27, 2014 and included 100 students from more than 30 different states who competed in science, technology, engineering, and math (STEM) competitions. (Photo Credit: NASA/Aubrey Gemignani)
NASA Technical Reports Server (NTRS)
Voigt, S.
1975-01-01
The use of software engineering aids in the design of a structural finite-element analysis computer program for the STAR-100 computer is described. Nested functional diagrams to aid in communication among design team members were used, and a standardized specification format to describe modules designed by various members was adopted. This is a report of current work in which use of the functional diagrams provided continuity and helped resolve some of the problems arising in this long-running part-time project.
ERIC Educational Resources Information Center
Dalvi, Tejaswini; Wendell, Kristen
2015-01-01
A team of science teacher educators working in collaboration with local elementary schools explored opportunities for science and engineering "learning by doing" in the particular context of urban elementary school communities. In this article, the authors present design task that helps students identify and find solutions to a…
2017 Robotic Mining Competition
2017-05-24
Team members from the New York University Tandon School of Engineering transport their robot to the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard
2011-01-01
This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.
NASA Technical Reports Server (NTRS)
Gallaway, Glen R.
1987-01-01
Human Engineering in many projects is at best a limited support function. In this Navy project the Human Engineering function is an integral component of the systems design and development process. Human Engineering is a member of the systems design organization. This ensures that people considerations are: (1) identified early in the project; (2) accounted for in the specifications; (3) incorporated into the design; and (4) the tested product meets the needs and expectations of the people while meeting the overall systems requirements. The project exemplifies achievements that can be made by the symbiosis between systems designers, engineers and Human Engineering. This approach increases Human Engineering's effectiveness and value to a project because it becomes an accepted, contributing team member. It is an approach to doing Human Engineering that should be considered for most projects. The functional and organizational issues giving this approach strength are described.
Research-oriented teaching in optical design course and its function in education
NASA Astrophysics Data System (ADS)
Cen, Zhaofeng; Li, Xiaotong; Liu, Xiangdong; Deng, Shitao
2008-03-01
The principles and operation plans of research-oriented teaching in the course of computer aided optical design are presented, especially the mode of research in practice course. This program includes contract definition phase, project organization and execution, post project evaluation and discussion. Modes of academic organization are used in the practice course of computer aided optical design. In this course the students complete their design projects in research teams by autonomous group approach and cooperative exploration. In this research process they experience the interpersonal relationship in modern society, the importance of cooperation in team, the functions of each individual, the relationships between team members, the competition and cooperation in one academic group and with other groups, and know themselves objectively. In the design practice the knowledge of many academic fields is applied including applied optics, computer programming, engineering software and etc. The characteristic of interdisciplinary is very useful for academic research and makes the students be ready for innovation by integrating the knowledge of interdisciplinary field. As shown by the practice that this teaching mode has taken very important part in bringing up the abilities of engineering, cooperation, digesting the knowledge at a high level and problem analyzing and solving.
Operator Serves as Integral Member of Plant Design Team
ERIC Educational Resources Information Center
Norris, Dan P.; Collins, Floyd W.
1978-01-01
It is suggested that plant operators can be useful in designing sewage treatment plants. The advantages of this cooperative arrangement to the consulting engineers and the city, and the pitfalls, are discussed. (BB)
Design study to simulate the development of a commercial freight transportation system
NASA Technical Reports Server (NTRS)
Batill, Stephen M.; Costello, Kevin; Pinkelman, Jim
1992-01-01
The Notre Dame Aerospace Engineering senior class was divided into six design teams. A request for proposals (RFP) asking for the design of a remotely piloted vehicle (RPV) was given to the class, and each design team was responsible for designing, developing, producing, and presenting an RPV concept. The RFP called for the design of commercial freight transport RPV. The RFP provided a description of a fictitious world called 'Aeroworld'. Aeroworld's characteristics were scaled to provide the same types of challenges for RPV design that the real world market provides for the design of commercial aircraft. Fuel efficiency, range and payload capabilities, production and maintenance costs, and profitability are a few of the challenges that were addressed in this course. Each design team completed their project over the course of a semester by designing and flight testing a prototype, freight-carrying remotely piloted vehicle.
Design Description for Team-Based Execution of Autonomous Missions (TEAM), Spiral 1
2008-11-18
TEAM), Spiral 1 Doc. #: Version: 1.0 Date: November 18, 2008 Page 12 of 39 Visualization Framework (WorldWind) Hibernate / Hibernate ...Spatial hibernate -properties XML Mapping WCS WFSWMS Enterprise Service Bus (Mule) Messaging, Data Transformation, Intelligent Routing Workflow Engine...government selected solutions. Neither these nor Mule® are deliverable, but the government may opt to use them if it so chooses. jBPM, java Business
How Engineers Really Think About Risk: A Study of JPL Engineers
NASA Technical Reports Server (NTRS)
Hihn, Jairus; Chattopadhyay, Deb; Valerdi, Ricardo
2011-01-01
The objectives of this work are: To improve risk assessment practices as used during the mission design process by JPL's concurrent engineering teams. (1) Developing effective ways to identify and assess mission risks (2) Providing a process for more effective dialog between stakeholders about the existence and severity of mission risks (3) Enabling the analysis of interactions of risks across concurrent engineering roles.
Aerodynamic Characterization of a Modern Launch Vehicle
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Holland, Scott D.; Blevins, John A.
2011-01-01
A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.
NASA Astrophysics Data System (ADS)
Aleksandrov, Y. B.; Mingazov, B. G.
2017-09-01
The paper shows a method of modeling and optimization of processes in combustion chambers of gas turbine engines using a computer program developed by a team at the Department of Jet Engines and Power Plants (DJEPP) of Technical University named after A N Tupolev KNRTU-KAI.
NASA Astrophysics Data System (ADS)
Marek, W.; Śliwiński, K.
2016-09-01
The article concerns research carried out by the Krakow University of Technology on the concept of a pneumatic fuel injection spark ignition engines. In this artkule an example of an application of this type of power to the Wankel's engine, together with a description of its design and operating principles and the benefits of its use. The work was carried out over many years by Prof. Stanislaw Jarnuszkiewicz despite the development of many patents but not widely used in engines. Authors who were involved in the team-work of the team of Prof. Jarnuszkiewicz, after conducting exploratory studies, believed that this solution has development potential and this will be presented in future articles.
SAFETY ON UNTRUSTED NETWORK DEVICES (SOUND)
2017-10-10
in the Cyber & Communication Technologies Group , but not on the SOUND project, would review the code, design and perform attacks against a live...3.5 Red Team As part of our testing , we planned to conduct Red Team assessments. In these assessments, a group of engineers from BAE who worked...developed under the DARPA CRASH program and SOUND were designed to be companion projects. SAFE focused on the processor and the host, SOUND focused on
NASA/USRA advanced design program activity, 1991-1992
NASA Astrophysics Data System (ADS)
Dorrity, J. Lewis; Patel, Suneer
The School of Textile and Fiber Engineering continued to pursue design projects with the Mechanical Engineering School giving the students an outstanding opportunity to interact with students from another discipline. Four problems were defined which had aspects which would be reasonably assigned to an interdisciplinary team. The design problems are described. The projects included lunar preform manufacturing, dust control for Enabler, an industrial sewing machine variable speed controllor, Enabler operation station, and design for producing fiberglass fabric in a lunar environment.
NASA/USRA advanced design program activity, 1991-1992
NASA Technical Reports Server (NTRS)
Dorrity, J. Lewis; Patel, Suneer
1992-01-01
The School of Textile and Fiber Engineering continued to pursue design projects with the Mechanical Engineering School giving the students an outstanding opportunity to interact with students from another discipline. Four problems were defined which had aspects which would be reasonably assigned to an interdisciplinary team. The design problems are described. The projects included lunar preform manufacturing, dust control for Enabler, an industrial sewing machine variable speed controllor, Enabler operation station, and design for producing fiberglass fabric in a lunar environment.
Collaborative Learning in Engineering Design.
ERIC Educational Resources Information Center
Newell, Sigrin
1990-01-01
Described is a capstone experience for undergraduate biomedical engineering students in which student teams work with children and adults with cerebral palsy to produce devices that make their lives easier or more enjoyable. The collaborative approach, benefits to the clients, and evaluation of the projects are discussed. (CW)
ERIC Educational Resources Information Center
Kirkman, Robert; Fu, Katherine; Lee, Bumsoo
2017-01-01
This paper introduces an approach to teaching ethics as design in a new course entitled Design Ethics, team-taught by a philosopher and an engineer/designer. The course follows a problem-based learning model in which groups of students work through the phases of the design process on a project for a local client, considering the design values and…
Instructional design considerations promoting engineering design self-efficacy
NASA Astrophysics Data System (ADS)
Jackson, Andrew M.
Engineering design activities are frequently included in technology and engineering classrooms. These activities provide an open-ended context for practicing critical thinking, problem solving, creativity, and innovation---collectively part of the 21st Century Skills which are increasingly needed for success in the workplace. Self-efficacy is a perceptual belief that impacts learning and behavior. It has been shown to directly impact each of these 21st Century Skills but its relation to engineering design is only recently being studied. The purpose of this study was to examine how instructional considerations made when implementing engineering design activities might affect student self-efficacy outcomes in a middle school engineering classroom. Student responses to two self-efficacy inventories related to design, the Engineering Design Self-Efficacy Instrument and Creative Thinking Self-Efficacy Inventory, were collected before and after participation in an engineering design curriculum. Students were also answered questions on specific factors of their experience during the curriculum which teachers may exhibit control over: teamwork and feedback. Results were analyzed using Pearson's correlation coefficients, paired and independent t-tests, and structural equation modeling to better understand patterns for self-efficacy beliefs in students. Results suggested that design self-efficacy and creative thinking self-efficacy are significantly correlated, r(1541) = .783, p < .001, and increased following participation in a design curriculum, M diff = 1.32, t(133) = 7.60, p < .001 and Mdiff = 0.79, t(124) = 4.19, p < .001 respectively. Structural models also showed that students perceive team inclusion and feedback as significant contributors to their self-efficacy beliefs, while team diversity was not related to self-efficacy. Separate models for each predictor demonstrated good fit. Recommendations are made based on the corresponding nature of engineering design self-efficacy and creative thinking self-efficacy: strategies encouraging self-efficacy in these domains may be transferrable. Instructors are made aware of the significant impact of classroom strategies for increasing self-efficacy and given specific recommendations related to teamwork and feedback to support students. Finally, although there were weaknesses in the study related to the survey administration, future research opportunities are presented which may build from this work.
Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling
NASA Technical Reports Server (NTRS)
Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw
2005-01-01
The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.
NASA Technical Reports Server (NTRS)
Henderson, A. J., Jr.
2001-01-01
FIRST is the acronym of For Inspiration and Recognition of Science and Technology. FIRST is a 501.C.3 non-profit organization whose mission is to generate an interest in science and engineering among today's young adults and youth. This mission is accomplished through a robot competition held annually in the spring of each year. NASAs Marshall Space Flight Center, Education Programs Department, awarded a grant to Lee High School, the sole engineering magnet school in Huntsville, Alabama. MSFC awarded the grant in hopes of fulfilling its goal of giving back invaluable resources to its community and engineers, as well as educating tomorrow's work force in the high-tech area of science and technology. Marshall engineers, Lee High School students and teachers, and a host of other volunteers and parents officially initiated this robot design process and competitive strategic game plan. The FIRST Robotics Competition is a national engineering contest, which immerses high school students in the exciting world of science and engineering. Teaming with engineers from government agencies, businesses, and universities enables the students to learn about the engineering profession. The students and engineers have six weeks to work together to brainstorm, design, procure, construct, and test their robot. The team then competes in a spirited, 'no-holds barred' tournament, complete with referees, other FIRST-designed robots, cheerleaders, and time clocks. The partnerships developed between schools, government agencies, businesses, and universities provide an exchange of resources and talent that build cooperation and expose students to new and rewarding career options. The result is a fun, exciting, and stimulating environment in which all participants discover the important connections between classroom experiences and real-world applications. This paper will highlight the story, engineering development, and evolutionary design of Xtraktor, the rookie robot, a manufacturing marvel and engineering achievement.
2003-07-23
In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.
How to Do Science From an Engineering Organization
NASA Technical Reports Server (NTRS)
Suggs, Robert M.
2003-01-01
MSFC's Space Environments Team performs engineering support for a number of NASA spaceflight projects by defining the space environment, developing design requirements, supporting the design process, and supporting operations. Examples of this type of support are given including meteoroid environment work for the Jovian Icy Moon Orbiter mission, ionizing radiation support for the Chandra X-Ray Observatory, and astronomicaVgeophysica1 observation planning for International Space Station.
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.
2010-01-01
Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.
SLS Model Based Design: A Navigation Perspective
NASA Technical Reports Server (NTRS)
Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin
2018-01-01
The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.
Empirical studies of design software: Implications for software engineering environments
NASA Technical Reports Server (NTRS)
Krasner, Herb
1988-01-01
The empirical studies team of MCC's Design Process Group conducted three studies in 1986-87 in order to gather data on professionals designing software systems in a range of situations. The first study (the Lift Experiment) used thinking aloud protocols in a controlled laboratory setting to study the cognitive processes of individual designers. The second study (the Object Server Project) involved the observation, videotaping, and data collection of a design team of a medium-sized development project over several months in order to study team dynamics. The third study (the Field Study) involved interviews with the personnel from 19 large development projects in the MCC shareholders in order to study how the process of design is affected by organizationl and project behavior. The focus of this report will be on key observations of design process (at several levels) and their implications for the design of environments.
1999-03-06
Robots, maneuvered by student teams behind protective walls, raise their caches of pillow-like disks to earn points in competition while spectators in the bleachers and on the sidelines cheer their favorite teams. Held at the KSC Visitor Complex, the 1999 Southeastern Regional robotic competition, sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST, comprises 27 teams pairing high school students with engineer mentors and corporations, pitting gladiator robots against each other in an athletic-style competition. Powered by 12-volt batteries and operated by remote control, the robotic gladiators spend two minutes each trying to grab, claw and hoist the pillows onto their machines. Teams play defense by taking away competitors' pillows and generally harassing opposing machines. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers
Exploration Design Challenge 2014
2014-04-25
Mark Geyer, Orion Program Manager, spoke at the USA Science and Engineering Festival on April 25, 2014. The event was held to announce the winner of the Exploration Design Challenge. The goal of the Exploration Design Challenge was for students to research and design ways to protect astronauts from space radiation.The winning team's design will be built and flown aboard the Orion/EFT-1. The USA Science and Engineering Festival takes place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
ERIC Educational Resources Information Center
Dahm, Kevin; Riddell, William; Constans, Eric; Courtney, Jennifer; Harvey, Roberta; Von Lockette, Paris
2009-01-01
This paper discusses a sophomore-level course that teaches engineering design and technical writing. Historically, the course was taught using semester-long design projects. Most students' overall approach to design problems left considerable room for improvement. Many teams chose a design without investigating alternatives, and important…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wantuck, P. J.; Hollen, R. M.
2002-01-01
This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and processmore » the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation needs of many Laboratory programs.« less
ERIC Educational Resources Information Center
Svihla, Vanessa Lynn
2009-01-01
Authentic design commonly involves teams of designers collaborating on ill-structured problems over extended time periods. Nonetheless, design has been studied extensively in sequestered settings, limiting our understanding of design as process and especially of learning design process. This study addresses potential shortcomings of such studies…
Hirsch, Penny L; Yarnoff, Charles
2011-01-01
The required course for freshmen in Northwestern University's engineering school - a 2-quarter sequence called Engineering Design and Communication (EDC) - is noteworthy not only for its project-based focus on user-centered design, but also for its innovative integrated approach to teaching communication, teamwork, and ethics. Thanks to the collaboration between EDC faculty and staff at the Rehabilitation Institute of Chicago, EDC students, at the beginning of their education, experience the excitement of solving problems for real clients and users. At the same time, these authentic design projects offer an ideal setting for teaching students how to communicate effectively to different audiences and perform productively as team members and future leaders in engineering.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
...), Global Product Development, Engineering Workstation Refresh Team, Working On-Site at General Motors... groups: The Non-Information Technology Business Development Team, the Engineering Application Support Team, and the Engineering Workstation Refresh Team. On February 2, 2011, the Department issued an...
Oil-Free Turbomachinery Team Passed Milestone on Path to the First Oil-Free Turbine Aircraft Engine
NASA Technical Reports Server (NTRS)
Bream, Bruce L.
2002-01-01
The Oil-Free Turbine Engine Technology Project team successfully demonstrated a foil-air bearing designed for the core rotor shaft of a turbine engine. The bearings were subjected to test conditions representative of the engine core environment through a combination of high speeds, sustained loads, and elevated temperatures. The operational test envelope was defined during conceptual design studies completed earlier this year by bearing manufacturer Mohawk Innovative Technologies and the turbine engine company Williams International. The prototype journal foil-air bearings were tested at the NASA Glenn Research Center. Glenn is working with Williams and Mohawk to create a revolution in turbomachinery by developing the world's first Oil-Free turbine aircraft engine. NASA's General Aviation Propulsion project and Williams International recently developed the FJX-2 turbofan engine that is being commercialized as the EJ-22. This core bearing milestone is a first step toward a future version of the EJ-22 that will take advantage of recent advances in foil-air bearings by eliminating the need for oil lubrication systems and rolling element bearings. Oil-Free technology can reduce engine weight by 15 percent and let engines operate at very high speeds, yielding power density improvements of 20 percent, and reducing engine maintenance costs. In addition, with NASA coating technology, engines can operate at temperatures up to 1200 F. Although the project is still a couple of years from a full engine test of the bearings, this milestone shows that the bearing design exceeds the expected environment, thus providing confidence that an Oil-Free turbine aircraft engine will be attained. The Oil-Free Turbomachinery Project is supported through the Aeropropulsion Base Research Program.
2014-05-23
CAPE CANAVERAL, Fla. -- Rob Mueller announces the winner of the Judges' Innovation Award during NASA's 2014 Robotic Mining Competition awards ceremony inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. The competition includes on-site mining, writing a systems engineering paper, performing outreach projects for K-12 students, slide presentation and demonstrations, and team spirit. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
Integrating computer programs for engineering analysis and design
NASA Technical Reports Server (NTRS)
Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.
1983-01-01
The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.
Exploration Design Challenge 2014
2014-04-25
NASA’s Administrator, Charles Bolden (left), President/CEO of Lockheed Martin, Marillyn Hewson (right), and astronaut Rex Walheim (back row) pose for a group photo with the winning high school team in the Exploration Design Challenge. Team ARES from the Governors School for Science and Technology in Hampton, Va. won the challenge with their radiation shield design, which will be built and flown aboard the Orion/EFT-1. The award was announced at the USA Science and Engineering Festival on April 25, 2014 at the Washington Convention Center. Photo Credit: (NASA/Aubrey Gemignani)
ERIC Educational Resources Information Center
Dubikovsky, Sergey I.
2016-01-01
For many students in engineering and engineering technology programs in the US, senior capstone design courses require students to form a team, define a problem, and find a feasible technical solution to address this problem. Students must integrate the knowledge and skills acquired during their studies at the college or university level. These…
Space Engineering Projects in Design Methodology
NASA Technical Reports Server (NTRS)
Crawford, R.; Wood, K.; Nichols, S.; Hearn, C.; Corrier, S.; DeKunder, G.; George, S.; Hysinger, C.; Johnson, C.; Kubasta, K.
1993-01-01
NASA/USRA is an ongoing sponsor of space design projects in the senior design courses of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, focusing on the first-semester design methodology course. The philosophical basis and pedagogical structure of this course is summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper includes a summary of the projects completed during the 1992-93 Academic Year in the methodology course, and concludes with an example of two projects completed by student design teams.
NASA Astrophysics Data System (ADS)
Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.
2017-12-01
The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn how to design a mission and build a spacecraft in a collaborative and fast-pace environment.
2017 Robotic Mining Competition
2017-05-23
Team Raptor members from the University of North Dakota College of Engineering and Mines check their robot, named "Marsbot," in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
Managing MDO Software Development Projects
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Salas, A. O.
2002-01-01
Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.
ERIC Educational Resources Information Center
Lockwood, Jeff
2008-01-01
NASA (National Aeronautics and Space Administration) is one of the biggest employers of engineers in the world--about 90,000 among its own employees and its corporate partners. So it's not surprising that NASA wants kids to learn more about engineering, become interested in the things engineers do, and experience the world of engineering…
NASA's Gravitational - Wave Mission Concept Study
NASA Technical Reports Server (NTRS)
Stebbins, Robin; Jennrich, Oliver; McNamara, Paul
2012-01-01
With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.
Using CASE tools to write engineering specifications
NASA Astrophysics Data System (ADS)
Henry, James E.; Howard, Robert W.; Iveland, Scott T.
1993-08-01
There are always a wide variety of obstacles to writing and maintaining engineering documentation. To combat these problems, documentation generation can be linked to the process of engineering development. The same graphics and communication tools used for structured system analysis and design (SSA/SSD) also form the basis for the documentation. The goal is to build a living document, such that as an engineering design changes, the documentation will `automatically' revise. `Automatic' is qualified by the need to maintain textual descriptions associated with the SSA/SSD graphics, and the need to generate new documents. This paper describes a methodology and a computer aided system engineering toolset that enables a relatively seamless transition into document generation for the development engineering team.
Rurality as an Asset for Inclusive Teaching in Chemical Engineering
ERIC Educational Resources Information Center
Gomez, Jamie; Svihla, Vanessa
2018-01-01
We developed and tested a pedagogical strategy--asset-based design challenges--to enhance diversity in early chemical engineering coursework. Using qualitative methods, we found first-year students justified high-cost solutions with ethical arguments; teams that included rural expertise argued instead for economically-viable solutions. In the…
Distributed Collaborative Homework Activities in a Problem-Based Usability Engineering Course
ERIC Educational Resources Information Center
Carroll, John M.; Jiang, Hao; Borge, Marcela
2015-01-01
Teams of students in an upper-division undergraduate Usability Engineering course used a collaborative environment to carry out a series of three distributed collaborative homework assignments. Assignments were case-based analyses structured using a jigsaw design; students were provided a collaborative software environment and introduced to a…
1999-03-06
At the start of the award ceremony at the 1999 FIRST Southeastern Regional robotic competition held at KSC, judges, including Deputy Director for Launch and Payload Processing Loren Shriver (left), give "high fives" to a winning team from Minnesota as they enter. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations. The regional event comprised 27 teams. Along with the championship award, which went to high school teams in Miami and San German, Puerto Rico, 15 other awards were presented
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection... competence; (B) Capability to perform; (C) Past performance of the offeror's team (including the architect... purposes and objectives of two-phase design-build contracting). (b) After evaluating phase-one proposals...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection... competence; (B) Capability to perform; (C) Past performance of the offeror's team (including the architect... purposes and objectives of two-phase design-build contracting). (b) After evaluating phase-one proposals...
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection... competence; (B) Capability to perform; (C) Past performance of the offeror's team (including the architect... purposes and objectives of two-phase design-build contracting). (b) After evaluating phase-one proposals...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection... competence; (B) Capability to perform; (C) Past performance of the offeror's team (including the architect... purposes and objectives of two-phase design-build contracting). (b) After evaluating phase-one proposals...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection... competence; (B) Capability to perform; (C) Past performance of the offeror's team (including the architect... purposes and objectives of two-phase design-build contracting). (b) After evaluating phase-one proposals...
Design of a vibration isolation system for a cycle ergometer to be used onboard the Space Shuttle
NASA Technical Reports Server (NTRS)
Pearson, Lillian; Tait, Steven; Trevino, Maurice
1991-01-01
Low frequency vibrations generated during exercise using the cycle ergometer onboard the Space Shuttle are disrupting sensitive microgravity experiments. The design team is asked by NASA/USRA to generate alternatives for the design of a vibration isolation system for the cycle ergometer. It is the design team's objective to present alternative designs and a problem solution for a vibration isolation system for an exercise cycle ergometer to be used onboard the Space Shuttle. In the development of alternative designs, the design team emphasizes passive systems as opposed to active control systems. This decision is made because the team feels that passive systems are less complex than active control systems, external energy sources are not required, and mass is reduced due to the lack of machinery such as servomotors or compressors typical of active control systems. Eleven alternative designs are developed by the design team. From these alternatives, three active control systems are included to compare the benefits of active and passive systems. Also included in the alternatives is an isolation system designed by an independent engineer that was acquired late in the project. The eight alternatives using passive isolation systems are narrowed down by selection criteria to four considered to be the most promising by the design team. A feasibility analysis is performed on these four passive isolation systems. Based on the feasibility analysis, a final design solution is chosen and further developed. From the development of the design, the design team has concluded that passive systems are not effective at isolating vibrations for the low frequencies considered for this project. Recommendations are made for guidelines of passive isolation design and application of such systems.
Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies
NASA Astrophysics Data System (ADS)
Maheshwari, Apoorv
As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.
Building information models for astronomy projects
NASA Astrophysics Data System (ADS)
Ariño, Javier; Murga, Gaizka; Campo, Ramón; Eletxigerra, Iñigo; Ampuero, Pedro
2012-09-01
A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.
Bagging system, soil stabilization mat, and tent frame for a lunar base
NASA Technical Reports Server (NTRS)
1990-01-01
Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.
Bagging system, soil stabilization mat, and tent frame for a lunar base
NASA Astrophysics Data System (ADS)
1990-11-01
Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.
A web-based online collaboration platform for formulating engineering design projects
NASA Astrophysics Data System (ADS)
Varikuti, Sainath
Effective communication and collaboration among students, faculty and industrial sponsors play a vital role while formulating and solving engineering design projects. With the advent in the web technology, online platforms and systems have been proposed to facilitate interactions and collaboration among different stakeholders in the context of senior design projects. However, there are noticeable gaps in the literature with respect to understanding the effects of online collaboration platforms for formulating engineering design projects. Most of the existing literature is focused on exploring the utility of online platforms on activities after the problem is defined and teams are formed. Also, there is a lack of mechanisms and tools to guide the project formation phase in senior design projects, which makes it challenging for students and faculty to collaboratively develop and refine project ideas and to establish appropriate teams. In this thesis a web-based online collaboration platform is designed and implemented to share, discuss and obtain feedback on project ideas and to facilitate collaboration among students and faculty prior to the start of the semester. The goal of this thesis is to understand the impact of an online collaboration platform for formulating engineering design projects, and how a web-based online collaboration platform affects the amount of interactions among stakeholders during the early phases of design process. A survey measuring the amount of interactions among students and faculty is administered. Initial findings show a marked improvement in the students' ability to share project ideas and form teams with other students and faculty. Students found the online platform simple to use. The suggestions for improving the tool generally included features that were not necessarily design specific, indicating that the underlying concept of this collaborative platform provides a strong basis and can be extended for future online platforms. Although the platform was designed to promote collaboration, adoption of the collaborative platform by students and faculty has been slow. While the platform appears to be very useful for collaboration, more time is required for it to be widely used by all the stakeholders and to fully convert from email communication to the use of the online collaboration platform.
NASA Planetary Science Summer School: Longitudinal Study
NASA Astrophysics Data System (ADS)
Giron, Jennie M.; Sohus, A.
2006-12-01
NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.
Case Study of 'Engineering Peer Meetings' in JPL's ST-6 Project
NASA Technical Reports Server (NTRS)
Chao, Lawrence P.; Tumer, Irem
2004-01-01
This design process error-proofing case study describes a design review practice implemented by a project manager at NASA Jet Propulsion Laboratory. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review (PDR) and Critical Design Review (CDR) are a required part of every project and mission development. However, the engineering peer reviews that support teams technical work on such projects are often informal, ad hoc, and inconsistent across the organization. This case study discusses issues and innovations identified by a project manager at JPL and implemented in 'engineering peer meetings' for his group.
Case Study of "Engineering Peer Meetings" in JPL's ST-6 Project
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Chao, Lawrence P.
2003-01-01
This design process error-proofing case study describes a design review practice implemented by a project manager at NASA Jet Propulsion Laboratory. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review (PDR) and Critical Design Review (CDR) are a required part of every project and mission development. However, the engineering peer reviews that support teams technical work on such projects are often informal, ad hoc, and inconsistent across the organization. This case study discusses issues and innovations identified by a project manager at JPL and implemented in "engineering peer meetings" for his group.
Advanced Information Technology in Simulation Based Life Cycle Design
NASA Technical Reports Server (NTRS)
Renaud, John E.
2003-01-01
In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.
NASA Technical Reports Server (NTRS)
Rowe, Sidney E.
2010-01-01
In September 2007, the Engineering Directorate at the Marshall Space Flight Center (MSFC) created the Design System Focus Team (DSFT). MSFC was responsible for the in-house design and development of the Ares 1 Upper Stage and the Engineering Directorate was preparing to deploy a new electronic Configuration Management and Data Management System with the Design Data Management System (DDMS) based upon a Commercial Off The Shelf (COTS) Product Data Management (PDM) System. The DSFT was to establish standardized CAD practices and a new data life cycle for design data. Of special interest here, the design teams were to implement Model Based Definition (MBD) in support of the Upper Stage manufacturing contract. It is noted that this MBD does use partially dimensioned drawings for auxiliary information to the model. The design data lifecycle implemented several new release states to be used prior to formal release that allowed the models to move through a flow of progressive maturity. The DSFT identified some 17 Lessons Learned as outcomes of the standards development, pathfinder deployments and initial application to the Upper Stage design completion. Some of the high value examples are reviewed.
Joint electrical engineering/physics course sequence for optics fundamentals and design
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Maldonado, Theresa A.; Black, Truman D.
2000-06-01
Optics is a key technology in a broad range of engineering and science applications of high national priority. Engineers and scientists with a sound background in this field are needed to preserve technical leadership and to establish new directions of research and development. To meet this educational need, a joint Electrical Engineering/Physics optics course sequence was created as PHYS 3445 Fundamentals of Optics and EE 4444 Optical Systems Design, both with a laboratory component. The objectives are to educate EE and Physics undergraduate students in the fundamentals of optics; in interdisciplinary problem solving; in design and analysis; in handling optical components; and in skills such as communications and team cooperation. Written technical reports in professional format are required, formal presentations are given, and participation in paper design contests is encouraged.
DESIGN OF A TRAP GREASE UPGRADER FOR BIOFUEL PROCESSING - PHASE I
This project provides capstone senior design experience to several teams of engineering undergraduates at Drexel University through the technical and economic evaluation of a trap grease to biodiesel conversion process. The project incorporates two phases: Phase I characteri...
Gaining the Competitive Edge: Design for Manufacturing
NASA Technical Reports Server (NTRS)
Batill, Stephen M.; Pinkelman, Jim; Sellar, Richard
1993-01-01
The successful design of a commercial aircraft which is intended to be in direct competition with existing aircraft requires a market analysis to establish design requirements, the development of a concept to achieve those goals. and the ability to economically manufacture the aircraft. It is often the case that an engineer designs system components with only the perspective of a particular discipline. The relationship of that component to the entire system is often a minor consideration. In an effort to highlight the interaction that is necessary during the design process, the students were organized into design/build teams and required to integrate aspects of market analysis, engineering design, production and economics into their concepts. In order to facilitate this process a hypothetical "Aeroworld" was established. Having been furnished relevant demographic and economic data for "Aeroworld". students were given the task of designing and building an aircraft for a specific market while achieving an economically competitive design. Involvement of the team in the evolution of the design from market definition to technical development to manufacturing allowed the students to identify critical issues in the design process and to encounter many of the conflicting requirements which arise in an aerospace systems design.
Educating Tomorrow's Aerrospace Engineers by Developing and Launching Liquid-Propelled Rockets
NASA Astrophysics Data System (ADS)
Besnard, Eric; Garvey, John; Holleman, Tom; Mueller, Tom
2002-01-01
conducted at California State University, Long Beach (CSULB), in which engineering students develop and launch liquid propelled rockets. The program is articulated around two main activities, each with specific objectives. The first component of CALVEIN is a systems integration laboratory where students develop/improve vehicle subsystems and integrate them into a vehicle (Prospector-2 - P-2 - for the 2001-02 academic year - AY). This component has three main objectives: (1) Develop hands- on skills for incoming students and expose them to aerospace hardware; (2) allow for upper division students who have been involved in the program to mentor incoming students and manage small teams; and (3) provide students from various disciplines within the College of Engineering - and other universities - with the chance to develop/improve subsystems on the vehicle. Among recent student projects conducted as part of this component are: a new 1000 lbf thrust engine using pintle injector technology, which was successfully tested on Dec. 1, 2001 and flown on Prospector-2 in Feb. 2002 (developed by CSULB Mechanical and Aerospace Engineering students); a digital flight telemetry package (developed by CSULB Electrical Engineering students); a new recovery system where a mechanical system replaces pyrotechnics for parachute release (developed by CSULB Mechanical and Aerospace Engineering students); and a 1-ft payload bay to accommodate experimental payloads (e.g. "CANSATS" developed by Stanford University students). The second component of CALVEIN is a formal Aerospace System Design curriculum. In the first-semester, from top-level system requirements, the students perform functional analysis, define the various subsystems and derive their requirements. These are presented at the Systems Functional and Requirement Reviews (SFR &SRR). The methods used for validation and verification are determined. Specifications and Interface Control Documents (ICD) are generated by the student team(s). Trade studies are identified and conducted, leading to a Preliminary Design Review (PDR) at the end of the first semester. A detailed design follows, culminating in a Critical Design Review (CDR), etc. A general process suitable for a two-semester course sequence will be outlined. The project is conducted in an Integrated Product Team (IPT) environment, which includes a project manager, a systems engineer, and the various disciplines needed for the project (propulsion, aerodynamics, structures and materials, mass, CAD, thermal, fluids, etc.). Each student works with a Faculty member or industry advisor who is a specialist in his/her area. This design curriculum enhances the education of the graduates and provides future employers with engineers cognizant of and experienced in the application of Systems Engineering to a full-scale project over the entire product development cycle. For the AY01-02, the curriculum is being applied to the development of a gimbaled aerospike engine and its integration into P-3, scheduled to fly in May 2002. The paper ends with a summary of "lessons learned" from this experience. Budget issues are also addressed to demonstrate the ability to replicate such projects at other institutions with minimal costs, provided that it can be taken advantages of possible synergies between existing programs, in-house resources, and cooperation with other institutions or organizations.
Mercury Orbiter: Report of the Science Working Team
NASA Technical Reports Server (NTRS)
Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.
1991-01-01
The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.
Design of an Integrated Team Project as Bachelor Thesis in Bioscience Engineering
ERIC Educational Resources Information Center
Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter
2014-01-01
Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the…
ERIC Educational Resources Information Center
Koretsky, Milo D.; Kelly, Christine; Gummer, Edith
2011-01-01
The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…
Breathing Life into Engineering: A Lesson Study Life Science Lesson
ERIC Educational Resources Information Center
Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa
2016-01-01
A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…
Acting Diverse: Target Group Orientation as Key Competence in Engineering Education
ERIC Educational Resources Information Center
Ihsen, S.; Buschmeyer, A.
2007-01-01
International companies are recognised by equity between men and women as well as between other different groups (Diversity) as an economic factor and incorporate it into their company visions. Mixed teams are set up to design target group-oriented products, for example in automotive engineering. Therefore they need employees who represent the…
Fitting the Framework: The STEM Institute and the 4-H Essential Elements
ERIC Educational Resources Information Center
Sallee, Jeff; Peek, Gina G.
2014-01-01
Extension and 4-H youth development programs are addressing a shortage of scientists, engineers, and other related professionals by promoting science, technology, engineering, and math (STEM). This case study illustrates how the Oklahoma 4-H Youth Development program trained youth-adult teams to design and implement STEM projects. The STEM…
Field-Reversed Configuration Power Plant Critical-Issue Scoping Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.
A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less
Robotic Mining Competition Awards Ceremony
2017-05-26
Inside the Apollo-Saturn V Center at the Kennedy Space Center Visitor Complex in Florida, Pat Simpkins, director of the Engineering Directorate at Kennedy Space Center, speaks to the teams during the award ceremony for NASA's 8th Annual Robotic Mining Competition. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26, at the visitor complex. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
NASA Technical Reports Server (NTRS)
Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan
2014-01-01
ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.
Best practices for team-based assistive technology design courses.
Goldberg, Mary R; Pearlman, Jonathan L
2013-09-01
Team-based design courses focused on products for people with disabilities have become relatively common, in part because of training grants such as the NSF Research to Aid Persons with Disabilities course grants. An output from these courses is an annual description of courses and projects but has yet to be complied into a "best practices guide," though it could be helpful for instructors. To meet this need, we conducted a study to generate best practices for assistive technology product development courses and how to use these courses to teach students the fundamentals of innovation. A full list of recommendations is comprised in the manuscript and include identifying a client through a reliable clinical partner; allowing for transparency between the instructors, the client, and the team(s); establishing multi-disciplinary teams; using a process-oriented vs. solution-oriented product development model; using a project management software to facilitate and archive communication and outputs; facilitating client interaction through frequent communication; seeking to develop professional role confidence to inspire students' commitment to engineering and (where applicable) rehabilitation field; publishing student designs on repositories; incorporating both formal and informal education opportunities related to design; and encouraging students to submit their designs to local or national entrepreneurship competitions.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- The audience anxiously awaits a referee's decision during competition of student teams in the FIRST robotics event held at the University of Central Florida Arena March 8-10. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2007-03-09
KENNEDY SPACE CENTER, FLA. -- The student team dressed in pink is a coordinated effort cosponsored by NASA KSC and representing Rockledge, Cocoa Beach and Viera High Schools in Central Florida. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
Hierarchy curriculum for practical skills training in optics and photonics
NASA Astrophysics Data System (ADS)
Zheng, XiaoDong; Wang, XiaoPing; Liu, Xu; Liu, XiangDong; Lin, YuanFang
2017-08-01
The employers in optical engineering fields hope to recruit students who are capable of applying optical principles to solve engineering problems and have strong laboratory skills. In Zhejiang University, a hierarchy curriculum for practical skill training has been constructed to satisfy this demand. This curriculum includes "Introductive practicum" for freshmen, "Opto-mechanical systems design", "Engineering training", "Electronic system design", "Student research training program (SRTP)", "National University Students' Optical-Science-Technology Competition game", and "Offcampus externship". Without cutting optical theory credit hours, this hierarchy curriculum provides a step-by-step solution to enhance students' practical skills. By following such a hierarchy curriculum, students can smoothly advance from a novice to a qualified professional expert in optics. They will be able to utilize optical engineering tools to design, build, analyze, improve, and test systems, and will be able to work effectively in teams to solve problems in engineering and design.
Job Analysis and Workplace Design Resources for Rehabilitation.
ERIC Educational Resources Information Center
Priest, John W.; Roessler, Richard T.
1983-01-01
The authors stress the role of the multidisciplinary team in vocational rehabilitation, particularly the industrial engineer, in performing job analysis and workplace design to accommodate disabled persons in industry. Steps to effective job adaptation are charted, and methods of job analysis are discussed. (Author/MC)
1999-03-06
At the award ceremony for the 1999 FIRST Southeastern Regional robotic competition held at KSC, one of the winning teams, from Ocoee, Fla., is greeted by (left to right) astronaut David Brown, Deputy Director for Launch and Payload Processing Loren Shriver, Center Director Roy Bridges, and two unidentified judges. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations. The regional event comprised 27 teams. Along with the championship award, which went to high school teams from Miami and San German, Puerto Rico, 15 other awards were presented
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Students cheer their team during final matches at the 1999 Southeastern Regional robotic competition at the KSC Visitor Complex. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, climb onto a platform (with flags), as well as raise the cache of pillows, maneuvered by student teams behind protective walls. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers by pairing engineers and corporations with student teams.
1999-03-06
Student teams behind protective walls operate remote controls to maneuver their robots around the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. The robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams played defense by taking away competitors' pillows and generally harassing opposing machines. On the side of the field are the judges, including (far left) Deputy Director for Launch and Payload Processing Loren Shriver and former KSC Director of Shuttle Processing Robert Sieck. A giant screen TV displays the action on the field. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers
An Example of Risk Informed Design
NASA Technical Reports Server (NTRS)
Banke, Rick; Grant, Warren; Wilson, Paul
2014-01-01
NASA Engineering requested a Probabilistic Risk Assessment (PRA) to compare the difference in the risk of Loss of Crew (LOC) and Loss of Mission (LOM) between different designs of a fluid assembly. They were concerned that the configuration favored by the design team was more susceptible to leakage than a second proposed design, but realized that a quantitative analysis to compare the risks between the two designs might strengthen their argument. The analysis showed that while the second design did help improve the probability of LOC, it did not help from a probability of LOM perspective. This drove the analysis team to propose a minor design change that would drive the probability of LOM down considerably. The analysis also demonstrated that there was another major risk driver that was not immediately obvious from a typical engineering study of the design and was therefore unexpected. None of the proposed alternatives were addressing this risk. This type of trade study demonstrates the importance of performing a PRA in order to completely understand a system's design. It allows managers to use risk as another one of the commodities (e.g., mass, cost, schedule, fault tolerance) that can be traded early in the design of a new system.
NASA Technical Reports Server (NTRS)
1980-01-01
A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.
Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience
ERIC Educational Resources Information Center
Santulli, Carlo; Langella, Carla
2011-01-01
In recent years, bio-inspired approach to design has gained considerable interest between designers, engineers and end-users. However, there are difficulties in introducing bio-inspiration concepts in the university curriculum in that they involve multi-disciplinary work, which can only possibly be successfully delivered by a team with integrated…
2011-03-11
ORLANDO, Fla. – The Pink Team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. The Pink Team finished sixth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. The team also took home the Industrial Design Award sponsored by General Motors. Kennedy's Deputy Director Janet Petro and Engineering Director Pat Simpkins also stopped by the competition to encourage the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
Fabric Structures Team Technology Update
2011-11-01
Command Posts – • Julia McAdams – Chemical Engineer • Liz Swisher – Electrical Engineer • Chris Aall – Mechanical Engineer • Clinton McAdams...TEMPER design originally built for AMED through Force Provider (640 sq ft with a 20 ft long airlock) • The entire airlock is made of textiles and...Activity (USAMMDA) UNCLASSIFIED Large Command Post Airbeam Shelter NSRDEC Deployment – Sept 2011 UNCLASSIFIED Airbeam & Frame Backpackable Tents • Primary
The European Project Semester at ISEP: the challenge of educating global engineers
NASA Astrophysics Data System (ADS)
Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo
2015-05-01
Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.
Student Participation in Rover Field Trials
NASA Astrophysics Data System (ADS)
Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.
2001-12-01
The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of science, engineering, and technology.
Hurol, Yonca
2014-06-01
Architects design building structures, although structural design is the profession of structural engineers. Thus, it is better for architects and structural engineers to collaborate starting from the initial phases of the architectural design. However, this is not very common because of the contradictory design processes and value systems held within the two professions. This article provides a platform upon which architects and structural engineers can resolve the value conflicts between them by analysing phases of the structural design of reinforced concrete frame systems in architecture, the criteria of the structural design for each phase and determining the conflicting values for each criterion. The results shown in the article demonstrate that the architectural design of structures is a complex process, which is based on contradictory values and value systems. Finally, the article suggests to architects and structural engineers to use Value Sensitive Design and to choose an appropriate team leader in order to resolve the unethical conflict between them and to avoid any unreasonable decision making.
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Huber, Frank W.
1992-01-01
The current status of the activities and future plans of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics is reviewed. The activities of the Turbine Team focus on developing and enhancing codes and models, obtaining data for code validation and general understanding of flows through turbines, and developing and analyzing the aerodynamic designs of turbines suitable for use in the Space Transportation Main Engine fuel and oxidizer turbopumps. Future work will include the experimental evaluation of the oxidizer turbine configuration, the development, analysis, and experimental verification of concepts to control secondary and tip losses, and the aerodynamic design, analysis, and experimental evaluation of turbine volutes.
Management Of Optical Projects
NASA Astrophysics Data System (ADS)
Young, Peter S.; Olson, David R.
1981-03-01
This paper discusses the management of optical projects from the concept stage, beginning with system specifications, through design, optical fabrication and test tasks. Special emphasis is placed on effective coupling of design engineering with fabrication development and utilization of available technology. Contrasts are drawn between accepted formalized management techniques, the realities of dealing with fragile components and the necessity of an effective project team which integrates the special characteristics of highly skilled optical specialists including lens designers, optical engineers, opticians, and metrologists. Examples are drawn from the HEAO-2 X-Ray Telescope and Space Telescope projects.
9th Arnual Great Moonbuggy Race
NASA Technical Reports Server (NTRS)
2002-01-01
Students from across the United States and as far away as Puerto Rico and South America came to Huntsville, Alabama for the 9th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Seventy-seven teams, representing high schools and colleges from 21 states, Puerto Rico, and Columbia, raced human powered vehicles over a lunar-like terrain. In this photograph, the team from Lafayette County High school in Higginsville, Missouri, designated Lafayette County team #1, races through the course to cross the finish line to win the high school division. The team beat out 26 other teams representing high schools from 9 states. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by the development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a human powered vehicle so they will learn how to deal with real-world engineering problems, similar to those faced by the actual NASA LRV team.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- During the FIRST robotics event held at the University of Central Florida Arena March 8-10, Center Director Bill Parsons talks to the NASA-sponsored team, known as the Pink Team, from Rockledge, Cocoa Beach and Viera High Schools in Central Florida. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2007-03-09
KENNEDY SPACE CENTER, FLA. -- A Kissimmee, Fla., team (right) prepares its robot for competition with a New Jersey team (center) during the FIRST robotics event held at the University of Central Florida Arena March 8-10. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
The Trojan. [supersonic transport
NASA Technical Reports Server (NTRS)
1992-01-01
The Trojan is the culmination of thousands of engineering person-hours by the Cones of Silence Design Team. The goal was to design an economically and technologically viable supersonic transport. The Trojan is the embodiment of the latest engineering tools and technology necessary for such an advanced aircraft. The efficient design of the Trojan allows for supersonic cruise of Mach 2.0 for 5,200 nautical miles, carrying 250 passengers. The per aircraft price is placed at $200 million, making the Trojan a very realistic solution for tomorrows transportation needs. The following is a detailed study of the driving factors that determined the Trojan's super design.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Papalambros, Panos Y.; Baker, Wayne E.
2015-01-01
This paper examines four primary methods of working across disciplines during R&D and early design of large-scale complex engineered systems such as aerospace systems. A conceptualized framework, called the Combining System Elements framework, is presented to delineate several aspects of cross-discipline and system integration practice. The framework is derived from a theoretical and empirical analysis of current work practices in actual operational settings and is informed by theories from organization science and engineering. The explanatory framework may be used by teams to clarify assumptions and associated work practices, which may reduce ambiguity in understanding diverse approaches to early systems research, development and design. The framework also highlights that very different engineering results may be obtained depending on work practices, even when the goals for the engineered system are the same.
A hypersonic research vehicle to develop scramjet engines
NASA Technical Reports Server (NTRS)
Gregorek, G. M.; Reuss, R. L.
1990-01-01
Four student design teams produced conceptual designs for a research vehicle to develop the supersonic combustion ramjet (scramjet) engines necessary for efficient hypersonic flight. This research aircraft would provide flight test data for prototype scramjets that is not available in groundbased test facilities. The design specifications call for a research aircraft to be launched from a carrier aircraft at 40,000 feet and a Mach number of 0.8. The aircraft must accelerate to Mach 6 while climbing to a 100,000 foot altitude and then ignite the experimental scramjet engines for acceleration to Mach 10. The research vehicle must then be recovered for another flight. The students responded with four different designs, two piloted waverider configurations, and two unmanned vehicles, one with a blended body-wing configuration, the other with a delta wing shape. All aircraft made use of an engine database provided by the General Electric Aircraft Engine Group; both turbofan ramjet and scramjet engine performance using liquid hydrogen fuel was available. Explained here are the students' conceptual designs and the aerodynamic and propulsion concepts that made their designs feasible.
Embedded systems engineering for products and services design.
Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M
2012-01-01
Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.
Students Across Borders: A Summer Earth Science Workshop for Hispanic High School Students
NASA Astrophysics Data System (ADS)
Butler, R. F.; Kresan, P.; Baez, A.; Sheppard, P.; Forger, G.; Rendon-Coke, G.; Gray, F.
2003-12-01
Southern Arizona has a high school (HS) population that is 28% Hispanic. However this fast-growing minority group represents only 14% of undergraduate students at the University of Arizona and 11% of science and engineering majors. The Students Across Borders Program was designed to assist Hispanic HS students across borders that often separate them from higher education and careers in science. In June 2003, five person student-teacher teams from Tucson, Yuma, and northern Sonora, Mexico lived in dormitories and participated in a weeklong program based on the University of Arizona campus. Activities included: field trips featuring inquiry-based investigations of geology, water quality, and tree rings; tours of engineering and science laboratories; introduction to student support organizations such as the Society of Hispanic Professional Engineers; and counseling by Career Services and Admissions personnel. Technology training included instruction in web design, digital imaging and online communication tools. Web sites developed by the student teams were presented to participants and families at the conclusion of the on-campus program. Web site development is continuing during the academic year to foster continuing communication between the student teams and presentation of results of follow-on projects assisted by graduate and undergraduate CATTS fellows and university faculty.
Asbestos Removal Case History.
ERIC Educational Resources Information Center
Haney, Stanley J.
1986-01-01
The engineer for a California school district describes the asbestos removal from the ceilings of El Camino High School. Discusses forming a design team, use of consultants, specifications, relations with contractors, and staff notification. (MLF)
The Paper Beam: Hands-On Design for Team Work Experience of Freshman in Engineering
ERIC Educational Resources Information Center
Kalkani, Efrossini C.; Boussiakou, Iris K.; Boussiakou, Leda G.
2005-01-01
The present research refers to the assigning of a hands-on group project to freshman engineering students, evaluating their performance, and deriving conclusions on student benefits and educational advances. The research procedure included action plans for the instructor and the students, instructions to the students on performing the work,…
ERIC Educational Resources Information Center
Brown-Turner, Jasmine
2017-01-01
Edutainment refers to curriculum and instruction designed with a clear educational purpose, including multi-faceted virtual learning game design. Tools such as the Jacob's Ladder pre-production design tactic have been developed to ensure that voices of both engineers and educators are heard. However, it is unclear how development team members…
Lunar launch and landing facilities and operations
NASA Technical Reports Server (NTRS)
1987-01-01
The Florida Institute of Technology established an Interdisciplinary Design Team to design a lunar based facility whose primary function involves launch and landing operations for future moon missions. Both manned and unmanned flight operations were considered in the study with particular design emphasis on the utilization (or reutilization) of all materials available on the moon. This resource availability includes man-made materials which might arrive in the form of expendable landing vehicles as well as in situ lunar minerals. From an engineering standpoint, all such materials are considered as to their suitability for constructing new lunar facilities and/or repairing or expanding existing structures. Also considered in this design study was a determination of the feasibility of using naturally occurring lunar materials to provide fuel components to support lunar launch operations. Conventional launch and landing operations similar to those used during the Apollo Program were investigated as well as less conventional techniques such as rail guns and electromagnetic mass drivers. The Advanced Space Design team consisted of students majoring in Physics and Space Science as well as Electrical, Mechanical, Chemical and Ocean Engineering.
Code of Federal Regulations, 2013 CFR
2013-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Code of Federal Regulations, 2012 CFR
2012-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Code of Federal Regulations, 2010 CFR
2010-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Code of Federal Regulations, 2014 CFR
2014-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Code of Federal Regulations, 2011 CFR
2011-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Aeronautics Autonomy Testbed Capability (AATC) Team Developed Concepts
NASA Technical Reports Server (NTRS)
Smith, Phillip J.
2018-01-01
In 2015, the National Aeronautics and Space Administration (NASA) formed a multi-center, interdisciplinary team of engineers from three different aeronautics research centers who were tasked with improving NASA autonomy research capabilities. This group was subsequently named the Aeronautics Autonomy Testbed Capability (AATC) team. To aid in confronting the autonomy research directive, NASA contracted IDEO, a design firm, to provide consultants and guides to educate NASA engineers through the practice of design thinking, which is an unconventional method for aerospace design processes. The team then began learning about autonomy research challenges by conducting interviews with a diverse group of researchers and pilots, military personnel and civilians, experts and amateurs. Part of this design thinking process involved developing ideas for products or programs known as concepts that could enable real world fulfillment of the most important latent needs identified through analysis of the interviews. The concepts are intended to be sacrificial, intermediate steps in the design thinking process and are presented in this report to record the efforts of the AATC group. Descriptions are provided in present tense to allow for further ideation and imagining the concept as reality as was attempted during the teams discussions and interviews. This does not indicate that the concepts are actually in practice within NASA though there may be similar existing programs independent of AATC. These concepts were primarily created at two distinct stages during the design thinking process. After the initial interviews, there was a workshop for concept development and the resulting ideas are shown in this work as from the First Round. As part of succeeding interviews, the team members presented the First Round concepts to refine the understanding of existing research needs. This knowledge was then used to generate an additional set of concepts denoted as the Second Round. Some concepts were created by a single person in a few minutes while others were refined by the entire team over several weeks. Thus, certain ideas are more detailed than others but those from the second round are not necessarily more comprehensive than the first round concepts. Primarily, as reported here in the Second Round section, the designs serve to encompass more of the high level end user research needs which were not necessarily known to the team during the prior workshop. In the figures provided throughout this report, illustrations are often provided to represent a concept. Nearly all of the images are informal sketches or renderings and this casualness should, hopefully, not be held to negate the potential insights available within the concepts.
Roster of NSAP (Navy Science Assistance Program) Field Team Members, Fiscal Years 1971-1986
1985-08-05
CAPTOR Evaluation Program, NSWC. Current Job/Position: Operational Requirements Analyst for a new generation of mines. Current Address: Officer in...to NSAP Field Assignment: General Engineer; combat systems engineering on new ship design concepts, NSWC. Current Job/Position: Electronic Engineer...ADDRESS 12. REPORT DATE Naval Surface Weapons Center (Code D23) 5 August 1985 10901 New Hampshire Avenue 13. NUMBER OF PAGES Silver Spring, MD 20910
NASA Technical Reports Server (NTRS)
Weise, Timothy M
2012-01-01
NASA's Dawn mission to the asteroid Vesta and dwarf planet Ceres launched September 27, 2007 and arrived at Vesta in July of 2011. This mission uses ion propulsion to achieve the necessary delta-V to reach and maneuver at Vesta and Ceres. This paper will show how the evolution of ground system automation and process improvement allowed a relatively small engineering team to transition from cruise operations to asteroid operations while maintaining robust processes. The cruise to Vesta phase lasted almost 4 years and consisted of activities that were built with software tools, but each tool was open loop and required engineers to review the output to ensure consistency. Additionally, this same time period was characterized by the evolution from manually retrieved and reviewed data products to automatically generated data products and data value checking. Furthermore, the team originally took about three to four weeks to design and build about four weeks of spacecraft activities, with spacecraft contacts only once a week. Operations around the asteroid Vesta increased the tempo dramatically by transitioning from one contact a week to three or four contacts a week, to fourteen contacts a week (every 12 hours). This was accompanied by a similar increase in activity complexity as well as very fast turn around activity design and build cycles. The design process became more automated and the tools became closed loop, allowing the team to build more activities without sacrificing rigor. Additionally, these activities were dependent on the results of flight system performance, so more automation was added to analyze the flight data and provide results in a timely fashion to feed the design cycle. All of this automation and process improvement enabled up the engineers to focus on other aspects of spacecraft operations, including spacecraft health monitoring and anomaly resolution.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (right, back to camera) talks to members of the KSC-sponsored “Pink” team at the 2004 Florida Regional FIRST competition, held at the University of Central Florida. The annual event is hosting 41 teams from Canada, Brazil, Great Britain and the United States. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Center Director Jim Kennedy (center) poses for a photo amid the members of the KSC-sponsored Pink team and the FIRST LEGO League at the 2004 Florida Regional FIRST competition, held at the University of Central Florida. The annual event is hosting 41 teams from Canada, Brazil, Great Britain and the United States. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations.
2004-03-12
KENNEDY SPACE CENTER, FLA. - The KSC-sponsored “Pink” team poses for a photo with Florida Gov. Jeb Bush (second from left) during a break at the 2004 Florida Regional FIRST competition, held at the University of Central Florida. The annual event is hosting 41 teams from Canada, Brazil, Great Britain and the United States. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations.
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Student teams behind protective walls operate remote controls to maneuver their robots around the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. The robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams played defense by taking away competitors' pillows and generally harassing opposing machines. On the side of the field are the judges, including (far left) Deputy Director for Launch and Payload Processing Loren Shriver and former KSC Director of Shuttle Processing Robert Sieck. A giant screen TV displays the action on the field. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle
NASA Technical Reports Server (NTRS)
Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.
2004-01-01
This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.
Camera Layout Design for the Upper Stage Thrust Cone
NASA Technical Reports Server (NTRS)
Wooten, Tevin; Fowler, Bart
2010-01-01
Engineers in the Integrated Design and Analysis Division (EV30) use a variety of different tools to aid in the design and analysis of the Ares I vehicle. One primary tool in use is Pro-Engineer. Pro-Engineer is a computer-aided design (CAD) software that allows designers to create computer generated structural models of vehicle structures. For the Upper State thrust cone, Pro-Engineer was used to assist in the design of a layout for two camera housings. These cameras observe the separation between the first and second stage of the Ares I vehicle. For the Ares I-X, one standard speed camera was used. The Ares I design calls for two separate housings, three cameras, and a lighting system. With previous design concepts and verification strategies in mind, a new layout for the two camera design concept was developed with members of the EV32 team. With the new design, Pro-Engineer was used to draw the layout to observe how the two camera housings fit with the thrust cone assembly. Future analysis of the camera housing design will verify the stability and clearance of the camera with other hardware present on the thrust cone.
Computational studies of an intake manifold for restricted engine application
NASA Astrophysics Data System (ADS)
Prasetyo, Bagus Dwi; Ubaidillah, Maharani, Elliza Tri; Setyohandoko, Gabriel; Idris, Muhammad Idzdihar
2018-02-01
The Formula Society of Automotive Engineer (FSAE) student competition is an international contest for a vehicle that entirely designed and built by students from various universities. The engine design in the Formula SAE competition has to comply a tight regulation. Concerning the engine intake line, an air restrictor of circular cross-section less than 20 mm must be fitted between the throttle valve and the engine inlet. The throat is aimed to limit the engine air flow rate as it strongly influences the volumetric efficiency and then the maximum power. This article focuses on the design of the engine intake system of the Bengawan FSAE team vehicle to optimize the engine power output and its stability. The performance of engine intake system is studied through computational fluid dynamics (CFD). The objective of CFD is to know the pressure, velocity, and airflow of the air intake manifold for the best performance of the engine. The three-dimensional drawing of the intake manifold was made, and CFD simulation was conducted using ANSYS FLUENT. Two models were studied. The result shows that the different design produces a different value of the velocity of airflow and the kind of flow type.
2014-05-20
CAPE CANAVERAL, Fla. – College and university teams prepare their robots for NASA’s Robotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Ben Smegelsky
2014-05-20
CAPE CANAVERAL, Fla. – A college team prepares its robot for a trial run at NASA’s Robotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Ben Smegelsky
Advanced engineering environment collaboration project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.
2008-12-01
The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less
2014-05-22
CAPE CANAVERAL, Fla. – A mining team exits the Caterpillar Mining Area with its robot as another team prepares to lower its robot into the simulated Martian soil during NASA’s 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
The design of a long-range megatransport aircraft
NASA Technical Reports Server (NTRS)
Weisshaar, Terrence A.; Allen, Carl L.
1992-01-01
Aircraft manufacturers are examining the market and feasibility of long-range passenger aircraft carrying more than 600 passengers. These aircraft would carry travelers at reduced cost and, at the same time, reduce congestion around major airports. The design of a large, long-range transport involves broad issues such as: the integration of airport terminal facilities; passenger loading and unloading; trade-offs between aircraft size and the cost to reconfigure these existing facilities; and, defeating the 'square-cube' law. Thirteen Purdue design teams generated RFP's that defined passenger capability and range, based upon team perception of market needs and infrastructure constraints. Turbofan engines were designed by each group to power these aircraft. The design problem and the variety of solutions developed are reviewed.
Integrating International Engineering Organizations For Successful ISS Operations
NASA Technical Reports Server (NTRS)
Blome, Elizabeth; Duggan, Matt; Patten, L.; Pieterek, Hhtrud
2006-01-01
The International Space Station (ISS) is a multinational orbiting space laboratory that is built in cooperation with 16 nations. The design and sustaining engineering expertise is spread worldwide. As the number of Partners with orbiting elements on the ISS grows, the challenge NASA is facing as the ISS integrator is to ensure that engineering expertise and data are accessible in a timely fashion to ensure ongoing operations and mission success. Integrating international engineering teams requires definition and agreement on common processes and responsibilities, joint training and the emergence of a unique engineering team culture. ISS engineers face daunting logistical and political challenges regarding data sharing requirements. To assure systematic information sharing and anomaly resolution of integrated anomalies, the ISS Partners are developing multi-lateral engineering interface procedures. Data sharing and individual responsibility are key aspects of this plan. This paper describes several examples of successful multilateral anomaly resolution. These successes were used to form the framework of the Partner to Partner engineering interface procedures, and this paper describes those currently documented multilateral engineering processes. Furthermore, it addresses the challenges experienced to date, and the forward work expected in establishing a successful working relationship with Partners as their hardware is launched.
NASA Astrophysics Data System (ADS)
Arevalo, S.; Atwood, C.; Bell, P.; Blacker, T. D.; Dey, S.; Fisher, D.; Fisher, D. A.; Genalis, P.; Gorski, J.; Harris, A.; Hill, K.; Hurwitz, M.; Kendall, R. P.; Meakin, R. L.; Morton, S.; Moyer, E. T.; Post, D. E.; Strawn, R.; Veldhuizen, D. v.; Votta, L. G.; Wynn, S.; Zelinski, G.
2008-07-01
In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a 360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams.
NASA Astrophysics Data System (ADS)
Mandala, Mahender Arjun
A cornerstone of design and design education is frequent situated feedback. With increasing class sizes, and shrinking financial and human resources, providing rich feedback to students becomes increasingly difficult. In the field of writing, web-based peer review--the process of utilizing equal status learners within a class to provide feedback to each other on their work using networked computing systems--has been shown to be a reliable and valid source of feedback in addition to improving student learning. Designers communicate in myriad ways, using the many languages of design and combining visual and descriptive information. This complex discourse of design intent makes peer reviews by design students ambiguous and often not helpful to the receivers of this feedback. Furthermore, engaging students in the review process itself is often difficult. Teams can complement individual diversity and may assist novice designers collectively resolve complex task. However, teams often incur production losses and may be impacted by individual biases. In the current work, we look at utilizing a collaborative team of reviewers, working collectively and synchronously, in generating web based peer reviews in a sophomore engineering design class. Students participated in a cross-over design, conducting peer reviews as individuals and collaborative teams in parallel sequences. Raters coded the feedback generated on the basis of their appropriateness and accuracy. Self-report surveys and passive observation of teams conducting reviews captured student opinion on the process, its value, and the contrasting experience they had conducting team and individual reviews. We found team reviews generated better quality feedback in comparison to individual reviews. Furthermore, students preferred conducting reviews in teams, finding the process 'fun' and engaging. We observed several learning benefits of using collaboration in reviewing including improved understanding of the assessment criteria, roles, expectations, and increased team reflection. These results provide insight into how to improve the review process for instructors and researchers, and forms a basis for future research work in this area. With respect to facilitating peer review process in design based classrooms, we also present recommendations for creating effective review system design and implementation in classroom supported by research and practical experience.
, and strategy. Smith joined NREL in 1988, first as a test engineer for advanced airfoil blades and then dynamics, aeroelastic tailoring of blades, and the evaluation of design requirements. Prior to his role at
23 CFR 636.204 - What items may be included in a phase-one solicitation?
Code of Federal Regulations, 2013 CFR
2013-04-01
... ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.204... perform (including key personnel); and (iii) Past performance of the members of the offeror's team...
23 CFR 636.204 - What items may be included in a phase-one solicitation?
Code of Federal Regulations, 2012 CFR
2012-04-01
... ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.204... perform (including key personnel); and (iii) Past performance of the members of the offeror's team...
23 CFR 636.204 - What items may be included in a phase-one solicitation?
Code of Federal Regulations, 2010 CFR
2010-04-01
... ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.204... perform (including key personnel); and (iii) Past performance of the members of the offeror's team...
23 CFR 636.204 - What items may be included in a phase-one solicitation?
Code of Federal Regulations, 2014 CFR
2014-04-01
... ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.204... perform (including key personnel); and (iii) Past performance of the members of the offeror's team...
23 CFR 636.204 - What items may be included in a phase-one solicitation?
Code of Federal Regulations, 2011 CFR
2011-04-01
... ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.204... perform (including key personnel); and (iii) Past performance of the members of the offeror's team...
The Outer Planetary Mission Design Project
NASA Astrophysics Data System (ADS)
Benfield, Michael; Turner, M. W.
2010-10-01
With the recent focus from the planetary science community on the outer planets of the solar system, The University of Alabama in Huntsville Integrated Product Team program is embarking on a new challenge to develop an outer planetary mission for the academic year 2010-2011. Currently four bodies are of interest for this mission: Titan, Europa, Triton, and Enceledus, with one body being chosen by the instructors by the beginning of the fall semester. This project will use the 2010 Discovery Announcement of Opportunity as its Request for Proposal (RFP). All of the teams competing in this project will use the AO to respond with a proposal to the instructors for their proposed mission and spacecraft concept. The project employs the two-semester design sequence of the IPT program to provide a framework for the development of this mission. This sequence is divided into four phases. Phase 1 - Requirements Development - focuses on the development of both the scientific and engineering requirements of the mission. During this phase the teams work very closely with the PI organization, represented by the College of Charleston. Phase 2 - Team Formation and Architecture Development - concentrates on the assessment of the overall mission architecture from the launch vehicle to the ground operations of the proposed spacecraft. Phase 3 - System Definition - provides for spacecraft subsystem trade studies and further refinement of the specific spacecraft to meet the scientific requirements and objectives developed in Phase 1. Phase 4 - Design - is the phase where the engineers provide the spacecraft design that is required for the mission of interest. At the conclusion of Phases 2 and 4, an external review board evaluates the proposed designs and chooses one winner of the competition.
RT 164: Design and Development Tools for the Systems Engineering Experience Accelerator - Part 3
2017-04-29
Investigator: Dr. Jon Wade, Stevens Institute of Technology Co-Principal Investigator: Dr. Doug Bodner, Georgia Institute of Technology Research Team...Defense Acquisition University: Yvette Rodriguez Georgia Institute of Technology : Jing Liu Stevens Institute of Technology : Dr. Richard Turner...Stevens Institute of Technology : Peizhu Zhang Sponsor: Office of the DASD (Systems Engineering) Report No. SERC-2017-TR-107
NASA Technical Reports Server (NTRS)
Phfarr, Barbara B.; So, Maria M.; Lamb, Caroline Twomey; Rhodes, Donna H.
2009-01-01
Experienced systems engineers are adept at more than implementing systems engineering processes: they utilize systems thinking to solve complex engineering problems. Within the space industry demographics and economic pressures are reducing the number of experienced systems engineers that will be available in the future. Collaborative systems thinking within systems engineering teams is proposed as a way to integrate systems engineers of various experience levels to handle complex systems engineering challenges. This paper uses the GOES-R Program Systems Engineering team to illustrate the enablers and barriers to team level systems thinking and to identify ways in which performance could be improved. Ways NASA could expand its engineering training to promote team-level systems thinking are proposed.
The development of a tool to predict team performance.
Sinclair, M A; Siemieniuch, C E; Haslam, R A; Henshaw, M J D C; Evans, L
2012-01-01
The paper describes the development of a tool to predict quantitatively the success of a team when executing a process. The tool was developed for the UK defence industry, though it may be useful in other domains. It is expected to be used by systems engineers in initial stages of systems design, when concepts are still fluid, including the structure of the team(s) which are expected to be operators within the system. It enables answers to be calculated for questions such as "What happens if I reduce team size?" and "Can I reduce the qualifications necessary to execute this process and still achieve the required level of success?". The tool has undergone verification and validation; it predicts fairly well and shows promise. An unexpected finding is that the tool creates a good a priori argument for significant attention to Human Factors Integration in systems projects. The simulations show that if a systems project takes full account of human factors integration (selection, training, process design, interaction design, culture, etc.) then the likelihood of team success will be in excess of 0.95. As the project derogates from this state, the likelihood of team success will drop as low as 0.05. If the team has good internal communications and good individuals in key roles, the likelihood of success rises towards 0.25. Even with a team comprising the best individuals, p(success) will not be greater than 0.35. It is hoped that these results will be useful for human factors professionals involved in systems design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Empirical studies of software design: Implications for SSEs
NASA Technical Reports Server (NTRS)
Krasner, Herb
1988-01-01
Implications for Software Engineering Environments (SEEs) are presented in viewgraph format for characteristics of projects studied; significant problems and crucial problem areas in software design for large systems; layered behavioral model of software processes; implications of field study results; software project as an ecological system; results of the LIFT study; information model of design exploration; software design strategies; results of the team design study; and a list of publications.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey
2001-01-01
A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomas, William Joe; Macmurphy, Shawn
2008-01-01
The NASA Goddard Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and LIDAR. Described here is an account of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO.
Engineering Technical Review Planning Briefing
NASA Technical Reports Server (NTRS)
Gardner, Terrie
2012-01-01
The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.
Geotechnical engineering for ocean waste disposal. An introduction
Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,
1990-01-01
As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.
Naturalistic Decision Making: Implications for Design
1993-04-01
Cognitive Task Analysis Decision Making Design Engineer Design System Human-Computer Interface System Development 15. NUMBER OF PAGES 182 16...people use to select a course of action. The SOAR explains how stress affects the decision making of both individuals and teams. COGNITIVE TASK ANALYSIS : This...procedures for Cognitive Task Analysis , contrasting the strengths and weaknesses of each, and showing how a Cognitive Task Analysis
NREL Helps Habitat for Humanity of Metro Denver Build Earth-Smart House
Laboratory's (NREL) Exemplary Buildings team helped Habitat for Humanity of Metro Denver design a low energy April 26 from 10 a.m. to 3 p.m. Individuals interested in energy smart home design are encouraged to -tempered design, low-emissivity windows, engineered overhangs which shade the house during the summer but
From Intent to Action: An Iterative Engineering Process
ERIC Educational Resources Information Center
Mouton, Patrice; Rodet, Jacques; Vacaresse, Sylvain
2015-01-01
Quite by chance, and over the course of a few haphazard meetings, a Master's degree in "E-learning Design" gradually developed in a Faculty of Economics. Its original and evolving design was the result of an iterative process carried out, not by a single Instructional Designer (ID), but by a full ID team. Over the last 10 years it has…
Design Skills and Prototyping for Defense Systems
2015-04-30
however, the utility of prototyping has had a demonstrably mixed record in defense acquisition. Some programs, such as the Manhattan Project , were...almost completely undefined. The first production reactors for the Manhattan Project suffered a near- catastrophic engineering design flaw stemming...architecture, as was seen in the F-117 and Manhattan Project development efforts. Architectural Prototyping Simply maintaining design teams or developing
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Student teams representing Florida and several out-of-state areas display and work on their robots for the FIRST robotics event held at the University of Central Florida Arena March 8-10. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Competing robots try to loop the large metal target with colored rings. The robots are products of student teams taking part in the FIRST robotics event held at the University of Central Florida Arena March 8-10. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Competing robots try to loop the large meta target with colored rings. The robots are products of student teams taking part in the FIRST robotics event held at the University of Central Florida Arena March 8-10. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2002-05-14
KENNEDY SPACE CENTER, FLA. -- Former astronaut Story Musgrave speaks to students and faculty from across the nation gathered at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. The participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- Former astronaut Story Musgrave speaks to students and faculty from across the nation gathered at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. The participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Student competitors listen to game rules before the FIRST robotics event held at the University of Central Florida Arena March 8-10. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
Reinventing The Design Process: Teams and Models
NASA Technical Reports Server (NTRS)
Wall, Stephen D.
1999-01-01
The future of space mission designing will be dramatically different from the past. Formerly, performance-driven paradigms emphasized data return with cost and schedule being secondary issues. Now and in the future, costs are capped and schedules fixed-these two variables must be treated as independent in the design process. Accordingly, JPL has redesigned its design process. At the conceptual level, design times have been reduced by properly defining the required design depth, improving the linkages between tools, and managing team dynamics. In implementation-phase design, system requirements will be held in crosscutting models, linked to subsystem design tools through a central database that captures the design and supplies needed configuration management and control. Mission goals will then be captured in timelining software that drives the models, testing their capability to execute the goals. Metrics are used to measure and control both processes and to ensure that design parameters converge through the design process within schedule constraints. This methodology manages margins controlled by acceptable risk levels. Thus, teams can evolve risk tolerance (and cost) as they would any engineering parameter. This new approach allows more design freedom for a longer time, which tends to encourage revolutionary and unexpected improvements in design.
The 20TH Annual Intelligent Ground Vehicle Competition: Building a Generation of Robotists
2012-11-26
advisors as an excellent multidisciplinary design experience for student teams, and a number of engineering schools give credit in senior design courses...Indian Institute of Technology, Bombay IIT Bombay 1044.00 7 U.S. Naval Academy Robo -Goat 1041.67 8 Lawrence Technological University vuLTUre 2 1033.67
1998-09-16
A team of engineers at Marshall Space Flight Center (MSFC) has designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket that produces lower thrust but has better thrust efficiency than the chemical combustion engines. This segmented array of mirrors is the solar concentrator test stand at MSFC for firing the thermal propulsion engines. The 144 mirrors are combined to form an 18-foot diameter array concentrator. The mirror segments are aluminum hexagons that have the reflective surface cut into it by a diamond turning machine, which is developed by MSFC Space Optics Manufacturing Technology Center.
Human factors engineering approaches to patient identification armband design.
Probst, C Adam; Wolf, Laurie; Bollini, Mara; Xiao, Yan
2016-01-01
The task of patient identification is performed many times each day by nurses and other members of the care team. Armbands are used for both direct verification and barcode scanning during patient identification. Armbands and information layout are critical to reducing patient identification errors and dangerous workarounds. We report the effort at two large, integrated healthcare systems that employed human factors engineering approaches to the information layout design of new patient identification armbands. The different methods used illustrate potential pathways to obtain standardized armbands across healthcare systems that incorporate human factors principles. By extension, how the designs have been adopted provides examples of how to incorporate human factors engineering into key clinical processes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
AIR POLLUTION AND HUMMINGBIRDS
A multidisciplinary team of EPA-RTP ORD pulmonary toxicologists, engineers, ecologists, and statisticians have designed a study of how ground-level ozone and other air pollutants may influence feeding activity of the ruby-throated hummingbird (Archilochus colubris). Be...
NASA Technical Reports Server (NTRS)
Korsmeyer, David; Schreiner, John
2002-01-01
This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.
Design of Z-Pinch and Dense Plasma Focus Powered Vehicles
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo;
2011-01-01
Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts
2007-03-09
KENNEDY SPACE CENTER, FLA. -- The student team no. 233 dressed in pink controls its robot during competition in the FIRST robotics event held at the University of Central Florida Arena March 8-10. The team is a coordinated effort co-sponsored by NASA KSC and representing Rockledge, Cocoa Beach and Viera High Schools in Central Florida. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2007-03-09
KENNEDY SPACE CENTER, FLA. -- During the FIRST robotics event held at the University of Central Florida Arena March 8-10, Center Director Bill Parsons (center) dons the pink wig that represents team no. 233, composed of students from Rockledge, Cocoa Beach and Viera High Schools in Central Florida. The team is cosponsored by NASA KSC. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
1999-03-06
At the award ceremony for the 1999 FIRST Southeastern Regional robotic competition held at KSC, Center Director Roy Bridges addresses the teams, encouraging them to continue their interest in engineering. Directly behind him (left) are Woody Flowers, national advisor to FIRST, and (right) former KSC Director of Shuttle Processing Robert Sieck, who served as one of the judges. At the far left, students gather around astronaut David Brown, who was present during the two days of matches. At right are other judges, including Deputy Director for Launch and Payload Processing Loren Shriver (third from right). FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations. The regional event comprised 27 teams. Along with the championship award, which went to high school teams in Miami and San German, Puerto Rico, 15 other awards were presented
Final matches of the FIRST regional robotic competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
During final matches at the 1999 Southeastern Regional robotic competition at the KSC Visitor Complex, referees in opposite corners and student teams watch as two robots raise their pillow disks to a height of eight feet, one of the goals of the competition. Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve the pillow disks from the floor, climb onto a platform (with flags), as well as raise the cache of pillows, maneuvered by student teams behind protective walls. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers by pairing engineers and corporations with student teams.
An engineering database management system for spacecraft operations
NASA Technical Reports Server (NTRS)
Cipollone, Gregorio; Mckay, Michael H.; Paris, Joseph
1993-01-01
Studies at ESOC have demonstrated the feasibility of a flexible and powerful Engineering Database Management System in support for spacecraft operations documentation. The objectives set out were three-fold: first an analysis of the problems encountered by the Operations team in obtaining and managing operations documents; secondly, the definition of a concept for operations documentation and the implementation of prototype to prove the feasibility of the concept; and thirdly, definition of standards and protocols required for the exchange of data between the top-level partners in a satellite project. The EDMS prototype was populated with ERS-l satellite design data and has been used by the operations team at ESOC to gather operational experience. An operational EDMS would be implemented at the satellite prime contractor's site as a common database for all technical information surrounding a project and would be accessible by the cocontractor's and ESA teams.
NASA Astrophysics Data System (ADS)
Musil, Juergen; Schweda, Angelika; Winkler, Dietmar; Biffl, Stefan
Based on our observations of Austrian video game software development (VGSD) practices we identified a lack of systematic processes/method support and inefficient collaboration between various involved disciplines, i.e. engineers and artists. VGSD includes heterogeneous disciplines, e.g. creative arts, game/content design, and software. Nevertheless, improving team collaboration and process support is an ongoing challenge to enable a comprehensive view on game development projects. Lessons learned from software engineering practices can help game developers to increase game development processes within a heterogeneous environment. Based on a state of the practice survey in the Austrian games industry, this paper presents (a) first results with focus on process/method support and (b) suggests a candidate flexible process approach based on Scrum to improve VGSD and team collaboration. Results showed (a) a trend to highly flexible software processes involving various disciplines and (b) identified the suggested flexible process approach as feasible and useful for project application.
Applying Model Based Systems Engineering to NASA's Space Communications Networks
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.
Building a computer-aided design capability using a standard time share operating system
NASA Technical Reports Server (NTRS)
Sobieszczanski, J.
1975-01-01
The paper describes how an integrated system of engineering computer programs can be built using a standard commercially available operating system. The discussion opens with an outline of the auxiliary functions that an operating system can perform for a team of engineers involved in a large and complex task. An example of a specific integrated system is provided to explain how the standard operating system features can be used to organize the programs into a simple and inexpensive but effective system. Applications to an aircraft structural design study are discussed to illustrate the use of an integrated system as a flexible and efficient engineering tool. The discussion concludes with an engineer's assessment of an operating system's capabilities and desirable improvements.
1999-03-06
Kicking off the award ceremony at the 1999 FIRST Southeastern Regional robotic competition held at KSC are David Brown, Executive Director of FIRST; Woody Flowers, national advisor for FIRST; and astronaut David Brown. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations. The regional event comprised 27 teams. Along with the championship award, which went to high school teams in Miami and San German, Puerto Rico, 15 other awards were presented
2011-03-01
functions of the vignette editor include visualizing the state of the UAS team, creating T&E scenarios, monitoring the UAS team performance, and...These behaviors are then executed by the robot sequentially (Figure 2). A state machine mission editor allows mission builders to use behaviors from the...include control, robotics, distributed applications, multimedia applications, databases, design patterns, and software engineering. Mr. Lenzi is the
ERIC Educational Resources Information Center
Shelby, Kenneth R., Jr.
2013-01-01
Systems engineering teams' value-creation for enterprises is slower than possible due to inefficiencies in communication, learning, common knowledge collaboration and leadership conduct. This dissertation outlines the surrounding people, process and technology dimensions for higher performing engineering teams. It describes a true experiment…
2014-05-21
CAPE CANAVERAL, Fla. – Team members from the University of Florida in Gainesville prepare their robot for the mining portion of NASA's 2014 Robotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Frankie Martin
2014-05-21
CAPE CANAVERAL, Fla. – The Hawai'l Marsbot Team members from Kapi'olani Community College in Hawaii prepare their robot for the mining portion of NASA's 2014 Robotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Frankie Martin
2014-05-22
CAPE CANAVERAL, Fla. – College and university teams prepare their robots for the mining portion of NASA’s 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
2012-05-21
CAPE CANAVERAL, Fla. – Practice sessions get under way for the third annual Lunabotics Mining Competition at the Rocket Garden at NASA’s Kennedy Space Center Visitor Complex in Florida. More than 50 teams of undergraduate and graduate students from eight countries are participating. The teams have designed and built remote-controlled or autonomous robots that can excavate simulated lunar soil. During the competition, the teams' designs, known as lunabots, will go head-to-head to determine whose machine can collect and deposit the most simulated moon dust within a specified amount of time. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in the science, technology, engineering and mathematics, or STEM, fields of study. The project provides a competitive environment that may result in innovative ideas and solutions that potentially could be applied to future NASA missions. For more information, visit http://www.nasa.gov/lunabotics. Photo credit: NASA/Frankie Martin
2014-05-23
CAPE CANAVERAL, Fla. -- Team members prepare their robot to dig in simulated Martian soil in the Caterpillar Mining Arena on the final day of NASA's 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
2014-05-22
CAPE CANAVERAL, Fla. – Competition judges monitor two team's robots digging in the simulated Martian soil in the Caterpillar Mining Arena during NASA’s 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
2014-05-22
CAPE CANAVERAL, Fla. – Team members check their robot before the start of a mining session in simulated Martian soil in the Caterpillar Mining Arena during NASA’s 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
2014-05-23
CAPE CANAVERAL, Fla. -- Team members from the University of Akron in Ohio take a break before their final mining run on the final day of NASA's 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
2014-05-21
CAPE CANAVERAL, Fla. – Team members from the University of Alabama prepare their robot for the mining portion of NASA's 2014 Robotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Frankie Martin
2014-05-21
CAPE CANAVERAL, Fla. – Team members from the University of North Dakota prepare their robot for the mining portion of NASA's 2014 Robotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Frankie Martin
Robotic Mining Competition Award Ceremony
2017-05-26
Students from 45 colleges and universities gathered at Kennedy Space Center’s Saturn V Visitor Complex in Florida on Friday, May 26, to celebrate and conclude NASA’s Eight Annual Robotic Mining Competition. Awards were presented to the winning teams in multiple categories. The three-day competition pitted excavator robots designed and built by each team to mine the most simulated Martian soil in a specified amount of time. Students also were judged on how each team used its robot to inspire its respective community about careers in science, technology, engineering and math (STEM). Managed by, and held annually at Kennedy Space Center, RMC is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars.
The Human Powered Submarine Team of Virginia Tech Propulsion System Design Final Report
NASA Technical Reports Server (NTRS)
An, Eric; Bennett, Matt; Callis, Ron; Chen, Chester; Lee, John; Milan-Williams, Kristy
1999-01-01
The Human Powered Submarine Team has been in existence at Virginia Tech since its conception in 1993. Since then, it has served as a way for engineering students from many different disciplines to implement design conception and realization. The first submarine built was Phantom 1, a two-man submarine made of fiberglass. After construction was complete, Phantom 1 was ready for racing, but, unfortunately, suffered fatal problems come race time. The submarine team slowed down a bit after experiencing racing problems, but was revived in 1995 when design efforts for a new two-man submarine, the Phantom 2 commence. The propulsion system consisted of a chain and gear drive system using an ultra-light helicopter tail rotor for a propeller. Although the team learned valuable lessons as a result of Phantom 1's problems, Phantom 2 still experiences problems at races. After various parts of Phantom 2 are redesigned, it is once again ready for racing and proves that the redesign was well worth the time and effort. In 1997, Phantom 2 not only finishes its first race, held in San Diego, California, but comes in third. This success sparks yet another revival of the submarine team and design for the team's current project, the Phantom 3, a one-man submarine, is started. In 1998, the plug for Phantom 3 is built and the hull is constructed. With so many past problems from which to learn, Phantom 3 promises to be the fastest and best-designed submarine the team has developed thus far. The current speed world-record is 7 knots.
Achieving Maximum Integration Utilizing Requirements Flow Down
NASA Technical Reports Server (NTRS)
Archiable, Wes; Askins, Bruce
2011-01-01
A robust and experienced systems engineering team is essential for a successful program. It is often a challenge to build a core systems engineering team early enough in a program to maximize integration and assure a common path for all supporting teams in a project. Ares I was no exception. During the planning of IVGVT, the team had many challenges including lack of: early identification of stakeholders, team training in NASA s system engineering practices, solid requirements flow down and a top down documentation strategy. The IVGVT team started test planning early in the program before the systems engineering framework had been matured due to an aggressive schedule. Therefore the IVGVT team increased their involvement in the Constellation systems engineering effort. Program level requirements were established that flowed down to IVGVT aligning all stakeholders to a common set of goals. The IVGVT team utilized the APPEL REQ Development Management course providing the team a NASA focused model to follow. The IVGVT team engaged directly with the model verification and validation process to assure that a solid set of requirements drove the need for the test event. The IVGVT team looked at the initial planning state, analyzed the current state and then produced recommendations for the ideal future state of a wide range of systems engineering functions and processes. Based on this analysis, the IVGVT team was able to produce a set of lessons learned and to provide suggestions for future programs or tests to use in their initial planning phase.
The MUSES Satellite Team and Multidisciplinary System Engineering
NASA Technical Reports Server (NTRS)
Chen, John C.; Paiz, Alfred R.; Young, Donald L.
1997-01-01
In a unique partnership between three minority-serving institutions and NASA's Jet Propulsion Laboratory, a new course sequence, including a multidisciplinary capstone design experience, is to be developed and implemented at each of the schools with the ambitious goal of designing, constructing and launching a low-orbit Earth-resources satellite. The three universities involved are North Carolina A&T State University (NCA&T), University of Texas, El Paso (UTEP), and California State University, Los Angeles (CSULA). The schools form a consortium collectively known as MUSES - Minority Universities System Engineering and Satellite. Four aspects of this project make it unique: (1) Including all engineering disciplines in the capstone design course, (2) designing, building and launching an Earth-resources satellite, (3) sustaining the partnership between the three schools to achieve this goal, and (4) implementing systems engineering pedagogy at each of the three schools. This paper will describe the partnership and its goals, the first design of the satellite, the courses developed at NCA&T, and the implementation plan for the course sequence.
Integrating principles and multidisciplinary projects in design education
NASA Technical Reports Server (NTRS)
Nevill, Gale E., Jr.
1992-01-01
The critical need to improve engineering design education in the U.S. is presented and a number of actions to achieve that end are discussed. The importance of teaching undergraduates the latest methods and principles through the means of team design in multidisciplinary projects leading to a testable product is emphasized. Desirable training for design instructors is described and techniques for selecting and managing projects that teach effectively are discussed.
Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less
NASA Technical Reports Server (NTRS)
Cowen, Benjamin
2011-01-01
Simulations are essential for engineering design. These virtual realities provide characteristic data to scientists and engineers in order to understand the details and complications of the desired mission. A standard development simulation package known as Trick is used in developing a source code to model a component (federate in HLA terms). The runtime executive is integrated into an HLA based distributed simulation. TrickHLA is used to extend a Trick simulation for a federation execution, develop a source code for communication between federates, as well as foster data input and output. The project incorporates international cooperation along with team collaboration. Interactions among federates occur throughout the simulation, thereby relying on simulation interoperability. Communication through the semester went on between participants to figure out how to create this data exchange. The NASA intern team is designing a Lunar Rover federate and a Lunar Shuttle federate. The Lunar Rover federate supports transportation across the lunar surface and is essential for fostering interactions with other federates on the lunar surface (Lunar Shuttle, Lunar Base Supply Depot and Mobile ISRU Plant) as well as transporting materials to the desired locations. The Lunar Shuttle federate transports materials to and from lunar orbit. Materials that it takes to the supply depot include fuel and cargo necessary to continue moon-base operations. This project analyzes modeling and simulation technologies as well as simulation interoperability. Each team from participating universities will work on and engineer their own federate(s) to participate in the SISO Spring 2011 Workshop SIW Smackdown in Boston, Massachusetts. This paper will focus on the Lunar Rover federate.
Virginia Space Grant Consortium Management of National General Aviation Design Competition
NASA Technical Reports Server (NTRS)
2002-01-01
This report summarizes the management of the National General Aviation Design Competition on behalf of NASA, the FAA and the Air Force by the Virginia Space Grant Consortium (VSGC) for the time period October 1, 2000 through September 30, 2001. This was the VSGC's seventh and final year of managing the Competition, which the Consortium originally designed, developed and implemented for NASA and the FAA. The competition is now being managed in-house by NASA. Awards to winning university teams were presented at a ceremony held at AirVenture 2001, the Experimental Aircraft Association's Annual Convention and Fly-In at Oshkosh, Wis. by NASA and FAA officials. The competition called for individuals or teams of undergraduate and graduate students from U.S. engineering schools to participate in a major national effort to rebuild the U.S. general aviation sector. Participants were challenged to meet the engineering goals of the Advanced General Aviation Transport Experiment (AGATE) project. For the purpose of the contest, general aviation aircraft are typically defined as single or twin engine (turbine or piston), single-pilot, fixed-wing aircraft for 2 - 6 passengers. The competition seeks to raise student awareness of the importance of general aviation by having students address design challenges for a small aircraft transportation system. NASA, AFRL and the FAA hope to stimulate breakthroughs in technology and their application in the general aviation marketplace. National goals for revitalizing the industry offer excellent, open-ended design challenges with real world applications for the Innovative Design Category. Both individual and team submissions were encouraged. University faculty advisors and students consistently cite the value of this kind of educational experience for their engineering students. Eight proposals were submitted for the 2001 Competition for the Innovative Design Category. Eleven faculty members and 124 students participated. Since inception, more than 785 students and 60 faculty members have participated in the Competition. A review panel comprised of general aviation experts from the FAA, EAA, NASA and industry representatives reviewed the design packages and selected the winners. The VSGC coordinated marketing of the competition to a mailing list which included selected deans and department chairs from ABET-accredited institutions, Space Grant affiliates, faculty who had previously participated in or expressed interest in the Competition, and others.
2017 Robotic Mining Competition
2017-05-23
Team members from Purdue University prepare their uniquely-designed robot miner in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Crocker, Andrew M.; Greene, William D.
2017-01-01
The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article. The test article is scheduled to complete fabrication and assembly soon and continue testing through late 2019. Dynetics has also designed, developed, and built innovative tank and structure assemblies using friction stir welding to leverage recent NASA investments in manufacturing tools, facilities, and processes, significantly reducing development and recurring costs. The full-scale cryotank assembly was used to verify the structural design and prove affordable processes. Dynetics performed hydrostatic and cryothermal proof tests on the assembly to verify the assembly meets performance requirements..
Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, Edward L.; Rothschild, William J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Student teams prepare robots for regional competition at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
Student teams and sponsors, with their robots, fill the Center for Space Education at KSC as they look over the competition. Thirty schools from around the country have converged at KSC for the 1999 Southeastern Regional robotic competition March 4-6. The event pits the team-built gladiator robots against each other in an athletic-style competition. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.
78 FR 7464 - Large Scale Networking (LSN) ; Joint Engineering Team (JET)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN) ; Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination...://www.nitrd.gov/nitrdgroups/index.php?title=Joint_Engineering_Team_ (JET)#title. SUMMARY: The JET...
Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1992-01-01
Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.
2002-04-13
Students from across the United States and as far away as Puerto Rico and South America came to Huntsville, Alabama for the 9th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Seventy-seven teams, representing high schools and colleges from 21 states, Puerto Rico, and Columbia, raced human powered vehicles over a lunar-like terrain. A team from Cornell University in Ithaca, New York, took the first place honor in the college division. This photograph shows the Cornell #2 team driving their vehicle through the course. The team finished the race in second place in the college division. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle, that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a human powered vehicle so they will learn how to deal with real-world engineering problems, similar to those faced by the actual NASA LRV team.
NASA Astrophysics Data System (ADS)
Smith, Heather; Duncan, Andrew
2016-07-01
The University Rover Challenge began in 2006 with 4 American college teams competing, now in it's 10th year there are 63 teams from 12 countries registered to compete for the top rover designed to assist humans in the exploration of Mars. The Rovers compete aided by the University teams in four tasks (3 engineering and 1 science) in the Mars analog environment of the Utah Southern Desert in the United States. In this presentation we show amazing rover designs with videos demonstrating the incredible ingenuity, skill and determination of the world's most talented college students. We describe the purpose and results of each of the tasks: Astronaut Assistant, Rover Dexterity, Terrain maneuvering, and Science. We explain the evolution of the competition and common challenges faced by the robotic explorers
Collaborative Mission Design at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.
2005-01-01
NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.
Scaling Agile Methods for Department of Defense Programs
2016-12-01
concepts that drive the design of scaling frameworks, the contextual drivers that shape implementation, and widely known frameworks available today...Barlow probably governs some of the design choices you make. Barlow’s formula helps us understand the relationship between the outside diameter of a...encouraged to cross-train engineering staff and move away from a team structure where people focus on only one specialty, such as design
77 FR 58415 - Large Scale Networking (LSN); Joint Engineering Team (JET)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN); Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET). SUMMARY: The JET, established in 1997, provides for information sharing among Federal...
78 FR 70076 - Large Scale Networking (LSN)-Joint Engineering Team (JET)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN)--Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET)#title. SUMMARY: The JET, established in 1997, provides for information sharing among...
A systems engineering initiative for NASA's space communications
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda S.; Hei, Donald J., Jr.; Kelly, Angelita C.; Lightfoot, Patricia C.; Bell, Holland T.; Cureton-Snead, Izeller E.; Hurd, William J.; Scales, Charles H.
1993-01-01
In addition to but separate from the Red and Blue Teams commissioned by the NASA Administrator, NASA's Associate Administrator for Space Communications commissioned a Blue Team to review the Office of Space Communications (Code O) Core Program and determine how the program could be conducted faster, better, and cheaper, without compromising safety. Since there was no corresponding Red Team for the Code O Blue Team, the Blue Team assumed a Red Team independent attitude and challenged the status quo. The Blue Team process and results are summarized. The Associate Administrator for Space Communications subsequently convened a special management session to discuss the significance and implications of the Blue Team's report and to lay the groundwork and teamwork for the next steps, including the transition from engineering systems to systems engineering. The methodology and progress toward realizing the Code O Family vision and accomplishing the systems engineering initiative for NASA's space communications are presented.
NASA systems engineering handbook
NASA Astrophysics Data System (ADS)
Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou
1995-06-01
This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Valco, Mark J.
2002-01-01
The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.
Astronaut David Brown talks to FIRST team members
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut David Brown talks with FIRST team members, Baxter Bomb Squad, from Mountain Home High School, Mountain Home, Ariz., during the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Astronaut David Brown talks with team members from Lake Buena Vista, Fla
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut David Brown chats with members of the Explorers team, from Lake Buena Vista, Fla., during the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition held March 9-11 in the KSC Visitor Complex Rocket Garden. Teams of high school students from all over the country are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at the Southeast Regional event, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Protective clothing, re-engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, S.M.
1995-11-01
In 1993, Commonwealth Edison spent 5.1 Million dollars for protective clothing materials and services for six power plants. Therefore, it was necessary for ComEd to evaluate their protective clothing programs while also considering the rapid escalation in disposal costs and the potential for on-site storage of waste. Today, I will be discussing the preliminary planning and the outcome of one year`s worth of investigating, reviewing, and calculating for an operation that will save Commonwealth Edison millions of dollars. A Process Engineering Reevaluation Team composed of corporate and power plant personnel was formed to evaluate all aspects of protective clothing materialsmore » and services. Throughout the year, the nine member team consulted clothing manufacturers, commercial laundry operators, and laundry equipment specialists. Faced with a wide range of garment design, types, sizes, materials, and disposal options, we were faced with a considerable challenge. In addition, we had to develop a product that all six sites would agree on. Three areas in particular that the team sought to improve were the material of the clothing, design of the garment, and the ability to share the protective clothing with all six of our nuclear sites.« less
ORNL engineering design and construction reengineering report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeese, L.E.
1998-01-01
A team composed of individuals representing research and development (R and D) divisions, infrastructure support organizations, and Department of Energy (DOE)-Oak Ridge Operations was chartered to reengineer the engineering, design, and construction (ED and C) process at Oak Ridge National Laboratory (ORNL). The team recognized that ED and C needs of both R and D customers and the ORNL infrastructure program have to be met to maintain a viable and competitive national laboratory. Their goal was to identify and recommend implementable best-in-class ED and C processes that will efficiently and cost-effectively support the ORNL R and D staff by beingmore » responsive to their programmatic and infrastructure needs. The team conducted process mapping of current and potential ED and C approaches, developed idealized versions of ED and C processes, and identified potential barriers to an efficient ED and C process. Eight subteams were assigned to gather information and to evaluate the significance of potential barriers through benchmarking, surveys, interviews, and reviews of key topical areas in order to determine whether the perceived barriers were real and important and whether they resulted from laws or regulations over which ORNL has no control.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,371] T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania; Notice of Affirmative Determination...., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania (subject firm). The...
NASA Astrophysics Data System (ADS)
Guzzomi, Andrew L.; Male, Sally A.; Miller, Karol
2017-05-01
Engineering educators should motivate and support students in developing not only technical competence but also professional competence including commitment to excellence. We developed an authentic assessment to improve students' understanding of the importance of 'perfection' in engineering - whereby 50% good enough will not be acceptable in industry. Subsequently we aimed to motivate them to practise performing at their best when they practice engineering. Students in a third-year mechanical and mechatronic engineering unit completed a team design project designed with authentic assessment features to replicate industry expectations and a novel marking scheme to encourage the pursuit of excellence. We report mixed responses from students. Students' ratings of their levels of effort on this assessment indicate that many perceived a positive influence on their effort. However, students' comments included several that were consistent with students experiencing the assessment as alienating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, B.E.
1995-04-01
A cross-functional team of process, product, quality, material, and design lab engineers was assembled to develop an environmentally friendly cleaning process for leadless chip carrier assemblies (LCCAs). Using flush and filter testing, Auger surface analysis, GC-Mass spectrophotometry, production yield results, and electrical testing results over an extended testing period, the team developed an aqueous cleaning process for LCCAs. The aqueous process replaced the Freon vapor degreasing/ultrasonic rinse process.
A new model for graduate education and innovation in medical technology.
Yazdi, Youseph; Acharya, Soumyadipta
2013-09-01
We describe a new model of graduate education in bioengineering innovation and design- a year long Master's degree program that educates engineers in the process of healthcare technology innovation for both advanced and low-resource global markets. Students are trained in an iterative "Spiral Innovation" approach that ensures early, staged, and repeated examination of all key elements of a successful medical device. This includes clinical immersion based problem identification and assessment (at Johns Hopkins Medicine and abroad), team based concept and business model development, and project planning based on iterative technical and business plan de-risking. The experiential, project based learning process is closely supported by several core courses in business, design, and engineering. Students in the program work on two team based projects, one focused on addressing healthcare needs in advanced markets and a second focused on low-resource settings. The program recently completed its fourth year of existence, and has graduated 61 students, who have continued on to industry or startups (one half), additional graduate education, or medical school (one third), or our own Global Health Innovation Fellowships. Over the 4 years, the program has sponsored 10 global health teams and 14 domestic/advanced market medtech teams, and launched 5 startups, of which 4 are still active. Projects have attracted over US$2.5M in follow-on awards and grants, that are supporting the continued development of over a dozen projects.
Design of an integrated team project as bachelor thesis in bioscience engineering
NASA Astrophysics Data System (ADS)
Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter
2014-11-01
Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the design of this thesis. Because of the high number of students and the multidisciplinary nature of the graduates, all research divisions of the faculty are asked to participate. The yearly surveys and hearings were used for further optimisation. The actual design of this bachelor thesis is presented and discussed in this paper.
Third, K; Fun, O M; Bowen, J; Micenko, A; Grey, V; Prohasky, T
2009-01-01
The community of Tenganan in eastern Bali, Indonesia, has requested technical assistance from Engineers Without Borders Australia (EWB) to improve the quantity and quality of water delivered through their water supply system. This is a unique development project in which the Tenganan people have identified their own needs and developed their own conceptual solution to the problem. For the first time, EWB is undertaking the design phase for the water system by an off-shore design team and project assistance team (PAT) based in Australia. This allows EWB to draw on resources and experience of EWB members and their employing companies in Australia. It also enables young engineers to develop skills and experience in development work without having to leave the country. However, the innovative approach also presented significant challenges to the project members, particularly in establishing appropriate design criteria and the co-ordination of simultaneous activities across Australia. This paper describes the approach taken by EWB and makes a preliminary assessment of the benefits and limitations inherent in this approach. The overall aim of the project is to produce a successful "bottom-up" development action that will deliver a sustainable solution to the Tenganan community.
Code of Federal Regulations, 2010 CFR
2010-07-01
... utilize an interdisciplinary team with leadership by planning, and participation from engineering, design.... Subsequent aspects of planning, development, and management for the specific project will be directed to... management plans for each specific water resource project, including at least one public meeting. The...
2014-05-21
CAPE CANAVERAL, Fla. – The presentation and team spirit judges for NASA's 2014 Robotics Mining Competition are introduced during the opening ceremony at the Kennedy Space Center Visitor Complex in Florida. Second from left, is Teresa Martinez, lead presentation judge from Kennedy's Education Office. At far right, is Beth Smith, lead team spirit judge from Kennedy's Education Office. Behind them on the podium is Kimberley Land, event emcee from NASA's Ames Research Center in Moffett Field, California. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Frankie Martin
NASA's Gravitational-Wave Mission Concept Study
NASA Technical Reports Server (NTRS)
Stebbins, Robin
2012-01-01
With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consists of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to refine the conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The status of the Study are reported.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Center Director Bill Parsons (right) talks with students of another NASA-sponsored robotic team during the FIRST robotics event held at the University of Central Florida Arena March 8-10. Next to Parsons is Lisa Malone, director of External Relations at Kennedy Space Center. The students of team 1592, the Bionic Tigers, represent the cosponsors Analex Corporation and NASA Launch Services Program and Cocoa High School in Central Florida. Participating since 2005, this is the first year for this team to receive NASA financial support. They were mentored by the Pink Team. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
Mentoring Undergraduate Students through the Space Shuttle Hitchhiker GoldHELOX Project
NASA Astrophysics Data System (ADS)
Moody, J. Ward; Barnes, Jonathan; Roming, Peter; Durfee, Dallin; Campbell, Branton; Turley, Steve; Eastman, Paul
2015-01-01
In the late 1980s a team of four BYU undergraduate students designed a space-based telescope to image the sun in soft x-rays from 171-181 Angstroms to gain information on microflares and their relation to the corona-chromosphere transition region. The telescope used a near-normal incidence multi-layered mirror imaging onto film through a micro-channel plate. The system was capable of 1.0 sec time resolution and 2.5 arcsec spatial resolution. Aided by a NASA grant in 1991, a system was built and successfully tested in 1998 at Marshall Space Flight Center. Originally designed to be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle, the good results of this test elevated GoldHelox to greater-priority Hitchhiker status. Even so technical and procedural difficulties delayed a launch until after 2003. Unfortunately after the Columbia re-entry break-up in February 2003, the Hitchhiker program was cancelled and the GoldHelox project ended.Well over 200 undergraduate students worked on GoldHelox. Many of these have since earned advanced degrees in a variety of technical fields. Several have gone on to work in the space industry, becoming NASA scientists and engineers with one becoming a PI on the Swift satellite. The broad range of talent on the team has included students majoring in physics, astronomy, mechanical engineering, electrical engineering, manufacturing engineering, design engineering, business and even English majors who have written technical and public relations documents. We report on lessons learned and the pitfalls and successes of this unique mentoring experience.
Project Portal User-Centered Design and Engineering Report
2016-06-01
design . Further information on this round of testing is in Appendix A. 4.2 APRIL TEST Wireframe usability tests ... testing on other areas of the design , but due to schedule constraints from management, and personnel constraints in the development team, this became...just move on . That’s super normal when we test early on like this. I also may ask you to do things we actually haven’t created designs for
Application of Concurrent Engineering Methods to the Design of an Autonomous Aerial Robot
1991-12-01
power within the system, either airborne or at a ground station, was left to the team’s discretion. Data link from the aerial vehicle to the ground...Design Process 1 4 10 0% Conceptual 100% Preliminary 100% Detailed 100% Design Freedom Kowledge About the Design TIME INTO THE DESIGN PROCESS Figure 15...mission planning and control tasks was accomplished. Key system issues regarding power up and component initialization procedures began to be addressed
Progress update on a 2015 USIP interdisciplinary undergraduate student microgravity experiment
NASA Astrophysics Data System (ADS)
Dove, A.; Colwell, J. E.; Brisset, J.; Kirstein, J.; Brightwell, K.; Hayden, R.; Jorges, J.; Schwartzberg, D.; Strange, J.; Yates, A.
2016-12-01
Our team was selected by the 2016 USIP program to build, fly, and analyze the results from a granular dynamics experiment that will fly in 2017 on a suborbital flight. The experiment will be designed to test technology and enable science relevant to low-gravity planetary objects, such as asteroids, comets, and small moons. Following on the success of previous NASA Flight Opportunities Program (FOP) and Undergraduate Student Instrumentation Project (USIP) projects, however, the primary driver of the project is to enable undergraduate student participation in the entire lifetime of a science and technology development project. Our mentoring team consists of faculty, postdoctoral researchers, and graduate students, who have experience with the past USIP program and similar projects, as well as with mentoring undergraduate students. The undergraduate team includes a diversity of major disciplines, including physics, mechanical/aerospace engineering, electrical engineering, business (accounting), and marketing. Each team member has specific project tasks, as outlined in the proposal, and all members will also help develop and participate in outreach events. In additional to their project roles, students will also be responsible for presentations and milestones, such as design reviews. Through these reviews and the outreach events, all team members have the chance to develop their technical and non-technical communication skills. Previous experience with the NASA USIP program demonstrated that students achieve significant growth through these projects -gaining a better understanding of the entire lifecycle of a project, and, likely more importantly, how to work with a diverse team. In this talk, we will discuss the status of the project, and present student impressions and thoughts on the project thus far.
Superconducting gravity gradiometer mission. Volume 1: Study team executive summary
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1989-01-01
An executive summary is presented based upon the scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis Superconducting Gravity Gradiometer integrated with a six-axis superconducting accelerometer. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objectives, such as navigation and tests of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
Robotic Mining Competition - Awards Ceremony
2018-05-18
NASA's 9th Annual Robotic Mining Competition concludes with an awards ceremony May 18, 2018, at the Apollo/Saturn V Center at the Kennedy Space Center Visitor Complex in Florida. The University of Alabama Team Astrobotics received first place for their Systems Engineering Paper. At left is retired NASA astronaut Jerry Ross. At right is Jonette Stecklein, lead systems engineering paper judge. More than 40 student teams from colleges and universities around the U.S. participated in the competition, May 14-18, by using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Robotic Mining Competition - Awards Ceremony
2018-05-18
NASA's 9th Annual Robotic Mining Competition concludes with an awards ceremony May 18, 2018, at the Apollo/Saturn V Center at the Kennedy Space Center Visitor Complex in Florida. The team from The University of Akron received third place for their Systems Engineering Paper. At left is retired NASA astronaut Jerry Ross. At right is Jonette Stecklein, lead systems engineering paper judge. More than 40 student teams from colleges and universities around the U.S. participated in the competition, May 14-18, by using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
Superconducting gravity gradiometer mission. Volume 2: Study team technical report
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1988-01-01
Scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis superconducting gravity gradiometer integrated with a six-axis superconducting accelerometer are examined. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objective, such as navigation and feats of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
Fiore, Stephen M.; Wiltshire, Travis J.
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences. PMID:27774074
Fiore, Stephen M; Wiltshire, Travis J
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences.
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Johnson Space Center fly a remote-controlled helicopter equipped with a unique set of sensors and software during a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-08-05
MORE THAN 250 PEOPLE FROM ACROSS NASA'S MARSHALL SPACE FLIGHT CENTER PARTICIPATED IN THE SPACE LAUNCH SYSTEM (SLS) POST-PRELIMINARY DESIGN REVIEW REPORT, HELD AUG. 5 IN ACTIVITIES BUILDING 4316. DISCUSSING THE REVIEW AND THANKING THE MARSHALL TEAM FOR A JOB WELL DONE, ARE FROM LEFT, GARRY LYLES, SLS CHIEF ENGINEER; TODD MAY, MANAGER OF THE SLS PROGRAM; STEVE CASH, DIRECTOR OF MARSHALL’S SAFETY & MISSION ASSURANCE DIRECTORATE; AND CHRIS SINGER, MANAGER OF MARSHALL’S ENGINEERING DIRECTORATE
SE Capstone Project: Building Systems Engineering Education and Workforce Capacity
2012-04-01
This project developed a system to improve fuel efficiency by means of regenerative braking . The team designed a simple system that allows "bolt-on...air traffic control, social networking, credit/debit cards, and anti-lock brakes are only a few functions enabled by complex systems of systems . We...Building Systems Engineering Education and Workforce Capacity SE Capstone Project APRIL 2012 Report Documentation Page Form ApprovedOMB No. 0704
X-33 Attitude Control Using the XRS-2200 Linear Aerospike Engine
NASA Technical Reports Server (NTRS)
Hall, Charles E.; Panossian, Hagop V.
1999-01-01
The Vehicle Control Systems Team at Marshall Space Flight Center, Structures and Dynamics Laboratory, Guidance and Control Systems Division is designing, under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control systems for the X-33 experimental vehicle. Test flights, while suborbital, will achieve sufficient altitudes and Mach numbers to test Single Stage To Orbit, Reusable Launch Vehicle technologies. Ascent flight control phase, the focus of this paper, begins at liftoff and ends at linear aerospike main engine cutoff (MECO). The X-33 attitude control system design is confronted by a myriad of design challenges: a short design cycle, the X-33 incremental test philosophy, the concurrent design philosophy chosen for the X-33 program, and the fact that the attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems. Additionally, however, and of special interest, the use of the linear aerospike engine is a departure from the gimbaled engines traditionally used for thrust vector control (TVC) in launch vehicles and poses certain design challenges. This paper discusses the unique problem of designing the X-33 attitude control system with the linear aerospike engine, requirements development, modeling and analyses that verify the design.
Village, Judy; Searcy, Cory; Salustri, Filipo; Patrick Neumann, W
2015-01-01
The 'design for human factors' grounded theory explains 'how' human factors (HF) went from a reactive, after-injury programme in safety, to being proactively integrated into each step of the production design process. In this longitudinal case study collaboration with engineers and HF Specialists in a large electronics manufacturer, qualitative data (e.g. meetings, interviews, observations and reflections) were analysed using a grounded theory methodology. The central tenet in the theory is that when HF Specialists acclimated to the engineering process, language and tools, and strategically aligned HF to the design and business goals of the organisation, HF became a means to improve business performance. This led to engineers 'pulling' HF Specialists onto their team. HF targets were adopted into engineering tools to communicate HF concerns quantitatively, drive continuous improvement, visibly demonstrate change and lead to benchmarking. Senior management held engineers accountable for HF as a key performance indicator, thus integrating HF into the production design process. Practitioner Summary: Research and practice lack explanations about how HF can be integrated early in design of production systems. This three-year case study and the theory derived demonstrate how ergonomists changed their focus to align with design and business goals to integrate HF into the design process.
The Design of a Primary Flight Trainer using Concurrent Engineering Concepts
NASA Technical Reports Server (NTRS)
Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.
1993-01-01
Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.
A community-based, interdisciplinary rehabilitation engineering course.
Lundy, Mary; Aceros, Juan
2016-08-01
A novel, community-based course was created through collaboration between the School of Engineering and the Physical Therapy program at the University of North Florida. This course offers a hands-on, interdisciplinary training experience for undergraduate engineering students through team-based design projects where engineering students are partnered with physical therapy students. Students learn the process of design, fabrication and testing of low-tech and high-tech rehabilitation technology for children with disabilities, and are exposed to a clinical experience under the guidance of licensed therapists. This course was taught in two consecutive years and pre-test/post-test data evaluating the impact of this interprofessional education experience on the students is presented using the Public Service Motivation Scale, Civic Actions Scale, Civic Attitudes Scale, and the Interprofessional Socialization and Valuing Scale.
Systems Engineering Model for ART Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.
The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less
Spring 2013 Graduate Engineering Internship Summary
NASA Technical Reports Server (NTRS)
Ehrlich, Joshua
2013-01-01
In the spring of 2013, I participated in the National Aeronautics and Space Administration (NASA) Pathways Intern Employment Program at the Kennedy Space Center (KSC) in Florida. This was my final internship opportunity with NASA, a third consecutive extension from a summer 2012 internship. Since the start of my tenure here at KSC, I have gained an invaluable depth of engineering knowledge and extensive hands-on experience. These opportunities have granted me the ability to enhance my systems engineering approach in the field of payload design and testing as well as develop a strong foundation in the area of composite fabrication and testing for repair design on space vehicle structures. As a systems engineer, I supported the systems engineering and integration team with final acceptance testing of the Vegetable Production System, commonly referred to as Veggie. Verification and validation (V and V) of Veggie was carried out prior to qualification testing of the payload, which incorporated the process of confirming the system's design requirements dependent on one or more validation methods: inspection, analysis, demonstration, and testing.
Energy Conservation Projects to Benefit the Railroad Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifford Mirman; Promod Vohra
The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. Themore » team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.« less
1999-03-06
At the award ceremony for the 1999 FIRST Southeastern Regional robotic competition held at KSC, the winning teams, from Miami and San German, Puerto Rico, jump for joy and wave a flag. In the foreground, at left, are Woody Flowers, national advisor to FIRST, and at right, Roy Bridges, KSC director. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations. The regional event comprised 27 teams. Along with the championship award, 15 other awards were presented
NASA Technical Reports Server (NTRS)
Miller, James; Leggett, Jay; Kramer-White, Julie
2008-01-01
A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy.
NASA Technical Reports Server (NTRS)
Quick, Jason
2009-01-01
The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the user-centered process provided valuable lessons for improving future collaborative conceptual design efforts.
Hall-Andersen, Lene Bjerg; Neumann, Patrick; Broberg, Ole
2016-10-17
The integration of ergonomics knowledge into engineering projects leads to both healthier and more efficient workplaces. There is a lack of knowledge about integrating ergonomic knowledge into the design practice in engineering consultancies. This study explores how organizational resources can pose constraints for the integration of ergonomics knowledge into engineering design projects in a business-driven setting, and how ergonomists cope with these resource constraints. An exploratory case study in an engineering consultancy was conducted. A total of 27 participants were interviewed. Data were collected applying semi-structured interviews, observations, and documentary studies. Interviews were transcribed, coded, and categorized into themes. From the analysis five overall themes emerged as major constituents of resource constraints: 1) maximizing project revenue, 2) payment for ergonomics services, 3) value of ergonomic services, 4) role of the client, and 5) coping strategies to overcome resource constraints. We hypothesize that resource constraints were shaped due to sub-optimization of costs in design projects. The economical contribution of ergonomics measures was not evaluated in the entire life cycle of a designed workplace. Coping strategies included teaming up with engineering designers in the sales process or creating an alliance with ergonomists in the client organization.
2014-05-21
CAPE CANAVERAL, Fla. – The judges for the mining portion of NASA's 2014 Robotics Mining Competition are introduced during the opening ceremony at the Kennedy Space Center Visitor Complex in Florida. At far right, on the podium are Rob Mueller, lead technical expert and head judge from Kennedy's Engineering and Technology Directorate, and Kimberley Land, event emcee from NASA's Ames Research Center in Moffett Field, California. More than 35 teams from around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Frankie Martin
Generation of an Aerothermal Data Base for the X33 Spacecraft
NASA Technical Reports Server (NTRS)
Roberts, Cathy; Huynh, Loc
1998-01-01
The X-33 experimental program is a cooperative program between industry and NASA, managed by Lockheed-Martin Skunk Works to develop an experimental vehicle to demonstrate new technologies for a single-stage-to-orbit, fully reusable launch vehicle (RLV). One of the new technologies to be demonstrated is an advanced Thermal Protection System (TPS) being designed by BF Goodrich (formerly Rohr, Inc.) with support from NASA. The calculation of an aerothermal database is crucial to identifying the critical design environment data for the TPS. The NASA Ames X-33 team has generated such a database using Computational Fluid Dynamics (CFD) analyses, engineering analysis methods and various programs to compare and interpolate the results from the CFD and the engineering analyses. This database, along with a program used to query the database, is used extensively by several X-33 team members to help them in designing the X-33. This paper will describe the methods used to generate this database, the program used to query the database, and will show some of the aerothermal analysis results for the X-33 aircraft.
Astronaut David Brown poses with ComBBat team
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut David Brown poses with members of the team known as ComBBat, representing Central Florida's Astronaut and Titusville high schools. ComBBat was teamed with Boeing at KSC and Brevard Community College. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition being held March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Team 393 robot scores in FIRST competition
NASA Technical Reports Server (NTRS)
2000-01-01
The Bee Bots team (393) robot, named Dr. Beevil, scores by gathering balls. The team is composed of students from Morristown Jr. and Sr. high schools in Morristown, Ind., and is co-sponsored by NASA Kennedy Space Center and IPT Inc. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Team 278 gets help from KSC machine shop
NASA Technical Reports Server (NTRS)
2000-01-01
The Hero Team (278) gets some help from a Kennedy Space Center research and development machine shop in repairing their robot, named Hero. The team of Edgewater High School students was co- sponsored by NASA Kennedy Space Center and Honeywell. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co- sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Team 278 gets help from KSC machine shop
NASA Technical Reports Server (NTRS)
2000-01-01
The Hero Team (278) robot, named Hero, is repaired in a Kennedy Space Center research and development machine shop. The team of Edgewater High School students was co-sponsored by NASA Kennedy Space Center and Honeywell. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
2000-03-10
FIRST teams and their robots work to go through the right motions at the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville
2000-03-10
FIRST teams and their robots work to go through the right motions at the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville
Enhancing the traditional hospital design process: a focus on patient safety.
Reiling, John G; Knutzen, Barbara L; Wallen, Thomas K; McCullough, Susan; Miller, Ric; Chernos, Sonja
2004-03-01
In 2002 St. Joseph's Community Hospital (West Bend, WI), a member of SynergyHealth, brought together leaders in health care and systems engineering to develop a set of safety-driven facility design principles that would guide the hospital design process. DESIGNING FOR SAFETY: Hospital leadership recognized that a cross-departmental team approach would be needed and formed the 11-member Facility Design Advisory Council, which, with departmental teams and the aid of architects, was responsible for overseeing the design process and for ensuring that the safety considerations were met. The design process was a team approach, with input from national experts, patients and families, hospital staff and physicians, architects, contractors, and the community. The new facility, designed using safety-driven design principles, reflects many innovative design elements, including truly standardized patient rooms, new technology to minimize falls, and patient care alcoves for every patient room. The new hospital has been designed with maximum adaptability and flexibility in mind, to accommodate changes and provide for future growth. The architects labeled the innovative design. The Synergy Model, to describe the process of shaping the entire building and its spaces to work efficiently as a whole for the care and safety of patients. Construction began on the new facility in August 2003 and is expected to be completed in 2005.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- During the FIRST robotics event held at the University of Central Florida Arena March 8-10, Center Director Bill Parsons (left) talks to students from Titusville, Fla., about their robot. The team is cosponsored by ASRC Aerospace and The Boeing Company, and represents Astronaut and Titusville High Schools. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
Oregon Sustainability Center: Weighing Approaches to Net Zero
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, Cindy; Robinson, Alastair; Settlemyre, Kevin
2013-10-01
The Oregon Sustainability Center (OSC) was to represent a unique public/private partnership between the city of Portland, Oregon, state government, higher education, non-profit organizations, and the business community. A unique group of stakeholders partnered with the U.S. Department of Energy (DOE) technical expert team (TET) to collaboratively identify, analyze, and evaluate solutions to enable the OSC to become a high-performance sustainability landmark in downtown Portland. The goal was to build a new, low-energy mixed-use urban high-rise that consumes at least 50 percent less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioningmore » Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program.1 In addition, the building design was to incorporate renewable energy sources that would account for the remaining energy consumption, resulting in a net zero building. The challenge for the CBP DOE technical team was to evaluate factors of risk and components of resiliency in the current net zero energy design and analyze that design to see if the same high performance could be achieved by alternative measures at lower costs. In addition, the team was to use a “lens of scalability” to assess whether or not the strategies could be applied to more projects. However, a key component of the required project funding did not pass, and therefore this innovative building design was discontinued while it was in the design development stage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, Paul T.; Althsuler, Alan; Larzelere, Alex R.
2005-08-01
The Design-through-Analysis Realization Team (DART) is chartered with reducing the time Sandia analysts require to complete the engineering analysis process. The DART system analysis team studied the engineering analysis processes employed by analysts in Centers 9100 and 8700 at Sandia to identify opportunities for reducing overall design-through-analysis process time. The team created and implemented a rigorous analysis methodology based on a generic process flow model parameterized by information obtained from analysts. They also collected data from analysis department managers to quantify the problem type and complexity distribution throughout Sandia's analyst community. They then used this information to develop a communitymore » model, which enables a simple characterization of processes that span the analyst community. The results indicate that equal opportunity for reducing analysis process time is available both by reducing the ''once-through'' time required to complete a process step and by reducing the probability of backward iteration. In addition, reducing the rework fraction (i.e., improving the engineering efficiency of subsequent iterations) offers approximately 40% to 80% of the benefit of reducing the ''once-through'' time or iteration probability, depending upon the process step being considered. Further, the results indicate that geometry manipulation and meshing is the largest portion of an analyst's effort, especially for structural problems, and offers significant opportunity for overall time reduction. Iteration loops initiated late in the process are more costly than others because they increase ''inner loop'' iterations. Identifying and correcting problems as early as possible in the process offers significant opportunity for time savings.« less
Using Collaborative Engineering to Inform Collaboration Engineering
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.
2012-01-01
Collaboration is a critical competency for modern organizations as they struggle to compete in an increasingly complex, global environment. A large body of research on collaboration in the workplace focuses both on teams, investigating how groups use teamwork to perform their task work, and on the use of information systems to support team processes ("collaboration engineering"). This research essay presents collaboration from an engineering perspective ("collaborative engineering"). It uses examples from professional and student engineering teams to illustrate key differences in collaborative versus collaboration engineering and investigates how challenges in the former can inform opportunities for the latter.
2002-04-13
Students from across the United States and as far away as Puerto Rico and South America came to Huntsville, Alabama for the 9th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Seventy-seven teams, representing high schools and colleges from 21 states, Puerto Rico, and Columbia, raced human powered vehicles over a lunar-like terrain. A team from Cornell University in Ithaca, New York, took the first place honor in the college division. In this photograph, the Cornell #1 team, the collegiate first place winner, maneuvers their vehicle through the course. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a humanpowered vehicle so they will learn how to deal with real-world engineering problems similar to those faced by the actual NASA LRV team.
2003-04-12
Students from across the United States and as far away as Puerto Rico came to Huntsville, Alabama for the 10th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Sixty-eight teams, representing high schools and colleges from all over the United States, and Puerto Rico, raced human powered vehicles over a lunar-like terrain. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a human powered vehicle so they will learn how to deal with real-world engineering problems similar to those faced by the actual NASA LRV team. In this photograph, Team No. 1 from North Dakota State University in Fargo conquers one of several obstacles on their way to victory. The team captured first place honors in the college level competition.
2002-04-12
Students from across the United States and as far away as Puerto Rico and South America came to Huntsville, Alabama for the 9th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Seventy-seven teams, representing high schools and colleges from 21 states, Puerto Rico, and Columbia, raced human powered vehicles over a lunar-like terrain. In this photograph, the New Orleans area schools team #2 from New Orleans, Louisiana maneuvers through an obstacle course. The team captured second place in the high school division competition. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by the development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a human powered vehicle so they will learn how to deal with real-world engineering problems, similar to those faced by the actual NASA LRV team.
9th Arnual Great Moonbuggy Race
NASA Technical Reports Server (NTRS)
2002-01-01
Students from across the United States and as far away as Puerto Rico and South America came to Huntsville, Alabama for the 9th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Seventy-seven teams, representing high schools and colleges from 21 states, Puerto Rico, and Columbia, raced human powered vehicles over a lunar-like terrain. A team from Cornell University in Ithaca, New York, took the first place honor in the college division. In this photograph, the Cornell #1 team, the collegiate first place winner, maneuvers their vehicle through the course. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a humanpowered vehicle so they will learn how to deal with real-world engineering problems similar to those faced by the actual NASA LRV team.
10th Arnual Great Moonbuggy Race
NASA Technical Reports Server (NTRS)
2003-01-01
Students from across the United States and as far away as Puerto Rico came to Huntsville, Alabama for the 10th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Sixty-eight teams, representing high schools and colleges from all over the United States, and Puerto Rico, raced human powered vehicles over a lunar-like terrain. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a human powered vehicle so they will learn how to deal with real-world engineering problems similar to those faced by the actual NASA LRV team. In this photograph, Team No. 1 from North Dakota State University in Fargo conquers one of several obstacles on their way to victory. The team captured first place honors in the college level competition.
9th Arnual Great Moonbuggy Race
NASA Technical Reports Server (NTRS)
2002-01-01
Students from across the United States and as far away as Puerto Rico and South America came to Huntsville, Alabama for the 9th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Seventy-seven teams, representing high schools and colleges from 21 states, Puerto Rico, and Columbia, raced human powered vehicles over a lunar-like terrain. In this photograph, the New Orleans area schools team #2 from New Orleans, Louisiana maneuvers through an obstacle course. The team captured second place in the high school division competition. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by the development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a human powered vehicle so they will learn how to deal with real-world engineering problems, similar to those faced by the actual NASA LRV team.
NASA Technical Reports Server (NTRS)
Lohn, Jason
2004-01-01
No team of engineers, no matter how much time they took or how many bottles of cabernet they consumed, would dream up an antenna that looked like a deer antler on steroids. Yet that's what a group at NASA Ames Research Center came up with-thanks to a little help from Darwin. NASA's Space Technology 5 nanosatellites, which are scheduled to start measuring Earth's magnetosphere in late 2004, requires an antenna that can receive a wide range of frequencies regardless of the spacecraft's orientation. Rather than leave such exacting requirements in the hands of a human, the engineers decided to breed a design using genetic algorithms and 32 Linux PCs. The computers generated small antenna-constructing programs (the genotypes) and executed them to produce designs (the phenotypes). Then the designs were evaluated using an antenna simulator. The team settled on the form pictured here. You won't find this kind of antenna in any textbook, design guide, or research paper. But its innovative structure meets a challenging set of specifications. If successfully deployed, it will be the first evolved antenna to make it out of the lab and the first piece of evolved hardware ever to fly in space.
Satellite-instrument system engineering best practices and lessons
NASA Astrophysics Data System (ADS)
Schueler, Carl F.
2009-08-01
This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.
Training for spacecraft technical analysts
NASA Technical Reports Server (NTRS)
Ayres, Thomas J.; Bryant, Larry
1989-01-01
Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.
Use of activity theory-based need finding for biomedical device development.
Rismani, Shalaleh; Ratto, Matt; Machiel Van der Loos, H F
2016-08-01
Identifying the appropriate needs for biomedical device design is challenging, especially for less structured environments. The paper proposes an alternate need-finding method based on Cultural Historical Activity Theory and expanded to explicitly examine the role of devices within a socioeconomic system. This is compared to a conventional need-finding technique in a preliminary study with engineering student teams. The initial results show that the Activity Theory-based technique allows teams to gain deeper insights into their needs space.
Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope
NASA Astrophysics Data System (ADS)
Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.
2012-09-01
Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Center Director Bill Parsons (left) greets the Lt. Governor of the State of Florida, Jeff Kottkamp, at the FIRST robotics event held at the University of Central Florida Arena March 8-10. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
A methodology for system-of-systems design in support of the engineering team
NASA Astrophysics Data System (ADS)
Ridolfi, G.; Mooij, E.; Cardile, D.; Corpino, S.; Ferrari, G.
2012-04-01
Space missions have experienced a trend of increasing complexity in the last decades, resulting in the design of very complex systems formed by many elements and sub-elements working together to meet the requirements. In a classical approach, especially in a company environment, the two steps of design-space exploration and optimization are usually performed by experts inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. This is done especially in the very early design phases where most of the costs are locked-in. With the objective of supporting the engineering team and the decision-makers during the design of complex systems, the authors developed a modelling framework for a particular category of complex, coupled space systems called System-of-Systems. Once modelled, the System-of-Systems is solved using a computationally cheap parametric methodology, named the mixed-hypercube approach, based on the utilization of a particular type of fractional factorial design-of-experiments, and analysis of the results via global sensitivity analysis and response surfaces. As an applicative example, a system-of-systems of a hypothetical human space exploration scenario for the support of a manned lunar base is presented. The results demonstrate that using the mixed-hypercube to sample the design space, an optimal solution is reached with a limited computational effort, providing support to the engineering team and decision makers thanks to sensitivity and robustness information. The analysis of the system-of-systems model that was implemented shows that the logistic support of a human outpost on the Moon for 15 years is still feasible with currently available launcher classes. The results presented in this paper have been obtained in cooperation with Thales Alenia Space—Italy, in the framework of a regional programme called STEPS. STEPS—Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.
The History of Orbiter Corrosion Control (1981 - 2011)
NASA Technical Reports Server (NTRS)
Russell, Richard W.
2014-01-01
After 135 missions and 30 years the Orbiter fleet was retired in 2011. Working with Orbiter project management and a world class engineering team the CCRB was successful in providing successful sustaining engineering support for approximately 20 years. Lessons learned from the Orbiter program have aided NASA and contractor engineers in the design and manufacture of new spacecraft so that exploration of space can continue. The Orbiters are proudly being displayed for all the public to see in New York City, Washington D.C., Los Angeles, and at the Kennedy Space Center in Florida.
The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Jones, David; Hopkins, Randy
2011-01-01
This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.
NASA Systems Engineering Handbook
NASA Technical Reports Server (NTRS)
Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou
1995-01-01
This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).
Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory
1942-09-21
The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.
Launch vehicle systems design analysis
NASA Technical Reports Server (NTRS)
Ryan, Robert; Verderaime, V.
1993-01-01
Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.